算法设计与分析_第3章_动态规划2

合集下载

《算法设计与分析》第3章 动态规划法

《算法设计与分析》第3章 动态规划法

最优解的递推关系 定义m[i:j],表示矩阵连乘A[i:j]所需的最少计算 量 则有: i j 0 m[i ][ j ] i j minj{m[i ][ k ] m[k 1][ j ] pi 1 pk p j } i k
假设:N个矩阵的维数依序放在一维数组p中, 其中Ai的维数记为Pi-1×Pi
A=A1×A2×A3×…×An
A=(A1×A2×…×Ak) × (Ak+1×Ak+2×…×An)
B
C
1.2 穷举法
穷举法:列举出所有可能的计算次序,并计算出 每一种计算次序相应需要的数乘次数,从中找出 一种数乘次数最少的计算次序。
穷举法复杂度分析: 对于n个矩阵的连乘积,设其不同的计算次序有P(n)种。 由于每种加括号方式都可以分解为两个子连乘的加括号问题: (A1...Ak)(Ak+1…An)可以得到关于P(n)的递推式如下:
【程序】矩阵连乘的 穷举法实现 int MatrixChain::LookupChain(int i, int j) { if(i==j) return 0; int u=LookupChain(i+1,j)+p[i-1]*p[i]*p[j]; //k=i s[i][j]=i; //记录最优分解位置 for ( int k=i+1;k<j; k++ ) { //遍历k int t=LookupChain(i,k)+LookupChain(k+1,j) +p[i]*p[k+1]*p[j+1]; if (t<u) { u=t; s[i][j]=k; //记录最优分解位置 } } int MatrixChain::LookupChain() return u; { } return LookupChain(1,n);

计算机算法设计与分析第三章动态规划

计算机算法设计与分析第三章动态规划
该解决策略在某些情况下可得到最优解,但在很多 情况下得不到最优解。如上例的第(5)种完全加括号 方式即采用该策略,但得到的显然不是最优解。
18
第十八页,共109页。
矩阵维数大的优先计算 在n个矩阵的n+1个维数序列p0 ,p1, p2,…, pn中选择维数的最大值 (设为pi),并把相邻两个含有维数pi的矩阵优先进行计算,然
7
第七页,共109页。
算法总体思想
动态规划的思想实质是分治思想和解决冗余
动态规划算法与分治法类似,其基本思想也是将待求解 问题分解成若干个子问题
T(n)
=n
T(n/2)
T(n/2)
T(n/2)
T(n/2)
8
第八页,共109页。
算法总体思想
但是经分解得到的子问题往往不是互相独立的。不同子问题的数 目常常只有多项式量级。在用分治法求解时,有些子问题被重复 计算了许多次。
15
第十五页,共109页。
16
第十六页,共109页。
穷举法
列举出所有可能的计算次序,并计算出每一种计算次序 相应需要的数乘次数,从中找出一种数乘次数最少的计 算次序。
算法复杂度分析:
对于n个矩阵的连乘积,设其不同的计算次序为P(n)。
由于每种加括号方式都可以分解为两个子矩阵的加括号问题:
(A1...Ak)(Ak+1…An)可以得到关于P(n)的递推式如下:
for (int r = 2; r <= n; r++) //分别计算r个矩阵连乘的最小数乘次数
for (int i = 1; i <= n - r+1; i++) { int j=i+r-1;

最新算法设计与分析(霍红卫)_第3章 动态规划教学讲义PPT课件

最新算法设计与分析(霍红卫)_第3章 动态规划教学讲义PPT课件

2 then error “incompatible domensions”
3 else for i ← 1 to rows[A]
4
do for j ← 1 to- columns[B]
5
do C[i, j]← 0
6
for k ← 1 to columns[A]
7
do C[i, j]← C[i, j]+A[i, k]·B[k, j]
第我3们章给矩动阵态加规上划括号的方式会对矩阵的计算开销产生巨大 影响。首先考虑两个矩阵的乘积。 标准计算两个矩阵乘积的算 法MATRIX-MULTIPLY描述如下,其中rows和columns分别表示 矩阵的行数和列数。
MATRIX MULTIPLY(A, B)
1 if columns[A]≠rows[B]
将这个问题形式描述如下:
约束条件为
max vixi
1in
(3.1)
wixi W,xi{0,1} (3.2)
8 11
24
(a)
9 13 + 5
4+
34 22
(b)
9 13
+ 7 10
23
(c)
图 3-4 0-1背包问题示例
第3章 动态规划 (1) 刻画0-1背包问题最优解的结构。
图 3-5 算法KNAPSACK-DP示例
第(34)章根据动计态算规的结划果, 构造问题最优解。
KNAPSACK-DP返回的c可用于快速构造背包问题的一个 最优解。如果c[i, w]=c[i-1, w],表明xi=0,然后考察c [i-1,w];否则xi=1,接着考察c[i-1,w-wi]。这个过程初 始调用为OUTPUT-SACK(c, W)。
OUTPUT SACK (c, w)

算法分析设计第3章动态规划

算法分析设计第3章动态规划
} // 时间复杂度为O(n) #
举例
12
i1 0 1
2
0
3
4
5
6
j 34
13 23 03
0
56
33 33 33 45 05
0
s[i][j]
1:6 A[1:6]的最佳 分割点为“3”
1:3 A[1:3]的最佳 分割点为“1”
4:6
1
2:3
4:5 6
A[4:6]的最佳 分割点为“5”
最优解: ((A1(A2A3))((A4A5)A6))
计算最优值
需要处理的不同
子问题个数?
对1于 ijn不同的(i,有 j)对序 应对 于不同
子问题,不 个同 数子 最问 n 2多 n 题 只 (的 n2有 )个。
在递归求解时,会遇到很多重叠的子问题。
!方案: 在求解过程中,保存所有已经解决的子问题 答案。 ——每个子问题只计算一次,后面计算需要 时仅需要简单查找一下即可,从而防止大量 重复计算。

(A[i:k])(A[k+1:j])
// 根据计算出的断点矩阵s指示的加括号方式, 输出计算A[i:j]的最优先次序。
void Traceback(int i, int j, int **s) { if (i==j) return; Traceback(i, s[i][j], s); Traceback(s[i][j]+1, j, s); cout<<i<<s[i][j]<<“;〞<<s[i][j]+1<<j;
两个矩阵的相乘问题
• 两个矩阵的相乘问题
– A为p*q的矩阵 – B为q*r的矩阵 – C=AB为p*r的矩阵 ——计算C的标准算法,共需要p*q*r次数乘

《算法设计与分析》(全)

《算法设计与分析》(全)
巢湖学院计算机科学与技术系
1.1、算法与程序
程序:是算法用某种程序设计语言的具体实现。 程序可以不满足算法的性质(4)。 例如操作系统,是一个在无限循环中执行的程序, 因而不是一个算法。 操作系统的各种任务可看成是单独的问题,每一个 问题由操作系统中的一个子程序通过特定的算法来实 现。该子程序得到输出结果后便终止。
渐近分析记号的若干性质
(1)传递性: ➢ f(n)= (g(n)), g(n)= (h(n)) f(n)= (h(n)); ➢ f(n)= O(g(n)), g(n)= O (h(n)) f(n)= O (h(n)); ➢ f(n)= (g(n)), g(n)= (h(n)) f(n)= (h(n)); ➢ f(n)= o(g(n)), g(n)= o(h(n)) f(n)= o(h(n)); ➢ f(n)= (g(n)), g(n)= (h(n)) f(n)= (h(n)); (2)反身性: ➢ f(n)= (f(n));f(n)= O(f(n));f(n)= (f(n)). (3)对称性: ➢ f(n)= (g(n)) g(n)= (f(n)) . (4)互对称性: ➢ f(n)= O(g(n)) g(n)= (f(n)) ; ➢ f(n)= o(g(n)) g(n)= (f(n)) ;
巢湖学院计算机科学与技术系
渐近分析记号的若干性质
规则O(f(n))+O(g(n)) = O(max{f(n),g(n)}) 的证明: ➢ 对于任意f1(n) O(f(n)) ,存在正常数c1和自然数n1,使得对
所有n n1,有f1(n) c1f(n) 。 ➢ 类似地,对于任意g1(n) O(g(n)) ,存在正常数c2和自然数
巢湖学院计算机科学与技术系
第1章 算法引论

算法设计与分析王红梅第二版动态规划详解演示文稿

算法设计与分析王红梅第二版动态规划详解演示文稿

2022/3/2
Chapter 6 Dynamic Programming
26
第26页,共110页。
多段图的最短路径问题
多段图的决策过程:
多段图的边(u, v),用cuv 表边的权值,从源点s到终点t的最短路 径记为d(s, t),则从源点0到终点9的最短路径d(0, 9)由下式确定 :
d(0, 9)=min{c01+d(1, 9), c02+d(2, 9), c03+d(3, 9)}
2022/3/2
Chapter 6 Dynamic Programming
10
第10页,共110页。
动态规划法的设计思想
动态规划法的求解过程 原问题
子问题1
子问题2 ……
子问题n
2022/3/2
填表 原问题的解
Chapter 6 Dynamic Programming
11
第11页,共110页。
动态规划法的设计思想
Page 15
第6章 动态规划法
2022/3/2
第15页,共110页。
数塔问题——想法
[想法]从顶层出 发下一层选择 取决于两个4层 数塔的最大数 值和。
8 12 15 3 96 8 10 5 12 16 4 18 10 9
Page 16
第6章 动态规划法
2022/3/2
第16页,共110页。
数塔问题——想法
求解初始子问题:底层的每个数字可看作1层数塔,则最大数值和就是其自身; 再求解下一阶段的子问题:第4层的决策是在底层决策的基础上进行求解,可以看作4 个2层数塔,对每个数塔进行求解; 再求解下一阶段的子问题:第3层的决策是在第4层决策的基础上进行求解,可以看作3个 2层的数塔,对每个数塔进行求解;

大学_计算机算法设计与分析第4版(王晓东著)课后答案下载

大学_计算机算法设计与分析第4版(王晓东著)课后答案下载

计算机算法设计与分析第4版(王晓东著)课后答
案下载
计算机算法设计与分析第4版内容简介
第1章算法概述
1.1 算法与程序
1.2 算法复杂性分析
1.3 NP完全性理论
算法分析题1
算法实现题1
第2章递归与分治策略
2.1 递归的概念
2.2 分治法的基本思想
2.3 二分搜索技术
2.4 大整数的乘法
2.5 Strassen矩阵乘法
2.6 棋盘覆盖
2.7 合并排序
2.8 快速排序
2.9 线性时间选择
2.10 最接近点对问题
第3章动态规划
第4章贪心算法
第5章回溯法
第6章分支限界法
第7章随机化算法
第8章线性规划与网络流
附录A C++概要
参考文献
计算机算法设计与分析第4版目录
本书是普通高等教育“十一五”__规划教材和国家精品课程教材。

全书以算法设计策略为知识单元,系统介绍计算机算法的设计方法与分析技巧。

主要内容包括:算法概述、递归与分治策略、动态规划、贪心算法、回溯法、分支限界法、__化算法、线性规划与网络流等。

书中既涉及经典与实用算法及实例分析,又包括算法热点领域追踪。

为突出教材的`可读性和可用性,章首增加了学习要点提示,章末配有难易适度的算法分析题和算法实现题;配套出版了《计算机算法设计与分析习题解答(第2版)》;并免费提供电子课件和教学服务。

2020年算法分析设计习题答案

2020年算法分析设计习题答案

第3章 动态规划
2. 石子合并问题 问题描述: 在一个圆形操场的四周摆放着n堆石子. 现在要将石子有次序地合并 成一堆. 规定每次只能选相邻的2堆石子合并成一堆, 并将新的一堆石子数记为 该次合并的得分. 试设计一个算法, 计算出将n堆石子合并成一堆的最小得分和 最大得分. 算法设计: 对于给定n堆石子, 计算合并成一堆的最小得分和最大得分. 数据输入: 由文件input.txt提供输入数据. 文件的第1行是正整数n, 1n100, 表 示有n堆石子. 第2行有n个数, 分别表示n堆石子的个数. 结果输出: 将计算结果输出到文件output.txt, 文件第1行是最小得分, 第2行是最 大得分.
第五章 回溯
运动员最佳配对问题
问题描述: 羽毛球队有男女运动员各n人. 给定2个nn矩阵P和Q. P[i][j]是男运 动员i与女运动员j配混合双打的男运动员竞赛优势; Q[i][j]是女运动员i与男运 动员j配混合双打的女运动员竞赛优势. 由于技术配合和心理状态等各种因素 影响, P[i][j]不一定等于Q[j][i]. 男运动员i和女运动员j配对的竞赛优势是 P[i][j]*Q[j][i]. 设计一个算法, 计算男女运动员最佳配对法, 使得各组男女双方 竞赛优势的总和达到最大.
8.
若m[i,j]>t, 则m[i,j]=t; s[i,j]=k;
第3章 动态规划
再讨论圆周上的石子合并问题, 子结构[i:j]稍作修改 • 定义m[i][len]为合并第i堆到第i+len-1堆石子能得到的最少分数 • 当i+len-1>n时, 指跨过第n堆到第(i+len-1)%n堆,
仅sum函数需要修改
第2章 分治
2-8 设n个不同的整数排好序后存于T[1:n]中. 若存在一个下标i, 1 i n, 使得T[i]=i. 设计一个有效算法找到这个下标. 要求算 法在最坏情况下的计算时间O(log n).

算法设计与分析知识点

算法设计与分析知识点

第一章算法概述1、算法的五个性质:有穷性、确定性、能行性、输入、输出。

2、算法的复杂性取决于:(1)求解问题的规模(N) , (2)具体的输入数据(I),( 3)算法本身的设计(A),C=F(N,I,A。

3、算法的时间复杂度的上界,下界,同阶,低阶的表示。

4、常用算法的设计技术:分治法、动态规划法、贪心法、回溯法和分支界限法。

5、常用的几种数据结构:线性表、树、图。

第二章递归与分治1、递归算法的思想:将对较大规模的对象的操作归结为对较小规模的对象实施同样的操作。

递归的时间复杂性可归结为递归方程:1 11= 1T(n) <aT(n—b) + D(n) n> 1其中,a是子问题的个数,b是递减的步长,~表示递减方式,D(n)是合成子问题的开销。

递归元的递减方式~有两种:1、减法,即n -b,的形式。

2、除法,即n / b,的形式。

2、D(n)为常数c:这时,T(n) = 0(n P)。

D(n)为线形函数cn:r O(n) 当a. < b(NT(n) = < Ofnlog^n) "n = blljI O(I1P)二"A bl吋其中.p = log b a oD(n)为幕函数n x:r O(n x) 当a< D(b)II JT{ii) = O(ni1og b n) 'ia = D(b)ll].O(nr)D(b)lHJI:中,p= log b ao考虑下列递归方程:T(1) = 1⑴ T( n) = 4T(n/2) +n⑵ T(n) = 4T(n/2)+n2⑶ T(n) = 4T(n/2)+n3解:方程中均为a = 4,b = 2,其齐次解为n2。

对⑴,T a > b (D(n) = n) /• T(n) = 0(n);对⑵,•/ a = b2 (D(n) = n2) T(n) = O(n2iog n);对⑶,•/ a < b3(D(n) = n3) - T(n) = 0(n3);证明一个算法的正确性需要证明两点:1、算法的部分正确性。

算法分析与设计(习题答案)

算法分析与设计(习题答案)

算法分析与设计教程习题解答第1章 算法引论1. 解:算法是一组有穷的规则,它规定了解决某一特定类型问题的一系列计算方法。

频率计数是指计算机执行程序中的某一条语句的执行次数。

多项式时间算法是指可用多项式函数对某算法进行计算时间限界的算法。

指数时间算法是指某算法的计算时间只能使用指数函数限界的算法。

2. 解:算法分析的目的是使算法设计者知道为完成一项任务所设计的算法的优劣,进而促使人们想方设法地设计出一些效率更高效的算法,以便达到少花钱、多办事、办好事的经济效果。

3. 解:事前分析是指求出某个算法的一个时间限界函数(它是一些有关参数的函数);事后测试指收集计算机对于某个算法的执行时间和占用空间的统计资料。

4. 解:评价一个算法应从事前分析和事后测试这两个阶段进行,事前分析主要应从时间复杂度和空间复杂度这两个维度进行分析;事后测试主要应对所评价的算法作时空性能分布图。

5. 解:①n=11; ②n=12; ③n=982; ④n=39。

第2章 递归算法与分治算法1. 解:递归算法是将归纳法的思想应用于算法设计之中,递归算法充分地利用了计算机系统内部机能,自动实现调用过程中对于相关且必要的信息的保存与恢复;分治算法是把一个问题划分为一个或多个子问题,每个子问题与原问题具有完全相同的解决思路,进而可以按照递归的思路进行求解。

2. 解:通过分治算法的一般设计步骤进行说明。

3. 解:int fibonacci(int n) {if(n<=1) return 1;return fibonacci(n-1)+fibonacci(n-2); }4. 解:void hanoi(int n,int a,int b,int c) {if(n>0) {hanoi(n-1,a,c,b); move(a,b);hanoi(n-1,c,b,a); } } 5. 解:①22*2)(−−=n n f n② )log *()(n n n f O =6. 解:算法略。

solutions

solutions

算法设计与分析课程实验与设计福州大学王晓东第1章算法概述算法实现题1-1 统计数字问题算法实现题1-2 字典序问题算法实现题1-3 最多约数问题算法实现题1-4 金币阵列问题算法实现题1-5 最大间隙问题第2章递归与分治策略算法实现题2-1 输油管道问题算法实现题2-2 众数问题算法实现题2-3 邮局选址问题算法实现题2-4 马的Hamilton周游路线问题算法实现题2-5 半数集问题算法实现题2-6 半数单集问题算法实现题2-7 士兵站队问题算法实现题2-8 有重复元素的排列问题算法实现题2-9 排列的字典序问题算法实现题2-10 集合划分问题算法实现题2-11 集合划分问题2算法实现题2-12 双色Hanoi塔问题算法实现题2-13 标准2维表问题算法实现题2-14 整数因子分解问题第3章动态规划算法实现题3-0 独立任务最优调度问题算法实现题3-1 最少硬币问题算法实现题3-2 序关系计数问题算法实现题3-3 多重幂计数问题算法实现题3-4 编辑距离问题算法实现题3-5 石子合并问题算法实现题3-6 数字三角形问题算法实现题3-7 乘法表问题算法实现题3-8 租用游艇问题算法实现题3-9 汽车加油行驶问题算法实现题3-10 最小m段和问题算法实现题3-11 圈乘运算问题算法实现题3-12 最大长方体问题算法实现题3-13 正则表达式匹配问题算法实现题3-14 双调旅行售货员问题算法实现题3-15 最大k乘积问题算法实现题3-16 最少费用购物算法实现题3-17 收集样本问题算法实现题3-18 最优时间表问题算法实现题3-19 字符串比较问题算法实现题3-20 有向树k中值问题算法实现题3-21 有向树独立k中值问题算法实现题3-22 有向直线m中值问题算法实现题3-23 有向直线2中值问题算法实现题3-24 树的最大连通分支问题算法实现题3-25 直线k中值问题算法实现题3-26 直线k覆盖问题算法实现题3-27 m处理器问题算法实现题3-28 红黑树的红色内结点问题第4章贪心算法算法实现题4-1 会场安排问题算法实现题4-2 最优合并问题算法实现题4-3 磁带最优存储问题算法实现题4-4 磁盘文件最优存储问题算法实现题4-5 程序存储问题算法实现题4-6 最优服务次序问题算法实现题4-7 多处最优服务次序问题算法实现题4-8 d森林问题算法实现题4-9 汽车加油问题算法实现题4-10 区间覆盖问题算法实现题4-11 硬币找钱问题算法实现题4-12 删数问题算法实现题4-13 数列极差问题算法实现题4-14 嵌套箱问题算法实现题4-15 套汇问题算法实现题4-16 信号增强装置问题算法实现题4-17 磁带最大利用率问题算法实现题4-18 非单位时间任务安排问题算法实现题4-19 多元Huffman编码问题算法实现题4-20 多元Huffman编码变形算法实现题4-21 区间相交问题算法实现题4-22 任务时间表问题算法实现题4-23 最优分解问题算法实现题4-24 可重复最优分解问题算法实现题4-25 可重复最优组合分解问题算法实现题4-26 旅行规划问题算法实现题4-27 登山机器人问题第5章回溯法算法实现题5-1 子集和问题算法实现题5-2 最小长度电路板排列问题算法实现题5-3 最小重量机器设计问题算法实现题5-4 运动员最佳匹配问题算法实现题5-5 无分隔符字典问题算法实现题5-6 无和集问题算法实现题5-7 n色方柱问题算法实现题5-8 整数变换问题算法实现题5-9 拉丁矩阵问题算法实现题5-10 排列宝石问题算法实现题5-11 重复拉丁矩阵问题算法实现题5-12 罗密欧与朱丽叶的迷宫问题算法实现题5-13 工作分配问题算法实现题5-14 独立钻石跳棋问题算法实现题5-15 智力拼图问题算法实现题5-16 布线问题算法实现题5-17 最佳调度问题算法实现题5-18 无优先级运算问题算法实现题5-19 世界名画陈列馆问题算法实现题5-20 世界名画陈列馆问题(不重复监视)算法实现题5-21 2´2´2魔方问题算法实现题5-22 魔方(Rubik’s Cube)问题算法实现题5-23 算24点问题算法实现题5-24 算m点问题算法实现题5-25 双轨车皮编序问题算法实现题5-26 多轨车皮编序问题算法实现题5-27 部落卫队问题算法实现题5-28 虫蚀算式问题算法实现题5-29 完备环序列问题算法实现题5-30 离散01串问题算法实现题5-31 喷漆机器人问题算法实现题5-32 子集树问题算法实现题5-33 0-1背包问题算法实现题5-34 排列树问题算法实现题5-35 一般解空间搜索问题算法实现题5-36 最短加法链问题算法实现题5-37 n2-1谜问题算法实现题6-1 最小长度电路板排列问题算法实现题6-2 最小长度电路板排列问题算法实现题6-3 最小权顶点覆盖问题算法实现题6-4 无向图的最大割问题算法实现题6-5 最小重量机器设计问题算法实现题6-6 运动员最佳匹配问题算法实现题6-7 n皇后问题算法实现题6-8 圆排列问题算法实现题6-9 布线问题算法实现题6-10 最佳调度问题算法实现题6-11 无优先级运算问题算法实现题6-12 世界名画陈列馆问题算法实现题6-13 子集树问题算法实现题6-14 排列树问题算法实现题6-15 一般解空间的队列式分支限界法算法实现题6-16 子集树问题算法实现题6-17 排列树问题算法实现题6-18 一般解空间的优先队列式分支限界法算法实现题6-19 骑士征途问题算法实现题6-20 推箱子问题算法实现题6-21 图形变换问题算法实现题6-22 行列变换问题算法实现题6-23 重排n2宫问题算法实现题6-24 最长距离问题算法实现题7-1 模平方根问题算法实现题7-2 素数测试问题算法实现题7-3 集合相等问题算法实现题7-4 逆矩阵问题算法实现题7-5 多项式乘积问题算法实现题7-6 皇后控制问题算法实现题7-7 3SAT问题算法实现题7-8 战车问题算法实现题7-9 圆排列问题算法实现题7-10 骑士控制问题算法实现题7-11 骑士对攻问题第8章线性规划与网络流算法实现题8-1 飞行员配对方案问题算法实现题8-2 太空飞行计划问题算法实现题8-3 最小路径覆盖问题算法实现题8-4 魔术球问题算法实现题8-5 圆桌问题算法实现题8-6 最长递增子序列问题算法实现题8-7 试题库问题算法实现题8-8 机器人路径规划问题算法实现题8-9 方格取数问题算法实现题8-10 餐巾计划问题算法实现题8-11 航空路线问题算法实现题8-12 软件补丁问题算法实现题8-13 星际转移问题算法实现题8-14 孤岛营救问题算法实现题8-15 汽车加油行驶问题算法实现题8-16 数字梯形问题算法实现题8-17 运输问题算法实现题8-18 分配问题算法实现题8-19 负载平衡问题算法实现题8-20 深海机器人问题算法实现题8-21 最长k可重区间集问题算法实现题8-22 最长k可重线段集问题算法实现题8-23 火星探险问题算法实现题8-24 骑士共存问题第9章NP完全性理论与近似算法算法实现题9-1旅行售货员问题的近似算法算法实现题9-2 可满足问题的近似算法算法实现题9-3 最大可满足问题的近似算法算法实现题9-4 子集和问题的近似算法算法实现题9-5 子集和问题的完全多项式时间近似算法算法实现题9-6 2SAT问题的线性时间算法算法实现题9-7 实现算法greedySetCover《算法设计与分析》期中试卷1 试题1 数列极差问题试题2 双调TSP回路问题试题3 最佳调度问题《算法设计与分析》期中试卷2 试题1 石子合并问题试题2 整数因子分解问题试题3 汽车加油问题《算法设计与分析》期终试卷1 试题1 乘法表问题试题2 工作分配问题试题3 飞行员配对方案问题《算法设计与分析》期终试卷2 试题1 直线k中值问题试题2 图形变换问题试题3 无向图的最大割问题。

算法设计与分析报告习题

算法设计与分析报告习题

《算法设计与分析》习题第一章算法引论1、算法的定义?答:算法是指在解决问题时,按照某种机械步骤一定可以得到问题结果的处理过程。

通俗讲,算法:就是解决问题的方法或过程。

2、算法的特征?答:1)算法有零个或多个输入;2)算法有一个或多个输出; 3)确定性;4)有穷性3、算法的描述方法有几种?答:自然语言、图形、伪代码、计算机程序设计语言4、衡量算法的优劣从哪几个方面?答:(1) 算法实现所耗费的时间(时间复杂度);(2) 算法实现所所耗费的存储空间(空间复杂度);(3) 算法应易于理解,易于编码,易于调试等等。

5、时间复杂度、空间复杂度定义?答:指的是算法在运行过程中所需要的资源(时间、空间)多少。

6、时间复杂度计算:{i=1;while(i<=n)i=i*2; }答:语句①执行次数1次,语句②③执行次数f(n), 2^f(n)<=n,则f(n) <=log2n;算法执行时间: T(n)= 2log2n +1时间复杂度:记为O(log2n) ;7.递归算法的特点?答:①每个递归函数都必须有非递归定义的初值;否则,递归函数无法计算;(递归终止条件)②递归中用较小自变量函数值来表达较大自变量函数值;(递归方程式)8、算法设计中常用的算法设计策略?答:①蛮力法;②倒推法;③循环与递归;④分治法;⑤动态规划法;⑥贪心法;⑦回溯法;⑧分治限界法9、设计算法:递归法:汉诺塔问题?兔子序列(上楼梯问题)?整数划分问题?蛮力法:百鸡百钱问题?倒推法:穿越沙漠问题?答:算法如下: (1) 递归法● 汉诺塔问题void hanoi(int n, int a, int b, int c) {if (n > 0) {hanoi(n-1, a, c, b); move(a,b);hanoi(n-1, c, b, a); } }● 兔子序列(fibonaci 数列 )递归实现:Int F(int n) {if(n<=2) return 1; elsereturn F(n-1)+ F(n-2); }● 上楼梯问题 Int F(int n) {if(n=1) return 1 if(n=2) return 2; elsereturn F(n-1)+ F(n-2); }● 整数划分问题问题描述:将正整数n 表示成一系列正整数之和,n=n1+n1+n3+…将最大加数不大于m 的划分个数,记作q(n,m)。

算法设计与分析_第3章_动态规划2

算法设计与分析_第3章_动态规划2

1算法设计与分析第3章动态规划(2)2理解动态规划算法的概念。

掌握动态规划算法的基本要素(1)最优子结构性质(2)重叠子问题性质掌握设计动态规划算法的步骤。

(1)找出最优解的性质,并刻划其结构特征。

(2)递归地定义最优值。

(3)以自底向上的方式计算出最优值。

(4)根据计算最优值时得到的信息,构造最优解。

3通过应用范例学习动态规划算法设计策略。

(1)矩阵连乘问题;(2)最长公共子序列;(3)凸多边形最优三角剖分;(4)0/1背包问题;(5)最优二叉搜索树。

4应用Catalan 数多边形三角剖分是数字城市研究许多工作的前提城市景观三维重建中的三角剖分算法基于图像特征和三角剖分的水印算法基于三角剖分的小脑模型在增强学习中的应用 传感网中的动态Delauanay 三角剖分算法 ……5多边形的三角剖分是将多边形分割成互不相交的三角形的弦的集合T 。

输入:给定凸多边形P ,以及定义在由多边形的边和弦组成的三角形上的权函数w 。

输出:要求确定该凸多边形的三角剖分,使得即该三角剖分中诸三角形上权之和为最小。

6用多边形顶点的逆时针序列表示凸多边形,即P={v 0,v 1,…,v n-1}表示具有n 条边的凸多边形。

若v i 与v j 是多边形上不相邻的2个顶点,则线段v i v j 称为多边形的一条弦。

弦将多边形分割成2个多边形{v i ,v i+1,…,v j }和{v j ,v j+1,…v i }。

7一个表达式的完全加括号方式相应于一棵完全二叉树,称为表达式的语法树。

叶结点: 表达式中一个原子例如,完全加括号的矩阵连乘积((A 1(A 2A 3))(A 4(A 5A 6)))相应的语法树为 叶结点: 一个矩阵矩阵连乘积A[i+1:j]对应于三角剖分中的一条弦89最优三角剖分问题 输入:多边形P 和代价函数W 输出:求P 的三角剖分T ,使得代价Σs ∈ST W(s)最小,其中ST 是T 所对应的三角形集合P={v,v,…,v}的最优三角步骤11120-1背包问题是一类经典的组合优化问题 对0-1背包问题的研究可以广泛运用于资源分配、投资决策、货物装载等方面。

算法设计与分析-绪论

算法设计与分析-绪论

回溯法的算法框架 实例分析

0-1背包问题 TSP问题 N皇后问题 连续邮资

回溯法的效率分析
基础算法部分教学安排(6/10)

第六章:分支限界法

分支限界法的基本思想 实例分析

单源最短路径问题 装载问题 布线问题
基础算法部分教学安排(7/10)

第七章:概率算法


分析总结阶段
方案是否可行 是否满足预期要求 与其他方案相比,本方案有哪些优点(通过实验数 据说明),有哪些问题?如何进行改进? ——提交工程设计论文


6000字左右 遵照标准科技论文格式 严禁抄袭!
工程论文要求



题目 作者 摘要 文献综述 典型问题 方案设计 实验分析 研究过程中发现的问题总结 结论与感想 参考文献 附件说明

如不交作业,该组同学的该次作业成绩以0分计;

每次上传作业中,除规定的课程作业外,还需注明本次作业 的负责同学姓名,学号 以及作业的分工; 每周四中午12:00前交作业,迟交一律不收

工程设计要求(1/5)


准备阶段
确定要研究的课题; 在组内进行分工; 拟订工作计划; ——提交研究小组组成情况说明,课题名称,分工以 及工作计划

考核方式

平时成绩(40%);

请假以课前书面假条为准
小组汇报、实验+考勤

期末考试或工程设计(60%)
平时作业的分组安排

平时作业的分组安排


按2-3人/组进行分组 自由组合; 每组选出一位同学作为联系人,该联系人在10月10日前将本 组成员名单、联系方式上传到作业目录下; 作业按组上交,成绩按组评定 由联系人负责作业和实验报告。

算法设计与分析讲义动态规划

算法设计与分析讲义动态规划

要点三
《算法之美》
以通俗易懂的语言介绍了算法的基本 概念和方法,包括动态规划算法的应 用案例。
THANKS
谢谢您的观看
详细描述
记忆化搜索优化方法是将问题的搜索过程记忆下来,当再次遇到同样的问题 时,直接从记忆中获取答案,避免重复的搜索过程。这种优化方法适用于具 有重复子问题的搜索问题。
自顶向下的优化方法
总结词
通过从问题的顶层开始,逐步向下解决问题,从而避免冗余的计算。
详细描述
自顶向下的优化方法是从问题的最高层开始,逐步向下解决问题。通过将问题分 解为多个子问题,并且只解决一次子问题,避免冗余的计算,从而提高效率。
算法设计与分析讲义动态规划
xx年xx月xx日
目 录
• 动态规划概述 • 动态规划的基本原理 • 动态规划的应用实例 • 动态规划的优化方法 • 动态规划的拓展学习 • 参考2
定义:动态规划是一种 通过将问题分解为相互 重叠的子问题来解决问 题的方法。在算法设计 中,动态规划通常用于 优化递归问题,避免重 复计算相同的子问题, 从而节省计算时间和空 间。
高级动态规划算法的优化
针对具体问题,采用更高级的动态规划算法,如最长公共子序列(LCS)、最长递增子序列(LIS)等。
自顶向下的动态规划
将问题分解为子问题,从高级到低级逐步解决问题,避免冗余计算。
分布式动态规划
01
02
03
分布式计算环境
通信开销
全局状态
将问题分解成多个子问题,在不 同的计算节点上并行解决。
02
03
数据挖掘
在数据挖掘中,使用动态规划算法发 现频繁子集、关联规则等数据模式, 帮助企业进行数据分析和决策。
06

算法设计与分析习题解答(第2版)

算法设计与分析习题解答(第2版)

第1章算法引论11.1 算法与程序11.2 表达算法的抽象机制11.3 描述算法31.4 算法复杂性分析13小结16习题17第2章递归与分治策略192.1 递归的概念192.2 分治法的基本思想262.3 二分搜索技术272.4 大整数的乘法282.5 Strassen矩阵乘法302.6 棋盘覆盖322.7 合并排序342.8 快速排序372.9 线性时间选择392.10 最接近点对问题432.11 循环赛日程表53小结54习题54第3章动态规划613.1 矩阵连乘问题62目录算法设计与分析(第2版)3.2 动态规划算法的基本要素67 3.3 最长公共子序列713.4 凸多边形最优三角剖分753.5 多边形游戏793.6 图像压缩823.7 电路布线853.8 流水作业调度883.9 0-1背包问题923.10 最优二叉搜索树98小结101习题102第4章贪心算法1074.1 活动安排问题1074.2 贪心算法的基本要素1104.2.1 贪心选择性质1114.2.2 最优子结构性质1114.2.3 贪心算法与动态规划算法的差异1114.3 最优装载1144.4 哈夫曼编码1164.4.1 前缀码1174.4.2 构造哈夫曼编码1174.4.3 哈夫曼算法的正确性1194.5 单源最短路径1214.5.1 算法基本思想1214.5.2 算法的正确性和计算复杂性123 4.6 最小生成树1254.6.1 最小生成树性质1254.6.2 Prim算法1264.6.3 Kruskal算法1284.7 多机调度问题1304.8 贪心算法的理论基础1334.8.1 拟阵1334.8.2 带权拟阵的贪心算法1344.8.3 任务时间表问题137小结141习题141第5章回溯法1465.1 回溯法的算法框架1465.1.1 问题的解空间1465.1.2 回溯法的基本思想1475.1.3 递归回溯1495.1.4 迭代回溯1505.1.5 子集树与排列树1515.2 装载问题1525.3 批处理作业调度1605.4 符号三角形问题1625.5 n后问题1655.6 0\|1背包问题1685.7 最大团问题1715.8 图的m着色问题1745.9 旅行售货员问题1775.10 圆排列问题1795.11 电路板排列问题1815.12 连续邮资问题1855.13 回溯法的效率分析187小结190习题191第6章分支限界法1956.1 分支限界法的基本思想1956.2 单源最短路径问题1986.3 装载问题2026.4 布线问题2116.5 0\|1背包问题2166.6 最大团问题2226.7 旅行售货员问题2256.8 电路板排列问题2296.9 批处理作业调度232小结237习题238第7章概率算法2407.1 随机数2417.2 数值概率算法2447.2.1 用随机投点法计算π值2447.2.2 计算定积分2457.2.3 解非线性方程组2477.3 舍伍德算法2507.3.1 线性时间选择算法2507.3.2 跳跃表2527.4 拉斯维加斯算法2597.4.1 n 后问题2607.4.2 整数因子分解2647.5 蒙特卡罗算法2667.5.1 蒙特卡罗算法的基本思想2667.5.2 主元素问题2687.5.3 素数测试270小结273习题273第8章 NP完全性理论2788.1 计算模型2798.1.1 随机存取机RAM2798.1.2 随机存取存储程序机RASP2878.1.3 RAM模型的变形与简化2918.1.4 图灵机2958.1.5 图灵机模型与RAM模型的关系297 8.1.6 问题变换与计算复杂性归约299 8.2 P类与NP类问题3018.2.1 非确定性图灵机3018.2.2 P类与NP类语言3028.2.3 多项式时间验证3048.3 NP完全问题3058.3.1 多项式时间变换3058.3.2 Cook定理3078.4 一些典型的NP完全问题3108.4.1 合取范式的可满足性问题3118.4.2 3元合取范式的可满足性问题312 8.4.3 团问题3138.4.4 顶点覆盖问题3148.4.5 子集和问题3158.4.6 哈密顿回路问题3178.4.7 旅行售货员问题322小结323习题323第9章近似算法3269.1 近似算法的性能3279.2 顶点覆盖问题的近似算法3289.3 旅行售货员问题近似算法3299.3.1 具有三角不等式性质的旅行售货员问题330 9.3.2 一般的旅行售货员问题3319.4 集合覆盖问题的近似算法3339.5 子集和问题的近似算法3369.5.1 子集和问题的指数时间算法3369.5.2 子集和问题的完全多项式时间近似格式337 小结340习题340第10章算法优化策略34510.1 算法设计策略的比较与选择34510.1.1 最大子段和问题的简单算法34510.1.2 最大子段和问题的分治算法34610.1.3 最大子段和问题的动态规划算法34810.1.4 最大子段和问题与动态规划算法的推广349 10.2 动态规划加速原理35210.2.1 货物储运问题35210.2.2 算法及其优化35310.3 问题的算法特征35710.3.1 贪心策略35710.3.2 对贪心策略的改进35710.3.3 算法三部曲35910.3.4 算法实现36010.3.5 算法复杂性36610.4 优化数据结构36610.4.1 带权区间最短路问题36610.4.2 算法设计思想36710.4.3 算法实现方案36910.4.4 并查集37310.4.5 可并优先队列37610.5 优化搜索策略380小结388习题388第11章在线算法设计39111.1 在线算法设计的基本概念39111.2 页调度问题39311.3 势函数分析39511.4 k 服务问题39711.4.1 竞争比的下界39711.4.2 平衡算法39911.4.3 对称移动算法39911.5 Steiner树问题40311.6 在线任务调度40511.7 负载平衡406小结407习题407词汇索引409参考文献415习题1-1 实参交换1习题1-2 方法头签名1习题1-3 数组排序判定1习题1-4 函数的渐近表达式2习题1-5 O(1) 和 O(2) 的区别2习题1-7 按渐近阶排列表达式2习题1-8 算法效率2习题1-9 硬件效率3习题1-10 函数渐近阶3习题1-11 n !的阶4习题1-12 平均情况下的计算时间复杂性4算法实现题1-1 统计数字问题4算法实现题1-2 字典序问题5算法实现题1-3 最多约数问题6算法实现题1-4 金币阵列问题8算法实现题1-5 最大间隙问题11第2章递归与分治策略14 习题2-1 Hanoi 塔问题的非递归算法14习题2-2 7个二分搜索算法15习题2-3 改写二分搜索算法18习题2-4 大整数乘法的 O(nm log(3/2))算法19习题2-5 5次 n /3位整数的乘法19习题2-6 矩阵乘法21习题2-7 多项式乘积21习题2-8 不动点问题的 O( log n) 时间算法22习题2-9 主元素问题的线性时间算法22习题2-10 无序集主元素问题的线性时间算法22习题2-11 O (1)空间子数组换位算法23习题2-12 O (1)空间合并算法25习题2-13 n 段合并排序算法32习题2-14 自然合并排序算法32习题2-15 最大值和最小值问题的最优算法35习题2-16 最大值和次大值问题的最优算法35习题2-17 整数集合排序35习题2-18 第 k 小元素问题的计算时间下界36习题2-19 非增序快速排序算法37习题2-20 随机化算法37习题2-21 随机化快速排序算法38习题2-22 随机排列算法38习题2-23 算法qSort中的尾递归38习题2-24 用栈模拟递归38习题2-25 算法select中的元素划分39习题2-26 O(n log n) 时间快速排序算法40习题2-27 最接近中位数的 k 个数40习题2-28 X和Y 的中位数40习题2-29 网络开关设计41习题2-32 带权中位数问题42习题2-34 构造Gray码的分治算法43习题2-35 网球循环赛日程表44目录算法设计与分析习题解答(第2版)算法实现题2-1 输油管道问题(习题2-30) 49算法实现题2-2 众数问题(习题2-31) 50算法实现题2-3 邮局选址问题(习题2-32) 51算法实现题2-4 马的Hamilton周游路线问题(习题2-33) 51算法实现题2-5 半数集问题60算法实现题2-6 半数单集问题62算法实现题2-7 士兵站队问题63算法实现题2-8 有重复元素的排列问题63算法实现题2-9 排列的字典序问题65算法实现题2-10 集合划分问题(一)67算法实现题2-11 集合划分问题(二)68算法实现题2-12 双色Hanoi塔问题69算法实现题2-13 标准二维表问题71算法实现题2-14 整数因子分解问题72算法实现题2-15 有向直线2中值问题72第3章动态规划76习题3-1 最长单调递增子序列76习题3-2 最长单调递增子序列的 O(n log n) 算法77习题3-7 漂亮打印78习题3-11 整数线性规划问题79习题3-12 二维背包问题80习题3-14 Ackermann函数81习题3-17 最短行驶路线83习题3-19 最优旅行路线83算法实现题3-1 独立任务最优调度问题(习题3-3) 83算法实现题3-2 最少硬币问题(习题3-4) 85算法实现题3-3 序关系计数问题(习题3-5) 86算法实现题3-4 多重幂计数问题(习题3-6) 87算法实现题3-5 编辑距离问题(习题3-8) 87算法实现题3-6 石子合并问题(习题3-9) 89算法实现题3-7 数字三角形问题(习题3-10) 91算法实现题3-8 乘法表问题(习题3-13) 92算法实现题3-9 租用游艇问题(习题3-15) 93算法实现题3-10 汽车加油行驶问题(习题3-16) 95算法实现题3-11 圈乘运算问题(习题3-18) 96算法实现题3-12 最少费用购物(习题3-20) 102算法实现题3-13 最大长方体问题(习题3-21) 104算法实现题3-14 正则表达式匹配问题(习题3-22) 105算法实现题3-15 双调旅行售货员问题(习题3-23) 110算法实现题3-16 最大 k 乘积问题(习题5-24) 111算法实现题3-17 最小 m 段和问题113算法实现题3-18 红黑树的红色内结点问题115第4章贪心算法123 习题4-2 活动安排问题的贪心选择123习题4-3 背包问题的贪心选择性质123习题4-4 特殊的0-1背包问题124习题4-10 程序最优存储问题124习题4-13 最优装载问题的贪心算法125习题4-18 Fibonacci序列的Huffman编码125习题4-19 最优前缀码的编码序列125习题4-21 任务集独立性问题126习题4-22 矩阵拟阵126习题4-23 最小权最大独立子集拟阵126习题4-27 整数边权Prim算法126习题4-28 最大权最小生成树127习题4-29 最短路径的负边权127习题4-30 整数边权Dijkstra算法127算法实现题4-1 会场安排问题(习题4-1) 128算法实现题4-2 最优合并问题(习题4-5) 129算法实现题4-3 磁带最优存储问题(习题4-6) 130算法实现题4-4 磁盘文件最优存储问题(习题4-7) 131算法实现题4-5 程序存储问题(习题4-8) 132算法实现题4-6 最优服务次序问题(习题4-11) 133算法实现题4-7 多处最优服务次序问题(习题4-12) 134算法实现题4-8 d 森林问题(习题4-14) 135算法实现题4-9 汽车加油问题(习题4-16) 137算法实现题4-10 区间覆盖问题(习题4-17) 138算法实现题4-11 硬币找钱问题(习题4-24) 138算法实现题4-12 删数问题(习题4-25) 139算法实现题4-13 数列极差问题(习题4-26) 140算法实现题4-14 嵌套箱问题(习题4-31) 140算法实现题4-15 套汇问题(习题4-32) 142算法实现题4-16 信号增强装置问题(习题5-17) 143算法实现题4-17 磁带最大利用率问题(习题4-9) 144算法实现题4-18 非单位时间任务安排问题(习题4-15) 145算法实现题4-19 多元Huffman编码问题(习题4-20) 147算法实现题4-20 多元Huffman编码变形149算法实现题4-21 区间相交问题151算法实现题4-22 任务时间表问题151第5章回溯法153习题5\|1 装载问题改进回溯法(一)153习题5\|2 装载问题改进回溯法(二)154习题5\|4 0-1背包问题的最优解155习题5\|5 最大团问题的迭代回溯法156习题5\|7 旅行售货员问题的费用上界157习题5\|8 旅行售货员问题的上界函数158算法实现题5-1 子集和问题(习题5-3) 159算法实现题5-2 最小长度电路板排列问题(习题5-9) 160算法实现题5-3 最小重量机器设计问题(习题5-10) 163算法实现题5-4 运动员最佳匹配问题(习题5-11) 164算法实现题5-5 无分隔符字典问题(习题5-12) 165算法实现题5-6 无和集问题(习题5-13) 167算法实现题5-7 n 色方柱问题(习题5-14) 168算法实现题5-8 整数变换问题(习题5-15) 173算法实现题5-9 拉丁矩阵问题(习题5-16) 175算法实现题5-10 排列宝石问题(习题5-16) 176算法实现题5-11 重复拉丁矩阵问题(习题5-16) 179算法实现题5-12 罗密欧与朱丽叶的迷宫问题181算法实现题5-13 工作分配问题(习题5-18) 183算法实现题5-14 独立钻石跳棋问题(习题5-19) 184算法实现题5-15 智力拼图问题(习题5-20) 191算法实现题5-16 布线问题(习题5-21) 198算法实现题5-17 最佳调度问题(习题5-22) 200算法实现题5-18 无优先级运算问题(习题5-23) 201算法实现题5-19 世界名画陈列馆问题(习题5-25) 203算法实现题5-20 世界名画陈列馆问题(不重复监视)(习题5-26) 207 算法实现题5-21 部落卫队问题(习题5-6) 209算法实现题5-22 虫蚀算式问题211算法实现题5-23 完备环序列问题214算法实现题5-24 离散01串问题217算法实现题5-25 喷漆机器人问题218算法实现题5-26 n 2-1谜问题221第6章分支限界法229习题6-1 0-1背包问题的栈式分支限界法229习题6-2 用最大堆存储活结点的优先队列式分支限界法231习题6-3 团顶点数的上界234习题6-4 团顶点数改进的上界235习题6-5 修改解旅行售货员问题的分支限界法235习题6-6 解旅行售货员问题的分支限界法中保存已产生的排列树237 习题6-7 电路板排列问题的队列式分支限界法239算法实现题6-1 最小长度电路板排列问题一(习题6-8) 241算法实现题6-2 最小长度电路板排列问题二(习题6-9) 244算法实现题6-3 最小权顶点覆盖问题(习题6-10) 247算法实现题6-4 无向图的最大割问题(习题6-11) 250算法实现题6-5 最小重量机器设计问题(习题6-12) 253算法实现题6-6 运动员最佳匹配问题(习题6-13) 256算法实现题6-7 n 后问题(习题6-15) 259算法实现题6-8 圆排列问题(习题6-16) 260算法实现题6-9 布线问题(习题6-17) 263算法实现题6-10 最佳调度问题(习题6-18) 265算法实现题6-11 无优先级运算问题(习题6-19) 268算法实现题6-12 世界名画陈列馆问题(习题6-21) 271算法实现题6-13 骑士征途问题274算法实现题6-14 推箱子问题275算法实现题6-15 图形变换问题281算法实现题6-16 行列变换问题284算法实现题6-17 重排 n 2宫问题285算法实现题6-18 最长距离问题290第7章概率算法296习题7-1 模拟正态分布随机变量296习题7-2 随机抽样算法297习题7-3 随机产生 m 个整数297习题7-4 集合大小的概率算法298习题7-5 生日问题299习题7-6 易验证问题的拉斯维加斯算法300习题7-7 用数组模拟有序链表300习题7-8 O(n 3/2)舍伍德型排序算法300习题7-9 n 后问题解的存在性301习题7-11 整数因子分解算法302习题7-12 非蒙特卡罗算法的例子302习题7-13 重复3次的蒙特卡罗算法303习题7-14 集合随机元素算法304习题7-15 由蒙特卡罗算法构造拉斯维加斯算法305习题7-16 产生素数算法306习题7-18 矩阵方程问题306算法实现题7-1 模平方根问题(习题7-10) 307算法实现题7-2 集合相等问题(习题7-17) 309算法实现题7-3 逆矩阵问题(习题7-19) 309算法实现题7-4 多项式乘积问题(习题7-20) 310算法实现题7-5 皇后控制问题311算法实现题7-6 3-SAT问题314算法实现题7-7 战车问题315算法实现题7-8 圆排列问题317算法实现题7-9 骑士控制问题319算法实现题7-10 骑士对攻问题320第8章NP完全性理论322 习题8-1 RAM和RASP程序322习题8-2 RAM和RASP程序的复杂性322习题8-3 计算 n n 的RAM程序322习题8-4 没有MULT和DIV指令的RAM程序324习题8-5 MULT和DIV指令的计算能力324习题8-6 RAM和RASP的空间复杂性325习题8-7 行列式的直线式程序325习题8-8 求和的3带图灵机325习题8-9 模拟RAM指令325习题8-10 计算2 2 n 的RAM程序325习题8-11 计算 g(m,n)的程序 326习题8-12 图灵机模拟RAM的时间上界326习题8-13 图的同构问题326习题8-14 哈密顿回路327习题8-15 P类语言的封闭性327习题8-16 NP类语言的封闭性328习题8-17 语言的2 O (n k) 时间判定算法328习题8-18 P CO -NP329习题8-19 NP≠CO -NP329习题8-20 重言布尔表达式329习题8-21 关系∝ p的传递性329习题8-22 L ∝ p 330习题8-23 语言的完全性330习题8-24 的CO-NP完全性330习题8-25 判定重言式的CO-NP完全性331习题8-26 析取范式的可满足性331习题8-27 2-SAT问题的线性时间算法331习题8-28 整数规划问题332习题8-29 划分问题333习题8-30 最长简单回路问题334第9章近似算法336习题9-1 平面图着色问题的绝对近似算法336习题9-2 最优程序存储问题336习题9-4 树的最优顶点覆盖337习题9-5 顶点覆盖算法的性能比339习题9-6 团的常数性能比近似算法339习题9-9 售货员问题的常数性能比近似算法340习题9-10 瓶颈旅行售货员问题340习题9-11 最优旅行售货员回路不自相交342习题9-14 集合覆盖问题的实例342习题9-16 多机调度问题的近似算法343习题9-17 LPT算法的最坏情况实例345习题9-18 多机调度问题的多项式时间近似算法345算法实现题9-1 旅行售货员问题的近似算法(习题9-9) 346 算法实现题9-2 可满足问题的近似算法(习题9-20) 348算法实现题9-3 最大可满足问题的近似算法(习题9-21) 349 算法实现题9-4 子集和问题的近似算法(习题9-15) 351算法实现题9-5 子集和问题的完全多项式时间近似算法352算法实现题9-6 实现算法greedySetCover(习题9-13) 352算法实现题9-7 装箱问题的近似算法First Fit(习题9-19) 356算法实现题9-8 装箱问题的近似算法Best Fit(习题9-19) 358算法实现题9-9 装箱问题的近似算法First Fit Decreasing(习题9-19) 360算法实现题9-10 装箱问题的近似算法Best Fit Decreasing(习题9-19) 361算法实现题9-11 装箱问题的近似算法Next Fit361第10章算法优化策略365 习题10-1 算法obst的正确性365习题10-2 矩阵连乘问题的 O(n 2) 时间算法365习题10-6 货物储运问题的费用371习题10-7 Garsia算法371算法实现题10-1 货物储运问题(习题10-3) 374算法实现题10-2 石子合并问题(习题10-4) 374算法实现题10-3 最大运输费用货物储运问题(习题10-5) 375算法实现题10-4 五边形问题377算法实现题10-5 区间图最短路问题(习题10-8) 381算法实现题10-6 圆弧区间最短路问题(习题10-9) 381算法实现题10-7 双机调度问题(习题10-10) 382算法实现题10-8 离线最小值问题(习题10-11) 390算法实现题10-9 最近公共祖先问题(习题10-12) 393算法实现题10-10 达尔文芯片问题395算法实现题10-11 多柱Hanoi塔问题397算法实现题10-12 线性时间Huffman算法400算法实现题10-13 单机调度问题402算法实现题10-14 最大费用单机调度问题405算法实现题10-15 飞机加油问题408第11章在线算法设计410习题11-1 在线算法LFU的竞争性410习题11-4 多读写头磁盘问题的在线算法410习题11-6 带权页调度问题410算法实现题11-1 最优页调度问题(习题11-2) 411算法实现题11-2 在线LRU页调度(习题11-3) 414算法实现题11-3 k 服务问题(习题11-5) 416参考文献422。

算法设计与分析_第3章_动态规划1

算法设计与分析_第3章_动态规划1
8
引言
分治技术的问题
子问题是相互独立的
Why?
问题:
如果子问题不是相互独立的,分治方法将重复 计算公共子问题,效率很低,甚至在多项式量 级的子问题数目时也可能耗费指数时间
解决方案:动态规划
用表来保存所有已解决子问题的答案 不同算法的填表格式是相同的
9
引言
最优化问题
Why?
可能有多个可行解,每个解对应一个 值,需要找出最优值的解。
MATRIX-MULTIPLY(A, B) 1 if columns[A] ≠ rows[B] 2 then return “error: incompatible dimensions” 3 else for i ← 1 to rows[A] 4 for j ← 1 to columns[B] 5 C[i, j] ← 0 6 for k ← 1 to columns[A] 7 C[i, j]←C[i, j]+A[i, k]·B[k, j] 8 return C
(A1 (A2 (A3 A4))) , (A1 ((A2 A3) A4)) , ((A1 A2) (A3 A4)) , ((A1 (A2 A3)) A4) , (((A1 A2) A3) A4).
15
矩阵连乘问题
采用不同的加括号方式,可导致不同的、 甚至及其富有戏剧性差别的乘法开销
设有四个矩阵A,B,C,D,它们的维数分别 是: A=50×10 B=10×40 C=40×30 D=30×5 总共有五种完全加括号的方式: (A((BC)D)) ——16000 (A(B(CD))) ——10500 ((AB)(CD)) ——36000 (((AB)C)D) ——87500 ((A(BC))D) ——34500
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
语法树 根节点 内节点 叶子节点 凸多边形 边v0v6 三角剖分的弦 除v0v6外的各边
8
步骤1:最优子结构性质
最优三角剖分问题
输入:多边形P 和代价函数W 输出:求P 的三角剖分T,使得代价 Σs∈STW(s)最小,其中ST 是T 所对应的 三角形集合
9
步骤1:最优子结构性质
分析
若凸(n+1)边形P={v0,v1,…,vn}的最优三角 剖分T包含三角形v0vkvn,1≤k≤n-1,则T 的权为3个部分权的和:三角形v0vkvn的 权,子多边形{v0,v1,…,vk}和{vk,vk+1,…,vn} 的权之和。 由T所确定的这2个子多边形的三角剖分也 是最优的。因为若有{v0,v1,…,vk}或 {vk,vk+1,…,vn}的更小权的三角剖分将导致T 不是最优三角剖分的矛盾。
10
步骤2:最优三角剖分的递归结构
t[i][j] (1≤i<j≤n) 为凸子多边形{vi-1,vi,…,vj}的最优三角 剖分所对应的权函数值,即其最优值。 只有一条线段 为方便起见,设退化的多边形{vi-1,vi}具有权值0。据此 定义,要计算的凸(n+1)边形P的最优权值为t[1][n]。 当j-i≥1时,凸子多边形至少有3个顶点(vi-1,vi,vj)。由最优 子结构性质,t[i][j]的值应为t[i][k]的值加上t[k+1][j]的值,再 加上三角形vi-1vkvj的权值,其中i≤k≤j-1,而k的所有可能 位置只有j-i个,由此,t[i][j]可递归地定义为:
23
0-1背包问题-举例
n=5,c=10,w={2,2,6,5,4},v={6,3,5,4,6}。 q[i+1]=p[i+1]⊕(wi,vi)={(j+wi,m(i,j)+vi)|(j,m(i,j))∈p[i+1] 设(a,b)和(c,d)是p[i+1]∪q[i+1]中的2个跳跃点, 则当c≥a且d<b时,(c,d)受控于(a,b)
表示:跳跃点坐标(s,t)=(j, m(i,j))
在一般情况下,函数m(i,j)由其全部跳跃点唯一 确定。 j是连续变量时,对每一个确定的i(1≤i≤n),用 19 一个表p[i]存储函数m(i,j)的全部跳跃点。
0-1背包问题-算法改进
跳跃点的递归计算式的推导
初始时p[n+1]={(0,0)}。 物重为0,价值为0 表p[i]可根据计算m(i,j)的递归式递归地 由表p[i+1]计算
(s,t)∈q[i+1]当且仅当wi≤s≤c且(s-wi,t-vi) ∈p[i+1]。 因此,容易由p[i+1]确定跳跃点集q[i+1],
(容量,最优值)
控制点
设(a,b)和(c,d)是p[i+1]∪q[i+1]中的2个跳跃 点,则当c≥a且d<b时,(c,d)受控于(a,b),从 而(c,d)不是p[i]中的跳跃点。
20
0-1背包问题-算法改进
函数m(i,j) = MAX( m(i+1,j), m(i+1,j-wi)+vi)
函数m(i,j)的全部跳跃点p[i] = p[i+1] ∪ q[i+1] p[i+1]是函数m(i+1, j)的跳跃点集 q[i+1]是函数m(i+1, j-wi)+vi的跳跃点集 q[i+1]=p[i+1]⊕(wi,vi) ={(j+wi,m(i,j)+vi)|(j,m(i,j))∈p[i+1]}
max
∑v x
i=2
i i
⎧ n ⎪ w i x i ≤ c − w 1 y1 ⎨ i=2 ⎪ x ∈ {0,1},2 ≤ i ≤ n ⎩ i

反证法证明
15
0-1背包问题- ②递归关系
设所给0-1背包问题的子问题
max ∑ v k x k
k =i
n
n ⎧ ⎪ ∑ wk x k ≤ j ⎨ k =i ⎪ x k ∈ {0,1}, i ≤ k ≤ n ⎩
弦将多边形分割成2个多边形{vi,vi+1,…,vj} 和{vj,vj+1,…vi}。
6
三角剖分的结构及其相关问题
一个表达式的完全加括号方式相应于一 棵完全二叉树,称为表达式的语法树。
叶结点: 表达式中一个原子
例如,完全加括号的矩阵连乘积 ((A1(A2A3))(A4(A5A6))) 相应的语法树为
0-1背包问题-算法改进

n =5, c=10, w={2,2,6,5,4}, v={6,3,5,4,6} 当i=5时
⎧6 j ≥ 4 m(5, j) = ⎨ ⎩0 0 ≤ j < 4 当i=4时?
18
0-1背包问题-算法改进
分析:
由m(i,j)的递归式容易证明,在一般情况下,对 每一个确定的i(1≤i≤n),函数m(i,j)是关于变量 j的阶梯状单调不减函数。跳跃点是这一类函数 i: 第i个可选择物品 的描述特征。
① 初始,p[6]={(0,0)},(w5,v5)=(4,6)。 因此,q[6]=p[6]⊕(w5,v5)={(4,6)}。 ② p[5]={(0,0),(4,6)}, q[5]=p[5]⊕(w4,v4)={(5,4),(9,10)} p[5]∪q[5]={(0,0),(4,6),(5,4),(9,10)} 跳跃点(5,4)受控于跳跃点(4,6),将受控跳跃点(5,4)清除 ③ p[4]={(0,0),(4,6),(9,10)} q[4]=p[4]⊕(6,5)={(6,5),(10,11)}
算法设计与分析
第3章 动态规划 (2)
1
学习要点
理解动态规划算法的概念。 掌握动态规划算法的基本要素 (1)最优子结构性质 (2)重叠子问题性质 掌握设计动态规划算法的步骤。 (1)找出最优解的性质,并刻划其结构特征。 (2)递归地定义最优值。 (3)以自底向上的方式计算出最优值。 (4)根据计算最优值时得到的信息,构造最 优解。
二次背包问题的一种快速解法
计算机学报,国防科学技术大学计算机学院 长沙 2004,9:1162 ~ 1169
多维背包问题的一个蚁群优化算法
计算机学报,哈尔滨工业大学计算机科学与技术学 院 ,2008,5:810 ~ 819
13
0-1背包问题
给定n种物品和一背包。物品i的重量是 wi,其价值为vi,背包的容量为C。问应 如何选择装入背包的物品,使得装入背 包中物品的总价值最大?
意义:装载量多,价值 却少,肯定不是最优解
21
0-1背包问题-算法改进
p[i]= p[i+1] ∪ q[i+1] –控制点
在递归地由表p[i+1]计算表p[i]时
先由p[i+1]计算出q[i+1] 然后合并表p[i+1]和表q[i+1] 清除其中的受控跳跃点得到表p[i]。
q[i+1]=p[i+1]⊕(wi,vi) ={(j+wi,m(i,j)+vi)|(j,m(i,j))∈p[i+1] p[n+1]={(0,0)}。
通过m(i+1, x)来计算m(i,x)
16
0-1背包问题
算法复杂度分析:
动态规划的本质是把所有前面已知的结 果建成一个大表格,表格是迭代构造的.
n个物品 C最大容量
从m(i,j)的递归式容易看出,表格有nc项, 每一项由其他两项在常数式时间内计算 得到.算法需要O(nc)计算时间。
要求物品重量wi是整数 当背包容量c很大时,算法需要的计算时间较 多。例如,当c>2n时,算法需要Ω(n2n)计算 17 时间。
的最优值为m(i,j),即m(i,j)是背包容量为j, 可选择物品为i,i+1,…,n时0-1背包问题的 最优值。 由0-1背包问题的最优子结构性质,可以建立计 算m(i,j)的递归式如下。
j ≥ wn ⎧v n m ( n, j ) = ⎨ ⎩ 0 0 ≤ j < wn
j ≥ wi ⎧max{m(i + 1, j ), m(i + 1, j − wi ) + vi } m(i, j ) = ⎨ 0 ≤ j < wi ⎩m(i + 1, j )
11
0-1背包问题
0-1背包问题是一类经典的组合优化问题 对0-1背包问题的研究可以广泛运用于资 源分配、投资决策、货物装载等方面。
处理机和数据库在分布式计算机系统上 的分配问题 项目选择的货物装载问题 削减库存问题等
12
0-1背包问题
研究
在量子计算机上技术大学计算机科学与技术系 国家高性能计算中心,1999,12:1314~1316
4
凸多边形最优三角剖分
多边形的三角剖分是将多边形分割成互 不相交的三角形的弦的集合T。
输入:给定凸多边形P,以及定义在由多边 形的边和弦组成的三角形上的权函数w。 输出:要求确定该凸多边形的三角剖分, 使得即该三角剖分中诸三角形上权之和 为最小。
5
凸多边形最优三角剖分
用多边形顶点的逆时针序列表示凸多边 形,即P={v0,v1,…,vn-1}表示具有n条边的 凸多边形。 若vi与vj是多边形上不相邻的2个顶点, 则线段vivj称为多边形的一条弦。
从跳跃点集p[i]的定义可以看出,p[i]中的跳跃 点相应于xi,…,xn的0/1赋值。 因此,p[i]中跳跃点个数不超过2n-i+1。由此可 见,算法计算跳跃点集p[i]所花费的计算时间为
叶结点: 一个矩阵
7
三角剖分的结构及其相关问题
凸多边形{v0,v1,…vn-1}的三角剖分也可以用语 法树表示,如图。
一个凸n多边形的三角剖分对应一棵有n-1个叶 结点的语法树
相关文档
最新文档