北师大版数学九年级下册全册测试题

合集下载

2022学年北师大版九年级数学下册第3章《圆》综合测试题附答案解析

2022学年北师大版九年级数学下册第3章《圆》综合测试题附答案解析

2022-2023学年九年级数学下册第3章《圆》综合测试题(满分120分)一、选择题(每题3分,共30分)1.下列命题为真命题的是()A .两点确定一个圆B .度数相等的弧相等C .垂直于弦的直径平分弦D .相等的圆周角所对的弧相等,所对的弦也相等2.已知⊙O 的半径为5,点P 到圆心O 的距离为6,那么点P 与⊙O 的位置关系是()A .点P 在⊙O 外B .点P 在⊙O 内C .点P 在⊙O 上D .无法确定3.如图,⊙O 是△ABC 的外接圆,∠BOC =120°,则∠BAC 的度数是()A .70°B .60°C .50°D .30°4.如图,AB ,AC 为⊙O 的切线,B 和C 是切点,延长OB 到D ,使BD =OB ,连接AD .如果∠DAC =78°,那么∠ADO 等于()A .70°B .64°C .62°D .51°5.如图,AB ︵=BC ︵=CD ︵,OB ,OC 分别交AC ,BD 于点E ,F ,则下列结论不一定正确的是()A .AC =BD B .OE ⊥AC ,OF ⊥BD C .△OEF 为等腰三角形D .△OEF 为等边三角形6.如图,在直角坐标系中,一个圆经过坐标原点O ,交坐标轴于点E ,F ,OE =8,OF =6,则圆的直径长为()A .12B .10C .14D .157.如图,△PQR 是⊙O 的内接正三角形,四边形ABCD 是⊙O 的内接正方形,BC ∥QR ,则∠AOQ 等于()A .60°B .65°C .72°D .75°8.秋千拉绳长3m ,静止时踩板离地面0.5m ,某小朋友荡秋千时,秋千在最高处踩板离地面2m(左右对称),如图所示,则该秋千所荡过的圆弧AB ︵的长为()A .πmB .2πm C.43πm D.32πm9.如图,PA ,PB 切⊙O 于A ,B 两点,CD 切⊙O 于点E ,交PA ,PB 于点C 和点D .若△PCD 的周长为⊙O 半径的3倍,则t a n ∠APB 等于()A.125 B.3513 C.2313 D.51210.如图,在平面直角坐标系中,⊙P 的圆心坐标是(3,a )(a >3),半径为3,函数y =x 的图象被⊙P 截得的弦AB 的长为42,则a 的值是()A .4B .3+2C .32D .3+3二、填空题(每题3分,共24分)11.如图,AB 为⊙O 的直径,CD ⊥AB ,若AB =10,CD =8,则圆心O 到弦CD 的距离为________.12.如图,EB ,EC 是⊙O 的两条切线,B ,C 是切点,A ,D 是⊙O 上两点,如果∠E =46°,∠DCF =32°,那么∠A =________.13.如图,DB 切⊙O 于点A ,∠AOM =66°,则∠DAM =________.14.如图,AB ,CD 是⊙O 的弦,AB ⊥CD ,BE 是⊙O 的直径,若AC =3,则DE =________.15.如图,水平放置的圆柱形油槽的截面直径是52c m ,装入油后,油深CD 为16c m ,那么油面宽度AB=________.16.如图,在扇形OAB 中,∠AOB =90°,点C 为OA 的中点,CE ⊥OA 交AB ︵于点E ,以点O 为圆心,OC为半径作CD ︵交OB 于点D .若OA =2,则阴影部分的面积为________.17.如图,在△ABC 中,∠C =90°,AC =3,AB =5,D 为BC 边的中点,以AD 上一点O 为圆心的⊙O 和AB ,BC 均相切,则⊙O 的半径为________.18.如图,在⊙O 中,C ,D 分别是OA ,OB 的中点,MC ⊥AB ,ND ⊥AB ,M ,N 在⊙O 上.下列结论:①MC =ND ;②AM ︵=MN ︵=NB ︵;③四边形MCDN 是正方形;④MN =12AB .其中正确的结论有_____(填序号).三、解答题(19题8分,20,21每题10分,22,23每题12分,24题14分,共66分)19.如图,AB 是⊙O 的直径,PA 切⊙O 于A ,OP 交⊙O 于C ,连接BC ,若∠P =30°,求∠B 的度数.20.如图,AB 是⊙O 的直径,BD 是⊙O 的弦,延长BD 到点C ,使DC =BD ,连接AC ,过点D 作DE ⊥AC ,垂足为E .(1)求证:AB =AC .(2)若⊙O 的半径为4,∠BAC =60°,求DE 的长.21.如图,点P 在y 轴上,⊙P 交x 轴于A ,B 两点,连接BP 并延长交⊙P 于点C ,过点C 的直线y =2x+b 交x 轴于点D ,且⊙P 的半径为5,AB =4.(1)求点B ,P ,C 的坐标.(2)求证:CD 是⊙P 的切线.22.如图,CB和CD切⊙O于B,D两点,A为圆周上一点,且∠1:∠2:∠3=1:2:3,BC=3,求∠AOD所对扇形的面积S.23.如图,一拱形公路桥,圆弧形桥拱的水面跨度AB=80m,桥拱到水面的最大高度为20m.(1)求桥拱所在圆的半径.(2)现有一艘宽60m,顶部截面为长方形且高出水面9m的轮船要经过这座拱桥,这艘轮船能顺利通过吗?请说明理由.24.如图,已知在△ABP中,C是BP边上一点,∠PAC=∠PBA,⊙O是△ABC的外接圆,AD是⊙O的直径,且交BP于点E.(1)求证:PA是⊙O的切线.(2)过点C作CF⊥AD,垂足为点F,延长CF交AB于点G,若AG·AB=12,求AC的长.(3)在满足(2)的条件下,若AF∶FD=1∶2,GF=1,求⊙O的半径及sin∠ACE的值.参考答案一、1.C 2.A3.B4.B5.D6.B 7.D 8.B 9.A 10.B二、11.3【点拨】如图,连接OC ,设AB ⊥CD 于E .∵AB 为⊙O 的直径,AB =10,∴OC =5.∵CD ⊥AB ,CD =8,∴CE =4,∴OE =OC 2-CE 2=52-42=3.12.99°【点拨】易知EB =EC .又∠E =46°,所以∠ECB =67°.从而∠BCD =180°-67°-32°=81°.在⊙O 中,∠BCD 与∠A 互补,所以∠A =180°-81°=99°.13.147°【点拨】因为DB 是⊙O 的切线,所以OA ⊥DB .由∠AOM =66°,得∠OAM =12×(180°-66°)=57°.所以∠DAM =90°+57°=147°.14.3【点拨】∵BE 是⊙O 的直径,∴∠BDE =90°.∴∠BDC +∠CDE =90°.又∵AB ⊥CD ,∴∠ACD +∠CAB =90°.∵∠CAB =∠BDC ,∴∠ACD =∠CDE .∴AD ︵=CE ︵.∴AD ︵-AE ︵=CE ︵-AE ︵.∴DE ︵=AC ︵.∴DE =AC =3.15.48cm16.32+π12【点拨】连接OE .∵点C 是OA 的中点,∴OC =12OA =1.∵OE =OA =2,∴OC =12OE .∵CE ⊥OA ,∴∠OEC =30°.∴∠COE =60°.在Rt △OCE 中,CE =OE 2-OC 2=3,∴S △OCE =12OC ·CE =32.∵∠AOB =90°,∴∠BOE =∠AOB -∠COE =30°.∴S 扇形BOE =30π×22360=π3.又S 扇形COD =90π×12360=π4.因此S 阴影=S 扇形BOE +S △OCE -S 扇形COD =π3+32-π4=32+π12.17.6718.①②④【点拨】连接OM ,ON ,易证Rt △OMC ≌Rt △OND ,可得MC =ND ,故①正确.在Rt △MOC中,CO =12MO ,可得∠CMO =30°,所以∠MOC =60°.易得∠MOC =∠NOD =∠MON =60°,所以AM ︵=MN ︵=NB ︵,故②正确.易得CD =12AB =OA =OM ,∵MC <OM ,∴MC <CD .∴四边形MCDN 不是正方形,故③错误.易得MN =CD =12AB ,故④正确.三、19.解:∵PA 切⊙O 于A ,AB 是⊙O 的直径,∠P =30°,∴∠AOP =60°.∴∠B =12∠AOP =30°.20.(1)证明:如图,连接AD .∵AB 是⊙O 的直径,∴∠ADB =90°.∵DC =BD ,∴AB =AC .(2)解:由(1)知AB =AC ,∵∠BAC =60°,∠ADB =90°,∴△ABC 是等边三角形,∠BAD =30°.在Rt △BAD 中,∠BAD =30°,AB =8,∴BD =4,即DC =4.又∵DE ⊥AC ,∴DE =DC ·sin C =4·sin 60°=4×32=2 3.21.(1)解:如图,连接CA .∵OP ⊥AB ,∴OB =OA =2.∵OP 2+OB 2=BP 2,∴OP 2=5-4=1,即OP =1.∵BC 是⊙P 的直径,∴∠CAB =90°.∵CP =BP ,OB =OA ,∴AC =2OP =2.∴B (2,0),P (0,1),C (-2,2).(2)证明:∵直线y =2x +b 过C 点,∴b =6.∴y =2x +6.∵当y =0时,x =-3,∴D (-3,0).∴AD =1.∵OB =AC =2,AD =OP =1,∠CAD =∠POB =90°,∴△DAC ≌△POB .∴∠DCA =∠ABC .∵∠ACB +∠ABC =90°,∴∠DCA +∠ACB =90°,即CD ⊥BC .∴CD 是⊙P 的切线.22.解:∵CD 为⊙O 的切线,∴∠ODC =90°,即OD ⊥CD .∵∠1:∠2:∠3=1:2:3,∴∠1=15°,∠2=30°,∠3=45°.连接OB .∵CB 为⊙O 的切线,∴OB ⊥BC ,BC =CD .∴∠CBD =∠3=45°,∴∠OBD =45°.又∠1+∠2=45°,∴∠BOD =90°,即OD ⊥OB .∴OD ∥BC ,CD ∥OB .∴四边形OBCD 为正方形.∵BC =3,∴OB =OD =3.∵∠1=15°,∴∠AOB =30°,∴∠AOD =120°.∴S =120360×π×32=3π.23.解:(1)如图,设点E 是桥拱所在圆的圆心.过点E 作EF ⊥AB 于点F ,延长EF 交AB ︵于点C ,连接AE ,则CF =20m .由垂径定理知,F 是AB 的中点,∴AF =FB =12AB =40m.设半径是r m ,由勾股定理,得AE 2=AF 2+EF 2=AF 2+(CE -CF )2,即r 2=402+(r -20)2.解得r =50.∴桥拱所在圆的半径为50m.(2)这艘轮船能顺利通过.理由:当宽60m 的轮船刚好可通过拱桥时,如图,MN 为轮船顶部的位置.连接EM ,设EC 与MN 的交点为D ,则DE ⊥MN ,∴DM =30m ,∴DE =EM 2-DM 2=502-302=40(m ).∵EF =EC -CF =50-20=30(m),∴DF =DE -EF =40-30=10(m).∵10m>9m ,∴这艘轮船能顺利通过.24.(1)证明:如图,连接CD .∵AD 是⊙O 的直径,∴∠ACD =90°.∴∠CAD +∠ADC =90°.又∵∠PAC =∠PBA ,∠ADC =∠PBA ,∴∠PAC =∠ADC .∴∠CAD +∠PAC =90°.∴PA ⊥DA .而AD 是⊙O 的直径,∴PA 是⊙O 的切线.(2)解:由(1)知,PA ⊥AD ,又∵CF ⊥AD ,∴CF ∥PA .∴∠GCA =∠PAC .又∵∠PAC =∠PBA ,∴∠GCA =∠PBA .而∠CAG =∠BAC ,∴△CAG ∽△BAC .∴AGAC =ACAB ,即AC 2=AG ·AB .∵AG ·AB =12,∴AC 2=12.∴AC =2 3.(3)解:设AF =x ,∵AF ∶FD =1∶2,∴FD =2x .∴AD =AF +FD =3x .易知△ACF ∽△ADC ,∴ACAD =AFAC ,即AC 2=AF ·AD .∴3x 2=12,解得x =2或x =-2(舍去).∴AF =2,AD =6.∴⊙O 的半径为3.在Rt △AFG 中,AF =2,GF =1,根据勾股定理得AG =AF 2+GF 2=22+12=5,由(2)知AG ·AB =12,∴AB =12AG =1255.连接BD ,如图所示.∵AD 是⊙O 的直径,∴∠ABD =90°.在Rt △ABD 中,∵sin ∠ADB =ABAD ,AD =6,AB =1255,∴sin ∠ADB =255.∵∠ACE =∠ADB ,∴sin ∠ACE =255.。

北师大版九年级数学下册 1.5 三角函数的应用 同步测试题(有答案)

北师大版九年级数学下册 1.5  三角函数的应用   同步测试题(有答案)
∴货船的航行速度是.
故答案为.
14.
【答案】
【解答】
解:∵,,米,
∴,
∴,,
∴,
∴,
∴米∴学校要购买米的草皮才能正好铺满空地.
故答案为:.
15.
【答案】
【解答】
解:由于山路的坡角为度,则坡角的正弦值,
∴他在竖直方向上上升的高度(米).
16.
【答案】
【解答】
解:在中,(米).
17.
【答案】
【解答】
解:由已知得,
则斜坡的坡度.
故选.
10.
【答案】
A
【解答】
故选:.
二、
11.
【答案】
【解答】
解:在中

∴.
故答案为:.
12.
【答案】
海里/分
【解答】
解:作,
∵,,
∴海里,则海里,
在中,,
则,
解得,
在中,海里,
海里/分.
故答案为:海里/分.
13.
【答案】
【解答】
解:如图,在直角中,,,,
∴,.
在直角中,,,,
∴,
∴,
(参考数据:,,,.)
26.某区域平面示意图如图,点在河的一侧,和表示两条互相垂直的公路.甲勘测员在处测得点位于北偏东,乙勘测员在处测得点位于南偏西,测得,.请求出点到的距离.
参考数据:,,
参考答案
一、
1.
【答案】
B
【解答】
解:如图,
由已知得:,,米.
∵,
∴ (米).
故选.
2.
【答案】
D
【解答】
解:根据题意得:,
25.某市为了创建绿色生态城市,在城东建了“东州湖”景区,小明和小亮想测量“东州湖”东西两端、间的距离.于是,他们去了湖边,如图,在湖的南岸的水平地面上,选取了可直接到达点的一点,并测得=米,点位于点的北偏西方向,点位于点的北偏东方向.

北师大版九年级数学下册 第一章 直角三角形的边角关系 测试题 (含答案)

北师大版九年级数学下册 第一章  直角三角形的边角关系  测试题 (含答案)

直角三角形的边角关系 测试题一、选择题1.如图,在Rt △ABC 中,∠B =90°,cos A =1213,则tan A 的值为( )A.125B.1312C.1213D.512第1题图 第2题图 第3题图 第4题图2.如图,在Rt △ABC 中,∠ACB =90°,CD ⊥AB ,垂足为D .若AC =5,BC =2,则sin ∠ACD 的值为( )A.53 B.255 C.52 D.233.如图,在△ABC 中,点E 在AC 上,点G 在BC 上,连接EG ,AE =EG =5,过点E 作ED ⊥AB ,垂足为D ,过点G 作GF ⊥AC ,垂足为F ,此时恰有DE =GF =4.若BG =25,则sin B 的值为( )A.2510B.510C.255D.55 4.如图,直线y =-33x +2与x 轴、y 轴分别交于A ,B 两点,把△AOB 沿直线AB 翻折后得到△AO ′B ,则点O ′的坐标是( )A .(3,3)B .(3,3)C .(2,23)D .(23,4) 5.tan45°的值为( ) A.12 B .1 C.22D.2 6.如图所示,△ABC 的顶点是正方形网格的格点,则sin B 的值为( ) A.12 B.22 C.32D .1第6题图 第7题图7.如图,在Rt △ABC 中,斜边AB 的长为m ,∠A =35°,则直角边BC 的长是( ) A .m sin35° B .m cos35° C.m sin35° D.mcos35°8.在△ABC 中,若⎪⎪⎪⎪sin A -12+⎝⎛⎭⎫33-tan B 2=0,则∠C 的度数为( )A .30°B .60°C .90°D .120° 二、填空题9.运用科学计算器计算:317sin73°52′≈________(结果精确到0.1). 10.计算:cos30°-sin60°=________.11.如图,铁路的路基的横断面为等腰梯形,其腰的坡度为1∶1.5,上底宽为6m ,路基高为4m ,则路基的下底宽为________m.12.如图,△ABC 中,∠ACB =90°,tan A =43,AB =15,AC =________.第11题图 第12题图 第13题图 第14 题图13.如图,Rt △ABC 中,∠ACB =90°,CM 为AB 边上的中线,AN ⊥CM ,交BC 于点N .若CM =3,AN =4,则tan ∠CAN 的值为________.14.如图,一艘渔船位于灯塔P 的北偏东30°方向,距离灯塔18海里的A 处,它沿正南方向航行一段时间后,到达位于灯塔P 的南偏东55°方向上的B 处,此时渔船与灯塔P 的距离约为________海里(结果取整数,参考数据:sin55°≈0.8,cos55°≈0.6,tan55°≈1.4).三、解答题15.如图,CD 是一高为4米的平台,AB 是与CD 底部相平的一棵树,在平台顶C 点测得树顶A 点的仰角α=30°,从平台底部向树的方向水平前进3米到达点E ,在点E 处测得树顶A 点的仰角β=60°,求树高AB (结果保留根号).16.某地的一座人行天桥如图所示,天桥高为6米,坡面BC 的坡度为1∶1,为了方便行人推车过天桥,有关部门决定降低坡度,使新坡面AC 的坡度为1∶ 3.(1)求新坡面的坡角α;(2)原天桥底部正前方8米处(PB 的长)的文化墙PM 是否需要拆除?请说明理由.17.在一个三角形中,各边和它所对角的正弦的比相等,即asin A=bsin B=csin C,利用上述结论可以求解如下题目,如:在△ABC中,若∠A=45°,∠B=30°,a=6,求b的值.解:在△ABC中,∵asin A=bsin B,∴b=a sin Bsin A=6sin30°sin45°=6×1222=3 2.解决问题:如图,甲船以每小时302海里的速度向正北方航行,当甲船位于A1处时,乙船位于甲船的北偏西105°方向的B1处,乙船从B1处按北偏东15°方向匀速直线航行,当甲船航行20分钟后到达A2处时,乙船航行到甲船的北偏西120°方向的B2处,此时两船相距102海里.(1)判断△A1A2B2的形状,并给出证明;(2)乙船每小时航行多少海里?参考答案与解析1.D2.A3.C 解析:在Rt △ADE 与Rt △EFG 中,⎩⎪⎨⎪⎧AE =EG ,DE =GF , ∴Rt △ADE ≌Rt △EFG (HL),∴∠A =∠GEF .∵∠A +∠AED =90°,∴∠GEF +∠AED=90°,∴∠DEG =90°.过点G 作GH ⊥AB 于点H ,则四边形DEGH 为矩形,∴GH =DE =4.在Rt △BGH 中,sin B =GH BG =425=255.故选C.4.A 解析:过点O ′作O ′C ⊥x 轴于点C .∵直线y =-33x +2与x 轴、y 轴分别交于A ,B 两点,∴点A ,B 的坐标分别为(23,0),(0,2),∴tan ∠BAO =OB OA =223=33,∴∠BAO=30°.∵把△AOB 沿直线AB 翻折后得到△AO ′B ,∴O ′A =OA =23,∠O ′AO =60°,∴CA =12O ′A =3,O ′C =O ′A ·sin ∠O ′AC =23×32=3,∴OC =OA -CA =23-3=3,∴点O ′的坐标为(3,3).故选A. 5.B 6.B 7.A 8.D 9.11.9 10.0 11.18 12.913.23 解析:∵∠ACB =90°,CM 为AB 边上的中线,∴AB =2CM =6,CM =BM ,∴∠B =∠MCB .∵AN ⊥CM ,∴∠CAN +∠ACM =90°.又∵∠ACM +∠MCB =90°,∴∠CAN =∠MCB ,∴∠B =∠CAN .又∵∠ACN =∠BCA ,∴△CAN ∽△CBA ,∴CN CA =AN BA =46=23,∴tan ∠CAN =CN AC =23.14.11 解析:过点P 作PC ⊥AB 于点C .依题意可得∠A =30°,∠B =55°.在Rt △P AC 中,∵P A =18海里,∠A =30°,∴PC =12P A =12×18=9(海里).在Rt △PBC 中,∵PC =9海里,∠B =55°,∴PB =PC sin B ≈90.8≈11(海里).15.解:过点C 作CF ⊥AB 于点F ,则BF =CD =4米,CF =BD .设AF =x 米.在Rt △ACF 中,tan ∠ACF =AF CF ,∠ACF =α=30°,则CF =AF tan30°=3x 米.在Rt △ABE 中,AB =AF +BF =(x +4)米,tan ∠AEB =AB BE ,∠AEB =β=60°,则BE =AB tan60°=33(x +4)米.∵CF =BD =DE +BE ,∴3x =3+33(x +4),解得x =33+42.则AB =33+42+4=33+122(米). 答:树高AB 是33+122米.16.解:(1)∵新坡面的坡度为1∶3,∴tan α=13=33,∴α=30°; (2)文化墙PM 不需要拆除.理由如下:过点C 作CD ⊥AB 于点D ,则CD =6米.∵坡面BC 的坡度为1∶1,新坡面AC 的坡度为1∶3,∴BD =CD =6米,AD =3CD =63米,∴AB =AD -BD =(63-6)米<8米,∴文化墙PM 不需要拆除.17.解:(1)△A 1A 2B 2是等边三角形.证明如下:由题意可得A 2B 2=102海里,A 1A 2=302×2060=102(海里),∴A 1A 2=A 2B 2.又∵∠A 1A 2B 2=180°-120°=60°,∴△A 1A 2B 2是等边三角形;(2)由(1)可知△A 1A 2B 2是等边三角形,∴A 1B 2=A 1A 2=102海里,∠A 2A 1B 2=60°,∴∠B 1A 1B 2=105°-60°=45°.由题意可知∠CB 1A 1=180°-105°=75°,∴∠B 2B 1A 1=75°-15°=60°.在△A 1B 2B 1中,由正弦定理得B 1B 2sin45°=A 1B 2sin60°,∴B 1B 2=A 1B 2sin60° ·sin45°=10232×22=2033(海里).乙船的速度为2033÷2060=203(海里/时). 答:乙船每小时航行203海里.。

第二学期全册综合复习 学情评估2022-2023学年度北师大版数学九年级下册

第二学期全册综合复习 学情评估2022-2023学年度北师大版数学九年级下册

第二学期全册综合复习 学情评估一、选择题(本大题共10小题,每小题3分,共30分)1.在Rt △ABC 中,∠C =90°,若AC =4,AB =5,则cos B 等于( )A.34B.35C.45D.432.如图,AB 是⊙O 的直径,∠D =40°,则∠AOC =( )A .80°B .100°C .120°D .140°(第2题) (第4题) (第5题)3.在平面直角坐标系中,将抛物线y =x 2先向右平移3个单位长度,再向上平移1个单位长度后,所得抛物线对应的函数表达式为( ) A .y =(x +3)2+1 B .y =(x -3)2-1 C .y =(x +3)2-1 D .y =(x -3)2+14.如图,小明在C 处看到西北方向的A 处有一只小猫,若小猫沿正东方向跑到B 处,测得B 在C 的北偏东α方向,且BC =a 米,则A 处与B 处之间的距离为( )A .a (cos α+sin α)米B .a (cos α-sin α)米C.⎝ ⎛⎭⎪⎫a cos α+a sin α米D.⎝ ⎛⎭⎪⎫acos α-a sin α米 5.二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,下列说法错误的是( )A .当-1<x <2时,y <0B .a +c =bC .当x >12时,y 随x 的增大而增大D .若顶点坐标为⎝ ⎛⎭⎪⎫12,m ,则方程ax 2+bx +c =m -1有实数根6.如图,在Rt △ABC 中,∠C =90°,sin B =45,AC =5 cm ,若以点C 为圆心,2cm 长为半径作圆,则⊙C 与AB 的位置关系是( )A .相离B .相交C .相切D .相切或相交(第6题) (第7题) (第8题)7.如图,在⊙O 中,AO =3,∠C =60°,则AB ︵的长度为( )A .6πB .9πC .2πD .3π8.如图,在4×4的正方形网格中,△ABC 的顶点都在格点上,则∠BAC 的正弦值是( ) A.55B.12C.2 55D. 59.如图,半圆O 与等腰直角三角形两腰CA ,CB 分别切于D ,E 两点,直径FG在AB 上,若BG =2-1,则△ABC 的周长为( ) A .4+2 2B .6C .2+2 2D .4(第9题) (第10题)10.如图,有边长分别为1和2的两个等边三角形,开始时它们在左边重合,大三角形固定不动,然后把小三角形自左向右平移至完全移出大三角形为止.设小三角形移动的距离为x ,两个三角形重叠部分的面积为y ,则y 关于x 的函数图象是( )二、填空题(本大题共5小题,每小题3分,共15分)11.在Rt△ABC中,∠C=90°,∠A、∠B、∠C的对边分别为a、b、c,且c=3a,则tan A的值为________.12.如果将抛物线y=-2x2+8向下平移a个单位后恰好经过点(1,4),那么a的值为________.13.如图,⊙O的半径为9 cm,AB是弦,OC⊥AB于点C,将劣弧AB沿弦AB 折叠,交OC于点D,若D是OC的中点,则AB的长为________.(第13题)(第15题)14.已知二次函数y=ax2-2ax+c(a≠0)的图象与x轴的一个交点为(-1,0),则关于x的一元二次方程ax2-2ax+c=0的根是________.15.如图,轮船在A处观测灯塔C位于北偏西70°方向上,轮船从A处出发以每小时20 n mile的速度沿南偏西50°方向匀速航行,1 h后到达码头B处,此时,观测灯塔C位于北偏西25°方向上,则灯塔C与码头B的距离约是______n mile(结果精确到个位,参考数据:2≈1.4,3≈1.7,6≈2.4).三、解答题(一)(本大题共3小题,每小题8分,共24分)16.计算:3tan 30°-tan2 45°+2sin 60°.17.一抛物线以(-1,9)为顶点,且经过点(-4,0),求该抛物线的解析式及抛物线与y轴的交点坐标.318.如图,在小山的东侧A 处有一热气球,由于受风力影响,它以35 m/min 的速度沿着与水平线成75°角的方向飞行,40 min 后到达C 处,此时热气球上的人发现热气球与山顶P 及小山西侧的B 处在一条直线上,同时测得B 处的俯角为30°.在A 处测得山顶P 的仰角为45°,求A 与B 间的距离及山高(结果保留根号).(第18题)四、解答题(二)(本大题共3小题,每小题9分,共27分)19.△ABC 中,∠A 、∠B 都是锐角,且⎝ ⎛⎭⎪⎫cos A -122+|tan B -1|=0.(1)分别求出△ABC 三个内角的度数; (2)若AC =2,求AB 的长度.20.如图,四边形ABCD 内接于⊙O ,∠1=∠2,延长BC 到点E ,使得CE =AB ,连接ED . (1)求证:BD =ED ;(2)若AB =5,BC =7,∠ABC =60°,求tan ∠DCB 的值.(第20题)21.某商店购进一批额温枪,每个进价为30元.若每个售价定为42元,则每周可售出160个.经调查发现,每个售价每增加1元,每周的销售量将减少10个.设每个额温枪的售价为x元(x≥42),每周的销售利润为y元.(1)求y与x的函数关系式,并直接写出x的取值范围;(2)求每个售价为多少时,每周的销售利润最大;(3)若该商店在某周销售这种额温枪获利1 600元,求这周每个额温枪的售价.五、解答题(三)(本大题共2小题,每小题12分,共24分)22.如图,AB是⊙O的直径,AD、BC分别是⊙O的切线,连接OC、OD、CD,且CO平分∠BCD.(1)求证:CD是⊙O的切线;(2)求证:OC⊥OD;(3)若⊙O的半径是2,sin∠BCD=23,且AD<BC,求tan∠BOC的值.5(第22题)23.如图,在平面直角坐标系中,抛物线y=ax2+bx-6与x轴交于A,B两点,与y轴交于点C,AB=8,OA=3OB,点P是直线AC下方抛物线上的一个动点.过点P作PE∥x轴,交直线AC于点E.(1)求抛物线的解析式;(2)若点M是抛物线对称轴上的一个动点,则BM+CM的最小值是________;(3)求PE的最大值;(4)在抛物线的对称轴上找一点N,使△ACN是以AC为斜边的直角三角形,请直接写出点N的坐标.(第23题)答案一、1.B 2.B 3.D 4.A 5.D 6.A7.C8.A9.A 10.B二、11.2412.213.6 5 cm14.x1=-1,x2=315.24三、16.解:3tan 30°-tan2 45°+2sin 60°=3×33-12+2×32=3-1+ 3=2 3-1.17.解:由题意,可设抛物线的解析式为y=a(x+1)2+9,将(-4,0)代入y=a(x+1)2+9,得0=9a+9,解得a=-1,∴抛物线的解析式为y=-(x+1)2+9.令x=0,则y=8,∴抛物线与y轴的交点坐标为(0,8).18.解:过点A作AD⊥BC,垂足为D.由题意得,∠ACD=75°-30°=45°,AC=35×40=1 400(m).∴AD=AC·sin 45°=1 400×22=700 2(m).在Rt△ABD中,由题意可知,∠B=30°,∴AB=2AD=1 400 2 m.过点P作PE⊥AB,垂足为E,∴易得AE=PE,BE=3PE.∴AB=AE+BE=PE+3PE=1 400 2 m.∴PE=700(6-2)m.答:A与B间的距离是1 400 2 m,山高是700(6-2)m.7四、19.解:(1)∵⎝ ⎛⎭⎪⎫cos A -122+||tan B -1=0,∴cos A -12=0,tan B -1=0, ∴cos A =12,tan B =1, 又∵∠A 、∠B 都是锐角, ∴∠A =60°,∠B =45°, ∴∠C =180°-∠A -∠B =75°. (2)过点C 作CH ⊥AB 于H , 在Rt △ACH 中,AC =2,∠A =60°, ∴AH =AC ·cos A =2×12=1, CH =AC ·sin A =2×32= 3.在Rt △CHB 中,CH =3,tan B =1, ∴BH =CH tan B =31=3, ∴AB =AH +BH =1+ 3. 20.(1)证明:∵∠1=∠2,∴AD ︵=DC ︵,∴AD =DC . ∵四边形ABCD 内接于⊙O , ∴∠BAD +∠BCD =180°, ∵∠ECD +∠BCD =180°, ∴∠BAD =∠ECD . 在△ABD 和△CED 中,⎩⎨⎧AD =CD ,∠BAD =∠ECD ,AB =CE ,∴△ABD ≌△CED ,∴BD =ED . (2)解:过点D 作DM ⊥BE 于M ,如图.(第20题)∵BC=7,CE=AB=5,∴BE=BC+EC=12,∵BD=ED,DM⊥BE,∴BM=ME=12BE=6,∴CM=BC-BM=1.∵∠ABC=60°,∠1=∠2,∴∠2=30°,∴DM=BM·tan∠2=6×33=2 3,∴tan∠DCB=DMCM=2 3.21.解:(1)根据题意知y=(x-30)[160-10(x-42)]=-10x2+880x-17 400(42≤x<58).(2)y=-10x2+880x-17 400=-10(x-44)2+1 960.∵-10<0,42≤x<58,∴当x=44时,y取得最大值,最大值为1 960.答:当每个售价为44元时,每周的销售利润最大.(3)令y=1 600,则-10(x-44)2+1 960=1 600,解得x=50或x=38(不合题意,舍去).答:这周每个额温枪的售价为50元.五、22.(1)证明:过点O作OH⊥CD于点H,如图,则∠CHO=90°,∵BC是⊙O的切线,∴∠OBC=90°,∴∠CHO=∠CBO.∵CO平分∠BCD,∴∠HCO=∠BCO,9又∵OC=OC,∴△CHO≌△CBO,∴OH=OB,∴CD是⊙O的切线.(2)证明:∵AD是⊙O的切线,∴∠DAO=90°. 在Rt△DAO和Rt△DHO中,AO=HO,DO=DO,∴Rt△DAO≌Rt△DHO,∴∠AOD=∠HOD.∵△CHO≌△CBO,∴∠COH=∠COB.∵∠AOH+∠BOH=180°,∴∠DOH+∠COH=90°,∴∠DOC=90°,即OC⊥OD.(3)解:延长CD交BA的延长线于点F,如图.(第22题)∵∠OHC=∠OBC=90°,∴易得∠FOH=∠DCB,∵sin∠BCD=2 3,∴sin∠FOH=FHFO=2 3,∴可设FH=2m,FO=3m,∵OH=2,∴(3m)2-(2m)2=22,解得m=2 55(负值已舍去),∴FH=4 55,FO=6 55.11∵∠FHO =∠FBC =90°,∠F =∠F , ∴△FOH ∽△FCB ,∴OH ∶FO =BC ∶FC ,∴易得2 ∶6 55=BC ∶⎝⎛⎭⎪⎫BC +4 55, 解得BC =3+5,∴tan ∠BOC =BC OB =3+52.23.解:(1)∵AB =OA +OB =8,OA =3OB ,∴OB =2,OA =6,∴A (-6,0),B (2,0).将点A ,B 的坐标代入y =ax 2+bx -6,得⎩⎨⎧36a -6b -6=0,4a +2b -6=0,解得⎩⎪⎨⎪⎧a =12,b =2.∴y =12x 2+2x -6.(2)6 2(3)令x =0,则y =-6,∴C (0,-6).设直线AC 的解析式为y =kx +m ,将点A ,C 的坐标代入,得⎩⎨⎧-6k +m =0,m =-6, 解得⎩⎨⎧k =-1,m =-6.∴y =-x -6.设P ⎝ ⎛⎭⎪⎫t ,12t 2+2t -6,其中-6<t <0, 则E ⎝ ⎛⎭⎪⎫-12t 2-2t ,12t 2+2t -6, ∴PE =-12t 2-2t -t =-12t 2-3t =-12(t +3)2+92,∴当t =-3时,PE 取得最大值92.即PE的最大值为9 2.(4)点N的坐标为(-2,17-3)或(-2,-17-3).。

第二章 二次函数 达标测试卷 北师大版数学九年级下册

第二章 二次函数 达标测试卷 北师大版数学九年级下册

第二章二次函数达标测试卷一、选择题(每题3分,共30分)1.【教材P30随堂练习T1改编】下列函数是二次函数的是()A.y=1x B.y=-x C.y=x2+2 D.y=12x-22.【教材P39习题T3改编】【2021·徐州】在平面直角坐标系中,将二次函数y=x2的图象向左平移2个单位长度,再向上平移1个单位长度所得抛物线对应的函数表达式为()A.y=(x-2)2+1 B.y=(x+2)2+1 、C.y=(x+2)2-1 D.y=(x-2)2-13.【教材P35想一想变式】下列抛物线中,开口向下且开口最大..的是()A.y=-x2B.y=-23x2C.y=13x2D.y=-3x24.【2022·兰州】已知二次函数y=2x2-4x+5,当函数值y随x值的增大而增大时,x的取值范围是()A.x<1 B.x>1 C.x<2 D.x>2 5.【2021·广州】抛物线y=ax2+bx+c经过点(-1,0),(3,0),且与y轴交于点(0,-5),则当x=2时,y的值为()A.-5 B.-3 C.-1 D.56.抛物线y=x2+2x+m-1与x轴有两个不同的交点,则m的取值范围是() A.m<2 B.m>2 C.0<m≤2 D.m<-2 7.如图,正方形ABCD的边长为5,点E是AB上一点,点F是AD延长线上一点,且BE=DF. 四边形AEGF是矩形,则矩形AEGF的面积y与BE的长x 之间的函数关系式为()A.y=5-x B.y=5-x2C.y=25-x D.y=25-x28.【2022·广西】已知反比例函数y=bx(b≠0)的图象如图所示,则一次函数y=cx-a(c≠0)和二次函数y=ax2+bx+c(a≠0)在同一平面直角坐标系中的图象可能是()9.【中考·河池】如图,抛物线y=ax2+bx+c的对称轴为直线x=1,则下列结论中,错误..的是()A.ac<0 B.b2-4ac>0 C.2a-b=0 D.a-b+c=0 10.【2022·嘉兴】已知点A(a,b),B(4,c)在直线y=kx+3(k为常数,k≠0)上,若ab的最大值为9,则c的值为()A.1 B.32C.2 D.52二、填空题(每题3分,共24分)11.若抛物线y=x2+(a-2)x+c的顶点在y轴上,则a的值是.12.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则不等式ax2+bx+c>0的解集是__________.(第12题)(第16题)(第18题)13.已知二次函数y=3(x+1)2-m的图象上有三点A(1,y1),B(2,y2),C(-2,y3),则y1,y2,y3的大小关系为____________.14.某工厂今年八月份医用防护服的产量是50万件,计划九月份和十月份增加产量,如果月平均增长率为x,那么十月份医用防护服的产量y(万件)与x之间的函数表达式为____________________________.15.抛物线y=x2-2kx+4k通过一个定点,这个定点的坐标是__________.16.廊桥是我国古老的文化遗产,如图是一抛物线型的廊桥示意图,已知抛物线的函数表达式为y=-140x2+10,为保护廊桥的安全,在该抛物线上距水面AB高为8 m的点E,F处要安装两盏警示灯,则这两盏警示灯的水平距离EF 约是______________m(结果精确到1 m,5≈2.236).17.【教材P50习题T2改编】某商店经营一种水产品,成本为每千克40元,据市场分析,若按每千克50元销售,一个月能售出500千克;销售单价每涨1元,月销售量减少10千克,针对这种水产品的销售情况,销售单价定为________元时,获得的月利润最大.18.如图,在边长为10 cm的正方形ABCD中,P为AB边上任意一点(P不与A,B两点重合),连接DP,过点P作PE⊥DP,垂足为P,交BC于点E,则BE 的最大长度为__________.三、解答题(19~21题每题10分,其余每题12分,共66分)19.已知二次函数y=x2+2x+m的图象过点A(3,0).(1)求m的值;(2)当x取何值时,函数值y随x的增大而增大?20.【教材P39例1改编】已知抛物线y=3x2-2x+4.(1)通过配方将抛物线的表达式写成y=a(x-h)2+k的形式;(2)写出抛物线的开口方向和对称轴.321.【教材P44例2变式】已知二次函数y=ax2+bx+c(a≠0)的图象上部分点的横坐标x与纵坐标y的对应值如下表:x…-1 0 2 4 …y…-5 1 1 m…求:(1)这个二次函数的表达式;(2)这个二次函数图象的顶点坐标及上表中m的值.22.如图,二次函数y=x2-2x-3的图象与x轴交于点A,B(A在B的左侧),与一次函数y=-x+b的图象交于A,C两点.(1)求b的值;(2)求△ABC的面积;(3)根据图象直接写出当x为何值时,一次函数的值大于二次函数的值.23.“双减”政策落地后,对校外培训机构的影响巨大,不管是机构还是机构老师都面临着转型,培训机构李老师推出了“热学文化”新零售项目.他新开了甲、乙两家分店共同销售,因地段不同,甲店一天可售出某品牌科技产品20件,每件盈利26元;乙店一天可售出同一品牌科技产品32件,每件盈利20元.经调查发现,每件此种科技产品每降价1元,甲、乙两家店一天都可多售出2件.设甲店每件降价a元时,一天可盈利y1元,乙店每件降价b元时,一天可盈利y2元.(1)当a=5时,求y1的值;(2)求y2关于b的函数表达式;(3)若李老师规定两家分店下降的价格必须相同,请求出每件此种科技产品下降多少元时,两家分店一天的盈利和最大,最大是多少元?24.【2022·大庆】某果园有果树60棵,现准备多种一些果树提高果园产量.如果多种树,那么树之间的距离和每棵果树所受光照就会减少,每棵果树的平均产量随之降低.根据经验,增种10棵果树时,果园内的每棵果树平均产量为75 kg.在确保每棵果树平均产量不低于40 kg的前提下,设增种果树x(x>0且x为整数)棵,该果园每棵果树平均产量为y kg,它们之间的函数关系满足如图所示的图象.(1)图中点P所表示的实际意义是______________________________,每增种1棵果树时,每棵果树平均产量减少________kg.(2)求y与x之间的函数表达式,并直接写出自变量x的取值范围.5(3)当增种果树多少棵时,果园的总产量w(kg)最大?最大总产量是多少?7 答案一、1.C 2.B3.B 点要点:抛物线y =ax 2的开口大小由|a |决定,|a |越大,开口越小;|a |越小,开口越大.4.B 5.A 6.A 7.D 8.D 9.C10.C 点思路:由题意得ak +3=b ,4k +3=c .从而将ab 看成二次函数的因变量,化成顶点式:ab =k (a +32k )2-94k ,则ab 的最大值为-94k =9, 解得k =-14.从而c =4×⎝ ⎛⎭⎪⎫-14+3=2. 二、11.2 12.-1<x <3 13.y 3<y 1<y 2 14.y =50(x +1)2 15.(2,4) 16.18 17.70 18.52 cm 点拨:如图,设AP =x cm ,BE =y cm.∵四边形ABCD 是正方形,∴∠A =∠B =90°. ∴∠1+∠2=90°. ∵PE ⊥DP , ∴∠2+∠3=90°. ∴∠1=∠3. ∴△ADP ∽△BPE .∴AD BP =AP BE ,即1010-x =x y .整理,得y =-110(x -5)2+52(0<x <10).∴当x =5时,y 有最大值52.三、19.解:(1)∵二次函数y =x 2+2x +m 的图象过点A (3,0),∴9+6+m =0,解得m =-15.(2)∵y =x 2+2x -15=(x +1)2-16, ∴二次函数的图象的对称轴为直线x =-1. ∵a =1>0,∴当x >-1时,函数值y 随x 的增大而增大.20.解:(1)y =3x 2-2x +4=3[x 2-23x +⎝ ⎛⎭⎪⎫132-⎝ ⎛⎭⎪⎫132]+4=3⎝ ⎛⎭⎪⎫x -132-13+4=3(x -13)2+113.(2)开口向上,对称轴是直线x =13.21.解:(1)将⎩⎨⎧x =-1,y =-5,⎩⎨⎧x =0,y =1和⎩⎨⎧x =2,y =1分别代入y =ax 2+bx +c ,得⎩⎨⎧a -b +c =-5,c =1,4a +2b +c =1, 解得⎩⎨⎧a =-2,b =4,c =1.∴这个二次函数的表达式为y =-2x 2+4x +1. (2)∵y =-2x 2+4x +1=-2(x -1)2+3, ∴图象的顶点坐标为(1,3).当x =4时,y =-2×16+16+1=-15, 即m =-15.22.解:(1)令y =0,则y =x 2-2x -3=0,解得x =3或x =-1. ∴A (-1,0),B (3,0).将点A (-1,0)的坐标代入y =-x +b ,得1+b =0,解得b =-1. (2)解方程组⎩⎨⎧y =x 2-2x -3,y =-x -1,得⎩⎨⎧x =-1,y =0或⎩⎨⎧x =2,y =-3,9 ∴点C 的坐标为(2,-3). ∴△ABC 的面积为12×4×3=6.(3)当-1<x <2时,一次函数的值大于二次函数的值. 23.解:(1)由题意可得y 1=(26-a )(20+2a ),当a =5时,y 1=(26-5)×(20+2×5)=630.(2)由题意可得,y 2=(20-b )(32+2b )=-2b 2+8b +640.(3)设两家下降的价格都为x 元,两家的盈利和为w 元,则w =(26-x )(20+2x )+(-2x 2+8x +640)=-4x 2+40x +1 160=-4(x -5)2+1 260. ∴当x =5时,w 取得最大值,此时w =1 260.答:每件此种科技产品下降5元时,两家分店一天的盈利和最大,最大是1 260元.24.解:(1)增种果树28棵时,每棵果树平均产量为66 kg ;12(2)设y 与x 之间的函数表达式为y =kx +b . 把⎩⎨⎧x =10,y =75,⎩⎨⎧x =28,y =66分别代入上式,得⎩⎨⎧10k +b =75,28k +b =66,解得⎩⎪⎨⎪⎧k =-12,b =80.∴y 与x 之间的函数表达式为y =-12x +80, 自变量x 的取值范围是0≤x ≤80.(3)w =(60+x )⎝ ⎛⎭⎪⎫-12x +80=-12x 2+50x +4 800.∵-12<0,∴x =-502×⎝ ⎛⎭⎪⎫-12=50时,w 最大=6 050.答:当增种果树50棵时,果园的总产量w (kg)最大,最大总产量是6 050 kg.。

初中数学 北师大版九年级下册同步测试(优选5年真题,含解析)1.4解直角三角形

初中数学 北师大版九年级下册同步测试(优选5年真题,含解析)1.4解直角三角形

1.4 解直角三角形一.选择题(共18小题)1.(2019•营口)如图,在四边形ABCD中,∠DAB=90°,AD∥BC,BC=AD,AC与BD交于点E,AC⊥BD,则tan∠BAC的值是()A.B.C.D.2.(2019•湘西州)如图,在△ABC中,∠C=90°,AC=12,AB的垂直平分线EF交AC 于点D,连接BD,若cos∠BDC=,则BC的长是()A.10 B.8 C.4D.2 3.(2019•宜昌)如图,在5×4的正方形网格中,每个小正方形的边长都是1,△ABC的顶点都在这些小正方形的顶点上,则sin∠BAC的值为()A.B.C.D.4.(2019•长沙)如图,△ABC中,AB=AC=10,tan A=2,BE⊥AC于点E,D是线段BE 上的一个动点,则CD+BD的最小值是()A.2B.4C.5D.10 5.(2019•凉山州)如图,在△ABC中,CA=CB=4,cos C=,则sin B的值为()A.B.C.D.6.(2019•自贡)如图,已知A、B两点的坐标分别为(8,0)、(0,8),点C、F分别是直线x=﹣5和x轴上的动点,CF=10,点D是线段CF的中点,连接AD交y轴于点E,当△ABE面积取得最小值时,tan∠BAD的值是()A.B.C.D.7.(2017•杭州)如图,在△ABC中,AB=AC,BC=12,E为AC边的中点,线段BE的垂直平分线交边BC于点D.设BD=x,tan∠ACB=y,则()A.x﹣y2=3 B.2x﹣y2=9 C.3x﹣y2=15 D.4x﹣y2=21 8.(2017•滨州)如图,在△ABC中,AC⊥BC,∠ABC=30°,点D是CB延长线上的一点,且BD=BA,则tan∠DAC的值为()A.2+B.2C.3+D.3 9.(2016•牡丹江)如图,在△ABC中,AD⊥BC,垂足为点D,若AC=6,∠C=45°,tan∠ABC=3,则BD等于()A.2 B.3 C.3D.2 10.(2016•绵阳)如图,△ABC中AB=AC=4,∠C=72°,D是AB中点,点E在AC上,DE⊥AB,则cos A的值为()A.B.C.D.11.(2016•绍兴)如图,在Rt△ABC中,∠B=90°,∠A=30°,以点A为圆心,BC长为半径画弧交AB于点D,分别以点A、D为圆心,AB长为半径画弧,两弧交于点E,连接AE,DE,则∠EAD的余弦值是()A.B.C.D.12.(2016•沈阳)如图,在Rt△ABC中,∠C=90°,∠B=30°,AB=8,则BC的长是()A.B.4 C.8D.4 13.(2016•兰州)在Rt△ABC中,∠C=90°,sin A=,BC=6,则AB=()A.4 B.6 C.8 D.10 14.(2016•怀化)在Rt△ABC中,∠C=90°,sin A=,AC=6cm,则BC的长度为()A.6cm B.7cm C.8cm D.9cm 15.(2016•福州)如图,以原点O为圆心,半径为1的弧交坐标轴于A,B两点,P是上一点(不与A,B重合),连接OP,设∠POB=α,则点P的坐标是()A.(sinα,sinα)B.(cosα,cosα)C.(cosα,sinα)D.(sinα,cosα)16.(2015•南通)如图,在平面直角坐标系中,直线OA过点(2,1),则tanα的值是()A.B.C.D.2 17.(2015•牡丹江)在△ABC中,AB=12,AC=13,cos∠B=,则BC边长为()A.7 B.8 C.8或17 D.7或17 18.(2015•日照)如图,在直角△BAD中,延长斜边BD到点C,使DC=BD,连接AC,若tan B=,则tan∠CAD的值()A.B.C.D.二.填空题(共23小题)19.(2019•鄂尔多斯)如果三角形有一边上的中线长等于这边的长,那么称这个三角形为“好玩三角形”.若Rt△ABC是“好玩三角形”,且∠A=90°,则tan∠ABC=.20.(2019•柳州)如图,在△ABC中,sin B=,tan C=,AB=3,则AC的长为.21.(2019•舟山)如图,在△ABC中,若∠A=45°,AC2﹣BC2=AB2,则tan C=.22.(2019•宿迁)如图,∠MAN=60°,若△ABC的顶点B在射线AM上,且AB=2,点C在射线AN上运动,当△ABC是锐角三角形时,BC的取值范围是.23.(2019•乐山)如图,在△ABC中,∠B=30°,AC=2,cos C=.则AB边的长为.24.(2019•盐城)如图,在△ABC中,BC=+,∠C=45°,AB=AC,则AC的长为.25.(2019•绵阳)在△ABC中,若∠B=45°,AB=10,AC=5,则△ABC的面积是.26.(2018•德阳)如图,点D为△ABC的AB边上的中点,点E为AD的中点,△ADC为正三角形,给出下列结论,①CB=2CE,②tan∠B=,③∠ECD=∠DCB,④若AC =2,点P是AB上一动点,点P到AC、BC边的距离分别为d1,d2,则d12+d22的最小值是3.其中正确的结论是(填写正确结论的序号).27.(2018•齐齐哈尔)四边形ABCD中,BD是对角线,∠ABC=90°,tan∠ABD=,AB =20,BC=10,AD=13,则线段CD=.28.(2018•泰安)如图,在△ABC中,AC=6,BC=10,tan C=,点D是AC边上的动点(不与点C重合),过D作DE⊥BC,垂足为E,点F是BD的中点,连接EF,设CD =x,△DEF的面积为S,则S与x之间的函数关系式为.29.(2018•无锡)已知△ABC中,AB=10,AC=2,∠B=30°,则△ABC的面积等于.30.(2018•眉山)如图,在边长为1的小正方形网格中,点A、B、C、D都在这些小正方形的顶点上,AB、CD相交于点O,则tan∠AOD=.31.(2018•德州)如图,在4×4的正方形方格图形中,小正方形的顶点称为格点,△ABC 的顶点都在格点上,则∠BAC的正弦值是.32.(2017•铜仁市)如图,在Rt△ABC中,∠C=90°,点D是AB的中点,ED⊥AB交AC于点E.设∠A=α,且tanα=,则tan2α=.33.(2017•黑龙江)△ABC中,AB=12,AC=,∠B=30°,则△ABC的面积是.34.(2017•广州)如图,Rt△ABC中,∠C=90°,BC=15,tan A=,则AB=.35.(2017•无锡)在如图的正方形方格纸中,每个小的四边形都是相同的正方形,A,B,C,D都在格点处,AB与CD相交于O,则tan∠BOD的值等于.36.(2017•嘉兴)如图,把n个边长为1的正方形拼接成一排,求得tan∠BA1C=1,tan∠BA2C=,tan∠BA3C=,计算tan∠BA4C=,…按此规律,写出tan∠BA n C =(用含n的代数式表示).37.(2016•盐城)已知△ABC中,tan B=,BC=6,过点A作BC边上的高,垂足为点D,且满足BD:CD=2:1,则△ABC面积的所有可能值为.38.(2016•舟山)如图,在直角坐标系中,点A,B分别在x轴,y轴上,点A的坐标为(﹣1,0),∠ABO=30°,线段PQ的端点P从点O出发,沿△OBA的边按O→B→A→O 运动一周,同时另一端点Q随之在x轴的非负半轴上运动,如果PQ=,那么当点P 运动一周时,点Q运动的总路程为.39.(2016•临夏州)如图,点A(3,t)在第一象限,OA与x轴所夹的锐角为α,tanα=,则t的值是.40.(2015•香坊区)如图,△ABC中,AD平分∠BAC,AC=AD=2,AB=3,cos∠ABC的值为.41.(2015•齐齐哈尔)BD为等腰△ABC的腰AC上的高,BD=1,tan∠ABD=,则CD 的长为.三.解答题(共9小题)42.(2019•梧州)如图,在Rt△ABC中,∠C=90°,D为BC上一点,AB=5,BD=1,tan B=.(1)求AD的长;(2)求sinα的值.43.(2018•赤峰)阅读下列材料:如图1,在△ABC中,∠A、∠B、∠C所对的边分别为a、b、c,可以得到:S△ABC=ab sin C=ac sin B=bc sin A证明:过点A作AD⊥BC,垂足为D.在Rt△ABD中,sin B=∴AD=c•sin B∴S△ABC=a•AD=ac sin B同理:S△ABC=ab sin CS△ABC=bc sin A∴S△ABC=ab sin C=ac sin B=bc sin A(1)通过上述材料证明:==(2)运用(1)中的结论解决问题:如图2,在△ABC中,∠B=15°,∠C=60°,AB=20,求AC的长度.(3)如图3,为了开发公路旁的城市荒地,测量人员选择A、B、C三个测量点,在B点测得A在北偏东75°方向上,沿笔直公路向正东方向行驶18km到达C点,测得A在北偏西45°方向上,根据以上信息,求A、B、C三点围成的三角形的面积.(本题参考数值:sin15°≈0.3,sin120°≈0.9,≈1.4,结果取整数)44.(2018•贵阳)如图①,在Rt△ABC中,以下是小亮探究与之间关系的方法:∵sin A=,sin B=∴c=,c=∴=根据你掌握的三角函数知识.在图②的锐角△ABC中,探究、、之间的关系,并写出探究过程.45.(2018•上海)如图,已知△ABC中,AB=BC=5,tan∠ABC=.(1)求边AC的长;(2)设边BC的垂直平分线与边AB的交点为D,求的值.46.(2018•自贡)如图,在△ABC中,BC=12,tan A=,∠B=30°;求AC和AB的长.47.(2017•黔西南州)把(sinα)2记作sin2α,根据图1和图2完成下列各题.(1)sin2A1+cos2A1=,sin2A2+cos2A2=,sin2A3+cos2A3=;(2)观察上述等式猜想:在Rt△ABC中,∠C=90°,总有sin2A+cos2A=;(3)如图2,在Rt△ABC中证明(2)题中的猜想:(4)已知在△ABC中,∠A+∠B=90°,且sin A=,求cos A.48.(2017•湘潭)某游乐场部分平面图如图所示,C、E、A在同一直线上,D、E、B在同一直线上,测得A处与E处的距离为80 米,C处与D处的距离为34米,∠C=90°,∠ABE=90°,∠BAE=30°.(≈1.4,≈1.7)(1)求旋转木马E处到出口B处的距离;(2)求海洋球D处到出口B处的距离(结果保留整数).49.(2016•遂宁)已知:如图1,在锐角△ABC中,AB=c,BC=a,AC=b,AD⊥BC于D.在Rt△ABD中,sin∠B=,则AD=c sin∠B;在Rt△ACD中,sin∠C=,则AD=;所以,c sin∠B=b sin∠C,即,,进一步即得正弦定理:(此定理适合任意锐角三角形).参照利用正弦定理解答下题:如图2,在△ABC中,∠B=75°,∠C=45°,BC=2,求AB的长.50.(2016•厦门)如图,在四边形ABCD中,∠BCD是钝角,AB=AD,BD平分∠ABC,若CD=3,BD=,sin∠DBC=,求对角线AC的长.1.4 解直角三角形参考答案与试题解析一.选择题(共18小题)1.(2019•营口)如图,在四边形ABCD中,∠DAB=90°,AD∥BC,BC=AD,AC与BD交于点E,AC⊥BD,则tan∠BAC的值是()A.B.C.D.解:∵AD∥BC,∠DAB=90°,∴∠ABC=180°﹣∠DAB=90°,∠BAC+∠EAD=90°,∵AC⊥BD,∴∠AED=90°,∴∠ADB+∠EAD=90°,∴∠BAC=∠ADB,∴△ABC∽△DAB,∴=,∵BC=AD,∴AD=2BC,∴AB2=BC×AD=BC×2BC=2BC2,∴AB=BC,在Rt△ABC中,tan∠BAC===;故选C.2.(2019•湘西州)如图,在△ABC中,∠C=90°,AC=12,AB的垂直平分线EF交AC 于点D,连接BD,若cos∠BDC=,则BC的长是()A.10 B.8 C.4D.2解:∵∠C=90°,cos∠BDC=,设CD=5x,BD=7x,∴BC=2x,∵AB的垂直平分线EF交AC于点D,∴AD=BD=7x,∴AC=12x,∵AC=12,∴x=1,∴BC=2;故选D.3.(2019•宜昌)如图,在5×4的正方形网格中,每个小正方形的边长都是1,△ABC的顶点都在这些小正方形的顶点上,则sin∠BAC的值为()A.B.C.D.解:如图,过C作CD⊥AB于D,则∠ADC=90°,∴AC===5.∴sin∠BAC==.故选D.4.(2019•长沙)如图,△ABC中,AB=AC=10,tan A=2,BE⊥AC于点E,D是线段BE 上的一个动点,则CD+BD的最小值是()A.2B.4C.5D.10解:如图,作DH⊥AB于H,CM⊥AB于M.∵BE⊥AC,∴∠AEB=90°,∵tan A==2,设AE=a,BE=2a,则有:100=a2+4a2,∴a2=20,∴a=2或﹣2(舍弃),∴BE=2a=4,∵AB=AC,BE⊥AC,CM⊥AB,∴CM=BE=4(等腰三角形两腰上的高相等))∵∠DBH=∠ABE,∠BHD=∠BEA,∴sin∠DBH===,∴DH=BD,∴CD+BD=CD+DH,∴CD+DH≥CM,∴CD+BD≥4,∴CD+BD的最小值为4.故选B.5.(2019•凉山州)如图,在△ABC中,CA=CB=4,cos C=,则sin B的值为()A.B.C.D.解:过点A作AD⊥BC,垂足为D,如图所示.在Rt△ACD中,CD=CA•cos C=1,∴AD==;在Rt△ABD中,BD=CB﹣CD=3,AD=,∴AB==2,∴sin B==.故选D.6.(2019•自贡)如图,已知A、B两点的坐标分别为(8,0)、(0,8),点C、F分别是直线x=﹣5和x轴上的动点,CF=10,点D是线段CF的中点,连接AD交y轴于点E,当△ABE面积取得最小值时,tan∠BAD的值是()A.B.C.D.解:如图,设直线x=﹣5交x轴于K.由题意KD=CF=5,∴点D的运动轨迹是以K为圆心,5为半径的圆,∴当直线AD与⊙K相切时,△ABE的面积最小,∵AD是切线,点D是切点,∴AD⊥KD,∵AK=13,DK=5,∴AD=12,∵tan∠EAO==,∴=,∴OE=,∴AE==,作EH⊥AB于H.∵S△ABE=•AB•EH=S△AOB﹣S△AOE,∴EH=,∴AH==,∴tan∠BAD===,故选B.7.(2017•杭州)如图,在△ABC中,AB=AC,BC=12,E为AC边的中点,线段BE的垂直平分线交边BC于点D.设BD=x,tan∠ACB=y,则()A.x﹣y2=3 B.2x﹣y2=9 C.3x﹣y2=15 D.4x﹣y2=21解:过A作AQ⊥BC于Q,过E作EM⊥BC于M,连接DE,∵BE的垂直平分线交BC于D,BD=x,∴BD=DE=x,∵AB=AC,BC=12,tan∠ACB=y,∴==y,BQ=CQ=6,∴AQ=6y,∵AQ⊥BC,EM⊥BC,∴AQ∥EM,∵E为AC中点,∴CM=QM=CQ=3,∴EM=3y,∴DM=12﹣3﹣x=9﹣x,在Rt△EDM中,由勾股定理得x2=(3y)2+(9﹣x)2,即2x﹣y2=9,故选B.8.(2017•滨州)如图,在△ABC中,AC⊥BC,∠ABC=30°,点D是CB延长线上的一点,且BD=BA,则tan∠DAC的值为()A.2+B.2C.3+D.3解:如图,∵在△ABC中,AC⊥BC,∠ABC=30°,∴AB=2AC,BC==AC.∵BD=BA,∴DC=BD+BC=(2+)AC,∴tan∠DAC===2+.故选A.9.(2016•牡丹江)如图,在△ABC中,AD⊥BC,垂足为点D,若AC=6,∠C=45°,tan∠ABC=3,则BD等于()A.2 B.3 C.3D.2解:∵AC=6,∠C=45°,∴AD=AC•sin45°=6×=6,∵tan∠ABC=3,∴=3,∴BD==2,故选A.10.(2016•绵阳)如图,△ABC中AB=AC=4,∠C=72°,D是AB中点,点E在AC上,DE⊥AB,则cos A的值为()A.B.C.D.解:∵△ABC中,AB=AC=4,∠C=72°,∴∠ABC=∠C=72°,∠A=36°,∵D是AB中点,DE⊥AB,∴AE=BE,∴∠ABE=∠A=36°,∴∠EBC=∠ABC﹣∠ABE=36°,∠BEC=180°﹣∠EBC﹣∠C=72°,∴∠BEC=∠C=72°,∴BE=BC,∴AE=BE=BC.设AE=x,则BE=BC=x,EC=4﹣x.在△BCE与△ABC中,,∴△BCE∽△ABC,∴=,即=,解得x=﹣2±2(负值舍去),∴AE=﹣2+2.在△ADE中,∵∠ADE=90°,∴cos A===.故选C.11.(2016•绍兴)如图,在Rt△ABC中,∠B=90°,∠A=30°,以点A为圆心,BC长为半径画弧交AB于点D,分别以点A、D为圆心,AB长为半径画弧,两弧交于点E,连接AE,DE,则∠EAD的余弦值是()A.B.C.D.解:如图所示:设BC=x,∵在Rt△ABC中,∠B=90°,∠A=30°,∴AC=2BC=2x,AB=BC=x,根据题意得AD=BC=x,AE=DE=AB=x,作EM⊥AD于M,则AM=AD=x,在Rt△AEM中,cos∠EAD===;故选B.12.(2016•沈阳)如图,在Rt△ABC中,∠C=90°,∠B=30°,AB=8,则BC的长是()A.B.4 C.8D.4解:∵在Rt△ABC中,∠C=90°,∠B=30°,AB=8,cos B=,即cos30°=,∴BC=8×=4;故选D.13.(2016•兰州)在Rt△ABC中,∠C=90°,sin A=,BC=6,则AB=()A.4 B.6 C.8 D.10解:在Rt△ABC中,∠C=90°,sin A==,BC=6,∴AB===10,故选D.14.(2016•怀化)在Rt△ABC中,∠C=90°,sin A=,AC=6cm,则BC的长度为()A.6cm B.7cm C.8cm D.9cm解:∵sin A==,∴设BC=4x,AB=5x,又∵AC2+BC2=AB2,∴62+(4x)2=(5x)2,解得x=2或x=﹣2(舍),则BC=4x=8cm,故选C.15.(2016•福州)如图,以原点O为圆心,半径为1的弧交坐标轴于A,B两点,P是上一点(不与A,B重合),连接OP,设∠POB=α,则点P的坐标是()A.(sinα,sinα)B.(cosα,cosα)C.(cosα,sinα)D.(sinα,cosα)解:过P作PQ⊥OB,交OB于点Q,在Rt△OPQ中,OP=1,∠POQ=α,∴sinα=,cosα=,即PQ=sinα,OQ=cosα,则P的坐标为(cosα,sinα),故选C.16.(2015•南通)如图,在平面直角坐标系中,直线OA过点(2,1),则tanα的值是()A.B.C.D.2解:设(2,1)点是B,作BC⊥x轴于点C.则OC=2,BC=1,则tanα==.故选C.17.(2015•牡丹江)在△ABC中,AB=12,AC=13,cos∠B=,则BC边长为()A.7 B.8 C.8或17 D.7或17解:∵cos∠B=,∴∠B=45°,当△ABC为钝角三角形时,如图1,∵AB=12,∠B=45°,∴AD=BD=12,∵AC=13,∴由勾股定理得CD=5,∴BC=BD﹣CD=12﹣5=7;当△ABC为锐角三角形时,如图2,BC=BD+CD=12+5=17,故选D.18.(2015•日照)如图,在直角△BAD中,延长斜边BD到点C,使DC=BD,连接AC,若tan B=,则tan∠CAD的值()A.B.C.D.解:如图,延长AD,过点C作CE⊥AD,垂足为E,∵tan B=,即=,∴设AD=5x,则AB=3x,∵∠CDE=∠BDA,∠CED=∠BAD,∴△CDE∽△BDA,∴,∴CE=x,DE=,∴AE=,∴tan∠CAD==.故选D.二.填空题(共23小题)19.(2019•鄂尔多斯)如果三角形有一边上的中线长等于这边的长,那么称这个三角形为“好玩三角形”.若Rt△ABC是“好玩三角形”,且∠A=90°,则tan∠ABC=或.解:①如图1中,在Rt△ABC中,∠A=90°,CE是△ABC的中线,设AB=EC=2a,则AE=EB=a,AC =a,∴tan∠ABC==.②如图2中,在Rt△ABC中,∠A=90°,BE是△ABC的中线,设EB=AC=2a,则AE=EC=a,AB =a,∴tan∠ABC==.,故答案为或.20.(2019•柳州)如图,在△ABC中,sin B=,tan C=,AB=3,则AC的长为.解:过A作AD⊥BC,在Rt△ABD中,sin B=,AB=3,∴AD=AB•sin B=1,在Rt△ACD中,tan C=,∴=,即CD=,根据勾股定理得AC===,故答案为21.(2019•舟山)如图,在△ABC中,若∠A=45°,AC2﹣BC2=AB2,则tan C=.解:如图,过B作BD⊥AC于D,∵∠A=45°,∴∠ABD=∠A=45°,∴AD=BD.∵∠ADB=∠CDB=90°,∴AB2=AD2+DB2=2BD2,BC2=DC2+BD2,∴AC2﹣BC2=(AD+DC)2﹣(DC2+BD2)=AD2+DC2+2AD•DC﹣DC2﹣BD2=2AD•DC=2BD•DC,∵AC2﹣BC2=AB2,∴2BD•DC=×2BD2,∴DC=BD,∴tan C===.故答案为.22.(2019•宿迁)如图,∠MAN=60°,若△ABC的顶点B在射线AM上,且AB=2,点C在射线AN上运动,当△ABC是锐角三角形时,BC的取值范围是<BC<.解:如图,过点B作BC1⊥AN,垂足为C1,BC2⊥AM,交AN于点C2在Rt△ABC1中,AB=2,∠A=60°∴∠ABC1=30°∴AC1=AB=1,由勾股定理得BC1=,在Rt△ABC2中,AB=2,∠A=60°∴∠AC2B=30°∴AC2=4,由勾股定理得BC2=2,当△ABC是锐角三角形时,点C在C1C2上移动,此时<BC<2.故答案为<BC<2.23.(2019•乐山)如图,在△ABC中,∠B=30°,AC=2,cos C=.则AB边的长为.解:如图,作AH⊥BC于H.在Rt△ACH中,∵∠AHC=90°,AC=2,cos C=,∴=,∴CH=,∴AH===,在Rt△ABH中,∵∠AHB=90°,∠B=30°,∴AB=2AH=,故答案为.24.(2019•盐城)如图,在△ABC中,BC=+,∠C=45°,AB=AC,则AC的长为2.解:过点A作AD⊥BC,垂足为点D,如图所示.设AC=x,则AB=x.在Rt△ACD中,AD=AC•sin C=x,CD=AC•cos C=x;在Rt△ABD中,AB=x,AD=x,∴BD==x.∴BC=BD+CD=x+x=+,∴x=2.故答案为2.25.(2019•绵阳)在△ABC中,若∠B=45°,AB=10,AC=5,则△ABC的面积是75或25.解:过点A作AD⊥BC,垂足为D,如图所示.在Rt△ABD中,AD=AB•sin B=10,BD=AB•cos B=10;在Rt△ACD中,AD=10,AC=5,∴CD==5,∴BC=BD+CD=15或BC=BD﹣CD=5,∴S△ABC=BC•AD=75或25.故答案为75或25.26.(2018•德阳)如图,点D为△ABC的AB边上的中点,点E为AD的中点,△ADC为正三角形,给出下列结论,①CB=2CE,②tan∠B=,③∠ECD=∠DCB,④若AC =2,点P是AB上一动点,点P到AC、BC边的距离分别为d1,d2,则d12+d22的最小值是3.其中正确的结论是①③④(填写正确结论的序号).解:∵D是AB中点∴AD=BD∵△ACD是等边三角形,E是AD中点∴AD=CD,∠ADC=60°=∠ACD,CE⊥AB,∠DCE=30°∴CD=BD∴∠B=∠DCB=30°,且∠DCE=30°,CE⊥AB∴∠ECD=∠DCB,BC=2CE,tan∠B=故①③正确,②错误∵∠DCB=30°,∠ACD=60°∴∠ACB=90°若AC=2,点P是AB上一动点,点P到AC、BC边的距离分别为d1,d2,∴四边形PMCN是矩形∴MN=CP∵d12+d22=MN2=CP2∴当CP为最小值,d12+d22的值最小∴根据垂线段最短,则当CP⊥AB时,d12+d22的值最小此时:∠CAB=60°,AC=2,CP⊥AB∴CP=∴d12+d22=MN2=CP2=3即d12+d22的最小值为3故④正确故答案为①③④27.(2018•齐齐哈尔)四边形ABCD中,BD是对角线,∠ABC=90°,tan∠ABD=,AB =20,BC=10,AD=13,则线段CD=17或.解:当∠ADB为锐角时,作AH⊥BD于H,CG⊥BD于G,∵tan∠ABD=,∴=,设AH=3x,则BH=4x,由勾股定理得,(3x)2+(4x)2=202,解得,x=4,则AH=12,BH=16,在Rt△AHD中,HD==5,∴BD=BH+HD=21,∵∠ABD+∠CBD=90°,∠BCG+∠CBD=90°,∴∠ABD=∠BCG,∴=,又BC=10,∴BG=6,CG=8,∴DG=BD﹣BG=15,∴CD==17,当∠ADB为钝角时,CD′==,故答案为17或.28.(2018•泰安)如图,在△ABC中,AC=6,BC=10,tan C=,点D是AC边上的动点(不与点C重合),过D作DE⊥BC,垂足为E,点F是BD的中点,连接EF,设CD =x,△DEF的面积为S,则S与x之间的函数关系式为S=x2.解:在Rt△CDE中,tan C=,CD=x∴DE=x,CE=x,∴BE=10﹣x,∴S△BED=×(10﹣x)•x=﹣x2+3x.∵DF=BF,∴S=S△BED=x2,故答案为S=x2.29.(2018•无锡)已知△ABC中,AB=10,AC=2,∠B=30°,则△ABC的面积等于15或10.解:作AD⊥BC交BC(或BC延长线)于点D,①如图1,当AB、AC位于AD异侧时,在Rt△ABD中,∵∠B=30°,AB=10,∴AD=AB sin B=5,BD=AB cos B=5,在Rt△ACD中,∵AC=2,∴CD===,则BC=BD+CD=6,∴S△ABC=•BC•AD=×6×5=15;②如图2,当AB、AC在AD的同侧时,由①知,BD=5,CD=,则BC=BD﹣CD=4,∴S△ABC=•BC•AD=×4×5=10.综上,△ABC的面积是15或10,故答案为15或10.30.(2018•眉山)如图,在边长为1的小正方形网格中,点A、B、C、D都在这些小正方形的顶点上,AB、CD相交于点O,则tan∠AOD=2.解:如图,连接BE,∵四边形BCEK是正方形,∴KF=CF=CK,BF=BE,CK=BE,BE⊥CK,∴BF=CF,根据题意得AC∥BK,∴△ACO∽△BKO,∴KO:CO=BK:AC=1:3,∴KO:KF=1:2,∴KO=OF=CF=BF,在Rt△OBF中,tan∠BOF==2,∵∠AOD=∠BOF,∴tan∠AOD=2.故答案为231.(2018•德州)如图,在4×4的正方形方格图形中,小正方形的顶点称为格点,△ABC的顶点都在格点上,则∠BAC的正弦值是.解:∵AB2=32+42=25、AC2=22+42=20、BC2=12+22=5,∴AC2+BC2=AB2,∴△ABC为直角三角形,且∠ACB=90°,则sin∠BAC==,故答案为.32.(2017•铜仁市)如图,在Rt△ABC中,∠C=90°,点D是AB的中点,ED⊥AB交AC于点E.设∠A=α,且tanα=,则tan2α=.解:连接BE,∵点D是AB的中点,ED⊥AB,∠A=α,∴ED是AB的垂直平分线,∴EB=EA,∴∠EBA=∠A=α,∴∠BEC=2α,∵tanα=,设DE=a,∴AD=3a,AE=,∴AB=6a,∴BC=,AC=∴CE=AC﹣AE=,∴tan2α=,故答案为.33.(2017•黑龙江)△ABC中,AB=12,AC=,∠B=30°,则△ABC的面积是21或15.解:①如图1,作AD⊥BC,垂足为点D,在Rt△ABD中,∵AB=12、∠B=30°,∴AD=AB=6,BD=AB cos B=12×=6,在Rt△ACD中,CD===,∴BC=BD+CD=6+=7,则S△ABC=×BC×AD=×7×6=21;②如图2,作AD⊥BC,交BC延长线于点D,由①知,AD=6、BD=6、CD=,则BC=BD﹣CD=5,∴S△ABC=×BC×AD=×5×6=15,故答案为21或15.34.(2017•广州)如图,Rt△ABC中,∠C=90°,BC=15,tan A=,则AB=17.解:∵Rt△ABC中,∠C=90°,tan A=,BC=15,∴=,解得AC=8,根据勾股定理得,AB===17.故答案为17.35.(2017•无锡)在如图的正方形方格纸中,每个小的四边形都是相同的正方形,A,B,C,D都在格点处,AB与CD相交于O,则tan∠BOD的值等于3.解:方法一:平移CD到C′D′交AB于O′,如右图所示,则∠BO′D′=∠BOD,∴tan∠BOD=tan∠BO′D′,设每个小正方形的边长为a,则O′B=,O′D′=,BD′=3a,作BE⊥O′D′于点E,则BE=,∴O′E==,∴tan BO′E=,∴tan∠BOD=3,故答案为3.方法二:连接AM、NL,在△CAH中,AC=AH,则AM⊥CH,同理,在△MNH中,NM=NH,则NL⊥MH,∴∠AMO=∠NLO=90°,∵∠AOM=∠NOL,∴△AOM∽△NOL,∴,设图中每个小正方形的边长为a,则AM=2a,NL=a,∴=2,∴,∴,∵NL=LM,∴,∴tan∠BOD=tan∠NOL==3,故答案为3.方法三:连接AE、EF,如右图所示,则AE∥CD,∴∠F AE=∠BOD,设每个小正方形的边长为a,则AE=,AF=,EF=a,∵,∴△F AE是直角三角形,∠FEA=90°,∴tan∠F AE=,即tan∠BOD=3,故答案为3.36.(2017•嘉兴)如图,把n个边长为1的正方形拼接成一排,求得tan∠BA1C=1,tan∠BA2C=,tan∠BA3C=,计算tan∠BA4C=,…按此规律,写出tan∠BA n C=(用含n的代数式表示).解:作CH⊥BA4于H,由勾股定理得,BA4==,A4C=,△BA4C的面积=4﹣2﹣=,∴××CH=,解得,CH=,则A4H==,∴tan∠BA4C==,1=12﹣1+1,3=22﹣2+1,7=32﹣3+1,∴tan∠BA n C=,故答案为;.37.(2016•盐城)已知△ABC中,tan B=,BC=6,过点A作BC边上的高,垂足为点D,且满足BD:CD=2:1,则△ABC面积的所有可能值为8或24.解:如图1所示:∵BC=6,BD:CD=2:1,∴BD=4,∵AD⊥BC,tan B=,∴=,∴AD=BD=,∴S△ABC=BC•AD=×6×=8;如图2所示:∵BC=6,BD:CD=2:1,∴BD=12,∵AD⊥BC,tan B=,∴=,∴AD=BD=8,∴S△ABC=BC•AD=×6×8=24;综上,△ABC面积的所有可能值为8或24,故答案为8或24.38.(2016•舟山)如图,在直角坐标系中,点A,B分别在x轴,y轴上,点A的坐标为(﹣1,0),∠ABO=30°,线段PQ的端点P从点O出发,沿△OBA的边按O→B→A→O 运动一周,同时另一端点Q随之在x轴的非负半轴上运动,如果PQ=,那么当点P 运动一周时,点Q运动的总路程为4.解:在Rt△AOB中,∵∠ABO=30°,AO=1,∴AB=2,BO==,①当点P从O→B时,如图1、图2所示,点Q运动的路程为,②如图3所示,QC⊥AB,则∠ACQ=90°,即PQ运动到与AB垂直时,垂足为P,当点P从B→C时,∵∠ABO=30°∴∠BAO=60°∴∠OQD=90°﹣60°=30°∴cos30°=∴AQ==2∴OQ=2﹣1=1则点Q运动的路程为QO=1,③当点P从C→A时,如图3所示,点Q运动的路程为QQ′=2﹣,④当点P从A→O时,点Q运动的路程为AO=1,∴点Q运动的总路程为+1+2﹣+1=4故答案为439.(2016•临夏州)如图,点A(3,t)在第一象限,OA与x轴所夹的锐角为α,tanα=,则t的值是.解:过点A作AB⊥x轴于B,∵点A(3,t)在第一象限,∴AB=t,OB=3,又∵tanα===,∴t=.故答案为.40.(2015•香坊区)如图,△ABC中,AD平分∠BAC,AC=AD=2,AB=3,cos∠ABC的值为.解:∵AD平分∠BAC,∴=,∴设BD=3x,CD=2x,过AE⊥CD于E,∵AD=AC,∴DE=CE=x,∴BE=4x,∴AB2﹣BE2=AC2﹣CE2,∴32﹣(4x)2=22﹣x2,∴x=,∴BE=,∴cos∠ABC=,故答案为.41.(2015•齐齐哈尔)BD为等腰△ABC的腰AC上的高,BD=1,tan∠ABD=,则CD 的长为2或2﹣或.解:分三种情况:①如图1,∠A为钝角,AB=AC,在R t△ABD中,∵BD=1,tan∠ABD=,∴AD=,AB=2,∴AC=2,∴CD=2+,②如图2,∠A为锐角,AB=AC,在R t△ABD中,∵BD=1,tan∠ABD=,∴AD=,AB=2,∴AC=2,∴CD=2﹣,③如图3,∠A为底角,∵tan∠ABD=,∴∠ABD=60°,∴∠A=30°,∴∠C=120°,∴∠BCD=60°∵BD=1,∴CD=;④∠C为锐角且为顶角时,如图4,∵BD⊥AC,∴∠ADB=90°,∵tan∠ABD=,∴∠ABD=60°,∴∠A=30°,∵∠CBA=∠A=30°,∴∠C=120°>90°,∴这种情况不存在;综上所述;CD的长为2或2﹣或,故答案为2或2﹣或.三.解答题(共9小题)42.(2019•梧州)如图,在Rt△ABC中,∠C=90°,D为BC上一点,AB=5,BD=1,tan B=.(1)求AD的长;(2)求sinα的值.解:(1)∵tan B=,可设AC=3x,得BC=4x,∵AC2+BC2=AB2,∴(3x)2+(4x)2=52,解得,x=﹣1(舍去),或x=1,∴AC=3,BC=4,∵BD=1,∴CD=3,∴AD=;(2)过点作DE⊥AB于点E,∵tan B=,可设DE=3y,则BE=4y,∵BE2+DE2=BD2,∴(3y)2+(4y)2=12,解得,y=﹣(舍),或y=,∴,∴sinα=.43.(2018•赤峰)阅读下列材料:如图1,在△ABC中,∠A、∠B、∠C所对的边分别为a、b、c,可以得到:S△ABC=ab sin C=ac sin B=bc sin A证明:过点A作AD⊥BC,垂足为D.在Rt△ABD中,sin B=∴AD=c•sin B∴S△ABC=a•AD=ac sin B同理:S△ABC=ab sin CS△ABC=bc sin A∴S△ABC=ab sin C=ac sin B=bc sin A(1)通过上述材料证明:==(2)运用(1)中的结论解决问题:如图2,在△ABC中,∠B=15°,∠C=60°,AB=20,求AC的长度.(3)如图3,为了开发公路旁的城市荒地,测量人员选择A、B、C三个测量点,在B 点测得A在北偏东75°方向上,沿笔直公路向正东方向行驶18km到达C点,测得A在北偏西45°方向上,根据以上信息,求A、B、C三点围成的三角形的面积.(本题参考数值:sin15°≈0.3,sin120°≈0.9,≈1.4,结果取整数)解:(1)∵ab sin C=ac sin B,∴b sin C=c sin B,∴=,:同理得=,∴==;(4分)(2)由题意得∠B=15°,∠C=60°,AB=20,∴,即,∴,∴AC=40×0.3=12;(8分)(3)由题意得∠ABC=90°﹣75°=15°,∠ACB=90°﹣45°=45°,∠A=180°﹣15°﹣45°=120°,由==得=,∴AC=6,∴S△ABC=AC×BC×sin∠ACB=×6×18×0.7≈38.(12分)44.(2018•贵阳)如图①,在Rt△ABC中,以下是小亮探究与之间关系的方法:∵sin A=,sin B=∴c=,c=∴=根据你掌握的三角函数知识.在图②的锐角△ABC中,探究、、之间的关系,并写出探究过程.解:==,理由为过A作AD⊥BC,BE⊥AC,在Rt△ABD中,sin B=,即AD=c sin B,在Rt△ADC中,sin C=,即AD=b sin C,∴c sin B=b sin C,即=,同理可得=,则==.45.(2018•上海)如图,已知△ABC中,AB=BC=5,tan∠ABC=.(1)求边AC的长;(2)设边BC的垂直平分线与边AB的交点为D,求的值.解:(1)作A作AE⊥BC,在Rt△ABE中,tan∠ABC==,AB=5,∴AE=3,BE=4,∴CE=BC﹣BE=5﹣4=1,在Rt△AEC中,根据勾股定理得AC==;(2)∵DF垂直平分BC,∴BD=CD,BF=CF=,∵tan∠DBF==,∴DF=,在Rt△BFD中,根据勾股定理得BD==,∴AD=5﹣=,则=.46.(2018•自贡)如图,在△ABC中,BC=12,tan A=,∠B=30°;求AC和AB的长.解:如图作CH⊥AB于H.在Rt△BCH中,∵BC=12,∠B=30°,∴CH=BC=6,BH==6,在Rt△ACH中,tan A==,∴AH=8,∴AC==10,∴AB=AH+BH=8+6.47.(2017•黔西南州)把(sinα)2记作sin2α,根据图1和图2完成下列各题.(1)sin2A1+cos2A1=1,sin2A2+cos2A2=1,sin2A3+cos2A3=1;(2)观察上述等式猜想:在Rt△ABC中,∠C=90°,总有sin2A+cos2A=1;(3)如图2,在Rt△ABC中证明(2)题中的猜想:(4)已知在△ABC中,∠A+∠B=90°,且sin A=,求cos A.解:(1)sin2A1+cos2A1=()2+()2=+=1,sin2A2+cos2A2=()2+()2=+=1,。

北师大版九年级数学下册第一章直角三角形的边角关系综合题训练

北师大版九年级数学下册第一章直角三角形的边角关系综合题训练

北师大版九年级数学下册第一章直角三角形的边角关系综合压轴题专项训练试题1、如图,MN是表示某引水工程的一段设计路线,从M到N的走向为南偏东30°,在M的南偏东60°方向上有一点A,以A为圆心,500 米为半径的圆形区域为居民区,取MN上另一点B,测得BA的方向为南偏东75°,已知MB=400米,通过计算回答,如果不改变方向,输水路线是否会穿过居民区?2、如图,一座钢结构桥梁的框架是△ABC,水平横梁BC长18米,中柱AD高6米,其中D 是BC的中点,且AD⊥BC.(1)求sin B的值;(2)现需要加装支架DE,EF,其中点E在AB上,BE=2AE,且EF⊥BC,垂足为点F.求支架DE的长.3、如图,拦水坝的横断面为等腰梯形ABCD,坝顶宽BC为6 m,坝高为3.2 m,为了提高水坝的拦水能力需要将水坝加高2 m,并且保持坝顶宽度不变,迎水坡CD的坡度不变,但是背水坡的坡度由原来的1∶2变成1∶2.5(坡度是坡高与坡的水平长度的比).求加高后的坝底HD的长为多少.4、小红家的阳台上放置了一个晒衣架(如图∶),图∶是晒衣架的侧面示意图,立杆AB,CD相交于点O ,B ,D 两点立于地面,经测量:AB =CD =136 cm ,OA =OC =51 cm ,OE =OF =34 cm ,现将晒衣架完全稳固张开,扣链EF 成一条线段,且EF =32 cm (参考数据:sin 61.9°≈0.882,cos 61.9°≈0.471,tan 28.1°≈0.534).(1)求证:AC ∶BD .(2)求扣链EF 与立杆AB 的夹角∶OEF 的度数(结果精确到0.1°).(3)小红的连衣裙穿在晒衣架上的总长度达到122 cm ,垂挂在晒衣架上是否会拖落到地面?请通过计算说明理由.5、如图,在电线杆上的C 处引拉线CE ,CF 固定电线杆,拉线CE 和地面成60°角,在离电线杆6米的点B 处安置测角仪,在点A 处测得电线杆上C 处的仰角为30°.已知测角仪高AB 为1.5米,求拉线CE 的长(结果保留根号).6、如图,两条笔直的公路AB CD 、相交于点O ,AOC ∠为36°,指挥中心M 设在OA 路段上,与O 地的距离为18千米.一次行动中,王警官带队从O 地出发,沿OC 方向行进,王警官与指挥中心均配有对讲机,两部对讲机只能在10千米之内进行通话,通过计算判断王警官在行进过程中能否实现与指挥中心用对讲机通话.【参考数据:sin360.59cos360.81tan360.73===°,°,°.】7、在建筑楼梯时,设计者要考虑楼梯的安全程度和占地面积,如图1—136(1)所示,虚线为楼梯的斜度线,斜度线与地板的夹角为锐角θ,一般情况下,锐角θ愈小,楼梯的安全程度愈高,但占地面积较多,如图l—136(2)所示,为提高安全程度,把倾角由θ1减至θ2,这样楼梯占用地板的长度由d1增加到d2,已知d1=4 m,θ1=40°,θ2=36°,求楼梯占用地板的长度增加了多少.(精确到0.01 m,参考数据:sin36°≈0.5878,cos36°≈0.8090,tan 36°≈0.7265,sin 40°≈0.6428,cos 40°≈0.7660,tan 40°≈0.8391)8、在旧城改造中,要拆除一烟囱AB,如图1—137所示,在地面上事先划定以B为圆心,半径与AB等长的圆形区域为危险区,现在从与B地水平距离相距(BD=21米)21米远的建筑物CD的顶端C点测得A点的仰角为45°,B点的俯角为30°,现在离B点25米远的地方有一受保护的文物,则该文物是否在危险区内?试说明理由.,精确到0.01米)9、通过学习三角函数,我们知道在直角三角形中,一个锐角的大小与两条边长的比值相互唯一确定,因此边长与角的大小之间可以相互转化.类似的,可以在等腰三角形中建立边角之间的联系.我们定义:等腰三角形中底边与腰的比叫做顶角的正对(sad).如图1,在∶ABC中,AB =AC ,顶角A 的正对记作sadA ,这时sadA =底边腰=BC AB .容易知道一个角的大小与这个角的正对值也是相互唯一确定的.根据上述角的正对定义,解下列问题:(1)sad 60°=____________;(2)对于0°<∶A <180°,∶A 的正对值sadA 的取值范围是____________;(3)如图2,已知sinA =35,其中∶A 为锐角,试求sadA 的值. 10、根据道路管理规定,在羲皇大道秦州至麦积段上行驶的车辆,限速60千米/时.已知测速站点M 距离羲皇大道l (直线)的距离MN 为30米(如图8所示).现有一辆汽车由秦州向麦积方向匀速行驶,测得此车从点A 行驶到点B 所用时间为6秒,∠AMN =60°,∠BMN =45°.(1)计算AB 的长;(2)通过计算判断此车是否超速.11、如图所示,港口B 位于港口O 正西方向120 km 处,小岛C 位于港口O 北偏西60°的方向.一艘游船从港口O 出发,沿OA 方向(北偏西30°)以v km /h 的速度驶离港口O ,同时一艘快艇从港口B 出发,沿北偏东30°的方向以60 km /h 的速度驶向小岛C ,在小岛C 用1 h 加装补给物资后,立即按原来的速度给游船送去.(1)快艇从港口B 到小岛C 需要多长时间?(2)若快艇从小岛C 到与游船相遇恰好用时1 h ,求v 的值及相遇处与港口O 的距离.12、如图,修公路遇到一座山,于是要修一条隧道,为了加快施工进度,想在小山的另一侧同时施工.为了使山的另一侧的开挖点C 在AB 的延长线上,设想过C 点作直线AB 的垂线l ,过点B 作一直线(在山的旁边经过),与l 相交于D 点,经测量∶ABD =135°,BD =800米,求直线l 上距离D 点多远的C 处开挖?(2≈1.414,结果精确到1米)13、已知:如图,在山脚的C 处测得山顶A 的仰角为 45°,沿着坡度为30°的斜坡前进400米到D 处(即 ∠,CD =400米),测得A 的仰角为,求山的高度AB .14、如图,在南北方向的海岸线MN 上,有A ,B 两艘巡逻船,现均收到故障船C 的求救信号.已知A ,B 两船相距1003+1)海里,船C 在船A 的北偏东60°方向上,船C 在船B 的东南方向上,MN 上有一观测点D ,测得船C 正好在观测点D 的南偏东75°方向上.(1)分别求出A 与C ,A 与D 间的距离AC 和AD (如果运算结果有根号,请保留根号).(2)已知距观测点D 处100海里范围内有暗礁,若巡逻船A 沿直线AC 去营救船C ,在23≈1.73)6015、如图,防洪大堤的横断面是梯形,背水坡AB的坡比i=1∶,且AB=30 m,李亮同学在大堤上A点处用高1.5 m的测量仪测出高压电线杆CD顶端D的仰角为30°,已知地面BC宽30 m,求高压电线杆CD的高度.(结果保留三位有效数字,≈1.732)16、如图,为了测量出楼房AC的高度,从距离楼底C处60米的点D(点D与楼底C在同一水平面上)出发,沿斜面坡度为i=1∶的斜坡DB前进30米到达点B,在点B处测得楼顶A的仰角为53°,求楼房AC的高度(参考数据:sin53°≈0.8,cos53°≈0.6,tan53°≈,计算结果用根号表示,不取近似值).17、如图,从地面上的点A看一山坡上的电线杆PQ,测得杆顶端点P的仰角是45°,向前走6 m到达B点,测得杆顶端点P和杆底端点Q的仰角分别是60°和30°.(1)求∠BP Q的度数;(2)求该电线杆PQ的高度(结果精确到1 m).(参考数据:≈1.7,≈1.4)18、乌江快铁大桥是快铁渝黔线的一项重要工程,由主桥AB和引桥BC两部分组成(如图所示).建造前工程师用以下方式做了测量:无人机在A处正上方97 m处的P点,测得B处的俯角为30°(当时C处被小山体阻挡无法观测).无人机飞行到B处正上方的D处时能看到C处,此时测得C处的俯角为80°36′.(1)求主桥AB的长度;(2)若两观察点P,D的连线与水平方向的夹角为30°,求引桥BC的长度.(长度均精确到1 m,参考数据:3≈1.73,sin80°36′≈0.987,cos80°36′≈0.163,tan80°36′≈6.06)。

北师大版九年级下册数学单元测试题全套及答案

北师大版九年级下册数学单元测试题全套及答案

北师大版九年级下册数学单元测试题全套及答案(含期中期末试题)第一章检测题(BSD)(考试时间:120分钟 满分:120分)一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项)1.如图,在Rt △ABC 中,CD 是斜边AB 上的高线,∠ACD 的正弦值是23,则ACAB 的值是( B )A.255B.23C.355D.522.在Rt △ABC 中,∠C =90°,sin A =45,AC =6 cm ,则BC 的长度为( C )A .6 cmB .7 cmC .8 cmD .9 cm3.在△ABC 中,sin B =cos(90°-∠C )=12,那么△ABC 是( A )A .等腰三角形B .等边三角形C .直角三角形D .等腰直角三角形4.如图,过点C (-2,5)的直线AB 分别交坐标轴于A (0,2),B 两点,则tan ∠OAB =( B ) A.25B.23C.52D.325.为了测量被池塘隔开的A ,B 两点之间的距离,根据实际情况,作出如图所示的图形,其中AB ⊥BE ,EF ⊥BE ,AF 交BE 于点D ,点C 在BD 上,有四位同学分别测量出以下四组数据:①BC ,∠ACB ;②CD ,∠ACB ,∠ADB ;③EF ,DE ,BD ;④DE ,DC ,BC .能根据所测数据,求出A ,B 间距离的有( C )A .1组B .2组C .3组D .4组6.如图,在Rt △ABC 中,∠C =90°,∠A =30°,E 为线段AB 上一点,且AE ∶EB =4∶1,EF ⊥AC 于F ,连接FB ,则tan ∠CFB 的值等于( C )A.33B.233C.533D .53二、填空题(本大题共6小题,每小题3分,共18分) 7.在Rt △ABC 中 ,∠C =90°,BC =5,AB =12,则tan A =512. 8.(2019·赤峰)如图,一根竖直的木杆在离地面3.1 m 处折断,木杆顶端落在地面上,且与地面成38°角,则木杆折断之前高度约为__8.1__m __.(参考数据:sin 38°≈0.62,cos 38°≈0.79,tan 38°≈0.78)9.(2019·咸宁) 如图,某校九(1)班数学课外活动小组在河边测量河宽AB (这段河流的两岸平行),他们在点C 测得∠ACB =30°,点D 处测得∠ADB =60°,CD =80 m ,则河宽AB 约为 __69__ m .(结果保留整数,3≈1.73)10.(2019·柳州)在△ABC 中,sin B =13,tan C =22,AB =3,则AC 的长为 3 .11.如图,小明将一张矩形纸片ABCD 沿CE 折叠,B 点恰好落在AD 边上,设此点为F ,若AB ∶BC =4∶5,则sin ∠DCF 的值为 35.12.如图,在边长为1的小正方形网格中,点A ,B ,C ,D 都在这些小正方形的顶点上,AB ,CD 相交于点O ,则tan ∠AOD = 2 .三、(本大题共5小题,每小题6分,共30分)13.计算:sin 30°-(cos 45°-1)0+32tan 2 30°.解:原式=12-1+32×⎝⎛⎭⎫332=12-1+12=0.14.已知Rt △ABC 中,∠C =90°,∠B =60°,a =4,解这个直角三角形.解:∠A =90°-∠B =90°-60°=30°.由tan B =ba,得b =a tan B =4tan 60°=4 3.由cos B=a c ,得c =a cos B =4cos 60°=8.所以∠A =30°,b =43,c =8. 15.已知α为锐角,且tan α是方程x 2+2x -3=0的一个根,求2sin 2α+cos 2α- 3 tan (α+15°)的值.解:解方程x 2+2x -3=0, 得x 1=1,x 2=-3.∵tan α>0,∴tan α=1,∴α=45°,∴2sin 2α+cos 2α-3tan (α+15°)=2sin 245°+cos 245°-3tan 60°=2×⎝⎛⎭⎫222+⎝⎛⎭⎫222-3×3=1+12-3=-32.16.数学拓展课程《玩转学具》课堂中,小陆同学发现:一副三角板中,含45°角的三角板的斜边与含30°角的三角板的长直角边相等.于是,小路同学提出一个问题:如图,将一副三角板直角顶点重合后拼放在一起,点B ,C ,E 在同一直线上.若BC =2,求AF 的长.(请你运用所学的数学知识解决这个问题)解:在Rt △ABC 中,BC =2,∠A =30°, ∴AC =BC tan A =2tan 30°=2 3. 由题意,得EF =AC =2 3. 在Rt △EFC 中,∠E =45°, ∴CF =EF·sin 45°=23×22=6, ∴AF =AC -CF =23- 6.17.(2019·通辽)两栋居民楼之间的距离CD =30 m ,楼AC 和BD 均为10层,每层楼高为3 m .上午某时刻,太阳光线GB 与水平面的夹角为30°,此刻楼BD 的影子会遮挡到AC 的第几层?(参考数据:3≈1.7,2≈1.4)解:设太阳光线GB 交AC 于点F ,过F 作FH ⊥BD 于H ,AC =BD =3×10=30 m ,FH =CD =30 m ,∠BFH =∠α=30°,在RtBFH 中,tan ∠BFH =BH FH =BH 30=33,∴BH =30×33=103≈10×1.7=17,∴FC =HD =BD -BH ≈30-17=13,∵133≈4.3,所以在四层的上面,即第五层.答:此刻楼BD 的影子会遮挡到楼AC 的5层.四、(本大题共3小题,每小题8分,共24分)18.(2019·深圳)如图所示,某施工队要测量隧道长度BC ,AD =600米,AD ⊥BC ,施工队站在点D 处看向B ,测得仰角为45°,再由D 走到E 处测量,DE ∥AC ,ED =500米,测得仰角为53°,求隧道BC 的长.(sin 53°≈45,cos 53°≈ 35,tan 53°≈43)解:在RtABD 中,AB =AD =600(米),作EM ⊥AC 于M ,则AM =DE =500(米),∴BM =100米,在Rt △CEM 中,tan 53°=CM EM =CM 600=43,∴CM =800(米),∴BC =CM -BM =800-100=700(米).答:隧道BC 长为700米.19.(2019·广元)如图,某海监船以60海里/小时的速度从A 处出发沿正西方向巡逻,一可疑船只在A 的西北方向的C 处,海监船航行1.5小时到达B 处时接到报警,需巡查此可疑船只,此时可疑船只仍在B 的北偏西30°方向的C 处,然后,可疑船只以一定速度向正西方向逃离,海监船立刻加速以90海里/小时的速度追击,在D 处海监船追到可疑船只,D 在B 的北偏西60°方向.(以下结果保留根号)(1)求B ,C 两处之间的距离;(2)求海监船追到可疑船只所用的时间.解:(1)过点C 作CE ⊥AB 于点E ,在Rt △BCE 中,∵∠BCE =30°,∴BE =BC ×sin ∠BCE =12BC ,CE =BC ×cos ∠BCE =32BC ,在Rt △ACE 中, ∵∠A =45°.∴AE =CE =32BC ,∵AB =60×1.5=90,∴AE -BE =32BC -12BC =90,解得BC =90(3+1).故B ,C 相距(903+90)海里.(2)过点D 作DF ⊥AB 于F ,由(1),得DF =CE =32BC ,∴DF =135+453,在Rt △BDF 中,∠DBF =30°,∴BD =2DF =270+903,∴海监船追到可疑船只所用的时间为(270+903)÷90=(3+3)h.20.已知:如图,在四边形ABCD 中,∠ABC =∠ADC =90°,DE ⊥BC 于E ,连接BD.若tan C =2,BE =3,CE =2,求点B 到CD 的距离.解:过点B 作BF ⊥CD ,垂足为F ,则∠BFC =90°.∵DE ⊥BC ,∴∠DEC =∠DEB =90°,在Rt △DEC 中,∵tan C =2,EC =2,∴DE =4.在Rt △BFC 中,∵tan C =2,∴BF =2FC ,设BF =x ,则FC =12x ,∵BF 2+FC 2=BC 2,∴x 2+(12x)2=(3+2)2,解得x =25,即BF =2 5.答:点B 到CD 的距离是2 5.五、(本大题共2小题,每小题9分,共18分)21.如图,点E 是矩形ABCD 中CD 边上一点,△BCE 沿BE 折叠为△BFE ,点F 落在AD 上. (1)求证:△ABF ∽△DFE ;(2)若sin ∠DFE =13,求tan ∠EBC 的值.(1)证明:∵∠A =∠D =90°,∠ABF 与∠DFE 都与∠AFB 互余,∴∠ABF =∠DFE ,∴△ABF ∽△DFE ;(2)解:∵sin ∠DFE =DE EF =13,∴设DE =k .则EF =CE =3k ,AB =CD =4k ,∴DF =EF 2-DE 2=22k ,由△ABF ∽△DFE ,得AF DE =AB DF ,即AF k =4k22k ,∴AF =2k ,∴BC =AD =2k +22k =32k ,∴tan ∠EBC =CE BC =3k 32k =22. 22.小明坐于堤边垂钓,如图,河堤AC 的坡角为30°,AC 长332米,钓竿AO 的倾斜角是60°,其长为3米,若AO 与钓鱼线OB 的夹角为60°,求浮漂B 与河堤下端C 之间的距离.解:如图,延长OA 交直线BC 于点D ,∵AO 的倾斜角是60°,∴∠ODB =60°.∵∠ACD =30°,∴∠CAD =180°-∠ODB -∠ACD =90°.在Rt △ACD 中,AD =AC·tan ∠ACD =332·33=32(米).∴CD =2AD =3(米). 又∵∠O =60°,∴△BOD 为等边三角形.∴BD=OD=OA+AD=3+32=4.5(米).∴BC=BD-CD=4.5-3=1.5米.答:浮漂B与河堤下端C之间的距离为1.5米.六、(本大题共12分)23.在一次科技活动中,小明进行了模拟雷达扫描实验.表盘是△ABC,其中AB=AC,∠BAC =120°,在点A处有一束红外光线AP,从AB开始,绕点A逆时针匀速旋转,每秒钟旋转15°,到达AC后立即以相同旋转速度返回AB,到达后立即重复上述旋转过程.小明通过实验发现,光线从AB 处旋转开始计时,旋转1秒,此时光线AP交BC边于点M,BM的长为(203-20) cm.(1)求AB的长;(2)从AB处旋转开始计时,若旋转6秒,此时光线AP与BC边的交点在什么位置?若旋转2 030秒,交点又在什么位置?请说明理由.解:(1)如图①,过A点作AD⊥BC,垂足为D.∵∠BAC=120°,AB=AC,∴∠ABC=∠C=30°.令AB=2t cm.在Rt△ABD中,AD=12AB=t,BD=32AB=3t.在Rt AMD中,∵∠AMD=∠ABC+∠BAM=45°,∴MD=AD=t.∵BM=BD-MD.即3t-t=203-20.解得t=20.∴AB=2×20=40 cm.答:AB的长为40 cm.(2)如图②,当光线旋转6秒,设AP交BC于点N,此时∠BAN=15°×6=90°.在Rt△ABN中,BN=ABcos 30°=4032=8033cm.∴光线AP旋转6秒,与BC的交点N距点B8033cm处.如图③,设光线AP旋转2 030秒后光线与BC的交点为Q.由题意可知,光线从边AB开始到第一次回到AB处需8×2=16秒,而2 030=126×16+14,即AP旋转2 030秒与旋转14秒时和BC的交点是同一个点Q.旋转14s的过程是B→C:8s,C→Q:6s,因此CQ=BN=8033cm,∵AB=AC,∠BAC=120°,∴BC=2ABcos 30°=2×40×32=40 3 cm,∴BQ=BC-CQ=403-8033=4033cm.答:光线AP旋转2 030秒后,与BC的交点Q在距点B的4033cm处.第二章检测题(BSD)(考试时间:120分钟满分:120分)一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项)1.已知抛物线y=x2+ax+b与x轴的交点坐标为(-1,0)和(-3,0),则方程x2+ax+b=0的解是( B )A.x1=1,x2=-3 B.x1=-1,x2=-3C.x=-3 D.x=32.如图,在Rt△ABC中,∠C=90°,AC=4 cm,BC=6 cm,动点P从点C开始沿CA以1 cm/s 的速度向A点运动,同时动点Q从点C开始沿CB以2 cm/s的速度向B点运动,其中一个动点到达终点时,另一个动点也停止运动,则运动过程中所构成的△CPQ的面积y(cm2)与运动时间x(s)之间的函数图象大致是( C )3.已知学校航模组设计制作的火箭的升空高度h(m)与飞行时间t(s)满足函数表达式h=-t2+24t +1.则下列说法中正确的是( D )A.点火后9 s和点火后13 s的升空高度相同B.点火后24 s火箭落于地面C.点火后10 s的升空高度为139 mD.火箭升空的最大高度为145 m4.若二次函数y=ax2+bx+c(a≠0)经过原点和第一、二、三象限,则(A)A.a>0,b>0,c=0 B.a>0,b<0,c=0C.a<0,b>0,c=0 D.a<0,b<0,c=05.(2019·烟台)已知二次函数y=ax2+bx+c(a≠0)的y与x的部分对应值如下表,下列结论:①抛物线的开口向上;②抛物线的对称轴为直线x=2; ③当0<x<4时,y>0;④抛物线与x轴的两个交点间的距离是4;⑤若A(x1,2),B(B)A.2 B.36.(2019·巴中)二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论①b2>4ac,②abc<0,③2a+b -c >0,④a +b +c <0.其中正确的是( A )A .①④B .②④C .②③D .①②③④二、填空题(本大题共6小题,每小题3分,共18分)7.已知一条抛物线的开口大小与y =x 2相同但方向相反,且顶点坐标是(2,3),则该抛物线的表达式是 y =-x 2+4x -1 .8.飞机着陆后滑行的距离y (单位:m)关于滑行时间t (单位:s)的函数表达式是y =60t -32t 2,在飞机着陆滑行中,最后4 s 滑行的距离是 24 m.9.若二次函数y =2x 2-4x -1的图象与x 轴交于A (x 1,0),B (x 2,0)两点,则1x 1+1x 2的值为 -4 .10.如图,已知△OBC 是等腰直角三角形,∠OCB =90°,若点B 的坐标为(4,0),点C 在第一象限,则经过O ,B ,C 三点的抛物线的表达式是 y =-12x 2+2x .11.已知二次函数y =ax 2+2ax +3a 2+3(a ≠0)(其中x 是自变量),当x ≥2时,y 随x 的增大而增大,且-2≤x ≤1时,y 的最大值为9,则a 的值是__1__.12.如图,在平面直角坐标系xOy 中,已知抛物线y =ax 2+bx(a>0)的顶点为C ,与x 轴的正半轴交于点A ,它的对称轴与抛物线y =ax 2(a>0)交于点B.若四边形ABOC 是正方形,则b 的值是 -2 .三、(本大题共5小题,每小题6分,共30分)13.已知当x =2时,抛物线y =a(x -h)2有最大值,此抛物线过点(1,-3),求抛物线的表达式,并指出当x 为何值时,y 随x 的增大而减小.解:当x =2时,有最大值,所以h =2.此抛物线过(1,-3),所以-3=a(1-2)2,解得a =-3.此抛物线的表达式为y =-3(x -2)2.当x >2时,y 随x 的增大而减小.14.已知抛物线y =-3x 2经过平移经过点(0,0)和(1,9),求出平移后抛物线的表达式,并写出它的对称轴和顶点坐标.解:设平移后抛物线的表达式为y =-3x 2+bx +c ,将点(0,0)和(1,9)的坐标代入,得⎩⎨⎧c =0,-3+b +c =9,解得⎩⎪⎨⎪⎧b =12,c =0.∴平移后抛物线的表达式为y =-3x 2+12x.∵y =-3x 2+12x =-3(x -2)2+12,∴对称轴为直线x=2,顶点坐标为(2,12).15.已知抛物线y =-a(x -2)2+3经过点(1,2).(1)求a 的值;(2)若点A(m ,y 1),B(n ,y 2)(m >n >2)都在该抛物线上,试比较y 1与y 2的大小. 解:(1)把(1,2)代入y =-a(x -2)2+3,得2=-a(1-2)2+3,解得a =1;(2)由(1)知原抛物线的表达式为y =-(x -2)2+3,其开口向下,对称轴为直线x =2, ∴当x >2时,y 随x 的增大而减小. ∵m >n >2,∴y 1<y 2.16.如图,在平面直角坐标系xOy 中,边长为2的正方形OABC 的顶点A ,C 分别在x 轴、y 轴的正半轴上,二次函数y =-23x 2+bx +c 的图象经过B ,C 两点.(1)求该二次函数的表达式;(2)结合函数的图象探索,当y >0时,x 的取值范围.解:(1)由题意可得B(2,2),C(0,2),将B ,C 坐标代入y =-23x 2+bx +c ,解得c =2,b =43,所以二次函数的表达式是y =-23x 2+43x +2.(2)令y =0,解-23x 2+43x +2=0,得x 1=3,x 2=-1,由图象可知:y >0时,x 的取值范围是-1<x <3.17.如图,抛物线y =ax 2+bx -5(a ≠0)与x 轴交于点A(-5,0)和点B(3,0),与y 轴交于点C.(1)求该抛物线的表达式;(2)若点E 为x 轴下方抛物线上的一动点,当S △ABE =S △ABC 时,求点E 的坐标.解:(1)∵抛物线经过A ,B 两点,∴把A(-5,0),B(3,0)代入y =ax 2+bx -5,得⎩⎨⎧25a -5b -5=0,9a +3b -5=0,解得⎩⎨⎧a =13,b =23,∴该抛物线的表达式为y =13x 2+23x -5.(2)∵y =13x 2+23x -5,∴令x =0,则y =-5.∴C 点的坐标为(0,-5),∵S △ABE =S △ABC ,∴点E的纵坐标与点C 的纵坐标相等,即点E 的纵坐标为-5,令13x 2+23x -5=-5,解得x 1=-2,x 2=0(舍去),∴点E 的坐标为(-2,-5).四、(本大题共3小题,每小题8分,共24分) 18.已知二次函数y =x 2-(2m -1)x +m 2-m.(1)求证:此二次函数图象与x 轴必有两个不同的交点;(2)若此二次函数图象与直线y =x -3m +4的一个交点在y 轴上,求m 的值.(1)证明:令y =0,有x 2-(2m -1)x +m 2-m =0,Δ=b 2-4ac =(2m -1)2-4(m 2-m)=1>0,∴结论成立;(2)解:令x =0,代入y =x 2-(2m -1)x +m 2-m 与y =x -3m +4,得m 2-m =-3m +4,∴m =-1+5或-1- 5.19.杂技团进行杂技表演,演员从跷跷板右端A 处弹跳到人梯顶端椅子B 处,其身体(看作一点)的路线是抛物线y =-35x 2+3x +1的一部分,如图.(1)求演员弹跳离地面的最大高度;(2)已知人梯高BC =3.4 m ,在一次表演中人梯到起点A 的水平距离为4 m ,问这次表演是否成功?请说明理由.解:(1)∵y =-35x 2+3x +1=-35⎝⎛⎭⎫x -522+194,∴该演员弹跳高度的最大值为194m ; (2)当x =4时,y =-35×42+3×4+1=3.4,∴这次表演是成功的.20.如图,已知抛物线y =ax 2-4x +c 经过点A(0,-6)和B(3,-9).(1)求出抛物线的表达式;(2)写出抛物线的对称轴及顶点坐标;(3)点P(m ,m)(其中m >0)与点Q 均在抛物线上,且这两点关于抛物线的对称轴对称,求m 的值及点Q 的坐标.解:(1)依题意有⎩⎨⎧a ×02-4×0+c =-6,a ×32-4×3+c =-9,即⎩⎨⎧c =-6,9a -12+c =-3,∴⎩⎪⎨⎪⎧a =1,c =-6.∴抛物线的表达式为y =x 2-4x -6.(2)把y =x 2-4x -6配方得y =(x -2)2-10,∴对称轴为直线x =2,顶点坐标(2,-10).(3)由点P(m ,m)在抛物线上,有m =m 2-4m -6,即m 2-5m -6=0.∴m 1=6或m 2=-1(舍去),∴m =6,∴P 点的坐标为(6,6).∵点P ,Q 均在抛物线上,且关于对称轴x =2对称,∴Q 点的坐标为(-2,6). 五、(本大题共2小题,每小题9分,共18分)21.把抛物线y =12x 2平移得到抛物线m ,抛物线m 经过点A(-6,0)和原点O(0,0),它的顶点为P ,它的对称轴与抛物线y =12x 2交于点Q.(1)求顶点P 的坐标; (2)写出平移过程;(3)求图中阴影部分的面积.解:(1)设抛物线m 的表达式为y =12x 2+bx +c ,把点A(-6,0),原点O(0,0)代入,得b =3,c=0,∴抛物线m 的表达式为y =12x 2+3x =12(x +3)2-92,所以顶点P 的坐标为⎝⎛⎭⎫-3,-92. (2)把抛物线y =12x 2先向左平移3个单位长度,再向下平移92个单位长度即可得到抛物线y =12(x +3)2-92.(3)Q 点横坐标为-3,代入y =12x 2,可得Q ⎝⎛⎭⎫-3,92,图中阴影部分的面积=S △OPQ =12×3×9=272. 22.(2019·南充)在“我为祖国点赞”征文活动中,学校计划对获得一、二等奖的学生分别奖励一支钢笔、一本笔记本.已知购买2支钢笔和3个笔记本共38元,购买4支钢笔和5个笔记本共70元. (1)钢笔、笔记本的单价分别为多少元?(2)经与商家协商,购买钢笔超过30支时,每增加1支,单价降低0.1元;超过50支,均按购买50支的单价售,笔记本一律按原价销售.学校计划奖励一、二等奖学生共计100人,其中一等奖的人数不少于30人,且不超过60人,这次奖励一等奖学生多少人时,购买奖品总金额最少,最少为多少元?解:(1)设钢笔、笔记本的单价分别为x ,y 元,根据题意得,⎩⎨⎧2x +3y =38,4x +5y =70,解得:⎩⎪⎨⎪⎧x =10,y =6.答:钢笔、笔记本的单价分别为10元,6元;(2)设钢笔的单价为a 元,购买数量为b 支,支付钢笔和笔记本的总金额为w 元, ①当30≤b ≤50时,a =10-0.1(b -30)=-0.1b +13,w =b(-0.1b +13)+6(100-b)=-0.1b 2+7b +600=-0.1(b -35)2+722.5,∵当b =30时,w =720,当b =50时,w =700, ∴当30≤b ≤50时,700≤w ≤722.5;②当50<b ≤60时,a =8,w =8b +6(100-b)=2b +600,700<w ≤720,∴当30≤b ≤60时,w 的最小值为700元.答:这次奖励一等奖学生50人时,购买的奖品总金额最少,最少为700元.六、(本大题共12分)23.(2019·新疆)如图,抛物线y =ax 2+bx +c 经过A (-1,0),B (4,0),C (0,4)三点. (1)求抛物线的表达式及顶点D 的坐标; (2)将(1)中的抛物线向下平移154个单位长度,再向左平移h (h >0)个单位长度,得到新抛物线.若新抛物线的顶点D ′在△ABC 内,求h 的取值范围;(3)点P 为线段BC 上一动点(点P 不与点B ,C 重合),过点P 作x 轴的垂线交(1)中的抛物线于点Q ,当△PQC 与△ABC 相似时,求△PQC 的面积.题图 答图解:(1)函数表达式为y =a(x +1)(x -4)=a(x 2-3x -4),即-4a =4,解得a =-1,故抛物线的表达式为y =-x 2+3x +4,顶点D(32,254);(2)抛物线向下平移154个单位长度,再向左平移h(h>0)个单位长度,得到新抛物线的顶点D' (32-h ,52),将点A ,C 的坐标代入一次函数表达式并解得直线AC 的表达式为y =4x +4,将点D' 坐标代入直线AC 的表达式得:52=4(32-h)+4,解得h =158,故0<h<158;(3)过点P 作y 轴的平行线交抛物线和x 轴于点Q ,H ,∵OB =OC =4,∴∠PBA =∠OCB =45°=∠QPC ,直线BC 的表达式为y =-x +4,则AB =5,BC =42,AC =17,S ABC =12×5×4=10,设点Q(m ,-m 2+3m +4),点P(m ,-m +4),CP =2m ,PQ =-m 2+3m +4+m -4=-m 2+4m ,①当△CPQ ∽△CBA ,PC BC =PQ AB ,即2m42=-m 2+4m 5,解得m =114,相似比为PC BC =1116,②当△CPQ ∽△ACB ,同理可得相似比为PC AB =12225,利用面积比等于相似比的平方可得S PQC=10×(1116)2=605128或SPQC =10×(12225)2=576125. 第三章检测题(BSD)(考试时间:120分钟 满分:120分)一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项)1.已知⊙P 的半径为4,圆心P 的坐标为(1,2),点Q 的坐标为(0,5),则点Q 与⊙P 位置关系是( C )A .点Q 在⊙P 外B .点Q 在⊙P 上C .点Q 在⊙P 内D .不能确定2.如图,在⊙O 中,弦AB ∥CD ,若∠ABC =40°,则∠BOD 等于( D ) A .20° B .40° C .50° D.80°3.如图,⊙O 的半径为3,四边形ABCD 内接于⊙O ,连接OB ,OD ,若∠BOD =∠BCD ,则BD ︵的长为( C )A .πB.32πC .2πD .3π4.同一个圆的内接正六边形和外切正六边形的周长之比为( B )A .3∶4B .3∶2C .2∶ 3D .1∶25.如图,AC 是⊙O 的直径,弦BD ⊥AO 于点E ,连接BC ,过点O 作OF ⊥BC 于点F ,若BD =8 cm ,AE =2 cm ,则OF 的长度是( D )A .3 cmB . 6 cmC .2.5 cmD . 5 cm 6.如图,将正方形ABCD 绕点A 按逆时针方向旋转30°,得正方形AB 1C 1D 1,B 1C 1交CD 于点E ,AB =3,则四边形AB 1ED 的内切圆半径为( B )A .3+12B .3-32C .3+13D .3-33二、填空题(本大题共6小题,每小题3分,共18分)7.如图,四边形ABCD 内接于⊙O ,若∠BOD =138°,则它的一个外角∠DCE 等于69° . 8.如图,量角器的0度刻度线为AB ,将一矩形直尺与量角器部分重叠,使直尺一边与量角器相切于点C ,直尺另一边交量角器于点A ,D ,量得AD =10 cm ,点D 在量角器上的读数为60°,则该直尺的宽度为533 cm . 9.如图,AB 是⊙O 的直径,点C 在⊙O 上,过点C 的切线与BA 的延长线交于点D ,点E 在BC ︵上(不与点B ,C 重合),连接BE ,CE.若∠D =40°,则∠BEC =115度.10.(2019·内江)如图,在平行四边形ABCD 中,AB<AD ,∠A =150°,CD =4,以CD 为直径的⊙O 交AD 于点E ,则图中阴影部分的面积为2π3+ 3 . 11.如图,P 是反比例函数y =4x (x >0)的图象上一点,以点P 为圆心、1个单位长度为半径作⊙P ,当⊙P 与直线y =3相切时,点P 的坐标为 (1,4)或(2,2) .12.(2019·包头)如图,BD 是⊙O 的直径,A 是⊙O 外一点,点C 在⊙O 上,AC 与⊙O 相切于点C ,∠CAB =90°,若BD =6,AB =4,∠ABC =∠CBD ,则弦BC 的长为.三、(本大题共5小题,每小题6分,共30分)13.如图,⊙O 是△ABC 的外接圆,∠A =45°,BD 是直径,BD =2,连接CD ,求BC 的长.解:在⊙O 中,∵∠A =45°,∴∠D =45°. ∵BD 为⊙O 的直径, ∴∠BCD =90°, ∴BC =BD·sin 45°=2×22= 2. 14.如图,已知CD 平分∠ACB ,DE ∥AC.求证:DE =BC.证明:∵CD 平分∠ACB ,∴∠ACD =∠BCD ,∴BD ︵=AD ︵,∵DE ∥AC ,∴∠ACD =∠CDE ,∴AD ︵=CE ︵,∴BD ︵=CE ︵,∴DE ︵=BC ︵,∴DE =BC.15.如图,两个同心圆中,大圆的弦AB ,AC 分别切小圆于点D ,E ,△ABC 的周长为12 cm ,求△ADE 的周长.解:连接OD ,OE.∵AB ,AC 分别切小圆于点D ,E , ∴OD ⊥AB ,OE ⊥AC , ∴AD =DB ,AE =EC , ∴DE 是△ABC 的中位线,∴DE =12BC ,∴C △ADE =12C △ABC =12×12=6 cm .16.如图所示,⊙O 的直径AB 长为6,弦AC 的长为2,∠ACB 的平分线交⊙O 于点D ,求四边形ADBC 的面积.解:∵AB 是⊙O 的直径, ∴∠ACB =∠ADB =90°.在Rt △ABC 中,由勾股定理,得 BC =AB 2-AC 2=62-22=4 2. 又∵CD 平分∠ACB , ∴AD ︵=BD ︵,∴AD =BD.在Rt △ABD 中,由勾股定理,得AD =BD =22AB =22×6=3 2. ∴S 四边形ADBC =S △ABC +S △ABD =42+9,∴四边形ADBC 的面积为42+9.17.如图,点I 是△ABC 的内心,AI 的延长线交BC 于点D ,交△ABC 的外接圆于点E.求证:IE 2=AE·DE.证明:连接BE ,BI.∵I 为△ABC 的内心,∴∠1=∠2,∠3=∠4. 又∵∠6=∠1+∠3,∠IBE =∠4+∠5, ∠5=∠2=∠1,∴∠IBE =∠6,∴IE =BE. ∵∠5=∠1,∠E =∠E ,∴△BED∽△AEB,∴BEDE=AEBE,∴BE2=AE·DE,∴IE2=AE·DE.四、(本大题共3小题,每小题8分,共24分)18.如图,在直角坐标系中,点O′的坐标为(-2,0),⊙O′与x轴相交于原点O和点A,B,C 两点的坐标分别为(0,b),(1,0).(1)当b=3时,求经过B,C两点的直线的表达式;(2)当B点在y轴上运动时,直线BC与⊙O′有哪几种位置关系?并求出每种位置关系时b的取值范围.解:(1)直线BC表达式为y=-3x+3.(2)当BC切⊙O′于第二象限时,记切点为点D.易得DC= 5.∵BO=BD=b,∴BC=5-b.12+b2=(5-b)2,得b=25 5.同理当BC切⊙O′于第三象限D1点时,可求得b=-25 5.故当b>255或b<-255时,直线BC与⊙O′相离;当b=255或-255时,直线BC与⊙O′相切;当-255<b<255时,直线BC与⊙O′相交.19.(2018·南充)如图,C是⊙O上一点,点P在直径AB的延长线上,⊙O的半径为3,PB=2,PC=4.(1)求证:PC是⊙O的切线.(2)求tan∠CAB的值.(1)证明:连接OC,BC,∵⊙O的半径为3,PB=2,∴OC=OB=3,OP=OB+PB=5.∵PC=4,∴OC2+PC2=OP2,∴△OCP是直角三角形,∴OC⊥PC,∴PC是⊙O的切线.(2)解:∵AB是直径,∴∠ACB=90° ,∴∠ACO+∠OCB=90°,∵OC⊥PC,∴∠BCP+∠OCB =90°,∴∠BCP=∠ACO.∵OA=OC,∴∠A=∠ACO,∴∠A=∠BCP,在△PBC和△PCA中,∠BCP=∠A,∠P=∠P,∴△PBC∽△PCA,∴BCAC=PBPC=24=12,∴tan∠CAB=BC AC=12.20.(齐齐哈尔中考)如图,以△ABC的边AB为直径画⊙O,交AC于点D,半径OE∥BD,连接BE,DE,BD,设BE交AC于点F,若∠DEB=∠DBC.(1)求证:BC是⊙O的切线;(2)若BF=BC=2,求图中阴影部分的面积.(1)证明:∵AB是⊙O的直径,∴∠ADB=90°,∴∠A+∠ABD=90°.又∵∠A=∠DEB,∠DEB=∠DBC,∴∠A=∠DBC,∴∠DBC+∠ABD=90°,即∠ABC=90°∴BC是⊙O的切线.(2)解:∵BF=BC=2且∠ADB=90°,∴∠CBD=∠FBD,又∵OE∥BD,∴∠FBD=∠OEB.∵OE=OB,∴∠OEB=∠OBE,∴∠CBD=∠DBE=∠OBE=13∠ABC=13×90°=30°,∴∠C=60°,∴AB=3BC=23,∴⊙O的半径为3,连接OD,∴阴影部分面积为S扇形OBD-S△OBD=16π×3-34×3=π2-334.五、(本大题共2小题,每小题9分,共18分)21.(2019·安顺)如图,在△ABC中,AB=AC,以AB为直径的⊙O与边BC,AC分别交于D,E 两点,过点D作DH⊥AC于点H.(1)判断DH与⊙O的位置关系,并说明理由;(2)求证:点H为CE的中点;(3)若BC=10,cos C=55,求AE的长.(1)解:DH与⊙O相切.理由:连接OD,AD,∵AB为直径,∴∠ADB=90°,∵AB=AC,∴BD=CD,∵OA=OB,∴OD∥AC,∵DH⊥AC,∴DH⊥OD,∴DH为⊙O的切线.(2)证明:连接DE,∵A,B,D,E四点共圆,∴∠DEC=∠B,∵AB=AC,∴∠B=∠C,∴∠DEC=∠C,∴CD=ED,∵DH⊥CE,∴点H为CE的中点.(3)解:CD=12BC=5,∵cos C=CDAC=55,∴AC=55,∵cos C=CHCD=55,∴CH=5,∴CE=2CH =25,∴AE =AC -CE =3 5.22.如图,在Rt △ABC 与Rt △OCD 中,∠ACB =∠DCO =90°,点O 为AB 的中点.(1)求证:∠B =∠ACD ;(2)已知点E 在AB 上,且BC 2=AB ·BE . ①若tan ∠ACD =34,BC =10,求CE 的长;②试判断CD 与以A 为圆心,AE 为半径的⊙A 的位置关系,并请说明理由.(1)证明:∵∠ACB =∠DCO =90°,∴∠ACB -∠ACO =∠DCO -∠ACO ,即∠ACD =∠OCB ; 又∵点O 是AB 的中点,∴OC =OB , ∴∠OCB =∠B , ∴∠B =∠ACD .(2)解:①∵BC 2=AB ·BE ,∴BC AB =BEBC.∵∠B =∠B ,∴△ABC ∽△CBE ,∴∠ACB =∠CEB =90°. ∵∠ACD =∠B ,∴tan ∠ACD =tan B =34,设BE =4x ,则CE =3x .由勾股定理,可知BE 2+CE 2=BC 2, ∴(4x )2+(3x )2=100,∴解得x =2,∴CE =6.②CD 与⊙A 相切.理由如下: 过点A 作AF ⊥CD 于点F .∵∠CEB =90°,∴∠B +∠ECB =90°. ∵∠ACE +∠ECB =90°,∴∠B =∠ACE .∵∠ACD =∠B ,∴∠ACD =∠ACE ,∴CA 平分∠DCE .∵AF ⊥CD ,AE ⊥CE ,∴AF =AE ,∴直线CD 与⊙A 相切.六、(本大题共12分)23.(2019·荆州)如图AB 是⊙O 的直径,点C 为⊙O 上一点,点P 是半径OB 上一动点(不与O ,B 重合),过点P 作射线l ⊥AB ,分别交弦BC ,BC ︵于D ,E 两点,在射线l 上取点F ,使FC =FD .(1)求证:FC 是⊙O 的切线; (2)当点E 是BC ︵的中点时,①若∠BAC =60°,判断O ,B ,E ,C 为顶点的四边形是什么特殊四边形,并说明理由; ②若tan ∠ABC =34,且AB =20,求DE 的长.(1)证明:连接OC ,∵OB =OC ,∴∠OBC =∠OCB ,∵PF ⊥AB ,∴∠BPD =90°,∴∠OBC +∠BDP =90°,∵FC =FD, ∴∠FCD =∠FDC ,∵∠FDC =∠BDP ,∴∠FCD =∠BDP ,∴∠OCB +∠FCD =90°,∴OC ⊥FC ,FC 是⊙O 的切线.(2)解:连接OC ,OE ,BE ,CE ,OE 与BC 交于H. ①以O ,B ,E ,C 为顶点的四边形是菱形.理由:∵AB 是直径,∴∠ACB =90°,∵∠BAC =60°,∴∠BOC =120°,∵点E 是BC ︵的中点,∴∠BOE =∠COE =60°,∵OB =OE =OC ,∴△BOE ,△COE 均为等边三角形,∴OB =BE =CE =OC ,∴四边形BOCE 是菱形.②∵AC BC =tan ∠ABC =34,设AC =3k ,BC =4k ,k>0.由AC 2+BC 2=AB 2,即(3k)2+(4k)2=202,解得k =4,∴AC =12,BC =16,∵点E 是BC ︵的中心,∴OE ⊥BC ,BH =CH =8,∵S △BOE =12OE·BH =12OB·PE ,即12×10×8=12×10×PE ,∴PE =8,又OP =OE 2-PE 2=6,∴BP =OB -OP =4,∵DP BP =tan ∠ABC =34,∴DP =34BP =3,∴DE =PE -DP =8-3=5.期中检测题(BSD)(考试时间:120分钟 满分:120分)一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项) 1.对于函数y =-2(x -m)2的图象,下列说法不正确的是( D ) A .开口向下 B .对称轴是x =m C .最大值为0 D .与y 轴不相交 2.在Rt △ABC 中,∠C =90°,AB =6,tan B =33,则Rt △ABC 的面积为( B ) A .9 3B .923C .9D .183.如图,某海监船以20海里/小时的速度在某海域执行巡航任务,当海监船由西向东航行至A 处时,测得岛屿P 恰好在其正北方向,继续向东航行1小时到达B 处,测得岛屿P 在其北偏西30°方向,保持航向不变又航行2小时到达C 处,此时海监船与岛屿P 之间的距离(即PC 的长)为( D )A .40海里B .60海里C .203海里D .403海里4.若抛物线y =x 2+ax +b 与x 轴两个交点间的距离为2,称此抛物线为定弦抛物线,已知某定弦抛物线的对称轴为直线x =1,将此抛物线向左平移2个单位,再向下平移3个单位,得到的抛物线过点 ( B )A .(-3,-6)B .(-3,0)C .(-3,-5)D .(-3,-1)5.如图,在Rt △ABC 中,∠ACB =90°,∠A <∠B ,沿△ABC 的中线CM 将△CMA 折叠,使点A 落在点D 处,若CD 恰好与MB 垂直,则tan A 的值为( A )A .33B . 3C .12D .136.已知抛物线y =ax 2+bx +c 的图象如图所示,则|a -b +c|+|2a +b|等于( D ) A .a +b B .a -2b C .a -b D .3a 二、填空题(本大题共6小题,每小题3分,共18分)7.某种型号的迫击炮发射炮弹时的飞行高度h(m )与飞行时间t(s )的关系满足h =-13t 2+10t ,则经过 30 s ,发射的炮弹落地爆炸.8.在△ABC 中,∠A ,∠B 都是锐角,若⎪⎪⎪⎪sin A -12+⎝⎛⎭⎫cos B -122=0,则∠C = 90° . 9.若函数y =mx 2+(m +2)x +12m +1的图象与x 轴只有一个交点,那么m 的值为 0,2或-2 .10.(2019·盐城)在△ABC 中,BC =6+2,∠C =45°,AB =2AC ,则AC 的长为__2__. 11.(2019·宿迁)若∠MAN =60°,△ABC 的顶点B 在射线AM 上,且AB =2,点C 在射线AN 上运动,当△ABC 是锐角三角形时,BC12.已知抛物线y =23x 2+43x -2与x 轴交于A ,B 两点,与y 轴交于点C .点P 在对称轴上,当△PBC的周长最小时,点P 的坐标是⎝⎛⎭⎫-1,-43. 三、(本大题共5小题,每小题6分,共30分)13.计算:cos 60°-sin 45°+14tan 230°+cos 30°-sin 30°.解:原式=12-22+14×⎝⎛⎭⎫332+32-12=32-22+112. 14.由于保管不慎,小明把一道数学题染上了污渍,变成了“如图,在△ABC 中,∠A =30°,tan B =,AC =43,求AB 的长”.这时小明去翻看了标准答案,显示AB =10.你能否帮助小明通过计算说明污渍部分的内容是什么?解:过点C 作CH ⊥AB 于点H ,在Rt △ACH 中,CH =AC ·sin A =43×sin 30°=23,AH =AC ·cos A =43×cos 30°=6, ∴BH =AB -AH =4, ∴tan B =CH BH =32,∴污渍部分的内容是32. 15.(2019·凉山州)已知二次函数y =x 2+x +a 的图象与x 轴交于A (x 1,0),B (x 2,0)两点,且1x 21+1x 22=1,求a 的值.解:函数y =x 2+x +a 的图象与x 轴交于A(x 1,0),B(x 2,0)两点,∴x 1+x 2=-1,x 1·x 2 =a ,∵1x 21+1x 22=x 21+x 22x 21x 22=(x 1+x 2)2-2x 1x 2(x 1x 2)2=1-2a a 2=1,∴a =-1+ 2 或a =-1- 2. 16.在同一平面直角坐标系中,一次函数y =x -4与二次函数y =-x 2+2x +c 图象交于点A (-1,m ).(1)求m ,c 的值;(2)求二次函数图象的对称轴和顶点坐标. 解:(1)∵A 点在一次函数的图象上,∴m =-1-4=-5.∴点A 的坐标为(-1,-5),∵A 点在二次函数图象上,∴-5=-1-2+c ,解得c =-2. (2)由①可知二次函数表达式为y =-x 2+2x -2=-(x -1)2-1,∴二次函数的图象的对称轴为直线x =1,顶点坐标为(1,-1).17.如图,某消防队在一居民楼前进行演习,消防员利用云梯成功救出点B 处的求救者后,又发现点B 正上方点C 处还有一名求救者,在消防车上点A 处测得点B 和点C 的仰角分别为45°和65°,点A 距地面2.5米,点B 距地面10.5米,为救出点C 处的求救者,云梯需要继续上升的高度BC 约为多少米?(结果保留整数,参考数据:tan 65°≈2.1,sin 65°≈0.9,cos 65°≈0.4,2≈1.4)解:作AH ⊥CN 于点H .在Rt △ABH 中,∵∠BAH =45°,BH =10.5-2.5=8(m), ∴AH =BH =8(m), 在Rt △AHC 中,tan 65°=CH AH, ∴CH =8×2.1≈17(m),∴BC =CH -BH =17-8=9(m).四、(本大题共3小题,每小题8分,共24分)18.如图,直线y =x +2与x 轴交于点A ,与y 轴交于点B ,AB ⊥BC ,且点C 在x 轴上,若抛物线y =ax 2+bx +c 以C 为顶点,且经过点B ,求这条抛物线对应的函数表达式.解:∵直线y =x +2与x 轴交于点A ,与y 轴交于点B , ∴A (-2,0),B (0,2),∴△ABO 为等腰直角三角形.又∵AB ⊥BC ,∴△BCO 也为等腰直角三角形, ∴OC =OB =OA .∴C (2,0),设抛物线对应的函数表达式为y =a (x -2)2, 将点B (0,2)的坐标代入得2=a (0-2)2,解得a =12,∴此抛物线对应的函数表达式为y =12(x -2)2,即y =12x 2-2x +2.19.如图,一座钢结构桥梁的框架是△ABC ,水平横梁BC 长18米,中柱AD 高6米,其中D 是BC 的中点,且AD ⊥BC.(1)求sin B 的值;(2)现需要加装支架DE ,EF ,其中点E 在AB 上,BE =2AE ,且EF ⊥BC ,垂足为点F ,求支架DE 的长.解:(1)∵BD =DC =9,AD =6, ∴AB =92+62=313.∴sin B =AD AB =6313=21313.(2)∵EF ∥AD ,BE =2AE ,∴△BEF ∽△BAD. ∴EF AD =BF BD =BE BA =23,∴EF 6=BF 9=23, ∴EF =4,BF =6,∴DF =3,∴在Rt △DEF 中,DE =42+32=5米.20.为美化校园,某兴趣小组想借助如图所示的直角墙角(两边足够长),用28 m 长的篱笆围成一个矩形花园ABCD(只围AB ,BC 两边),设AB =x m .(1)若花园的面积为192 m 2,求x 的值;(2)若在P 处有一棵树与墙CD ,AD 的距离分别是15 m 和6 m ,要将这棵树围在花园内(含边界,不考虑树的粗细),求花园面积S 的最大值.解:(1)∵AB =x m ,则BC =(28-x)m ,∴x(28-x)=192,解得x 1=12,x 2=16,∴当花园的面积为192 m 2时,x 的值为12 m 或16 m .(2)由题意可得S=x(28-x)=-x2+28x=-(x-14)2+196,∵在P处有一棵树与墙CD,AD的距离分别是15 m和6 m,28-15=13,∴6≤x≤13,∴当x=13时,S最大=-(13-14)2+196=195,∴花园面积S的最大值为195 m2.五、(本大题共2小题,每小题9分,共18分)21.如图,小河上有一拱桥,拱桥及河道的截面轮廓由抛物线的一部分ACB和矩形的三边AE,ED,DB组成,已知河底ED是水平的,ED=16米,AE=8米,抛物线的顶点C到ED距离是11米,以ED所在的直线为x轴,抛物线的对称轴为y轴建立平面直角坐标系.(1)求抛物线的表达式;(2)已知从某时刻开始的40小时内,水面与河底ED的距离h(单位:米)随时间t(单位:时)的变化满足函数关系h=-1128(t-19)2+8(0≤t≤40),且当水面到顶点C的距离不大于5米时,需禁止船只通行,请通过计算说明:在这一时段内,需多少小时禁止船只通行?解:(1)抛物线的表达式为y=-364x2+11(-8≤x≤8).(2)令-1128(t-19)2+8=11-5.解得t1=35,t2=3.∴当3≤t≤35时,水面到顶点C的距离不大于5米,需禁止船只通行,禁止船只通行时间为35-3=32小时.答:禁止船只通行时间为32小时.22.(2019·岳阳)慈氏塔位于岳阳市城西洞庭湖边,是湖南省保存最好的古塔建筑之一.如图,小亮的目高CD为1.7米,他站在D处测得塔顶的仰角∠ACG为45°,小琴的目高EF为1.5米,她站在距离塔底中心B点a米远的F处,测得塔顶的仰角∠AEH为62.3°.(点D,B,F在同一水平线上,参考数据:sin 62.3°≈0.89,cos 62.3°≈0.46,tan 62.3°≈1.9)(1)求小亮与塔底中心的距离BD;(用含a的式子表示)(2)若小亮与小琴相距52米,求慈氏塔的高度AB.解:(1)四边形CDBG,HBFE为矩形,∴GB=CD=1.7,HB=EF=1.5,∴GH=0.2,在Rt AHE中,tan∠AEH=AHHE,则AH=HE·tan∠AEH≈1.9a,∴AG=AH-GH=1.9a-0.2,在Rt ACG中,∠ACG=45°,∴CG=AG=1.9a-0.2,∴BD=1.9a-0.2,答:小亮与塔底中心。

北师大版九年级数学下册(BS版)单元清 检测内容:第三章

北师大版九年级数学下册(BS版)单元清 检测内容:第三章

检测内容:第三章得分________ 卷后分________ 评价________一、选择题(每小题3分,共30分)1.若⊙O 的半径为8,圆心O 到直线l 的距离为4,则直线l 与⊙O 的位置关系是( B )A .相切B .相交C .相离D .不能确定2.如图,在⊙O 中,AB =BC ,点D 在⊙O 上,∠CDB =25°,则∠AOB 等于( B )A .45°B .50°C .55°D .60°第2题图 第4题图 第5题图3.下列四个命题中:①直径是弦;②经过三点一定可以作一个圆;③三角形的外心到三角形各顶点的距离相等;④三角形的内心是三个内角平分线的交点.其中正确的个数是( C )A .1B .2C .3D .44.(2022·自贡)如图,四边形ABCD 内接于⊙O ,AB 是⊙O 的直径,∠ABD =20°,则∠BCD 的度数是( C )A .90°B .100°C .110°D .120°5.如图,AB 是⊙O 的直径,BC 与⊙O 相切于点B ,AC 交⊙O 于点D ,若∠ACB =50°,则∠BOD 等于( D )A .40°B .50°C .60°D .80°6.(2022·泸州)如图,AB 是⊙O 的直径,OD 垂直于弦AC 于点D ,DO 的延长线交⊙O 于点E .若AC =42 ,DE =4,则BC 的长是( C )A .1B .2C .2D .4第6题图 第7题图 第8题图7.如图,⊙O 与正方形ABCD 的两边AB ,AD 相切,且DE 与⊙O 相切于点E .若⊙O 的半径为5,且AB =11,则DE 的长为( B )A .5B .6C .30D .1128.如图,△ABC 的内切圆⊙O 与边AB ,BC ,CA 分别相切于点D ,E ,F ,若∠DEF =52°,则∠BOC 的度数是( B )A .121°B .128°C .146°D .166°9.(2022·安顺)如图,边长为2 的正方形ABCD 内接于⊙O ,P A ,PD 分别与⊙O 相切于点A 和点D ,PD 的延长线与BC 的延长线交于点E ,则图中阴影部分的面积为( C )A .5-πB .5-π2C .52 -π2D .52 -π4第9题图 第10题图 第11题图10.如图,在平面直角坐标系中,分别以点A (-2,3),B (3,4)为圆心,以1,2为半径作⊙A ,⊙B ,M ,N 分别是⊙A ,⊙B 上的动点,P 为x 轴上的动点,则PM +PN 的最小值为( C )A .74B .74 +3C .74 -3D .3二、填空题(每小题3分,共15分)11.(2022·凉山州)如图,在边长为1的正方形网格中,⊙O 是△ABC 的外接圆,点A ,B ,O 在格点上,则cos ∠ACB 的值是13__. 12.如图,⊙O 是△ABC 的外接圆,∠ABC =30°,AC =6,则AC 的长为__2π__.第12题图 第13题图 第14题图 第15题图13.如图,A ,B ,C 是⊙O 上的点,且∠ACB =130°,在这个图中,要画出下列度数的圆周角:30°,40°,50°,90°,其中仅用无刻度的直尺能画出的圆周角有__40°,50°和90°__.14.如图,在矩形ABCD 中,BC =6,CD =3,以AD 为直径的半圆O 与BC 相切于点E ,连接BD ,则图中阴影部分的面积为__94π__(结果保留π). 15.(2022·河南)如图,在Rt △ABC 中,∠ACB =90°,AC =BC =22 ,点D 为AB 的中点,点P 在AC 上,且CP =1,将CP 绕点C 在平面内旋转,点P 的对应点为点Q ,连接AQ ,DQ ,当∠ADQ =90°时,AQ 的长为.三、解答题(共75分)16.(8分)如图,已知OA ,OB 是⊙O 的两条半径,C ,D 分别为OA ,OB 上的两点,且AC =BD ,求证:AD =BC .证明:∵OA ,OB 是⊙O 的两条半径,∴AO =BO .又∵AC =BD ,∴OC =OD .在△OCB和△ODA 中,∵⎩⎪⎨⎪⎧BO =AO ,∠O =∠O ,OC =OD ,∴△OCB ≌△ODA (SAS),∴BC =AD17.(9分)某居民小区的一处圆柱形的输水管道破裂,维修人员为更换管道,需要确定管道圆形截面的半径,如图是水平放置的破裂管道有水部分的截面.(1)请你补全这个输水管道的圆形截面图(要求尺规作图,保留作图痕迹,不写作法);(2)若有水部分的水面宽AB =32 cm ,水最深处的地方水深CD 为8 cm ,求这个圆形截面的半径.解:(1)如图所示(2)连接OA ,易知点D 为AB 的中点.∵AB =32 cm ,∴AD =12AB =16 cm.设这个圆形截面的半径为x cm ,又∵CD =8 cm ,∴OD =(x -8) cm.在Rt △OAD 中,∵OD 2+AD 2=OA 2,即(x -8)2+162=x 2,解得x =20,∴这个圆形截面的半径为20 cm18.(9分)如图,在△AOB 中,OA =OB ,∠AOB =120°,以点O 为圆心,12OA 的长为半径作圆,分别交OA ,OB 于点C ,D ,弦MN ∥AB .(1)判断直线AB 与⊙O 的位置关系,并说明理由;(2)求证:MC =ND .解:(1)AB 与⊙O 相切,理由如下:过点O 作OE ⊥AB 于点E ,∵OA =OB ,∴∠A =∠B =12 (180°-∠AOB )=12 ×(180°-120°)=30°,∴OE =12OA =OC ,∴AB 是⊙O 的切线,∴AB 与⊙O 相切(2)连接CD ,延长EO 交MN 于点F ,∵OC =OD ,∴∠OCD =12 ×(180°-∠AOB )=12×(180°-120°)=30°=∠A ,∴CD ∥AB .又∵OE ⊥AB ,∴OE ⊥CD ,∴CE =DE .又∵MN ∥AB ,∴EF ⊥MN ,∴ME =NE ,∴ME -CE =NE -DE ,即MC =ND19.(9分)(2022·济南)如图,AB 为⊙O 的直径,CD 与⊙O 相切于点C ,交AB 的延长线于点D ,连接AC ,BC ,∠D =30°,CE 平分∠ACB 交⊙O 于点E ,过点B 作BF ⊥CE ,垂足为F .(1)求证:CA =CD ;(2)若AB =12,求线段BF 的长.解:(1)证明:连接OC ,∵CD 与⊙O 相切于点C ,∴OC ⊥CD ,∴∠COD =90°-∠D=90°-30°=60°,∴∠A =12∠COD =30°=∠D ,∴CA =CD (2)∵AB 为⊙O 的直径,∴∠ACB =90°.又∵∠A =30°,CE 平分∠ACB ,∴BC =12AB =12 ×12=6,∠BCE =12∠ACB =45°.又∵BF ⊥CE ,∴BF =BC ·sin ∠BCE =6sin 45°=6×22=3220.(9分)如图,AB 为⊙O 的直径,C 为⊙O 上的一点,∠ABC 的平分线BD 交⊙O 于点D ,DE ⊥BC 交BC 的延长线于点E .(1)试判断DE 与⊙O 的位置关系,并说明理由;(2)过点D 作DF ⊥AB 于点F ,若BE =33 ,DF =3,求图中阴影部分的面积.解:(1)DE 与⊙O 相切,理由如下:连接DO ,∵DO =BO ,∴∠ODB =∠OBD .又∵∠ABC 的平分线BD 交⊙O 于点D ,∴∠EBD =∠OBD ,∴∠EBD =∠ODB ,∴DO ∥BE .又∵DE ⊥BC ,∴OD ⊥DE ,∴DE 是⊙O 的切线,∴DE 与⊙O 相切(2)∵∠ABC 的平分线BD 交⊙O 于点D ,DE ⊥BE ,DF ⊥AB ,∴DE =DF =3,∴BD =DE 2+BE 2 =32+(33)2 =6,∴sin ∠DBF =DF BD =36 =12,∴∠DBF =30°,∴∠DOF =2∠DBF =60°,∴OD =DF sin ∠DOF =3sin 60° =332=23 ,OF =DF tan ∠DOF =3tan 60° =33 =3 ,∴S 阴影=S 扇形AOD -S Rt △DOF =60πOD 2360 -12OF ·DF =60π×(23)2360 -12 ×3 ×3=2π-33221.(9分)如图,以AB 为直径的⊙O 经过△ABC 的顶点C ,过点O 作OD ∥BC 交⊙O 于点D ,交AC 于点F ,连接BD 交AC 于点G ,连接CD ,在OD 的延长线上取一点E ,连接CE ,使∠DEC =∠BDC .(1)求证:CE 是⊙O 的切线;(2)若⊙O 的半径是3,DG ·DB =9,求CE 的长.解:(1)证明:连接OC ,∵AB 是⊙O 的直径,∴∠ACB =90°.又∵OD ∥BC ,∴∠CFE =∠ACB =90°,∴∠DEC +∠ACE =90°.又∵OA =OC ,∴∠OCA =∠A =∠BDC =∠DEC ,∴∠OCA +∠ACE =90°,即∠OCE =90°,∴OC ⊥CE ,∴CE 是⊙O 的切线(2)由(1)得∠CFE =90°,∴OF ⊥AC ,∴AD =CD ,∴∠ACD =∠DBC .又∵∠BDC =∠BDC ,∴△CGD ∽△BCD ,∴CD BD =DG CD,∴CD 2=DG ·DB =9,∴CD =3.又∵OC =OD =3,∴△OCD 是等边三角形,∴∠COD =60°,∴在Rt △OCE 中,CE =OC ·tan ∠COD =3tan 60°=3×3 =3322.(10分)(2022·潍坊)筒车是我国古代利用水力驱动的灌溉工具,车轮缚以竹筒,旋转时低则舀水,高则泻水.如图,水力驱动筒车按逆时针方向转动,竹筒把水引至A 处,水沿射线AD 方向泻至水渠DE ,水渠DE 所在的直线与水面PQ 平行.设筒车为⊙O ,⊙O 与直线PQ 交于P ,Q 两点,与直线DE 交于B ,C 两点,恰有AD 2=BD ·CD ,连接AB ,AC .(1)求证:AD 为⊙O 的切线;(2)筒车的半径为3 m ,AC =BC ,∠C =30°,当水面上升,A ,O ,Q 三点恰好共线时,求筒车在水面下的最大深度(结果精确到0.1 m ,参考值:2 ≈1.4,3 ≈1.7).解:(1)证明:如图,连接AO 并延长交⊙O 于点G ,连接BG ,则∠ACB =∠AGB .∵AG是⊙O 的直径,∴∠ABG =90°,∴∠BAG +∠AGB =90°.∵AD 2=BD ·CD ,∴AD CD =BD AD.又∵∠ADB =∠CDA ,∴△DAB ∽△DCA ,∴∠DAB =∠ACB =∠AGB ,∴∠DAB +∠BAG =90°,即∠DAG =90°,∴AD ⊥AO ,∴AD 为⊙O 的切线(2)当水面上升,A ,O ,Q 三点恰好共线时,Q 与G 重合,水面到GH (GH ∥PQ ).过点O 作OM ⊥GH 于点M ,如图,∵CA =CB ,∠C =30°,∴∠ABC =75°,∴∠CBG =∠ABG -∠ABC =90°-75°=15°.又∵BC ∥PQ ∥GH ,∴∠BGH =∠CBG =15°,∴∠AGM =∠AGB +∠BGH =∠C +∠BGH =30°+15°=45°,∴OM =OG ·sin ∠AGM =3sin 45°=3×22 =322 (m),∴筒车在水面下的最大深度为3-322≈0.9(m)23.(12分)【证明体验】如图①,⊙O 是等腰△ABC 的外接圆,AB =AC ,在AC 上取一点P ,连接AP ,BP ,CP ,求证:∠APB =∠P AC +∠PCA ;【思考探究】如图②,在(1)的条件下,若点P 为AC 的中点,AB =6,PB =5,求P A 的长;【拓展延伸】如图③,⊙O 的半径为5,弦BC =6,弦CP =5,延长AP 交BC 的延长线于点E ,且∠ABP =∠E ,求AP ·PE 的值.解:【证明体验】证明:∵AB =AC ,∴AB =AC ,∴∠APB =∠ABC =∠ABP +∠CBP =∠PCA +∠P AC【思考探究】如图②,延长BP 至点D ,使PD =PC ,连接AD ,∵点P 为AC 的中点,∴P A =PC ,∴P A =PC =PD ,∠ABP =∠CBP ,∴∠D =∠P AD ,∴∠APB =∠P AD +∠D =2∠P AD .又∵AB =AC ,∴AB =AC ,∴∠APB =∠ABC =∠ABP +∠CBP =2∠ABP ,∴∠ABP =∠P AD =∠D ,∴AD =AB =6.又∵∠D =∠D ,∴△DAP ∽△DBA ,∴P A AB=AD BD .又∵BD =BP +PD =5+P A ,∴P A 6 =65+P A,解得P A =4(负值已舍去) 【拓展延伸】如图③,连接OP ,OC ,过点C 作CH ⊥BP 于点H ,∵OP =OC =PC =5,∴△POC 为等边三角形,∴∠POC =60°,∴∠PBC =12 ∠POC =30°,∴CH =12 BC =12×6=3,BH =BC ·cos ∠PBC =6cos30°=6×32=33 ,∴PH =PC 2-CH 2 =52-32 =4,∴PB =PH +BH =4+33 .∵四边形ABCP 是⊙O 的内接四边形,∴∠PCE =180°-∠BCP =∠BAP .又∵∠E =∠ABP ,∴△EPC ∽△BP A ,∴PE BP =PC AP ,∴AP ·PE =PC ·BP =5×(4+33 )=20+153。

北师大版九年级数学下册全册同步练习含答案

北师大版九年级数学下册全册同步练习含答案

北师大版初中数学九年级下册全册同步练习1.1锐角三角函数一、选择题1.在△ABC中,∠C=90°,BC=2,AB=3,则下列结论正确的是( )A. sin A=53B.cos A=23C.sin A=23D.tan A=522.如图l-2l所示的是一水库大坝横截面的一部分,坝高h=6 m,迎水坡AB=10 m,斜坡的坡角为a,则tan a的值为 ( )A.35B.45C.43D.343.如图1-22所示,在矩形ABCD中,DE⊥AC于E,设∠ADE=a,且cos a=35,AB=4,则AD的长为 ( )A.3 B.16 3C. 203D.165二、填空题4.如图1-23所示,一架梯子斜靠在墙上,若梯子底端到墙的距离AC=3米,cos∠BAC=34,则梯子AB的长度为米.5.若a是锐角,且sin2 a+cos2 48°=1,则a= .6.如图l-24所示,在Rt△ACB中,∠C=90°,AB=3,BC=1,求∠A的三角函数值.三、计算与解答题7.如图1-25所示,在Rt△ACB中,∠ACB=90°,CD为AB边上的高,BD=3,AD =163,求sin A,cos A,tan A的值.8.如图1-26所示,在平面直角坐标系内,O为原点,点A的坐标为(10,0),点B在第一象限内,BO=5,sin∠BOA=35.(1)求点B的坐标;(2)求cos∠BAO的值.9.请你画出一个以BC为底边的等腰三角形ABC,使底边上的高AD=BC(1)求tan∠ABC和sin∠ABC的值;(2)在你所画的等腰三角形ABC中,假设底边BC=5米,求腰上的高BE.参考答案 1.C[提示:sinA=BCAB.] 2.D[提示:过A 点作垂线交底部于C 点,则△ACB 为直角三角形,∴BC =2222106AB AC -=-=8(m),∴tan a =68=34.故选D .]3.B[提示:∠ADE 和∠EDC 互余,∴cos a =sin ∠EDC =35,sin ∠EDC =3,45EC EC DC ==∴EC =125.由勾股定理,得DE =165.在Rt △AED 中,cos a =16355DE AD AD ==,∴AD=163.故选B .] 4.4[提示:在Rt △BCA 中,AC =3米,cos ∠BAC =34AC AB =,所以AB =4米,即梯子的长度为4米.]5.48°[提示:∵sin 2a +cos 2a =l ,∴a =48°.] 6.提示:sin A =13,cos A =223,tan A =24.7.解:∵∠ACB =90°,CD ⊥AB ,∴△ACD ∽△CBD ,∴CD 2=AD ·DB =16,∴CD =4,∴AC =22203AD CD +=.∴sin A ==35CD AC =,cos A =45AD AC =,tan A =34CD AD =. 8.解:(1)如图l -27所示,作BH ⊥OA , 垂足为H .在Rt △OHB 中,∵BO =5,sin ∠BOA =35,∴BH =3,∴OH =4,∴点B 的坐标为(4,3). (2)∵OA =10,OH =4,∴AH =6.在Rt △AHB 中,∵BH =3,∴AB =22223635BH AH +=+=,∴cos ∠BAO=635AH AB == 255. 9.解:(1)根据题意画出图形,如图1-28所示,∵AB =AC ,AD ⊥BC ,AD =BC ,∴BD =12B C = 12AD ,即AD =2BD ,∴AB =225BD AD +=BD ,∴tan ∠ABC=ADBD=2,sin ∠ABC=AD AB =255 (2)作BE ⊥AC 于E ,在Rt △BEC 中,sinC=sin ∠ABC=255.又∵sin C=,BEBC.5BE故BE=.1.2 30°,45°,60°角的三角函数值一.选择题:1.在△ABC 中,∠A ,∠B 都是锐角,且 sin A =21,cos B =22,则△ABC 三个角的大小关系是( )A .∠C >∠A >∠B B .∠B >∠C >∠A C .∠A >∠B >∠CD .∠C >∠B >∠A2.若0°<<90°,且|sin -41|+223cos ⎪⎪⎭⎫ ⎝⎛-θ,则tan 的值等于( )A .3B .33 C .21 D .233.如图1—37所示,在△ABC 中,∠A =30°,tan B =32,AC =23,则AB 的长是 ( ) A .3+3 B .2+23 C. 5 D .924.等腰三角形一腰上的高与另一腰的夹角为30°,腰长为a ,则其底边上的高是( ) A .32a B .a C.12a D .12a 或32a 二、选择题5.在Rt △ACB 中,∠C =90°,AC =3,AB =2,则tan2B= . 6.若a 为锐角,且sin a =22,则cos a = . 7.在Rt △ACB 中,若∠C =90°,sin A =32,b +c =6,则b = . 8.(1)在△ABC 中,∠C =90°,sin A =21,则 cos B =________; (2)已知为锐角,且cos(90°-)=21,则 =________;(3)若1)10(tan 3=︒+α,则锐角 =________.三、计算与解答9.计算(1)sin 60°·cos 30°-12.(2) 2 cos 230°-2 sin 60°·cos 45°;(3) 2 sin30°-3 tan 45°+4 cos 60°;10.如图1—38所示,在Rt △ACB 中,∠BCA =90°,CD 是斜边上的高,∠ACD =30°,AD =1,求AC ,CD ,BC ,BD ,AB 的长.11.如图1—39所示,在相距100米的A ,B 两处观测工厂C ,测得∠BAC =60°,∠ABC =45°,则A ,B 两处到工厂C 的距离分别是多少?12.在△ABC中,a,b,c分别是∠A,∠B,∠C的对边,且c=53,若关于x的方程(53+b)x2+2ax+(53-b)=0有两个相等的实数根,方程2x2-(10sin A)x+5sin A=0的两个实数根的平方和为6,求△ABC的面积.参考答案 1. D ; 2 。

北师大版九年级数学下册 综合测试 (含答案)

北师大版九年级数学下册  综合测试 (含答案)

九年级下册综合测试本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷30分,第Ⅱ卷70分,共100分,考试时间90分钟.第Ⅰ卷(选择题共30分)一、选择题(本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项符合题意)1.函数y=-2x2的图象是()A.直线B.双曲线C.抛物线D.不能确定2.在Rt△ABC中,∠C=90°,AC=12,BC=5,则sin A的值为()A.512B.125C.1213D.5133.将二次函数y=x2-2x+3化为y=(x-h)2+k的形式,结果为()A.y=(x+1)2+4B.y=(x+1)2+2C.y=(x-1)2+4D.y=(x-1)2+2图XZ-14.如图XZ-1所示,AB,BC,CA是☉O的三条弦,∠OBC=50°,则∠A= ()A.25°B.40°C.80°D.100°5.在Rt△ABC中,∠C=90°,如果sin A=23,那么cos B的值为()A.23B.√53C.√52D.不能确定6.如图XZ-2所示,PA,PB分别切☉O于点A,B,若☉O的半径为10,∠APB=70°,则劣弧AB的长为()A.52π9B.53π9C.55π9D.58π9图XZ-2图XZ-37.如图XZ-3,一块三角形空地上种草皮绿化,已知AB=20米,AC=30米,∠A=150°,草皮的售价为a元/米2,则购买草皮至少需要()A.450a元B.225a元C.150a元D.300a元8.已知抛物线y=a(x-1)2+h是由抛物线y=2x2平移得到的,且与y轴交于点(0,-6),则此抛物线的表达式为()A.y=2x2-4x-6B.y=2x2+4x+6C.y=2x2+4x-6D.y=2x2-4x+69.如果一条抛物线y=ax2+bx+c(a≠0)与x轴有两个交点,那么以该抛物线的顶点和这两个交点为顶点的三角形称为这条抛物线的“抛物线三角形”,[a,b,c]称为“抛物线三角形系数”,若抛物线三角形系数为[-1,b,0]的“抛物线三角形”是等腰直角三角形,则b的值为() A.±2B.±3C.2D.3图XZ-410.函数y=x2+bx+c与y=x的图象如图XZ-4所示,有以下结论:①b2-4c>0;②b+c+1=0;③3b+c+6=0;④当1<x<3时,x2+(b-1)x+c<0.其中正确的个数是()A.1B.2C.3D.4请将选择题答案填入下表:题号 1 2 3 4 5 6 7 8 9 10 总分答案第Ⅱ卷(非选择题共70分)二、填空题(本大题共6个小题,每小题3分,共18分)11.抛物线y=3(x-2)2+5的顶点坐标为.12.某山路的路面坡度i=1∶√399,沿此山路向上前进200米,则升高了米.13.如图XZ-5,二次函数的图象与x轴交于点(-1,0)和(3,0),则它的对称轴是直线.14.如图XZ-6所示,AB是☉O的直径,弦CD⊥AB于点E,连接OC,若OC=5,CD=8,则tan∠COE=.图XZ-5图XZ-6图XZ-7,EC=2,P是AB边上的一个动点, 15.如图XZ-7所示,在菱形ABCD中,AE⊥BC,E为垂足,若cos B=45则线段PE的最小值是.图XZ-816.如图XZ-8,AB是半圆O的直径,且AB=8,C为半圆上的一点.将此半圆沿BC所在的直线折叠,若圆弧BC恰好过圆心O,则图中阴影部分的面积是(结果保留π).三、解答题(本大题共8个小题,共52分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分5分)计算:6tan230°-√3sin60°-2sin45°.18.(本小题满分5分)如图XZ-9所示,AB是☉O的弦(非直径),C,D是AB上的两点,并且AC=BD.求证:OC=OD.图XZ-919.(本小题满分6分)如图XZ-10,已知抛物线y=ax2+bx-3的对称轴为直线x=1,交x轴于A,B 两点,交y轴于点C,其中点B的坐标为(3,0).(1)直接写出点A的坐标;(2)求此二次函数的表达式.图XZ-1020.(本小题满分6分)南沙群岛是我国固有领土,现在我南海渔民要在南沙某海岛附近进行捕鱼作业,如图XZ-11,当渔船航行至海面B处时,测得该岛位于正北方向20(1+√3)海里的C处,为了防止某国海巡警干扰,请求我国A处的渔监船前往C处护航,已知C位于A的北偏东45°的方向上,A位于B的北偏西30°的方向上,求A,C之间的距离.图XZ-1121.(本小题满分7分)如图XZ-12,在△BCE中,A是边BE上一点,以AB为直径的☉O与CE相切于点D,AD∥OC,F为OC与☉O的交点,连接AF.(1)求证:CB是☉O的切线;(2)若∠ECB=60°,AB=6,求阴影部分的面积.图XZ-1222.(本小题满分7分)如图XZ-13,周长为10的矩形OABC(OC<OA)在直角坐标系中,其一个顶点(x>0)的图象上.B恰在函数y=4x(1)矩形OABC的面积为;(2)试确定A,B,C三点的坐标;(3)若抛物线y=ax2+bx+c经过B,C两点,且顶点P在x轴上,试确定其函数表达式.图XZ-1323.(本小题满分8分)儿童商场购进一批M型服装,销售时每件标价为75元,按八折销售仍可获利50%.商场现决定对M型服装开展促销活动,每件在八折的基础上再降价x元销售.已知每天销售数量y(件)与降价x(元)之间的函数关系为y=20+4x(x>0).(1)求M型服装的进价;(2)求促销期间每天销售M型服装所获得的利润W(元)的最大值;(3)若商场计划每天获利不低于544元,直接写出降价x(元)的取值范围.24.(本小题满分8分)如图XZ-14,对称轴为直线x=2的抛物线y=x2+bx+c与x轴交于点A和点B,与y轴交于点C,且点A的坐标为(-1,0).(1)求抛物线的表达式;(2)写出B,C两点的坐标;(3)求过O,B,C三点的圆的面积(结果用含π的代数式表示).图XZ-14九年级下册综合测试1.C2.D3.D4.B5.A6.C7.C8.A9.A10.B11.(2,5)12.1013.x=114.4315.4.816.83π17.解:6tan230°-√3sin60°-2sin45°=6×√332-√3×√32-2×√22=12-√2.18.证明:过点O作OE⊥AB于点E,则AE=BE.又∵AC=BD,∴CE=DE,∴OE是CD的垂直平分线,∴OC=OD.19.解:(1)∵抛物线y=ax2+bx-3的对称轴为直线x=1,交x轴于A,B两点,其中点B的坐标为(3,0),∴点A的横坐标为-1,∴点A的坐标为(-1,0).(2)将点A(-1,0),B(3,0)代入y=ax2+bx-3,得{a-b-3=0,9a+3b-3=0,解得{a=1,b=−2.故此二次函数的表达式为y=x2-2x-3.20.解:过点A作AD⊥BC于点D.由题意,得∠ACD=45°,∠ABD=30°.设CD=x海里,在Rt△ACD中,AD=CD·tan45°=x海里.在Rt△ABD中,BD=AD=√3x海里.tan30°又∵BC=CD+BD=20(1+√3)海里,∴x+√3x=20(1+√3),解得x=20,∴AC=√2CD=20√2海里.答:A,C之间的距离为20√2海里.21.解:(1)连接OD,与AF相交于点G.∵CE与☉O相切于点D,∴OD⊥CE,∴∠CDO=90°.∵AD∥OC,∴∠ADO=∠1,∠DAO=∠2.∵OA=OD,∴∠ADO=∠DAO,∴∠1=∠2.在△CDO和△CBO中,OD=OB,∠1=∠2,OC=OC,∴△CDO≌△CBO,∴∠CBO=∠CDO=90°.∵点B在☉O上,∴CB是☉O的切线.(2)由(1)得△CDO≌△CBO,∴∠3=∠OCB.∵∠ECB=60°,∴∠3=1∠ECB=30°,2∴∠1=∠2=60°,∴∠4=60°.∵OA=OD,∴△OAD为等边三角形,∴AD=OD=FO.由(1)得∠1=∠ADO.在△ADG和△FOG中,∠ADG=∠1,∠AGD=∠FGO,AD=FO,∴△ADG≌△FOG,∴S△ADG=S△FOG.∵AB=6,∴☉O的半径r=3.∴S阴影=S扇形DOF=60π·32360=32π.22.解:(1)4(2)设矩形的宽AB=x,则矩形的长BC为5-x.∵矩形OABC的面积为4,∴x(5-x)=4,解得x=1或x=4(不合题意,舍去),即矩形的长为4,宽为1.∴A(4,0),B(4,1),C(0,1).(3)∵抛物线y=ax 2+bx+c 经过B ,C 两点,且顶点P 在x 轴上,由抛物线的对称性可知其顶点坐标为(2,0),∴抛物线的函数表达式可设为y=a (x-2)2.∵抛物线经过点C (0,1),可得1=a (-2)2,解得a=14,∴所求抛物线的函数表达式为y=14(x-2)2. 23.解:(1)设每件服装的进价为a 元.依题意,得a (1+50%)=75×0.8,解得a=40.即M 型服装每件的进价为40元.(2)依题意,得W=(20+4x )(75×0.8-40-x )=-4x 2+60x+400=-4x-1522+625. 当x=152=7.5时.75×0.8-40-x=12.5>0, 故当x=7.5时,W 最大值=625.(3)令W=544,即-4(x -152)2+625=544,解得x 1=3,x 2=12,故当3≤x ≤12时,每天获利不低于544元. 24.解:(1)由抛物线过点A (-1,0),对称轴为直线x=2,得{-b2=2,1−b +c =0,解得{b =−4,c =−5.∴抛物线的表达式为y=x 2-4x-5.(2)由点A 的坐标为(-1,0),且对称轴为直线x=2,可知AB=6,∴OB=5,∴点B 的坐标为(5,0). ∵y=x 2-4x-5,∴点C 的坐标为(0,-5).(3)如图,连接BC ,则△OBC 是直角三角形.∴过O ,B ,C 三点的圆的直径是线段BC 的长. 在Rt △OBC 中,OB=OC=5,∴BC=5√2,∴圆的半径为5√22, ∴圆的面积为π(5√22)2=252π.。

北师大版九年级数学下册第2章测试题及参考答案

北师大版九年级数学下册第2章测试题及参考答案

北师大版九年级数学下册第2章测试题一、选择题1.二次函数y=x2﹣4x+5的最小值是()A.﹣1B.1C.3D.52.二次函数y=ax2+bx+c(a、b、c为常数且a≠0)中的x与y的部分对应值如下表:x﹣3﹣2﹣1012345y1250﹣3﹣4﹣30512给出了结论:(1)二次函数y=ax2+bx+c有最小值,最小值为﹣3;(2)当时,y<0;(3)二次函数y=ax2+bx+c的图象与x轴有两个交点,且它们分别在y轴两侧.则其中正确结论的个数是()A.3B.2C.1D.03.将二次函数y=x2﹣2x+3化为y=(x﹣h)2+k的形式,结果为()A.y=(x+1)2+4B.y=(x+1)2+2C.y=(x﹣1)2+4D.y=(x﹣1)2+24.已知0≤x≤,那么函数y=﹣2x2+8x﹣6的最大值是()A.﹣10.5B.2C.﹣2.5D.﹣65.如图,二次函数y=x2+bx+c的图象过点B(0,﹣2).它与反比例函数y=﹣的图象交于点A(m,4),则这个二次函数的解析式为()A.y=x2﹣x﹣2B.y=x2﹣x+2C.y=x2+x﹣2D.y=x2+x+26.在二次函数y=x2﹣2x﹣3中,当0≤x≤3时,y的最大值和最小值分别是()A.0,﹣4B.0,﹣3C.﹣3,﹣4D.0,07.已知m,n,k为非负实数,且m﹣k+1=2k+n=1,则代数式2k2﹣8k+6的最小值为()A.﹣2B.0C.2D.2.58.当﹣2≤x≤1时,二次函数y=﹣(x﹣m)2+m2+1有最大值4,则实数m 的值为()A.﹣B.或C.2或D.2或或9.定义符号min{a,b}的含义为:当a≥b时min{a,b}=b;当a<b时min{a,b}=a.如:min{1,﹣3}=﹣3,min{﹣4,﹣2}=﹣4.则min{﹣x2+1,﹣x}的最大值是()A.B.C.1D.010.如图,二次函数y=ax2+bx+c的图象经过点(0,﹣2),与x轴交点的横坐标分别为x1,x2,且﹣1<x1<0,1<x2<2,下列结论正确的是()A.a<0B.a﹣b+c<0C.﹣D.4ac﹣b2<﹣8a11.如图,在平面直角坐标系中,抛物线所表示的函数解析式为y=﹣2(x﹣h)2+k,则下列结论正确的是()A.h>0,k>0B.h<0,k>0C.h<0,k<0D.h>0,k<0 12.如图,二次函数y=ax2+bx+c(a≠0)的图象的顶点在第一象限,且过点(0,1)和(﹣1,0).下列结论:①ab<0,②b2>4a,③0<a+b+c<2,④0<b<1,⑤当x>﹣1时,y>0,其中正确结论的个数是()A.5个B.4个C.3个D.2个二、填空题13.用一根长为32cm的铁丝围成一个矩形,则围成矩形面积的最大值是cm2.14.把二次函数y=x2﹣12x化为形如y=a(x﹣h)2+k的形式.15.抛物线y=x2+1的最小值是.16.函数y=(x﹣1)2+3的最小值为.17.已知二次函数y=x2+bx+c经过点(3,0)和(4,0),则这个二次函数的解析式是.三、解答题18.已知二次函数y=x2+mx+n的图象经过点P(﹣3,1),对称轴是经过(﹣1,0)且平行于y轴的直线.(1)求m、n的值;(2)如图,一次函数y=kx+b的图象经过点P,与x轴相交于点A,与二次函数的图象相交于另一点B,点B在点P的右侧,PA:PB=1:5,求一次函数的表达式.19.如图,在平面直角坐标系中,正方形OABC的边长为4,顶点A、C分别在x轴、y轴的正半轴,抛物线y=﹣x2+bx+c经过B、C两点,点D为抛物线的顶点,连接AC、BD、CD.(1)求此抛物线的解析式.(2)求此抛物线顶点D的坐标和四边形ABCD的面积.20.已知抛物线y=﹣x2+bx+c经过点A(3,0),B(﹣1,0).(1)求抛物线的解析式;(2)求抛物线的顶点坐标.21.如图,抛物线y=x2+bx+c与x轴交于A(﹣1,0)和B(3,0)两点,交y轴于点E.(1)求此抛物线的解析式.(2)若直线y=x+1与抛物线交于A、D两点,与y轴交于点F,连接DE,求△DEF的面积.22.如图,抛物线y=x2+bx+c过点A(﹣4,﹣3),与y轴交于点B,对称轴是x=﹣3,请解答下列问题:(1)求抛物线的解析式.(2)若和x轴平行的直线与抛物线交于C,D两点,点C在对称轴左侧,且CD=8,求△BCD的面积.注:抛物线y=ax2+bx+c(a≠0)的对称轴是x=﹣.23.如图,已知二次函数y=x2+bx+c过点A(1,0),C(0,﹣3)(1)求此二次函数的解析式;(2)在抛物线上存在一点P使△ABP的面积为10,请直接写出点P的坐标.参考答案与试题解析1.二次函数y=x2﹣4x+5的最小值是()A.﹣1B.1C.3D.5【考点】H7:二次函数的最值.【专题】选择题【分析】先利用配方法将二次函数的一般式y=x2﹣4x+5变形为顶点式,再根据二次函数的性质即可求出其最小值.【解答】解:配方得:y=x2﹣4x+5=x2﹣4x+22+1=(x﹣2)2+1,当x=2时,二次函数y=x2﹣4x+5取得最小值为1.故选B.【点评】本题考查了二次函数最值的求法,求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法.2.二次函数y=ax2+bx+c(a、b、c为常数且a≠0)中的x与y的部分对应值如下表:x﹣3﹣2﹣1012345y1250﹣3﹣4﹣30512给出了结论:(1)二次函数y=ax2+bx+c有最小值,最小值为﹣3;(2)当时,y<0;(3)二次函数y=ax2+bx+c的图象与x轴有两个交点,且它们分别在y轴两侧.则其中正确结论的个数是()A.3B.2C.1D.0【考点】H7:二次函数的最值;HA:抛物线与x轴的交点.【专题】选择题【分析】根据表格数据求出二次函数的对称轴为直线x=1,然后根据二次函数的性质对各小题分析判断即可得解.【解答】解;由表格数据可知,二次函数的对称轴为直线x=1,所以,当x=1时,二次函数y=ax2+bx+c有最小值,最小值为﹣4;故(1)小题错误;根据表格数据,当﹣1<x<3时,y<0,所以,﹣<x<2时,y<0正确,故(2)小题正确;二次函数y=ax2+bx+c的图象与x轴有两个交点,分别为(﹣1,0)(3,0),它们分别在y轴两侧,故(3)小题正确;综上所述,结论正确的是(2)(3)共2个.故选B.【点评】本题考查了二次函数的最值,抛物线与x轴的交点,仔细分析表格数据,熟练掌握二次函数的性质是解题的关键.3.将二次函数y=x2﹣2x+3化为y=(x﹣h)2+k的形式,结果为()A.y=(x+1)2+4B.y=(x+1)2+2C.y=(x﹣1)2+4D.y=(x﹣1)2+2【考点】H9:二次函数的三种形式.【专题】选择题【分析】根据配方法进行整理即可得解.【解答】解:y=x2﹣2x+3,=(x2﹣2x+1)+2,=(x﹣1)2+2.故选D.【点评】本题考查了二次函数的三种形式的转化,熟记配方法的操作是解题的关键.4.已知0≤x≤,那么函数y=﹣2x2+8x﹣6的最大值是()A.﹣10.5B.2C.﹣2.5D.﹣6【考点】H7:二次函数的最值.【专题】选择题【分析】把二次函数的解析式整理成顶点式形式,然后确定出最大值.【解答】解:∵y=﹣2x2+8x﹣6=﹣2(x﹣2)2+2.∴该抛物线的对称轴是x=2,且在x<2上y随x的增大而增大.又∵0≤x≤,﹣2(﹣2)2+2=﹣2.5.∴当x=时,y取最大值,y最大=故选C.【点评】本题考查了二次函数的最值.确定一个二次函数的最值,首先看自变量的取值范围,当自变量取全体实数时,其最值为抛物线顶点坐标的纵坐标;当自变量取某个范围时,要分别求出顶点和函数端点处的函数值,比较这些函数值,从而获得最值.5.如图,二次函数y=x2+bx+c的图象过点B(0,﹣2).它与反比例函数y=﹣的图象交于点A(m,4),则这个二次函数的解析式为()A.y=x2﹣x﹣2B.y=x2﹣x+2C.y=x2+x﹣2D.y=x2+x+2【考点】H8:待定系数法求二次函数解析式;G6:反比例函数图象上点的坐标特征.【专题】选择题【分析】将A坐标代入反比例解析式求出m的值,确定出A的坐标,将A与B 坐标代入二次函数解析式求出b与c的值,即可确定出二次函数解析式.【解答】解:将A(m,4)代入反比例解析式得:4=﹣,即m=﹣2,∴A(﹣2,4),将A(﹣2,4),B(0,﹣2)代入二次函数解析式得:,解得:b=﹣1,c=﹣2,则二次函数解析式为y=x2﹣x﹣2.故选A.【点评】此题考查了待定系数法求二次函数解析式,以及反比例函数图象上点的坐标特征,熟练掌握待定系数法是解本题的关键.6.在二次函数y=x2﹣2x﹣3中,当0≤x≤3时,y的最大值和最小值分别是()A.0,﹣4B.0,﹣3C.﹣3,﹣4D.0,0【考点】H7:二次函数的最值.【专题】选择题【分析】首先求得抛物线的对称轴,抛物线开口向上,在顶点处取得最小值,在距对称轴最远处取得最大值.【解答】解:抛物线的对称轴是x=1,则当x=1时,y=1﹣2﹣3=﹣4,是最小值;当x=3时,y=9﹣6﹣3=0是最大值.故选A.【点评】本题考查了二次函数的图象和性质,正确理解取得最大值和最小值的条件是关键.7.已知m,n,k为非负实数,且m﹣k+1=2k+n=1,则代数式2k2﹣8k+6的最小值为()A.﹣2B.0C.2D.2.5【考点】H7:二次函数的最值.【专题】选择题【分析】首先求出k的取值范围,进而利用二次函数增减性得出k=时,代数式2k2﹣8k+6的最小值求出即可.【解答】解:∵m,n,k为非负实数,且m﹣k+1=2k+n=1,∴m,n,k最小为0,当n=0时,k最大为:,∴0≤k,∵2k2﹣8k+6=2(k﹣2)2﹣2,∴a=2>0,∴k≤2时,代数式2k2﹣8k+6的值随k的增大而减小,∴k=时,代数式2k2﹣8k+6的最小值为:2×()2﹣8×+6=2.5.故选D.【点评】此题主要考查了二次函数的最值求法以及二次函数增减性等知识,根据二次函数增减性得出k=时,代数式2k2﹣8k+6的最小值是解题关键.8.当﹣2≤x≤1时,二次函数y=﹣(x﹣m)2+m2+1有最大值4,则实数m 的值为()A.﹣B.或C.2或D.2或或【考点】H7:二次函数的最值.【专题】选择题【分析】根据对称轴的位置,分三种情况讨论求解即可.【解答】解:二次函数的对称轴为直线x=m,①m<﹣2时,x=﹣2时二次函数有最大值,此时﹣(﹣2﹣m)2+m2+1=4,解得m=﹣,与m<﹣2矛盾,故m值不存在;②当﹣2≤m≤1时,x=m时,二次函数有最大值,此时,m2+1=4,解得m=﹣,m=(舍去);③当m>1时,x=1时二次函数有最大值,此时,﹣(1﹣m)2+m2+1=4,解得m=2,综上所述,m的值为2或﹣.故选C.【点评】本题考查了二次函数的最值问题,难点在于分情况讨论.9.定义符号min{a,b}的含义为:当a≥b时min{a,b}=b;当a<b时min{a,b}=a.如:min{1,﹣3}=﹣3,min{﹣4,﹣2}=﹣4.则min{﹣x2+1,﹣x}的最大值是()A.B.C.1D.0【考点】H7:二次函数的最值;F6:正比例函数的性质.【专题】选择题【分析】理解min{a,b}的含义就是取二者中的较小值,画出函数图象草图,利用函数图象的性质可得结论.【解答】解:在同一坐标系xOy中,画出函数二次函数y=﹣x2+1与正比例函数y=﹣x的图象,如图所示.设它们交于点A、B.令﹣x2+1=﹣x,即x2﹣x﹣1=0,解得:x=或,∴A(,),B(,).观察图象可知:①当x≤时,min{﹣x2+1,﹣x}=﹣x2+1,函数值随x的增大而增大,其最大值为;②当<x<时,min{﹣x2+1,﹣x}=﹣x,函数值随x的增大而减小,其最大值为;③当x≥时,min{﹣x2+1,﹣x}=﹣x2+1,函数值随x的增大而减小,最大值为.综上所示,min{﹣x2+1,﹣x}的最大值是.故选A.【点评】本题考查了二次函数与正比例函数的图象与性质,充分理解定义min{a,b}和掌握函数的性质是解题的关键.10.如图,二次函数y=ax2+bx+c的图象经过点(0,﹣2),与x轴交点的横坐标分别为x1,x2,且﹣1<x1<0,1<x2<2,下列结论正确的是()A.a<0B.a﹣b+c<0C.﹣D.4ac﹣b2<﹣8a【考点】H4:二次函数图象与系数的关系;HA:抛物线与x轴的交点.【专题】选择题【分析】由开口方向,可确定a>0;由当x=﹣1时,y=a﹣b+c>0,可确定B错误;由对称轴在y轴右侧且在直线x=1左侧,可确定x=﹣<1;由二次函数y=ax2+bx+c的图象经过点(0,﹣2),对称轴在y轴右侧,a>0,可得最小值:<﹣2,即可确定D正确.【解答】解:A、∵开口向上,∴a>0,故本选项错误;B、∵当x=﹣1时,y=a﹣b+c>0,故本选项错误;C、∵对称轴在y轴右侧且在直线x=1左侧,∴x=﹣<1,故本选项错误;D、∵二次函数y=ax2+bx+c的图象经过点(0,﹣2),对称轴在y轴右侧,a >0,∴最小值:<﹣2,∴4ac﹣b2<﹣8a.故本选项正确.故选D.【点评】此题考查了图象与二次函数系数之间的关系.此题难度适中,注意掌握数形结合思想的应用.11.如图,在平面直角坐标系中,抛物线所表示的函数解析式为y=﹣2(x﹣h)2+k,则下列结论正确的是()A.h>0,k>0B.h<0,k>0C.h<0,k<0D.h>0,k<0【考点】H4:二次函数图象与系数的关系.【专题】选择题【分析】根据抛物线所的顶点坐标在x轴的上方即可得出结论.【解答】解:∵抛物线y=﹣2(x﹣h)2+k的顶点坐标为(h,k),由图可知,抛物线的顶点坐标在第一象限,∴h>0,k>0.故选A.【点评】本题考查的是二次函数的图象与系数的关系,熟知二次函数的顶点式是解答此题的关键.12.如图,二次函数y=ax2+bx+c(a≠0)的图象的顶点在第一象限,且过点(0,1)和(﹣1,0).下列结论:①ab<0,②b2>4a,③0<a+b+c<2,④0<b<1,⑤当x>﹣1时,y>0,其中正确结论的个数是()A.5个B.4个C.3个D.2个【考点】H4:二次函数图象与系数的关系.【专题】选择题【分析】由抛物线的对称轴在y轴右侧,可以判定a、b异号,由此确定①正确;由抛物线与x轴有两个交点得到b2﹣4ac>0,又抛物线过点(0,1),得出c=1,由此判定②正确;由抛物线过点(﹣1,0),得出a﹣b+c=0,即a=b﹣1,由a<0得出b<1;由a<0,及ab<0,得出b>0,由此判定④正确;由a﹣b+c=0,及b>0得出a+b+c=2b>0;由b<1,c=1,a<0,得出a+b+c <a+1+1<2,由此判定③正确;由图象可知,当自变量x的取值范围在一元二次方程ax2+bx+c=0的两个根之间时,函数值y>0,由此判定⑤错误.【解答】解:∵二次函数y=ax2+bx+c(a≠0)过点(0,1)和(﹣1,0),∴c=1,a﹣b+c=0.①∵抛物线的对称轴在y轴右侧,∴x=﹣>0,∴a与b异号,∴ab<0,正确;②∵抛物线与x轴有两个不同的交点,∴b2﹣4ac>0,∵c=1,∴b2﹣4a>0,b2>4a,正确;④∵抛物线开口向下,∴a<0,∵ab<0,∴b>0.∵a﹣b+c=0,c=1,∴a=b﹣1,∵a<0,∴b﹣1<0,b<1,∴0<b<1,正确;③∵a﹣b+c=0,∴a+c=b,∴a+b+c=2b>0.∵b<1,c=1,a<0,∴a+b+c=a+b+1<a+1+1=a+2<0+2=2,∴0<a+b+c<2,正确;⑤抛物线y=ax2+bx+c与x轴的一个交点为(﹣1,0),设另一个交点为(x0,0),则x0>0,由图可知,当x0>x>﹣1时,y>0,错误;综上所述,正确的结论有①②③④.故选B.【点评】本题主要考查二次函数图象与系数之间的关系,不等式的性质,难度适中.二次函数y=ax2+bx+c(a≠0),a的符号由抛物线开口方向决定;b的符号由对称轴的位置及a的符号决定;c的符号由抛物线与y轴交点的位置决定;抛物线与x轴的交点个数,决定了b2﹣4ac的符号,此外还要注意二次函数与方程之间的转换.13.用一根长为32cm的铁丝围成一个矩形,则围成矩形面积的最大值是64 cm2.【考点】H7:二次函数的最值.【专题】填空题【分析】设矩形的一边长是xcm,则邻边的长是(16﹣x)cm,则矩形的面积S即可表示成x的函数,根据函数的性质即可求解.【解答】解:设矩形的一边长是xcm,则邻边的长是(16﹣x)cm.则矩形的面积S=x(16﹣x),即S=﹣x2+16x,当x=﹣=﹣=8时,S有最大值是:64.故答案是:64.【点评】本题考查了二次函数的性质,求最值得问题常用的思路是转化为函数问题,利用函数的性质求解.14.把二次函数y=x2﹣12x化为形如y=a(x﹣h)2+k的形式y=(x﹣6)2﹣36.【考点】H9:二次函数的三种形式.【专题】填空题【分析】由于二次项系数为1,所以直接加上一次项系数的一半的平方来凑完全平方式,把一般式转化为顶点式.【解答】解:y=x2﹣12x=(x2﹣12x+36)﹣36=(x﹣6)2﹣36,即y=(x ﹣6)2﹣36.故答案为y=(x﹣6)2﹣36.【点评】本题考查了二次函数解析式的三种形式:(1)一般式:y=ax2+bx+c(a≠0,a、b、c为常数);(2)顶点式:y=a(x﹣h)2+k;(3)交点式(与x轴):y=a(x﹣x1)(x﹣x2).15.抛物线y=x2+1的最小值是1.【考点】H7:二次函数的最值.【专题】填空题【分析】根据二次函数的最值问题解答即可.【解答】解:抛物线y=x2+1的最小值是1.故答案为:1.【点评】本题考查了二次函数的最值问题,是基础题,熟练掌握利用顶点式解析式求最大(或最小)值是解题的关键.16.函数y=(x﹣1)2+3的最小值为3.【考点】H7:二次函数的最值.【专题】填空题【分析】根据顶点式得到它的顶点坐标是(1,3),再根据其a>0,即抛物线的开口向上,则它的最小值是3.【解答】解:根据非负数的性质,(x﹣1)2≥0,于是当x=1时,函数y=(x﹣1)2+3的最小值y等于3.故答案为:3.【点评】本题考查了二次函数的最值的求法.求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法.17.已知二次函数y=x2+bx+c经过点(3,0)和(4,0),则这个二次函数的解析式是y=x2﹣7x+12.【考点】H8:待定系数法求二次函数解析式.【专题】填空题【分析】由于已知了二次函数与x轴的两交点坐标,则可设交点式易得其解析式.【解答】解:设二次函数的解析式为y=a(x﹣3)(x﹣4),而a=1,所以二次函数的解析式为y=(x﹣3)(x﹣4)=x2﹣7x+12.故答案为y=x2﹣7x+12.【点评】本题考查了用待定系数法求二次函数的解析式:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x轴有两个交点时,可选择设其解析式为交点式来求解.18.已知二次函数y=x2+mx+n的图象经过点P(﹣3,1),对称轴是经过(﹣1,0)且平行于y轴的直线.(1)求m、n的值;(2)如图,一次函数y=kx+b的图象经过点P,与x轴相交于点A,与二次函数的图象相交于另一点B,点B在点P的右侧,PA:PB=1:5,求一次函数的表达式.【考点】H8:待定系数法求二次函数解析式;FA:待定系数法求一次函数解析式.【专题】解答题【分析】(1)利用对称轴公式求得m,把P(﹣3,1)代入二次函数y=x2+mx+n 得出n=3m﹣8,进而就可求得n;(2)根据(1)得出二次函数的解析式,根据已知条件,利用平行线分线段成比例定理求得B的纵坐标,代入二次函数的解析式中求得B的坐标,然后利用待定系数法就可求得一次函数的表达式.【解答】解:(1)∵对称轴是经过(﹣1,0)且平行于y轴的直线,∴﹣=﹣1,∴m=2,∵二次函数y=x2+mx+n的图象经过点P(﹣3,1),∴9﹣3m+n=1,得出n=3m﹣8.∴n=3m﹣8=﹣2;(2)∵m=2,n=﹣2,∴二次函数为y=x2+2x﹣2,作PC⊥x轴于C,BD⊥x轴于D,则PC∥BD,∴=,∵P(﹣3,1),∴PC=1,∵PA:PB=1:5,∴=,∴BD=6,∴B的纵坐标为6,代入二次函数为y=x2+2x﹣2得,6=x2+2x﹣2,解得x1=2,x2=﹣4(舍去),∴B(2,6),∴,解得,∴一次函数的表达式为y=x+4.【点评】本题考查了待定系数法求二次函数的解析式和一次函数的解析式,根据已知条件求得B的坐标是解题的关键.19.如图,在平面直角坐标系中,正方形OABC的边长为4,顶点A、C分别在x轴、y轴的正半轴,抛物线y=﹣x2+bx+c经过B、C两点,点D为抛物线的顶点,连接AC、BD、CD.(1)求此抛物线的解析式.(2)求此抛物线顶点D的坐标和四边形ABCD的面积.【考点】H8:待定系数法求二次函数解析式;H5:二次函数图象上点的坐标特征.【专题】解答题【分析】(1)根据题意确定出B与C的坐标,代入抛物线解析式求出b与c的值,即可确定出解析式;(2)把抛物线解析式化为顶点形式,找出顶点坐标,四边形ABDC面积=三角形ABC面积+三角形BCD面积,求出即可.【解答】解:(1)由已知得:C(0,4),B(4,4),把B与C坐标代入y=﹣x2+bx+c得:,解得:b=2,c=4,则解析式为y=﹣x2+2x+4;(2)∵y=﹣x2+2x+4=﹣(x﹣2)2+6,∴抛物线顶点坐标为(2,6),=S△ABC+S△BCD=×4×4+×4×2=8+4=12.则S四边形ABDC【点评】此题考查了待定系数法求二次函数解析式,以及二次函数图象上点的坐标特征,熟练掌握待定系数法是解本题的关键.20.已知抛物线y=﹣x2+bx+c经过点A(3,0),B(﹣1,0).(1)求抛物线的解析式;(2)求抛物线的顶点坐标.【考点】H8:待定系数法求二次函数解析式;H3:二次函数的性质.【专题】解答题【分析】(1)根据抛物线y=﹣x2+bx+c经过点A(3,0),B(﹣1,0),直接得出抛物线的解析式为;y=﹣(x﹣3)(x+1),再整理即可,(2)根据抛物线的解析式为y=﹣x2+2x+3=﹣(x﹣1)2+4,即可得出答案.【解答】解:(1)∵抛物线y=﹣x2+bx+c经过点A(3,0),B(﹣1,0).∴抛物线的解析式为;y=﹣(x﹣3)(x+1),即y=﹣x2+2x+3,(2)∵抛物线的解析式为y=﹣x2+2x+3=﹣(x﹣1)2+4,∴抛物线的顶点坐标为:(1,4).【点评】此题考查了用待定系数法求函数的解析式,用到的知识点是二次函数的解析式的形式,关键是根据题意选择合适的解析式.21.如图,抛物线y=x2+bx+c与x轴交于A(﹣1,0)和B(3,0)两点,交y轴于点E.(1)求此抛物线的解析式.(2)若直线y=x+1与抛物线交于A、D两点,与y轴交于点F,连接DE,求△DEF的面积.【考点】H8:待定系数法求二次函数解析式;H3:二次函数的性质.【专题】解答题【分析】(1)利用待定系数法求二次函数解析式即可;(2)首先求出直线与二次函数的交点坐标进而得出E,F点坐标,即可得出△DEF 的面积.【解答】解:(1)∵抛物线y=x2+bx+c与x轴交于A(﹣1,0)和B(3,0)两点,∴,解得:,故抛物线解析式为:y=x2﹣2x﹣3;(2)根据题意得:,解得:,,∴D(4,5),对于直线y=x+1,当x=0时,y=1,∴F(0,1),对于y=x2﹣2x﹣3,当x=0时,y=﹣3,∴E(0,﹣3),∴EF=4,过点D作DM⊥y轴于点M.=EF•DM=8.∴S△DEF【点评】此题主要考查了待定系数法求二次函数解析式以及三角形面积求法等知识,利用数形结合得出D,E,F点坐标是解题关键.22.如图,抛物线y=x2+bx+c过点A(﹣4,﹣3),与y轴交于点B,对称轴是x=﹣3,请解答下列问题:(1)求抛物线的解析式.(2)若和x轴平行的直线与抛物线交于C,D两点,点C在对称轴左侧,且CD=8,求△BCD的面积.注:抛物线y=ax2+bx+c(a≠0)的对称轴是x=﹣.【考点】H8:待定系数法求二次函数解析式;H3:二次函数的性质.【专题】解答题【分析】(1)把点A(﹣4,﹣3)代入y=x2+bx+c得16﹣4b+c=﹣3,根据对称轴是x=﹣3,求出b=6,即可得出答案,(2)根据CD∥x轴,得出点C与点D关于x=﹣3对称,根据点C在对称轴左侧,且CD=8,求出点C的横坐标和纵坐标,再根据点B的坐标为(0,5),求出△BCD中CD边上的高,即可求出△BCD的面积.【解答】解:(1)把点A(﹣4,﹣3)代入y=x2+bx+c得:16﹣4b+c=﹣3,c﹣4b=﹣19,∵对称轴是x=﹣3,∴﹣=﹣3,∴b=6,∴c=5,∴抛物线的解析式是y=x2+6x+5;(2)∵CD∥x轴,∴点C与点D关于x=﹣3对称,∵点C在对称轴左侧,且CD=8,∴点C的横坐标为﹣7,∴点C的纵坐标为(﹣7)2+6×(﹣7)+5=12,∵点B的坐标为(0,5),∴△BCD中CD边上的高为12﹣5=7,∴△BCD的面积=×8×7=28.【点评】此题考查了待定系数法求二次函数的解析式、二次函数的性质,用到的知识点是二次函数的图象和性质,此题难度适中,注意掌握数形结合思想与方程思想的应用.23.如图,已知二次函数y=x2+bx+c过点A(1,0),C(0,﹣3)(1)求此二次函数的解析式;(2)在抛物线上存在一点P使△ABP的面积为10,请直接写出点P的坐标.【考点】H8:待定系数法求二次函数解析式;H3:二次函数的性质.【专题】解答题【分析】(1)利用待定系数法把A(1,0),C(0,﹣3)代入二次函数y=x2+bx+c 中,即可算出b、c的值,进而得到函数解析式是y=x2+2x﹣3;(2)首先求出A、B两点坐标,再算出AB的长,再设P(m,n),根据△ABP 的面积为10可以计算出n的值,然后再利用二次函数解析式计算出m的值即可得到P点坐标.【解答】解:(1)∵二次函数y=x2+bx+c过点A(1,0),C(0,﹣3),∴,解得,∴二次函数的解析式为y=x2+2x﹣3;(2)∵当y=0时,x2+2x﹣3=0,解得:x1=﹣3,x2=1;∴A(1,0),B(﹣3,0),∴AB=4,设P(m,n),∵△ABP的面积为10,∴AB•|n|=10,解得:n=±5,当n=5时,m2+2m﹣3=5,解得:m=﹣4或2,∴P(﹣4,5)(2,5);当n=﹣5时,m2+2m﹣3=﹣5,方程无解,故P(﹣4,5)(2,5);【点评】此题主要考查了待定系数法求二次函数解析式,以及求点的坐标,关键是掌握凡是函数图象经过的点必能满足解析式.。

数学北师大版九年级下册二次函数专题

数学北师大版九年级下册二次函数专题

专题(三) 二次函数一、选择题1.二次函数2y 2x 13=--+()的图象的顶点坐标是【 】A .(1,3)B .(1-,3)C .(1,3-)D .(1-,3-) 2.下列函数是二次函数的是【 】A .y 2x 1=+B .y 2x 1=-+C .2y x 2=+D .1y x 22=- 3.将二次函数y =x 2-2x +3化为y =(x -h)2+k 的形式结果为 ( )A .y =(x +1)2+4B .y =(x -1)2+4C .y =(x +1)2+2D . y =(x -1)2+24.二次函数y =-3x 2-6x +5的图像的顶点坐标是A .(-1,2)B .(1,-4)C .(-1,8)D .(1,8))5.如图,抛物线21y x =+与双曲线k y x =的交点A 的横坐标是1,则关于x 的不等式012<++-x x k 的解集是( )A .x>1B .x <1C .0<x<1D .-1<x<06.已知二次函数)0,(22<+-=m n m n mx mx y 为常数,且,下列自变量取值范围中y 随x 增大而增大的是( ).A .x<2B .x<-1C .0<x<2D .x>-17.直角坐标平面上将二次函数y=x 2﹣2的图象向左平移1个单位,再向上平移1个单位,则其顶点为( )A .(0,0)B .(1,﹣1)C .(0,﹣1)D .(﹣1,﹣1)8.已知二次函数3)1(2--=x y ,则此二次函数( )A. 有最大值1B. 有最小值1C. 有最大值-3D. 有最小值-39.如图,已知抛物线c bx x y ++=2的对称轴为1x =,点A ,B 均在抛物线上,且AB 与x 轴平行,其中点A 的坐标为(n ,3),则点B 的坐标为 ( ).A .(n+2,3)B .(2n -,3)C .(2n -,3)D .(22n -,3)10.将抛物线22y x =向下平移1个单位,得到的抛物线是( ).A .221y x =+B .221y x =-C .22(1)y x =+D .22(1)y x =- 11.已知二次函数2y x 3x m =-+(m 为常数)的图象与x 轴的一个交点为(1,0),则关于x 的一元二次方程2x 3x m 0-+=的两实数根是A .x 1=1,x 2=-1B .x 1=1,x 2=2C .x 1=1,x 2=0D .x 1=1,x 2=312.若二次函数2y ax =的图象经过点P (-2,4),则该图象必经过点【 】A .(2,4)B .(-2,-4)C .(-4,2)D .(4,-2)13.若一次函数y=ax+b (a≠0)的图象与x 轴的交点坐标为(﹣2,0),则抛物线y=ax 2+bx 的对称轴为【 】A .直线x=1B .直线x=﹣2C .直线x=﹣1D .直线x=﹣414.若抛物线2y x 2x c =-+与y 轴的交点为(0,﹣3),则下列说法不正确的是【 】A .抛物线开口向上B .抛物线的对称轴是x=1C .当x=1时,y 的最大值为﹣4D .抛物线与x 轴的交点为(-1,0),(3,0) 15.如图,⊙O 的圆心在角∠α的角平分线上运动,且⊙O 与∠α的两边相切,图中阴影部分的面积S 关于⊙O 的半径r (r >0)变化的函数图象大致是【 】A .B .C .D .16.如图,二次函数2y ax bx c =++的图象开口向上,对称轴为直线x=1,图象经过(3,0), 下列结论中,正确的一项是【 】A .abc <0B .2a +b <0C .a -b +c <0D .4ac -b 2<017.已知二次函数y=ax 2+bx+c (a≠0)的图象如图所示,在下列五个结论中:①2a ﹣b <0;②abc <0;③a+b+c <0;④a ﹣b+c >0;⑤4a+2b+c >0,错误的个数有【 】A .1个B .2个C .3个D .4个18.若二次函数2y ax bx c =++ (a≠0)的图象与x 轴有两个交点,坐标分别为(x 1,0),(x 2,0),且x 1<x 2,图象上有一点M (x 0,y 0)在x 轴下方,则下列判断正确的是A .a>0B .b 2-4ac≥0C .x 1<x 0<x 2D .a(x 0-x 1)( x 0-x 2)<019.如图,Rt △OAB 的顶点A (-2,4)在抛物线2y ax =上,将Rt △OAB 绕点O顺时针旋转90°,得到△OCD ,边CD 与该抛物线交于点P ,则点P 的坐标为A . ()22 ,B .()22 ,C .()22 ,D .()22 ,20.已知二次函数y=ax 2+bx+c (a≠0)的图象如图所示,下列说法错误的是A 、图象关于直线x=1对称B 、函数ax 2+bx+c (a≠0)的最小值是﹣4C 、﹣1和3是方程ax 2+bx+c (a≠0)的两个根D 、当x <1时,y 随x 的增大而增大二、填空题21.在平面直角坐标系中,抛物线2y=x -3x-4与x 轴的交点的个数是___________.22.二次函数y=x 2+1的图象的顶点坐标是 .23.二次函数y=﹣x 2+bx+c 的图象如图所示,则一次函数y=bx+c 的图象不经过第 象限.24.在平面直角坐标系中,把抛物线21y x 12=-+向上平移3个单位,再向左平移1个单位,则所得抛物线的解析式是 .25.抛物线2y x 1=+的最小值是 .26.2013年5月26日,中国羽毛球队蝉联苏迪曼杯团体赛冠军,成就了首个五连冠霸业.比赛中羽毛球的某次运动路线可以看作是一条抛物线(如图).若不考虑外力因素,羽毛球行进高度y (米)与水平距离x (米)之间满足关系22810y x x 999=-++,则羽毛球飞出的水平距离为 米.27.已知二次函数y=x 2+2mx+2,当x >2时,y 的值随x 值的增大而增大,则实数m 的取值范围是 .28.已知二次函数y=ax 2+bx+c (a≠0)的图象如图所示,给出以下结论:①b 2>4ac ;②abc >0;③2a ﹣b=0;④8a+c <0;⑤9a+3b+c <0,其中结论正确的是 .(填正确结论的序号)29.二次函数y=﹣2(x ﹣5)2+3的顶点坐标是 .30.如图,已知⊙P 的半径为2,圆心P 在抛物线2112y x =-上运动,当⊙P 与x 轴相切时,圆心P 的坐标为三、解答题31.已知二次函数的图象以)4,1(-A 为顶点,且过点)5,2(-B .(1)求该二次函数的解析式;(2)求该二次函数图象与坐标轴的交点坐标;32.某公司销售一种进价为20元/个的计算机,其销售量y (万个)与销售价格x (元/个)的变化如下表: 价格x (元/个) … 30 40 50 60 …销售量y (万个) … 5 4 3 2 …同时,销售过程中的其他开支(不含造价)总计40万元.(1)观察并分析表中的y 与x 之间的对应关系,用所学过的一次函数,反比例函数或二次函数的有关知识写出y (万个)与x (元/个)的函数解析式.(2)求出该公司销售这种计算器的净得利润z (万个)与销售价格x (元/个)的函数解析式,销售价格定为多少元时净得利润最大,最大值是多少?(3)该公司要求净得利润不能低于40万元,请写出销售价格x (元/个)的取值范围,若还需考虑销售量尽可能大,销售价格应定为多少元?33.如图,抛物线经过A (﹣1,0),B (5,0),C (0,52-)三点.(1)求抛物线的解析式;(2)在抛物线的对称轴上有一点P ,使PA+PC 的值最小,求点P 的坐标; (3)在抛物线上是否存在一点N ,使以A ,B , N 三点构成的三角形为直角三角形?若存在,求点N 的坐标;若不存在,请说明理由.34.如图,已知抛物线2y x bx c =++与x 轴交于点A ,B ,AB=2,与y 轴交于点C,对称轴为直线x=2.(1)求抛物线的函数表达式;(2)设P为对称轴上一动点,求△APC周长的最小值;(3)设D为抛物线上一点,E为对称轴上一点,若以点A,B,D,E为顶点的四边形是菱形,则点D的坐标为.35.如图,在△ABC中,∠C=90°,BC=3,AB=5.点P从点B出发,以每秒1个单位长度沿B→C→A→B的方向运动;点Q从点C出发,以每秒2个单位沿C→A→B方向的运动,到达点B后立即原速返回,若P、Q 两点同时运动,相遇后同时停止,设运动时间为t秒.(1)当t= 时,点P与点Q相遇;(2)在点P从点B到点C的运动过程中,当ι为何值时,△PCQ为等腰三角形?(3)在点Q从点B返回点A的运动过程中,设△PCQ的面积为s平方单位.①求s与ι之间的函数关系式;②当s最大时,过点P作直线交AB于点D,将△ABC中沿直线PD折叠,使点A落在直线PC上,求折叠后的△APD与△PCQ重叠部分的面积.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、 填空题: 1.抛物线
22(1)2y x =-++的顶点的坐标是 ;
1. 一条弦把圆分为2∶3的两部分,那么这条弦所对的圆周角度数为 ;
2. 方程x(x+2)=3(x+2) 的根是 ;
3. 已知方程0852
=--x x
的两个根是1x 、2x ,则2
2
21x x += ;
4.在△ABC 中∠C=900,tanA=
3
3
,则cosB=_______; 5.如图是二次函数y 1=ax 2
+bx +c 和一次函数y 2=mx +n 的图象,观察图象写出y 2≥y 1时,x 的取值范围______________. 二.选择题
1.若圆锥的母线长为4cm ,底面半径为3cm ,则圆锥的侧面展开图的面积是【 】 (A )2cm 6π
; (B )2cm 12π; (C )2cm 18π; (D )2cm 24π;
2.一个正方形的内切圆半径,外接圆半径与这个正方形边长的比为【 】 (A )1∶2∶
2; (B )1∶2∶2; (C )1∶2∶4; (D )2∶2∶4;
3.在同一直角坐标系中,一次函数y =ax +c 和二次函数y =ax 2+c 的图象大致为【 】
4若(a+b+1) (a+b-1)=15,则
b a +的值是【 】
A ±2
B 2
C ± 4
D 5.若二次函数
2y ax bx c =++的图象如图所示,则点(a +b ,ac )在【 】
(A ) 第一象限; (B )第二象限; (C )第三象限; (D )第四象限; 5.
6.图,⊙O 中,∠AOC =160°,则∠ABC 等于【 】
(A )20°; (B )160°; (C )40°; (D )80°;
7.如图,正比例函数
)0(>=k kx y 与反比例函数x y 1
=
的图象相交于A 、C 两点,过A 作x 轴的垂线交x 轴于B ,连结BC ,若△ABC 面积为S ,则【 】
(A )S =1; (B )S =2; (C )S =3; (D )S =
2
1;
x
y
O A
x
y
O B
x y O C
x
y
O D
O
C
B
A y
x
O
C
B
A
O
x
y
8.四边形ABCD 中,AB ∥CD ,且AB 、CD 是关于x 的方程x 2-3mx +2m 2+m -2=0的两个实数根,则四边形ABCD 是【 】 A .矩形
B .平行四边形
C .梯形
D .平行四边形或梯形
9..在30米高的建筑物顶上A 处,测得另一建筑物顶部D 的俯角为300,测得底部C 的俯角为450,则CD 的高为【 】
A 10
3米 B 30(3-1)米 C (30-103)米 D (103-30)米
10..把二次函数23y x =的图象内在平移2个单位,再向上平移1个单位所得到的图象对应的二次函数关系为( )
A 、23(2)1y x =-+
B 、23(2)1y x =+-
C 、
23(2)1y x =-- D 、23(2)1y x =++
11.已知反比例函数k
y x
=
的图象如图2所示,二次函数
222y kx x k =-+的图象大致为( )
解答题
1.某船以每小时36海里的速度向正东方向航行,在点
A 测得某岛C 在北偏东60 方向上,航行半小时后到达点
B ,测得
该岛在北偏东30
方向上,已知该岛周围16海里内有暗礁. (1)试说明点B 是否在暗礁区域外?
(2)若继续向东航行有无触礁危险?请说明理由.
2.如图,AB 是⊙O 的直径,AD 与⊙O 相切于点A ,过B 点作BC ∥OD 交⊙O 于点C ,连接OC 、AC ,AC 交OD 于点E . (1)求证:△COE ∽△ABC ; (2)若AB =2,AD =3,求图中阴影部分的面积.
图 2
60
C
E
A
B

北 30º
B
C
D
A
O
E
3.已知:如图,AB 是⊙O 的直径,BC 是弦,∠B =30°,延长BA 到D ,使∠ADC =30°.
(1)求证:DC 是⊙O 的切线;(2)若AB =2,求DC 的长.
4.为了落实国务院总理李克强同志到恩施考察时的指示精神,最近,恩施州委州政府又了台了一系列“三农”优惠政策,使农民收入大幅度增加,某家户生产经销一种农副产品,已知这种产品的成本价20元/千克,市场调查发现,该产品每天的销售量W (千克)与销售价X (元/千克)有如下关系:W =-2x+80. 设这种产品每天的销售利润为y (元)。

(1)求y 与x 之间的函数关系式。

(2)当销售价定为多少元时,每天的销售利润最大?最大利润是多少?
(3)如果物价部门规定这种产品的销售价不得高于28元/千克,该农户想要每天获得150元的销售利润,销售价应定为多少元?
5.小英和小丽用两个转盘做“配紫色”游戏,配成紫色小英得1分,否则小丽得1分,这个游戏对双方公平吗?(红色+蓝
色=紫色,配成紫色者胜)
转盘1 转盘2
如图,一次函数y =x +m 图象过点A (1,0),交y 轴于点B ,C 为y 轴负半轴上一点,且BC =2OB ,过A 、C 两点的抛物线交直线AB 于点D ,且CD ∥x 轴. (1)求这条抛物线的解析式;
(2)观察图象,写出使一次函数值小于二次函数值时x 的取值范围;
(3)在这条抛物线上是否存在一点M 使得∠ADM 为直角?若存在,求出点M 的坐标;若不存在,请说明理由.
红 黄

蓝 红 红 黄。

相关文档
最新文档