rfc1275.Replication Requirements to provide an Internet Directory using X.500

合集下载

Replication Tasks

Replication Tasks

Replication TasksA replication task allows you to automate the copy of ZFS snapshots to another system over an encrypted connection. This allows you to create an off-site backup of a ZFS dataset or pool.This section will refer to the system generating the ZFS snapshots as PUSH(推) and the system to receive a copy of the ZFS snapshots as PULL(拉).Before you can configure a replication task, the following pre-requisites must be met:a ZFS pool must exist on both PUSH and PULL.a periodic snapshot task must be created on PUSH. You will not be able to create a replication task before the first snapshot exists.the SSH service must be enabled on PULL. The first time the service is enabled, it will generate the required SSH keys.A replication task uses the following keys:/data/ssh/replication.pub: the RSA public key used for authenticating the PUSH replication user. This key needs to be copied to the replication user account on PULL./etc/ssh/ssh_host_rsa_key.pub: the RSA host public key of PULL used to authenticate the receiving side in order to prevent a man-in-the-middle attack. This key needs to be copied to the replication task on PUSH.This section will demonstrate how to configure a replication task between the following two FreeNAS® systems:上面的英文是从FREENAS的用户手册摘录的。

harbor复制管理参数

harbor复制管理参数

harbor复制管理参数
"Harbor"是一个开源的企业级Docker Registry服务,用于存储和管理Docker镜像。

在Harbor中,复制管理参数通常用于配置镜像的复制和管理。

复制管理参数包括但不限于以下内容:
1. 目标Registry地址,指定镜像复制的目标Registry地址,可以是另一个Harbor实例或者其他Docker Registry服务。

2. 认证信息,如果目标Registry需要认证,需要提供相应的用户名和密码,或者访问令牌等认证信息。

3. 复制策略,可以配置镜像的复制策略,例如定时复制、触发器复制等,以及复制的频率和条件。

4. 过滤规则,可以设置哪些镜像需要被复制,可以根据标签、名称、大小等条件进行过滤。

5. 复制状态监控,可以配置复制操作的监控和报警规则,以便
及时发现和处理复制过程中的问题。

6. 增量复制,可以配置增量复制参数,以减少复制过程中的数据传输量和时间。

在Harbor中,通过设置这些复制管理参数,可以灵活地管理镜像的复制和同步,确保镜像在不同的Registry之间进行高效、安全的管理和传输。

同时,这些参数也可以帮助管理员监控和调整复制过程,保障镜像管理的稳定性和可靠性。

rfc2661.Layer Two Tunneling Protocol L2TP

rfc2661.Layer Two Tunneling Protocol L2TP

Network Working Group W. Townsley Request for Comments: 2661 A. Valencia Category: Standards Track cisco Systems A. Rubens Ascend Communications G. Pall G. Zorn Microsoft Corporation B. Palter Redback Networks August 1999 Layer Two Tunneling Protocol "L2TP"Status of this MemoThis document specifies an Internet standards track protocol for the Internet community, and requests discussion and suggestions forimprovements. Please refer to the current edition of the "InternetOfficial Protocol Standards" (STD 1) for the standardization stateand status of this protocol. Distribution of this memo is unlimited.Copyright NoticeCopyright (C) The Internet Society (1999). All Rights Reserved.AbstractThis document describes the Layer Two Tunneling Protocol (L2TP). STD 51, RFC 1661 specifies multi-protocol access via PPP [RFC1661]. L2TP facilitates the tunneling of PPP packets across an interveningnetwork in a way that is as transparent as possible to both end-users and applications.Table of Contents1.0 Introduction (3)1.1 Specification of Requirements (4)1.2 Terminology (4)2.0 Topology (8)3.0 Protocol Overview (9)3.1 L2TP Header Format (9)3.2 Control Message Types (11)4.0 Control Message Attribute Value Pairs (12)4.1 AVP Format (13)4.2 Mandatory AVPs (14)4.3 Hiding of AVP Attribute Values (14)Townsley, et al. Standards Track [Page 1]4.4.1 AVPs Applicable To All Control Messages (17)4.4.2 Result and Error Codes (18)4.4.3 Control Connection Management AVPs (20)4.4.4 Call Management AVPs (27)4.4.5 Proxy LCP and Authentication AVPs (34)4.4.6 Call Status AVPs (39)5.0 Protocol Operation (41)5.1 Control Connection Establishment (41)5.1.1 Tunnel Authentication (42)5.2 Session Establishment (42)5.2.1 Incoming Call Establishment (42)5.2.2 Outgoing Call Establishment (43)5.3 Forwarding PPP Frames (43)5.4 Using Sequence Numbers on the Data Channel (44)5.5 Keepalive (Hello) (44)5.6 Session Teardown (45)5.7 Control Connection Teardown (45)5.8 Reliable Delivery of Control Messages (46)6.0 Control Connection Protocol Specification (48)6.1 Start-Control-Connection-Request (SCCRQ) (48)6.2 Start-Control-Connection-Reply (SCCRP) (48)6.3 Start-Control-Connection-Connected (SCCCN) (49)6.4 Stop-Control-Connection-Notification (StopCCN) (49)6.5 Hello (HELLO) (49)6.6 Incoming-Call-Request (ICRQ) (50)6.7 Incoming-Call-Reply (ICRP) (51)6.8 Incoming-Call-Connected (ICCN) (51)6.9 Outgoing-Call-Request (OCRQ) (52)6.10 Outgoing-Call-Reply (OCRP) (53)6.11 Outgoing-Call-Connected (OCCN) (53)6.12 Call-Disconnect-Notify (CDN) (53)6.13 WAN-Error-Notify (WEN) (54)6.14 Set-Link-Info (SLI) (54)7.0 Control Connection State Machines (54)7.1 Control Connection Protocol Operation (55)7.2 Control Connection States (56)7.2.1 Control Connection Establishment (56)7.3 Timing considerations (58)7.4 Incoming calls (58)7.4.1 LAC Incoming Call States (60)7.4.2 LNS Incoming Call States (62)7.5 Outgoing calls (63)7.5.1 LAC Outgoing Call States (64)7.5.2 LNS Outgoing Call States (66)7.6 Tunnel Disconnection (67)8.0 L2TP Over Specific Media (67)8.1 L2TP over UDP/IP (68)Townsley, et al. Standards Track [Page 2]9.0 Security Considerations (69)9.1 Tunnel Endpoint Security (70)9.2 Packet Level Security (70)9.3 End to End Security (70)9.4 L2TP and IPsec (71)9.5 Proxy PPP Authentication (71)10.0 IANA Considerations (71)10.1 AVP Attributes (71)10.2 Message Type AVP Values (72)10.3 Result Code AVP Values (72)10.3.1 Result Code Field Values (72)10.3.2 Error Code Field Values (72)10.4 Framing Capabilities & Bearer Capabilities (72)10.5 Proxy Authen Type AVP Values (72)10.6 AVP Header Bits (73)11.0 References (73)12.0 Acknowledgments (74)13.0 Authors’ Addresses (75)Appendix A: Control Channel Slow Start and CongestionAvoidance (76)Appendix B: Control Message Examples (77)Appendix C: Intellectual Property Notice (79)Full Copyright Statement (80)1.0 IntroductionPPP [RFC1661] defines an encapsulation mechanism for transportingmultiprotocol packets across layer 2 (L2) point-to-point links.Typically, a user obtains a L2 connection to a Network Access Server (NAS) using one of a number of techniques (e.g., dialup POTS, ISDN,ADSL, etc.) and then runs PPP over that connection. In such aconfiguration, the L2 termination point and PPP session endpointreside on the same physical device (i.e., the NAS).L2TP extends the PPP model by allowing the L2 and PPP endpoints toreside on different devices interconnected by a packet-switchednetwork. With L2TP, a user has an L2 connection to an accessconcentrator (e.g., modem bank, ADSL DSLAM, etc.), and theconcentrator then tunnels individual PPP frames to the NAS. Thisallows the actual processing of PPP packets to be divorced from thetermination of the L2 circuit.One obvious benefit of such a separation is that instead of requiring the L2 connection terminate at the NAS (which may require along-distance toll charge), the connection may terminate at a (local) circuit concentrator, which then extends the logical PPP session over Townsley, et al. Standards Track [Page 3]a shared infrastructure such as frame relay circuit or the Internet.From the user’s perspective, there is no functional difference between having the L2 circuit terminate in a NAS directly or using L2TP.L2TP may also solve the multilink hunt-group splitting problem.Multilink PPP [RFC1990] requires that all channels composing amultilink bundle be grouped at a single Network Access Server (NAS).Due to its ability to project a PPP session to a location other thanthe point at which it was physically received, L2TP can be used tomake all channels terminate at a single NAS. This allows multilinkoperation even when the calls are spread across distinct physicalNASs.This document defines the necessary control protocol for on-demandcreation of tunnels between two nodes and the accompanyingencapsulation for multiplexing multiple, tunneled PPP sessions.1.1 Specification of RequirementsThe key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT","SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in thisdocument are to be interpreted as described in [RFC2119].1.2 TerminologyAnalog ChannelA circuit-switched communication path which is intended to carry3.1 kHz audio in each direction.Attribute Value Pair (AVP)The variable length concatenation of a unique Attribute(represented by an integer) and a Value containing the actualvalue identified by the attribute. Multiple AVPs make up ControlMessages which are used in the establishment, maintenance, andteardown of tunnels.CallA connection (or attempted connection) between a Remote System and LAC. For example, a telephone call through the PSTN. A Call(Incoming or Outgoing) which is successfully established between a Remote System and LAC results in a corresponding L2TP Sessionwithin a previously established Tunnel between the LAC and LNS.(See also: Session, Incoming Call, Outgoing Call).Townsley, et al. Standards Track [Page 4]Called NumberAn indication to the receiver of a call as to what telephonenumber the caller used to reach it.Calling NumberAn indication to the receiver of a call as to the telephone number of the caller.CHAPChallenge Handshake Authentication Protocol [RFC1994], a PPPcryptographic challenge/response authentication protocol in which the cleartext password is not passed over the line.Control ConnectionA control connection operates in-band over a tunnel to control the establishment, release, and maintenance of sessions and of thetunnel itself.Control MessagesControl messages are exchanged between LAC and LNS pairs,operating in-band within the tunnel protocol. Control messagesgovern aspects of the tunnel and sessions within the tunnel.Digital ChannelA circuit-switched communication path which is intended to carrydigital information in each direction.DSLAMDigital Subscriber Line (DSL) Access Module. A network device used in the deployment of DSL service. This is typically a concentrator of individual DSL lines located in a central office (CO) or local exchange.Incoming CallA Call received at an LAC to be tunneled to an LNS (see Call,Outgoing Call).Townsley, et al. Standards Track [Page 5]L2TP Access Concentrator (LAC)A node that acts as one side of an L2TP tunnel endpoint and is apeer to the L2TP Network Server (LNS). The LAC sits between anLNS and a remote system and forwards packets to and from each.Packets sent from the LAC to the LNS requires tunneling with theL2TP protocol as defined in this document. The connection fromthe LAC to the remote system is either local (see: Client LAC) or a PPP link.L2TP Network Server (LNS)A node that acts as one side of an L2TP tunnel endpoint and is apeer to the L2TP Access Concentrator (LAC). The LNS is thelogical termination point of a PPP session that is being tunneled from the remote system by the LAC.Management Domain (MD)A network or networks under the control of a singleadministration, policy or system. For example, an LNS’s Management Domain might be the corporate network it serves. An LAC’sManagement Domain might be the Internet Service Provider that owns and manages it.Network Access Server (NAS)A device providing local network access to users across a remoteaccess network such as the PSTN. An NAS may also serve as an LAC, LNS or both.Outgoing CallA Call placed by an LAC on behalf of an LNS (see Call, IncomingCall).PeerWhen used in context with L2TP, peer refers to either the LAC orLNS. An LAC’s Peer is an LNS and vice versa. When used in context with PPP, a peer is either side of the PPP connection.POTSPlain Old Telephone Service.Townsley, et al. Standards Track [Page 6]Remote SystemAn end-system or router attached to a remote access network (i.e.a PSTN), which is either the initiator or recipient of a call.Also referred to as a dial-up or virtual dial-up client.SessionL2TP is connection-oriented. The LNS and LAC maintain state foreach Call that is initiated or answered by an LAC. An L2TP Session is created between the LAC and LNS when an end-to-end PPPconnection is established between a Remote System and the LNS.Datagrams related to the PPP connection are sent over the Tunnelbetween the LAC and LNS. There is a one to one relationshipbetween established L2TP Sessions and their associated Calls. (See also: Call).TunnelA Tunnel exists between a LAC-LNS pair. The Tunnel consists of aControl Connection and zero or more L2TP Sessions. The Tunnelcarries encapsulated PPP datagrams and Control Messages betweenthe LAC and the LNS.Zero-Length Body (ZLB) MessageA control packet with only an L2TP header. ZLB messages are usedfor explicitly acknowledging packets on the reliable controlchannel.Townsley, et al. Standards Track [Page 7]2.0 TopologyThe following diagram depicts a typical L2TP scenario. The goal is to tunnel PPP frames between the Remote System or LAC Client and an LNS located at a Home LAN.[Home LAN][LAC Client]----------+ |____|_____ +--[Host]| | |[LAC]---------| Internet |-----[LNS]-----+| |__________| |_____|_____ :| || PSTN |[Remote]--| Cloud |[System] | | [Home LAN]|___________| || ______________ +---[Host]| | | |[LAC]-------| Frame Relay |---[LNS]-----+| or ATM Cloud | ||______________| :The Remote System initiates a PPP connection across the PSTN Cloud to an LAC. The LAC then tunnels the PPP connection across the Internet, Frame Relay, or ATM Cloud to an LNS whereby access to a Home LAN isobtained. The Remote System is provided addresses from the HOME LANvia PPP NCP negotiation. Authentication, Authorization and Accounting may be provided by the Home LAN’s Management Domain as if the userwere connected to a Network Access Server directly.A LAC Client (a Host which runs L2TP natively) may also participatein tunneling to the Home LAN without use of a separate LAC. In thiscase, the Host containing the LAC Client software already has aconnection to the public Internet. A "virtual" PPP connection is then created and the local L2TP LAC Client software creates a tunnel tothe LNS. As in the above case, Addressing, Authentication,Authorization and Accounting will be provided by the Home LAN’sManagement Domain.Townsley, et al. Standards Track [Page 8]3.0 Protocol OverviewL2TP utilizes two types of messages, control messages and datamessages. Control messages are used in the establishment, maintenance and clearing of tunnels and calls. Data messages are used toencapsulate PPP frames being carried over the tunnel. Controlmessages utilize a reliable Control Channel within L2TP to guarantee delivery (see section 5.1 for details). Data messages are notretransmitted when packet loss occurs.+-------------------+| PPP Frames |+-------------------+ +-----------------------+| L2TP Data Messages| | L2TP Control Messages |+-------------------+ +-----------------------+| L2TP Data Channel | | L2TP Control Channel || (unreliable) | | (reliable) |+------------------------------------------------+| Packet Transport (UDP, FR, ATM, etc.) |+------------------------------------------------+Figure 3.0 L2TP Protocol StructureFigure 3.0 depicts the relationship of PPP frames and ControlMessages over the L2TP Control and Data Channels. PPP Frames arepassed over an unreliable Data Channel encapsulated first by an L2TP header and then a Packet Transport such as UDP, Frame Relay, ATM,etc. Control messages are sent over a reliable L2TP Control Channelwhich transmits packets in-band over the same Packet Transport.Sequence numbers are required to be present in all control messagesand are used to provide reliable delivery on the Control Channel.Data Messages may use sequence numbers to reorder packets and detect lost packets.All values are placed into their respective fields and sent innetwork order (high order octets first).3.1 L2TP Header FormatL2TP packets for the control channel and data channel share a common header format. In each case where a field is optional, its space does not exist in the message if the field is marked not present. Notethat while optional on data messages, the Length, Ns, and Nr fieldsmarked as optional below, are required to be present on all controlmessages.Townsley, et al. Standards Track [Page 9]This header is formatted:0 1 2 30 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+|T|L|x|x|S|x|O|P|x|x|x|x| Ver | Length (opt) |+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+| Tunnel ID | Session ID |+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+| Ns (opt) | Nr (opt) |+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+| Offset Size (opt) | Offset pad... (opt)+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+Figure 3.1 L2TP Message HeaderThe Type (T) bit indicates the type of message. It is set to 0 for a data message and 1 for a control message.If the Length (L) bit is 1, the Length field is present. This bitMUST be set to 1 for control messages.The x bits are reserved for future extensions. All reserved bits MUST be set to 0 on outgoing messages and ignored on incoming messages.If the Sequence (S) bit is set to 1 the Ns and Nr fields are present. The S bit MUST be set to 1 for control messages.If the Offset (O) bit is 1, the Offset Size field is present. The Obit MUST be set to 0 (zero) for control messages.If the Priority (P) bit is 1, this data message should receivepreferential treatment in its local queuing and transmission. LCPecho requests used as a keepalive for the link, for instance, should generally be sent with this bit set to 1. Without it, a temporaryinterval of local congestion could result in interference withkeepalive messages and unnecessary loss of the link. This feature is only for use with data messages. The P bit MUST be set to 0 for allcontrol messages.Ver MUST be 2, indicating the version of the L2TP data message header described in this document. The value 1 is reserved to permitdetection of L2F [RFC2341] packets should they arrive intermixed with L2TP packets. Packets received with an unknown Ver field MUST bediscarded.The Length field indicates the total length of the message in octets. Townsley, et al. Standards Track [Page 10]Tunnel ID indicates the identifier for the control connection. L2TPtunnels are named by identifiers that have local significance only.That is, the same tunnel will be given different Tunnel IDs by eachend of the tunnel. Tunnel ID in each message is that of the intended recipient, not the sender. Tunnel IDs are selected and exchanged asAssigned Tunnel ID AVPs during the creation of a tunnel.Session ID indicates the identifier for a session within a tunnel.L2TP sessions are named by identifiers that have local significanceonly. That is, the same session will be given different Session IDsby each end of the session. Session ID in each message is that of the intended recipient, not the sender. Session IDs are selected andexchanged as Assigned Session ID AVPs during the creation of asession.Ns indicates the sequence number for this data or control message,beginning at zero and incrementing by one (modulo 2**16) for eachmessage sent. See Section 5.8 and 5.4 for more information on usingthis field.Nr indicates the sequence number expected in the next control message to be received. Thus, Nr is set to the Ns of the last in-ordermessage received plus one (modulo 2**16). In data messages, Nr isreserved and, if present (as indicated by the S-bit), MUST be ignored upon receipt. See section 5.8 for more information on using thisfield in control messages.The Offset Size field, if present, specifies the number of octetspast the L2TP header at which the payload data is expected to start. Actual data within the offset padding is undefined. If the offsetfield is present, the L2TP header ends after the last octet of theoffset padding.3.2 Control Message TypesThe Message Type AVP (see section 4.4.1) defines the specific type of control message being sent. Recall from section 3.1 that this is only for control messages, that is, messages with the T-bit set to 1. Townsley, et al. Standards Track [Page 11]This document defines the following control message types (seeSection 6.1 through 6.14 for details on the construction and use ofeach message):Control Connection Management0 (reserved)1 (SCCRQ) Start-Control-Connection-Request2 (SCCRP) Start-Control-Connection-Reply3 (SCCCN) Start-Control-Connection-Connected4 (StopCCN) Stop-Control-Connection-Notification5 (reserved)6 (HELLO) HelloCall Management7 (OCRQ) Outgoing-Call-Request8 (OCRP) Outgoing-Call-Reply9 (OCCN) Outgoing-Call-Connected10 (ICRQ) Incoming-Call-Request11 (ICRP) Incoming-Call-Reply12 (ICCN) Incoming-Call-Connected13 (reserved)14 (CDN) Call-Disconnect-NotifyError Reporting15 (WEN) WAN-Error-NotifyPPP Session Control16 (SLI) Set-Link-Info4.0 Control Message Attribute Value PairsTo maximize extensibility while still permitting interoperability, a uniform method for encoding message types and bodies is usedthroughout L2TP. This encoding will be termed AVP (Attribute-ValuePair) in the remainder of this document.Townsley, et al. Standards Track [Page 12]4.1 AVP FormatEach AVP is encoded as:0 1 2 30 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+|M|H| rsvd | Length | Vendor ID |+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+| Attribute Type | Attribute Value...+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+[until Length is reached]... |+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+The first six bits are a bit mask, describing the general attributes of the AVP.Two bits are defined in this document, the remaining are reserved for future extensions. Reserved bits MUST be set to 0. An AVP receivedwith a reserved bit set to 1 MUST be treated as an unrecognized AVP. Mandatory (M) bit: Controls the behavior required of animplementation which receives an AVP which it does not recognize. If the M bit is set on an unrecognized AVP within a message associatedwith a particular session, the session associated with this messageMUST be terminated. If the M bit is set on an unrecognized AVP within a message associated with the overall tunnel, the entire tunnel (and all sessions within) MUST be terminated. If the M bit is not set, an unrecognized AVP MUST be ignored. The control message must thencontinue to be processed as if the AVP had not been present.Hidden (H) bit: Identifies the hiding of data in the Attribute Value field of an AVP. This capability can be used to avoid the passing of sensitive data, such as user passwords, as cleartext in an AVP.Section 4.3 describes the procedure for performing AVP hiding.Length: Encodes the number of octets (including the Overall Lengthand bitmask fields) contained in this AVP. The Length may becalculated as 6 + the length of the Attribute Value field in octets. The field itself is 10 bits, permitting a maximum of 1023 octets ofdata in a single AVP. The minimum Length of an AVP is 6. If thelength is 6, then the Attribute Value field is absent.Vendor ID: The IANA assigned "SMI Network Management PrivateEnterprise Codes" [RFC1700] value. The value 0, corresponding toIETF adopted attribute values, is used for all AVPs defined withinthis document. Any vendor wishing to implement their own L2TPextensions can use their own Vendor ID along with private Attribute Townsley, et al. Standards Track [Page 13]values, guaranteeing that they will not collide with any othervendor’s extensions, nor with future IETF extensions. Note that there are 16 bits allocated for the Vendor ID, thus limiting this featureto the first 65,535 enterprises.Attribute Type: A 2 octet value with a unique interpretation acrossall AVPs defined under a given Vendor ID.Attribute Value: This is the actual value as indicated by the Vendor ID and Attribute Type. It follows immediately after the AttributeType field, and runs for the remaining octets indicated in the Length (i.e., Length minus 6 octets of header). This field is absent if the Length is 6.4.2 Mandatory AVPsReceipt of an unknown AVP that has the M-bit set is catastrophic tothe session or tunnel it is associated with. Thus, the M bit shouldonly be defined for AVPs which are absolutely crucial to properoperation of the session or tunnel. Further, in the case where theLAC or LNS receives an unknown AVP with the M-bit set and shuts down the session or tunnel accordingly, it is the full responsibility ofthe peer sending the Mandatory AVP to accept fault for causing annon-interoperable situation. Before defining an AVP with the M-bitset, particularly a vendor-specific AVP, be sure that this is theintended consequence.When an adequate alternative exists to use of the M-bit, it should be utilized. For example, rather than simply sending an AVP with the M- bit set to determine if a specific extension exists, availability may be identified by sending an AVP in a request message and expecting a corresponding AVP in a reply message.Use of the M-bit with new AVPs (those not defined in this document)MUST provide the ability to configure the associated feature off,such that the AVP is either not sent, or sent with the M-bit not set.4.3 Hiding of AVP Attribute ValuesThe H bit in the header of each AVP provides a mechanism to indicate to the receiving peer whether the contents of the AVP are hidden orpresent in cleartext. This feature can be used to hide sensitivecontrol message data such as user passwords or user IDs.The H bit MUST only be set if a shared secret exists between the LAC and LNS. The shared secret is the same secret that is used for tunnel authentication (see Section 5.1.1). If the H bit is set in any Townsley, et al. Standards Track [Page 14]AVP(s) in a given control message, a Random Vector AVP must also bepresent in the message and MUST precede the first AVP having an H bit of 1.Hiding an AVP value is done in several steps. The first step is totake the length and value fields of the original (cleartext) AVP and encode them into a Hidden AVP Subformat as follows:0 1 2 30 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+| Length of Original Value | Original Attribute Value ...+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+... | Padding ...+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+Length of Original Attribute Value: This is length of the OriginalAttribute Value to be obscured in octets. This is necessary todetermine the original length of the Attribute Value which is lostwhen the additional Padding is added.Original Attribute Value: Attribute Value that is to be obscured.Padding: Random additional octets used to obscure length of theAttribute Value that is being hidden.To mask the size of the data being hidden, the resulting subformatMAY be padded as shown above. Padding does NOT alter the value placed in the Length of Original Attribute Value field, but does alter thelength of the resultant AVP that is being created. For example, If an Attribute Value to be hidden is 4 octets in length, the unhidden AVP length would be 10 octets (6 + Attribute Value length). After hiding, the length of the AVP will become 6 + Attribute Value length + sizeof the Length of Original Attribute Value field + Padding. Thus, ifPadding is 12 octets, the AVP length will be 6 + 4 + 2 + 12 = 24octets.Next, An MD5 hash is performed on the concatenation of:+ the 2 octet Attribute number of the AVP+ the shared secret+ an arbitrary length random vectorThe value of the random vector used in this hash is passed in thevalue field of a Random Vector AVP. This Random Vector AVP must beplaced in the message by the sender before any hidden AVPs. The same random vector may be used for more than one hidden AVP in the same Townsley, et al. Standards Track [Page 15]message. If a different random vector is used for the hiding ofsubsequent AVPs then a new Random Vector AVP must be placed in thecommand message before the first AVP to which it applies.The MD5 hash value is then XORed with the first 16 octet (or less)segment of the Hidden AVP Subformat and placed in the Attribute Value field of the Hidden AVP. If the Hidden AVP Subformat is less than 16 octets, the Subformat is transformed as if the Attribute Value field had been padded to 16 octets before the XOR, but only the actualoctets present in the Subformat are modified, and the length of theAVP is not altered.If the Subformat is longer than 16 octets, a second one-way MD5 hash is calculated over a stream of octets consisting of the shared secret followed by the result of the first XOR. That hash is XORed with the second 16 octet (or less) segment of the Subformat and placed in the corresponding octets of the Value field of the Hidden AVP.If necessary, this operation is repeated, with the shared secret used along with each XOR result to generate the next hash to XOR the next segment of the value with.The hiding method was adapted from RFC 2138 [RFC2138] which was taken from the "Mixing in the Plaintext" section in the book "NetworkSecurity" by Kaufman, Perlman and Speciner [KPS]. A detailedexplanation of the method follows:Call the shared secret S, the Random Vector RV, and the AttributeValue AV. Break the value field into 16-octet chunks p1, p2, etc.with the last one padded at the end with random data to a 16-octetboundary. Call the ciphertext blocks c(1), c(2), etc. We will also define intermediate values b1, b2, etc.b1 = MD5(AV + S + RV) c(1) = p1 xor b1b2 = MD5(S + c(1)) c(2) = p2 xor b2. .. .. .bi = MD5(S + c(i-1)) c(i) = pi xor biThe String will contain c(1)+c(2)+...+c(i) where + denotesconcatenation.On receipt, the random vector is taken from the last Random VectorAVP encountered in the message prior to the AVP to be unhidden. The above process is then reversed to yield the original value.Townsley, et al. Standards Track [Page 16]。

repmgr参数

repmgr参数

repmgr参数
repmgr是一个用于管理PostgreSQL复制的命令行工具和守护程序。

以下是repmgr的一些常用参数:
`priority`: 此参数告诉备用节点遵循新的主节点。

在选举主机过程中,权重高的备机具有升主的更高优先级,如果权重为0,则该备机永远不会升级为主机。

`monitor_interval_secs`: 此参数告诉repmgr守护程序应该多久(以秒为单位)检查上游节点的可用性。

默认是2秒检查一次。

`connection_check_type`: 用什么方式联系上游节点。

此参数的默认值为'ping'。

`reconnect_interval`: 在每次重新连接尝试之间,它将等待
reconnect_interval秒,默认值为10秒。

`primary_visibility_consensus`: 当主节点在多节点群集中不可用时,备用节点可以相互协商以建立有关故障转移的仲裁。

这是通过询问每个备用数据库上次看到主数据库的时间来完成的。

此外,repmgr还支持一些其他参数,例如用于设置服务器角色、主动切换服务器角色、查看复制集群状态信息的参数等。

这些参数的具体使用方法可以通过repmgr的文档或命令行帮助进行查询。

deployment镜像拉取策略

deployment镜像拉取策略

标题:deployment镜像拉取策略一、概述随着容器化技术的发展,部署(Deployment)是容器编排中的一个重要组件。

而镜像拉取策略作为Deployment的一部分,在容器化部署中起着至关重要的作用。

本文将对deployment镜像拉取策略进行深入探讨。

二、什么是deployment镜像拉取策略Deployment镜像拉取策略是在Kubernetes集裙中对镜像的拉取行为进行控制的策略。

在Kubernetes中,deployment是用来保证应用处于预期状态的对象,而镜像拉取策略是部署中的一个重要配置选项。

三、常见的镜像拉取策略在Kubernetes中,常见的镜像拉取策略主要包括以下几种:1. Always:无论本地是否存在镜像,都会尝试从镜像仓库中拉取最新的镜像进行部署。

2. IfNotPresent:仅当本地不存在镜像时,才会从镜像仓库中拉取最新的镜像进行部署。

3. Never:不会从镜像仓库拉取镜像,仅使用本地已存在的镜像进行部署。

四、如何选择合适的镜像拉取策略选择合适的镜像拉取策略可以提高应用部署的效率和可靠性。

以下是一些建议:1. 如果希望应用始终使用最新的镜像进行部署,可以选择Always策略,确保始终使用最新的镜像。

2. 如果希望提高镜像的使用效率,减少对镜像仓库的依赖,可以选择IfNotPresent策略,仅在本地不存在镜像时才拉取镜像。

3. 如果希望完全避免从镜像仓库拉取镜像,可选择Never策略,只使用本地已存在的镜像。

五、部署中的镜像拉取策略配置在Kubernetes的Deployment对象中,可以通过spec.template.spec.cont本人ners.imagePullPolicy字段来配置镜像拉取策略。

例如:```spec:cont本人ners:- name: exampleimage: example:latestimagePullPolicy: IfNotPresent```六、总结镜像拉取策略是Kubernetes中部署的重要配置选项,合理选择镜像拉取策略可以提高应用部署的效率和可靠性。

Windows Server 2012 R2 快速入门指南说明书

Windows Server 2012 R2 快速入门指南说明书
NOTE: You can switch between the Server Core option and the Server with a GUI option as needed at any time later.
For more information about the installation options, what is included with each option, how to switch between them, and related features such as the Minimal Server Interface and Features on Demand, see Windows Server Installation Options at /fwlink/p/?LinkId=242140.
Automated Installation You can automate Windows Server installation by using the tools and documentation in the Windows Assessment and Deployment mating deployment eliminates the need for any user interaction during installation. In addition, you can configure different options within the operating system, such as Internet Explorer settings and network settings.
The two installation options are available for most Windows Server editions. Not all server roles and features are available in all editions. For details about the roles and features available in each Windows Server edition, see /fwlink/p/?LinkId=251499

接口rfc(pp模块)

接口rfc(pp模块)

1.物料主数据1.1创建/扩展物料主数据:1.1.1 除分类视图和检验视图的创建和扩展CALL FUNCTION 'BAPI_MATERIAL_SAVEDATA'EXPORTINGHEADDATA = IS_HEADERCLIENTDATA = IS_MARACLIENTDATAX = IS_MARAXPLANTDATA = IS_MARCPLANTDATAX = IS_MARCXSTORAGELOCATIONDATA = IS_MARDSTORAGELOCATIONDATAX = IS_MARDXVALUATIONDATA = IS_MBEWVALUATIONDATAX = IS_MBEWXSALESDATA = IS_MVKESALESDATAX = IS_MVKEXIMPORTINGRETURN = OS_RETURNTABLESMATERIALDESCRIPTION = IT_MAKTUNITSOFMEASURE = IT_MARMUNITSOFMEASUREX = IT_MARMXMATERIALLONGTEXT = IT_TEXTTAXCLASSIFICATIONS = IT_MLANRETURNMESSAGES = OT_LOG.1.1.2 分类视图的创建和扩展CALL FUNCTION 'BAPI_OBJCL_CREATE'EXPORTINGOBJECTKEYNEW = ZOBJCTOBJECTTABLENEW = 'MARA'CLASSNUMNEW = IS_OBJECT-CLASSNUMNEW CLASSTYPENEW = IS_OBJECT-CLASSTYPENEW STATUS = '1'KEYDATE = SY-DATUMIMPORTINGCLASSIF_STATUS = EP_CLASSIF_STATUSTABLESRETURN = TAB_LOG1.1.1.3 检验视图的创建和扩展CALL FUNCTION 'BAPI_MATINSPCTRL_SAVEREPLICA'TABLESRETURN = TAB_LOGINSPECTIONCTRL = IT_QMAT.1.2 显示物料主数据1.2.1 主要的数据可直接查询表MARA,MARC,MARD,MVKE,MARM,MLAN,MAKT,QMAT,MBEW; 1.2.2 分类视图的显示CALL FUNCTION 'CLAF_CLASSIFICATION_OF_OBJECTS'EXPORTINGclass = 'BATCH'classtext = 'X'classtype = '023'language = sy-languobject = p_objectobjecttable = 'MARA'key_date = sy-datuminitial_charact = 'X'TABLESt_class = et_classt_objectdata = et_objectdataEXCEPTIONSno_classification = 1no_classtypes = 2invalid_class_type = 3OTHERS = 4.1.2.3 文本的读取CALL FUNCTION 'READ_TEXT'1.3 修改物料主数据(除修改分类视图调用的函数不一样外其余相同) CALL FUNCTION 'BAPI_OBJCL_CHANGE'EXPORTINGobjectkey = zobjctobjecttable = is_object-objecttablenew"'MARA' classnum = is_object-classnumnew"'BATCH' classtype = is_object-classtypenew "'023' status = '1'keydate = sy-datumIMPORTINGclassif_status = ep_classif_statusTABLESallocvaluesnumnew = it_allocvaluesnumallocvaluescharnew = it_allocvaluescharallocvaluescurrnew = it_allocvaluescurrreturn = tab_log1.1.4 删除、解除删除物料主数据CALL FUNCTION 'BAPI_MATERIAL_SAVEDATA' EXPORTINGheaddata = is_matheadclientdata = is_maraclientdatax = is_maraxplantdata = is_marcplantdatax = is_marcxsalesdata = is_mvkesalesdatax = is_mvkexIMPORTINGreturn = os_logTABLESreturnmessages = ot_log.1.5 物料修改记录的查询CALL FUNCTION 'CHANGEDOCUMENT_READ'EXPORTINGobjectclass = 'MATERIAL'objectid = ip_matnrTABLESeditpos = ot_positionsEXCEPTIONSno_position_found = 1wrong_access_to_archive = 2time_zone_conversion_error = 3OTHERS = 4.1.6 修改物料类型:使用BDC即可1.7 查询物料的诸多单位1.7.1 主要数据可直接查询表MARA,MARM表单位相关表T006 计量单位T006_OIB 计量单位,附加定义T006A 分配内部到语言相关单位(内部单位转换到外部贸易、技术单位用T006A表,比如要显示CAR则把数据库中的KAR在次表中转换)T006B 贸易分配到内部测量单位( 外部贸易单位和转换到内部单位就是用T006B表,比如PC转到ST,CAR转到KAR等) T006C 外部技术到内部测量单位的分配T006D 尺寸T006D_OIB 附加维数T006E 计量单位系统(组件,映射)T006EE 计量单位系统(实用程序)T006ET 计量单位系统(使用程序-> 文T006I 计量单位的ISO 代码T006J ISO 测量文本单位码T006M 计量单位组T006T 维数文本...1.7.2 单位转换1.7.2.1转换为外部格式CALL FUNCTION 'CONVERSION_EXIT_CUNIT_OUTPUT'EXPORTINGinput =IMPORTINGoutput =1.7.2.1转换为内部格式CALL FUNCTION 'CONVERSION_EXIT_CUNIT_INPUT'EXPORTINGinput =IMPORTINGoutput =1.7.2.2 物料数量不同单位的转换CALL FUNCTION 'MD_CONVERT_MATERIAL_UNIT'EXPORTINGI_MATNR = IOMAMO_TAB-MATNRI_IN_ME = IOMAMO_TAB-ERFMEI_OUT_ME = 'KG'I_MENGE = IOMAMO_TAB-ERFMGIMPORTINGE_MENGE = IOMAMO_TAB-ERFMGEXCEPTIONSERROR_IN_APPLICATION = 1ERROR = 2OTHERS = 3.1.7.2.3 物料基本计量单位转换为其他单位CALL FUNCTION 'MATERIAL_UNIT_CONVERSION'2 库存需求查询CALL FUNCTION 'MD_STOCK_REQUIREMENTS_LIST_API'EXPORTINGmatnr = ip_matnrwerks = ip_werksIMPORTINGe_mdsta = os_mdstaTABLESmdezx = ot_mdezxEXCEPTIONSmaterial_plant_not_found = 1plant_not_found = 2OTHERS = 3.3 物料库存查询:通过标准程序RMMMBESTN做 SET PARAMETER ID XXXX FIELD XXXXX在RFC内接GET即可.4 生产订单4.1 创建生产订单CALL FUNCTION 'BAPI_PRODORD_CREATE'EXPORTINGORDERDATA = ORDERDATAIMPORTINGRETURN = RETURNORDER_NUMBER = ORDER_NUMBER.4.2 修改生产订单CALL FUNCTION 'BAPI_PRODORD_CHANGE' "订单数量和交货数量未判断EXPORTINGNUMBER = IS_ORDER-AUFNRORDERDATA = ORDERDATAORDERDATAX = ORDERDATAXIMPORTINGRETURN = RETURN.4.3 显示生产订单CALL FUNCTION 'BAPI_PRODORD_GET_DETAIL' "根据实际情况调整输出信息 EXPORTINGNUMBER = IP_AUFNRORDER_OBJECTS = ORDER_OBJECTSTABLESHEADER = HEADEROPERATION = OPERATIONPROD_REL_TOOL = PROD_REL_TOOL.5.工程更改号5.1创建、修改、删除工程更改号CALL FUNCTION 'CCAP_ECN_MAINTAIN' "根据实际情况调整输入信息EXPORTINGCHANGE_HEADER = CHANGE_HEADEROBJECT_BOM = OBJECT_BOMOBJECT_DOC = OBJECT_DOCOBJECT_TLIST = OBJECT_TLISTIMPORTINGCHANGE_NO = CHANGE_NOEXCEPTIONSCHANGE_NO_ALREADY_EXISTS = 1ERROR = 2.5.2 显示工程更改号,查询表AENR , AENV即可5.3 工程更改号有效期CALL FUNCTION 'CC_CHANGE_NUMBER_READ' EXPORTINGEAENNR = IS_ZRFC_S_PP005-AENNRIMPORTINGADATUV = ADATUV_XEXCEPTIONSNO_RECORD_FOUND = 1OTHERS = 2.6 BOM6.1 初始化APICALL FUNCTION 'CALO_INIT_API'.6.2 创建BOMCALL FUNCTION 'CSAP_MAT_BOM_MAINTAIN'EXPORTINGMATERIAL = IS_ZRFC_S_PP001-MATNRPLANT = IS_ZRFC_S_PP001-WERKSBOM_USAGE = IS_ZRFC_S_PP001-STLANALTERNATIVE = IS_ZRFC_S_PP001-STLAL CHANGE_NO = IS_ZRFC_S_PP001-AENNR I_STKO = I_STKOFL_NO_CHANGE_DOC = ' 'FL_COMMIT_AND_WAIT = 'X'FL_CAD = ' 'FL_BOM_CREATE = 'X'FL_NEW_ITEM = 'X'FL_COMPLETE = 'X'FL_DEFAULT_VALUES = 'X'FL_IDENTIFY_BY_GUID = ' 'IMPORTINGFL_WARNING = FL_WARNINGO_STKO = O_STKOTABLEST_STPO = T_STPOEXCEPTIONSERROR = 1OTHERS = 2.6.3 拷贝日志CALL FUNCTION 'CALO_MSG_APPEND_DB_LOG'EXCEPTIONSLOG_OBJECT_NOT_FOUND = 1LOG_SUBOBJECT_NOT_FOUND = 2LOG_INTERNAL_ERROR = 3OTHERS = 4.6.4 读取日志CALL FUNCTION 'CALO_LOG_READ_MESSAGES'TABLESMESSAGES_AND_PARAMETERS = LT_MESSAGESEXCEPTIONSOTHERS = 1.6.5 修改、删除BOM"修改时IS_ZRFC_S_PP003-ITEM_GUID+ IS_ZRFC_S_PP003-ITEM_NO 为项目唯一标示"文本相关:抬头长文本OBJECT_ID = '0',可选长文本 OBJECT_ID = '1' 各需添加一行空行;行项目长文本OBJECT_ID = '2',每个行项目文本需添加两行空行CALL FUNCTION 'CSAP_MAT_BOM_MAINTAIN'EXPORTINGMATERIAL = IS_ZRFC_S_PP004-MATNRPLANT = IS_ZRFC_S_PP004-WERKSBOM_USAGE = '1'ALTERNATIVE = '1'FL_NEW_ITEM = 'X'CHANGE_NO = IS_ZRFC_S_PP004-AENNRI_STKO = TSTK1IMPORTINGFL_WARNING = FLG_WARNINGO_STKO = TSTK2TABLEST_STPO = TSTP3T_LTX_LINE = IS_LTX_LINEEXCEPTIONSOTHERS = 1.6.6 读取BOM(修改时调用)CALL FUNCTION 'CSAP_MAT_BOM_OPEN' EXPORTINGMATERIAL = IS_ZRFC_S_PP005-MATNR PLANT = IS_ZRFC_S_PP005-WERKSBOM_USAGE = IS_ZRFC_S_PP005-STLAN ALTERNATIVE = IS_ZRFC_S_PP005-STLAL VALID_FROM = DATUVCHANGE_NO = IS_ZRFC_S_PP005-AENNR IMPORTINGO_STKO = STKO1TABLEST_STPO = OT_STPOEXCEPTIONSERROR = 1OTHERS = 2.6.7 读取BOM(显示)CALL FUNCTION 'CSAP_MAT_BOM_READ' EXPORTINGMATERIAL = IS_ZRFC_S_PP005-MATNR PLANT = IS_ZRFC_S_PP005-WERKSBOM_USAGE = IS_ZRFC_S_PP005-STLAN ALTERNATIVE = IS_ZRFC_S_PP005-STLAL VALID_FROM = DATUVCHANGE_NO = IS_ZRFC_S_PP005-AENNR TABLEST_STPO = OT_STPO1T_LTX_LINE = OT_LTX_LINEEXCEPTIONSERROR = 1OTHERS = 2.6.8 BOM更改记录CONCATENATE : SY-MANDT 'M' OT_STKO-BOM_NO INTO OBJECTID. CALL FUNCTION 'CHANGEDOCUMENT_READ'EXPORTINGOBJECTCLASS = 'STUE'OBJECTID = OBJECTIDDATE_UNTIL = '99991231'TIME_UNTIL = '235959'TABLESEDITPOS = OT_EDITPOSEXCEPTIONSNO_POSITION_FOUND = 1WRONG_ACCESS_TO_ARCHIVE = 2TIME_ZONE_CONVERSION_ERROR = 3OTHERS = 4.6.9 BOM多层展开CALL FUNCTION 'CS_BOM_EXPL_MAT_V2'EXPORTINGaltvo = ' 'aufsw = ' 'auskz = ' 'bagrp = ' 'beikz = ' 'bessl = ' 'brems = ' 'capid = is_zrfc_s_pp008-capiddatuv = is_zrfc_s_pp008-datuvdrldt = ' 'ehndl = '1'erskz = ' 'erssl = ' 'mtnrv = is_zrfc_s_pp008-matnrmehrs = 'X' "多层mmory = '1'stlal = is_zrfc_s_pp008-stlalstlan = '1'werks = is_zrfc_s_pp008-werksaumgb = 'X'IMPORTINGtopmat = topmatTABLESstb = stbmatcat = matcatEXCEPTIONSalt_not_found = 1call_invalid = 2material_not_found = 3missing_authorization = 4no_bom_found = 5no_plant_data = 6no_suitable_bom_found = 7conversion_error = 8OTHERS = 9.6.10 BOM使用位置清单CALL FUNCTION 'CS_WHERE_USED_MAT' EXPORTINGDATUB = SY-DATUMDATUV = SY-DATUMMATNR = ZIDNRKWERKS = ZWERKSIMPORTINGTOPMAT = TOPMATTABLESWULTB = WULTBEQUICAT = EQUICATKNDCAT = KNDCATMATCAT = MATCATSTDCAT = STDCATTPLCAT = TPLCATPRJCAT = PRJCATEXCEPTIONSCALL_INVALID = 1MATERIAL_NOT_FOUND = 2NO_WHERE_USED_REC_FOUND = 3NO_WHERE_USED_REC_SELECTED = 4NO_WHERE_USED_REC_VALID = 5OTHERS = 6.7 工艺路线7.1 创建修改工艺路线,使用BDC7.2 查询物料的工艺路线CALL FUNCTION 'CP_SE_ALT_READ_BY_MAT' EXPORTINGkunr_max = ''kunr_min = ''lifnr_max = ''lifnr_min = ''matnr = is_zrfc_s_pp017-matnrplnal_max = ''plnal_min = ''plnme = ''plnnr = ''plnty_max = ''plnty_min = 'N'statu = ''aennr = is_zrfc_s_pp017-aennrsttag = is_zrfc_s_pp017-sttagwerks_mat = is_zrfc_s_pp017-werksTABLESmapl_exp = mapl_expplko_exp = plko_expEXCEPTIONSnot_found = 1OTHERS = 2.CALL FUNCTION 'CARO_ROUTING_READ' EXPORTINGdate_from = date_fromdate_to = date_fromplnty = ot_zrfc_s_pp018-plntyplnnr = ot_zrfc_s_pp018-plnnrplnal = ot_zrfc_s_pp018-plnalmatnr = is_zrfc_s_pp017-matnrbuffer_del_flg = 'X'delete_all_cal_flg = 'X'adapt_flg = 'X'iv_create_add_change = ' 'TABLEStsk_tab = tsk_tabseq_tab = seq_tabopr_tab = opr_tabcom_tab = com_tabEXCEPTIONSnot_found = 1ref_not_exp = 2not_valid = 3OTHERS = 4.。

--cluster-replicas详解

--cluster-replicas详解

--cluster-replicas详解下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。

文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by the editor. I hope that after you download them, they can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, our shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!--cluster-replicas详解:优化Redis集群性能的利器Redis作为一款高性能的内存数据库,在大规模应用中扮演着关键角色。

光网络通信技术-Ingress策略

光网络通信技术-Ingress策略

操作步骤 步骤 1在网元管理器中单击网元,在功能树中选择“配置 > QoS管理 > 策略管理 > 端口策略”。

步骤 2单击“新建”,弹出“创建端口策略”对话框。

在对话框中配置以下参数: 策略 ID和策略名称 CoS配置参数 引用的 WFQ调度策略,在弹出的 WFQ调度策略 对话框中选择引用的 WFQ调度策略。

默认使用设备缺省的 WFQ调度策略(WFQ Default Scheduling)。

如果需要对接入的流量进行 ACL过滤,选择 流分类配置 选项卡,单击 新建 。

在弹出的 创建流分类 对话框中配置: 流分类 ID ACL动作 单击 增加 ,配置流分类规则。

单击 确定 。

步骤 3在“创建端口策略”对话框中单击“确定”。

步骤 4选择创建的端口策略。

选择“应用对象”选项卡,单击“修改”。

步骤 5在弹出的“配置端口”对话框中指定应用该策略的端口,单击“确定”。

----结束参考信息可以使用复制功能,利用已经创建的端口策略快速创建新的端口策略。

具体操作方法如下所示。

1.在“端口策略”中单击“拷贝”,在弹出的“复制 QoS策略”对话框中选择被复制的策略,输入新策略名。

单击“确定”。

QoS要求。

复制功能不能复制端口应用策略的信息。

1.1.7.7 创建端口策略(OptiX OSN 1500) 配置端口策略主要包括配置不同的 CoS参数、指定报文丢弃方式(如尾丢弃或WRED)、指定 WFQ调度策略,然后应用创建的端口策略。

前提条件如果端口策略需要使用 WRED报文丢弃策略或 WFQ调度策略,需要首先配置端口WRED策略和 WFQ调度策略。

用户具有 网元操作员 及以上的网管用户权限。

背景信息端口策略的配置包括:配置不同 CoS参数,并指定报文丢弃方式,为不同 CoS提供不同的 QoS保证。

配置 WFQ调度策略。

操作步骤步骤 1在网元管理器中单击网元,在功能树中选择“配置 > QoS管理 > 策略管理 > 端口策略”。

网件全网管路由交换机如何设置MLAG功能

网件全网管路由交换机如何设置MLAG功能

网件全网管路由交换机如何设置MLAG功能网件是全球领先的企业网络解决方案,及数字家庭网络应用倡导者,那么你知道网件全网管路由交换机怎么设置MLAG功能吗?下面是店铺整理的一些关于网件全网管路由交换机如何设置MLAG功能的相关资料,供你参考。

网件全网管路由交换机设置MLAG功能的方法:在二层网络,可以通过生成树(STP)避免环路。

但STP会把部分端口阻塞,导致这一部分的链路的带宽造成浪费。

而且当某些链路中断而导致拓扑改变的时候可能导致网络振荡,这个中断的时间从几毫秒到十几秒不等。

使用MLAG技术可以使所有的链路都得以利用,而且在链路中断导致拓扑改变的时候不会导致网络的震荡。

MLAG可以是多台交换机上的端口组成一个LAG组,对端设备会认为自己的LAG组连接的对端是同一台设备,这样可以利用LAG的特性的有点做到上文说所的链路的充分利用和无间断转发。

MLAG又称为vPC。

目前Netgear的交换机当中,M6100和M7100可以支持MLAG。

本文档以两台M6100为例,说明如何配置MLAG,拓扑图如下:开启MLAG功能feature vpc配置LAG1作为peer-linkinterface lag 1no spanning-tree port modevpc peer-linkexitinterface 1/0/41udld enableaddport lag 1exitinterface 1/0/42udld enableaddport lag 1exit配置keepaliveinterface vlan 1ip address 192.168.1.1 255.255.255.0exitvpc domain 1peer-keepalive enablepeer-keepalive destination 192.168.1.2 source 192.168.1.1peer detection enableexit将LAG2和LAG3设置成MLAG链路interface lag 2vpc 1exitinterface lag 3vpc 2exit查看MLAG状态(M6100-3S) #show vpc briefVPC domain ID (1)VPC admin status............................... EnabledKeep-alive admin status........................ EnabledVPC operational status......................... EnabledSelf role...................................... PrimaryPeer role...................................... SecondaryPeer detection admin status.................... Peer not detected, VPC OperationalOperational VPC MAC............................ C0:FF:D4:A7:DA:01 Operational VPC system priority. (32767)Peer-Link details----------------- Interface...................................... lag 1Peer-link admin status......................... UpPeer-link STP admin status..................... Disabled Configured VLANs. (1)Egress tagged VLANs............................ noneVPC Details-----------Number of VPCs configured (2)Number of VPCs operational (2)VPC id# 1----------- Interface...................................... lag 2Configured VLANs (1)VPC interface state............................ ActiveLocal Members Status----------------- ------1/0/1 UpPeer Members Status---------------- ------1/0/1 UpVPC id# 2----------- Interface...................................... lag 3Configured VLANs (2)VPC interface state............................ ActiveLocal Members Status----------------- ------1/0/2 UpPeer Members Status---------------- ------1/0/2 Up另外一台的M6100的配置除了peer-keepalive的源IP和目的IP 对调以外,其他配置均一样,这里就不在重复。

file.replication core-site.xml参数

file.replication core-site.xml参数

file.replication core-site.xml参数
在Hadoop中,`core-site.xml`文件是Hadoop的核心配置文件之一,用于配置Hadoop的核心参数。

在`core-site.xml`文件中,可以配置一些与文件复制(replication)相关的参数。

以下是一些与文件复制相关的常见参数:
1. fs.defaultFS:这个参数指定了Hadoop文件系统的默认URI。

在Hadoop中,文件复制的相关操作都是基于Hadoop文件系统(HDFS)进行的,因此这个参数间接影响了文件复制的行为。

2. dfs.replication:这个参数指定了文件在HDFS中的默认复制因子(replication factor)。

复制因子决定了文件在HDFS中会被复制多少份。

默认情况下,这个值是3,意味着每个文件都会被复制3份以提高数据的可靠性和容错性。

3. node.replication.min:这个参数指定了文件在HDFS中的最小复制因子。

即使在`dfs.replication`设置为较大值时,某些情况下也可能需要确保文件至少有一定数量的副本。

这个参数可以用来设置这个最小值。

这些参数可以在`core-site.xml`文件中进行配置,以调整Hadoop文件系统(HDFS)的文件复制相关行为。

通过调整这些参数,可以影响文件的复制数量、数据的可靠性和容错性,以及对存储空间的利用等方面的行为。

TD信息元素详解

TD信息元素详解

信息元素功能性定义作者:李欣目录目录 (1)信息元素功能性定义 (11)1 核心网信息元素 (11)1.1 CN Information elements (11)1.2 CN Domain System Information (11)1.3 CN Information info (11)1.4 IMEI (11)1.5 IMSI (GSM-MAP) (11)1.6 Intra Domain NAS Node Selector (11)1.7 Location Area Identification (12)1.8 NAS message (12)1.9 NAS system information (GSM-MAP) (12)1.10 Paging record type identifier (12)1.11 PLMN identity (12)1.12 PLMN Type (12)1.13 P-TMSI (GSM-MAP) (12)1.14 RAB identity (12)1.15 Routing Area Code (12)1.16 Routing Area Identification (13)1.17 TMSI (GSM-MAP) (13)2 UTRAN 移动信息元素 (13)2.1 Cell Access Restriction (13)2.2 Cell identity (13)2.3 Cell selection and re-selection info for SIB3/4 (13)2.4 Cell selection and re-selection info for SIB11/12 (13)2.5 Mapping Info (14)2.6 URA identity (14)3 UE 信息元素 (14)3.1 Activation time (14)3.2 Capability Update Requirement (14)3.3 Cell update cause (15)3.4 Ciphering Algorithm (15)3.5 Ciphering mode info (15)3.6 CN domain specific DRX cycle length coefficient (15)3.7 CPCH Parameters (15)3.8 C-RNTI (15)3.9 DRAC system information (15)3.10 Void (16)3.11 Establishment cause (16)3.12 Expiration Time Factor (16)3.13 Failure cause (16)3.14 Failure cause and error information (16)3.15 Initial UE identity (16)3.16 Integrity check info (16)3.17 Integrity protection activation info (17)3.18 Integrity protection Algorithm (17)3.19 Integrity protection mode info (17)3.20 Maximum bit rate (17)3.21 Measurement capability (17)3.22 Paging cause (17)3.23 Paging record (17)3.24 PDCP capability (17)3.25 Physical channel capability (18)3.26 Protocol error cause (18)3.27 Protocol error indicator (18)3.28 RB timer indicator (18)3.29 Redirection info (18)3.30 Re-establishment timer (18)3.31 Rejection cause (18)3.32 Release cause (18)3.33 RF capability FDD (19)3.34 RLC capability (19)3.35 RLC re-establish indicator (19)3.36 RRC transaction identifier (19)3.37 Security capability (19)3.38 START (19)3.39 Transmission probability (19)3.40 Transport channel capability (20)3.41 UE multi-mode/multi-RAT capability (20)3.42 UE radio access capability (20)3.43 UE Timers and Constants in connected mode (21)3.44 UE Timers and Constants in idle mode (21)3.45 UE positioning capability (21)3.46 URA update cause (21)3.47 U-RNTI (21)3.48 U-RNTI Short (21)3.49 UTRAN DRX cycle length coefficient (21)3.50 Wait time (21)3.51 UE Specific Behavior Information 1 idle (21)3.52 UE Specific Behavior Information 1 interRAT (22)4 无线承载信息元素 (22)4.0 Default configuration identity (22)4.1 Downlink RLC STATUS info (22)4.2 PDCP info (22)4.3 PDCP SN info (22)4.4 Polling info (22)4.5 Predefined configuration identity (23)4.6 Predefined configuration value tag (23)4.7 Predefined RB configuration (23)4.8 RAB info (23)4.9 RAB info Post (23)4.10 RAB information for setup (23)4.11 RAB information to reconfigure (24)4.12 NAS Synchronization indicator (24)4.13 RB activation time info (24)4.14 RB COUNT-C MSB information (24)4.15 RB COUNT-C information (24)4.16 RB identity (24)4.17 RB information to be affected (24)4.18 RB information to reconfigure (25)4.19 RB information to release (25)4.20 RB information to setup (25)4.21 RB mapping info (25)4.22 RB with PDCP information (25)4.23 RLC info (25)4.24 Signaling RB information to setup (26)4.25 Transmission RLC Discard (26)5 传输信道信息元素 (26)5.1 Added or Reconfigured DL TrCH information (26)5.2 Added or Reconfigured UL TrCH information (27)5.3 CPCH set ID (27)5.4 Deleted DL TrCH information (27)5.5 Deleted UL TrCH information (27)5.6 DL Transport channel information common for all transport channels (27)5.7 DRAC Static Information (27)5.8 Power Offset Information (28)5.9 Predefined TrCH configuration (28)5.10 Quality Target (28)5.11 Semi-static Transport Format Information (28)5.12 TFCI Field 2 Information (28)5.13 TFCS Explicit Configuration (28)5.14 TFCS Information for DSCH (TFCI range method) (29)5.15 TFCS Reconfiguration/Addition Information (29)5.16 TFCS Removal Information (29)5.17 Void (29)5.18 Transport channel identity (29)5.19 Transport Format Combination (TFC) (29)5.20 Transport Format Combination Set (29)5.21 Transport Format Combination Set Identity (29)5.22 Transport Format Combination Subset (29)5.23 Transport Format Set (29)5.24 UL Transport channel information common for all transport channels (30)6 物理信道信息元素 (30)6.1 AC-to-ASC mapping (30)6.2 AICH Info (30)6.3 AICH Power offset (30)6.4 Allocation period info (30)6.5 Alpha (30)6.6 ASC Setting (30)6.7 Void (31)6.8 CCTrCH power control info (31)6.9 Cell parameters Id (31)6.10 Common timeslot info (31)6.11 Constant value (31)6.12 CPCH persistence levels (31)6.13 CPCH set info (31)6.14 CPCH Status Indication mode (31)6.15 CSICH Power offset (32)6.16 Default DPCH Offset Value (32)6.17 Downlink channelisation codes (32)6.18 Downlink DPCH info common for all RL (32)6.19 Downlink DPCH info common for all RL Post (32)6.20 Downlink DPCH info common for all RL Pre (32)6.21 Downlink DPCH info for each RL (32)6.22 Downlink DPCH info for each RL Post (33)6.23 Downlink DPCH power control information (33)6.24 Downlink information common for all radio links (33)6.25 Downlink information common for all radio links Post (33)6.26 Downlink information common for all radio links Pre (33)6.27 Downlink information for each radio link (33)6.28 Downlink information for each radio link Post (33)6.29 Void (33)6.30 Downlink PDSCH information (33)6.31 Downlink rate matching restriction information (34)6.32 Downlink Timeslots and Codes (34)6.33 DPCH compressed mode info (34)6.34 DPCH Compressed Mode Status Info (34)6.35 Dynamic persistence level (34)6.36 Frequency info (34)6.37 Individual timeslot info (35)6.38 Individual Timeslot interference (35)6.39 Maximum allowed UL TX power (35)6.40 Void (35)6.41 Midamble shift and burst type (35)6.42 PDSCH Capacity Allocation info (35)6.43 PDSCH code mapping (36)6.44 PDSCH info (36)6.45 PDSCH Power Control info (36)6.46 PDSCH system information (36)6.47 PDSCH with SHO DCH Info (36)6.48 Persistence scaling factors (36)6.49 PICH Info (36)6.50 PICH Power offset (37)6.51 PRACH Channelisation Code List (37)6.52 PRACH info (for RACH) (37)6.53 PRACH partitioning (37)6.54 PRACH power offset (37)6.55 PRACH system information list (37)6.56 Predefined PhyCH configuration (38)6.57 Primary CCPCH info (38)6.58 Primary CCPCH info post (38)6.59 Primary CCPCH TX Power (38)6.60 Primary CPICH info (38)6.61 Primary CPICH Tx power (38)6.62 Primary CPICH usage for channel estimation (38)6.63 PUSCH info (38)6.64 PUSCH Capacity Allocation info (38)6.65 PUSCH power control info (39)6.66 PUSCH system information (39)6.67 RACH transmission parameters (39)6.68 Radio link addition information (39)6.69 Radio link removal information (39)6.70 SCCPCH Information for FACH (39)6.71 Secondary CCPCH info (39)6.72 Secondary CCPCH system information (40)6.73 Secondary CPICH info (40)6.74 Secondary scrambling code (40)6.75 SFN Time info (40)6.76 SSDT cell identity (40)6.77 SSDT information (40)6.78 STTD indicator (40)6.79 TDD open loop power control (41)6.80 TFC Control duration (41)6.81 TFCI Combining Indicator (41)6.82 TGPSI (41)6.83 Time info (41)6.84 Timeslot number (41)6.85 TPC combination index (41)6.86 TSTD indicator (41)6.87 TX Diversity Mode (41)6.88 Uplink DPCH info (41)6.89 Uplink DPCH info Post (42)6.90 Uplink DPCH info Pre (42)6.91 Uplink DPCH power control info (42)6.92 Uplink DPCH power control info Post (42)6.93 Uplink DPCH power control info Pre (42)6.94 Uplink Timeslots and Codes (42)6.95 Uplink Timing Advance (42)6.96 Uplink Timing Advance Control (43)7 测量信息元素 (43)7.1 Additional measurements list (43)7.2 Cell info (43)7.3 Cell measured results (43)7.4 Cell measurement event results (44)7.5 Cell reporting quantities (44)7.6 Cell synchronization information (44)7.7 Event results (44)7.8 FACH measurement occasion info (45)7.9 Filter coefficient (45)7.10 HCS Cell re-selection information (45)7.11 HCS neighboring cell information (45)7.12 HCS Serving cell information (45)7.13 Inter-frequency cell info list (46)7.14 Inter-frequency event identity (46)7.15 Inter-frequency measured results list (46)7.16 Inter-frequency measurement (46)7.17 Inter-frequency measurement event results (47)7.18 Inter-frequency measurement quantity (47)7.19 Inter-frequency measurement reporting criteria (47)7.20 Inter-frequency measurement system information (47)7.21 Inter-frequency reporting quantity (47)7.22 Inter-frequency SET UPDATE (48)7.23 Inter-RAT cell info list (48)7.24 Inter-RAT event identity (48)7.25 Inter-RAT info (48)7.26 Inter-RAT measured results list (48)7.27 Inter-RAT measurement (49)7.28 Inter-RAT measurement event results (49)7.29 Inter-RAT measurement quantity (49)7.30 Inter-RAT measurement reporting criteria (49)7.31 Inter-RAT measurement system information (50)7.32 Inter-RAT reporting quantity (50)7.33 Intra-frequency cell info list (50)7.34 Intra-frequency event identity (50)7.35 Intra-frequency measured results list (50)7.36 Intra-frequency measurement (50)7.37 Intra-frequency measurement event results (51)7.38 Intra-frequency measurement quantity (51)7.39 Intra-frequency measurement reporting criteria (51)7.40 Intra-frequency measurement system information (51)7.41 Intra-frequency reporting quantity (52)7.42 Intra-frequency reporting quantity for RACH reporting (52)7.43 Maximum number of reported cells on RACH (52)7.44 Measured results (52)7.45 Measured results on RACH (52)7.46 Measurement Command (52)7.47 Measurement control system information (53)7.48 Measurement Identity (53)7.49 Measurement reporting mode (53)7.50 Measurement Type (53)7.51 Measurement validity (53)7.52 Observed time difference to GSM cell (53)7.53 Periodical reporting criteria (53)7.54 Primary CCPCH RSCP info (54)7.55 Quality measured results list (54)7.56 Quality measurement (54)7.57 Quality measurement event results (54)7.58 Quality measurement reporting criteria (54)7.59 Quality reporting quantity (54)7.60 Reference time difference to cell (54)7.61 Reporting Cell Status (55)7.62 Reporting information for state CELL_DCH (55)7.63 SFN-SFN observed time difference (55)7.64 Time to trigger (55)7.65 Timeslot ISCP info (55)7.66 Traffic volume event identity (55)7.67 Traffic volume measured results list (55)7.68 Traffic volume measurement (55)7.69 Traffic volume measurement event results (56)7.70 Traffic volume measurement object (56)7.71 Traffic volume measurement quantity (56)7.72 Traffic volume measurement reporting criteria (56)7.73 Traffic volume measurement system information (56)7.74 Traffic volume reporting quantity (56)7.75 UE internal event identity (56)7.76 UE internal measured results (57)7.77 UE internal measurement (57)7.78 UE internal measurement event results (57)7.79 UE internal measurement quantity (57)7.80 UE internal measurement reporting criteria (57)7.81 Void (58)7.82 UE Internal reporting quantity (58)7.83 UE Rx-Tx time difference type 1 (58)7.84 UE Rx-Tx time difference type 2 (58)7.85 UE Transmitted Power info (58)7.86 UE positioning Ciphering info (58)7.87 UE positioning Error (58)7.88 UE positioning GPS acquisition assistance (59)7.89 UE positioning GPS almanac (59)7.90 UE positioning GPS assistance data (59)7.91 UE positioning GPS DGPS corrections (59)7.92 UE positioning GPS ionospheric model (59)7.93 UE positioning GPS measured results (59)7.94 UE positioning GPS navigation model (60)7.95 UE positioning GPS real-time integrity (60)7.96 UE positioning GPS reference time (60)7.97 UE positioning GPS UTC model (61)7.98 UE positioning IPDL parameters (61)7.99 UE positioning measured results (61)7.100 UE positioning measurement (61)7.101 UE positioning measurement event results (61)7.102 Void (62)7.103 UE positioning OTDOA assistance data for UE-assisted (62)7.104 Void (62)7.105 UE positioning OTDOA measured results (62)7.106 UE positioning OTDOA neighbor cell info (62)7.107 UE positioning OTDOA quality (63)7.108 UE positioning OTDOA reference cell info (63)7.109 UE positioning position estimate info (64)7.110 UE positioning reporting criteria (64)7.111 UE positioning reporting quantity (64)7.112 T ADV info (65)8 其它信息元素 (65)8.1 BCCH modification info (65)8.2 BSIC (65)8.3 CBS DRX Level 1 information (65)8.4 Cell Value tag (65)8.5 Inter-RAT change failure (65)8.6 Inter-RAT handover failure (66)8.7 Inter-RAT UE radio access capability (66)8.8 Void (66)8.9 MIB Value tag (66)8.10 PLMN Value tag (66)8.11 Predefined configuration identity and value tag (66)8.12 Protocol error information (66)8.13 References to other system information blocks (66)8.14 References to other system information blocks and scheduling blocks (67)8.15 Rplmn information (67)8.16 Scheduling information (67)8.17 SEG COUNT (67)8.18 Segment index (67)8.19 SIB data fixed (67)8.20 SIB data variable (67)8.21 SIB type (67)8.22 SIB type SIBs only (67)9 ANSI-41 Information elements (68)10 Multiplicity values and type constraint values (68)信息元素功能性定义消息是由多个信息元素组合而成,信息元素根据其功能的不同划分为:核心网域信息元素、UTRAN 移动信息元素、UE 信息元素、无线承载信息元素、传输信道信息元素、物理信道信息元素和测量信息元素。

《Docker容器技术 配置、部署与应用》习题及答案

《Docker容器技术  配置、部署与应用》习题及答案

《Docker容器技术配置、部署与应用》习题项目一Docker安装选择题1.有关Docker的叙述中, 正确的是()。

A.Docker不能将应用程序发布到云端进行部署。

B.Docker将应用程序及其依赖打包到一个可移植的镜像中。

C.Docker操作容器时必须关心容器中有什么软件。

D.容器依赖于主机操作系统的内核版本,因而Docker局限于操作系统平台。

2.关于Docker的优势, 不正确的说法是()。

A.应用程序快速、一致地交付。

B.响应式部署和伸缩应用程序。

C.Docker用来管理容器的整个生命周期,但不能保证一致的用户界面。

D.在同样的硬件上运行更多的工作负载。

3、容器化开发流程中, 项目开始时分发给所有开发人员的是()。

A.DockerfileB.Docker镜像C.源代码D.基础镜像4.以下关于docker命令的基本用法的说法中, 不正确的()。

A.短格式的单字符选项可以组合在一起使用。

B.使用布尔值选项时不赋值, Docker将选项值视为false。

C.多值选项可以在单个命令行中多次定义。

D.对于较长的单行命令可以使用续行符进行换行。

简答题1. 什么是Docker?2. 容器与虚拟机有什么不同?3. Docker引擎包括哪些组件?4. 简述Docker架构。

5. Docker使用了哪些底层技术?6. Docker命令行接口有哪些类型?项目二Docker快速入门选择题1.以下镜像名称中, 完整的表示是()。

A.myregistryhost/fedora/httpd:version1.0。

B.myregistryhost:5000/httpd:version1.0。

C.myregistryhost:5000/fedora/httpd。

D.myregistryhost:5000/fedora/httpd:version1.0。

2.关于Docker镜像操作, 不正确的说法是()。

A.可以通过dangling的布尔值列出无标签的镜像。

3GPP 5G基站(BS)R16版本一致性测试英文原版(3GPP TS 38.141-1)

3GPP 5G基站(BS)R16版本一致性测试英文原版(3GPP TS 38.141-1)

4.2.2
BS type 1-H.................................................................................................................................................. 26
4.3
Base station classes............................................................................................................................................27
1 Scope.......................................................................................................................................................13
All rights reserved. UMTS™ is a Trade Mark of ETSI registered for the benefit of its members 3GPP™ is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners LTE™ is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners GSM® and the GSM logo are registered and owned by the GSM Association

RFC教程

RFC教程

Get ALE Customer Model Table CALL FUNCTION 'ALE_MODEL_INFO_GET ' EXPORTING
MESSAGE_TYPE
VALIDDATE TABLES MODEL_DATA EXCEPTIONS
= MYMSGTYP
= SY-DATUM
= ALEMODEL
This exception reports all failures and system problems on the remote machine.
•COMMUNICATION_FAILURE
CALL FUNCTION RemoteFunction DESTINATION ‘C00DG065’ EXPORTING... IMPORTING... TABLES... EXCEPTIONS SYSTEM_FAILURE = 1 MESSAGE msg COMMUNICATION_FAILURE = 2 MESSAGE msg
NO_MODEL_INFO_FOUND
= 01
OWN_SYSTEM_NOT_DEFINED = 02.
SAP Standard Function DEMO
‘Enable’- Receiving multiple system data through ALE customer model
Add-on ABAP Program DEMO
Calling Remote Function Modules in ABAP
CALL FUNCTION <RemoteFunctionModule> DESTINATION <RFCDest>
EXPORTING f1 =... f2 =... IMPORTING TABLES f3 =... t1 =...

CiTRANS R8000-10产品描述-烽火

CiTRANS R8000-10产品描述-烽火

CiTRANS R8000-10核心路由器设备产品描述烽火通信科技股份有限公司2014年11月目录1CITRANS R8000-10概述 (3)2设计依据与执行标准 (3)3设备体系结构及产品功能特性 (9)3.1系统架构 (9)3.2功能特性 (9)3.3组网互通能力 (11)3.4IP特性 (11)3.5路由功能 (11)3.6MPLS特性 (12)3.7VPN特性 (12)3.8组播功能 (12)3.9Q O S特性 (13)3.10OAM特性 (13)3.11时钟特性 (14)3.11.1物理层时钟同步 (14)3.11.2IEEE 1588V2时钟同步 (14)3.12可靠性 (16)3.12.1访问控制列表ACL (16)3.12.2流量监管 (16)3.12.3抗攻击能力 (17)4系统硬件、软件结构 (18)4.1系统硬件 (18)4.1.1设备外形与尺寸机柜 (18)4.1.2以太网业务卡 (18)4.1.3TDM业务卡 (19)4.1.4主控交换板 (19)4.2软件结构 (19)5CITRANS R8000-10设备保护能力介绍 (20)5.1设备级保护 (20)5.2网络级保护 (21)5.3协议级的可靠性 (21)6管理控制功能和安全机制介绍 (21)6.1管理控制功能 (21)6.2网络安全 (21)7系统参数介绍 (22)7.110GE光接口性能 (22)7.2GE光接口指标 (22)7.3电气性能 (22)7.4功耗及熔丝标准 (23)7.5尺寸及承重 (23)7.6工作环境 (23)1 CiTRANS R8000-10概述CiTRANS R8000是电信级高端路由器产品。

聚焦移动回传网络演进和发展需求,烽火基于分布式硬件处理平台和IP/MPLS软件架构,推出的下一代路由产品,具有超大容量、高处理性能、高可靠性、高扩展性等特点,与CiTRANS R800系列IP RAN等产品配合组网,形成结构完整、层次清晰的IP网络解决方案,可以在IP/MPLS网络上提供强大的IP 路由和多业务支持功能,在各种大型IP网络的核心及汇聚节点,为运营商提供3G/4G移动业务承载、大客户VPN、宽带接入、IPTV统一业务承载。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Network Working Group S.E. Hardcastle-Kille Requests for Comments 1275 University College London November 1991 Replication Requirements to provide an Internet Directory using X.500
Status of this Memo
This memo provides information for the Internet community. It
does not specify an Internet standard. Distribution of this memo is unlimited.
Abstract
This RFCconsiders certain deficiencies of the 1988 X.500
standard, which need to be addressed before an effective open
Internet Directory can be established using these protocols and
services [CCI88]. The only areas considered are primary
problems, to which solutions must be found before a pilot can be
deployed. This RFCconcerns itself with deficiencies which can
only be addressed by use of additional protocol or procedures for distributed operation.
1 Distributed Operation Extensions
The Internet Directory will operate DSAs over TCP/IP using RFC 1006 [RC87], and DSAs over the an ISO Network Service. Distributed
operation procedures should not require full connectivity.
2 Knowledge Replication
Knowledge information is critical to resolution of names, and performing searches. Knowledge information high up the tree needs to be widely available. Consider resolving a name below ‘‘Country=US’’. To do this, a DSA needs to have full knowledge at this point. Many DSAs need to be able to do this, in order to give reasonable response and availability. It would be an unacceptable bottleneck to force such resolution to a single or small number of DSAs. To replicate
this knowledge widely, a systematic approach to replication is needed.
3 Data Replication
Searches are often made at the root and country level, and this is a vital service (e.g., an approximate match of an organisation name). Data needs to be collected in such a way that this sort of searching
is reasonably efficient. The usual X.500 approach of subordinate references militates against this. At a node in the DIT, subordinate references to the entries below are held. These entries will be in many DSAs, each of which needs to be accessed in order to perform the single level search. It is suggested that replication of data is necessary to achieve this.
The major requirement for this replication is high up the DIT, where information must be replicated between different implementations. At lower levels of the DIT, it is reasonable for DSAs to be of the same implementation and to use implementation specific techniques in order to achieve performance and availability.
4 Alternate DSAs
When a DSA Referral is returned, only the master DSA is indicated.
This will lead to a single point of failure. It seems important to allow for additional references to slave copies, in order to get Hardcastle-Kille Page 1
better availability. This needs to be solved in conjunction with the problem described in the previous section.
5 Guidelines for use of Replication
To be effective, the replication specification needs to provide guidelines for deployment in the pilot, in order to meet the desired service criteria.
6 Some scaling targets
Most techniques for replication have scaling limits. It is important that mechanisms used do not stress the limits of the mechanism. The order of magnitude envisioned in the pilot is 100 000 non-leaf entries and several million leaf entries.
References
[CCI88] The Directory --- overview of concepts, models and services,
December 1988. CCITT X.500 Series Recommendations.
[RC87] Marshall T. Rose and Dwight E. Cass. ISO Transport Services
on top of the TCP. Request for Comments 1006, Northrop
Corporation Technology Center, May 1987.
7 Security Considerations
Security considerations are not discussed in this memo.
8 Author’s Address
Steve Hardcastle-Kille
Department of Computer Science
University College London
Gower Street
WC1E 6BT
England
Hardcastle-Kille Page 2
Phone: +44-71-380-7294
EMail: S.Kille@
Hardcastle-Kille Page 3。

相关文档
最新文档