2019-2020学年高中数学 第二章 平面向量 2.4.2 平面向量数量积的坐标表示模夹角教案1 新人教A版必修4.doc

合集下载

高中数学 第二章 平面向量 2.4 向量的应用 2.4.1 向量在几何中的应用 2.4.2 向量在物

高中数学 第二章 平面向量 2.4 向量的应用 2.4.1 向量在几何中的应用 2.4.2 向量在物

2.4 向量的应用2.4.1 向量在几何中的应用 2.4.2 向量在物理中的应用1.向量在平面几何中的应用(1)证明线段相等,转化为证明向量的长度相等,求线段的长,转化为求向量的长度; (2)证明线段、直线平行,转化为证明向量共线;(3)证明线段、直线垂直,转化为证明向量的数量积为零; (4)平面几何中与角相关的问题,转化为向量的夹角问题;(5)对于与长方形、正方形、直角三角形等平面几何图形有关的问题,通常以相互垂直的两边所在的直线分别为x 轴和y 轴,建立平面直角坐标系,通过代数(坐标)运算解决平面几何问题.【自主测试1-1】在四边形ABCD 中,若AB →=13CD →,则四边形ABCD 是( )A .平行四边形B .梯形C .菱形D .矩形解析:由AB →=13CD →⇒AB ∥CD ,且AB ≠CD ,故四边形ABCD 为梯形,故选B .答案:B【自主测试1-2】在△ABC 中,已知|AB →|=|AC →|=4,且AB →·AC →=8,则这个三角形的形状是__________.解析:∵AB →·AC →=|AB →||AC →|cos ∠BAC=8,∴4×4×cos ∠BAC=8,∴∠BAC=60°.又|AB →|=|AC →|,∴△ABC 为等边三角形. 答案:等边三角形2.向量在解析几何中的应用(1)设直线l 的倾斜角为α,斜率为k ,A (x 1,y 1)∈l ,P (x ,y )∈l ,向量a =(m ,n )平行于l ,则k =y -y 1x -x 1=n m =tan α;反之,若直线l 的斜率k =nm,则向量(m ,n )一定与该直线平行.(2)向量(1,k )与直线l :y =kx +b 平行.(3)与a =(m ,n )平行且过点P (x 0,y 0)的直线方程为n (x -x 0)-m (y -y 0)=0. (4)过点P (x 0,y 0),且与向量a =(m ,n )垂直的直线方程为m (x -x 0)+n (y -y 0)=0. 【自主测试2-1】已知直线l :mx +2y +6=0,向量(1-m,1)与l 平行,则实数m 的值为( )A .-1B .1C .2D .-1或2 答案:D【自主测试2-2】过点A (3,-2)且垂直于向量n =(5,-3)的直线方程是__________. 答案:5x -3y -21=0 3.向量在物理中的应用(1)力是具有大小、方向和作用点的向量,它与自由向量有所不同.大小和方向相同的两个力,如果作用点不同,那么它们是不相等的.但是,在不计作用点的情况下,可用向量求和的平行四边形法则求作用于同一点的两个力的合力.(2)速度是具有大小和方向的向量,因而可用三角形法则和平行四边形法则求两个速度的合速度.【自主测试3】已知两个力F 1,F 2的夹角为90°,它们的合力大小为10 N ,合力与F 1的夹角为60°,则F 1的大小为( )A .5 3 NB .5 NC .10 ND .52N 答案:B1.用向量的方法证明直线平行、直线垂直、线段相等及点共线等问题的基本方法 剖析:(1)要证两线段AB =CD ,可转化为证明|AB →|=|CD →|或AB →2=CD →2; (2)要证两线段AB ∥CD ,只要证明存在一实数λ≠0,使AB →=λCD →成立; (3)要证两线段AB ⊥CD ,可转化为证明AB →·CD →=0;(4)要证A ,B ,C 三点共线,只要证明存在一实数λ≠0,使AB →=λAC →,或若O 为平面上任一点,则只需要证明存在实数λ,μ(其中λ+μ=1),使OC →=λOA →+μOB →.2.对直线Ax +By +C =0的方向向量的理解剖析:(1)设P 1(x 1,y 1),P 2(x 2,y 2)为直线上不重合的两点,则P 1P 2→=(x 2-x 1,y 2-y 1)及与其共线的向量λP 1P 2→均为直线的方向向量.显然当x 1≠x 2时,向量⎝ ⎛⎭⎪⎫1,y 2-y 1x 2-x 1与P1P 2→共线,因此向量⎝ ⎛⎭⎪⎫1,-A B =1B(B ,-A )为直线l 的方向向量,由共线向量的特征可知(B ,-A )为直线l 的方向向量.(2)结合法向量的定义可知,向量(A ,B )与(B ,-A )垂直,从而向量(A ,B )为直线l 的法向量.3.教材中的“探索与研究”利用向量与向量平行、垂直的条件,再次研究两条直线l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0平行和垂直的条件,以及如何求出两条直线夹角θ的余弦.结论:l 1∥l 2(或重合)⇔A 1B 2-A 2B 1=0. l 1⊥l 2⇔A 1A 2+B 1B 2=0.cos θ=|A 1A 2+B 1B 2|A 21+B 21A 22+B 22.剖析:直线l 1:A 1x +B 1y +C 1=0的方向向量为n 1=(-B 1,A 1),直线l 2:A 2x +B 2y +C 2=0的方向向量为n 2=(-B 2,A 2).若l 1∥l 2,则n 1∥n 2,从而有-B 1A 2=-A 1B 2,即A 1B 2-A 2B 1=0. 若l 1⊥l 2,则n 1·n 2=0,从而有B 1B 2+A 1A 2=0. 所以直线l 1∥l 2⇔A 1B 2-A 2B 1=0, 直线l 1⊥l 2⇔A 1A 2+B 1B 2=0. 由于n 1·n 2=A 1A 2+B 1B 2, |n 1|=A 21+B 21,|n 2|=A 22+B 22, 所以cos 〈n 1,n 2〉=A 1A 2+B 1B 2A 21+B 21A 22+B 22. 所以直线l 1与l 2夹角θ的余弦值为cos θ=|cos 〈n 1,n 2〉|=|A 1A 2+B 1B 2|A 21+B 21A 22+B 22.题型一 向量在平面几何中的应用【例题1】已知正方形ABCD 中,E ,F 分别是CD ,AD 的中点,BE ,CF 交于点P . 求证:(1)BE ⊥CF ;(2)AP =AB .分析:建系→确定点A ,B ,C ,E ,F ,P 的坐标→证BE →·CF →=0及|AP →|=|AB →|→还原为几何问题证明:建立如图所示平面直角坐标系,设AB =2,则有A (0,0),B (2,0),C (2,2),E (1,2),F (0,1).(1)BE →=(-1,2),CF →=(-2,-1). ∵BE →·CF →=(-1)×(-2)+2×(-1)=0, ∴BE →⊥CF →,即BE ⊥CF . (2)设点P 的坐标为(x ,y ), 则FP →=(x ,y -1),CF →=(-2,-1), ∵FP →∥CF →,∴-x =-2(y -1),即x =2y -2, 同理,由BP →∥BE →得y =-2x +4,由⎩⎪⎨⎪⎧x =2y -2,y =-2x +4,得⎩⎪⎨⎪⎧x =65,y =85.∴点P 坐标为⎝ ⎛⎭⎪⎫65,85.则|AP →|=⎝ ⎛⎭⎪⎫652+⎝ ⎛⎭⎪⎫852=2=|AB →|,即AP =AB . 反思由于向量集数形于一身,用它来研究问题时可以实现形象思维与抽象思维的有机结合,因而向量法是研究几何问题的一个有效的工具,解题时一定注意用数形结合的思想.〖互动探究〗正方形OABC 的边长为1,点D ,E 分别为AB ,BC 的中点,求cos ∠DOE . 解:建立平面直角坐标系如图,则向量OE →=⎝ ⎛⎭⎪⎫12,1,OD →=⎝ ⎛⎭⎪⎫1,12,∴OD →·OE →=12×1+1×12=1.又|OD →|=|OE →|=52,∴cos ∠DOE =OD →·OE →|OD →||OE →|=152×52=45.题型二 向量在解析几何中的应用 【例题2】过点A (-2,1),求: (1)与向量a =(3,1)平行的直线方程; (2)与向量b =(-1,2)垂直的直线方程.分析:在直线上任取一点P (x ,y ),则AP →=(x +2,y -1).根据AP →∥a 和AP →⊥b 解题即可.解:设所求直线上任意一点P 的坐标为(x ,y ). ∵A (-2,1),∴AP →=(x +2,y -1).(1)由题意,知AP →∥a ,则(x +2)×1-3(y -1)=0, 即x -3y +5=0.故所求直线方程为x -3y +5=0.(2)由题意,知AP →⊥b ,则(x +2)×(-1)+(y -1)×2=0, 即x -2y +4=0,故所求直线方程为x-2y+4=0.反思已知直线l的方程Ax+By+C=0(A2+B2≠0),则向量(A,B)与直线l垂直,即向量(A,B)为直线l的法向量;向量(-B,A)与l平行,故过点P(x0,y0)与直线l平行的直线方程为A(x-x0)+B(y-y0)=0.【例题3】已知△ABC的三个顶点A(0,-4),B(4,0),C(-6,2),点D,E,F分别为边BC,CA,AB的中点.(1)求直线DE,EF,FD的方程;(2)求AB边上的高线CH所在的直线方程.分析:(1)利用向量共线的坐标表示求解;(2)利用向量垂直的坐标表示求解.解:(1)由已知,得点D(-1,1),E(-3,-1),F(2,-2).设M(x,y)是直线DE上任意一点,则DM∥DE.又DM=(x+1,y-1),DE=(-2,-2),所以(-2)×(x+1)-(-2)(y-1)=0,即x-y+2=0为直线DE的方程.同理可求,直线EF,FD的方程分别为x+5y+8=0,x+y=0.(2)设点N(x,y)是CH所在直线上的任意一点,则CN⊥AB.所以CN·AB=0.又CN=(x+6,y-2),AB=(4,4),所以4(x+6)+4(y-2)=0,即x+y+4=0为所求直线CH的方程.反思(1)利用向量法来解决解析几何问题,首先要将线段看成向量,再把坐标利用向量法则进行运算.(2)要掌握向量的常用知识:①共线;②垂直;③模;④夹角;⑤向量相等,则对应坐标相等.题型三向量在物理中的应用【例题4】一条河的两岸互相平行,河的宽度为d=500 m,一艘船从A处出发航行到河正对岸的B处,船的航行速度为|ν1|=10 km/h,水流速度为|ν2|=4 km/h.(1)试求ν1与ν2的夹角(精确到1°)及船垂直到达对岸所用的时间(精确到0.1 min); (2)要使船到达对岸所用时间最少,ν1与ν2的夹角应为多少?分析:船(相对于河岸)的航行路线不能与河岸垂直.原因是船的实际航行速度是船本身(相对于河水)的速度与水流速度的合速度.解:(1)依题意,要使船垂直到达对岸,就要使ν1与ν2的合速度的方向正好垂直于对岸,所以|ν|=ν21-ν22=100-16≈9.2(km/h),ν1与ν的夹角α满足sin α=0.4,α≈24°,故ν1与ν2的夹角θ=114°;船垂直到达对岸所用的时间t =d |ν|=0.59.2≈0.054 3(h)≈3.3 min. (2)设ν1与ν2的夹角为θ(如下图).ν1与ν2在竖直方向上的分速度的和为|ν1|·sin θ,而船到达对岸时,在竖直方向上行驶的路程为d =0.5 km ,从而所用的时间t =0.510sin θ.显然,当θ=90°时,t 最小,即船头始终向着对岸时,所用的时间最少,为t =0.510=0.05(h).反思注意“速度”是一个向量,既有大小又有方向.结合具体问题,在理解向量知识和应用两方面下功夫.将物理量之间的关系抽象成数学模型,然后通过对这个数学模型的研究解释相关物理现象.题型四 易错辨析【例题5】在直角坐标系中,O 为坐标原点,A ,B ,C 三点满足OC →=13OA →+23OB →.(1)求证:A ,B ,C 三点共线;(2)已知A (1,cos x ),B (1+sin x ,cos x ),x ∈⎣⎢⎡⎦⎥⎤0,π2,f (x )=OA →·OC →-⎝ ⎛⎭⎪⎫2m 2+23|AB→|的最小值为12,求实数m 的值.错解:(1)∵AB →=OB →-OA →,AC →=OC →-OA →=13OA →+23OB →-OA →=23OB →-23OA →=23AB →,∴AC →∥AB →,∴A ,B ,C 三点共线.(2)∵A (1,cos x ),B (1+sin x ,cos x ), ∴OC →=⎝ ⎛⎭⎪⎫1+23sin x ,cos x ,AB →=(sin x,0),从而|AB →|=|sin x |.故f (x )=-(sin x +m 2)2+m 4+2.又sin x ∈[-1,1],∴当sin x =1时,f (x )有最小值, 即-(1+m 2)2+m 4+2=12,解得m =±12.错因分析:错解中忽略了题目中x 的取值范围,造成正弦值的范围扩大. 正解:(1)∵AB →=OB →-OA →,AC →=OC →-OA →=13OA →+23OB →-OA →=23OB →-23OA →=23AB →,∴AC →∥AB →,∴A ,B ,C 三点共线.(2)∵A (1,cos x ),B (1+sin x ,cos x ), ∴OC →=⎝ ⎛⎭⎪⎫1+23sin x ,cos x ,AB →=(sin x,0),故|AB →|=sin x ,从而f (x )=-(sin x +m 2)2+m 4+2.又当x ∈⎣⎢⎡⎦⎥⎤0,π2时,sin x ∈[0,1],∴当sin x =1时,f (x )有最小值, 即-(1+m 2)2+m 4+2=12,化简得m 2=14,解得m =±12.1.若向量n 与直线l 垂直,则称向量n 为直线l 的法向量,则直线x +2y +3=0的一个法向量为( )A .(1,2)B .(1,-2)C .(2,1)D .(2,-1)解析:可以确定已知直线l 的斜率k =-12,所以直线的方向向量a =⎝ ⎛⎭⎪⎫1,-12.由a ·n =0,可知应选A .答案:A2.已知A (2,1),B (3,2),C (-1,4),则△ABC 是( ) A .等边三角形 B .锐角三角形 C .直角三角形 D .钝角三角形 答案:C3.过点A (2,3)且垂直于向量a =(2,1)的直线方程是( ) A .2x +y -7=0 B .2x +y +7=0 C .x -2y +4=0 D .x -2y -4=0 答案:A4.在重600 N 的物体上系两根绳子,与铅垂线的夹角分别为30°,60°,重物平衡时,两根绳子拉力的大小分别为( )A .3003N,3003NB .150 N,150 NC .3003N,300 ND .300 N,3003N解析:如图,作矩形OACB ,使∠AOC =30°,∠BOC =60°. 在△OAC 中,∠ACO =∠BOC =60°,∠OAC =90°,所以|OA |=|OC |cos 30°=3003N , |AC |=|OC |sin 30°=300 N , |OB |=|AC |=300 N. 答案:C5.通过点A (3,2)且与直线l :4x -3y +9=0平行的直线方程为__________. 答案:4x -3y -6=06.已知两个粒子a ,b 从同一点发射出来,在某一时刻,它们的位移分别为v a =(4,3),v b =(3,4),则v a 在v b 上的正射影为__________.解析:由题知v a 与v b 的夹角θ的余弦值为 cos θ=12+125×5=2425.所以v a 在v b 上的正射影为|v a |cos θ=5×2425=245.答案:2457.平面上不共线的三点A ,B ,C 使得AB +BC 所在的直线和AB -BC 所在的直线恰好互相垂直,则△ABC 必为__________三角形.解析:如图所示,作ABCD ,易知AB +BC =AC ,AB -BC =AB -AD =DB .依题意,知BD 与AC 互相垂直,故ABCD 为菱形,从而△ABC 为等腰三角形,且∠ABC 为顶角.答案:等腰 8.如图所示,已知ABCD 是菱形,AC 和BD 是它的两条对角线,求证:AC ⊥BD .证明:证法一:∵AC =AB +AD ,BD =AD -AB ,∴AC ·BD =(AB +AD )·(AD -AB )=|AD |2-|AB |2=0.∴AC ⊥BD . ∴AC ⊥BD .证法二:以BC所在的直线为x轴,点B为原点建立平面直角坐标系.设B(0,0),A(a,b),C(c,0),则由|AB|=|BC|,得a2+b2=c2.∵AC=BC-BA=(c-a,-b),BD=BA+BC=(a+c,b),∴AC·BD=c2-a2-b2=0.∴AC⊥BD,∴AC⊥BD.。

高中数学 平面向量的数量积

高中数学  平面向量的数量积
OA= |a|cos90=0.
|a|= 6
Oe
45º A
(1)
|a|= 6
(OA)●e
|a|= 6
(2)
(3) 当q =135º时,
OA= |a|cos135= 6(
2 2
)
= 3 2 .
A (3) Oe
问题2. 非零向量 a 与 b 的数量积 a·b 在什么情
况下为正? 在什么情况下这负? 在什么情况下为零?
6448cosq 27=61,
解得
cosq
=
1 2
,
得 q =120.
8. 已知 |a|=8, |b|=10, |a+b|=16, 求 a 与 b 的夹
角q (精确到1). (可用计算器)
解:
由(|aaa|2a|+2+++b2b2)a2||=a=b1|1+6|6bb得,|2co=s1q6+,
|b
∴又((1a)+式b成)(立a .
b)
= = =
(aaa22++bbb)2,aaa(ab+bb)2b
∴(2)式成立.
例3. 已知 |a|=6, |b|=4, a 与 b 的夹角为 60, 求
(a+2b)·(a3b).
解:
(a
+
2b)(a
3b)
= = =
aa
| |
a a
|2 |2
caccooobsssqqq==|a000|,,,|b|caaaosbbqb
,
0. 0. = 0.
即两向量的夹角为锐角时, 数量积为正, 夹角为钝角时, 数量积为负, 夹角为直角时, 数量积为零.

高中数学第二章平面向量2-4平面向量的数量积2-4-1平面向量数量积的物理背景及其含义优化练习新人教A版必修4

高中数学第二章平面向量2-4平面向量的数量积2-4-1平面向量数量积的物理背景及其含义优化练习新人教A版必修4
所以a·b=(-3i+4j)·(5i-12j)=-3×5+4×(-12)=-63.
答案:-63
9.已知|a|=3,|b|=6,当①a∥b,②a⊥b,③a与b的夹角是60°时,分别求a·b.
解析:①当a∥b时,
若a与b同向,则它们的夹角θ=0°,
∴a·b=|a||b|cos 0°=3×6×1=18;
若a与b反向,则它们的夹角θ=180°,
解析:(1)由|3a-b|= ,得(3a-b)2=5,
所以9a2-6a·b+b2=5,因为a2=b2=1,所以a·b= .因此(a+3b)2=a2+6a·b+9b2=15,
所以|a+3b|= .
(2)设3a-b与a+3b的夹角为θ,
因为(3a-b)·(a+3b)=3a2+8a·b-3b2= ,
所以cosθ= = = ,
故 · =( + )·
= ·( - )
= ·( - )
= · + -
= | || |cos 120°+ | |2- | |2
= ×2×1× + ×1- ×22=- .
答案:-
8.已知a+b=2i-8j,a-b=-8i+16j,i,j为相互垂直的单位向量,那么a·b=________.
解析:将两已知等式相加得,2a=-6i+8j,所以a=-3i+4j.同理将两已知等式相减得,b=5i-12j,而i,j是两个互相垂直的单位向量,
1.已知|a|=6,|b|=3,a·b=-12,则向量a在向量b方向上的投影是( )
A.2B.-2
C.4D.-4
解析:记向量a与b的夹角为θ,由a·b=|a||b|cosθ=-12,即6×3cosθ=-12,所以cosθ=- ,所以a在b方向上的投影为|a|cosθ=6× =-4.

高中数学第二章平面向量2.4平面向量的数量积(2)课件新人教A版必修4

高中数学第二章平面向量2.4平面向量的数量积(2)课件新人教A版必修4
第六页,共3式是数量积的坐标表示 a·b=x1x2+y1y2 的一种特例,当 a=b 时, 则可得|a|2=x2+y2;
(2) 若 点
A(x1

y1)

B(x2

y2)


→ AB

(x2

x1

y2

y1)



|
→ AB
|

(x2-x1)2+(y2-y1)2,即|A→B|的实质是 A,B 两点间的距离或线段 AB 的长
(2)坐标表示下的运算,若 a=(x,y),则|a|= x2+y2.
第二十一页,共37页。
2.(1)已知向量 a=(1,2),b=(-3,2),则|a+b|=________,|a-b|=________;
(2)设平面向量 a=(1,2),b=(-2,y),若 a∥b,则|2a-b|等于( )
A.4
第二十六页,共37页。
[归纳升华] 用坐标求两个向量夹角与垂直问题的步骤
(1)用坐标求两个向量夹角的四个步骤: ①求 a·b 的值; ②求|a||b|的值; ③根据向量夹角的余弦公式求出两向量夹角的余弦; ④由向量夹角的范围及两向量夹角的余弦值求出夹角.
第二十七页,共37页。
(2)利用向量解决垂直问题的四个步骤: ①建立平面直角坐标系,将相关的向量用坐标表示出来; ②找到解决问题所需的垂直关系的向量; ③利用向量垂直的相关公式列出参数满足的等式,解出参数值; ④还原到所要解决的几何问题中.
答案:
(1)-15
3 (2)2
第三十页,共37页。
[变式练]☆ 2.已知平面向量 a=(3,4),b=(9,x),c=(4,y),且 a∥b,a⊥c. (1)求 b 与 c; (2)若 m=2a-b,n=a+c,求向量 m,n 的夹角的大小.

高中数学必修二 专题02 平面向量的基本定理、坐标运算及数量积(重难点突破)(含答案)

高中数学必修二  专题02 平面向量的基本定理、坐标运算及数量积(重难点突破)(含答案)

专题02 平面向量的基本定理、坐标运算及数量积一、考情分析二、题型分析(一) 平面向量的基本定理与坐标表示知识点1 平面向量基本定理如果e 1,e 2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数λ1,λ2,使a =λ1e 1+λ2e 2,其中e 1,e 2是一组基底.例1.(1).(2019·四川雅安中学高一月考)以下四组向量能作为基底的是( )A .B .C .D .12(1,2),(2,4)e e ==12(3,1),(1,3)e e =-=-12(2,1),(2,1)e e ==--121(,0),(3,0)2e e ==【答案】B【解析】对于,与共线,不能作为基底;对于,与不共线,能作为基底;对于,与共线,不能作为基底;对于,与共线,不能作为基底,故选B. (2).(2019·江西高一期末)设是平面内的一组基底,则下面四组向量中,能作为基底的是( )A .与B .与C .与D .与 【答案】C【解析】由是平面内的一组基底,所以和不共线,对应选项A :,所以这2个向量共线,不能作为基底;对应选项B :,所以这2个向量共线,不能作为基底; 对应选项D :,所以这2个向量共线,不能作为基底; 对应选项C :与不共线,能作为基底.故选:C .A 114220,e ⨯-⨯=∴2eB ()()1331180,e ⨯--⨯-=≠∴2eC ()()121120,e ⨯--⨯-=∴2eD 110030,2e ⨯-⨯=∴2e 12,e e 21e e -12e e -1223e e +1246e e --12e e +12e e -121128e e -+1214e e -12,e e 1e 2e 21e e -()12e e =--1223e e +()121462e e =---121128e e -+121124e e ⎛⎫=-- ⎪⎝⎭12e e +12e e -(3).(2020·内蒙古高三月考)在正方形中,点为内切圆的圆心,若,则的值为( )A .B .C .D .【答案】D【解析】连并延长到与相交于点,设正方形的边长为1,则,设内切圆的半径为,则,可得. 设内切圆在边上的切点为,则,有,,故. 故选:DABCD O ABC ∆AO xAB yAD =+xy 1434-1412OB AC HABCD 122BH BD ==ABC ∆r)1BH OH OB r r =+=+==r =ABC ∆AB E ()1AO AE EO r AB r AD=+=-+22222112222AB AD AB AD ⎛⎛⎫-=-+=+- ⎪⎪⎝⎭⎝⎭x =1y =-11222xy ⎛⎫=-= ⎪ ⎪⎝⎭【变式训练1】.(2020·北京高三开学考试)在平行四边形ABCD 中,,,,则 .(用表示) 【答案】 【解析】如图:=-=+2=+=-+(-)=-+ =.故本题答案为. 【变式训练2】.(2020·辽宁高考模拟)在中,,,若,则( )A .B .C .D .【答案】D【解析】因为,所以点是的中点,又因为,所以点是的中点,所以有:,因此1AB e =2AC e =14NC AC =12BM MC =MN =12,e e 1225312e e -+MN CN CM CN BM CN 23BC 14AC 23AC AB 214e 212()3e e -1225312e e -+1225312e e -+ABC ∆2AB AC AD +=0AE DE +=EB xAB y AC =+3y x =3x y =3y x =-3x y =-2AB AC AD +=D BC 0AE DE +=E AD 11131()22244BE BA AE AB AD AB AB AC AB AC =+=-+=-+⨯+=-+,故本题选D. 31,344x y x y =-=⇒=-(二) 平面向量的坐标运算知识点2 平面向量的坐标运算(1)若a =(x 1,y 1),b =(x 2,y 2)(b ≠0),则a±b =(x 1±x 2,y 1±y 2).(2)若A (x 1,y 1),B (x 2,y 2),则AB →=(x 2-x 1,y 2-y 1). (3)若a =(x ,y ),λ∈R ,则λa =(λx ,λy ).(4)a ·b =x 1x 2+y 1y 2.(5)|a |=x 21+y 21.若A (x 1,y 1),B (x 2,y 2),则|AB →|=(x 1-x 2)2+(y 1-y 2)2.例2.(1).(2020·福建高三月考)已知,若,则的坐标为( )A .B .C .D . 【答案】D【解析】设,因为,所以.所以,所以, 解得: ,.所以.故选D. (2).(2019·湖南高一期末)已知,,则( ) A .2 BC .4 D.【答案】C 【解析】由题得=(0,4)所以.故选:C(5,2),(4,3)a b =-=--230a b c -+=c 8(1,)3138(,)33-134(,)33134(,)33--(,)c x y =230a b c -+=(5,2)2(4,3)3(,)(0,0)x y ----+=(583,263)(0,0)x y ++-++=1330,430x y +=+=133x 43y =-134(,)33c =--()0,1A -()0,3B ||AB =AB ||04AB =+=【变式训练1】.(2020·湖北高一期中)已知向量,向量.(1)求向量的坐标;(2)当为何值时,向量与向量共线.【答案】(1)(2)【解析】(1)(2),∵与共线,∴∴【变式训练2】.(2018·上海市嘉定区封浜高级中学高二期中)已知,为坐标原点.(1) 求向量的坐标及;(2) 若,求与同向的单位向量的坐标. 【答案】(1) ,;(2).【解析】 (1),.(2),, 与同向的单位向量. ()1,2a =()3,2b =-2a b -k ka b +2a b -()7,2-12k =-()()()21,223,27,2a b -=--=-()()()1,23,23,22ka b k k k +=+-=-+()()()21,223,27,2a b -=--=-ka b +2a b -()()72223k k +=--12k =-(3,4),(5,10)A B ---O AB AB OC OA OB =+OC ()8,6AB =-10AB =21010OC n OC ⎛==- ⎝⎭()8,6AB =-2810AB ∴==()()()3,45,102,14OC OA OB =+=--+-=-22OC ==∴OC 21010OC n OC ⎛==- ⎝⎭(三) 平面向量的数量积知识点3.平面向量数量积1.平面向量数量积的有关概念(1)向量的夹角:已知两个非零向量a 和b ,记OA→=a ,OB →=b ,则∠AOB =θ(0°≤θ≤180°)叫作向量a 与b 的夹角.(2)数量积的定义:已知两个非零向量a 和b ,它们的夹角为θ,则数量|a ||b |cos θ叫作a 与b 的数量积,记作a ·b ,即a ·b =|a ||b |cos θ.规定:0·a =0.(3)数量积的几何意义:数量积a ·b 等于a 的模|a |与b 在a 的方向上的投影|b |cos θ的乘积.2.平面向量数量积的性质设a ,b 都是非零向量,e 是与b 方向相同的单位向量,θ是a 与e 的夹角,则(1)e·a =a·e =|a|cos θ.(2)当a 与b 同向时,a·b =|a||b|;当a 与b 反向时,a·b =-|a||b|.特别地,a·a =|a|2或|a|=a ·a .(3)cos θ=a·b |a||b|.(4)|a·b|≤|a||b|.3.平面向量数量积的坐标表示设a =(x 1,y 1),b =(x 2,y 2),a ,b 的夹角为θ,则(1)a ·b =x 1x 2+y 1y 2.(2)|a |=x 21+y 21.若A (x 1,y 1),B (x 2,y 2),则|AB →|=(x 1-x 2)2+(y 1-y 2)2.(3)cos θ=x 1x 2+y 1y 2x 21+y 21·x 22+y 22.(4)a ⊥b ⇔a ·b =0⇔x 1x 2+y 1y 2=0.例3.(1)(2020·浙江高一期末)已知向量,,则__________,与方向相反的单位向量__________.【解析】依题意,故与方向相反的单位向量为. (2).(2019·全国高考真题)已知=(2,3),=(3,t ),=1,则= A .-3B .-2C .2D .3 【答案】C 【解析】 由,,得,则,.故选C【变式训练1】.(2019·安徽高三月考(理))已知,,均为单位向量,与的夹角为,则的最大值为( ) ()3,4a =()1,2b =-2a b +=a c =34,55⎛⎫-- ⎪⎝⎭()21,8a b +=2218a b +=+=a c ()()()3,43,434,5553,4a a -----⎛⎫===-- ⎪---⎝⎭AB AC ||BC AB BC ⋅(1,3)BC AC AB t =-=-211BC ==3t =(1,0)BC =(2,3)(1,0)21302AB BC ==⨯+⨯=a b c a b 60()(2)c a c b +⋅-A .BC .2D . 3【答案】B 【解析】设与的夹角为,因为,,所以,所以,所以.故选:B .【变式训练2】.(2020·四川高一月考)已知,若,则实数=__________;=__________. 【答案】0 0【解析】∵,∴,∵,∴,解得. 故答案为.【变式训练3】.(2019·江苏高考真题)如图,在中,D 是BC 的中点,E 在边AB 上,BE =2EA ,AD 与CE 交于点.若,则的值是_____. 32c 2a b -θ222|2|443a b a a b b -=-⋅+=|2|3a b -=2()(2)(2)21|||2|cos 1c a c b cc a b a b c a b θ+⋅-=+⋅--⋅=+⋅--()(2)3cos c a c b θ+⋅-=max =cos 1θ=()()1,3,1,2a b ==-0a b λμ+=λμ()()1,3,1,2a b ==-()()()1,31,2,32a b λμλμλμλμ+=+-=+-0a b λμ+=0320λμλμ+=⎧⎨-=⎩0λμ=⎧⎨=⎩0,0λμ==ABC O 6AB AC AO EC ⋅=⋅ABAC. 【解析】如图,过点D 作DF //CE ,交AB 于点F ,由BE =2EA ,D 为BC 中点,知BF =FE =EA ,AO =OD ., 得即故. 【变式训练4】.(2020·浙江高一期中)已知为单位向量,. (1)求;(2)求与的夹角的余弦值;()()()3632AO EC AD AC AE AB AC AC AE =-=+-()223131123233AB AC AC AB AB AC AB AC AB AC ⎛⎫⎛⎫=+-=-+- ⎪ ⎪⎝⎭⎝⎭22223211323322AB AC AB AC AB AC AB AC AB AC ⎛⎫=-+=-+= ⎪⎝⎭2213,22AB AC =3,AB AC =AB AC=,a b 12a b ⋅=2a b +2a b +b θ【答案】(1;(2).【解析】由题得; 由题得与的夹角的余弦值为故答案为:(1;(2.7222=4++4=5+4a b a b a b +⋅⋅2a b +b θ(2)2cos |2|||7a b b a b a b b θ+⋅⋅====+(四) 平面向量的应用(平行与垂直)知识点1 平面向量的平行与垂直若a =(x 1,y 1),b =(x 2,y 2)(b ≠0),则a±b =(x 1±x 2,y 1±y 2).(1)如果a =(x 1,y 1),b =(x 2,y 2),则a ∥b 的充要条件为x 1y 2-x 2y 1=0.a ∥b 的充要条件不能表示成x 1x 2=y 1y 2,因为x 2,y 2有可能等于0.判断三点是否共线,先求每两点对应的向量,然后再按两向量共线进行判定.(2)如果a =(x 1,y 1),b =(x 2,y 2),则a ⊥b ⇔a ·b =0⇔x 1x 2+y 1y 2=0.x 1y 2-x 2y 1=0与x 1x 2+y 1y 2=0不同,前者是两向量a =(x 1,y 1),b =(x 2,y 2)共线的充要条件,后者是它们垂直的充要条件.例4.(1)(2020·江西高一期末)已知向量,,若,则( )A .B .C .D .【答案】D 【解析】向量,,且,,解得. 故选:D.(2).(多选题)已知向量a =(2,1),b =(1,﹣1),c =(m ﹣2,﹣n ),其中m ,n 均为正数,且(a b -)∥c ,下列说法正确的是( )A .a 与b 的夹角为钝角()1,a m =()2,5b =//a b m =152-25-52()1,a m =()2,5b =//a b 25m ∴=52m =B .向量a 在bC .2m +n =4D .mn 的最大值为2 【答案】CD对于A ,向量a =(2,1),b =(1,﹣1),则2110a b ⋅=-=>,则,a b 的夹角为锐角,错误;对于B ,向量a =(2,1),b =(1,﹣1),则向量a 在b 方向上的投影为22a b b⋅=,错误; 对于C ,向量a =(2,1),b =(1,﹣1),则a b -= (1,2),若(a b -)∥c ,则(﹣n )=2(m ﹣2),变形可得2m +n =4,正确;对于D ,由C 的结论,2m +n =4,而m ,n 均为正数,则有mn 12= (2m •n )12≤ (22m n +)2=2,即mn 的最大值为2,正确; 故选:CD.【变式训练1】(2020·浙江高一期中)已知向量满足.若,则 _______; ______.【答案】【解析】因为,所以(1)×m 4=0,所以m= 4.所以故答案为:(1). (2).【变式训练2】.(2020广东高一期末)已知, ;(1) 若,求的值;,a b (1,2),(2,)a b m =-=//a b m =||b =4-//a b ---2||=2+b =(4-)cos ,1(),sin ,1(θθ==b aR ∈θ)0,2(=+b a θθθcos sin 2sin 2+(2)若,,求的值.【答案】(1)(2) 【解析】(1),∴, ……1分∴ ; ……3分∴. ……7分(2), ……8分∴,两边平方得, ……10分 ,且, ∴∴, ……12分 ∴. ……分)51,0(=-b a(,2)θππ∈θθcos sin +12-75-)cos ,1(),sin ,1(θθ==b a)0,2()cos sin ,2(=+=+θθb asin cos 0,tan 1θθθ+=∴=-1tan tan 2tan cos sin cos sin 2sin cos sin 2sin 222222++=++=+θθθθθθθθθθθ21-=)51,0()cos sin ,0(=-=-θθb a51cos sin =-θθ2512cos sin =θθ(,2)θππ∈02512cos sin >=θθ⎪⎭⎫⎝⎛∈ππθ23,0cos sin <+θθ57cos sin 21cos sin -=+-=+θθθθ14。

2.4.2向量数量级的坐标表示

2.4.2向量数量级的坐标表示
试判断ABC的形状,并给出证明.
C(-2,5)
y
证明 : AB (2 1,3 2) (1,1)
AC (2 1,5 2) (3,3)
AB AC 1 (3) 1 3 0
B(2,3)
A(1,2) 0
x
AB AC
三角形 ABC是直角三角形 .
故两个向量的数量积等于它们 对应坐标的乘积的和。即 y A(x ,y ) 1 1
a b x1x2 y1 y2
B(x2,y2)
b
j
a
i
o 根据平面向量数量积的
x
坐标表示,向量的数量积的运算可 转化为向量的坐标运算。
2、向量的模和两点间的距离公式
3、两向量垂直和平行的坐标表示 (1)垂直 a b a b 0
向量数量积是否为零,是判断相应两条线段或直线的重 要方法之一
练习2:以原点和A(5,2) 为两个顶点作等腰直角三角形 OAB,B=90,求点B的坐标. 3 7 y 答案:B的坐标为( , ) B 2 2 7 3 或( , ) 2 2
O
A x
四、逆向及综合运用
例3 (1)已知 a =(4,3),向量 b是 垂直于 a 的单位向量,求 b .
(2)已知a 10, b (1,2),且a // b,求a的坐标.
3 (3)已知a (3,0), b (k ,5),且a与b的夹角为 , 4 求k的值.
例4:已知 a =(1, 3),b =( 3+1, 则a与b的夹角是多少?
解:由a =(1, 3),b =( 3+1, 3 1), 有 a b 1 ( 3 1) 3 ( 3 1) 4, a 2, b 2 2,

2.4.2 平面向量数量积的坐标表示、模、夹角-新人教(A版)

2.4.2 平面向量数量积的坐标表示、模、夹角-新人教(A版)
2016/10/11
故两个向量的数量积等于它们对应 坐标的乘积的和。即 y A(x ,y )
1 1
a b x1 x2 y1 y2 .
B(x2,y2)
b
j
a
i
o
x
根据平面向量数量积的坐标表示,向 量的数量积的运算可转化为向量的坐标运 算。
2016/10/11
2、向量的模和两点间的距离公式ຫໍສະໝຸດ y A(x ,y ) 1 1
j
B(x2,y2)
b
a
o i
x
设两个非零向量 a =(x1,y1), b =(x2,y2),则
a x1 i y1 j b x2 i y2 j , a b ( x1 i y1 j ) ( x2 i y2 j ) 2 2 x1 x2 i x1 y2 i j x2 y1 i j y1 y2 j x1 x2 y1 y2
29 C ( 3, ) 3
2、已知A(1,2)、B(4、0)、C(8,6)、D(5,8), 则四边形ABCD的形状是 矩形 .
3、已知 a = (1,2), b = (-3,2),
若k a +2 b 与 2 a - 4
2016/10/11
b 平行,则k = - 1 .
小结
1、理解各公式的正向及逆向运用; 2、数量积的运算转化为向量的坐标运算;
x( x 5) y( y 2) 0 得 2 2 2 2 x y ( x 5 ) ( y 2 )
O
B
X
例5 在△ABC中,AB =(2, 3),AC =(1, k),
且△ABC的一个内角为直角,求k值.

2.4.2平面向量数量积的坐标表示黑底 -

2.4.2平面向量数量积的坐标表示黑底 -
a b ( x1i y1 j )( x2i y2 j )
2 2 y j x1 x2i 2 x1 y2i j x2 y1i j y1 1 2 2
x1 x2 y1 y2
a b x1 x2 y1 y2
例1 已知 a 5, b 4, a 与b 的夹角
=120 ,求a b.
解: a b= a b cos 5 4 cos120 10.
例2 a 3, 4 , b 5, 2 , 求a b.
解: a b -3 5 4 2 -7
问题二
已知一个向量的坐标, 能否利用坐标求出该向量的模 ? 2 2 2 1 若 a x , y , 则 a a a x y ,
AB =
x2 x1 + y2 y1 ,
2 2
即两点间的距离公式.Fra bibliotekx2 y2
2
2
.
例4 a 1,1 , b 3,3 , 求a 与 b的夹角 .
解: cos a b a b 1 (-3) +1 3 1 +1 (-3)+3
2 2 2 2
=0,
又因为0 180 ,所以 =90 .
小结
1. 设a x1 , y1 , b x2 , y2 , a与b的夹角为,则
① a b x1 x2 y1 y2
② a⊥b a b=0 x1x2 y1 y2 0
③a
④ cos
x
2 1
y

2 1
a b a b
x1 x2 y1 y2 x12 y12 x2 2 y2 2

高一数学《2.4.2平面向量数量积的坐标表示、模、夹角》

高一数学《2.4.2平面向量数量积的坐标表示、模、夹角》

2.4.2平面向量数量积的坐标表示、模、夹角教学目的:1.掌握平面向量数量积运算规律;2.能利用数量积的5个重要性质及数量积运算规律解决有关问题;3.掌握两个向量共线、垂直的几何判断,会证明向量垂直,以及能解决一些简单问题. 教学重点:平面向量数量积及运算规律.教学难点:平面向量数量积的应用教学过程:一、复习引入:1.平面向量数量积(内积)的定义:2.两个向量的数量积的性质: 设a 、b 为两个非零向量,e 是与b 同向的单位向量. 1︒ e ⋅a = a ⋅e =|a |cos θ; 2︒ a ⊥b ⇔ a ⋅b = 03︒ a 与b 同向时,a ⋅b = |a ||b |; a 与b 反向时,a ⋅b = -|a ||b |. 特别的a ⋅a = |a |2或a a a ⋅=|| 4︒cos θ =||||b a b a ⋅ ; 5︒|a ⋅b | ≤ |a ||b | 3.练习: (1)已知|a |=1,|b |=2,且(a -b )与a 垂直,则a 与b 的夹角是( )A.60° B .30° C.135° D.45°(2)已知|a |=2,|b |=1,a 与b 之间的夹角为3π,那么向量m =a -4b 的模为( ) A.2 B .23 C.6 D.12二、讲解新课:探究:已知两个非零向量),(11y x a =,),(22y x b =,怎样用a 和b 的坐标表示b a ⋅?.1、平面两向量数量积的坐标表示两个向量的数量积等于它们对应坐标的乘积的和.即b a ⋅2121y y x x +=2. 平面内两点间的距离公式(1)设),(y x a =,则222||y x a +=或22||y x a +=.(2)如果表示向量a 的有向线段的起点和终点的坐标分别为),(11y x 、),(22y x , 那么221221)()(||y y x x a -+-=(平面内两点间的距离公式)3. 向量垂直的判定设),(11y x a =,),(22y x b =,则b a ⊥ ⇔02121=+y y x x4. 两向量夹角的余弦(πθ≤≤0)co s θ =||||b a b a ⋅⋅222221212121y x y x y y x x +++=二、讲解范例:例1 已知A (1, 2),B (2, 3),C (-2, 5),试判断△ABC 的形状,并给出证明.例2 设a = (5, -7),b = (-6, -4),求a ·b 及a 、b 间的夹角θ(精确到1o )分析:为求a 与b 夹角,需先求a ·b 及|a |·|b |,再结合夹角θ的范围确定其值.例3 已知a =(1,3),b =(3+1,3-1),则a 与b 的夹角是多少?评述:已知三角形函数值求角时,应注重角的范围的确定.三、课堂练习:1、P107面1、2、3题2、已知A (3,2),B (-1,-1),若点P (x ,-21)在线段AB 的中垂线上,则x = . 四、小结: 1、b a ⋅2121y y x x +=2、平面内两点间的距离公式 221221)()(||y y x x a -+-=3、向量垂直的判定:设),(11y x a =,),(22y x b =,则b a ⊥ ⇔02121=+y y x x五、课后作业:作业二十四。

高中数学:第二章 平行向量241(二) Word版含答案

高中数学:第二章 平行向量241(二) Word版含答案

2.4.1平面向量数量积的物理背景及其含义(二)学习目标 1.掌握平面向量数量积的运算律及常用的公式.2.会利用向量数量积的有关运算律进行计算或证明.知识点一平面向量数量积的运算律类比实数的运算律,判断下表中的平面向量数量积的运算律是否正确.运算律实数乘法向量数量积判断正误交换律ab=ba a·b=b·a正确结合律(ab)c=a(bc)(a·b)c=a(b·c)错误分配律(a+b)c=ac+bc(a+b)·c=a·c+b·c正确消去律ab=bc(b≠0)⇒a=c a·b=b·c(b≠0)⇒a=c错误知识点二平面向量数量积的运算性质类比多项式乘法的乘法公式,写出下表中的平面向量数量积的运算性质.多项式乘法向量数量积(a+b)2=a2+2ab+b2(a+b)2=a2+2a·b+b2(a-b)2=a2-2ab+b2(a-b)2=a2-2a·b+b2(a+b)(a-b)=a2-b2(a+b)·(a-b)=a2-b2 (a+b+c)2=a2+b2+c2+2ab+2bc+2ca(a+b+c)2=a2+b2+c2+2a·b+2b·c+2c·a1.向量的数量积运算满足(a·b)·c=a·(b·c).(×)2.已知a≠0,且a·c=a·b,则b=c.(×)3.λ(a·b)=λa·b.(√)类型一向量数量积的运算性质例1设a,b,c是任意的非零向量,且它们相互不共线,给出下列结论:①a·c-b·c=(a-b)·c;②(b·c)·a-(c·a)·b不与c垂直;③|a|-|b|<|a-b|;④(3a+2b)·(3a-2b)=9|a|2-4|b|2.其中正确结论的序号是________.考点平面向量数量积的运算性质和法则题点向量的运算性质与法则★答案★①③④解析根据向量积的分配律知①正确;因为[(b·c)·a-(c·a)·b]·c=(b·c)·(a·c)-(c·a)·(b·c)=0,∴(b·c)·a-(c·a)·b与c垂直,②错误;因为a,b不共线,所以|a|,|b|,|a-b|组成三角形三边,∴|a|-|b|<|a-b|成立,③正确;④正确.故正确结论的序号是①③④.反思与感悟向量的数量积a·b与实数a,b的乘积a·b有联系,同时有许多不同之处.例如,由a·b=0并不能得出a=0或b=0.特别是向量的数量积不满足结合律.跟踪训练1对于任意向量a,b,c,下列说法中正确的是()A.|a·b|=|a||b| B.|a+b|=|a|+|b|C.(a·b)c=a(b·c) D.|a|=a2考点平面向量数量积的运算性质和法则题点向量的运算性质与法则★答案★D解析因为a·b=|a||b|cos〈a,b〉,所以|a·b|≤|a||b|,所以A错误;根据向量加法的平行四边形法则,|a+b|≤|a|+|b|,只有当a,b同向时取“=”,所以B错误;因为(a·b)c是向量,其方向与向量c相同,a(b·c)是向量,其方向与向量a的方向相同,所以C错误;因为a·a=|a||a|cos 0=|a|2,所以|a|=a2,所以D正确.类型二 平面向量数量积有关的参数问题 命题角度1 利用向量数量积处理垂直问题例2 已知|a |=3,|b |=2,向量a ,b 的夹角为60°,c =3a +5b ,d =m a -3b ,求当m 为何值时,c 与d 垂直.考点 平面向量数量积的应用 题点 已知向量夹角求参数解 由已知得a·b =3×2×cos 60°=3. 若c ⊥d ,则c·d =0,∴c ·d =(3a +5b )·(m a -3b )=3m a 2+(5m -9)a ·b -15b 2=27m +3(5m -9)-60=42m -87=0, ∴m =2914,即当m =2914时,c 与d 垂直.反思与感悟 由两向量垂直求参数一般是利用性质:a ⊥b ⇔a ·b =0.跟踪训练2 已知两个单位向量a ,b 的夹角为60°,c =t a +(1-t )·b ,且b ⊥c ,则t =________. 考点 平面向量数量积的应用 题点 已知向量夹角求参数 ★答案★ 2解析 由题意,将b·c =[t a +(1-t )b ]·b =0整理,得t a ·b +(1-t )=0,又a ·b =12,所以t =2.命题角度2 由两向量夹角的取值范围求参数的取值范围例3 已知e 1与e 2是两个互相垂直的单位向量,若向量e 1+k e 2与k e 1+e 2的夹角为锐角, 则k 的取值范围为________. 考点 平面向量数量积的应用 题点 已知向量夹角求参数 ★答案★ (0,1)∪(1,+∞)解析 ∵e 1+k e 2与k e 1+e 2的夹角为锐角, ∴(e 1+k e 2)·(k e 1+e 2)=k e 21+k e 22+(k 2+1)e 1·e 2=2k >0,∴k >0.但当k =1时,e 1+k e 2=k e 1+e 2,它们的夹角为0,不符合题意,舍去. 综上,k 的取值范围为k >0且k ≠1.反思与感悟 向量a ,b 的夹角为锐角,得到a·b >0;反之,a·b >0不能说明a ,b 的夹角为锐角,因为a ,b 夹角为0°时也有a·b >0.同理,向量a ,b 的夹角为钝角,得到a ·b <0;反之,a ·b <0不能说明a ,b 的夹角为钝角,因为a ,b 夹角为180°时也有a ·b <0.跟踪训练3 若向量e 1,e 2满足|e 1|=|e 2|=1,e 1,e 2的夹角为60°,向量2t e 1+e 2与向量e 1-e 2的夹角为钝角,求实数t 的取值范围.考点 平面向量数量积的应用 题点 已知向量夹角求参数解 设向量2t e 1+e 2与向量e 1-e 2的夹角为θ,由θ为钝角,知cos θ<0,故(2t e 1+e 2)·(e 1-e 2)=2t e 21+(-2t +1)e 1·e 2-e 22=t -12<0,解得t <12. 又当θ=π时,也有(2t e 1+e 2)·(e 1-e 2)<0,但此时夹角不是钝角,设向量2t e 1+e 2与向量e 1-e 2反向,则2t e 1+e 2=k (e 1-e 2)(k <0),又e 1与e 2不共线,从而⎩⎪⎨⎪⎧2t =k ,1=-k ,解得t =-12,即当t =-12时,向量2t e 1+e 2与向量e 1-e 2的夹角为180°,故t 的取值范围是⎩⎨⎧⎭⎬⎫t ⎪⎪t <12,且t ≠-12.1.下面给出的关系式中正确的个数是( )①0·a =0;②a ·b =b ·a ;③a 2=|a |2;④|a ·b |≤a ·b ;⑤(a ·b )2=a 2·b 2. A .1 B .2 C .3 D .4考点 平面向量数量积的运算性质与法则 题点 向量的运算性质与法则 ★答案★ C解析 ①②③正确,④错误,⑤错误,(a ·b )2=(|a ||b |·cos θ)2=a 2·b 2cos 2θ,故选C. 2.已知|a |=2,|b |=1,a 与b 之间的夹角为60°,那么向量a -4b 的模为( ) A .2 B .2 3 C .6 D .12考点 平面向量数量积的运算性质和法则 题点 向量的运算性质与法则 ★答案★ B解析 ∵|a -4b |2=a 2-8a ·b +16b 2 =22-8×2×1×cos 60°+16×12=12, ∴|a -4b |=2 3.3.已知非零向量m ,n 满足4|m |=3|n |,cos 〈m ,n 〉=13.若n ⊥(t m +n ),则实数t 的值为( )A .4B .-4 C.94 D .-94考点 平面向量数量积的应用题点 已知向量夹角求参数 ★答案★ B解析 ∵n ⊥(t m +n ),∴n ·(t m +n )=0,即t m ·n +n 2=0,∴t |m ||n |cos 〈m ,n 〉+|n |2=0,由已知得t ×34|n |2×13+|n |2=0,解得t =-4,故选B.4.在△ABC 中,AB →=a ,BC →=b ,且a·b >0,则△ABC 是( ) A .锐角三角形 B .直角三角形 C .等腰直角三角形 D .钝角三角形考点 平面向量数量积的应用 题点 数量积在三角形中的应用 ★答案★ D解析 由AB →·BC →>0知,BA →·BC →<0,即角B 为钝角.5.已知|a |=1,|b |=2,且(a +b )与a 垂直,则a 与b 的夹角是________. 考点 平面向量数量积的应用 题点 利用数量积求向量的夹角 ★答案★3π4解析 ∵(a +b )·a =a 2+a ·b =0, ∴a ·b =-a 2=-1, 设a 与b 的夹角为θ,∴cos θ=a·b|a||b|=-11×2=-22,又θ∈[0,π],∴θ=3π4.1.数量积对结合律不一定成立,因为(a ·b )·c =|a ||b |·cos 〈a ,b 〉·c 是一个与c 共线的向量,而(a ·c )·b =|a ||c |cos 〈a ,c 〉·b 是一个与b 共线的向量,若b 与c 不共线,则两者不相等. 2.在实数中,若ab =0,则a =0或b =0,但是在数量积中,即使a ·b =0,也不能推出a =0或b =0,因为其中cos θ有可能为0.3.在实数中,若ab =bc ,b ≠0,则a =c ,在向量中a ·b =b ·c ,b ≠0⇏a =c .一、选择题1.已知|a |=1,|b |=1,|c |=2,a 与b 的夹角为90°,b 与c 的夹角为45°,则a ·(b ·c )的化简结果是( )A .0B .aC .bD .c考点 平面向量数量积的运算性质和法则 题点 向量的运算性质和法则 ★答案★ B解析 b ·c =|b ||c |cos 45°=1. ∴a ·(b ·c )=a .2.已知a ⊥b ,|a |=2,|b |=3,且3a +2b 与λa -b 垂直,则λ等于( ) A.32 B .-32 C .±32 D .1 考点 平面向量数量积的应用 题点 已知向量夹角求参数 ★答案★ A解析 ∵(3a +2b )·(λa -b )=3λa 2+(2λ-3)a·b -2b 2 =3λa 2-2b 2=12λ-18=0,∴λ=32.3.(2017·嘉峪关高一检测)已知向量a ,b 为非零向量,(a -2b )⊥a ,(b -2a )⊥b ,则a ,b 的夹角为( )A.π6B.π3C.2π3D.5π6 考点 平面向量数量积的应用 题点 利用数量积求向量的夹角 ★答案★ B解析 设a 与b 的夹角为θ. 因为(a -2b )⊥a ,(b -2a )⊥b , 所以(a -2b )·a =a 2-2a ·b =0, (b -2a )·b =b 2-2a ·b =0.所以a 2=2a ·b ,b 2=2a ·b ,所以a 2=b 2, 所以|a |=|b |,所以cos θ=a·b |a||b|=a·b |a|2=a·b a 2=a ·b 2a ·b =12.因为θ∈[0,π],所以θ=π3.所以a ,b 夹角为π3.4.在四边形ABCD 中,AB →=DC →,且AC →·BD →=0,则四边形ABCD 是( ) A .矩形 B .菱形 C .直角梯形D .等腰梯形考点 平面向量数量积的应用 题点 向量模与夹角的综合应用 ★答案★ B解析 由AB →=DC →知四边形ABCD 是平行四边形,由AC →·BD →=0知AC ⊥BD ,即对角线垂直,所以四边形ABCD 是菱形.5.若非零向量a ,b 满足|a |=|b |,(2a +b )·b =0,则a 与b 的夹角为( ) A .30° B .60° C .120°D .150° 考点 平面向量数量积的应用 题点 利用数量积求向量的夹角 ★答案★ C解析 由题知,(2a +b )·b =2a ·b +b 2 =2|a |2cos 〈a ,b 〉+a 2=0, ∴cos 〈a ,b 〉=-12,又∵〈a ,b 〉∈[0°,180°], ∴a ,b 的夹角为120°.6.已知向量AB →与AC →的夹角为120°,且|AB →|=2,|AC →|=3.若AP →=λAB →+AC →,且AP →⊥BC →,则实数λ的值为( ) A.37 B .13 C .6 D.127 考点 平面向量数量积的应用 题点 已知向量夹角求参数 ★答案★ D解析 ∵AB →与AC →的夹角为120°,且|AB →|=2,|AC →|=3, ∴AB →·AC →=|AB →|·|AC →|cos 120° =2×3×⎝⎛⎭⎫-12=-3. ∵AP →·BC →=(AC →+λAB →)·(AC →-AB →) =AC →2-λAB →2+(λ-1)AB →·AC →=0,∴32-λ×22+(λ-1)×(-3)=0, 解得λ=127,故选D.7.(2017·惠州高一检测)若O 为△ABC 所在平面内任一点,且满足(OB →-OC →)·(OB →+OC →-2OA →)=0,则△ABC 的形状为( ) A .等腰三角形 B .直角三角形 C .正三角形D .等腰直角三角形考点 平面向量数量积的应用 题点 数量积在三角形中的应用 ★答案★ A解析 因为(OB →-OC →)·(OB →+OC →-2OA →)=0, 即CB →·(AB →+AC →)=0, 又因为AB →-AC →=CB →, 所以(AB →-AC →)·(AB →+AC →)=0, 即|AB →|=|AC →|,所以△ABC 是等腰三角形. 二、填空题8.已知向量a ,b 满足(a +2b )·(5a -4b )=0,且|a |=|b |=1,则a 与b 的夹角θ为 ________. 考点 平面向量数量积的应用 题点 利用数量积求向量的夹角 ★答案★ π3解析 因为(a +2b )·(5a -4b )=0,|a |=|b |=1, 所以6a ·b -8+5=0,即a ·b =12.又a ·b =|a ||b |cos θ=cos θ, 所以cos θ=12,因为θ∈[0,π],所以θ=π3.9.已知非零向量a ,b ,满足a ⊥b ,且a +2b 与a -2b 的夹角为120°,则|a ||b |=________.考点 平面向量数量积的应用 题点 向量模与夹角的综合应用★答案★233解析 ∵a ⊥b ,∴a ·b =0, (a +2b )·(a -2b )=a 2-4b 2, |a +2b |= a 2+4a ·b +4b 2= a 2+4b 2, |a -2b |=a 2-4a ·b +4b 2=a 2+4b 2,∴a 2-4b 2=a 2+4b 2·a 2+4b 2·cos 120°, 化简得32a 2-2b 2=0,∴|a ||b |=233. 10.设向量a ,b ,c 满足a +b +c =0,(a -b )⊥c ,a ⊥b ,若|a |=1,则|a |2+|b |2+|c |2的值是________.考点 平面向量数量积的应用 题点 向量模与夹角的综合应用 ★答案★ 4解析 方法一 由a +b +c =0,得c =-a -b . 又(a -b )·c =0, ∴(a -b )·(-a -b )=0, 即a 2=b 2.则c 2=(a +b )2=a 2+b 2+2a ·b =a 2+b 2=2, ∴|a |2+|b |2+|c |2=4.方法二 如图,作AB →=BD →=a .BC →=b ,则CA →=c , ∵a ⊥b ,∴AB ⊥BC , 又∵a -b =BD →-BC →=CD →, (a -b )⊥c ,∴CD ⊥CA , ∴△ABC 是等腰直角三角形,∵|a |=1,∴|b |=1,|c |=2,∴|a |2+|b |2+|c |2=4.11.已知向量a ,b 满足|a |=2,|b |=1,且对一切实数x ,|a +x b |≥|a +b |恒成立,则a ,b 的夹角的大小为________.考点 平面向量数量积的应用 题点 向量模与夹角的综合应用 ★答案★2π3解析 由题意可知,|a +x b |2≥|a +b |2, 即a 2+2a ·b ·x +b 2·x 2≥a 2+2a ·b +b 2, 设a 与b 的夹角为θ,则4+4cos θ·x +x 2≥4+4cos θ+1, 即x 2+4cos θ·x -1-4cos θ≥0,因为对一切实数x ,|a +x b |≥|a +b |恒成立, 所以Δ=16cos 2θ+4(1+4cos θ)≤0, 即(2cos θ+1)2≤0,所以2cos θ+1=0,cos θ=-12.又因为θ∈[0,π],所以θ=2π3. 12.已知平面上三个向量a ,b ,c 的模均为1,它们相互之间的夹角为120°.若|k a +b +c |>1(k ∈R ),则k 的取值范围为________. 考点 平面向量数量积的应用 题点 向量模与夹角的综合应用 ★答案★ {k |k <0或k >2} 解析 因为|k a +b +c |>1, 所以(k a +b +c )·(k a +b +c )>1, 即k 2a 2+b 2+c 2+2k a ·b +2k a ·c +2b ·c >1. 因为a ·b =a ·c =b ·c =cos 120°=-12,所以k 2-2k >0,所以⎩⎪⎨⎪⎧ k >0,k -2>0或⎩⎪⎨⎪⎧k <0,k -2<0,解得k <0或k >2,即k 的取值范围是{k |k <0或k >2}. 三、解答题13.设两个向量e 1,e 2满足|e 1|=2,|e 2|=1,e 1,e 2的夹角为60°,若向量2t e 1+7e 2与e 1+t e 2的夹角为钝角,求实数t 的取值范围. 考点 平面向量数量积的应用 题点 已知向量夹角求参数解 设向量2t e 1+7e 2与e 1+t e 2的夹角为θ.根据题意,得cos θ=(2t e 1+7e 2)·(e 1+t e 2)|2t e 1+7e 2||e 1+t e 2|<0, ∴(2t e 1+7e 2)·(e 1+t e 2)<0.化简,得2t 2+15t +7<0,∴⎩⎪⎨⎪⎧ 2t +1>0,t +7<0或⎩⎪⎨⎪⎧2t +1<0,t +7>0,解得-7<t <-12. 当θ=π时,也有(2t e 1+7e 2)·(e 1+t e 2)<0,但此时夹角不是钝角.设2t e 1+7e 2=λ(e 1+t e 2),λ<0,由e 1与e 2不共线,得⎩⎪⎨⎪⎧ 2t =λ,7=λt ,λ<0,∴⎩⎪⎨⎪⎧ λ=-14,t =-142. ∴实数t 的取值范围是⎝⎛⎭⎫-7,-142∪⎝⎛⎭⎫-142,-12. 四、探究与拓展14.若a ,b ,c 均为单位向量,且a·b =0,(a -c )·(b -c )≤0,则|a +b -c |的最大值为( )A.2-1B .1 C. 2 D .2考点 平面向量数量积的运算性质和法则题点 求向量的数量积的最值★答案★ B解析 由题意,知a 2=1,b 2=1,c 2=1,由a ·b =0及(a -c )·(b -c )≤0,知(a +b )·c ≥c 2=1.因为|a +b -c |2=a 2+b 2+c 2+2a ·b -2a ·c -2b ·c=3-2(a ·c +b ·c )≤1,故|a +b -c |的最大值为1.15.已知a ,b 均是非零向量,设a 与b 的夹角为θ,是否存在这样的θ,使|a +b |=3|a -b |成立?若存在,求出θ.考点 平面向量数量积的应用题点 利用数量积求向量的夹角解 假设存在满足条件的θ,∵|a +b |=3|a -b |,∴(a +b )2=3(a -b )2,∴|a |2+2a ·b +|b |2=3(|a |2-2a ·b +|b |2),∴|a |2-4a ·b +|b |2=0,∴|a |2-4|a ||b |cos θ+|b |2=0, ∴⎩⎪⎨⎪⎧cos θ>0,Δ=16|b |2cos 2θ-4|b |2≥0, 解得cos θ∈⎣⎡⎦⎤12,1.又∵θ∈[0,π],∴θ∈⎣⎡⎦⎤0,π3.。

2.4.2平面向量数量积的坐标表示教学课件

2.4.2平面向量数量积的坐标表示教学课件

[研一题]
[例 2] 平面直角坐标系 xOy 中,O
是原点(如图).已知点 A(16,12)、B(-5,15).
(1)求| OA|,| AB|;
(2[[[[自)自 自 自求主主 主 主∠解O解 解 解A答答 答 答B.]]]] ((((1111))))由由 由 由OOOOAAAA== = =((((11116666,,,,11112222)))),, , , AAAABBBB== = =((((-- - -5555-- - -11116666,,,,11115555-- - -11112222))))== = =((((-- - -22221111,,,,3333)))),, , ,得得 得 得 ||||OOOOAAAA||||== = = 111166662222++ + +111122222222== = =22220000,, , , ||||AAAABBBB||||== = = -- - -222211112222++ + +33332222== = =11115555 2222....
y A(x1,y1)
B(x2,y2)
a
bj
oi x
b 设两个非零向量 a =(x1,y1), =(x2,y2),则
aaaaaaaa==bb==bb====xx======xx11==xxxx11iixx((xx11i11i(x(x++11xxxx11x+x+xx1xx12222yy11ii2222yyiiii++11++ii22++11++j2j2++yy,,jjyy+y+,y,yy1111xx1yy111xjjxyy11j))j221yy1))22yybb22((bb2(2x(xii==xxii22==22jjiixxjjii++xx++22++++22iixxyyiixxy++y2222++2y2y22jjyyyyj))11jyy)212)1ii22iijj,,jjjj,,jj++++yyyy111yy1yy2222jjjj2222

高中数学第二章平面向量2-4平面向量的数量积第2课时教学课件新人教A版必修4

高中数学第二章平面向量2-4平面向量的数量积第2课时教学课件新人教A版必修4
(1)字母表示下的运算. 利用|a|2=a2,将向量的模的运算转化为向量与 向量的数量积的问题.
(2)坐标表示下的运算.
若 a=(x,y),则 a·a=a2=|a|2=x2+y2,于是有|a|= x2+y2.
【互动探究】 本例中将“a∥b”改为“a·b=10”,求a的坐 标.解:设 a 的坐标为(x,y),由题意得x+x22+y=y2=101,0,
1.已知向量a与b同向,b=(1,2),a·b=10, 求:
(1)向量a的坐标; (2)若c=(2,-1),求(a·c)·b.
解:(1)∵a与b同向,且b=(1,2), ∴a=λb=(λ,2λ)(λ>0). 又∵a·b=10,∴λ+4λ=10.∴λ=2.∴a= (2,4). (2)∵a·c=2×2+(-1)×4=0,
与向量模有关的问题
已知|a|=10,b=(1,2),且a∥b,求a 的坐标.
思路点拨:
解:设 a 的坐标为(x,y),由题意得2xx-2+y=y2=0,10, 解得
x=2 y=4
5, 5
或xy= =- -24
5, 5,
所以 a=(2 5,4 5)或 a=(-2 5,-4 5).
求向量的模的两种基本策略
思路点拨:(1)按求向量夹角的步骤求解; (2)利用两向量垂直数量积为零来证明.
(1)解:由题意知,|a|=1,|b|=1,a·b=-12cos
α+
3 2 sin
α.

cos
θ
= |aa|·|bb|

-12cos α+ 1×1
3 2+
3 2 sin
α=
cos(120°-α). ∵0°≤α≤90°,∴30°≤120°-α≤120°.
(3)(a·b)·c. 思路点拨:首先求解相关向量的坐标,再代入 坐标运算表达式求解.

高中数学:第二章 平行向量242 Word版含答案

高中数学:第二章 平行向量242 Word版含答案

2.4.2平面向量数量积的坐标表示、模、夹角学习目标 1.理解两个向量数量积坐标表示的推导过程,能运用数量积的坐标表示进行向量数量积的运算.2.能根据向量的坐标计算向量的模,并推导平面内两点间的距离公式.3.能根据向量的坐标求向量的夹角及判定两个向量垂直.知识点一平面向量数量积的坐标表示设i,j是两个互相垂直且分别与x轴、y轴的正半轴同向的单位向量.思考1i·i,j·j,i·j分别是多少?★答案★i·i=1×1×cos 0=1,j·j=1×1×cos 0=1,i·j=0.思考2取i,j为坐标平面内的一组基底,设a=(x1,y1),b=(x2,y2),试将a,b用i,j表示,并计算a·b.★答案★∵a=x1i+y1j,b=x2i+y2j,∴a·b=(x1i+y1j)·(x2i+y2j)=x1x2i2+(x1y2+x2y1)i·j+y1y2j2=x1x2+y1y2.思考3若a⊥b,则a,b坐标间有何关系?★答案★a⊥b⇔a·b=0⇔x1x2+y1y2=0.梳理设向量a=(x1,y1),b=(x2,y2),a与b的夹角为θ.数量积a·b=x1x2+y1y2向量垂直a⊥b⇔x1x2+y1y2=0知识点二平面向量模的坐标形式及两点间的距离公式思考1若a=(x,y),试将向量的模|a|用坐标表示.★答案★∵a=x i+y j,x,y∈R,∴a2=(x i+y j)2=(x i)2+2xy i·j+(y j)2=x2i2+2xy i·j+y2j2.又∵i2=1,j2=1,i·j=0,∴a2=x2+y2,∴|a|2=x2+y2,∴|a|=x2+y2.思考2 若A (x 1,y 1),B (x 2,y 2),如何计算向量AB →的模?★答案★ ∵AB →=OB →-OA →=(x 2,y 2)-(x 1,y 1) =(x 2-x 1,y 2-y 1), ∴|AB →|=(x 2-x 1)2+(y 2-y 1)2. 梳理向量 模长 a =(x ,y )|a |=x 2+y 2以A (x 1,y 1),B (x 2,y 2)为端点的向量AB →|AB →|=(x 2-x 1)2+(y 2-y 1)2知识点三 平面向量夹角的坐标表示思考 设a ,b 都是非零向量,a =(x 1,y 1),b =(x 2,y 2),θ是a 与b 的夹角,那么cos θ如何用坐标表示?★答案★ cos θ=a·b|a||b|=x 1x 2+y 1y 2x 21+y 21 x 22+y 22.1.若a =(x 1,y 1),b =(x 2,y 2),则a ⊥b ⇔x 1x 2+y 1y 2=0.( × ) 2.若a =(x 1,y 1),b =(x 2,y 2),则a ⊥b ⇔x 1y 2-x 2y 1=0.( × )3.若两个非零向量的夹角θ满足cos θ>0,则两向量的夹角θ一定是锐角.( × ) 提示 当两向量同向共线时,cos θ=1>0,但夹角θ=0,不是锐角.类型一 数量积的坐标运算例1 (1)已知a =(2,-1),b =(1,-1),则(a +2b )·(a -3b )等于( ) A .10 B .-10 C .3D .-3考点 平面向量数量积的坐标表示与应用题点 坐标形式下的数量积运算 ★答案★ B解析 a +2b =(4,-3),a -3b =(-1,2),所以(a +2b )·(a -3b )=4×(-1)+(-3)×2=-10. (2)如图所示,在矩形ABCD 中,AB =2,BC =2,点E 为BC 的中点,点F 在边CD 上,且DF →=2FC →,则AE →·BF →的值是________.考点 平面向量数量积的坐标表示与应用 题点 坐标形式下的数量积运算 ★答案★ 43解析 以A 为原点,AB 所在直线为x 轴、AD 所在直线为y 轴建立如图所示平面直角坐标系.∵AB =2,BC =2,∴A (0,0),B (2,0),C (2,2),D (0,2), ∵点E 为BC 的中点,∴E (2,1), ∵点F 在边CD 上,且DF →=2FC →, ∴F ⎝⎛⎭⎫223,2.∴AE →=(2,1),BF →=⎝⎛⎭⎫-23,2, ∴AE →·BF →=-23+2=43.反思与感悟 数量积坐标运算的技巧(1)进行数量积运算时,要正确使用公式a·b =x 1x 2+y 1y 2,并能灵活运用以下几个关系: ①|a |2=a ·a ;②(a +b )·(a -b )=|a |2-|b |2; ③(a +b )2=|a |2+2a ·b +|b |2.(2)在平面几何图形中求数量积,若几何图形规则易建系,一般先建立坐标系,写出相关向量的坐标,再求数量积.跟踪训练1向量a=(1,-1),b=(-1,2),则(2a+b)·a等于()A.-1 B.0 C.1 D.2考点平面向量数量积的坐标表示与应用题点坐标形式下的数量积运算★答案★C解析因为a=(1,-1),b=(-1,2),所以2a+b=2(1,-1)+(-1,2)=(1,0),则(2a+b)·a =(1,0)·(1,-1)=1,故选C.类型二平面向量的模例2已知平面向量a=(3,5),b=(-2,1).(1)求a-2b及其模的大小;(2)若c=a-(a·b)b,求|c|.考点平面向量模与夹角的坐标表示的应用题点利用坐标求向量的模解(1)∵a=(3,5),b=(-2,1),∴a-2b=(3,5)-2(-2,1)=(3+4,5-2)=(7,3),∴|a-2b|=72+32=58.(2)∵a·b=-6+5=-1,∴c=a+b=(1,6),∴|c|=12+62=37.反思与感悟求向量a=(x,y)的模的常见思路及方法(1)求模问题一般转化为求模的平方,与向量数量积联系要灵活应用公式a2=|a|2=x2+y2,求模时,勿忘记开方.(2)a·a=a2=|a|2或|a|=a2=x2+y2,此性质可用来求向量的模,可以实现实数运算与向量运算的相互转化.跟踪训练2已知向量a=(2,1),a·b=10,|a+b|=52,则|b|等于()A. 5B.10 C.5 D.25考点平面向量模与夹角的坐标表示的应用题点利用坐标求向量的模★答案★C解析∵a=(2,1),∴a2=5,又|a+b|=52,∴(a+b)2=50,即a2+2a·b+b2=50,∴5+2×10+b2=50,∴b2=25,∴|b|=5.例3 (2017·山东枣庄八中月考)已知点A (3,0),B (0,3),C (cos α,sin α),O (0,0),若|OA →+OC →|=13,α∈(0,π),则OB →,OC →的夹角为( ) A.π2 B.π4 C.π3 D.π6考点 平面向量夹角的坐标表示与应用 题点 求坐标形式下的向量的夹角 ★答案★ D解析 因为|OA →+OC →|2=(OA →+OC →)2=OA →2+2OA →·OC →+OC →2=9+6cos α+1=13, 所以cos α=12,因为α∈(0,π),所以α=π3,所以C ⎝⎛⎭⎫12,32,所以cos 〈OB →,OC →〉=OB →·OC →|OB →||OC →|=3×323×1=32,因为0≤〈OB →,OC →〉≤π,所以〈OB →,OC →〉=π6,所以OB →,OC →的夹角为π6,故选D.反思与感悟 利用向量的数量积求两向量夹角的一般步骤 (1)利用向量的坐标求出这两个向量的数量积. (2)利用|a |=x 2+y 2求两向量的模.(3)代入夹角公式求cos θ,并根据θ的范围确定θ的值.跟踪训练3 已知a =(1,-1),b =(λ,1),若a 与b 的夹角α为钝角,求λ的取值范围. 考点 平面向量夹角的坐标表示与应用 题点 已知坐标形式下的向量夹角求参数 解 ∵a =(1,-1),b =(λ,1), ∴|a |=2,|b |=1+λ2,a ·b =λ-1. 又∵a ,b 的夹角α为钝角,∴⎩⎨⎧λ-1<0,2·1+λ2≠1-λ,即⎩⎪⎨⎪⎧λ<1,λ2+2λ+1≠0.∴λ<1且λ≠-1.∴λ的取值范围是(-∞,-1)∪(-1,1).例4 在△ABC 中,AB →=(2,3),AC →=(1,k ),若△ABC 是直角三角形,求k 的值. 考点 向量平行与垂直的坐标表示的应用 题点 已知向量垂直求参数 解 ∵AB →=(2,3),AC →=(1,k ), ∴BC →=AC →-AB →=(-1,k -3).若∠A =90°,则AB →·AC →=2×1+3×k =0,∴k =-23;若∠B =90°,则AB →·BC →=2×(-1)+3(k -3)=0, ∴k =113;若∠C =90°,则AC →·BC →=1×(-1)+k (k -3)=0, ∴k =3±132.故所求k 的值为-23或113或3±132.反思与感悟 利用向量数量积的坐标表示解决垂直问题的实质是把垂直条件代数化,若在关于三角形的问题中,未明确哪个角是直角时,要分类讨论.跟踪训练4 已知a =(-3,2),b =(-1,0),若向量λa +b 与a -2b 垂直,则实数λ的值为( ) A.17 B .-17 C.16 D .-16考点 向量平行与垂直的坐标表示的应用 题点 已知向量垂直求参数 ★答案★ B解析 由向量λa +b 与a -2b 垂直,得 (λa +b )·(a -2b )=0.因为a =(-3,2),b =(-1,0), 所以(-3λ-1,2λ)·(-1,2)=0, 即3λ+1+4λ=0,解得λ=-17.1.已知a =(3,4),b =(5,12),则a 与b 夹角的余弦值为( ) A.6365 B.65 C.135D.13 考点 平面向量夹角的坐标表示与应用 题点 求坐标形式下的向量的夹角 ★答案★ A解析 |a |=32+42=5,|b |=52+122=13. a·b =3×5+4×12=63.设a ,b 夹角为θ,所以cos θ=635×13=6365.2.若向量a =(x ,2),b =(-1,3),a·b =3,则x 等于( ) A .3 B .-3 C.53 D .-53考点 平面向量数量积的坐标表示与应用 题点 已知数量积求参数 ★答案★ A解析 a·b =-x +6=3,故x =3.3.已知向量m =(λ+1,1),n =(λ+2,2),若(m +n )⊥(m -n ),则λ等于( ) A .-4 B .-3 C .-2 D .-1 考点 向量平行与垂直的坐标表示的应用 题点 已知向量垂直求参数 ★答案★ B解析 因为m +n =(2λ+3,3),m -n =(-1,-1),由(m +n )⊥(m -n ),可得(m +n )·(m -n )=(2λ+3,3)·(-1,-1)=-2λ-6=0,解得λ=-3. 4.若平面向量a =(1,-2)与b 的夹角是180°,且|b |=35,则b 等于( ) A .(-3,6) B .(3,-6) C .(6,-3)D .(-6,3)考点 平面向量数量积的坐标表示与应用 题点 已知数量积求向量的坐标 ★答案★ A解析 由题意设b =λa =(λ,-2λ)(λ<0), 则|b |=λ2+(-2λ)2=5|λ|=35,又λ<0,∴λ=-3,故b =(-3,6). 5.已知a =(4,3),b =(-1,2). (1)求a 与b 的夹角的余弦值;(2)若(a -λb )⊥(2a +b ),求实数λ的值. 考点 向量平行与垂直的坐标表示的应用 题点 已知向量垂直求参数 解 (1)∵a ·b =4×(-1)+3×2=2, |a |=42+32=5,|b |=(-1)2+22=5, ∴cos 〈a ,b 〉=a ·b |a ||b |=255=2525. (2)∵a -λb =(4+λ,3-2λ),2a +b =(7,8), (a -λb )⊥(2a +b ),∴(a -λb )·(2a +b )=7(4+λ)+8(3-2λ)=0, ∴λ=529.1.平面向量数量积的定义及其坐标表示,提供了数量积运算的两种不同的途径.准确地把握这两种途径,根据不同的条件选择不同的途径,可以优化解题过程.同时,平面向量数量积的两种形式沟通了“数”与“形”转化的桥梁,成为解决距离、角度、垂直等有关问题的有力工具.2.应用数量积运算可以解决两向量的垂直、平行、夹角以及长度等几何问题,在学习中要不断地提高利用向量工具解决数学问题的能力.3.注意区分两向量平行与垂直的坐标形式,二者不能混淆,可以对比学习、记忆.若a =(x 1,y 1),b =(x 2,y 2),则a ∥b ⇔x 1y 2-x 2y 1=0,a ⊥b ⇔x 1x 2+y 1y 2=0.4.事实上应用平面向量的数量积公式解答某些平面向量问题时,向量夹角问题却隐藏了许多陷阱与误区,常常会出现因模糊“两向量的夹角的概念”和忽视“两向量夹角”的范围,稍不注意就会带来失误与错误.一、选择题1.已知a =(3,-1),b =(1,-2),则a 与b 的夹角为( ) A.π6 B.π4 C.π3 D.π2考点 平面向量夹角的坐标表示与应用 题点 求坐标形式下的向量的夹角 ★答案★ B解析 ∵|a |=10,|b |=5,a ·b =5. ∴cos 〈a ,b 〉=a ·b |a ||b |=510×5=22. 又∵a ,b 的夹角范围为[0,π]. ∴a 与b 的夹角为π4.2.设向量a =(2,0),b =(1,1),则下列结论中正确的是( ) A .|a |=|b | B .a·b =0 C .a ∥bD .(a -b )⊥b考点 向量平行与垂直的坐标表示的应用 题点 向量垂直的坐标表示的综合应用 ★答案★ D解析 a -b =(1,-1),所以(a -b )·b =1-1=0, 所以(a -b )⊥b .3.已知向量a =(0,-23),b =(1,3),则向量a 在b 方向上的投影为( ) A. 3 B .3 C .- 3 D .-3 考点 平面向量投影的坐标表示与应用 题点 利用坐标求向量的投影 ★答案★ D解析 向量a 在b 方向上的投影为a·b |b|=-62=-3.故选D.4.已知向量a =(1,n ),b =(-1,n ),若2a -b 与b 垂直,则|a |等于( ) A .1 B. 2 C .2 D .4考点 平面向量模与夹角的坐标表示的应用 题点 利用坐标求向量的模 ★答案★ C解析 ∵(2a -b )·b =2a ·b -|b |2 =2(-1+n 2)-(1+n 2)=n 2-3=0, ∴n 2=3,∴|a |=12+n 2=2.5.若a =(2,-3),则与向量a 垂直的单位向量的坐标为( ) A .(3,2)B.⎝⎛⎭⎫31313,21313C.⎝⎛⎭⎫31313,21313或⎝⎛⎭⎫-31313,-21313 D .以上都不对考点 向量平行与垂直的坐标表示的应用 题点 向量垂直的坐标表示的综合应用 ★答案★ C解析 设与a 垂直单位向量的坐标为(x ,y ), ∵(x ,y )是单位向量的坐标形式, ∴x 2+y 2=1,即x 2+y 2=1,① 又∵(x ,y )表示的向量垂直于a , ∴2x -3y =0,② 由①②得⎩⎨⎧x =31313,y =21313或⎩⎨⎧x =-31313,y =-21313.6.已知a =(1,1),b =(0,-2),且k a -b 与a +b 的夹角为120°,则k 等于( ) A .-1+ 3 B .-2 C .-1± 3D .1考点 平面向量夹角的坐标表示与应用 题点 已知坐标形式下的向量夹角求参数 ★答案★ C解析 ∵|k a -b |=k 2+(k +2)2, |a +b |=12+(-1)2=2,∴(k a -b )·(a +b )=(k ,k +2)·(1,-1)=k -k -2=-2, 又k a -b 与a +b 的夹角为120°, ∴cos 120°=(k a -b )·(a +b )|k a -b ||a +b |,即-12=-22×k 2+(k +2)2,化简并整理,得k 2+2k -2=0,解得k =-1± 3.7.已知OA →=(-2,1),OB →=(0,2)且AC →∥OB →,BC →⊥AB →,则点C 的坐标是( ) A .(2,6) B .(-2,-6) C .(2,-6)D .(-2,6)考点 向量平行与垂直的坐标表示的应用题点 向量平行与垂直的坐标表示的综合应用★答案★ D解析 设C (x ,y ),则AC →=(x +2,y -1),BC →=(x ,y -2),AB →=(2,1),∵AC →∥OB →,∴2(x +2)=0,①∵BC →⊥AB →,∴2x +y -2=0,②由①②可得⎩⎪⎨⎪⎧x =-2,y =6,∴C (-2,6). 二、填空题8.已知平面向量a =(2,4),b =(1,-2),若c =a -(a ·b )b ,则|c |=________.考点 平面向量模与夹角的坐标表示的应用题点 利用坐标求向量的模★答案★ 82解析 由题意可得a·b =2×1+4×(-2)=-6,∴c =a -(a ·b )b =a +6b =(2,4)+6(1,-2)=(8,-8),∴|c |=82+(-8)2=8 2.9.已知a =(3,3),b =(1,0),则(a -2b )·b =________.考点 平面向量数量积的坐标表示与应用题点 坐标形式下的数量积运算★答案★ 1解析 a -2b =(1,3),(a -2b )·b =1×1+3×0=1.10.设m =(a ,b ),n =(c ,d ),规定两向量m ,n 之间的一个运算“⊗”为m ⊗n =(ac -bd ,ad +bc ),若已知p =(1,2),p ⊗q =(-4,-3),则q 的坐标为________.考点 平面向量数量积的坐标表示与应用题点 已知数量积求向量的坐标★答案★ (-2,1)解析 设q =(x ,y ),则p ⊗q =(x -2y ,y +2x )=(-4,-3).∴⎩⎪⎨⎪⎧ x -2y =-4,y +2x =-3,∴⎩⎪⎨⎪⎧x =-2,y =1.∴q =(-2,1).11.(2017·广东揭阳惠来一中、揭东一中联考)已知向量OA →=(1,7),OB →=(5,1)(O 为坐标原点),设M 为直线y =12x 上的一点,那么MA →·MB →的最小值是________. 考点 平面向量数量积的坐标表示与应用题点 坐标形式下的数量积运算★答案★ -8解析 设M ⎝⎛⎭⎫x ,12x , 则MA →=⎝⎛⎭⎫1-x ,7-12x ,MB →=⎝⎛⎭⎫5-x ,1-12x , MA →·MB →=(1-x )(5-x )+⎝⎛⎭⎫7-12x ⎝⎛⎭⎫1-12x =54(x -4)2-8. 所以当x =4时,MA →·MB →取得最小值-8.三、解答题12.已知a ,b ,c 是同一平面内的三个向量,其中a =(1,2).(1)若|c |=25,且c 与a 方向相反,求c 的坐标;(2)若|b |=52,且a +2b 与2a -b 垂直,求a 与b 的夹角θ. 考点 向量平行与垂直的坐标表示的应用题点 向量平行与垂直的坐标表示的综合应用解 (1)设c =(x ,y ),由c ∥a 及|c |=25,可得⎩⎪⎨⎪⎧ 1·y -2·x =0,x 2+y 2=20,所以⎩⎪⎨⎪⎧ x =2,y =4或⎩⎪⎨⎪⎧x =-2,y =-4, 因为c 与a 方向相反,所以c =(-2,-4).(2)因为(a +2b )⊥(2a -b ),所以(a +2b )·(2a -b )=0,即2a 2+3a ·b -2b 2=0,所以2|a |2+3a ·b -2|b |2=0,所以2×5+3a ·b -2×54=0, 所以a ·b =-52.所以cos θ=a ·b |a ||b |=-1. 又因为θ∈[0,π],所以θ=π.13.平面内有向量OA →=(1,7),OB →=(5,1),OP →=(2,1),点Q 为直线OP 上的一个动点.(1)当QA →·QB →取最小值时,求OQ →的坐标;(2)当点Q 满足(1)的条件和结论时,求cos ∠AQB 的值. 考点 向量平行与垂直的坐标表示的应用题点 向量平行与垂直的坐标表示的综合应用解 (1)设OQ →=(x ,y ),∵Q 在直线OP 上,∴向量OQ →与OP →共线.又OP →=(2,1),∴x -2y =0,∴x =2y ,∴OQ →=(2y ,y ).又QA →=OA →-OQ →=(1-2y,7-y ),QB →=OB →-OQ →=(5-2y,1-y ),∴QA →·QB →=(1-2y )(5-2y )+(7-y )(1-y )=5y 2-20y +12=5(y -2)2-8.故当y =2时,QA →·QB →有最小值-8,此时OQ →=(4,2).(2)由(1)知QA →=(-3,5),QB →=(1,-1),QA →·QB →=-8,|QA →|=34,|QB →|=2,∴cos ∠AQB =QA →·QB →|QA →|·|QB →|=-834×2=-41717. 四、探究与拓展14.已知向量a =(1,1),b =(1,m ),其中m 为实数,则当a 与b 的夹角在⎝⎛⎭⎫0,π12内变动时,实数m 的取值范围是( )A .(0,1)B.⎝⎛⎭⎫33,3C.⎝⎛⎭⎫33,1∪(1,3) D .(1,3) 考点 平面向量夹角的坐标表示与应用题点 已知坐标形式下的向量夹角求参数★答案★ C解析 如图,作OA →=a ,则A (1,1).作OB 1→,OB 2→,使∠AOB 1=∠AOB 2=π12, 则∠B 1Ox =π4-π12=π6, ∠B 2Ox =π4+π12=π3, 故B 1⎝⎛⎭⎫1,33,B 2(1,3). 又a 与b 的夹角不为0,故m ≠1.由图可知实数m 的取值范围是⎝⎛⎭⎫33,1∪(1,3). 15.已知OA →=(4,0),OB →=(2,23),OC →=(1-λ)OA →+λOB →(λ2≠λ). (1)求OA →·OB →及OA →在OB →上的投影;(2)证明A ,B ,C 三点共线,且当AB →=BC →时,求λ的值;(3)求|OC →|的最小值.考点 平面向量模与夹角的坐标表示的应用 题点 平面向量模的坐标表示的应用解 (1)OA →·OB →=8,设OA →与OB →的夹角为θ,则cos θ=OA →·OB →|OA →||OB →|=84×4=12, ∴OA →在OB →上的投影为|OA →|cos θ=4×12=2. (2)AB →=OB →-OA →=(-2,23),BC →=OC →-OB →=(1-λ)OA →-(1-λ)OB →=(λ-1)AB →,又因为BC →与AB →有公共点B ,所以A ,B ,C 三点共线. 当AB →=BC →时,λ-1=1,所以λ=2.(3)|OC →|2=(1-λ)2OA →2+2λ(1-λ)OA →·OB →+λ2OB →2=16λ2-16λ+16=16⎝⎛⎭⎫λ-122+12, ∴当λ=12时,|OC →|取最小值2 3.。

第二章 2.4 2.4.2 平面向量数量积的坐标表示、模、夹角

第二章 2.4 2.4.2 平面向量数量积的坐标表示、模、夹角

2.4.2平面向量数量积的坐标表示、模、夹角1.两向量的数量积与两向量垂直的坐标表示已知两个非零向量,向量a=(x1,y1),b=(x2,y2),a与b的夹角为θ.数量积两个向量的数量积等于它们对应坐标的乘积的和,即a·b=x1x2+y1y2向量垂直a⊥b⇔x1x2+y1y2=0[点睛]记忆口诀:数量积的坐标表示可简记为“对应相乘计算和”.2.与向量的模、夹角相关的三个重要公式(1)向量的模:设a=(x,y),则|a|=x2+y2.(2)两点间的距离公式:若A(x1,y1),B(x2,y2),则|AB|=(x1-x2)2+(y1-y2)2.(3)向量的夹角公式:设两非零向量a=(x1,y1),b=(x2,y2),a与b的夹角为θ,则cos θ=a·b|a||b|=x1x2+y1y2x21+y21·x22+y22.平面向量数量积的坐标运算[典例](1)向量a=(1,-1),b=(-1,2),则(2a+b)·a=()A.-1B.0C.1 D.2(2)在平面直角坐标系xOy中,已知四边形ABCD是平行四边形,AB=(1,-2),AD =(2,1),则AD·AC=()A.5 B.4C.3 D.2[活学活用]已知向量a与b同向,b=(1,2),a·b=10.(1)求向量a的坐标;(2)若c=(2,-1),求(b·c)·a.向量的模的问题[典例] (1)设x ,y ∈R ,向量a =(x,1),b =(1,y ),c =(2,-4),且a ⊥c ,b ∥c ,则|a +b |=( )A. 5B.10 C .2 5D .10(2)已知点A (1,-2),若向量AB 与a =(2,3)同向,|AB |=213,则点B 的坐标是________.[活学活用]1.已知向量a =(cos θ,sin θ),向量b =(3,0),则|2a -b |的最大值为________.2.已知平面向量a =(2,4),b =(-1,2),若c =a -(a ·b )b ,则|c |=________.向量的夹角和垂直问题[典例] (1)已知a =(3,2),b =(-1,2),(a +λb )⊥b ,则实数λ=________.(2)已知a =(2,1),b =(-1,-1),c =a +kb ,d =a +b ,c 与d 的夹角为π4,则实数k 的值为________.[活学活用]已知平面向量a =(3,4),b =(9,x ),c =(4,y ),且a ∥b ,a ⊥c . (1)求b 与c ;(2)若m =2a -b ,n =a +c ,求向量m ,n 的夹角的大小.求解平面向量的数量积[典例] 已知点A ,B ,C 满足|AB |=3,|BC |=4,|CA |=5,求AB ·BC +BC ·CA +CA ·AB 的值.[活学活用]如果正方形OABC 的边长为1,点D ,E 分别为AB ,BC 的中点,那么cos ∠DOE 的值为________.层级一 学业水平达标1.已知向量a =(0,-23),b =(1,3),则向量a 在b 方向上的投影为( ) A.3 B .3 C .- 3D .-32.设x ∈R ,向量a =(x,1),b =(1,-2),且a ⊥b ,则|a +b |=( ) A. 5 B.10 C .2 5D .103.已知向量a =(2,1),b =(-1,k ),a ·(2a -b )=0,则k =( ) A .-12 B .-6 C .6 D .12 4.a ,b 为平面向量,已知a =(4,3),2a +b =(3,18),则a ,b 夹角的余弦值等于( )A .865B .-865C .1665D .-16655.已知A (-2,1),B (6,-3),C (0,5),则△ABC 的形状是( ) A .直角三角形 B .锐角三角形 C .钝角三角形D .等边三角形6.设向量a =(1,2m ),b =(m +1,1),c =(2,m ).若(a +c )⊥b ,则|a|=________. 7.已知向量a =(1,3),2a +b =(-1,3),a 与2a +b 的夹角为θ,则θ=________. 8.已知向量a =(3,1),b 是不平行于x 轴的单位向量,且a·b =3,则向量b 的坐标为________.9.已知平面向量a =(1,x ),b =(2x +3,-x ),x ∈R. (1)若a ⊥b ,求x 的值; (2)若a ∥b ,求|a -b |.10.在平面直角坐标系xOy 中,已知点A (1,4),B (-2,3),C (2,-1). (1)求AB ·AC 及|AB +AC |;(2)设实数t 满足(AB -t OC )⊥OC ,求t 的值.层级二 应试能力达标1.设向量a =(1,0),b =⎝⎛⎭⎫12,12,则下列结论中正确的是( ) A .|a |=|b | B .a ·b =22C .a -b 与b 垂直D .a ∥b2.已知向量OA =(2,2),OB =(4,1),在x 轴上有一点P ,使AP ·BP 有最小值,则点P 的坐标是( )A .(-3,0)B .(2,0)C .(3,0)D .(4,0) 3.若a =(x,2),b =(-3,5),且a 与b 的夹角是钝角,则实数x 的取值范围是( )A.⎝⎛⎭⎫-∞,103 B.⎝⎛⎦⎤-∞,103 C.⎝⎛⎭⎫103,+∞D.⎣⎡⎭⎫103,+∞4.已知OA =(-3,1),OB =(0,5),且AC ∥OB ,BC ⊥AB (O 为坐标原点),则点C 的坐标是( )A.⎝⎛⎭⎫-3,-294 B.⎝⎛⎭⎫-3,294 C.⎝⎛⎭⎫3,294 D.⎝⎛⎭⎫3,-294 5.平面向量a =(1,2),b =(4,2),c =ma +b (m ∈R),且c 与a 的夹角等于c 与b 的夹角,则m =________.6.已知正方形ABCD 的边长为1,点E 是AB 边上的动点,则DE ·CB 的值为______;DE ·DC 的最大值为______.7.已知a ,b ,c 是同一平面内的三个向量,其中a =(1,2). (1)若|c |=25,且c ∥a ,求c 的坐标; (2)若|b |=52,且a +2b 与2a -b 垂直,求a 与b 的夹角θ.8.已知OA=(4,0),OB=(2,23),OC=(1-λ)OA+λOB(λ2≠λ).(1)求OA·OB及OA在OB上的投影;(2)证明A,B,C三点共线,且当AB=BC时,求λ的值;(3)求|OC|的最小值.。

平面向量的数量积和向量积

平面向量的数量积和向量积

平面向量的数量积和向量积平面向量是高中数学中的一个重要概念,它具有方向和大小,并且是可以进行运算的。

在平面向量的运算中,数量积和向量积是两个常见且重要的运算。

一、数量积1. 定义数量积又称为点积、内积或标量积,用符号"·"表示。

对于平面内两个向量A(x₁, y₁)和B(x₂, y₂),它们的数量积为:A·B = x₁x₂ + y₁y₂其中,x₁、x₂为A和B的横坐标,y₁、y₂为A和B的纵坐标。

2. 计算方法根据数量积的定义,计算方法简单直接。

对于任意两个向量A和B,只需将它们的横纵坐标带入公式即可。

例如,对于向量A(3,2)和向量B(4,-1),它们的数量积为:A·B = 3*4 + 2*(-1) = 12 - 2 = 103. 特性数量积具有以下几个重要的特性:- 结果为标量:数量积的结果是一个数,即标量,没有方向。

- 交换律:A·B = B·A,即数量积满足交换律。

若夹角为θ,则A·B = |A||B|cosθ,其中|A|和|B|为向量的长度。

二、向量积1. 定义向量积又称为叉积、外积或矢量积,用符号"×"表示。

对于平面内两个向量A(x₁, y₁)和B(x₂, y₂),它们的向量积为:A×B = (0, 0, x₁y₂ - x₂y₁)其中,向量积是一个垂直于平面的向量,其大小为由A和B所张成的平行四边形的面积。

2. 计算方法根据向量积的定义,计算方法稍微复杂一些。

对于任意两个向量A 和B,只需将它们的横纵坐标带入公式,得到一个新的向量。

例如,对于向量A(3,2)和向量B(4,-1),它们的向量积为:A×B = (0, 0, 3*(-1) - 4*2) = (0, 0, -11)3. 特性向量积具有以下几个重要的特性:- 结果为向量:向量积的结果是一个向量,具有方向和大小。

数学(2.4.2平面向量数量积的坐标表示、模、夹角)

数学(2.4.2平面向量数量积的坐标表示、模、夹角)

方向性
向量的模只与向量的长度有关, 与其方向无关。
模的计算方法
定义法
根据定义直接计算向量的模 。
勾股定理法
如果向量在直角坐标系中的 坐标已知,可以使用勾股定 理计算模。
向量分解法
将向量分解为两个互相垂直 的分量,然后分别求出分量 的模,再求和。
模的性质
共线性质
如果两个向量共线,那么它们的模相等或互为相反数。
05
实例分析
数量积的坐标表示实例
要点一
总结词
通过具体例题,展示如何利用坐标表示计算平面向量的数 量积。
要点二
详细描述
假设有两个向量$overset{longrightarrow}{a} = (x_{1}, y_{1})$和$overset{longrightarrow}{b} = (x_{2}, y_{2})$, 它们的数量积为$overset{longrightarrow}{a} cdot overset{longrightarrow}{b} = x_{1}x_{2} + y_{1}y_{2}$。 通过具体例题,展示如何利用坐标表示计算平面向量的数量 积。
平面向量的模
定义与性质
定义
平面向量$vec{a}$的模定义为 $left|vec{a}right| = sqrt{a_1^2 + a_2^2}$,其中$a_1$和$a_2$ 分别是向量$vec{a}$模总是非负的,即 $left|vec{a}right| geq 0$。
数量积与夹角的关系
数量积与夹角余弦值的关系
向量的数量积等于两个向量模的乘积乘以它们夹角的余弦值,即$mathbf{A} cdot mathbf{B} = |mathbf{A}| times |mathbf{B}| times costheta$。

示范教案(2.4.2 平面向量数量积的坐标表示、模、夹角)

示范教案(2.4.2  平面向量数量积的坐标表示、模、夹角)

2.4.2 平面向量数量积的坐标表示、模、夹角整体设计教学分析平面向量的数量积,教材将其分为两部分.在第一部分向量的数量积中,首先研究平面向量所成的角,其次,介绍了向量数量积的定义,最后研究了向量数量积的基本运算法则和基本结论;在第二部分平面向量数量积的坐标表示中,在平面向量数量积的坐标表示的基础上,利用数量积的坐标表示研讨了平面向量所成角的计算方式,得到了两向量垂直的判定方法,本节是平面向量数量积的第二部分.前面我们学习了平面向量的数量积,以及平面向量的坐标表示.那么在有了平面向量的坐标表示以及坐标运算的经验和引进平面向量的数量积后,就顺其自然地要考虑到平面向量的数量积是否也能用坐标表示的问题.另一方面,由于平面向量数量积涉及了向量的模、夹角,因此在实现向量数量积的坐标表示后,向量的模、夹角也都可以与向量的坐标联系起来.利用平面向量的坐标表示和坐标运算,结合平面向量与平面向量数量积的关系来推导出平面向量数量积以及向量的模、夹角的坐标表示.教师应在坐标基底向量的数量积的基础上,推导向量数量积的坐标表示.通过例题分析、课堂训练,让学生总结归纳出对于向量的坐标、数量积、向量所成角及模等几个因素,知道其中一些因素,求出其他因素基本题型的求解方法.平面向量数量积的坐标表示是在学生学习了平面向量的坐标表示和平面向量数量积的基础上进一步学习的,这都为数量积的坐标表示奠定了知识和方法基础.三维目标1.通过探究平面向量的数量积的坐标运算,掌握两个向量数量积的坐标表示方法.2.掌握两个向量垂直的坐标条件以及能运用两个向量的数量积的坐标表示解决有关长度、角度、垂直等几何问题.3.通过平面向量数量积的坐标表示,进一步加深学生对平面向量数量积的认识,提高学生的运算速度,培养学生的运算能力,培养学生的创新能力,提高学生的数学素质.重点难点教学重点:平面向量数量积的坐标表示.教学难点:向量数量积的坐标表示的应用.课时安排1课时教学过程导入新课思路1.平面向量的表示方法有几何法和坐标法,向量的表示形式不同,对其运算的表示方式也会改变.向量的坐标表示,为我们解决有关向量的加、减、数乘运算带来了极大的方便.上一节,我们学习了平面向量的数量积,那么向量的坐标表示,对平面向量的数量积的表示方式又会带来哪些变化呢?由此直接进入主题.思路2.在平面直角坐标系中,平面向量可以用有序实数对来表示,两个平面向量共线的条件也可以用坐标运算的形式刻画出来,那么学习了平面向量的数量积之后,它能否用坐标来表示?若能,如何通过坐标来实现呢?平面向量的数量积还会是一个有序实数对吗?同时,平面向量的模、夹角又该如何用坐标来表示呢?通过回顾两个向量的数量积的定义和向量的坐标表示,在此基础上引导学生推导、探索平面向量数量积的坐标表示.推进新课新知探究提出问题①平面向量的数量积能否用坐标表示?②已知两个非零向量a =(x 1,y 1),b =(x 2,y 2),怎样用a 与b 的坐标表示a ·b 呢?③怎样用向量的坐标表示两个平面向量垂直的条件?④你能否根据所学知识推导出向量的长度、距离和夹角公式?活动:教师引导学生利用前面所学知识对问题进行推导和探究.前面学习了向量的坐标可以用平面直角坐标系中的有序实数对来表示,而且我们也知道了向量的加、减以及实数与向量积的线性运算都可以用坐标来表示.两个向量共线时它们对应的坐标也具备某种关系,那么我们就自然而然地想到既然向量具有数量积的运算关系,这种运算关系能否用向量的坐标来表示呢?教师提示学生在向量坐标表示的基础上结合向量的坐标运算进行推导数量积的坐标表示.教师可以组织学生到黑板上板书推导过程,教师给予必要的提示和补充.推导过程如下:∵a =x 1i+y 1j ,b =x 2i+y 2j ,∴a ·b =(x 1i+y 1j )·(x 2i+y 2j )=x 1x 2i2+x 1y 2i·j +x 2y 1i·j +y 1y 2j 2.又∵i·i=1,j ·j =1,i·j =j ·i=0,∴a ·b =x 1x 2+y 1y 2.教师给出结论性的总结,由此可归纳如下:1°平面向量数量积的坐标表示两个向量的数量积等于它们对应坐标的乘积的和,即a =(x 1,y 1),b =(x 2,y 2),则a ·b =x 1x 2+y 1y 2.2°向量模的坐标表示若a =(x,y),则|a |2=x 2+y 2,或|a |=22y x +.如果表示向量a 的有向线段的起点和终点的坐标分别为(x 1,y 1)、(x 2,y 2),那么a =(x 2-x 1,y 2-y 1),|a |=.)()(212212y y x x -+-3°两向量垂直的坐标表示设a =(x 1,y 1),b =(x 2,y 2),则a ⊥b ⇔x 1x 2+y 1y 2=0.4°两向量夹角的坐标表示设a 、b 都是非零向量,a =(x 1,y 1),b =(x 2,y 2),θ是a 与b 的夹角,根据向量数量积的定义及坐标表示,可得 cosθ=222221212121||||y x y x y y x x b a ba +∙++=∙讨论结果:略.应用示例例1 已知A(1,2),B(2,3),C(-2,5),试判断△ABC 的形状,并给出证明.活动:教师引导学生利用向量数量积的坐标运算来解决平面图形的形状问题.判断平面图形的形状,特别是三角形的形状时主要看边长是否相等,角是否为直角.可先作出草图,进行直观判定,再去证明.在证明中若平面图形中有两个边所在的向量共线或者模相等,则此平面图形与平行四边形有关;若三角形的两条边所在的向量模相等或者由两边所在向量的数量积为零,则此三角形为等腰三角形或者为直角三角形.教师可以让学生多总结几种判断平面图形形状的方法.解:在平面直角坐标系中标出A(1,2),B(2,3),C(-2,5)三点,我们发现△ABC 是直角三角形.下面给出证明. ∵AB =(2-1,3-2)=(1,1),AC =(-2-1,5-2)=(-3,3), ∴AB ·AC =1×(-3)+1×3=0. ∴AB ⊥AC .∴△ABC 是直角三角形.点评:本题考查的是向量数量积的应用,利用向量垂直的条件和模长公式来判断三角形的形状.当给出要判定的三角形的顶点坐标时,首先要作出草图,得到直观判定,然后对你的结论给出充分的证明.变式训练在△ABC 中,AB =(2,3),AC =(1,k),且△ABC 的一个内角为直角,求k 的值.解:由于题设中未指明哪一个角为直角,故需分别讨论.若∠A=90°,则AB ⊥AC ,所以AB ·AC =0. 于是2×1+3k=0.故k=32-.同理可求,若∠B=90°时,k 的值为311; 若∠C=90°时,k 的值为2133±. 故所求k 的值为32-或311或2133±.例2 (1)已知三点A(2,-2),B(5,1),C(1,4),求∠BAC 的余弦值;(2)a =(3,0),b =(-5,5),求a 与b 的夹角.活动:教师让学生利用向量的坐标运算求出两向量a =(x 1,y 1)与b =(x 2,y 2)的数量积a ·b =x 1x 2+y 1y 2和模|a |=2121y x +,|b |=2222y x +的积,其比值就是这两个向量夹角的余弦值,即cosθ=222221212121||||y x y x y y x x b a ba +∙++=∙.当求出两向量夹角的余弦值后再求两向量的夹角大小时,需注意两向量夹角的范围是0≤θ≤π.学生在解这方面的题目时需要把向量的坐标表示清楚,以免出现不必要的错误.解:(1)AB =(5,1)-(2,-2)=(3,3), AC =(1,4)-(2,-2)=(-1,6), ∴AB ·AC =3×(-1)+3×6=15.又∵|AB |=2233+=32,|AC |=226)1(+-=37,∴cos ∠BAC=.74745372315||||=∙=∙AC AB ACAB(2)a ·b =3×(-5)+0×5=-15,|a |=3,|b |=52.设a 与b 的夹角为θ,则 cosθ=.2225315||||-=⨯-=∙b a ba 又∵0≤θ≤π,∴θ=43π.点评:本题考查的是利用向量的坐标表示来求两向量的夹角.利用基本公式进行运算与求解主要是对基础知识的巩固与提高.变式训练设a =(5,-7),b =(-6,-4),求a ·b 及a 、b 间的夹角θ.(精确到1°)解:a ·b =5×(-6)+(-7)×(-4)=-30+28=-2.|a |=74)7(522=-+,|b |=52)4()6(22=-+- 由计算器得cosθ=52742⨯-≈-0.03.利用计算器中得θ≈92°.例3 已知|a |=3,b =(2,3),试分别解答下面两个问题:(1)若a ⊥b ,求a ;(2)若a ∥b ,求a.活动:对平面中的两向量a =(x 1,y 1)与b =(x 2,y 2),要让学生在应用中深刻领悟其本质属性,向量垂直的坐标表示x 1x 2+y 1y 2=0与向量共线的坐标表示x 1y 2-x 2y 1=0很容易混淆,应仔细比较并熟记,当难以区分时,要从意义上鉴别,两向量垂直是a ·b =0,而共线是方向相同或相反.教师可多加强反例练习,多给出这两种类型的同式变形训练.解:(1)设a =(x,y),由|a |=3且a ⊥b ,得⎩⎨⎧=+==+,032,9||222x x a y x 解得⎪⎪⎩⎪⎪⎨⎧-==⎪⎪⎩⎪⎪⎨⎧=-=,13136,1313913136,13139y x y x 或 ∴a =或)13136,13139(-a =.13136,13139-(2)设a =(x,y),由|a |=3且a ∥b ,得⎩⎨⎧=-==+.023,9||222y x a y x解得⎪⎪⎩⎪⎪⎨⎧==13139,13136y x 或⎪⎪⎩⎪⎪⎨⎧-=-=.13139,13136y x ∴a =或)13139,13136(a =)13139,13136(--.点评:本题主要考查学生对公式的掌握情况,学生能熟练运用两向量的坐标运算来判断垂直或者共线,也能熟练地进行公式的逆用,利用已知关系来求向量的坐标.变式训练求证:一次函数y=2x-3的图象(直线l 1)与一次函数y=21-x 的图象(直线l 2)互相垂直.解:在l 1:y=2x-3中,令x=1得y=-1;令x=2得y=1,即在l 1上取两点A(1,-1),B(2,1).同理,在直线l 2上取两点C(-2,1),D(-4,2),于是:AB =(2,1)-(1,-1)=(2-1,1+1)=(1,2),CD =(-4,2)-(-2,1)=(-4+2,2-1)=(-2,1).由向量的数量积的坐标表示,可得AB ·CD =1×(-2)+1×2=0, ∴AB ⊥CD ,即l 1⊥l 2.知能训练课本本节练习.解答:1.|a |=5,|b |=29,a ·b=-7.2.a ·b =8,(a +b )·(a -b )=-7,a ·(a +b )=0,(a +b )2=49.3.a ·b =1,|a |=13,|b |=74,θ≈88°.课堂小结1.在知识层面上,先引导学生归纳平面向量数量积的坐标表示,向量的模,两向量的夹角,向量垂直的条件.其次引导学生总结数量积的坐标运算规律,夹角和距离公式、两向量垂直的坐标表示.2.在思想方法上,教师与学生一起回顾探索过程中用到的思维方法和数学思想方法,定义法,待定系数法等.作业课本习题2.4 A 组8、9、10.设计感想由于本节课是对平面向量的进一步探究与应用,是对平面向量几何意义的综合研究提高,因此教案设计流程是探究、发现、应用、提高,这符合新课程理念,符合新课标要求.我们知道平面向量的数量积是本章最重要的内容,也是高考中的重点,既有选择题、填空题,也有解答题(大多同立体几何、解析几何综合考查),故学习时要熟练掌握基本概念和性质及其综合运用.而且数量积的坐标表示又是向量运算的一个重要内容,用坐标表示直角坐标平面内点的位置,是解析几何的一个基本特征,从而以坐标为桥梁可以建立向量与解析几何的内在联系.以三角函数表示点的坐标,又可以沟通向量与三角函数的相互关系,由此就产生出一类向量与解析几何及三角函数交汇的综合性问题.平面向量数量积的坐标表示使得向量数量积的应用更为方便,也拓宽了向量应用的途径.通过学习本节的内容,要更加加深对向量数量积概念的理解,同时善于运用坐标形式运算解决数量问题,尤其是有关向量的夹角、长度、垂直等,往往可以使问题简单化.灵活使用坐标形式,综合处理向量的线性运算、数量积、平行等,综合地解决向量综合题,体现数形结合的思想.在本节的学习中可以通过对实际问题的抽象来培养学生分析问题、解决问题和应用知识解决问题的意识与能力.。

高中数学第二章平面向量2.4.1平面向量数量积的物理背景及其含义课件新人教A版必修4

高中数学第二章平面向量2.4.1平面向量数量积的物理背景及其含义课件新人教A版必修4

向量的数量积
定义
已知两个非零向量 a 与 b,我们把数量_|a_||_b_|c_o_s__θ叫作 a 与 b 的 数量积,记作_a_·_b_,即 a·b=_|a_||_b_|c_o_s__θ,其中 θ 是 a 与 b 的夹角.零 向量与任一向量的数量积为__0__.
几何意义
|a|cos θ(|b|cos θ)叫做向量 a 在 b 方向上(b 在 a 方向上)的 __投__影__.a·b 的几何意义:数量积 a·b 等于 a 的长度|a|与 b 在 a 的方 向上的投影|b|cos θ 的_乘__积___
为________,b 在 a 方向上的投影为________.
【解析】 (1)设B→A=a,B→C=b,则 a·b=12,|a|=|b|=1.D→E=12 A→C=12(b-a),D→F=32D→E=34(b-a),A→F=A→D+D→F=-12a+34(b-a) =-54a+34b,A→F·B→C=-54a·b+34b2=-58+34=18.答Leabharlann :(1)π3 (2)见解析性质
(1)a⊥b⇔___a_·_b___=0; (2)当 a 与 b 同向时,a·b=_|a_|_|b_|;当 a 与 b 反向时,a·b=__-__|a_||_b_|_; (3)a·a=|a|2 或|a|= a·a= a2;
a·b (4)cos θ=__|_a_|·_|b_|__; (5)|a·b|≤|a||b|
考试标准
课标要点
学考要求 高考要求
平面向量数量积的概念及其物理意义
b
b
平面向量投影的概念
a
a
平面向量数量积的性质及运算律
b
b
知识导图
学法指导 1.本节的重点是平面向量数量积的概念、向量的模及夹角的表 示,难点是平面向量数量积运算律的理解及平面向量数量积的应 用. 2.向量的数量积与数的乘法既有区别又有联系,学习时注意 对比,明确数的乘法中成立的结论在向量的数量积中是否成立.
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019-2020学年高中数学 第二章 平面向量 2.4.2 平面向量数量积的坐标
表示模夹角教案1 新人教A 版必修4
教学目标:
(i)知识目标:
(1)掌握平面向量数量积的坐标表示.
(2) 平面向量数量积的应用.
(ii)能力目标:
(1) 培养学生应用平面向量积解决相关问题的能力.
(2) 正确运用向量运算律进行推理、运算.
教学重点: 用数量积求夹角、距离及平面向量数量积的坐标运算.
教学难点: 平面向量数量积的综合应用.
教学过程:
一、知识梳理
1.平面向量数量积的坐标表示
①已知两个向量),(11y x a = ,),(22y x b = ,则b a ⋅2121y y x x +=.
②设),(y x a = ,则22||y x a += . ③平面内两点间的距离公式 如果表示向量a 的有向线段的起点和终点的坐标分别为 ),(11y x 、),(22y x ,那么221221)()(||y y x x a -+-= .
④向量垂直的判定 两个非零向量),(11y x a = ,),(22y x b = ,则b a ⊥⇔02121=+y y x x .
⑤两向量夹角的余弦 co s θ =|
|||b a b a ⋅⋅ 222221212121y x y x y y x x +++=
(πθ≤≤0). 二、典型例题 1. 例5解:做图观察,发现三角形有一个内角为直角,构造向量证明向量的数量积为0 例6解:直接应用公式计算,根据夹角余弦值和夹角的范围推出夹角的度数
2.平面向量数量积的综合应用
例题 已知向量(sin ,1),(1,cos ),22a b π
π
θθθ==-<<.
(1) 若,a b θ⊥求 ; (2)求a b +的最大值 .
解:(1)若a b ⊥,则sin cos 0θθ+=,tan 1,()224π
π
π
θθθ⇒=--<<∴=-.
(2) a b +=22(sin 1)(1cos )32(sin cos )θθθθ+++=++322sin()4π
θ++
3,,22444πππππθθ-<<∴-<+< 2sin()(,1]42πθ∴+∈- 4π
θ∴=当时,a b +的最大值为2322(21)21+=+=+.
例题 已知向量(cos ,sin ),(cos ,sin )a b ααββ==,且,a b 满足3ka b a kb +=-,k R +∈
(1) 求证()()a b a b +⊥- ; (2)求函数()f k 的最小值及取得最小值时向量a 与向量b 的夹角
θ.
解:(1) (cos ,sin ),(cos ,sin )a b ααββ==
2222()()||||110a b a b a b a b ∴+-=-=-=-=, 故 ()()a b a b +⊥-
(2) 21111()2444442k k k f k k k k +==+≥=,此时当1,()k f k =最小值为12
. 1cos 2a b a b θ∴=
=,量a 与向量b 的夹角θ 3
π=
小结
1. 掌握平面向量数量积的定义及几何意义,熟练掌握两个向量数量积的五个性质及三个运算率.
2. 灵活应用公式a ⋅b = |a ||b |cos
, b a ⋅2121y y x x += , 22||y x a += . 3. 平面向量数量积的综合应用
作业
习题卷。

相关文档
最新文档