基本放大电路

合集下载

基本放大电路ppt课件

基本放大电路ppt课件
首先,画出直流通路;在输入特性曲线上,作出直线VBE =VCC-IBRb,
两线的交点即是Q点,得到IBQ 。在输出特性曲线上,作出直流负载线
VCE=VCC-ICRC,与IBQ曲线的交点即为Q点,从而得到VCEQ 和ICQ 。
图12-8 静态工作情况图解
②动态工作情况分析 Ⅰ 交流通路及交流负载线 过输出特性曲线上的Q点做一条斜率为-1/(RL∥Rc)直线,该直线即为交流 负载线。交流负载线是有交流输入信号时Q点的运动轨迹。R'L= RL∥Rc,是交流负载电阻。 Ⅱ 输入交流信号时的图解分析 通过图解分析,可得如下结论:
(1)vi vBE iB iC vCE | vo | (2)vo与vi相位相反; (3)可以测量出放大电路的电压放大倍数; (4)可以确定最大不失真输出幅度。
图12-9 动态工作情况图解
3.放大电路三种 基本组态的比较
共发射极放大电路
共集电极放大电路
共基极放大电路
电 路 组 态

压 增
(RC // RL )
图12-3 放大电路的幅频特性曲线
▪ 2.共射极放大电路
根据放大器输入输出回路公共端的不同,放大器有共发射极、共集电极和共基 极三种基本组态,下面介绍共发射极放大电路。 (1)电路组成 共射极基本放大电路如图12-4所示。
图12-4 共发射极基本放大电路
▪ 具体分析如下: ▪ ①Vcc:集电极回路的直流电源 ▪ ②VBB:基极回路的直流电源 ▪ ③三极管T:放大电路的核心器件,具有电流放大
便于计算和调试。
(2)因为耦合电容的容量较
(2)电路比较简单,体积 大,故不易集成化。
较小。
(1)元件少,体积小,易 集成化。
(2)既可放大交流信号, 也可放大直流和缓变信号。

基本放大电路

基本放大电路

基本放大电路基本放大电路是一种常见的电子电路,用于放大输入信号的幅度。

它通常由一个放大器组成,可以将输入信号的小幅度变化放大成足够大的输出信号。

基本放大电路既可以是直流放大电路,也可以是交流放大电路,下面将介绍一个简单的基本放大电路。

在一个简单的基本放大电路中,放大器是最重要的组成部分。

通常,放大器由一个电子管或晶体管构成。

在直流放大电路中,输入信号通过一个耦合电容进入放大器的输入端,然后经过一个电阻分压电路,得到需要的直流偏置电压。

接下来,信号经过放大器放大,并经过一个耦合电容输出。

输出信号可以连接到负载,如扬声器或其他设备。

在交流放大电路中,输入信号先通过一个耦合电容进入放大器的输入端。

然后,信号经过放大器放大,并通过一个电容耦合放大器输出。

输出信号可以连接到负载,如扬声器或其他设备。

与直流放大电路不同的是,交流放大电路还包括一个输入和输出的耦合电容,以阻止直流电流通过放大器。

基本放大电路还需要注意一些关键参数和性能指标。

其中,增益是一个重要的指标,用于衡量输入信号放大的幅度。

增益可以通过输入和输出电压之比来计算。

另外,频率响应也是一个关键指标,它描述了放大器在不同频率下的放大效果。

还有输出功率、输入阻抗和输出阻抗等参数,也需要根据实际需求进行选择和调整。

总的来说,基本放大电路是一种常用的电子电路,可以用于放大输入信号的幅度。

它通常由一个放大器组成,可以根据实际需求选择直流或交流放大电路。

在设计和调整基本放大电路时,需要考虑各种参数和性能指标,以确保电路的稳定性和性能。

基本放大电路是电子电路中最常见的一种电路,用于放大输入信号的幅度。

它可以根据信号的大小变化,通过增益倍数将其放大到更大的幅度,以满足不同应用的需求。

在基本放大电路中,放大器是最关键的组件,常见的放大器包括电子管放大器和晶体管放大器。

一般来说,基本放大电路可以根据信号的性质分为直流放大电路和交流放大电路。

直流放大电路主要用于放大直流信号,例如放大直流电压或电流。

基本放大电路

基本放大电路

功率放大器电路实物图(12张)功放电路和前面介绍的基本放大电路都是能量转换电路,从能量控制的角度来 看,功率放大器和电压放大器并没有本质上的区别。但是,从完成任务的角度和对电路的要求来看,它们之间有 着很大的差别。低频电压是在小信号状态下工作,动态工作点摆动范围小,非线性失真小,因此可用微变等效电 路法分析、计算电压放大倍数、输入电阻和输出电阻等性能指标,一般不考虑输出功率。而功率放大电路是在大 信号情况下工作,具有动态工作范围大的特点,通常只能采用图解法分析,而分析的主要性能指标是输出功率和 效率。
具有足够大的输出功率
为了获得尽可能大的功率输出,要求功放管工作在接近“极限运用”的状态。选管子时应考虑管子的三个极 限参数能小
功放工作在大信号状态下,不可避免地会产生非线性失真,而且同一功放管的失真情况会随着输出功率的增 大而越发严重。技术上常常对电声设备要求其非线性失真尽量小,最好不发生失真。而在控制电动机和继电器等 方面,则要求以输出较大功率为主,对非线性失真的要求不是太高。
前级功放 其主要作用是对信号源传输过来的节目信号进行必要的处理和电压放大后,再输出到后级放大器。 后级功放 其对前级放大器送出的信号进行不失真放大,以强劲的功率驱动扬声器系统。除放大电路外,还设计有各种 保护电路,如短路保护、过压保护、过热保护、过流保护等。前级功放和后级功放一般只在高档机或专业的场合 采用。 合并式放大器 将前级放大器和后级放大器合并为一台功放,兼有前二者的功能,通常所说的放大器都是合并式的,应用范 围较广。
功率放大器主要考虑获得最大的交流输出功率,而功率是电压与电流的乘积,因此功放电路不但要有足够大 的输出电压,而且还应有足够大的输出电流。因此,对功放电路具有以下几点要求。
效率尽可能高
功放是以输出功率为主要任务的放大电路。由于输出功率较大,造成直流电源消耗的功率也大,效率的问题 突显。在允许的失真范围内,期望功放管除了能够满足所要求的输出功率外,应尽量减小其损耗,首先应考虑尽 量提高管子的工作效率。

第三章 基本放大电路

第三章 基本放大电路
输入
输出
话筒



喇叭
应用举例
直 流 电 源
基本放大电路
输入 放大器 输出
1、定义:放大电路的目的是将微弱的变化信 号不失真的放大成较大的信号。。
2、组成:三极管、场效应管、电阻、电容、电感、 变压器等。 3、特点:
①输出信号的功率大于输入信号的功率;
②输出信号的波形与输入信号的波形相同。
基本放大电路
RC
ui



T
C2
RL


基本放大电路
3.2.2 放大器中电流电压符号使用规定含义 “小大” uBE—小写字母,大写下标,表示交、直混合量。 “大大” UBE — 大写字母,大写下标,表示直 流量。 “小小” ube—小写字母,小写下标,表示交流分量。
“大小” Ube—大写字母,小写下标,表示交流分量有效值。 uA
电路改进:采用单电源供电 +VCC RC C1 T
可以省去
C2
RB VBB
基本放大电路
+VCC RB C1 T RC C2
单电源供电电路
基本放大电路
(1)电路的简化
C1
ui (2)电路的简化画法
VCC
RB
C1
只用一个电源,减 少电源数。


T
C2

RL

RB
RC
VCC
uo


uo
不画电源符号, 只写出电源正 极对地的电位。

T
I CQ

U CEQ

(b) 首先画出放大电路的交流通路
基本放大电路
VCC
交流通路

基本 放大电路

基本 放大电路
上一页 下一页
第三节 多级放大电路
四、阻容耦合多级放大电路的分析
由两级共射放大电路采用阻容耦合组成的多级放大电路如 图7-17所示。
由图7-17可得阻容耦合放大电路的特点: (1)优点 因电容具有“隔直”作用,所以各级电路的静态
工作点相互独立,互不影响。这给放大电路的分析、设计和 调试带来厂很大的方便。此外,还具有体积小、质量轻等优 点。 (2)缺点 因电容对交流信号具有一定的容抗,在信号传输 过程中,会受到一定的衰减。尤其对于变化缓慢的信号容抗 很大,不便于传输。此外,在集成电路中,制造大容量的电 容很困难,所以这种祸合方式下的多级放大电路不便于集成。
上一页 下一页
第三节 多级放大电路
三、变压器耦合
我们把级与级之间通过变压器连接的方式称为变压器耦合。 其电路如图7-16所示。
变压器耦合的特点: (1)优点 因变压器不能传输直流信号,只能传输交流信号
和进行阻抗变换,所以,各级电路的静态工作点相互独立, 互不影响。改变变压器的匝数比,容易实现阻抗变换,因而 容易获得较大的输出功率。 (2)缺点 变压器体积大而重,不便于集成。同时频率特性 差,也不能传送直流和变化非常缓慢的信号。
分压偏置共射极放大电路如图7-12 (a)所示,发射极电阻 RE起直流负反馈作用,在外界因素变化时,自动调节工作点 的位置,使静态工作点稳定。
分压偏置共射极放大电路的直流通路如图7-12 (b)所示电路
上一页 返 回
第二节 共集电极电路
一、共集电极放大电路的组成
如图7-13 (a)所示,由于直流电源对交流信号相当于短路, 集电极便成为输入与输出回路的公共端,因此这个电路称为 共集电极放大电路,简称共集放大器,又称射极输出器它的 直流通路如图7-13 ( b)所示,交流通路如图7-13 (c)所示。

第9章 基本放大电路

第9章  基本放大电路

- 43 -第9章 基本放大电路放大是模拟电路最重要的一种功能。

本章所要介绍的基本放大电路几乎是所有模拟集成电路的基本单元。

工程上的各类放大电路都是由若干基本放大电路组合而成的,其中第一级称为输入级,最后一级称为输出级,其余各级为中间级。

9.1 放大电路的工作原理放大电路或称为放大器,其作用是把微弱的电信号、电压、电流、功率放大到所需要的量级,而且输出信号的功率要比输入信号的功率大,输出信号的波形要与输入信号的波形相同。

现以晶体管共射极接法的电路为例来说明放大电路的工作原理。

输入信号按波形不同可分为直流信号与交流信号两种。

由于正弦信号是一种基本信号,在对电路进行性能分析与测试时,常以它作为输入信号。

因此,也以正弦信号作为输入信号来说明放大电路的工作原理。

在输入端与输出端分别接有电容C 1、C 2,它们起着传递信号,隔离直流的作用,电容C 1、C 2称为输入和输出耦合电容或隔直电容。

由于耦合作用要求电容的容抗值很小,一般为几微法至几百微法,因而需要采用有极性的电解电容器。

输入端未加输入信号时,放大电路的工作状态称为静态。

这时U CC 提供了直流偏置电流。

由于电容的隔直作用,输入端和输出端不会有电压与电流。

可见,静态时,除了输入端与输出端外,晶体管各极电压与电流都是直流,其波形如图9-1各波形中的虚线所示。

输入端加上输入信号时,放大电路的工作状态称为动态。

交流输入信号u i 通过C 1耦合到晶体管的发射结两端,使发射结电压u BE 以静态值U BE 为基准上下波动,但方向不变,即u BE 始终大于零,发射结保持正向偏置,晶体管始终处于放大状态。

这时的发射结电压u BE =U BE +u be 。

忽略C 1上的交流电压降,则u be =u i 。

发射结电压的变化会引起各极电流的相应变化,而且它们都会有一个静态直流分量和一个交流信号分量,其波形如图9-1所示。

i C 的变化引起R C i C 的相应变化。

运放常用电路

运放常用电路

运放常用电路运放是一种重要的电子元器件,它可以被应用于各种领域,包括放大、滤波、计算、比较、振荡等等。

在实际应用中,运放常用电路有很多种,下面我们来了解一些常见的运放电路。

1. 基本放大电路基本放大电路是运放应用中最基本的电路之一,它可以实现信号的放大。

它由一个运放、两个电阻和一个输入信号源组成。

其中一个电阻与输入信号源串联,另一个电阻与运放的负输入端和输出端串联,正输入端接地。

基本放大电路的放大倍数由两个电阻的比值决定,可以通过改变电阻值来实现放大倍数的调节。

2. 反馈放大电路反馈放大电路是一种通过反馈来控制放大倍数的电路。

它由一个运放、两个电阻和一个反馈电阻组成。

其中一个电阻与输入信号源串联,另一个电阻与运放的负输入端和反馈电阻串联,正输入端接地。

反馈电阻的作用是将输出信号反馈到运放的负输入端,从而使运放输出稳定,放大倍数受到控制。

3. 滤波电路滤波电路是一种可以滤除不需要的频率成分的电路。

它由一个运放、电容和电阻组成。

其中一个电阻和一个电容串联,另一个电阻与运放的负输入端和输出端串联,正输入端接地。

滤波电路可以分为低通滤波电路和高通滤波电路两种,具体的滤波效果取决于电容和电阻的数值。

4. 比较电路比较电路是一种可以比较两个输入信号大小的电路。

它由一个运放、两个输入信号和一个参考电压源组成。

其中一个输入信号与参考电压源相比较,另一个输入信号与运放的正输入端相连。

当参考电压大于输入信号时,输出为正电压;当参考电压小于输入信号时,输出为负电压。

5. 振荡电路振荡电路是一种可以产生周期性信号的电路。

它由一个运放、电容和电阻组成。

其中一个电容和一个电阻串联,另一个电阻与运放的正输入端和输出端串联,负输入端接地。

振荡电路可以分为正弦波振荡电路和方波振荡电路两种,具体的振荡频率和波形取决于电容和电阻的数值。

以上是常见的五种运放常用电路,它们都有各自不同的应用场景和特点。

在实际应用中,我们可以根据需要选择不同的运放电路来实现特定的功能。

电工学第八章 基本放大电路

电工学第八章 基本放大电路

RL RC//RL
返回
(3)电压放大倍数的计算


Ui I b rbe



UoIcRL IbRL
式中 RL RC//RL 则放大电路的电压放大倍数

Au
U0

Ui
R' L rbe
输出端开路时(未接RL)
Au
RC rbe
结 论
❖ Au与β、rbe和并联电阻 有关;
❖负载电阻RL越小,放大倍数越小; ❖ 输入电压与输出电压相位相反。
返回
放大电路可分为静态和动态两种情况来分析。
动态:输入端加上输入信号时,放大电路的工作状态。
❖ 此时,电路中电流和电压值是直流和交流分量叠加。 ❖ iB、iC、iE、uBE和uCE,称为动态值(直流分量和交流 分量的叠加) ❖ 对放大电路的动态分析就是采用放大电路的交流通道, 确定电压放大倍数Au,输入电阻ri,输出电阻ro等。 ❖ 动态分析方法:微变等效电路法和图解法 直流通道——只考虑直流信号的分电路。 交流通道——只考虑交流信号的分电路。
步骤: ❖ 用估算法确定IB; ❖ 由输出特性曲线确定IC和UCE。
由 U CE U CC ICR C 得
IC=0时, UCEUCC
UCE=0时,I C
U CC RC
返回
(1)输入输出特性曲线
如下图所示,(IBQ,UBEQ) 和( ICQ,UCEQ )分别对 应于输入输出特性曲线上的一个点,称为静态工
0.0m 4 A40A
IC IB
3.750.04
1.5mA
U CE U CC ICR C
1 2 1.5 1 0 34 130
6V
返回

第二章(简好用新)-基本放大电路..

第二章(简好用新)-基本放大电路..

五、实用共发射极放大电路
1.温度对工作点的影响
温度升高
UBE减小 ICBO增大
β增大
注:旁路电容的作用。接人发射极电阻 RE,一方面发射极电流的直流分量IE 通过它能起到自动稳定静态工作点的作 用;另一方面发射极电流的交流分量ie 也会产生交流压降,使uBE减小,这样 就会降低电压放大倍数,因此增加了旁 路电容,使交流信号从电容上流过。
ic
ii
ib
C
+ BE
+ Rs ui RB RE
RL
+
uo
us


E B
V
us+-
Rs
RB C ui+-
RE
RL
+-uo
交流通路
二、共集电极放大电路分析 1.静态工作点的计算
VCC IBQRB U BEQ IEQRE
I BQ

VCC U BE
RB (1 )RE
ICQ I BQ I EQ
动态分析步骤:
1.先画出交流通路, 有时为了便于分析, 还要把电路变形为我 们便于分析的方式。
2.根据交流通路画微 变等效电路
E B
V
RB C ui+-
RE
RL
+-uo
ic
ii
ib
C
+ BE
+ Rs ui RB RE
RL
+
uo
us


Ii B
Ib
Ic
画微变等效电路时需注意的 问题:
1.交流通路变化成微变等效
RC
C2
+-
uCE

模电第二章 基本放大电路

模电第二章 基本放大电路
温 T ( C 度 ) I C T ( C I C ) E I C O
T ( C U B ) 不 E I B I C 变
温度T (C) IC ,
若此时I B
,则I

CQ
U CEQ在输出特性坐标
系中的位置就可能
基本不变。
2.4 放大电路静态工作点的稳定
一、典型电路
消除方法:增大Rb,减小Rc,减小β。
例2-1:由于电路参数的改变使静态工作点产生如图所示变化。 试问(1)当Q从Q1移到Q2、 从Q2移到Q3、 从Q3移到Q4时, 分别是电路的哪个参数变化造成的?这些参数是如何变化的?
4mA 3mA 2mA 1mA
40µA
Q3
Q4
30µA 20µA
IB=10µA
2 6 m V
2 6 m V
r b e 2 0 0 ( 1 ) I E Q 2 0 0 ( 1 3 0 ) 1 . 2 m A 8 7 1 . 6 7
R i R b ∥ r b e r b e 8 7 1 . 6 7 R o R c 6 k
2.4 放大电路静态工作点的稳定
温度对Q点的影响
2、放大电路的动态分析(性能指标分析)
(1)放大电路的动态图解分析法
结论: 1. ui uBE iB iC uCE uo
阻容耦合共射放大电路
2、放大电路的动态分析(性能指标分析)
(1)放大电路的动态图解分析法 二、图解分析
结论: 2. uo与ui相位相反;3. 测量电压放大倍数;4. 最大不失 真输出电压Uom (UCEQ -UCES与 VCC- UCEQ ,取其小者,除以 2 )。
Q
UBE/V
UBEQ VCC
1、放大电路的静态工作点 (2)图解法确定静态工作点

基本放大电路

基本放大电路
传感器信号放大是基本放大电路在传感器技术中的重要应用,用于将传感器输出的微弱 信号放大至可用水平。
详细描述
在传感器信号放大中,基本放大电路接收来自各种传感器的输出信号,如压力、温度、湿度 等。通过对这些微弱信号的检测和放大,基本放大电路能够提供足够强度的信号,以便于后 续的数据采集、处理和控制。这有助于提高传感器的灵敏度和测量精度,扩展其应用范围。
可以分为晶体管放大电路和场效应管放大电路。晶体管放大电路通常由 晶体管和电阻、电容等元件组成,而场效应管放大电路则由场效应管和 相关元件组成。
02 基本放大电路原理
共射放大电路
总结词
共射放大电路是最基本的放大电路之 一,具有电压和电流放大作用,通常 被用于功率放大和电压放大。
详细描述
共射放大电路采用NPN或PNP晶体管 ,输入信号加在基极和发射极之间, 通过晶体管的电流放大作用,将输入 信号电压放大并输出到集电极。
题导致电路性能下降。
优化策略
元件选择与替换
根据电路需求选择性能更好的 元件,如使用低噪声元件替换
高噪声元件。
电路布局优化
合理安排元件布局,减小信号 干扰和寄生效应。
反馈回路调整
调整反馈回路参数,改善电路 性能,如提高增益、减小失真 等。
电源滤波
在电源入口处增加滤波器,减 小电源噪声对电路性能的影响
放大电路的重要性
在现代电子系统中,放大电路是不可或缺的一部分。无论是在音频设备、通信系 统、传感器还是其他电子设备中,都需要用到放大电路来放大微弱的信号,使其 能够被进一步处理或使用。
放大电路的性能直接影响整个电子系统的性能,因此对放大电路的研究和设计至 关重要。
放大电路的分类
01
按工作频率分类

电工学第15章基本放大电路

电工学第15章基本放大电路



电 工
习题15.3.1


电 用微变等效电路法对固定偏置共射放大电路进行动态分析。

技 术
+UCC
部 分
RB
RC
C2
C1

RS


U• S

ui

uo
RL
哈 理


大 学
王 亚 军 制 作
电 工
例题15.3.1
学 I
电 用微变等效电路法对固定偏置共射放大电路进行动态分析。

技 【解】

I• b B

画交流通路的方法 ui
电容视为短路; 直流电源视为短路;




uo
大 学

亚 军 制

电 工
15.3 放大电路的动态分析
学 I
电 子
一、微变等效电路法

术 部
1 放大电路的交流通路
分 因电容对交直流的作用不同,所
以交直流所走的路径是不同的。
不同的信号可以分别在不同的通
路来进行分析。
ube
Ube
uBE
学 王




电 工
15.2 放大电路的静态分析


电 子
三、用放大电路的直流通路确定静态值

术 部
1 放大电路的直流通路
分 因电容对交直流的作用不同,所 以交直流所走的路径是不同的。
+UCC
不同的信号可以分别在不同的通 路来进行分析。
RB
直流通路
RC
C2
直流通路是在直流电源

基本放大电路

基本放大电路

耦合电容C1和C2 :用来隔断直流、耦合交流。电容 值应足够大,以保证在一定 的频率范围内,电容上的 交流压降可以忽略不计,即对交流信号可视为短路。
7.1.2 放大电路的分析
一、分析三极管电路的基本思想和方法
基本思想
非线性电路经适当近似后可按线性电路对待, 利用叠加定理,分别分析电路中的交、直流成分。 直流通路(ui = 0)分析静态。 交流通路(ui 0)分析动态,只考虑变化的电压和电流。 画交流通路原则:
7.2sint (mV)
ib
u be r be
5.5sin t (A)
iC = ( 2.4 + 0.55sint ) mA uCE = ( 5.5 – 0.85sint ) V
ic i b 0.55sin t (mA )
IBQ
12 0.7 470
0.024 (mA)
ICQ = IBQ = 2.4 mA UCEQ = 12 2.4 2.7 = 5.5 (V)
r be
200 (1 ) 26
I EQ
200 26 1 283 () 0.024
② 交流通路 iC
C2
③ 小信号等效
+
+
C1
RS + uS –
1.微变等效电路法
动态分析的目的:确定放大电路的电压放大倍数 , 输入电阻和输入电阻。
分析方法:微变(小信号)等效电路分析法。
B ib + ube

ic C
+
uce
E

IB
IB
Q IB
rbe
UBE IB
ube ib
300() (
1) 26(mV ) IE (mA )

第02章基本放大电路

第02章基本放大电路

iB
Ec/Rb
B
- 1/Rb
Q
放大电路的输入和输出直流负载线
确定静态工作点 I
UBE Ec uBE
(1)由输入特性曲线和输入直流负载线求IBQ、UBEQ
EC
UBE=EC- IBRb → 直流负载线
IB IC UCE
作出直流负载线,直流负载线和输入 特性曲线的交点即是静态工作点Q,由 Q可确定IB、UBE
1.估算法 (1) 首先画出直流通路
EC
(2)求静态值 求解顺序是先求IB→IC→UCE
Si管:UBE=0.6V~0.7V
IB UBE IC UCE
Ge管:UBE=0.2V~0.3V
IB
E C U BE Rb

E C 0 .7 Rb
IC β IB
UCE=EC-ICRC
2. 图解法
三极管的输入和输出特性曲线
EC Ii Uo Ui Ib
Ic Uo
Ui
2. 放大电路的工作过程
当有交流信号ui加到放大器的输入端时,晶体管各点
的电压和电流将在静态值基础上叠加一交流分量,
此时电路中的信号即有直流,又有交流。
各点波形
iC
+EC
RC RB C1 iB
ui
t iB ui t
iC C2
t
uC u C uo
t
uo t
US ~
Ui
Au
ri
Ui Ii
(2-3)
三、输出电阻ro
放大电路对其负载而言,相当于信号源,我们 可以将它等效为戴维南等效电路,这个戴维南 等效电路的内阻就是输出电阻。
US ~
Au
ro
US' ~
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

27、既能放大电压,又放大电流的是 共射 组态的双极型三极管放大电路;可以放大电压,但不能放大电流的是 共基 组态的双极型三极管放大电路;只能放大电流,但不能放大电压的是 共集组态的双极型三极管放大电路。

28、放大电路电压放大倍数用分贝数来表示时,称为电压增益,其表达式为 20log|Au|。

一个放大电路的电压增益为20 dB 时,输入电压为10mV ,输出电压为 100mv 。

29、有两个100=U A 的放大电路Ⅰ和Ⅱ分别对同一个具有内阻的电压信号进行放大时得到V U V U 95.4,85.40201==,由此可知放大电路(Ⅰ还是Ⅱ)Ⅱ 比较好,因为它的 输入电阻较大指的是输入电阻如何?)。

30、射极输出器的主要特点是 输入电阻的大 、 输出电阻小 和 电压跟随。

31、当输入信号频率为L f 或H f 时,放大倍数的幅值约下降为中频时
的 0.707 倍, 或者说下降了3 dB 。

32、双端输出的差分放大电路,若两个输入信号21I I u u =,则输出电压u O = 0 ;若V u I μ1001=,V u I μ802=,则差模输入电压u Id 为 20 μV ;共模输入电压u Ic
为90 μV 。

33、分析放大器有 图解法和 等效电路法 两种分析方法,分别适用于大信号和小信号工作情况。

34、多级放大器的输入电阻等于第一级输入 电阻,输出电阻等于 求级输出电阻。

35、差动放大器内部有差模信号和 共模信号两种工作信号。

36、电压串联负反馈能 增大放大器的输入电阻。

37、当输入信号频率为L f 或H f 时,放大倍数的幅值约下降为中频时的0.707倍, 或者
说下降了3dB 。

38、差分放大电路,若两个输入信号21I I u u =,则输出电压u O = 0 ;若V u I μ1001=,V u I μ802=,则差模输入电压u Id 为 20 μV ;共模输入电压u Ic 为 90 μV 。

39、若三级放大电路中A u 1=A u 2=30dB ,A u 3=20dB ,则其总电压增益为
80 dB ,折合为 10000 倍。

40、反馈有正负之分,在放大电路的设计中,主要引入___负___反馈以改善放大电路的性能。

此外,利用这种反馈,还可增加增益的___稳定性___,减少非线性失真,抑制噪声,扩展频带以及控制输入和输出阻抗,所有这些性能的改善是以牺牲_______放大倍数_______为代价的。

41、测得某正常放大工作的三极管三极直流电位分别为-9V 、-3V 、-3.2V ,则该管子是 pup 型三极管、由 锗 材料制造。

相关文档
最新文档