Speckle pattern

合集下载

pattern的用法总结大全

pattern的用法总结大全

pattern的用法总结大全pattern有模式,花样,样品,图案,榜样,典范的意思。

那你们想知道pattern的用法吗?今天给大家带来了pattern的用法,希望能够帮助到大家,一起来学习吧。

pattern的用法总结大全pattern的意思n. 模式,花样,样品,图案,榜样,典范vt. 模仿,以图案装饰vi. 形成图案变形:过去式: patterned; 现在分词:patterning; 过去分词:patterned;pattern用法pattern可以用作名词pattern的基本意思是“型,模式,样式”,是可数名词,多指某物、某事的原始模型或精心设计的方案,借助于此来制作某物或设计某事,用于比喻指千篇一律或一成不变的东西。

pattern也可指“花样,图案”,还可指事物发生或发展的“方式,形式”,是可数名词。

pattern还可作“榜样,典范”解,此时常用于单数形式。

pattern用作名词的用法例句The two buildings are modeled after the same pattern.这两座建筑是按照同一模式建造的。

Training and education follow different patterns in different regions.培训和教育在不同的地区遵循不同的模式。

This cloth has a pattern of blue and white squares.这种布有蓝白格子的图案。

pattern可以用作动词pattern用作动词的意思是“模仿,仿制”,即在语言、行动等方面效仿他人或在样式上模仿别的东西。

还可指“以图案装饰”。

pattern多用作及物动词,后接名词或代词作宾语。

pattern用作动词的用法例句I like the carpets patterned with peonies.我喜欢印有牡丹花图案的地毯。

He patterned himself upon a man he admired.他模仿一位他钦佩的人。

光声成像技术

光声成像技术

光声成像技术的发展摘要:摘要:光声成像技术是生物医学上的一种新兴的成像技术,光声成像技术是生物医学上的一种新兴的成像技术,光声成像技术是生物医学上的一种新兴的成像技术,具有高分辨率、具有高分辨率、具有高分辨率、高对高对比度、对人体无伤害等优点。

本文介绍了光声技术发展的背景以及近年来主要的发展情况,主要涉及近年来学者对光声成像技术的研究以及现阶段光声成像技术存在的问题以及改进。

最近阐述了光声成像技术的发展前景和趋势,最近阐述了光声成像技术的发展前景和趋势,指出了光声指出了光声成像技术向多模式结合的方式发展趋势。

关键词:光声成像技术,发展,前景关键词:光声成像技术,发展,前景1前言随着现代科学技术的发展,随着现代科学技术的发展,医学成像对各种疾病的诊断与治疗有着重要的意义。

义。

对生物组织进行成像是研究生物组织病变的重要手段。

对生物组织进行成像是研究生物组织病变的重要手段。

对生物组织进行成像是研究生物组织病变的重要手段。

目前,目前,目前,被广泛运用到被广泛运用到医学上的成像方法主要有:X 射线成像(包括x 射线造影术成像和x 射线相干层析成像Op cal Coherence Tomography ,OC T 等)、磁共振成像(magnetic reso —nance tomography ,MRT)、超声成像等。

在上述的这些成像技术中,都因辐射儿对人体造成一定的损伤。

儿对人体造成一定的损伤。

X X 射线又称伦琴射线,它具有穿透物质的本领,但对不同物质它的穿透本领不同,有破坏细胞作用。

不同物质它的穿透本领不同,有破坏细胞作用。

X X 射线成像是根据人体组织的密度和厚度的不同,使组织能在荧光屏或胶片上形成影像,使组织能在荧光屏或胶片上形成影像,因此有些组织病变无法因此有些组织病变无法判断,并且长期频繁使用x 射线成像将有损于人们健康。

射线成像将有损于人们健康。

MRT MRT 技术是利用人体组织中氢原子核在磁场中受到激励而发生核磁共振现象产生磁现象的一种成像技术。

数字散斑干涉(DSPI)研究的文献综述

数字散斑干涉(DSPI)研究的文献综述

数字散斑干涉振动测量技术研究进展摘要:数字散斑干涉技术(DSPI)是一种光学测试方法,具有非接触、高灵敏度、全场、实时、无损检测的特点,在振动测量方面有着较大的优势。

本文从图像处理、相移技术等方面阐述了数字散斑干涉振动测量的发展现状,并对其中的关键技术进行了比较和分析。

关键词:数字散斑干涉,振动测量,数字图像处理,相移技术Research Progress on V ibration Measurement Using Digital SpecklePattern InterferometryAbstract:Digital speckle pattern interferometry (DSPI) is an optical testing and measuring method,a non-contact, high-sensitivity, full-field, real-time, non-destructive one, which has an advantage in vibration analysis. This paper introduces the recent progress on DSPI vibration measurement from aspects of digital image processing and phase shifting, also compares and analyzes their key technologies.Keywords:Digital speckle pattern interferometry; Vibration measurement; Digital image processing; Phase shifting0 引言散斑计量技术是现代光测力学技术中的一种。

它具有非接触、无损、全场、高精度、实时测量的特点,在轮廓、应变、位移和振动测量方面有着广泛的应用前景[1]。

基于赝热光照明的单发光学散斑成像

基于赝热光照明的单发光学散斑成像

基于赝热光照明的单发光学散斑成像肖晓;杜舒曼;赵富;王晶;刘军;李儒新【摘要】散射介质对光的散射是当前限制光学成像深度或距离的一个严重的问题.本文首先数值模拟比较了光透过随机散射介质成像研究中常用的基于光学记忆效应(memory effect,ME)和自相关(autocorrelation,AC)方法的HIO&ER算法和乒乓(Ping-Pang,PP)算法的优缺点.通过对HIO&ER算法和PP算法的恢复效果和迭代次数进行比较,发现PP算法在保持较高恢复效果的前提下拥有更快的运行速度.实验中,利用连续He-Ne激光器和旋转毛玻璃产生赝热光源,通过物镜对随机散射介质后数毫米距离内的不同形状物体进行了单帧成像,并采用PP算法成功地恢复出微米量级物体的实际图像.这一研究结果将进一步促进ME和AC方法在深层生物组织医学成像研究上的应用.最后,实验研究了不同的物镜和散射介质的间距对成像恢复的放大率、分辨率和图像强度的影响特性,并进行了详细研究.【期刊名称】《物理学报》【年(卷),期】2019(068)003【总页数】8页(P158-165)【关键词】记忆效应;强度自相关;随机散射;相位恢复算法【作者】肖晓;杜舒曼;赵富;王晶;刘军;李儒新【作者单位】中国科学院上海光学精密机械研究所,强场激光物理国家重点实验室,上海201800;中国科学院大学,北京100049;中国科学院上海光学精密机械研究所,强场激光物理国家重点实验室,上海201800;中国科学院大学,北京100049;中国科学院上海光学精密机械研究所,强场激光物理国家重点实验室,上海201800;中国科学院大学,北京100049;中国科学院上海光学精密机械研究所,强场激光物理国家重点实验室,上海201800;中国科学院上海光学精密机械研究所,强场激光物理国家重点实验室,上海201800;中国科学院上海光学精密机械研究所,强场激光物理国家重点实验室,上海201800【正文语种】中文1 引言随着纳米技术、光子学技术和生物医学技术的发展, 活体光学成像在生物光子及现代医疗科学领域的应用越来越广泛[1−3]. 然而, 由于生物组织对光具有吸收和散射作用, 激发光和信号光都难以穿透足够深度的生物组织, 并且探测光在生物组织内的散射会引起其相位信息的破坏, 因而难以直接通过相机来对深层生物组织进行高分辨成像[4−6]. 散射介质除了引入以上问题, 研究也发现光经过随机散射介质可以增加实际成像系统的数值孔径、增大成像系统的视场角、接收来自物体表面的倏逝波并将其散射为行波在远场传播, 因而散射介质也被一些研究小组用来进行光学超衍射成像[7−9]. 多年来,国内外的一些研究小组利用波前调制等反馈控制调节法[10,11]及相位共轭时间反演法[12−14], 来实现光经过散射介质的深度成像. 此外, 在早期鬼成像的研究中, 就已经通过光学互相关的原理来减小散射介质对成像的影响[15−17]. 但这些方法的光路系统相对复杂, 容易受环境影响, 难以适应生物组织深度成像的实际应用.最近的研究惊喜地发现, 利用赝热光源基于“光学记忆效应”(memory effect, ME)[18−22]和自相关 (autocorrelation, AC)方法[23−25], 可以从探测器探测到的杂乱无章的散斑图中直接恢复出物体的二维图像信息. 其中, 非常重要的一点是用到了Gerchberg-Saxton (GS)算法[26−29]来进行物体的相位恢复. 本文对GS算法中的HIO&ER算法[30−32]和 PP (Ping-Pang, PP)算法[33]的恢复效果和迭代次数进行了比较, 结果表明PP算法在保持较高恢复效果的前提下拥有更快的运行速度. 实验上, 采用PP算法, 并通过前置物镜将赝热光源聚焦到特定的成像目标上, 通过后置物镜将经过散射介质的散射光收集到相机上, 其物体和散射介质间距可达毫米量级. 同时, 通过平移台移动成像物体即可对其不同部位进行扫描成像, 本文成功恢复出了不同形状的微米量级物体的实际图像.2 理论与算法2.1 随机散射介质特性光波经过随机散射介质会发生散射效应, 即一部分光在散射介质中随机传播, 导致其传播的相位面发生畸变, 不能清晰成像, 最终形成散斑图, 如图1所示. 散斑指光束经过随机散射介质, 并在介质内发生多重散射后, 产生的随机无序的颗粒状图样, 本质上是一种干涉现象. 因为观察点的光场是散射介质颗粒上各点发出的相干子波的叠加, 且光波波长小于散射介质颗粒尺寸, 所以到达观察点的各个相干子波的相位是随机分布的, 随机相位的相干叠加就产生了散斑的随机强度图样.图1 散斑产生示意图Fig.1. Schematic of speckle generation.但实质上, 携带物体信息的光波经过随机散射介质作用后, 物体信息并没有完全丢失, 它们只是在散射过程中进行了随机组合. 因此, 本文假设散射介质是一个光学透镜, 利用它的光学传播特性,从散射光中重组并恢复出物体的原有信息. 例如波前整形方法便可有效地补偿扭曲的波阵面, 但该方法需要空间光调制器对扭曲波形面的相位进行逐一调制, 其操作过程耗时复杂, 不适于实时成像.2.2 记忆效应当入射光照射到散射介质上时, 其空间相位信息将会被打乱因而具有随机性, 但其中也会包含相应的相关性. 对于入射光束, 其相对散射介质的入射角度可控, 物体经过散射介质后所成的像与入射角度有关,式中I (θ) 表示相机探测到的强度图, O (r) 表示物体的实际像, S (r) 表示散斑强度, r 表示空间坐标矢量, θ 表示入射光束的入射角, d 表示物体与散射介质的间距, ∗表示卷积操作, 即物体透过散射介质的像为物体实际像和散斑强度的卷积.为了将物体实际像信息从随机散斑中提取出来 , 对探测到的光强信息做AC操作,式中⊗表示互相关操作, 〈·〉表示取平均操作.假定入射光束宽度为 w , 则式中, J1 是一阶贝塞尔函数; L 是散射介质厚度,远大于平均自由程; k =2π/λ 是波数. (3)式中第一部分可以用来表示图案相关性程度C(θ)=对于 ME, 其小角度条件需满足第二部分中表示平均散斑大小, 通过增大 w 可无限接近于衍射极限.假定散斑在空间分布是随机的, 则散斑的AC 结果是一个δ 函数, 即由此可将散斑信息从成像AC中消除, 从而得到物体实际像AC的近似值根据卷积定理 , 可得2.3 相位恢复算法根据相机采集到的光强图像信息, 首先对其进行滤波等预处理操作, 得到相机光强图像根据卷积定理, 对其做AC处理可得根据维纳-辛钦定理, 物体的能量谱等于物体AC的傅里叶变换振幅大小, 因此可以通过矩形窗口截取AC的中心部分, 再对其进行二维傅里叶变换, 即可得到物体的能量谱由于前面所述的图像信息均是强度信息, 因此在计算推导傅里叶变换过程中丢失了图像的相位信息. 由此, 将采用GS算法对丢失的相位信息进行恢复, 在迭代过程中需要将得到的物体能量谱开根作为替代模量不断替换傅里叶变换的模量. 基本的GS算法分为如下五步:1)对随机相位值 gk(x,y) 做傅里叶变换2)求得傅里叶变换域的角度3)用测量得到的物体能量谱开根替换傅里叶变换的模量4)对(9)式做傅里叶逆变换5)根据物理约束条件, 生成新的迭代相位值这里, 表示物体的估计相位值,表示对进行傅里叶变换得到的模量, 表示所对应的角度信息表示新得到的模量信息表示对进行逆傅里叶变换得到的相位,表示下一次迭代的输入相位值.根据(11)式的不同迭代公式, 可将其分为Error Reduction (ER)和 Hybrid Input-Output(HIO)两种算法:1) ER 算法2) HIO 算法这里Γ 表示不满足非负的实数的集合.2.4 Ping-Pang算法由上可见, ER和HIO方法各有优缺点, ER方法是目前唯一在数学上被证明的解决相位问题的方法, 但该方法收敛速度慢、易受噪声影响;HIO方法则是目前应用最广泛的一种方法, 其算法简单、运行效率高. 鉴于上述两种算法的优缺点,将HIO和ER两种算法结合, 衍生出更具潜力的PP算法. 如图2所示, 首先运用HIO算法对随机预测的初始相位进行迭代, 将HIO算法迭代的结果作为ER算法的输入, 利用ER算法进行迭代, 最后根据物理约束条件来确定是否需要继续迭代. 在PP算法中, 每次迭代均先后进行HIO算法和ER算法, 利用两种算法的优点, 使得总迭代次数较小, 可以极大地缩短恢复算法运行时间.3 数值模拟结果图3是按照图2所示的相位恢复算法进行数值模拟的过程, 该方法截取2 0×20 像素大小的数字图像和3 600×3600 像素大小的散射介质点扩散函数进行卷积, 模拟物像经过散射介质后的散斑图. 图 3(a)为标准数字“5”图像; 图 3(b)为模拟的散射介质的点扩散函数; 图3(c)为用1000×1000像素大小窗口截取点扩散函数后的卷积合成的带有数字“5”的散斑图; 图3(d)为散射介质的点扩散函数的三维AC结果, 可以看出其是一个δ 函数,说明在AC操作下散射介质对物体图像信息没有影响; 图 3(e)为标准数字“5”的 AC 结果; 图 3(f)为散斑图的AC结果, 与标准数字的AC相同;图3(g)为优化的能量谱开根; 图3(h)为最终重建出来的数字“5”.图3的成像恢复数值模拟使用的是基于GS算法的HIO算法和ER算法的顺序叠加, 其最终的迭代参数设定为物理约束次数 N =30 , HIO约束回归系数β =1:-0.04:0 , 即先对得到的能量谱开根图像进行3 0×{(1/0.04)+1}=780 次的HIO迭代, 再对HIO的迭代结果进行 30次的ER迭代, 最终结果如图3(h)所示.为了进一步探究迭代次数以及不同迭代算法对恢复结果的影响, 图4还利用matlab对其不同情形进行仿真. 图 4(a)—(c)是 HIO & ER 算法恢复结果, 图4(d)—(f)是PP算法恢复结果, 参数设定如表1所列.图2 相位恢复算法框图Fig.2. Schematic of phase retrieval algorithm.图3 成像过程的数值模拟 (a) 物体; (b) 点扩散函数; (c) 散斑图; (d) 点扩散函数 AC;(e) 物体 AC; (f) 散斑 AC; (g) 能量谱开根; (h) 重建结果Fig.3. Simulations of imaging process: (a) Object; (b) point diffusion function; (c) speckle pattern;(d) AC of point diffusion function; (e) AC of object; (f) AC of speckle pattern;(g) square root of power spectrum; (h) result of reconstruction.通过对比图4(a)—(c)和表1可以看出, 随着约束回归系数β 步长的增加, 总迭代次数减少, 表示其运行速度加快, 但图像恢复效果也逐渐下降.图4(d)是采用PP算法进行恢复的结果, 可以看出其恢复效果接近图4(a)的效果, 但总迭代次数仅为202次, 相较于图4(a)有近8倍的速度提升,进一步证明PP算法的优势. 同时, 随着约束回归系数步长的增加, 迭代次数进一步减少, 但恢复效果更差, 图像出现模糊, 如图4(e)和图4(f)所示, 因而PP算法也难以无限制地缩短运行时间.4 实验结果本文通过散射介质分别对标准分辨率板上的不同数字进行成像, 并通过PP算法对其进行图像恢复, 验证其对透过散射介质的成像能力.图4 不同迭代次数下的恢复效果 (a)—(c) HIO&ER 算法的恢复结果, 其中, (a) β=1:-0.02:0 , (b) β =1:-0.04:0 ,(c) β =1:-0.05:0 ; (d)—(f) PP 算法的恢复结果, 其中, (d) β =3:-0.02:1 , (e) β =3:-0.05:1 , (f) β=3:-0.1:1Fig.4. Retrieval results in different interation times: (−a)−(c) Retrieval result s of HIO&ER algorithm when (a) β =1:-0.02:0 ,(b) β =1:-0.04:0 , (c) β =1:-0.05:0 ; (d)(f) Retrieval results of PP algorithm when (d) β =3:-0.02:1 ,(e) β =3:-0.05:1 , (f) β =3:-0.1:1 .表1 不同情形下算法迭代次数Table 1. Interation times of algorithm in different conditions.4.1 不同物体的恢复效果实验光路图如图5(a)所示, 实验中采用He-Ne 激光器 (632.8 nm, ϕ 0.48 mm, ThorLabs)作为光源, 经空间扩束系统(透镜1焦距为25 mm,透镜2焦距为200 mm)进行8倍的扩束后入射到旋转的散射片 (600 砂, ϕ 2 口径, ThorLabs)上, 该散射片利用电机以20 Hz的转速驱动会将扩束之后连续光的空间相干性打乱, 产生实验所需的赝热光, 效果如图5(b)所示.产生的赝热光经由一个前置显微物镜(× 20,0.4NA,工作距 1.2 mm, Olympus)聚焦到标准分辨率板 (1951 USAF 负测试靶, ϕ 1 口径, ThorLabs)的特定数字上, 其中, 分辨率板可以利用一手动平移台移动位置, 实现前置显微镜对分辨率板上不同数字图像的聚焦提取. 透过分辨率板上不同数字的光, 又经过一片距离分辨率板8 mm远的散射片(220 砂, ϕ 1 口径, ThorLabs), 使得物体像信息模糊紊乱形成散斑图, 经过散射片后的实际效果如图5(c)所示. 这些散斑图最后通过后置显微物镜 2 (× 10, 0.25NA,工作距 10.6 mm, Olympus)收集到相机sCMOS(Quantalux™黑白相机, 1920×1080 像素, USB 3.0 接口, ThorLabs)上采集成像,获得的散斑数据输送到PC机上进行算法恢复.图5 通过散射介质成像的光学装置 (a)实验光路图; (b)赝热光的产生; (c)散斑的产生Fig.5. Optical setups used for imaging through the scattering media: (a) Optical path in experiment; (b) generation of pseudothermal light source;(c) generation of speckle pattern.图6是根据图5所述光学装置进行实验的结果, 其中图 6(a)—(e)分别为 (a)原始物像, (b)相机接收到的散斑图, (c)散斑图的AC结果, (d)光谱能量的根值, (e)通过PP 相位恢复算法恢复出来的物体幅度信息. 在恢复过程中, 首先截取相机采集到的散斑图中心1 050×1050 像素大小的区域,对该区域图像做预处理(滤波、归一化处理等, 第二列图), 然后对该区域进行AC运算操作(第三列图)并取得近似的物体能量谱信息(第四列图), 最后通过PP算法进行相位恢复(第五列图), 为了得到较好的恢复效果, 在此设定的物理约束条件为N=30, β =3:-0.01:1 , 总迭代次数为 402 次.图 6(f)—(t)是对数字“3”,“5”,“6”的恢复过程, 这些数据也验证了该方法对不同形状物体成像具有普适性.4.2 物镜和散射介质间距的影响本实验系统采用前置物镜将赝热光源聚焦到特定的成像目标上, 并通过后置物镜将经过散射介质的散射光收集到相机上. 为了探究物镜和散射介质间距对物体成像质量的影响, 实验调节后置显微镜焦平面与散射介质的间距, 利用PP算法对sCMOS 采集到的散斑图进行恢复.如图7所示, 其中图7(a)—(f)表示物镜焦平面与散射介质的间距分别为 7 00 , 9 00 , 1 100 , 1 300 ,1500和1 700 μm 时对应的sCMOS采集到的散斑图的AC 结果, 图7(g)—(l)表示相对应的最终恢复效果. 通过对比可以发现, 随着物镜焦平面和散射介质间距的增加, 所得到的AC图和恢复结果图都有相应的放大, 这表明物镜对成像具有放大作用,且放大程度与物镜焦平面和散射介质间距有关. 此外, 随着间距的增加, sCOMS上收集到的物体采样点信息增加, 分辨率得到进一步提高. 但由于物镜的远离, 其所收集到的经过散射介质后的散射光强变小, 最后恢复出来的图像强度有所减弱. 因此,实际情况中, 应根据需要来选取合适的散射片与物镜的距离, 以平衡成像分辨率和图像强度, 实现最好的效果.图6 不同数字的实验结果 (a)—(e)数字“1”的恢复过程, 其中, (a)物体, (b) sCOMS 成像, (c)散斑 AC, (d) 能量谱开根,(e)重建结果; (f)—(t)数字“3”, “5”, “6”的恢复过程Fig.6. Experimental results for different numbers: (a)−(e) Retrieval process of number “1”, namely, (a) object, (b) sCOMS image,(c) autocorrelaction of speckle pattern, (d) square root of power spectrum, (e) result of reconstruction; (f)−(t) retrieval processes of number “3”, “5”and “6”.图7 不同物镜和散射介质间距对成像效果的影响 (a)—(f)不同间距下的散斑AC结果; (g)—(l)不同间距下的恢复结果Fig.7. Effects of different distance between objective and diffuser: (a)−(f) AC results of speckle pattern i n different distance;(g)−(l) retrieval results in different distance.5 结论本文研究了一种基于赝热光照明的散斑成像方法, 该方法利用ME和AC原理消除了散射介质对物体成像的影响, 利用相位恢复算法通过单幅散斑图即可实现物体成像的恢复. 同时, 针对传统基于GS算法的HIO和ER算法迭代次数多的缺陷,设计出一种快速高效的PP算法, 该算法在保持较高分辨率的同时可以有效缩短运行时间, 有利于实现生物组织的实时成像.采用2 0×20 像素大小的数字“5”图像和3600×3600像素大小的散射介质点扩散函数进行卷积模拟散斑图, 通过数值模拟验证了基于相位恢复算法成像的可行性. 对HIO&ER算法和PP算法的成像效果进行了模拟对比, 结果表明PP算法相对于HIO&ER算法有近8倍的速度提升, 证明PP算法具有更高的效率. 通过实验对不同形状的物体进行了散斑成像, 利用PP算法获得微米量级物体的图像恢复结果. 同时, 通过改变物镜焦平面与散射介质的间距, 使其从700 μ m 增加到1700 μ m ,发现最终物体散斑成像的放大率和分辨率有了相应的提高, 而图像强度有所下降, 这对今后实际生物组织医学成像的发展具有重要指导意义.参考文献【相关文献】[1] Ntziachristos V 2010 Nat. Meth. 7 603[2] Hoffman R M 2008 Methods Cell Biol. 85 485[3] Yang X, Pu Y, Psaltis D 2014 Opt. Express 22 3405[4] Kang S, Jeong S, Choi W, Ko H, Yang T D, Joo J H, Lee J S, Lim Y S, Park Q H, Choi W 2015 Nat. Photon. 9 253[5] Bertolotti J, van Putten E G, Blum C, Lagendijk A, Vos W L, Mosk A P 2012 Nature 491 232[6] Wu T, Dong J, Shao X, Gigan S 2017 Opt. Express 25 27182[7] Sudarsanam S, Mathew J, Panigrahi S, Fade J, Alouini M,Ramachandran H 2016 Sci. Rep.6 25033[8] Zhuang X W 2009 Nat. Photon. 3 436[9] Kolenderska S M, Katz O, Fink M, Gigan S 2015 Opt. Lett.40 534[10] Vellekoop I M, Mosk A P 2007 Opt. Lett. 32 2309[11] Katz O, Small E, Guan Y, Silberberg Y 2014 Optica 1 170[12] He G S 2002 Prog. Quantum Electron. 26 131[13] Lai P, Xu X, Liu H, Suzuki Y, Wang L V 2011 J. Biomed.Opt. 16 080505[14] Xu X, Liu H, Wang L V 2011 Nat. Photon. 5 154[15] Li X H, Deng C J, Chen M L, Gong W L, Han S S 2011 Opt.Lett. 36 394[16] Devaux F, Huy K P, Denis S, Lantz E, Moreau P A 2017 J.Opt. 19 024001[17] Moreau P A, Toninelli E, Gregory T, Padgett M J 2018 Laser Photon. Rev. 12 1863[18] Takasaki K T, Fleischer J W 2014 Opt. Express 22 31426[19] Schott S, Bertolotti J, Leger J F, Bourdieu L, Gigan S 2015 Opt. Express 23 13505[20] Edrei E, Scarcelli G 2016 Sci. Rep. 6 33558[21] Berto P, Rigneault H, Guillon M 2017 Opt. Lett. 42 5117[22] Osnabrugge G, Horstmeyer R, Papadopoulos I N, Judkewitz B, Vellekoop I M 2017 Optica 4 886[23] Katz O, Heidmann P, Fink M, Gigan S 2014 Nat. Photon. 8 784[24] Judkewitz B, Horstmeyer R, Vellekoop I M, Papadopoulos I N, Yang C 2015 Nat. Phys.11 684[25] Amir P, Ravn A E, Hervé R, Dan O, Sylvain G, Ori K 2016 Opt. Express 24 16835[26] Wang W, Hu X, Liu J, Zhang S, Suo J, Situ G 2015 Opt.Express 23 28416[27] Thrane L, Yura H T, Andersen P E 2000 J. Opt. Soc. Am. A 17 484[28] Antipov S P, Bogdashov A A, Chirkov A V, Denisov G G 2003 Int. J. Infrared Millimeter waves 24 1677[29] Fan S, Zhang Y P, Wang F, Gao Y L, Qian X F, Zhang Y A,Xu W, Cao L C 2018 Acta Phys. Sin. 67 094203 (in Chinese)[范爽, 张亚萍, 王帆, 高云龙, 钱晓凡, 张永安, 许蔚, 曹良才2018物理学报 67 094203][30] Fienup J R 1982 Appl. Opt. 21 2758[31] Michelle C, Haojiang Z E, Changhuei Y 2017 Opt. Express 25 3935[32] Shi Y, Liu Y, Wang J, Wu T 2017 Appl. Phys. Lett. 110 231101[33] Hofer M, Soeller C, Brasselet S, Bertolotti J 2018 Opt.Express 26 9866。

物理专业 词汇S2

物理专业 词汇S2
specific binding energy 比结合能
specific conductance 导电率
specific electronic charge 电子的比电荷
specific gravity 比重
specific gravity bottle 比重瓶
specific heat 比热
spectroscopic parallax 分光视差
spectroscopic photography 分光摄影术
spectroscopy 光谱学
spectrum 光谱
spectrum locus 光谱轨迹
spectrum selector 光谱选挥器
spectrum variable 光谱变星
source of light 光源
source of sound 声源
south pole 南极
space 空间
space astronomy 空间天文学
space charge 空间电荷
space charge density 空间电荷密度
space charge effect 空间电荷效应
spectrohelioscope 太阳光谱观测镜
spectrometer 光谱仪
spectrometry 光谱测定法
spectrophotofluorometer 荧光分光光度计
spectrophotography 光谱摄影学
spectrophotometer 分光光度计
spectrophotometry 光谱测定法
spark chamber 火花室
spark counter 火花计数器

相位干涉仪测向原理

相位干涉仪测向原理

相位干涉仪测向原理概述相位干涉仪是一种用于测量光波到达方向的仪器。

它利用光的相位差引起的干涉现象来确定光波的入射方向。

相位干涉仪广泛应用于天文观测、地球物理勘探、无线通信、雷达测向等领域。

本文将详细解释相位干涉仪的基本原理,包括光波的干涉现象、干涉条纹的形成和解读、以及测向角度的计算方法。

光波的干涉现象干涉现象指的是两个或多个光波相互叠加形成的干涉图样。

当两个光波相遇时,它们会相互干涉并产生干涉效应。

光波的干涉效果可以通过干涉级数来描述。

在两个光波相遇的地方,它们的相位差会影响干涉图样的形成。

干涉条纹的形成当光波经过相位干涉仪的光路后,会形成一系列干涉条纹。

干涉条纹是由两个或多个光波相遇后形成的交替明暗的光纹。

条纹的明暗程度取决于光波的相位差。

当相位差为0或整数倍的2π时,光波处于相位相同的状态,并产生明亮的干涉条纹。

当相位差为奇数倍的π时,光波处于相位相反的状态,并产生暗淡的干涉条纹。

干涉条纹的解释干涉条纹的形成与光波的干涉效果有关。

在相位干涉仪中,光波经过分束器被分成两束,然后在干涉区域再次相遇。

在干涉区域,两束光波会产生干涉效应。

当两束光波的相位一致时,它们会增强彼此的干涉效应,形成明亮的干涉条纹。

当两束光波的相位相差π时,它们会相互抵消,形成暗淡的干涉条纹。

相位干涉仪的工作原理相位干涉仪通常由两个分束器和一个干涉区域构成。

光波首先通过第一个分束器,被分成两束光。

然后,这两束光波分别通过两条光路,并在干涉区域再次相遇。

在干涉区域,光波会产生干涉效应,并形成干涉条纹。

根据干涉条纹的特征,可以计算出光波的入射方向。

干涉条纹的计算方法干涉条纹的计算通常使用以下公式来计算:Δθ=2πd λ其中,Δθ是测向角度,d是干涉区域两条光路的光程差,λ是入射光波的波长。

测向角度的计算方法根据干涉条纹的计算方法,可以通过测量干涉区域两条光路的光程差和入射光波的波长,计算出测向角度。

实际测量中,通常使用一个移动装置来调整干涉区域两条光路的光程差。

物理文献阅读常用单词1

物理文献阅读常用单词1

1, preclude [prɪ'kluːd]vt. 排除;妨碍;阻止preclude: 阻止| 排除| 预防2, speckle ['spek(ə)l]n. 斑点vt. 弄上斑点;点缀speckle: 斑点| 散斑| 斑纹3, patterns ['pætənz]n. 模式(pattern的复数形式)v. 摹制;用图案装饰;复写(pattern的第三人称单数形式)patterns: 花样| 模型| 木模4, motivatingv. 激励;刺激;调动…的积极性(motivate的ing形式)Motivating: 激励| 调动职工积极性| 激励球员5, Diodesn. 二极管Diodes: 二极管| 达尔科技| 二极管元件库6, unconventional [ʌnkən'venʃ(ə)n(ə)l]adj. 非常规的;非传统的;不依惯例的Unconventional: 非常规| 非传统的| 超常规7, trap [træp]n. 陷阱;圈套;[建] 存水弯vi. 设陷阱vt. 诱捕;使…受限制;使…陷入困境n. (Trap)人名;(英)特拉普trap: 陷阱| 存水弯| 阱8, inhomogeneous [,ɪnhɒmə(ʊ)'dʒiːnɪəs; -'dʒen-; ,ɪnhəʊm-] adj. 不同类的;不均一的;不纯一的9, irregular [ɪ'regjʊlə]n. 不规则物;不合规格的产品adj. 不规则的;无规律的;非正规的;不合法的Irregular: 不规则| 不定期| 无规律10, lase [leɪz]vi. 发出激光;以激光照射n. (Lase)人名;(英)莱斯lase: 以激光照射| 光激射| 发出激光11, simultaneous [,sɪm(ə)l'teɪnɪəs]adj. 同时的;联立的;同时发生的n. 同时译员simultaneous: 同时译员| 同时的| 同步12, distinctly [dɪ'stɪŋ(k)tlɪ]adv. 明显地;无疑地,确实地distinctly: 清楚地| 历历| 显然地13, interspersed [intə'spə:st]adj. 点缀的;散置的v. 点缀(intersperse的过去式);散布Interspersed: 穿插| 点缀的| 散置的14, degeneracy [dɪ'dʒenərəsɪ]n. 退化;[物] 简并;堕落;退步Degeneracy: 退化| 简并| 简并性15, perspective [pə'spektɪv]n. 观点;远景;透视图adj. 透视的Perspective: 透视| 视角| 观点16, radiance ['reɪdɪəns]n. 辐射;光辉;发光;容光焕发17, radiometric [,reidiəu'metrik]adj. 放射性测量的;辐射度的;辐射测量的radiometric: 辐射度的| 辐射测量的| 放射性测量的18, demonstrate ['demənstreɪt]vt. 证明;展示;论证vi. 示威demonstrate: 证明| 演示| 彰显19, emission [ɪ'mɪʃən]n. (光、热等的)发射,散发;喷射;发行;n. (Emission)人名;(英)埃米申20, spontaneous [spɒn'teɪnɪəs]adj. 自发的;自然的;无意识的spontaneous: 自发的| 自然的| 自发性21, objective [əb'dʒektɪv]n. 目的;目标;[光] 物镜;宾格adj. 客观的;目标的;宾格的Objective: 目标| 客观| 目的22, characterize ['kærəktəraiz]vt. 描绘…的特性;具有…的特征vi. 塑造人物characterize: 表示| 表现| 特征化23, object ['ɒbdʒɪkt; -dʒekt]n. 目标;物体;客体;宾语vt. 提出…作为反对的理由vi. 反对;拒绝Object: 对象| 客体| 物体24, significantly [sɪg'nɪfɪkəntli]adv. 意味深长地;值得注目地25, extracted [iks'træktid]adj. 萃取的;引出的vt. 提取(extract的过去式及过去分词)Extracted: 片| 记忆提取| 萃取的26, relatively ['relətɪvlɪ]adv. 相当地;相对地,比较地Relatively: 相对| 相关地| 比较地27, degree [dɪ'griː]n. 程度,等级;度;学位;阶层Degree: 度| 学位| 程度28, pixel ['pɪks(ə)l; -sel]n. (显示器或电视机图象的)像素(等于picture element)pixel: 像素| 分辨率| 鍝佽壊29, schematic [skiː'mætɪk; skɪ-]n. 原理图;图解视图adj. 图解的;概要的Schematic: 原理图| 使用符号代表电路布置的图| 示意30, configuration [kən,fɪgə'reɪʃ(ə)n; -gjʊ-]n. 配置;结构;外形Configuration: 配置| 组态| 构型31, equivalent [ɪ'kwɪv(ə)l(ə)nt]n. 等价物,相等物adj. 等价的,相等的;同意义的equivalent: 相等的| 相当于| 等值32, interest ['ɪntrəst]n. 兴趣,爱好;利息;趣味;同行;vt. 使……感兴趣;引起……的关心;使……参与33, identifiability [ai'denti,faiə'biləti]n. 可识别性,可辨认性;[自] 能识性34, degrade [dɪ'greɪd]vi. 降级,降低;退化vt. 贬低;使……丢脸;使……降级;使……降解degrade: 降级| 降低身份| 使降级35, pronounced [prə'naʊnst]v. 发音;宣告;断言(pronounce的过去分词)adj. 显著的;断然的;讲出来的pronounced: 明显的| 断然的| 发音36, performedv. 执行,表演(perform的过去分词形式)performed: 执行| 履行| 完成37, opaque [ə(ʊ)'peɪk]vt. 使不透明;使不反光n. 不透明物adj. 不透明的;不传热的;迟钝的opaque: 不透明的| 难懂的| 不透38, precluded排除precluded: 被阻止的39, assessment [ə'sesmənt]n. 评定;估价assessment: 评估| 评价| 估价40, qualitative ['kwɒlɪtətɪv]adj. 定性的;质的,性质上的Qualitative: 质化| 质量的| 定性的41, eliminate [ɪ'lɪmɪneɪt]vt. 消除;排除Eliminate: 消除| 淘汰| 排除42, turbulence ['tɜːbjʊl(ə)ns]n. 骚乱,动荡;[流] 湍流;狂暴turbulence: 湍流| 插翅难飞| 紊流43, atmospheric [ætməs'ferɪk]adj. 大气的,大气层的atmospheric: 大气的| 空气的| 大气层的44, optimizingn. [数] 优化,最佳化v. 最佳化(optimize的现在分词)adj. 最佳的optimizing: 最佳化| 优化| 优化级45, maintaining *mein'teiniŋ+n. 维护;保养v. 维持;保养(maintain的ing形式)Maintaining: 消防维护保养| 维护| 保持46, stimulated ['stimjə,letid]v. 刺激(stimulate的过去式和过去分词)adj. 受激的Stimulated: 受到刺激| 亢奋| 刺激47, exclusive [ɪk'skluːsɪv; ek-]adj. 独有的;排外的;专一的n. 独家新闻;独家经营的项目;排外者Exclusive: 独家| 专属| 独家新闻48, ultraviolet [ʌltrə'vaɪələt]adj. 紫外的;紫外线的n. 紫外线辐射,紫外光ultraviolet: 紫外线| 致命紫罗兰| 电压不足49, facilitate [fə'sɪlɪteɪt]vt. 促进;帮助;使容易facilitate: 使容易| 促进| 使便利50, versatility [,vɜːsə'tɪləti:]n. 多功能性;多才多艺;用途广泛versatility: 多才多艺| 多功能性| 功能化51, milestone ['maɪlstəʊn]n. 里程碑,划时代的事件n. (Milestone)人名;(英)迈尔斯通milestone: 里程碑| 转折点| 阶段52, assembly [ə'semblɪ]n. 装配;集会,集合Assembly: 装配| 集结号| 组装53, interplay ['ɪntəpleɪ]n. 相互影响,相互作用vi. 相互影响,相互作用Interplay: 相互作用| 相互影响| 互相作用54, constant ['kɑnstənt]adj. 不变的;恒定的;经常的;n. [数] 常数;恒量;n. (Constant)人名;(德)康斯坦特55, monodisperse [,mɔnəudis'pə:s]adj. 单分散的56, crystalsn. [晶体] 晶体(crystal的复数形式);石英晶体Crystals: 石英晶体| 晶体| 水晶57, critical ['krɪtɪk(ə)l]adj. 鉴定的;[核] 临界的;批评的,爱挑剔的;危险的;决定性的;评论的critical: 临界的| 关键的| 批评的58, spikes ['spaiks]n. 钉鞋(spike的复数)v. 把…钉牢(spike的第三人称单数)n. (Spikes)人名;(英)斯派克斯Spikes: 钉鞋| 峰值| 撒菱59, overall ['əʊvərɔːl]n. 工装裤;罩衫;adj. 全部的;全体的;一切在内的;adv. 全部地;总的说来60, crucial ['kruːʃ(ə)l]adj. 重要的;决定性的;定局的;决断的Crucial: 美光| 至关紧要的| 攻坚61, absence ['æbs(ə)ns]n. 没有;缺乏;缺席;不注意Absence: 不在| 缺席| 缺阵62, arbitrary ['ɑːbɪt(rə)rɪ]adj. [数] 任意的;武断的;专制的arbitrary: 任意的| 任意角度| 随心所欲63, coefficient [,kəʊɪ'fɪʃ(ə)nt]n. [数] 系数;率;协同因素;adj. 合作的;共同作用的64, parametersn. "参数, 参量; 界限; 因素, 特征; 决定功能形式的变数; 传送到功能或程序并影响其操作的值(计算机用语)(parameter的复数)"Parameters: 参数| 卷展栏| 参量65, constituent [kən'stɪtjʊənt]n. 成分;选民;委托人;adj. 构成的;选举的66, dubbedv. 刺;授予…称号;译制影片;结账(dub的过去分词)adj. 被称为的;译制的dubbed: 被称为| 译制| 把67, managed ['mænidʒd]v. 管理;负责;设法完成(manage的过去分词)adj. 托管的;与中央化计划及管制有关的managed: 托管的| 已管理级| 管理型68, to access访问;接入to access: 存取| 访问| 接驳69, packing ['pækɪŋ+n. 包装;填充物v. 包装;装满;压紧(pack的ing形式)Packing: 包装| 填料| 包装方式70, organic [ɔː'gænɪk]adj. [有化] 有机的;组织的;器官的;根本的Organic: 有机| 器官的| 天然有机71, infiltratedv. (使)透过,(使)浸入(infiltrate的过去式)adj. 渗透的;浸润的infiltrated: 浸润的72, ethanol *'eθənɒl]n. [有化] 乙醇,[有化] 酒精ethanol: 乙醇| 酒精| 又叫酒精73, evaporation [ɪ,væpə'reɪʃən]n. 蒸发;消失evaporation: 蒸发| 蒸发作用| 蒸发量74, cleaved裂开cleaved: 被劈开的75, revealed [ri'vi:ld]v. 透露(reveal的过去式);显示Revealed: 显露| 揭密| 蝴蝶密码76, correlation [,kɒrə'leɪʃ(ə)n; -rɪ-]n. [数] 相关,关联;相互关系correlation: 相关| 相关性| 相互关系77, probe [prəʊb]vi. 调查;探测vt. 探查;用探针探测n. 探针;调查n. (Probe)人名;(法)普罗布probe: 探针| 探索| 探头78, rate [reɪt]n. 比率,率;速度;价格;等级;vt. 认为;估价;责骂;vi. 责骂;被评价;n. (Rate)人名;(法、塞)拉特79, derived [di'raivd]v. 得到;推断(derive的过去分词);由…而来adj. 导出的;衍生的,派生的derived: 派生| 导出| 推导80, evident ['evɪd(ə)nt]adj. 明显的;明白的evident: 明显的| 可见一斑| 明白的81, excitation [,eksaɪ'teɪʃ(ə)n]n. 激发,刺激;激励;激动excitation: 激发| 激励| 励磁82, spot [spɒt]adj. 现场的;现货买卖的n. 地点;斑点adv. 准确地;恰好vt. 认出;弄脏;用灯光照射vi. 沾上污渍;满是斑点spot: 青春痘用| 临场| 点83, sustain [sə'steɪn]vt. 维持;支撑,承担;忍受;供养;证实sustain: 维持| 支撑| 保持84, synthesizingv. 合成;不同元素间的整合(synthesize的ing形式)Synthesizing: 综合| 合成85, encapsulated [ɪn'kæpsəleɪtɪd]adj. 密封的;包在荚膜内的v. 压缩(encapsulate的过去分词);封进内部;装入胶囊encapsulated: 胶囊化的| 封装| 封进内部86, minima ['mɪnɪmə]n. 极小值(minimum的复数);最小数minima: 最小数| 最小值| 极小值87, dip [dɪp]vi. 浸;下降,下沉;倾斜;舀,掏vt. 浸,泡,蘸;舀取;把伸入n. 下沉,下降;倾斜;浸渍,蘸湿n. (Dip)人名;(尼)迪普DIP: Dual In-line Package | 电压跌落| 双列直插式封装88, exclude [ɪk'skluːd; ek-]vt. 排除;排斥;拒绝接纳;逐出exclude: 排除| 把| 拒绝89, presentedv. 提出(present的过去分词);呈递,提供Presented: 赠送| 敬献| 颁赠90, spectrally ['spektrəli]adv. 可怕地;幽灵似地spectrally: 可怕地| 幽灵似地91, profile ['prəʊfaɪl]n. 侧面;轮廓;外形;剖面;简况vt. 描…的轮廓;扼要描述vi. 给出轮廓Profile: 轮廓| 旺铺介绍| 户资料92, iterative ['ɪt(ə)rətɪv]adj. [数] 迭代的;重复的,反复的n. 反复体Iterative: 迭代查询| 反复的| 迭代93, Prospectsn. 预期;前景;潜在顾客;远景展望Prospects: 前瞻| 发展前景| 预期94, predictable [prɪ'dɪktəb(ə)l]adj. 可预言的predictable: 可预测的| 可预言的| 可预见的95, generic [dʒɪ'nerɪk]adj. 类的;一般的;属的;非商标的Generic: 通用类| 泛型| 类属96, hurdlesn. 障碍;跨栏;跨栏跑;障碍赛跑(hurdle的复数)hurdles: 跨栏比赛| 跨栏| 跨栏跑97, distribution [dɪstrɪ'bjuːʃ(ə)n]n. 分布;分配98, letter ['letə]n. 信;字母,文字;证书;文学,学问;字面意义vt. 写字母于vi. 写印刷体字母99, fluctuation [,flʌktʃʊ'eɪʃ(ə)n; -tjʊ-]n. 起伏,波动100, converge [kən'vɜːdʒ]vt. 使汇聚;vi. 聚集;靠拢;收敛101, strikingly *'straikiŋli+adv. 显著地;突出地,引人注目地strikingly: 醒目地| 引人侧目地| 显着地102, susceptibility [sə,septɪ'bɪlɪtɪ]n. 敏感性;感情;磁化系数103, transition [træn'zɪʃ(ə)n; trɑːn-; -'sɪʃ-]n. 过渡;转变;[分子生物] 转换;变调transition: 过渡| 转变| 转换104, assumed [ə'sjuːmd]adj. 假定的;假装的Assumed: 假定| 假装的| 假设的105, sketch [sketʃ]n. 素描;略图;梗概vt. 画素描或速写vi. 画素描或速写n. (Sketch)人名;(英)斯凯奇Sketch: 素描| 草图| 小品106, apply [ə'plaɪ]vt. 申请;涂,敷;应用;vi. 申请;涂,敷;适用;请求107, convergence [kən'vɜːdʒəns]n. [数] 收敛;会聚,集合n. (Convergence)人名;(法)孔韦尔让斯Convergence: 收敛| 通讯汇流| 会聚108, extended [ɪk'stendɪd; ek-]v. 延长;扩充(extend的过去分词)adj. 延伸的;扩大的;长期的;广大的extended: 扩展端口信息| 扩展| 延伸109, straightforward [streɪt'fɔːwəd]adj. 简单的;坦率的;明确的;径直的;adv. 直截了当地;坦率地110, uniform ['juːnɪfɔːm]n. 制服adj. 统一的;一致的;相同的;均衡的;始终如一的vt. 使穿制服;使成一样uniform: 制服| 均匀| 统一111, initializedv. 初始化(initialize的过去分词);预置adj. 初始化;初始化的;起始步骤initialized: 初始化| 预置| 已初始化的112, scheme [skiːm]n. 计划;组合;体制;诡计vt. 计划;策划vi. 搞阴谋;拟订计划n. (Scheme)人名;(瑞典)谢默scheme: 计划| 方案| 规划113, crosse [krɒs]n. 长曲棍球的球棒;n. (Crosse)人名;(英、法)克罗斯114, robust [rə(ʊ)'bʌst]adj. 强健的;健康的;粗野的;粗鲁的robust: 健壮| 强壮的| 稳健115, variance ['veərɪəns]n. 变异;变化;不一致;分歧;[数] 方差116, consistent [kən'sɪst(ə)nt]adj. 始终如一的,一致的;坚持的consistent: 一致的| 一贯| 一致性117, barely ['beəlɪ]adv. 仅仅,勉强;几乎不;公开地;贫乏地barely: 仅仅| 几乎不| 勉强地118, concerning [kən'sɜːnɪŋ+prep. 关于;就…而言v. 涉及;使关心(concern的ing形式);忧虑Concerning: 事关| 关于| 有关119, consistently [kən'sistəntli]adv. 一贯地;一致地;坚实地consistently: 一贯地| 始终如一地| 始终120, progressively [prə'gresivli]adv. 渐进地;日益增多地progressively: 渐进地| 日益增多地| 逐步的121, tuning ['tjuːnɪŋ+n. [电子][通信] 调谐;调音,起弦;协调一致;起音,定音Tuning: 画质选择| 调教| 调谐122, suppress [sə'pres]vt. 抑制;镇压;废止suppress: 镇压| 抑制| 围剿123, saturation [sætʃə'reɪʃ(ə)n]n. 饱和;色饱和度;浸透;磁化饱和124, approach [ə'prəʊtʃ]n. 方法;途径;接近vt. 接近;着手处理vi. 靠近Approach: 进场| 接近| 方法125, subtlety ['sʌt(ə)ltɪ]n. 微妙;敏锐;精明Subtlety: 敏锐| 细微处| 精到126, intentionally [in'tenʃənli]adv. 故意地,有意地intentionally: 故意| 有意地| 特意地127, implement ['ɪmplɪm(ə)nt]n. 工具,器具;手段vt. 实施,执行;实现,使生效implement: 实现| 完成| 落实128, 主动的active;initiative;voluntary129, rotation [rə(ʊ)'teɪʃ(ə)n]n. 旋转;循环,轮流130, the feasibility1, preclude [prɪ'kluːd]vt. 排除;妨碍;阻止preclude: 阻止| 排除| 预防2, speckle ['spek(ə)l]n. 斑点vt. 弄上斑点;点缀speckle: 斑点| 散斑| 斑纹3, patterns ['pætənz]n. 模式(pattern的复数形式)v. 摹制;用图案装饰;复写(pattern的第三人称单数形式)patterns: 花样| 模型| 木模4, motivatingv. 激励;刺激;调动…的积极性(motivate的ing形式)Motivating: 激励| 调动职工积极性| 激励球员5, Diodesn. 二极管Diodes: 二极管| 达尔科技| 二极管元件库6, unconventional [ʌnkən'venʃ(ə)n(ə)l]adj. 非常规的;非传统的;不依惯例的Unconventional: 非常规| 非传统的| 超常规7, trap [træp]n. 陷阱;圈套;[建] 存水弯vi. 设陷阱vt. 诱捕;使…受限制;使…陷入困境n. (Trap)人名;(英)特拉普trap: 陷阱| 存水弯| 阱8, inhomogeneous [,ɪnhɒmə(ʊ)'dʒiːnɪəs; -'dʒen-; ,ɪnhəʊm-] adj. 不同类的;不均一的;不纯一的9, irregular [ɪ'regjʊlə]n. 不规则物;不合规格的产品adj. 不规则的;无规律的;非正规的;不合法的Irregular: 不规则| 不定期| 无规律10, lase [leɪz]vi. 发出激光;以激光照射n. (Lase)人名;(英)莱斯lase: 以激光照射| 光激射| 发出激光11, simultaneous [,sɪm(ə)l'teɪnɪəs]adj. 同时的;联立的;同时发生的n. 同时译员simultaneous: 同时译员| 同时的| 同步12, distinctly [dɪ'stɪŋ(k)tlɪ]adv. 明显地;无疑地,确实地distinctly: 清楚地| 历历| 显然地13, interspersed [intə'spə:st]adj. 点缀的;散置的v. 点缀(intersperse的过去式);散布Interspersed: 穿插| 点缀的| 散置的14, degeneracy [dɪ'dʒenərəsɪ]n. 退化;[物] 简并;堕落;退步Degeneracy: 退化| 简并| 简并性15, perspective [pə'spektɪv]n. 观点;远景;透视图adj. 透视的Perspective: 透视| 视角| 观点16, radiance ['reɪdɪəns]n. 辐射;光辉;发光;容光焕发17, radiometric [,reidiəu'metrik]adj. 放射性测量的;辐射度的;辐射测量的radiometric: 辐射度的| 辐射测量的| 放射性测量的18, demonstrate ['demənstreɪt]vt. 证明;展示;论证vi. 示威demonstrate: 证明| 演示| 彰显19, emission [ɪ'mɪʃən]n. (光、热等的)发射,散发;喷射;发行;n. (Emission)人名;(英)埃米申20, spontaneous [spɒn'teɪnɪəs]adj. 自发的;自然的;无意识的spontaneous: 自发的| 自然的| 自发性21, objective [əb'dʒektɪv]n. 目的;目标;[光] 物镜;宾格adj. 客观的;目标的;宾格的Objective: 目标| 客观| 目的22, characterize ['kærəktəraiz]vt. 描绘…的特性;具有…的特征vi. 塑造人物characterize: 表示| 表现| 特征化23, object ['ɒbdʒɪkt; -dʒekt]n. 目标;物体;客体;宾语vt. 提出…作为反对的理由vi. 反对;拒绝Object: 对象| 客体| 物体24, significantly [sɪg'nɪfɪkəntli]adv. 意味深长地;值得注目地25, extracted [iks'træktid]adj. 萃取的;引出的vt. 提取(extract的过去式及过去分词)Extracted: 片| 记忆提取| 萃取的26, relatively ['relətɪvlɪ]adv. 相当地;相对地,比较地Relatively: 相对| 相关地| 比较地27, degree [dɪ'griː]n. 程度,等级;度;学位;阶层Degree: 度| 学位| 程度28, pixel ['pɪks(ə)l; -sel]n. (显示器或电视机图象的)像素(等于picture element)pixel: 像素| 分辨率| 鍝佽壊29, schematic [skiː'mætɪk; skɪ-]n. 原理图;图解视图adj. 图解的;概要的Schematic: 原理图| 使用符号代表电路布置的图| 示意30, configuration [kən,fɪgə'reɪʃ(ə)n; -gjʊ-]n. 配置;结构;外形Configuration: 配置| 组态| 构型31, equivalent [ɪ'kwɪv(ə)l(ə)nt]n. 等价物,相等物adj. 等价的,相等的;同意义的equivalent: 相等的| 相当于| 等值32, interest ['ɪntrəst]n. 兴趣,爱好;利息;趣味;同行;vt. 使……感兴趣;引起……的关心;使……参与33, identifiability [ai'denti,faiə'biləti]n. 可识别性,可辨认性;[自] 能识性34, degrade [dɪ'greɪd]vi. 降级,降低;退化vt. 贬低;使……丢脸;使……降级;使……降解degrade: 降级| 降低身份| 使降级35, pronounced [prə'naʊnst]v. 发音;宣告;断言(pronounce的过去分词)adj. 显著的;断然的;讲出来的pronounced: 明显的| 断然的| 发音36, performedv. 执行,表演(perform的过去分词形式)performed: 执行| 履行| 完成37, opaque [ə(ʊ)'peɪk]vt. 使不透明;使不反光n. 不透明物adj. 不透明的;不传热的;迟钝的opaque: 不透明的| 难懂的| 不透38, precluded排除precluded: 被阻止的39, assessment [ə'sesmənt]n. 评定;估价assessment: 评估| 评价| 估价40, qualitative ['kwɒlɪtətɪv]adj. 定性的;质的,性质上的Qualitative: 质化| 质量的| 定性的41, eliminate [ɪ'lɪmɪneɪt]vt. 消除;排除Eliminate: 消除| 淘汰| 排除42, turbulence ['tɜːbjʊl(ə)ns]n. 骚乱,动荡;[流] 湍流;狂暴turbulence: 湍流| 插翅难飞| 紊流43, atmospheric [ætməs'ferɪk]adj. 大气的,大气层的atmospheric: 大气的| 空气的| 大气层的44, optimizingn. [数] 优化,最佳化v. 最佳化(optimize的现在分词)adj. 最佳的optimizing: 最佳化| 优化| 优化级45, maintaining *mein'teiniŋ+n. 维护;保养v. 维持;保养(maintain的ing形式)Maintaining: 消防维护保养| 维护| 保持46, stimulated ['stimjə,letid]v. 刺激(stimulate的过去式和过去分词)adj. 受激的Stimulated: 受到刺激| 亢奋| 刺激47, exclusive [ɪk'skluːsɪv; ek-]adj. 独有的;排外的;专一的n. 独家新闻;独家经营的项目;排外者Exclusive: 独家| 专属| 独家新闻48, ultraviolet [ʌltrə'vaɪələt]adj. 紫外的;紫外线的n. 紫外线辐射,紫外光ultraviolet: 紫外线| 致命紫罗兰| 电压不足49, facilitate [fə'sɪlɪteɪt]vt. 促进;帮助;使容易facilitate: 使容易| 促进| 使便利50, versatility [,vɜːsə'tɪləti:]n. 多功能性;多才多艺;用途广泛versatility: 多才多艺| 多功能性| 功能化51, milestone ['maɪlstəʊn]n. 里程碑,划时代的事件n. (Milestone)人名;(英)迈尔斯通milestone: 里程碑| 转折点| 阶段52, assembly [ə'semblɪ]n. 装配;集会,集合Assembly: 装配| 集结号| 组装53, interplay ['ɪntəpleɪ]n. 相互影响,相互作用vi. 相互影响,相互作用Interplay: 相互作用| 相互影响| 互相作用54, constant ['kɑnstənt]adj. 不变的;恒定的;经常的;n. [数] 常数;恒量;n. (Constant)人名;(德)康斯坦特55, monodisperse [,mɔnəudis'pə:s]adj. 单分散的56, crystalsn. [晶体] 晶体(crystal的复数形式);石英晶体Crystals: 石英晶体| 晶体| 水晶57, critical ['krɪtɪk(ə)l]adj. 鉴定的;[核] 临界的;批评的,爱挑剔的;危险的;决定性的;评论的critical: 临界的| 关键的| 批评的58, spikes ['spaiks]n. 钉鞋(spike的复数)v. 把…钉牢(spike的第三人称单数)n. (Spikes)人名;(英)斯派克斯Spikes: 钉鞋| 峰值| 撒菱59, overall ['əʊvərɔːl]n. 工装裤;罩衫;adj. 全部的;全体的;一切在内的;adv. 全部地;总的说来60, crucial ['kruːʃ(ə)l]adj. 重要的;决定性的;定局的;决断的Crucial: 美光| 至关紧要的| 攻坚61, absence ['æbs(ə)ns]n. 没有;缺乏;缺席;不注意Absence: 不在| 缺席| 缺阵62, arbitrary ['ɑːbɪt(rə)rɪ]adj. [数] 任意的;武断的;专制的arbitrary: 任意的| 任意角度| 随心所欲63, coefficient [,kəʊɪ'fɪʃ(ə)nt]n. [数] 系数;率;协同因素;adj. 合作的;共同作用的64, parametersn. "参数, 参量; 界限; 因素, 特征; 决定功能形式的变数; 传送到功能或程序并影响其操作的值(计算机用语)(parameter的复数)"Parameters: 参数| 卷展栏| 参量65, constituent [kən'stɪtjʊənt]n. 成分;选民;委托人;adj. 构成的;选举的66, dubbedv. 刺;授予…称号;译制影片;结账(dub的过去分词)adj. 被称为的;译制的dubbed: 被称为| 译制| 把67, managed ['mænidʒd]v. 管理;负责;设法完成(manage的过去分词)adj. 托管的;与中央化计划及管制有关的managed: 托管的| 已管理级| 管理型68, to access访问;接入to access: 存取| 访问| 接驳69, packing ['pækɪŋ+n. 包装;填充物v. 包装;装满;压紧(pack的ing形式)Packing: 包装| 填料| 包装方式70, organic [ɔː'gænɪk]adj. [有化] 有机的;组织的;器官的;根本的Organic: 有机| 器官的| 天然有机71, infiltratedv. (使)透过,(使)浸入(infiltrate的过去式)adj. 渗透的;浸润的infiltrated: 浸润的72, ethanol *'eθənɒl]n. [有化] 乙醇,[有化] 酒精ethanol: 乙醇| 酒精| 又叫酒精73, evaporation [ɪ,væpə'reɪʃən]n. 蒸发;消失evaporation: 蒸发| 蒸发作用| 蒸发量74, cleaved裂开cleaved: 被劈开的75, revealed [ri'vi:ld]v. 透露(reveal的过去式);显示Revealed: 显露| 揭密| 蝴蝶密码76, correlation [,kɒrə'leɪʃ(ə)n; -rɪ-]n. [数] 相关,关联;相互关系correlation: 相关| 相关性| 相互关系77, probe [prəʊb]vi. 调查;探测vt. 探查;用探针探测n. 探针;调查n. (Probe)人名;(法)普罗布probe: 探针| 探索| 探头78, rate [reɪt]n. 比率,率;速度;价格;等级;vt. 认为;估价;责骂;vi. 责骂;被评价;n. (Rate)人名;(法、塞)拉特79, derived [di'raivd]v. 得到;推断(derive的过去分词);由…而来adj. 导出的;衍生的,派生的derived: 派生| 导出| 推导80, evident ['evɪd(ə)nt]adj. 明显的;明白的evident: 明显的| 可见一斑| 明白的81, excitation [,eksaɪ'teɪʃ(ə)n]n. 激发,刺激;激励;激动excitation: 激发| 激励| 励磁82, spot [spɒt]adj. 现场的;现货买卖的n. 地点;斑点adv. 准确地;恰好vt. 认出;弄脏;用灯光照射vi. 沾上污渍;满是斑点spot: 青春痘用| 临场| 点83, sustain [sə'steɪn]vt. 维持;支撑,承担;忍受;供养;证实sustain: 维持| 支撑| 保持84, synthesizingv. 合成;不同元素间的整合(synthesize的ing形式)Synthesizing: 综合| 合成85, encapsulated [ɪn'kæpsəleɪtɪd]adj. 密封的;包在荚膜内的v. 压缩(encapsulate的过去分词);封进内部;装入胶囊encapsulated: 胶囊化的| 封装| 封进内部86, minima ['mɪnɪmə]n. 极小值(minimum的复数);最小数minima: 最小数| 最小值| 极小值87, dip [dɪp]vi. 浸;下降,下沉;倾斜;舀,掏vt. 浸,泡,蘸;舀取;把伸入n. 下沉,下降;倾斜;浸渍,蘸湿n. (Dip)人名;(尼)迪普DIP: Dual In-line Package | 电压跌落| 双列直插式封装88, exclude [ɪk'skluːd; ek-]vt. 排除;排斥;拒绝接纳;逐出exclude: 排除| 把| 拒绝89, presentedv. 提出(present的过去分词);呈递,提供Presented: 赠送| 敬献| 颁赠90, spectrally ['spektrəli]adv. 可怕地;幽灵似地spectrally: 可怕地| 幽灵似地91, profile ['prəʊfaɪl]n. 侧面;轮廓;外形;剖面;简况vt. 描…的轮廓;扼要描述vi. 给出轮廓Profile: 轮廓| 旺铺介绍| 户资料92, iterative ['ɪt(ə)rətɪv]adj. [数] 迭代的;重复的,反复的n. 反复体Iterative: 迭代查询| 反复的| 迭代93, Prospectsn. 预期;前景;潜在顾客;远景展望Prospects: 前瞻| 发展前景| 预期94, predictable [prɪ'dɪktəb(ə)l]adj. 可预言的predictable: 可预测的| 可预言的| 可预见的95, generic [dʒɪ'nerɪk]adj. 类的;一般的;属的;非商标的Generic: 通用类| 泛型| 类属96, hurdlesn. 障碍;跨栏;跨栏跑;障碍赛跑(hurdle的复数)hurdles: 跨栏比赛| 跨栏| 跨栏跑97, distribution [dɪstrɪ'bjuːʃ(ə)n]n. 分布;分配98, letter ['letə]n. 信;字母,文字;证书;文学,学问;字面意义vt. 写字母于vi. 写印刷体字母99, fluctuation [,flʌktʃʊ'eɪʃ(ə)n; -tjʊ-]n. 起伏,波动100, converge [kən'vɜːdʒ]vt. 使汇聚;vi. 聚集;靠拢;收敛101, strikingly *'straikiŋli+adv. 显著地;突出地,引人注目地strikingly: 醒目地| 引人侧目地| 显着地102, susceptibility [sə,septɪ'bɪlɪtɪ]n. 敏感性;感情;磁化系数103, transition [træn'zɪʃ(ə)n; trɑːn-; -'sɪʃ-]n. 过渡;转变;[分子生物] 转换;变调transition: 过渡| 转变| 转换104, assumed [ə'sjuːmd]adj. 假定的;假装的Assumed: 假定| 假装的| 假设的105, sketch [sketʃ]n. 素描;略图;梗概vt. 画素描或速写vi. 画素描或速写n. (Sketch)人名;(英)斯凯奇Sketch: 素描| 草图| 小品106, apply [ə'plaɪ]vt. 申请;涂,敷;应用;vi. 申请;涂,敷;适用;请求107, convergence [kən'vɜːdʒəns]n. [数] 收敛;会聚,集合n. (Convergence)人名;(法)孔韦尔让斯Convergence: 收敛| 通讯汇流| 会聚108, extended [ɪk'stendɪd; ek-]v. 延长;扩充(extend的过去分词)adj. 延伸的;扩大的;长期的;广大的extended: 扩展端口信息| 扩展| 延伸109, straightforward [streɪt'fɔːwəd]adj. 简单的;坦率的;明确的;径直的;adv. 直截了当地;坦率地110, uniform ['juːnɪfɔːm]n. 制服adj. 统一的;一致的;相同的;均衡的;始终如一的vt. 使穿制服;使成一样uniform: 制服| 均匀| 统一111, initializedv. 初始化(initialize的过去分词);预置adj. 初始化;初始化的;起始步骤initialized: 初始化| 预置| 已初始化的112, scheme [skiːm]n. 计划;组合;体制;诡计vt. 计划;策划vi. 搞阴谋;拟订计划n. (Scheme)人名;(瑞典)谢默scheme: 计划| 方案| 规划113, crosse [krɒs]n. 长曲棍球的球棒;n. (Crosse)人名;(英、法)克罗斯114, robust [rə(ʊ)'bʌst]adj. 强健的;健康的;粗野的;粗鲁的robust: 健壮| 强壮的| 稳健115, variance ['veərɪəns]n. 变异;变化;不一致;分歧;[数] 方差116, consistent [kən'sɪst(ə)nt]adj. 始终如一的,一致的;坚持的consistent: 一致的| 一贯| 一致性117, barely ['beəlɪ]adv. 仅仅,勉强;几乎不;公开地;贫乏地barely: 仅仅| 几乎不| 勉强地118, concerning [kən'sɜːnɪŋ+prep. 关于;就…而言v. 涉及;使关心(concern的ing形式);忧虑Concerning: 事关| 关于| 有关119, consistently [kən'sistəntli]adv. 一贯地;一致地;坚实地consistently: 一贯地| 始终如一地| 始终120, progressively [prə'gresivli]adv. 渐进地;日益增多地progressively: 渐进地| 日益增多地| 逐步的121, tuning ['tjuːnɪŋ+n. [电子][通信] 调谐;调音,起弦;协调一致;起音,定音Tuning: 画质选择| 调教| 调谐122, suppress [sə'pres]vt. 抑制;镇压;废止suppress: 镇压| 抑制| 围剿123, saturation [sætʃə'reɪʃ(ə)n]n. 饱和;色饱和度;浸透;磁化饱和124, approach [ə'prəʊtʃ]n. 方法;途径;接近vt. 接近;着手处理vi. 靠近Approach: 进场| 接近| 方法125, subtlety ['sʌt(ə)ltɪ]n. 微妙;敏锐;精明Subtlety: 敏锐| 细微处| 精到126, intentionally [in'tenʃənli]adv. 故意地,有意地intentionally: 故意| 有意地| 特意地127, implement ['ɪmplɪm(ə)nt]n. 工具,器具;手段vt. 实施,执行;实现,使生效implement: 实现| 完成| 落实128, 主动的active;initiative;voluntary129, rotation [rə(ʊ)'teɪʃ(ə)n]n. 旋转;循环,轮流130, the feasibility可行性The feasibility: 可行性131, refractive [rɪ'fræktɪv]adj. 折射的refractive: 折射的| 折射率| 屈光132, composites [kəm'pəuzit]n. 复合材料(composite的复数);复合体;菊科植物v. 使合成;使混合(composite的三单形式)Composites: 复合材料| 复合体| 菊科植物133, oscillations [,ɔsi'leiʃəns]n. [力] 振动;振幅(oscillation的复数形式)oscillations: 振动| 振荡| 刘安平134, polystyrene sphere聚苯乙烯球135, embedding *im'bediŋ+v. [医] 植入;埋藏(embed的ing形式)Embedding: 嵌入| 包埋| 埋置136, smooth out消除;使平滑smooth out: 消除| 解决| 使平滑137, interference [ɪntə'fɪər(ə)ns]n. 干扰,冲突;干涉interference: 干涉| 干扰| 干预。

全息干涉与散斑干涉综述

全息干涉与散斑干涉综述

全息干涉与散斑干涉技术综述报告全息干涉无损检测技术是无损检测技术中的一个新分支,它是20世纪60年代末期发展起来的,是全息干涉计量技术的重要应用。

我们知道结构在外力的作用下,将产生表面变形。

若结构存在缺陷,则对应缺陷表面部位的表面变形与结构无缺陷部位的表面变形是不同的。

这是因为缺陷的存在,使得缺陷部位的结构的刚度、强度、热传导系数等物理量均发生变化的结果。

因而缺陷部位的局部变形与结构的整体变形就不一样。

应用全息干涉计量技术就可以把这种不同表面的变形转换为光强表示的干涉条纹由感光介质记录下来。

而激光散斑技术是在激光全息实验中,我们观察被激光所照射的试件表面,就可以看到上面有无数的小斑点,因而观察不到条纹,因此在前期,散斑是被看作是噪声来对待的,直到随着人们对全息干涉技术的进一步了解,才发现虽然这些斑点的大小位置都是随机分布的,但所有的斑点综合是符合统计规律的,在同样的照射和记录条件下,一个漫反射表面对应着一个确定的散斑场,即散斑与形成散斑的物体表面是一一对应的。

在一定范围内,散斑场的运动是和物体表面上各点的运动一一对应的,这就启发人们根据散斑运动检测,来获得物体表面运动的信息,从而计算位移、应变和应力等一些力学量。

因此全息和激光散斑方法由于其固有的高灵敏度,在非破坏性测试领域发现了越来越多的应用。

可探测到表面及地下的裂缝、空洞、脱层和分层等缺陷。

由于这些方法测量了在外部加载或其他条件的影响下,在这三个维度下研究对象的变形,它们也可以用于质量控制,也可以用于设计阶段。

激光散斑的方法,还利用了电子检测和处理的发展(称为电视全息术),并可用于实时定量评价。

本综述报告主要介绍利用光纤光刻技术,对全息和激光散斑测量方法进行了全面的研究,这两种方法都适用于焊接、复合材料的检验。

IntroductionHolography is a two step process of recording a wavefrontand then reconstructing the wave. While Holography is oftenused to obtain the recreations of beautiful 3-dimensional scenes,there are several engineering applications, the most common andimportant one being Holographic Non-Destructive Testing . Thisis accomplished with holographic interferometry, whereininterferometry is carried out with holographically generatedwavefronts .A speckle pattern is generated when an object with a roughsurface is illuminated with a highly coherent source of lightsuch as laser. Initially this speckle noise was considered asthe bane of holographers, until it was realized that these specklescarry information about the surface that produce them. Again,as in the case of holography, the combination of interferometric concepts with speckle pattern correlation gave rise to speckle interferometry . The developments in electronic detection and processing further added wings to laser speckle methods giving rise to Electronic Speckle Pattern Interferometry (ESPI), or “TV Holography”. This paper describes a brief outline of holographic and speckle methods for Non-Destructive Testing applications, wherein the deformations of an object under load are measured in a non-contact way. Measurement of surface shapes using contouring and derivatives of displacement using Shearography are also presented.1.HolographyThe schematic for recording a hologram is shown in Fig.1. The light from a laser is split into two beams. One beam illuminates the object and the other beam is used as a reference. At the recording plane, an interference of theFig. 1 : Experimental arrangement for recording a hologram. wavefront scattered by the object with the reference wavefront takes place. A recording is made on a high resolution photographic plate. The developed plate, now called a “Hologram”, when illuminated by the reference wave, reconstructs the object wave. There are several recording geometries such as in-line, off-axis, image plane, Fourier Transform, reflection and rainbow holograms. The theory behind the recording and reconstruction of object wavefront is well documented .1.1Holographic Interferometry (HI)While holography is used to obtain recreations of beautiful 3-D scenes, most engineering applications of holography make use of its ability to record slightly different scenes and display the minute differences between them. This technique is called Holographic Interferometry (HI). Herewe deal with Interference of two waves of which atleast one of the waves is generated holographically.Methods of Holography Interferometry are classified as (i) Real-time HI, (ii) Double-Exposure HI, and (iii) Time average HI. In holographic interferometry, we record the holograms of the two states of an object under test, one without loading and one with loading. When such a doubly exposed hologram is reconstructed, we see the object superposed with a fringe pattern which depicts the deformation undergone by the object due to loading. The theory behind the fringe formation in HI is as follows [3]:Let the O1 and O2 represent the undeformed and deformed object waves, which are written asO1(x,y) = |O(x,y)| exp[-i Φ(x,y)] (1)O2(x,y) = |O(x,y)| exp[-i Φ(x,y) + δ] (2) where δis the phase change due to displacement or deformation of the object. The intensity due to superposition of these two waves isI(x,y) = |O1(x,y) + O(x,y)|2= O1O1* + O2O2* + O1O2* + O1* O2= I1 + I2+ 2I1I2Cos δ(3)where I1 and I2 are the intensities of O1 & O2. The Phase Difference δ is given byδ = (K2-K1).L (4)where K2 is the observation vector, K1 is the illumination vector and L is the displacement vector. Thus the evaluationof the phase δis gives the displacement. The fringes formed represent contours of constant displacement.1.2Holographic Non-Destructive Testing (HNDT)This powerful technique of Holographic interferometry, is an invaluable aid in Engineering design, Quality Control and Non-Destructive testing and Inspection. In HNDT, the object under study is subjected a very small stress or excitation and its behavior is studied using HI.The defects in the object can be spotted as an anomaly in the otherwise regular fringe pattern. HNDT is a highly sensitive, whole-field, non-contact technique and is applicable to objects of any shape and size. The types of excitation used for HNDT are mechanical, thermal, pneumatic or vibrational. Defects such as cracks, voids, debonds, delaminations, residual stress, imperfect fits, interior irregularities, inclusions could be seen. HNDT is applied to inspect the disbonds between the plies of an aircraft tyre, delamination of the composite material of a helicopter rotor blade, PCB inspection, rocket castings, pressure vessels, andso on.Use of double-pulsed laser makes HI more attractive for study of transients and impact loads. Fig.2 shows the double exposure hologram of a turbine blade subjected to an impact loading (recorded using a double-pulsed Ruby laser).Fig. 2 : Double-pulse hologram of a turbine blade impact loaded with a small metallic ball.Time average HI, wherein a hologram of a vibratingobject is recorded, provides information about the modes and the vibration amplitudes at various points on the object. Figs.3(a) and (b) show the time average holograms of a rectangular plate vibrating at 1826 Hz and 5478 Hz, from which the resonant mode patterns could be easily studied . In HNDT, this technique is used for study of vibrations of machinery, car doors, engines and gear boxes and to identify the points where they should be bolted to arrest the vibration and noise.Fig. 3 : (a) and (b) Time averaged hologram of a centrally clamped plate at (0,0) and (1,0) mode when vibrated at 1826 Hzand5478Hz respectively2 22 22. Electronic Speckle Pattern Interferometry(ESPI)Recent holographic applications in engineering use a video camera for image acquisition, which is coupled to a computer image processing system. This is termed as TV Holography, though technically called Electronic Speckle Pattern Interferometry (ESPI). The technique makes use of the speckle pattern produced when an object with a rough surface is illuminated with a laser [4-6]. The correlation between the speckle patterns, before and after an object is deformed, are carried out using image processing techniques. Figure 4 shows the schematic of an ESPI system. The object is illuminated by the light from a laser and is imaged by a CCD camera. An in-line reference beam, derived from the same laser, is added at the image plane. The specklecorrelation is carried out by storing an image while the object is in its initial state, and subtracting the subsequent frame fromthis stored frame, displaying the difference on the monitor. When the object is subjected to some loading or excitation, the correlated areas appear black while the uncorrelated areas would be bright, resulting in a fringe pattern. As in HI,the fringes represent contours of constantdisplacement of the object points.The fringe formation in ESPI is well documented . The intensity distributions I 1(x,y) and 12(x,y) recorded before and after the object displacement respectively can be written asFig. 5 : Measurement of Poisson’s ratioI I (x,y) = a 1 +a 2 + 2a 1a 2 cos(ϕ) (5) I 2(x,y) = a 1 +a 2 + 2a 1a 2cos(ϕ+δ) (6)Fig. 4 : Experimental arrangement for ESPIFig. 6 : (a) Delamination in a plate (b) Longitudinal crack in asteel weldmentwhere a 1 and a 2 are the amplitudes of the object and reference waves, δ is the phase difference between them and ϕ is the additional phase change introduced due to the objectmovement. The subtracted signal as displayed on the monitor is given by,I 1 - I 2 = 4 |a 1a 2 Sin[ϕ + (δ/2)] Sin (d/2)|(7)Thus we find the brightness is modulated by a sine factor of the phase. The brightness on the monitor is maximumFig. 7 : Fiber Optic Shearography systemwhen δ = (2m +1)π and zero when δ = 2m π, which producesa fringe pattern on the monitor. The phase change δ is given by equation [4], the same as in holography. Figure 5 shows such an interferogram obtained by ESPI with a plate subjected to four-point bending, from which the Poisson’s ratio of the material of the plate could be calculated directlyfrom the smaller angle between the asymptotes of the hyperbolic fringes [8]. Figure 6(a) shows the delamination between two plates bonded together, while Fig. 6(b) shows a longitudinal crack in a weldments [9].4. Shearography In Shearography, we generate correlation fringes which are contours of constant slope of the out-of-plane displacement of an object under study . In this technique, one speckle field is made to interfere with the same speckle field, but sheared with respect to it. The subtractive correlation of the speckle patterns of the deformed and undeformed yields the derivatives of the displacement profile. Figure 7 shows the schematic of a fiber optic Shearography system. A double image of the laser illuminated object is made on the CCD camera. A small shear is introduced between the two images by tilting one of the mirrors. Incorporation of fiber optics makes the system very compactand the technique applicable to objects at inaccessible locations. Shearography is a very useful tool in experimental stress analysis and NDT as well. With the use of phase shifting techniques, the fringe patterns can also be automatically processed by the computer to obtainquantitative 3-dimensional plots . Figure 8 shows the results of an NDT application of Shearography to detect delamination in glass fiber reinforcedplastic (GFRP). The GFRP specimens were prepared withunidirectional glass fiber mat and epoxy resin with and without programmed defects. The defects were introduced by placing a thin Teflon film of 10 mm diameter and thickness 0.23mm between the layers of glass fiber mat during the lamination. Four layers of Glass fiber mat were used to make the laminate. The specimens were made in the form of circular diaphragm. The diaphragm was clamped along the edgesanFig. 8 : Slope fringes obtained on a circular GFRP specimen which was (a) Defect free (b) Having a programmed delaminationloaded mechanically at the center. The optical configuration of Fig. 8 was used, which is sensitive to the slope of the out- of-plane displacement. Figure 8(a) shows the fringes obtained with a defect-free specimen, while Fig. 8(b) shows the fringeswhen a delamination was introduced between the third and fourth layers. The defect site could be easily seen as a localized fringe. 全息无损检测主要还是采用全息干涉计量技术的三种方法进行,即实时全息干涉法,两次曝光全息法和时间平均全息干涉法。

激光散斑干涉实验

激光散斑干涉实验

激光散斑干涉实验摘要:激光散斑测量法是在全息方法基础上发展起来的一种测量方法,这种方法具有很强的实用价值。

散斑位移测量不仅可以实现离面微位移的测量,也可以进行面内微位移测量。

主要是对面内微位移进行了测量研究,利用设计的测量系统将物体发生位移前后的散斑图由CCD记录下来,分别用数字散斑相关法和散斑照相法对散斑图像进行了分析处理,并得出了相应的结论。

关键词:激光散斑;位移测量;数字图像处理一、引言激光自散射体的粗糙表面漫反射或通过透明散射体(毛玻璃等)时,在散射表面或附近的光场中会形成无规则分布的亮暗斑点,称为激光散斑。

激光散斑在全息图上是一种有害的背景噪声,但由于散斑携带了光束和光束所通过物体的光学信息,于是产生了广泛的应用。

例如,用散斑的对比度测量反射表面的粗糙度;利用散斑的动态情况测量物体运动的速度;用散斑进行光学信息处理,甚至利用散斑验光等等。

但应用领域最广的是散斑干涉测量技术。

散斑干涉技术在机械工程方面可以用于测量物体表面的形变和裂纹、损伤和应力分布,在天文学方面可以测量大气的扰动和温度场分布,在医学、力学和光处理等领域也有广泛的影响。

二、实验2.1实验测试系统散斑干涉测量离面位移光路图如下图所示2.2实验原理(1)激光散斑当相干光照射一个粗糙物体的表面(或通过透明的粗糙面)时,在物体表面前的空间,可得到一种无规律分布且明暗相间的颗粒状光斑,称为散斑。

由于激光的高度相干性,表面散射光在空间中随机相干叠加后会形成一些亮暗分明的区域,且呈现无规则分布,按照在散射面有无透镜,可以将散斑场划分为主观散斑和客观散斑,由于透镜的使用,主观散斑又被称为成像散斑。

(2)利用散斑干涉术测量面内位移散斑干涉计量就是将物体表面空间的散斑记录下来,当物体运动或由于受力而产生变形时,这些随机分布的散斑也随之在空间按一定规律运动。

因此能利用记录的散斑图分析物体运动或变形的有关信息。

当测量物体在面内发生位移时,通常在被测物体位移前,将散斑记录下来,然后使物体垂直于光轴发生一微小面内位移d,再次记录。

Kindle Paperwhite电子书阅读器显示屏的光学解构说明书

Kindle Paperwhite电子书阅读器显示屏的光学解构说明书

Optical teardown of a Kindle Paperwhite displayby OCTBart Johnson, Walid Atia, Mark Kuznetsov, Noble Larson, Eric McKenzie, Vaibhav Mathur,Brian Goldberg, Peter WhitneyAxsun Technologies, 1 Fortune Drive, Billerica, MA 01821, USAAbstract:An optical teardown, or reverse engineering, of an AmazonKindle Paperwhite electrophoretic display was performed by OpticalCoherence Tomography at 1060 nm. The display incorporates an opticaldiffuser, lightguide and scattering layers for white light illumination,capacitive touch sensing, and an electrophoretic display. All these layerscan be imaged by OCT as well as the thin film transistor array on the backside for driving the pixels. Phase sensitive OCT is used to measure motionof the pigment particles as the display changes between black and white.1. IntroductionThe Amazon Kindle Paperwhite [1] is an advanced electronic book reader that features a black and white electrophoretic display [2] as well as capacitive multitouch screen capability and an internal lightguide with an optical scattering layer [3,4] to provide uniform, white light illumination. Teardowns, where a new electronic gadget is disassembled and photographed are commonly found on technically oriented web sites. Here we perform an “optical teardown” of the first generation Kindle Paperwhite display by Optical Coherence Tomography (OCT). This highlights an industrial application of OCT in the 1060 nm wavelength range using advanced swept laser sources and data acquisition hardware [5].The heart of the Paperwhite is the electrophoretic display manufactured by E Ink Corporation [2]. Microencapsulated electrophoretic displays were first developed at MIT [6] and then refined [7] and commercialized [2]. The electrophoretic display layers consist of microcapsules of liquid containing black and white particles. The white particles are permanently charged negative and the black particles positive. They can thus be moved through electrophoresis by an electric field. Moving the white particles to the top of the capsule and black to the bottom results in a white pixel. Reversing the electric field turns it black. An interesting feature of these displays is that with no external electric field applied they remain in the same state. An image can be retained almost indefinitely with no power applied to the display. This fact, and the fact that the display emits no light, only reflects light, means that electrical power consumption is very low.Figure 1. Diagram of a microcapsule electrophoretic display.2. Overall display constructionThe Kindle Paperwhite display is a complex layered device of glass, plastic and thin films, in addition to the electrophoretic pigment microcapsules. A cross-section of the display taken with a 1060 nm OCT system is shown in Figure 2 and three dimensional renderings are shown in Figure 3. The top layer is a light diffuser to remove reflected light glare. It is followed by a high index light guide layer that conducts light from four white LEDs across the display. A graded surface of microprinted scattering centers [3,4] directs white light out of the guide layer to uniformly illuminate the pigment layer. Underneath the light guide is an 18 x 14 thin film capacitive touch screen layer. The capacitive array pitch is 7.0 x 6.6 mm on a 122 x 90 mm display area. The pigment layer contains fluid-filled microcapsules with charged black and white pigment particles. The capsules are sandwiched between a transparent ground plane and thin film transistor (TFT) driven pixel electrodes unseen below the pigment layer.Figure 2. Cross section image (left) and single A-line (right) of a Kindle Paperwhite display by OCT at 1060nm.Figure 3. Three dimensional renderings of OCT data showing the (a) diffuser,(b) scattering layer, (c) touch-screen capacitance layer, (d) E Ink pigmentlayer.3. Light diffuserFrom close examination of Figure 2, the light diffuser appears to be four thermoplastic layers containing small air bubbles. Microscope photos in Figure 4 show one image focused on the diffuser surface and another focused on the pigment layer below. The first image shows the diffuser bubbles and the second shows individual pixels in the pigment layer, slightly blurred because of the diffuser. The pixel pitch is 120 microns. We speculate that the diffuser material is polymethylmethacrylate (PMMA), which can be formulated with varying levels ofbubble content.on the E Ink pigment layer (right).4. Lightguide illumination layersThe internal white light illumination is a new feature in the Paperwhite model. Four white LEDs shine into a planar waveguide and microprinted scattering centers are designed to uniformly scatter light out of the guide onto the pigment layer. The success of this scheme is shown in the illumination uniformity map of Figure 5. The white/black contrast of the electrophoretic display is 17:1. These false color images were obtained by photographing the display using a RAW file format and removing the gamma compression from the final bitmap images to register linear light intensity.Figure 5. False color light intensity maps for a black page with whiteborder (left) and white page (right). Four white LEDs inject light into thelightgide at the bottom of the display and it propagates towards the top,being scattered onto the electrophoretic display along the way.The scattering centers are apparently imprinted on the surface of the high-index guide layer as described in these patents [3,4]. Each scattering center is a small island corrugated plastic as shown in Figure 6. The islands are smaller at the bottom of the display, near the white LEDs. For uniform illumination, the scattering needs to increase near the top of the display as the white light is depleted. These scattering islands are seen in the OCT image in Figure 3b as a kind of row-like structure in the coarser pitch dimension. These scattering centers are visible on a disassembled Paperwhite near the edge of the display where the centers overlay the metal film on the capacitance layer. The pitch of the centers is roughly 200 x 100 microns, although there appears to be some randomness of placement and ofcorrugation angle. Figure 7 shows the increased island size at the top of the display, away from the four illumination LEDs at the bottom.We speculate that the lightguide material is polycarbonate (PC), which is capable of being microprinted, as is done in the case of pressed compact discs, for example. OCT measurements of the optical and physical thickness of these layers indicates the refractive index is greater than 1.5, consistent with published numbers for PC at a 1 micron wavelength. This high index would provide light guiding when sandwiched between lower index materials.Figure 6. Microscope photograph of light emitted from the edge of thelightguide of a disassembled Paperwhite with the four illumination LEDsout of focus in the background (left). Structure of the lightguide andscattering centers (right).Figure 7. Microscope photographs of the microprinted scattering centers.The image is not clear because of the intervening diffuser layer. Closeexamination shows the corrugations from the microprinting.5. Touch screen capacitor layerThe capacitance layer shown in Figure 3c appears to be corrugated like the lightguide, but that is an artifact of the OCT imaging. The display was tilted in the OCT experiment to eliminate strong specular reflections. The result is that the specular beam from the capacitance layer misses the detector, but will get to the detector by scattering in the layer above as drawn in Figure 8. This modulates scattering islands onto the capacitance layer signal giving the mistaken impression that the capacitance layer is corrugated as well.The reflections from small metal traces circled in Figure 3c are real. Those are apparently metal crossover traces connecting one dimension of the touch screen projected capacitance grid. They are imperceptible to a person reading an E-book, but can be seenunder a microscope. We were unable to image the capacitor traces, likely made from indium tin oxide, with standard OCT and even phase sensitive OCT. The Paperwhite has a multi-touch capability and we are presuming that the capacitance layout is similar to that drawn in Figure 9.Figure 8. Optical path from the capacitance layer to the OCT detector,showing how the scattering layer affects the signal and confuses theinterpretation of the images.Figure 9. Diamond-shaped transparent pads in a typical projectedcapacitance array used for multi-touch sensing. The crossover tracesimaged by our OCT system are shown in black. The dark blue and dark redmetal traces that connect to the presumed ITO pads can be seen under amicroscope and by OCT.6. E Ink electrophoretic display layersOCT can image characters formed on the E Ink electrophoretic display layer, although the contrast at 1060 nm is not high. This is shown in Figure 10 in three dimensions along with reflections of all the intervening layers of the display.Figure 10. Three dimensional rendering of OCT data (left) and photograph(right) of the Kindle Paperwhite display with text from [8] displayed.While the display state, white/black/gray, is static with the power removed, the pigment particles exhibit Brownian motion. The particles are held in a semi-permanent potential well, but they are still free to move somewhat within the liquid. This can be seen from the speckle pattern in the M-mode image of Figure 11 that shows 250 A-lines from a stationary beam on the Kindle display. All the display layers and interfaces are seen, with unchanging speckle patterns except for the E Ink pigment layer. The light diffuser, for example, shows stable horizontal speckle lines over the 5 minute measurement period. The E Ink pigment speckle pattern changes for each A-line, showing that the pigment particles are in motion. This particular measurement was taken from a Kindle Paperwhite display in the white state whose battery was removed some months before.Figure 11. M-mode image formed from 250 A-lines taken over a 5 minutetime period. Stable speckle patterns are seen everywhere except withinthe E Ink pigment layer, showing that the pigment particles, while trappedin a stable potential well, still exhibit Brownian motion.An electrophoretic display has fluid-filled microcapsules containing mobile, charged pigment particles that can be driven towards or away from the viewer by electrophoretic forces depending on the direction of an electric field across the capsule layer. The Kindle Paperwhite has black and white particles. The motion of the white particles can be tracked by phase sensitive OCT since they are highly reflecting. Movement towards or away from the display surface can be detected, but lateral motion cannot since it produces no Doppler shift. Therefore motion due to electrophoresis can be measured, but motion from dielectrophoretic forces [9] cannot.The Kindle Paperwhite was mounted under a stationary beam from a 1060 nm, 100 kHz swept source [5]. A 12-bit data acquisition board [5] was used to stream 8.2 seconds of data to computer memory over a PCIe interface. While the data converters are capable of 550 MS/s rates, the board was actually clocked from a k-clock interferometer at frequencies ranging from 170 to 330 MHz. The fiber-based Mach-Zehnder k-clock drifts with temperature and the starting wavelength of the laser sweep jitters a few clock pulses sweep to sweep. These are not good conditions for a phase sensitive measurement and 2π phase errors can easily be made. We use a new phase unwrapping algorithm [10] that is tolerantto phase jitter to combat that problem. There are both one and two dimensional versions of the method.Figure 12 shows the results of an experiment where the Kindle Paperwhite display started white, was switched to black, and then back to white. Doing that required swiping the touch-screen display with a finger to “turn the page.” Physically touching the display moved it by about a dozen microns, even though the unit was firmly strapped down. Phase data from both the display surface and the pigment layer were collected so the overall device motion could be subtracted to just obtain the pigment motion. This creates a “virtual” common path interferometer, which is more pha se stable. This worked out fairly well, as shown in Figure 12. The red curve shows about 4 microns of white particle motion away from the display surface when it is switched to the black state. This is in the face of about 12 microns of overall motion from a finger pushing the display away from the OCT probe. A few 2π phase errors, which amount to about 0.5 microns, are likely, but overall the measurement looks reasonable.The Kindle Paperwhite is sluggish, taking about 0.5 seconds to respond to a finger command. The display reflectivity changes in synchronism with the pigment movement, not the finger motion. The 1060 nm laser signal from the pigment layer suffers from speckle effects and is very “noisy”. A simultaneous measurement of white light re flectivity shows a much cleaner trace. However, both measurements track and are synchronized with the pigment motion.It is clear that the white particles move away from the surface when the display transitions to the dark state, and the data shows this. The registered motion is only 3 microns, although the E Ink microcapsules are believed to be much bigger. Quantifying the movement in microns is problematic since there will be some signal from the stationary microcapsule walls and from the black particles that move in the opposite direction. It is expected that the signal will be dominated by white particle reflection only when they are near the top surface of the microcapsules. A more sophisticated model of the optical interaction is needed to probe further.Figure 12. Phase sensitive displacement measurement of pigmentparticles (top) and display reflectivity (bottom).7. Thin film transistorsA thin-film transistor (TFT) array drives the pixels in the electrophoretic display. The TFTs are not accessible optically from the front of the display since the pigment layer prevents light from penetrating that far. The TFTs can be imaged from the back of the display, nondestructively, by disassembling the Paperwhite. The TFTs are fabricated on a glass substrate and the layers deposited on the substrate can be imaged, although most of the deposited materials are metal and light does not penetrate further.Figure 13 shows three images of a 3x3 cell portion of the TFT pixel driver array. The cell pitch is 120 microns. The OCT images are of limited use because of the poor lateral resolution, however there is potential for added diagnostic information with a higher resolution scanner, especially with phase sensitive imaging. The phase sensitive image was made by subtracting the TFT layer phase from the substrate phase and applying the two-dimensional version of the filtered phase unwrapping algorithm of Ref. [10].Figure 13. 3x3 cells of the thin film transistor array seen with phasesensitive OCT (left), standard OCT (center), and white light microscopy(right)8. SummaryThis work illustrates an industrial application of OCT and reveals the impressive electro-optical technology behind the Kindle Paperwhite E-book reader. These measurements were made nondestructively. The reader was taken apart, but still worked when reassembled. An advanced 1060 nm swept source and a new data acquisition board capable of streaming large data sets made this work possible. These experiments also demonstrate a new algorithm for phase-unwrapping [10] that makes phase sensitive measurements possible in the face of modest laser phase jitter.References and links1.“Light Reading: How the Kindle Paperwhite Works,” NY Times, December 26, 2012,/interactive/2012/12/26/technology/light-reading.html?ref=personaltech&_r=2&2. E Ink Corporation. /3.L. Hatjasalo, K. Rinko, “Light panel with improved diffraction,” US Patent 6,773,126, Aug. 10, 2004.4.K. Rindo, “Ultra thin lighting element,” US Patent 7,565,054, Jul. 21, 2009.5.1060 nm swept source and prototype data acquisition board designed and manufactured by AxsunTechnologies. /6. B. Comiskey, J. D. Albert, H. Yoshizawa and J. Jacobson, “An electrophoretic ink for all-printed reflectiveelectronic displays,” Nature 394, 253-255 (1998).7. A. Loxley and B. Comiskey, “Capsules for electrophoretric displays and methods for making the same,” USPatent 6,262,833, Jul. 17,2001.8.Graham Farmelo, “The Strangest Man: The Hidden Life of Paul Dirac, Quantum Genius”, Kindle edition, (E-book location 3102).9.K.R. Amundson, A.C. Arango, J.M. Jacobson, T.H. Whitesides, M.D. McCreary, R.J. Paolini, Jr., “Methods fordriving electrophoretic displays using dielectrophoretic forces,” US Patent 7,999,787, Aug. 16, 2011.10.M.A. Navarro, J.C. Estrada, M. Servin, J.A. Quiroga, J. Vargas, “Fast two-dimensional simultaneous phaseunwrapping and low-pass filtering,” Optics Express 20, 2556 (2012).。

傅里叶光学第9章-散斑测量术课件

傅里叶光学第9章-散斑测量术课件

式中:ϕ1=arg{I1},ϕ2=arg{I2},I1和I2分别为I1和I2的傅里叶变换。
条纹的周期和平移量的关系是:


Tx=| | ,Ty=| |
0
0
两次曝光的散斑图,每次选择一个小窗口区域进行傅里叶分析,逐点观察。这
种方法称为逐点分析法。
2、散斑照相术
全场滤波法
参见图 9-5,采用4f光学信息处理系统,两次曝光散斑图H置于输入面。当谱
场测量。
(2)采用数字图像处理技术使得散斑图的分析处理更加方便有效。
2、散斑照相术
2.3 数字散斑相关术
通过CCD等光电成像器件记录物体变形前后表面产生的散斑场的强度,
通过数字图像相关运算,提取物体表面位移场的信息。
若f(x,y) 和g(x,y)是物体变形前后表面散斑场的强度分布,则:
C(x, y)=∑f(x+m, y+n)g(m, n)
或形变)的散斑图,从中提取漫射表面位移或形变的信息.
图9-4 两次曝光的散斑图的记录和处理
a) 散斑图的记录 b) 对散斑图做光学傅里叶变换
2、散斑照相术
图9-4a为记录光路,总的光强分布为两个散斑图强度之和:
I(x,y)=I1(x,y)+I2(x-x0,y-y0)
经透镜傅里叶变换,在(u,ν)后焦面上观察到被散斑晕调制的条纹图样(见图 9-4b),即:
采用相移技术,通过多幅干涉图的强度计算Δϕ,可实现相位分布的精确测量。
3、散斑干涉术
3.5 散斑测量振动
图9-10
用于振动分析的散斑成像干涉系统
参看上图,在一个成像光路中,激光照明物体粗糙表面,引入参考光与物体所成的
像干涉,采用CCD探测器作光强记录。

激光全息无损检测技术

激光全息无损检测技术

摘要脱层和气泡是轮胎主要的内部缺陷之一,采用常规检测手段很难检测出来,所以一般采用激光全息无损检测技术。

早期的全息无损检测一般采用全息干板来记录全息图,检测周期长,检测效率低,不能适应现代工业流水线上的检测。

数字全息技术用CCD代替传统全息记录材料记录全息图,用计算机模拟光学衍射过程来实现数字再现,实现了全息记录、存储和再现全过程的数字化,给全息技术的发展和应用增加了新的内容和方法。

本文从理论和实验两方面探讨了数字全息术的原理及其在轮胎内部缺陷无损检测方面的应用,并取得了较为满意的结果。

所作的主要工作如下:1.模拟实现了全息记录和重现的全过程,包括:模拟生成理想全息图;采用傅立叶变换法进行数字全息重现;提取相位,进行物体表面三维形貌恢复等。

2.深入分析和研究了二次曝光和消除零级衍射斑的理论,同时进行模拟仿真和实验测试,得到了较好的结果,且实验结果与模拟的结果吻合。

3.搭建数字全息系统测量橡胶表面形变,获得了满意的形变测量结果,并进行了光路计算和实验中各参数的分析和讨论。

4.针对现场检测要求,提出新的光路,实现了更大视场的检测。

实验证明,本系统的检测范围己达到138.Ira×112.4mm,处理一幅1300x 1024的图像只需62ms,已经达到实际工业流水线检测上的要求,可应用于现场检测。

关键词:数字全息全息重现电子散斑轮胎检测无损检测激光全息无损检测技术的发展数字全息技术是由Goodman和Lawrence在1967年提出的n1,其基本原理是用光敏电子成像器件代替传统全息记录材料记录全息图,用计算机模拟再现过程取代光学衍射来实现波前的数字再现,从而实现了全息记录、存储和再现全过程的数字化,给全息技术的发展和应用增加了新的内容和方法。

90年代中期以来数字全息技术已成功应用于显微成像、干涉计量,粒子场的测试、信息存储、学信息加密、活体生物成像和三维形貌成像等领域瞳。

轮胎制造和检测行业中,也同样需要用到数字全息技术。

光斑形成的原理

光斑形成的原理

光斑形成的原理The formation of a light spot, also known as a speckle, is a common phenomenon in optics and is a result of the interference of multiple coherent light waves. This interference produces a pattern of bright and dark spots characteristic of the light source. This phenomenon is significant in various fields such as astronomy, microscopy, and laser technology.光斑的形成,也被称为散斑,是光学中的一种常见现象,它是由多个相干光波的干涉产生的结果。

这种干涉产生了与光源特征明亮和暗淡斑点的图案。

这种现象在各个领域中都具有重要意义,如天文学、显微镜和激光技术。

In astronomy, the formation of light spots is an essential aspect of astronomical observation. When starlight passes through the Earth's atmosphere, it undergoes interference, resulting in the formation of speckles. These speckles can be analyzed to gain information about the atmospheric conditions and improve the accuracy of astronomical observations.在天文学中,光斑的形成是天文观测中的重要方面。

上海博物馆文物术语中英文对照

上海博物馆文物术语中英文对照

瓷器品种陶pottery瓷porcelain / China原始瓷proto-porcelain成熟青瓷mature celadon高温瓷high-fired glazed ware低温陶low-fired pottery新石器时代Neolithic Times夹炭黑陶charcoal-mixed black pottery印纹硬陶impressed pottery铅釉陶lead-glazed pottery熏炉incense burner罐jar单色釉monochrome glaze彩色釉陶poly-chrome glazed pottery颜色釉color porcelain青白釉porcelain with a bluish-white glaze豆青釉bean-green建窑黑釉瓷temmokou青瓷green ware绿釉green glaze白釉white glaze红釉red glaze青釉celadon德化白瓷blanc de China甜白瓷sweet white秘色瓷secrete color celadon定窑Ding ware汝窑Ru ware官窑Guan ware (还有一个官窑,意义不同,为official kiln)窑kiln民窑folk kiln哥窑开片crackles三足…tri-legged青花瓷underglaze blue design / blue and white porcelain釉里红underglazed red青花釉里红underglaze blue & red釉上彩overglazed …珊瑚红coral red glazed …郎窑红oxblood豇豆红cowpea-red / peach-bloom porcelain斗彩contrasting color / designs outlined in underglaze blue and filled in with overglaze colors 五彩famille verte粉彩famille rose珐琅彩enamel decorate卵白egg-white glaze影青瓷light-blue porcelain祭红sacrificial-red porcelain制作工艺胎体clay body陶片pottery shards弦纹… with string pattern镂孔… with openwork design人形… with human figure pattern曲折纹… with zigzag pattern圆圈纹… with ring pattern鸟纹… with bird pattern缠枝纹… with interlaced floral design刻花… with carved design划花… with incised design堆塑… with modeled design堆贴、贴花… with applied design印花… with moulded design剔花… with raffito design几何纹… with geometric pattern透雕openwork露胎贴unglazed appliqué绞胎marbled pottery堆纹modeling压印impressing贴印appliqué加彩coloring剔地cut-off ground剪纸贴花papercut油滴斑oil-drop iron crystals白地黑花black design on a white ground元素agent (such as copper, iron)碎片fragment灰胎黑陶衣grey clay with a black coating烧成温度firing temperature光泽luster苏麻离Smalt黑斑speckle粗瓷石crude China stone涩胎瓷雕unglazed ceramic sculpture雕刻engrave加工refining成型modeling装饰decorating烧成fining补水water-supplying勾线drawing打箍hooping分水dark-light-processing青花料cobalt龙窑dragon kiln柴窑wood kiln炉膛hearth氧化期oxidation period陈腐aging揉泥kneading拉坯throwing修坯trimming印模impressing云母mica内底interior base支钉spur芒口unglazed rim碗口mouth rim覆烧up-side-down firing叠烧up-stacked firing青铜器镏金gilt bronze爵wine vessel鼎food vessel (所有的青铜器名称不宜用拼音介绍,最好介绍其用途)兽面纹animal mask戈dagger-axe饰品ornament范clay molds分铸casting in several pours合金铸造bimetallic casting雕塑舍利sarira袈裟Gauze Kasaya莲瓣纹… with carved lotus petals窖藏hoard画像石painted stone relief拜火教parseeism陶俑pottery figurine / pottery木俑painted wood天王Lokapala / heavenly guardian镇墓兽tomb guardian beast辟邪evil spirit exorciser石碑stele泥塑clay绘画水墨画ink and wash壁画fresco图卷hand scroll图册album leaves图轴hanging scroll高僧lofty monks(人的)字designated name(人的)号literary name墓室coffin chamber少数民族蜡染batik漆器lacquer ware竹器bamboo plaited vessel家具宝座throne chair柜子cabinet屏风screen set货币刀币sword-shaped coin布币spade-shaped coin。

软硬交错层理状岩石变角度劈裂的变形场及声发射频率特征

软硬交错层理状岩石变角度劈裂的变形场及声发射频率特征

第38卷第1期 2021年01月采矿与安全工程学报Journal of Mining & Safety EngineeringVol.38 No.lJan. 2021文章编号:1673-3363-(2021)01-0173-08软硬交错层理状岩石变角度劈裂的变形场及声发射频率特征苏晓波纪洪广u,权道路U2,耿景明u,陈东升u,张改改U2(1.北京科技大学土木与资源工程学院,北京100083; 2.城市地下空间工程北京市重点实验室,北京100083)摘要为了了解宏观裂纹以不同角度穿越软硬交互层时岩石的变形场及声发射特征,以天然软硬 交互层理状岩石为研究对象,分别开展劈裂方向与层理方向呈0。

,30。

,60。

,90。

的劈裂试验。

试 验过程中辅以数字散斑技术记录变形场,PCI-2型声发射采集仪记录声发射信号。

绘制横向受拉 区域变形时程图与声发射峰频分布时程图,对比研究发现:劈裂方向与层理方向夹角为0。

时,横 向受拉区域分布集中,声发射信号峰频点集中在40 kH z附近;夹角为30。

和60。

时,受拉区域杂 乱分散,受载过程中新出现峰频段集中在100,150kH z附近的声发射信号;夹角为90。

时,受拉 区域分布较为集中,受栽过程中新增加峰频在260kH z附近的信号。

随着岩石层理夹角由氐至高 的变化,受拉变形区分布形态经历了集中分布一无规则分布一较为集中分布的趋势,而声发射信 号峰频带分布则愈加复杂。

基于试验结果,讨论了岩石内部破裂源模式与声发射峰频间的关系。

关键词 巴西劈裂;层理状岩石;声发射;破裂模式中图分类号 TU45 文献标志码 A DO丨10.13545/ki.jmse.2019.0574Deformation field and AE frequency characteristics of variable angle splitting of soft and hard staggered bedded rocks SUXiaobo1’2,JIHongguang1’2,QUANDaolu1’2,GENGJingming1’2,CHEN Dongsheng1’2,ZHANG Gaigai1’2(1. School of Civil and Resource Engineering* University of Science and Technology Beijing, Beijing 100083,China;2. Beijing Key Laboratory of Urban Underground Space Engineering, Beijing 100083,China)Abstract In order to find out the deformation field and acoustic emission(A E)characteristics of rock when macroscopic cracks pass through soft-hard interaction layers at different angles,with natural soft and hard staggered rocks as research object,splitting tests have been carried out with the splitting direction and bedding direction of0°, 30°, 60°and 90° respectively.During the experiment,the digital image correlation (DIC)technique was used to record the deformation field,and the PCI-2 AE acquisition instrument was used to record the AE signals.The deformation time charts of the transverse tension zones and the AE peak frequency distribution time charts were drawn.The comparison has shown that when the included angle between splitting direction and bedding direction is 0°, the transverse tension zones are concentrated,and the peak frequency bands of the AE signals are收稿日期:2019-12-30 责任编辑:宋爽基金项目:国家重点研发计划项目(2016YFC0600801):国家自然科学基金重点项目(51534002)作者简介:苏晓波(1992—),男,河北省隆尧县人,博士研究生,主要从事岩石力学与岩石声发射方面的研究。

风湿病自身抗体荧光模式

风湿病自身抗体荧光模式
3.抗中性粒细胞胞浆抗体谱( ANCA ):anti-PR3、 anti-MPO…
4.早期诊断相关抗体:抗角质蛋白抗体(AKA)、 抗Sa抗体、抗核周因子(APF)、抗RA33抗体、 抗CCP抗体、抗聚角蛋白微丝蛋白抗体(AFA)
第二页,共55页。
抗核抗体(ANA)的概念
传统定义:是以细胞核内成份为靶抗原的器官非 特异性自身抗体总称。
主要靶抗原成份是MPO(要与坏死性血管炎,特发性坏死性新 月体性肾小球肾炎(NCGN),Churg-Strauss综合征及炎症性 肠病等有关,在SLE患者可有10%~15%阳性,RA患者存在关 节外损害及血管损害时也可呈阳性)。 非典型型: X-ANCA (atypical pattern) A-ANCA 为上述两型的混合型
第十六页,共55页。
抗SS-B抗体/抗La抗体
靶抗原:与 小分子RNA (U6-RNA, pre-tRNA) 结合的磷脂蛋白 (48 kDa)
功能: RNA多聚酶III的辅助蛋白 相关性: 干燥综合征: 40% - 95%
SLE: 13.3% (EUROIMMUN研究) 10% - 20%
第十七页,共55页。
86 93.6 78-97 87-92 70-90 96 70-88 92
第四十五页,共55页。
不同抗体在RA诊断中的意义
阳性抗体
RF
RA% 对照% 敏感度 特异度 阳性预
(n=114) (n=93) %
% 测值%
71
17 62.3 81.7 80.6
CCP
84
5
74.3 94.6 94.3
RF or CCP 96
PCNA型
荧光染色特点
细胞核均匀染色,分裂期细胞染色 体区域着染。

数字散斑

数字散斑

谢谢!
由于转角产生的参考相位的改变x·4πtanθ/λ, 由于转角产生的参考相位的改变x·4πtanθ/λ, 前 后两次所得到的散斑图相减或相加就可以得到 载波条纹图。 考虑到被探测器接收到是离散化的信号, 考虑到被探测器接收到是离散化的信号,载波条 纹又可表示为I(i,j)=a(i,j)+b(i,j)cos[ω i+φ(i,j)],其中 纹又可表示为I(i,j)=a(i,j)+b(i,j)cos[ωci+φ(i,j)],其中 (i,j)表示像素位置;ω =4πtanθ/λ。 (i,j)表示像素位置;ωc=4πtanθ/λ。
假设任意相邻三个像素(M假设任意相邻三个像素(M-1,N), (M, N) 和(M+1, N)满足: N)满足: 则有:
将ωcM +φM看作未知位相,ωc作为相移步长,采用普通的三步相移算法可以计算 看作未知位相,ω 作为相移步长, 出ωcM +φM。设ωc=π/2 。设ω
由于运用空间载波相移法进行动态位相测试时,计算简单, 由于运用空间载波相移法进行动态位相测试时,计算简单,已经逐步引起研究者 的重视。但这种方法需假设被处理的若干相邻像素的位相相等, 的重视。但这种方法需假设被处理的若干相邻像素的位相相等,这样就会导致空间 分辨力下降和误差的产生。据此中国科技大学提出了一种减小位相测量误差的方 法,即:①采用二次曲线表示相邻若干像素的位相关系;②将位相的线性项和二次项表 采用二次曲线表示相邻若干像素的位相关系; 示成相移量误差的形式; 通过选择对相移量误差不敏感的算法, 示成相移量误差的形式;③通过选择对相移量误差不敏感的算法,除位相的线性和二 次项的影响, 次项的影响,提高测量精度。 空间载波相移法通过一系列的改进可以达到较高的测量精度, 空间载波相移法通过一系列的改进可以达到较高的测量精度,该方法以其能进 行动态位相测量、载波条纹图处理简单和潜在的高测量精度必将得到更广泛的应 用。

pattern的用法总结大全

pattern的用法总结大全

pattern的用法总结大全pattern的用法总结大全pattern有模式,花样,样品,图案,榜样,典范的意思。

那你们想知道pattern的用法吗?今日我给大家带来了pattern的用法,盼望能够关心到大家,一起来学习吧。

pattern的用法总结大全pattern的意思n. 模式,花样,样品,图案,榜样,典范vt. 仿照,以图案装饰vi. 形成图案变形:过去式: patterned; 现在分词:patterning; 过去分词:patterned;pattern用法pattern可以用作名词pattern的基本意思是“型,模式,样式”,是可数名词,多指某物、某事的原始模型或细心设计的方案,借助于此来制作某物或设计某事,用于比方指千篇一律或一成不变的东西。

pattern也可指“花样,图案”,还可指事物发生或进展的“方式,形式”,是可数名词。

pattern还可作“榜样,典范”解,此时常用于单数形式。

pattern用作名词的用法例句The two buildings are modeled after the same pattern.这两座建筑是根据同一模式建筑的。

Training and education follow different patterns in different regions.培训和教育在不同的地区遵循不同的模式。

This cloth has a pattern of blue and white squares.这种布有蓝白格子的图案。

pattern可以用作动词pattern用作动词的意思是“仿照,仿制”,即在语言、行动等方面效仿他人或在样式上仿照别的东西。

还可指“以图案装饰”。

pattern多用作及物动词,后接名词或代词作宾语。

pattern用作动词的用法例句I like the carpets patterned with peonies.我喜爱印有牡丹花图案的地毯。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Speckle patternA speckle pattern is an intensity pattern produced by the mutual interference of a set of wavefronts.[1] This phenomenon has been investigated by scientists since the time of Newton, but speckles have come into prominence since the invention of the laser and have now found a variety of applications.OccurrenceA familiar example is the random pattern created when a laser beam is scattered off a rough surface - see picture. A less familiar example of speckle is the highly magnified image of a star through imperfect optics or through the atmosphere (see speckle imaging). A speckle pattern can also be seen when sunlight is scattered by a fingernail.[2]The speckle effect is observed when radio waves are scattered from rough surfaces such as ground or sea, and can also be found in ultrasonic imaging. In the output of a multi-mode optical fiber, a speckle pattern results from a superposition of mode field patterns. If the relative modal group velocities change with time, the speckle pattern will also change with time. If differential mode attenuation occurs, modal noise results.[3]The speckle effect is a result of the interference of many waves of the same frequency, having different phases and amplitudes, which add together to give a resultant wave whose amplitude, and therefore intensity, varies randomly. If each wave is modelled by a vector, then it can be seen that if a number of vectors with random angles are added together, the length of the resulting vector can be anything from zero to the sum of the individual vector lengths—a 2-dimensional random walk, sometimes known as a drunkard's walk.When a surface is illuminated by a light wave, according to diffraction theory, each point on an illuminated surface acts as a source of secondary spherical waves. The light at any point in the scattered light field is made up of waves which have been scattered from each point on the illuminated surface. If the surface is rough enough to create path-length differences exceeding one wavelength, giving rise to phase changes greater than 2π, the amplitude, and hence the intensity, of the resultant light varies randomly.An analogy with water waves may help to understand the speckle phenomenon. Imagine a very large, totally still rectangular pool of water. First consider what happens when someone vibrates a stick at one end of the pool at a constant frequency and amplitude; a circular wavefront is propagated along the surface of the pool. Assume that the pool is large enough that we don't need to consider reflections from the sides or the ends. Now consider what happens if a large number of people, all located at random positions at the end of the pool, vibrate sticks at the same frequency, but varying amplitudes and phases. Each vibrator produces a circular wavefront. At any point along the pool, the movement of the surface is the sum of the individual waves, and is a vibration at the same frequency as the source vibrators.The amplitude and phase of the surface wave at any given point are fixed, but both vary randomly across the surface. At first sight, it will appear that the disturbance in the pool is totally random, but on a closer look, it will be seen that a repeating pattern occurs over one cycle of the vibrating frequency. The average energy of the vibration (which is proportional to the square of the maximum amplitude) at any point, is constant over time, but varies randomly across the surface of the pool. When we observe an illuminated surface, we detect the average energy of the light at the surface; thus the brightness of a given point on a surface which has been illuminated by a set of random scatterers with a single frequency, is constant over time, but varies randomly from point to point, i.e. it is a speckle pattern.If light of low coherence (i.e. made up of many wavelengths) is used, a speckle pattern will not normally be observed, because the speckle patterns produced by individual wavelengths have different dimensions and will normally average one another out. However, speckle patterns can be observed in polychromatic light in some conditions.[2]Subjective specklesWhen an image is formed of a rough surface which is illuminated by a coherent light (e.g. a laser beam), a speckle pattern is observed in the image plane; this is called a “subjective speckle pattern” - see image above. It is called "subjective" because the detailed structure of the speckle pattern depends on the viewing system parameters; for instance, if the size of the lens aperture changes, the size of the speckles change. If the position of the imaging system is altered, the pattern will gradually change and will eventually be unrelated to the original speckle pattern.This can be explained as follows. Each point in the image can be considered to be illuminated by a finite area in the object. The size of this area is determined by the diffraction-limited resolution of the lens which is given by the Airy disk whose diameter is 2.4λu/D, where λ is the wavelength of the light, u is the distance between the object and the lens, and D is the diameter of the lens aperture. (This is a simplified model of diffraction-limited imaging).The light at neighbouring points in the image has been scattered from areas which have many points in common and the intensity of two such points will not differ much. However, two points in the image which are illuminated by areas in the object which are separated by the diameter of the Airy disk, have light intensities which are unrelated. This corresponds to a distance in the image of 2.4λv/D where v is the distance between the lens and the image. Thus, the …size‟ of the speckles in the image is of this order.The change in speckle size with lens aperture can be observed by looking at a laser spot on a wall directly, and then through a very small hole. The speckles will be seen to increase significantly in size.Objective specklesWhen laser light which has been scattered off a rough surface falls on another surface, it forms an “objective speckle pattern”. If a photographic plate or another 2-D optical sensor is located within the scattered light field without a lens, a speckle pattern is obtained whose characteristics depend on the geometry of the system and the wavelength of the laser. The speckle pattern in the figure was obtained by pointing a laser beam at the surface of a mobilephone so that the scattered light fell onto an adjacent wall. A photograph was then taken of the speckle pattern formed on the wall (strictly speaking, this also has a second subjective speckle pattern but its dimensions are much smaller than the objective pattern so it is not seen in the image)The light at a given point in the speckle pattern is made up of contributions from the whole of the scattering surface. The relative phases of these waves vary across the surface, so that the sum of the individual waves varies randomly. The pattern is the same regardless of how it is imaged, just as if it were a painted pattern.The "size" of the speckles is a function of the wavelength of the light, the size of the laser beam which illuminates the first surface, and the distance between this surface and the surface where the speckle pattern is formed. This is the case because when the angle of scattering changes such that the relative path difference between light scattered from the centre of the illuminated area compared with light scattered from the edge of the illuminated changes by λ, the intensity becomes uncorrelated. Dainty[1] derives an expression for the mean speckle size as λz/L where L is the width of the illuminated area and z is the distance between the object and the location of the speckle pattern.Near-field specklesObjective speckles are usually obtained in the far field (also called Fraunhofer region, that is the zone where Fraunhofer diffraction happens). This means that they are generated "far" from the object that emits or scatters light. Speckles can be observed also close to the scattering object, in the near field (also called Fresnel region, that is, the region where Fresnel diffraction happens). This kind of speckles are called Near Field Speckles. See near and far field for a more rigorous definition of "near" and "far".The statistical properties of a far-field speckle pattern (i.e., the speckle form and dimension) depend on the form and dimension of the region hit by laser light. By contrast, a very interesting feature of near field speckles is that their statistical properties are closely related to the form and structure of the scattering object: objects that scatter at high angles generate small near field speckles, and vice versa. Under Rayleigh-Gans condition, in particular, speckle dimension mirrors the average dimension of the scattering objects, while, in general, the statistical properties of near field speckles generated by a sample depend on the light scattering distribution.[4][5]Actually, the condition under which the near field speckles appear has been described as more strict than the usual Fresnel condition.[6]When lasers were first invented, the speckle effect was considered to be a severe drawback in using lasers to illuminate objects, particularly in holographic imaging because of the grainy image produced. It was later realized that speckle patterns could carry information about the object's surface deformations, and this effect is exploited in holographic interferometry and electronic speckle pattern interferometry. The speckle effect is also used in stellar speckle astronomy, speckle imaging and in eye testing using speckle.Speckle is the chief limitation of coherent imaging in optical heterodyne detection.In the case of near field speckles, the statistical properties depend on the light scattering distribution of a given sample. This allows the use of near field speckle analysis to detect the scattering distribution; this is the so-called near-field scattering technique.[7]When the speckle pattern changes in time, due to changes in the illuminated surface, the phenomenon is known as dynamic speckle, and it can be used to measure activity, as in (for example) an optical computer mouse. In biological materials, the phenomenon is known as biospeckle.。

相关文档
最新文档