初中数学几何证明经典题含答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中几何证明题

经典题(一)

1、已知:如图,O是半圆的圆心,C、E是圆上的两点,CD⊥AB,EF⊥AB,EG⊥CO.

求证:CD=GF.(初二)

.如下图做GH⊥AB,连接EO。由于GOFE四点共圆,所以∠GFH=∠OEG,

即△GHF∽△OGE,可得EO

GF

=

GO

GH

=

CO

CD

,又CO=EO,所以CD=GF得证。

2、已知:如图,P是正方形ABCD内点,∠PAD=∠PDA=150.

求证:△PBC是正三角形.(初二)

.如下图做GH⊥AB,连接EO。由于GOFE四点共圆,所以∠GFH=∠OEG,

即△GHF∽△OGE,可得EO

GF

=

GO

GH

=

CO

CD

,又CO=EO,所以CD=GF得证。

.如下图做GH⊥AB,连接EO。由于GOFE四点共圆,所以∠GFH=∠OEG,

即△GHF∽△OGE,可得EO

GF

=

GO

GH

=

CO

CD

,又CO=EO,所以CD=GF得证。

A

P

C

D

B

A

F

G

C

E

B

O

D

3、如图,已知四边形ABCD 、A 1B 1C 1D 1都是正方形,A 2、B 2、C 2、D 2分别是AA 1、BB 1、

CC 1、DD 1的中点.

求证:四边形A 2B 2C 2D 2是正方形.(初二)

4、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC

的延长线交MN 于E 、F .

求证:∠DEN =∠F .

经典题(二)

1、已知:△ABC 中,H 为垂心(各边高线的交点),O 为外心,且OM ⊥BC 于M . (1)求证:AH =2OM ; (2)若∠BAC =600,求证:AH =AO .(初二)

D 2 C 2

B 2 A 2

D 1 C 1 B 1 C B D

A A 1 A

N F

E C

D

M

B

· A D

H

E

M C

B

O

F

2、设MN 是圆O 外始终线,过O 作OA ⊥MN 于A ,自A 引圆的两条直线,交圆于B 、C 及D 、E ,直线EB 及CD 分别交MN 于P 、Q . 求证:AP =AQ .(初二)

3、假如上题把直线MN 由圆外平移至圆内,则由此可得以下命题:

设MN 是圆O 的弦,过MN 的中点A 任作两弦BC 、DE ,设CD 、EB 分别交MN 于P 、Q . 求证:AP =AQ .(初二)

4、如图,分别以△ABC 的AC 和BC 为一边,在△ABC 的外侧作正方形ACDE 和正方形CBFG ,点P 是EF 的中点.

求证:点P 到边AB 的间隔 等于AB 的一半.

经典题(三)

1、如图,四边形ABCD 为正方形,DE ∥AC ,AE =AC ,AE 及CD 相交于F .

求证:CE =CF .(初二)

2、如图,四边形ABCD 为正方形,DE ∥AC ,且CE =CA ,直线EC 交DA 延长线于F .

求证:AE =AF .(初二)

3、设P 是正方形ABCD 一边

求证:PA =PF .(初二)

4、如图,PC 切圆O 于C ,AC 为圆的直径,PEF

B 、D .求证:AB =D

C ,BC =AD

.(初三)

经典

1、已知:△ABC 是正三角形,P 是三角形内一点,PA =3,PB =4,求:∠APB 的度数.(初二)

2、设P 是平行四边形ABCD 内部的一点,且∠PBA =∠PDA . 求证:∠PAB =∠PCB .(初二)

3、设ABCD 为圆内接凸四边形,求证:AB ·CD +AD ·BC =AC ·BD .(初三)

4、平行四边形ABCD 中,设E 、F 分别是BC 、AB 上的一点,AE 及CF 相交于P ,且 AE =CF .求证:∠DPA =∠DPC .(初二)

经典难题(五)

1、 设P 是边长为1的正△ABC 内任一点,L =PA +PB +PC ,

求证:≤L <2.

2、已知:P 是边长为1的正方形ABCD 内的一点,求PA +PB +PC 的最小值.

3、P 为正方形ABCD 内的一点,并且PA =a ,PB =2a ,PC =3a ,求正方形的边长.

C B

D A F P

D E C

B A A

P

C

B

A

C

B

P

D

A C

B

P

D

4、如图,△ABC中,∠ABC=∠ACB=800,D、E分别是AB、AC上的点,∠DCA=300,∠EBA=200,求∠BED的度数.

经典题(一)

1.如下图做GH⊥AB,连接EO。由于GOFE四点共圆,所以∠GFH=∠OEG,

即△GHF∽△OGE,可得EO

GF

=

GO

GH

=

CO

CD

,又CO=EO,所以CD=GF得证。

2. .如下图做GH⊥AB,连接EO。由于GOFE四点共圆,所以∠GFH=∠OEG,

即△GHF∽△OGE,可得EO

GF

=

GO

GH

=

CO

CD

,又CO=EO,所以CD=GF得证。

3.如下图连接BC

1和AB

1

分别找其中点F,E.连接C

2

F及A

2

E并延长相交于Q点,

E

D

C

B

A

相关文档
最新文档