高一数学_集合练习题(一)有答案

合集下载

高一数学集合练习题附答案

高一数学集合练习题附答案

高一数学集合练习题附答案一、单选题1.设全集{}1,2,3,4U =,{}1,3A =,{}4B =,则()U A B =( ) A .{}2,4B .{}4C .∅D .{}1,3,42.已知集合{}2,0,1M =-,{}220N x x ax =+-=,若N M ⊆,则实数a =( )A .2B .1C .0D .-13.已知全集{}{}1,2,3,,2,3U A U B =⊆=,若A B ⋂≠∅,且A B ⊆/则集合A 有( ) A .1个B .2个C .3个D .4个4.已知复数a 、b 满足0ab ≠,集合{}{}22,,a b a b =,则a b +的值为( )A .2B .1C .0D .-15.设集合{}22M x Z x =∈-<,则集合M 的真子集个数为( ) A .16B .15C .8D .76.设集合1|05x A x x -⎧⎫=>⎨⎬-⎩⎭,{}|13B x x =-≤≤,则()A B =R ( ) A .{}|35x x ≤< B .{}|15x x ≤< C .{}|15x x -≤<D .{}|13x x ≤≤7.设集合{}10M x x =-<,{}12,N y y x x M ==-∈,则M N =( )A .∅B .(,1)-∞-C .(,1)-∞D .(1,1)-8.已知集合{}27120A x x x =-+≤,{}20B x x m =+>,若A B ⊆,则m 的取值范围为( ) A .()6,-+∞B .[)6,-+∞C .(),6-∞-D .(],6∞--9.若集合2{|60}A x x x =--+>,5{|1}3B x x =≤--,则A B 等于( ) A .()3,3-B .[2,3)-C .(2,2)-D .[2,2)-10.设全集U =R ,集合{1,0,1,2,3}M =-,{R |1}N x x =∈>,则下面Venn 图中阴影部分表示的集合是( )A .(,1)-∞B .(,1]-∞C .{1,0}-D .{1,0,1}-11.已知集合{}20A x R x a =∈+>,且2A ∉,则实数a 的取值范围是( )A .{}4a a ≤B .{}4a a ≥C .{}4a a ≤-D .{}4a a ≥-12.已知全集{}U 1,0,1,3,6=-,{}0,6A =,则UA =( )A .{}1,3-B .{}1,1,3-C .{}0,1,3D .{}0,3,613.若集合{}{}22,3,|560,A B x x x ==-+=则A B =( )A .{2,3}B .∅C .2D .2,314.已知集合{}12,12x A y y x -==≤≤,|lg 2Bx y x,则下列结论正确的是( )A .AB ⊆B .[]0,2A B =C .(],2A B ⋃=-∞D .()R B A =⋃R15.已知集合{}220|A x x x =-<,{}|55B x x =-<<,则( )A .AB =∅ B .A B R =C .B A ⊆D .A B ⊆二、填空题16.若{}}{1020x ax x x +=⊆-=,则=a __________. 17.设集合{1,2,}A a =,{2,3}B =.若B A ⊆,则=a _______.18.设集合{}13A x x =<<,{}B x x a =<,若A B ⊆,则a 的取值范围是_________. 19.已知函数()()()2sin 0,0g x x ωϕωϕπ=+><<的部分图象如图所示,将函数()g x 的图象向右平移6π个单位长度,得到函数()f x 的图象,若集合()3512A x y f x f π⎧⎫⎪⎪⎛⎫==-⎨⎬⎪⎝⎭⎪⎪⎩⎭,集合{}0,1,2B =,则A B =______.20.已知集合121{|2}8x A x -=>,{|20}B x x a =-<.若A B A =,则实数a 的取值范围是________. 21.已知函数()94sin3264x x f x π-⋅+=,()21g x ax =-(0a >).若[]130,log 2x ∀∈,[]21,2x ∃∈,()()12f x g x =,则a 的取值范围是___________.22.若{}231,13a a ∈--,则=a ______.23.判断下列命题的真假:(1)集合{}1,2,3是集合{}1,2,3的真子集;( ) (2){}1是集合{}1,2,3的元素;( )(3)2是集合{}1,2,3的子集;( ) (4)满足{}{}00,1,2,3A的集合A 的个数是322-个.( )24.若全集{}0,1,2,3,4U =,{}012M =,,,{}2,3N =,则M N ⋂=______. 25.用符号“∈”或“∉”填空: (1)34______N ;(2)4-______Z ; (3)13______Q ;(4)2π-______R .三、解答题26.已知集合2{|23}A x a x a =≤≤+,{|14}B x x =-≤≤,全集U =R . (1)当1a =时,求U ()A B ;(2)当A =∅时,求实数a 的取值范围;(3)若“x A ∈”是“x B ∈”的充分条件,求实数a 的取值范围.27.已知:20,:40p x q ax ->->其中R a ∈.(1)若p 是q 的充分不必要条件,求实数a 的取值范围; (2)若p 是q 的必要不充分条件,求实数a 的取值范围.28.已知集合P ={x |a +1≤x ≤2a +1},Q ={x |-2≤x ≤5}. (1)若a =3,求()U P Q ⋂;(2)若“x ∈P ”是“x ∈Q ”充分不必要条件,求实数a 的取值范围.29.已知p :|m -1|>a (a >0),q :方程22152x y m m +=--表示双曲线.(1)若q 是真命题,求m 的取值范围;(2)若p 是q 的充分不必要条件,求a 的取值范围30.已知集合{}|13A x x =<<,集合{}|21B x m x m =<<-. (1)当1m =-时,求A B ;(2)若B A ⊆,求实数m 的取值范围;【参考答案】一、单选题 1.A 【解析】 【分析】根据补集的概念求出UA ,再根据并集运算即可求出结果.【详解】 由题意可知{}2,4UA =,又{}4B =,所以(){}2,4U A B =.故选:A. 2.B 【解析】 【分析】对于集合N ,元素x 对应的是一元二次方程的解,根据判别式得出必有两个不相等的实数根,又根据韦达定理以及N M ⊆,可确定出其中的元素,进而求解. 【详解】对于集合N ,因为280a ∆=+>, 所以N 中有两个元素,且乘积为-2, 又因为N M ⊆,所以{}2,1N =-, 所以211a -=-+=-.即a =1. 故选:B. 3.C 【解析】 【分析】根据题意,列举出符合题意的集合.【详解】因为全集{}{}1,2,3,,2,3U A U B =⊆=,若A B ⋂≠∅,且A B ⊆/, 所以{}1,2,3A =或{}1,2A =或{}1,3A =. 故选:C 4.D 【解析】 【分析】 由集合的性质可知a b ,22a a b b ⎧=⎨=⎩或22a b b a ⎧=⎨=⎩,且0ab ≠,进而求解即可. 【详解】由题意,22a a b b ⎧=⎨=⎩或22a b b a ⎧=⎨=⎩, 因为0ab ≠,解得1212a b ⎧=-⎪⎪⎨⎪=-⎪⎩或1212b a ⎧=-⎪⎪⎨⎪=-⎪⎩, 所以1a b +=-, 故选:D. 5.D 【解析】 【分析】求出集合M 中的元素,再由子集的定义求解. 【详解】由题意{|04}{1,2,3}M x Z x =∈<<=, 因此其真子集个数为3217-=. 故选:D . 6.D 【解析】 【分析】求解分式不等式的解集,再由补集的定义求解出A R,再由交集的定义去求解得答案.【详解】1015x x x ->⇒<-或5x >,所以{}15A x x =≤≤R , 所以得(){}13A B x x ⋂=≤≤R . 故选:D 7.D 【解析】 【分析】解一元一次不等式求集合M ,求一次函数值域求集合N ,再应用集合的交运算求M N ⋂. 【详解】由题设,{|1}M x x =<,{|1}N y y =>-, 所以(1,1)M N =-.故选:D 8.A 【解析】 【分析】先解出集合,A B ,再结合A B ⊆得到关于m 的不等式,求解即可. 【详解】因为{}34,,2m A xx B x A B ⎧⎫==>-⊆⎨⎬⎩⎭∣,所以32m -<,解得6m >-. 故选:A. 9.D 【解析】 【分析】解不等式化简集合A ,B ,再利用交集的定义直接求解作答. 【详解】不等式260x x --+>化为:260x x +-<,解得:32x -<<,则(3,2)A =-, 不等式513x ≤--,即203x x +≤-,整理得:(2)(3)030x x x +-≤⎧⎨-≠⎩,解得23x -≤<,则[2,3)B =-, 所以[2,2)A B ⋂=-. 故选:D 10.D 【解析】 【分析】根据Venn 图,明确阴影部分表示的集合的含义,即可求得答案. 【详解】由题意,可知Venn 图中阴影部分表示的集合是(){1,0,1}U M N =- ,故选:D 11.C 【解析】 【分析】结合元素与集合的关系得到220a +≤,解不等式即可求出结果. 【详解】由题意可得220a +≤,解得4a ≤-, 故选:C 12.B【解析】 【分析】根据集合补集的概念及运算,即可求解. 【详解】由题意,全集{}U 1,0,1,3,6=-,且{}0,6A =, 根据集合补集的概念及运算,可得{}U1,1,3A =-.故选:B. 13.A 【解析】 【分析】依据交集定义去求A B 即可. 【详解】{}{}2|560=2,3B x x x =-+=则{}{}{}2,32,32,3A B ⋂=⋂=, 故选:A . 14.C 【解析】 【分析】求函数的值域求得集合A ,求函数的定义域求得集合B ,由此对选项进行分析,从而确定正确答案. 【详解】112,011,122x x x -≤≤≤-≤≤≤,所以[]1,2A =,20,2x x -><,所以(),2B =-∞. ∵2A ∈,2B ∈/,故A 错,B 错; ∵R2A ∈/,2B ∈/,∴()R 2A B ∈/,D 错.(],2A B ⋃=-∞,C 正确.故选:C 15.D 【解析】 【分析】先求出集合{}|02A x x =<<,再按照集合间的基本关系和运算判断即可. 【详解】{}|02A x x =<<,{}|02A B x x ⋂=<<,A 错误;{|A x x B =<,B 错误;A B ⊆,C 错误,D 正确.故选:D.二、填空题16.0或12-##12-或0【解析】 【分析】由题,先求出}{20x x -=所代表集合,再分别讨论{}10x ax +=作为子集的可能情况即可. 【详解】由}{20x x -=得集合为{}2,故{}10x ax +=为空集或{}2,当{}10x ax +=为{}2时,可得12a =-;当{}10x ax +=为空集时,可得0a =, 故答案为:0或12-17.3【解析】 【分析】由题意可知集合B 是集合A 的子集,进而求出答案. 【详解】由B A ⊆知集合B 是集合A 的子集, 所以33A a ∈⇒=, 故答案为:3.18.[)3,+∞【解析】 【分析】根据A B ⊆列出不等式即可求解. 【详解】因为{}13A x x =<<,{}B x x a =<,A B ⊆,故只需3a ≥即可满足题意. 故答案为:[)3,+∞.19.{}0【解析】 【分析】根据图像求出g (x )的解析式,再求出f (x )解析式,求出A 集合,根据集合交集运算法则计算即可. 【详解】由图可知()g x 周期52=1212T πππ⎛⎫=⨯+⎪⎝⎭,∴22T πω==.由212πg ⎛⎫-= ⎪⎝⎭得22122k ππϕπ⎛⎫⨯-+=+ ⎪⎝⎭,∴223k πϕπ=+,k ∈Z ,∵0ϕπ<<,∴k 取0,23ϕπ=, ∴()22sin 23g x x π⎛⎫=+⎪⎝⎭, ∴()22sin 22sin 2633f x x x πππ⎡⎤⎛⎫⎛⎫=-+=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦, ∴35352sin 22sin 611212363f ππππππ⎛⎫⎛⎫⎛⎫=⨯+=-+=⎪ ⎪⎪⎝⎭⎝⎭⎝⎭. ∴()35150sin 22221232636f x f x k x k πππππππ⎛⎫⎛⎫-≥⇔+≥⇔+≤+≤+⎪ ⎪⎝⎭⎝⎭,k ∈Z , ∴,124A x k x k k ππππ⎧⎫=-≤≤+∈⎨⎬⎩⎭Z ,∴{}0A B ⋂=.故答案为:{}0﹒20.[4,)+∞【解析】 【分析】结合指数不等式化简集合A ,由A B A A B ⋂=⇒⊆,建立不等式即可求解a 的取值范围. 【详解】1212312228x x --->⇒>,即123x ->-,解得2x <,故{}|2A x x =<,|2a B x x ⎧⎫=<⎨⎬⎩⎭,由A B A A B ⋂=⇒⊆,即22a≤,4a ≥. 故答案为:[4,)+∞ 21.35,88⎡⎤⎢⎥⎣⎦【解析】 【分析】由题意,()f x 的值域为()g x 的值域子集,先求得两个函数的值域,再利用包含关系求得a 的取值范围. 【详解】 因为()()294sin32311644x x xf x π-⋅+-+==, 又当[]30,log 2x ∈时,0311x ≤-≤,()f x 的值域为11,42⎡⎤⎢⎥⎣⎦.因为0a >,所以()g x 在[]1,2上单调递增,其值域为[]21,41a a --. 依题意得[]11,21,4142a a ⎡⎤⊆--⎢⎥⎣⎦,则12141412a a ⎧-≤⎪⎪⎨⎪-≥⎪⎩,解得3588a ≤≤.故答案为:35,88⎡⎤⎢⎥⎣⎦22.4-【解析】 【分析】结合元素与集合的关系,利用集合的互异性分类讨论即可求解. 【详解】若13a -=,则4a =,此时,2113a a -=-,不合题意,舍去; 若2133a -=,则4a =-或4a =,因为4a =不合题意,舍去. 故4a =-. 故答案为:4-. 23. 假 假 假 真 【解析】 【分析】(1)利用真子集的定义即可判断. (2)由集合与集合的关系即可判断真假. (3)由元素与集合的关系即可判断真假.(4)由真子集的定义即可找到满足条件集合A 的个数. 【详解】(1)因为{}1,2,3的真子集有{}{}{}{}{}{},1,2,3,1,2,1,3,2,3∅,所以{}1,2,3不是{}1,2,3真子集,命题为假命题.(2){}1是集合,因此不是{}1,2,3的元素,命题为假命题. (3)因为2是元素,因此不是{}1,2,3的子集,命题为假命题. (4)若{}0A ,所以集合A 中至少含有两个元素且其中一个必须为0,又因为{}0,1,2,3A,所以集合A 可以从1,2,3中再选取一个元素、或者两个元素,所以满足条件的集合A 把∅和{}0,1,2,3去掉,所以满足条件集合A 的个数为322-个,命题为真命题.故答案为:假;假;假;真24.{}3【解析】 【分析】由交集、补集的定义计算. 【详解】由题意{4,3}M =,所以M N ⋂={3}. 故答案为:{3}. 25. ∉, ∈, ∈ ∈ 【解析】 【分析】(1)利用元素与集合的关系判断.(2)利用元素与集合的关系判断.(3)利用元素与集合的关系判断.(4)利用元素与集合的关系判断.【详解】 解:34∉N ; 4-∈Z ;13∈Q ; 2π-∈R .故答案为:∉,∈,∈,∈三、解答题26.(1)[)1,1-;(2)()(),13,∞∞--⋃+; (3)()1,3,2∞∞⎛⎤-⋃+ ⎥⎝⎦. 【解析】【分析】(1)根据集合的补运算和交运算,求解即可;(2)根据题意,求解关于a 的一元二次不等式,即可求得范围;(3)根据集合之间的关系,列出不等关系,求解即可.(1)当1a =时,{|15}A x x =≤≤,{|14}B x x =-≤≤,故U ()A B {|1x x =<或{}5}|14{|11}x x x x x >⋂-≤≤=-≤<. 即U ()A B [)1,1=-.(2)若A =∅,则223a a >+,即()()310a a -+>,解得1a <-或3a >,故实数a 的取值范围为:()(),13,∞∞--⋃+.(3)若“x A ∈”是“x B ∈”的充分条件,则A B ⊆,①A =∅时,1a <-或3a >满足题意; ②A ≠∅,则13234a a -≤≤⎧⎨+≤⎩,得1-12a ≤≤ 综上所述,实数a 的取值范围为()1,3,2∞∞⎛⎤-⋃+ ⎥⎝⎦. 27.(1)(2,)+∞(2)[0,2)【解析】【分析】(1)由题意可得A ⫋B ,所以0,42,a a>⎧⎪⎨<⎪⎩从而可求出实数a 的取值范围, (2)由题意可得B ⫋A ,然后分a =0,a >0和a <0三种情况求解即可(1)设命题p :A ={x |x -2>0},即p :A ={x |x >2},命题q :B ={x |ax -4>0},因为p 是q 的充分不必要条件,所以A ⫋B ,. 即0,42,a a>⎧⎪⎨<⎪⎩解得a >2 所以实数a 的取值范围为(2,)+∞(2)由(1)得p :A ={x |x >2},q :B ={x |ax -4>0},因为p 是q 的必要不充分条件,所以B ⫋A ,①当a =0时,B =∅,满足题意;②当a >0时,由B ⫋A ,得4a .>2,即0<a <2;.③当a <0时,显然不满足题意.综合①②③得,实数a 的取值范围为[0,2)28.(1)4{|}2x x -≤<(2)2a ≤【解析】【分析】(1)将a =3代入求出集合P ,Q ,再由补集及交集的意义即可计算得解. (2)由给定条件可得P Q ,再根据集合包含关系列式计算作答.(1)因a =3,则P ={x |4≤x ≤7},则有{|4U P x x =<或7}x >,又Q ={x |-2≤x ≤5}, 所以{|24)}(U P Q x x ⋂=-≤<.(2)“x ∈P ”是“x ∈Q ”充分不必要条件,于是得P Q ,当a +1>2a +1,即a <0时,P =∅,又Q ≠∅,即∅ Q ,满足P Q ,则a <0,当P ≠∅时,则有12112215a a a a +≤+⎧⎪+≥-⎨⎪+<⎩或12112215a a a a +≤+⎧⎪+>-⎨⎪+≤⎩,解得02a ≤<或02a ≤≤,即02a ≤≤,综上得:2a ≤,所以实数a 的取值范围是2a ≤.29.(1)(-∞,2)(5⋃,)∞+;(2)[4,)∞+.【解析】【分析】(1)解不等式(5)(2)0m m --<即得解;(2)由题意可得:1p m a >+或1m a <-+,解不等式组12150a a a -+⎧⎪+⎨⎪>⎩即得解. (1)解:由题意可得(5)(2)0m m --<,解得2m <或5m >.故m 的取值范围为(-∞,2)(5⋃,)∞+.(2)解:由题意可得:1p m a >+或1m a <-+.因为p 是q 的充分不必要条件,所以(-∞,1)(1a a -++⋃,)(+∞-∞,2)(5⋃,)∞+.所以12150a a a -+⎧⎪+⎨⎪>⎩,解得4a . 故a 的取值范围为[4,)∞+.30.(1){}23x x -<< (2)1,3⎡⎫+∞⎪⎢⎣⎭【解析】【分析】(1)先分别求出,A B ,然后根据集合的并集的概念求解出A B 的结果;(2)根据B A ⊆,进而先讨论B =∅的情况,再讨论B ≠∅的情况,进而得答案;(1)解:当1m =-时,{}22B x x =-<<, ∴{}23A B x x ⋃=-<<;(2)解:因为B A ⊆,所以,当B =∅时, 21m m ,解得13m ≥,满足B A ⊆; 当B ≠∅时,若满足B A ⊆,则212113m m m m <-⎧⎪≥⎨⎪-≤⎩,该不等式无解;综上,若B A ⊆,实数m 的取值范围是1,3⎡⎫+∞⎪⎢⎣⎭。

高一数学集合练习题及答案-经典

高一数学集合练习题及答案-经典

高一数学集合练习题及答案-经典一、单选题1.设集合{}{lg 1},2A xx B x x =<=≤∣∣,则A B ⋃=( ) A .{02}xx <≤∣ B .{}2xx ≤∣ C .{10}x x <∣ D .R2.设集合{}2A x x a =<,{}23B x x a =>+,若A B =R ,则实数a 的取值范围为( ) A .()1,3- B .()(),13,-∞-⋃+∞ C .[]1,3-D .(][),13,-∞-+∞3.已知集合{}220A x x x =--<,(){}3log 22B x y x ==-,则A B =( )A .{}12x x -<<B .{}12x x <<C .{}12x x ≤<D .{}02x x ≤<4.已知集合{1A x x =≤-或}2x >,则 RA =( ).A .{}12x x -≤<B .{}12x x -<≤C .{}12x x -<<D .{1A x x =<-或}2x ≥5.集合{}240xA x =->,{}lg 10B x x =-<,则A B =( )A .()2,eB .()e,10C .()2,10D .()0,106.已知集合{}i ,N nM m m n ==∈,其中i 为虚数单位,则下列元素属于集合M 的是( ) A .()()1i 1i -+ B .1i1i-+ C .i 1i- D .()21i -7.已知集合{}13A x N x =∈≤≤,{}2650B x x x =-+<,则A B =( )A .∅B .{}1,2,3C .(]1,3D .{}2,38.设全集{}1,2,3,4,5U =,集合{}1,2A =,{}2,3B =,则()UA B =( ) A .{}4,5B .{}2,3C .{}1D .{}39.已知集合A 是集合B 的真子集,下列关于非空集合A 、B 的四个命题: ①若任取x A ∈,则x B ∈是必然事件.②若任取x A ∉,则x B ∈是不可能事件. ③若任取x B ∈,则x A ∈是随机事件.④若任取x B ∉,则x A ∉是必然事件. 其中正确的命题有( ). A .0个;B .1个;C .2个;D .3个.10.已知0a >且1a ≠,若集合{}{}22,log ||a M x x x N x x x =<=<,且N M ⊆﹐则实数a的取值范围是( )A .()1e 0,11,e ⎛⎤ ⎥⎝⎦B .()1e0,1e ,⎡⎫+∞⎪⎢⎣⎭C .()12e 0,11,e ⎛⎤ ⎥⎝⎦D .()12e 0,1e ,⎡⎫+∞⎪⎢⎣⎭11.设集合{}40,2,1,1,21x A xB x +⎧⎫=>=--⎨⎬-⎩⎭,则()R A B =( ) A .{}1,1- B .{}2,1-- C .{}2,1,1--D .{}2,1,1,2--12.设集合{}22M x Z x =∈-<,则集合M 的真子集个数为( ) A .16B .15C .8D .713.已知集合{}{}234014P x x x Q x N x =--<=∈≤≤,,则=P Q ( )A .{1,2,3,4}B .{1,2,3}C .{1,2}D .{2,3,4}14.已知集合{2,1,0,1,2}A =--,{}220B x x x =--<,则A B =( )A .{2,1,0,1}--B .{1,0,1,2}-C .{0,1}D .{1,0}-15.已知集合()(){}160M x x x =--<,{}1,2,3,5N =,则M N =( )A .{}1,2,3,5B .{}3,5C .{}2,3,5D .{}1,3,5二、填空题16.已知集合{}2410A x mx x =++=有两个子集,则m 的值是__________.17.设集合{1,2,3,4,6}M =,12,,,k S S S 都是M 的含有两个元素的子集,则k =______;若满足:对任意的{,}i i i S a b =,{,}j j j S a b ={}(,,1,2,3,,)i j i j k ≠∈都有,i i j j a b a b <<,且ji i ja ab b ≠,则k 的最大值是__________. 18.若集合{}{}220,10M x x x N x ax =+-==+=,且N M ⊆,则实数a 的取值集合为____.19.已知集合{}4194,A x x n n *==-+∈N ,{}6206,B y y n n *==-+∈N ,将A B 中的所有元素按从大到小的顺序排列构成一个数列{}n a ,则数列{}n a 的前n 项和的最大值为___________.20.若非空且互不相等的集合M ,N ,P 满足:M N M ⋂=,⋃=N P P ,则M P =________.21.已知函数()()sin 04f x x πωω⎛⎫=+> ⎪⎝⎭在2,43ππ⎡⎤⎢⎥⎣⎦上单调递减,则ω的取值范围为______.22.设α:()124R m x m m +≤≤+∈;β:13x ≤≤.若β是α的充分条件,则实数m 的取值范围为______.23.若集合M 满足{}1,2,3,4M,则这样的集合M 有______个.24.已知集合{}{}2560,A x x x B x x x =--<==-,则A B =__________. 25.用描述法表示被4除余3的自然数全体组成的集合A =______.三、解答题26.已知集合{}2280A x x x =+-≤.集合106x B xx -⎧⎫=<⎨⎬-⎩⎭,设集合()R I A B =. (1)求I ;(2)当x I ∈时,求函数9()1f x x x =+-的最小值.27.已知全集为实数集R ,集合{A x y ==,(){}lg 2B x y x ==-. (1)求A B 及()R B A ;(2)设集合{}1C x x a =<<,若C A ⊆,求实数a 的取值范围.28.已知集合{}|11A x a x a =-≤≤+,{}2|430B x x x =-+≤,U =R .(1)若1a =,求,;U A B B(2)若A B A =,求实数a 的取值范围.29.已知不等式()x a x a <210-++的解集为M . (1)若2∈M ,求实数a 的取值范围; (2)当M 为空集时,求不等式1x a-<2的解集.30.已知集合(){}2log 31A x x =->,22112y y B y -⎧⎫⎪⎪⎛⎫=<⎨⎬ ⎪⎝⎭⎪⎪⎩⎭. (1)分别求出集合A 、B ; (2)设全集为R ,求()RA B ⋂.【参考答案】一、单选题 1.C 【解析】 【分析】先化简集合A ,再求A B 【详解】lg 1lg lg10010x x x <⇔<⇔<<,即{}010|A x x =<<,所以{}|10A B x x =< 故选:C 2.B 【解析】 【分析】由于A B =R ,所以223a a +<,解不等式即可. 【详解】由题意,223a a +<得1a <-或3a >, 故选:B . 3.B 【解析】 【分析】求解不等式可得集合A ,根据对数函数的定义可得集合B ,进而求解. 【详解】因为220x x --<,所以12x -<<,则{}12A x x =-<<, 因为220x ->,所以1x >,则{}1B x x =>, 所以{}12B x A =<<,4.B 【解析】 【分析】利用补集的概念求解 RA .【详解】因为{1A x x =≤-或}2x >,所以 RA ={}12x x -<≤,故选:B 5.C 【解析】 【分析】根据指数函数、对数函数的性质求出集合A 、B ,再根据交集的定义计算可得; 【详解】解:由240x ->,即2242x >=,所以2x >,所以{}{}2402xA x x x =->=;由lg 10x -<,即lg 1x <,解得010x <<,所以{}{}lg 10|010B x x x x =-<=<<; 所以{}|210A B x x =<< 故选:C 6.B 【解析】 【分析】计算出集合M ,在利用复数的四则运算化简各选项中的复数,即可得出合适的选项. 【详解】当N k ∈时,4i 1k =,41i i k +=,422i i 1k +==-,433i i i k +==-,则{}i,1,i,1M =--, ()()1i 1i 112M -+=+=∉,()()()21i1i 2i i 1i 1i 1i 2M ---===-∈++-,()()()i 1i i 11i 1i 1i 1i 22M +==-+∉--+,()2i 1i 2M =-∉-, 故选:B. 7.D 【解析】 【分析】本题考查集合的交集,易错点在于集合A 元素是自然数,集合B 的元素是实数. 【详解】∵{}{}131,2,3A x N x =∈≤≤=,{}{}265015B x x x x x =-+<=<<,∴{}2,3A B ⋂=.故选:D . 8.C 【解析】直接按照补集和交集的概念运算即可. 【详解】 由题意知:{}1,4,5UB =,则(){}1UAB =.故选:C. 9.D 【解析】 【分析】由随机事件、不可能事件、必然事件的定义逐一判断即可得出答案. 【详解】因集合A 是集合B 的真子集,故A 中的任意一个元素都是B 中的元素,而B 中至少有一个元素不在A 中,因此①正确,②错误,③正确,④正确. 故选:D . 10.D 【解析】 【分析】求出集合M ,再由给定条件,对集合N 分类讨论,构造函数,利用导数探讨函数最小值求解作答. 【详解】依题意,{}(1)0|{|01}x M x x x x =<<=<-,{}2lo |g 0a N x x x =-<,令2(g )lo a f x x x -=,当01a <<时,函数()f x 在(0,)+∞上单调递增,而2(1)10,()10f f a a =>=-<,则0(,1)x a ∃∈,使得0()0f x =,当00x x <<时,()0f x <,当0x x >时,()0f x >,此时{}0|0N x x x M =<<⊆,因此,01a <<,当1a >时,若01x <≤,log 0a x ≤,则()0f x >恒成立,N =∅,满足N M ⊆, 于是当1a >时,N M ⊆,当且仅当N =∅,即不等式()0f x ≥对(0,)∀∈+∞x 成立,2n (l )1x f x x a '-=,由()0f x '=得x =,当0x <<()0f x '<,当x >()0f x '>,则函数()f x 在上单调递减,在)+∞上单调递增,min 1111ln(2ln )log ()222ln 2n ln 2l ln a a a a a af x f =-=+=,于是得1ln(2ln )220ln ln a a a +≥, 即1ln(2ln )0a +≥,变形得1ln 2ea ≥,解得12e e a ≥,从而得当12e e a ≥时,()0f x ≥恒成立,N =∅,满足N M ⊆,所以实数a 的取值范围是01a <<或12e e a ≥. 故选:D 【点睛】思路点睛:涉及函数不等式恒成立问题,可以利用导数探讨函数的最值,借助函数最值转化解决问题. 11.C 【解析】 【分析】解分式不等式化简集合A ,再利用补集、交集的定义计算作答. 【详解】 解不等式401x x +>-,则(4)(1)0x x +->,解得:4x <-或1x >,即{|4A x x =<-或1}x >, 于是得{|41}R A x x =-≤≤,而{}2,1,1,2B =--, 所以(){}2,1,1R A B ⋂=--. 故选:C 12.D 【解析】 【分析】求出集合M 中的元素,再由子集的定义求解. 【详解】由题意{|04}{1,2,3}M x Z x =∈<<=, 因此其真子集个数为3217-=. 故选:D . 13.B 【解析】 【分析】解不等式得到14{|}P x x =-<<,根据题意得到{1,2,3,4}Q =,再由集合交集的概念得到结果. 【详解】由集合{}234|0P x x x =--<,解不等式得到:14{|}P x x =-<<,又因为{1,2,3,4}Q =,根据集合交集的概念得到:{}1,2,3P Q ⋂=. 故选:B. 14.C 【解析】 【分析】根据交集概念求解即可. 【详解】{}{}220=12B x x x x x =--<-<<,则{}0,1A B =. 故选:C 15.C 【解析】 【分析】求出集合M ,利用交集的定义可求得结果. 【详解】()(){}{}16016M x x x x x =--<=<<,因此,{}2,3,5MN =.故选:C.二、填空题16.0或4 【解析】 【分析】由题意得A 只有一个元素,对m 分类讨论求解 【详解】当0m =时,1{}4A =-,满足题意当0m ≠时,由题意得1640m ∆=-=,4m = 综上,0m =或4m = 故答案为:0或4 17. 10 6 【解析】 【分析】列举M 的2个元素子集数个数即可;利用,i i j j a b a b << ,再结合ji i ja ab b ≠进行排除其他的即为答案. 【详解】M 的两元素子集有{1,2}{1,3}{1,4}{1,6}{2,3}{2,4}{2,6}{3,4}{3,6}{4,6}、、、、、、、、、,所以共有10个,因此k =10;因为前面的列举方式已经保证,i i j j a b a b <<,只需要再增加条件ji i ja ab b ≠即可,所以{1,2}{2,4}、、{3,6}保留一个,{1,3}{2,6}、保留一个,{2,3}{4,6}、只能保留一个,所以以上10个子集需要删去4个,还剩下6个,所以则k 的最大值是6.故max 6k .故答案为:10;6.18.10,1,2⎧⎫-⎨⎬⎩⎭【解析】先求出集合M ,然后分N =∅和N ≠∅两种情况求解 【点睛】由220x x +-=,得(1)(2)0x x -+=,解得1x =或2x =-, 所以{}1,2M =-,当N =∅时,满足N M ⊆,此时0a = 当N ≠∅时,即0a ≠,则1N a ⎧⎫=-⎨⎬⎩⎭,因为N M ⊆,所以1M a-∈,所以11a -=或12a-=-, 解得1a =-或12a =, 综上,12a =,或1a =-,或0a =, 所以实数a 的取值集合为10,1,2⎧⎫-⎨⎬⎩⎭,故答案为:10,1,2⎧⎫-⎨⎬⎩⎭19.1472【解析】 【分析】由题意设4194n b n =-+,6206m c m =-+,根据n m b c =可得326m n -=,从而312194n n a b n ==-+,即可得出答案.【详解】设4194n b n =-+,由41940n b n =-+>,得48n ≤ 6206m c m =-+,由62060m c m =-+>,得34m ≤A B 中的元素满足n m b c =,即41946206n m -+=-+,可得326m n -=所以223m n =+,由,*m n N ∈,所以3,*n k k N =∈ 所以312194n n a b n ==-+,要使得数列{}n a 的前n 项和的最大值,即求出数列{}n a 中所以满足0n a ≥的项的和即可. 即121940n a n =-+≥,得16n ≤,则116182,2a a == 所以数列{}n a 的前n 项和的最大值为121618221614722a a a ++++=⨯= 故答案为:147220.P【解析】推导出M N ⊆,N P ⊆,由此能求出M P P =.【详解】解:非空且互不相等的集合M ,N ,P 满足:M N M ⋂=,⋃=N P P ,M N ∴⊆,N P ⊆,MP P ∴=.故答案为:P .21.9[1,]8【解析】 【分析】由()()sin()04f x x πωω=+>的单调递减区间包含2,43ππ⎡⎤⎢⎥⎣⎦可计算ω 的取值范围. 【详解】()()sin()04f x x πωω=+> 在2,43ππ⎡⎤⎢⎥⎣⎦上单调递减 令(),42x k k Z ππωπ+=+∈ 得14ππωω=+k x 令(),4x k k Z πωππ+=+∈得234k x ππωω=+ 23,+,4344k k ππππππωωωω⎡⎤⎡⎤∴⊂+⎢⎥⎢⎥⎣⎦⎣⎦442334k k πππωωπππωω⎧+≤⎪⎪∴⎨⎪≤+⎪⎩419382k k ωω⎧≥+⎪∴⎨≤+⎪⎩ 93110041082420k k k k Z k ω>∴<+<+∴-<<∈∴=ω∴∈9[1,]8故答案为:9[1,]822.102m -≤≤【解析】 【分析】根据给定条件可得β所对集合包含于α所对集合,再利用集合的包含关系列式作答. 【详解】令α所对集合为:{|124(R)}x m x m m +≤≤+∈,β所对集合为:{|13}x x ≤≤, 因β是α的充分条件,则必有{|13}{|124(R)}x x x m x m m ≤≤⊆+≤≤+∈,于是得11243m m +≤⎧⎨+≥⎩,解得102m -≤≤, 所以实数m 的取值范围为102m -≤≤. 故答案为:102m -≤≤ 23.15【解析】【分析】结合真子集公式可直接求解.【详解】因为{}1,2,3,4M ,故集合M 有42115-=个.故答案为:1524.{}|10x x -<≤【解析】【分析】求出集合A ,B ,依据交集的定义求出A B .【详解】 集合{}2560{|16}A x x x x x =--<=-<<,{}{}|0B x x x x x ==-=≤,{}|10A B x x ∴=-<≤.故答案为:{}|10x x -<≤.25.{}|43,N n n k k =+∈【解析】【分析】用数学式子表示出自然语言即可.【详解】被4除余3的自然数即为4的整数倍加3,因此{|43,N}A n n k k ==+∈.故答案为:{}|43,N n n k k =+∈.三、解答题26.(1){}26x x <<;(2)7.【解析】【分析】(1)化简集合,然后利用补集的定义及交集的定义运算即得; (2)利用基本不等式即得.(1) ∵{}{}228042A x x x x x =+-≤=-≤≤,{}10166x B x x x x -⎧⎫=<=<<⎨⎬-⎩⎭, ∴{R 4A x x =<-或}2x >,(){}R 26I A B x x =⋂=<<;(2) 当x I ∈时,()11,5x -∈,∴99()111711f x x x x x =+=-++≥=--, 当且仅当911x x -=-,即4x =取等号, 所以函数9()1f x x x =+-的最小值为7. 27.(1){|1}A B x x =≥,R (){|12}B A x x =≤≤(2)(,3]a ∈-∞【解析】【分析】 (1)先求出集合A 、B ,再求A B ,R ()B A ; (2)对C 是否为∅分类讨论,分别求出a 的范围.(1) 由1030x x -≥⎧⎨-≥⎩可得{}|13A x x =≤≤ 又{|20}{|2}B x x x x =->=>,则R {|2}B x x =≤ 所以{|1}A B x x =≥,R (){|12}B A x x =≤≤(2)当1a ≤时,C =∅,此时C A ⊆;当1a >时,C A ⊆,则13a ;综上可得(,3]a ∈-∞ 28.(1)[03]A B ⋃=,,{|1U B x x =<或3}x >; (2)0a ≤﹒【解析】【分析】(1)解出集合B ,求出集合A ,根据集合并集和补集运算方法计算即可;(2)由A B A =知A B ⊆,分A =∅和A ≠∅讨论即可﹒(1){|13}B x x =≤≤,当a =1时,{|02}A x x =≤≤,[]03A B ⋃=,,{|1U B x x =<或3}x >; (2)A B A =,A B ∴⊆,①当A =∅时,11a a ->+,∴0a <;②当A ≠∅时,01113a a a ≥⎧⎪-≥⎨⎪+≤⎩,解得0a =; 综上,0a ≤﹒29.(1)a >2(2)(-∞,1)∪3,2⎛⎫+∞ ⎪⎝⎭【解析】【分析】(1)由已知2∈M 可得,2满足已知不等式,代入即可求解; (2)由M 为空集,可求得a ,然后代入解分式不等式即可求解.(1)由已知2∈M 可得,4-2(a +1)+a <0,解得a >2, 所以实数a 的取值范围为()2,+∞;(2)当M 为空集,则()a a -∆=≤2410+,即()a -≤210; 所以10a -=,即1a = ∴1x a -<2,即11x -<2, ∴231x x -->0,解得x >32或x <1. ∴此不等式的解集为(-∞,1)∪3,2⎛⎫+∞ ⎪⎝⎭. 30.(1){}5A x x =>,{0B y y =<或}2y >(2)(){}R 5A B x x ⋂=≤【解析】【分析】(1)利用对数函数和指数函数的单调性可分别求得集合A 、B ; (2)求出A B ,利用补集的定义可求得集合()R A B ⋂. (1)解:(){}{}{}2log 31325A x x x x x x =->=->=>,{}{222112002y y B y y y y y y -⎧⎫⎪⎪⎛⎫=<=->=<⎨⎬ ⎪⎝⎭⎪⎪⎩⎭或}2y >.(2)解:由(1)可得{}5A B x x ⋂=>,因此,(){}R 5A B x x ⋂=≤.。

高一数学必修一集合练习试题及答案

高一数学必修一集合练习试题及答案

高一数学必修一集合练习试题及答案一、选择题1.下列各组对象能构成集合的有()①美丽的小鸟;②不超过10的非负整数;③立方接近零的正数;④高一年级视力比较好的同学A.1个B.2个C.3个D.4个【解析】①③中“美丽”“接近零”的范畴太广,标准不明确,因此不能构成集合;②中不超过10的非负整数有:0,1,2,3,4,5,6,7,8,9,10共十一个数,是确定的,故能够构成集合;④中“比较好”,没有明确的界限,不满足元素的确定性,故不能构成集合.【答案】A2.小于2的自然数集用列举法可以表示为()A.{0,1,2}B.{1}C.{0,1}D.{1,2}【解析】小于2的自然数为0,1,应选C.【答案】C3.下列各组集合,表示相等集合的是()①M={(3,2)},N={(2,3)};②M={3,2},N={2,3};③M={(1,2)},N={1,2}.A.①B.②C.③D.以上都不对【解析】①中M中表示点(3,2),N中表示点(2,3),②中由元素的无序性知是相等集合,③中M表示一个元素:点(1,2),N中表示两个元素分别为1,2.【答案】B4.集合A中含有三个元素2,4,6,若a∈A,则6-a∈A,那么a为()A.2B.2或4C.4D.0【解析】若a=2,则6-a=6-2=4∈A,符合要求;若a=4,则6-a=6-4=2∈A,符合要求;若a=6,则6-a=6-6=0∉A,不符合要求.∴a=2或a=4.【答案】B5.(2013•曲靖高一检测)已知集合M中含有3个元素;0,x2,-x,则x满足的条件是()A.x≠0B.x≠-1C.x≠0且x≠-1D.x≠0且x≠1【解析】由x2≠0,x2≠-x,-x≠0,解得x≠0且x≠-1.【答案】C二、填空题6.用符号“∈”或“∉”填空(1)22________R,22________{x|x<7};(2)3________{x|x=n2+1,n∈N+};(3)(1,1)________{y|y=x2};(1,1)________{(x,y)|y=x2}.【解析】(1)22∈R,而22=8>7,∴22∉{x|x<7}.(2)∵n2+1=3,∴n=±2∉N+,∴3∉{x|x=n2+1,n∈N+}.(3)(1,1)是一个有序实数对,在坐标平面上表示一个点,而{y|y=x2}表示二次函数函数值构成的集合,故(1,1)∉{y|y=x2}.集合{(x,y)|y=x2}表示抛物线y=x2上的点构成的集合(点集),且满足y=x2,∴(1,1)∈{(x,y)|y=x2}.【答案】(1)∈∉(2)∉(3)∉∈7.已知集合C={x|63-x∈Z,x∈N*},用列举法表示C=________.【解析】由题意知3-x=±1,±2,±3,±6,∴x=0,-3,1,2,4,5,6,9.又∵x∈N*,∴C={1,2,4,5,6,9}.【答案】{1,2,4,5,6,9}8.已知集合A={-2,4,x2-x},若6∈A,则x=________.【解析】由于6∈A,所以x2-x=6,即x2-x-6=0,解得x=-2或x=3.【答案】-2或3三、解答题9.选择适当的方法表示下列集合:(1)绝对值不大于3的整数组成的集合;(2)方程(3x-5)(x+2)=0的实数解组成的集合;(3)一次函数y=x+6图像上所有点组成的集合.【解】(1)绝对值不大于3的整数是-3,-2,-1,0,1,2,3,共有7个元素,用列举法表示为{-3,-2,-1,0,1,2,3};(2)方程(3x-5)(x+2)=0的实数解仅有两个,分别是53,-2,用列举法表示为{53,-2};(3)一次函数y=x+6图像上有无数个点,用描述法表示为{(x,y)|y=x+6}.10.已知集合A中含有a-2,2a2+5a,3三个元素,且-3∈A,求a的值.【解】由-3∈A,得a-2=-3或2a2+5a=-3.(1)若a-2=-3,则a=-1,当a=-1时,2a2+5a=-3,∴a=-1不符合题意.(2)若2a2+5a=-3,则a=-1或-32.当a=-32时,a-2=-72,符合题意;当a=-1时,由(1)知,不符合题意.综上可知,实数a的值为-32.11.已知数集A满足条件:若a∈A,则11-a∈A(a≠1),如果a=2,试求出A中的所有元素.【解】∵2∈A,由题意可知,11-2=-1∈A;由-1∈A可知,11--1=12∈A;由12∈A可知,11-12=2∈A.故集合A中共有3个元素,它们分别是-1,12,2.。

高一数学集合练习题及答案(新版)

高一数学集合练习题及答案(新版)

高一数学集合练习题及答案(新版)一、单选题1.设集合{}2|60A x x x x =--<∈Z ,,(){}2|ln 1B y y x x A ==+∈,,则集合B 中元素个数为( ) A .2B .3C .4D .无数个2.已知集合102x A xx -⎧⎫=<⎨⎬-⎩⎭,{1}B x x =>-,则( ) A .RA B ⊆B .RA B ⊆ C .B A ⊆ D .A B ⊆3.已知集合{}220A x x x =--<,(){}3log 22B x y x ==-,则A B =( )A .{}12x x -<<B .{}12x x <<C .{}12x x ≤<D .{}02x x ≤<4.已知集合2cos ,3n A x x n N π*⎧⎫==∈⎨⎬⎩⎭,{}2230B x x x =--<,则A B =( ) A .{}2,1-- B .{}2,1,1--C .{}1,2D .{}1,1,2-5.设集合{}1,0,2,3A =-,139xB x ⎧⎫⎪⎪⎛⎫=<⎨⎬ ⎪⎝⎭⎪⎪⎩⎭,则A B =( )A .{}2,3B .{}0,2C .{}0,2,3D .{}1,0,2,3-6.已知集合{1,0,1}A =-,{|3x B x =≥,则A B =( )A .{0}B .{0,1}C .{0,1}-D .{1,0,1}-7.满足条件{M ⋃永安,漳平}{=德化,漳平,永安}的集合M 的个数是( ) A .6B .5C .4D .38.设集合1|05x A x x -⎧⎫=>⎨⎬-⎩⎭,{}|13B x x =-≤≤,则()A B =R ( ) A .{}|35x x ≤< B .{}|15x x ≤< C .{}|15x x -≤<D .{}|13x x ≤≤9.设集合{}02A x x =≤≤,B={1,2,3},C={2,3,4},则()A B C =( ) A .{2}B .{2,3}C .{1,2,3,4}D .{0,1,2,3,4}10.已知集合(){}30A x x x =-<,{}0,1,2,3B =,则A B ( ) A .{}0,1,2,3 B .{}0,1,2 C .{}1,2,3D .{}1,211.已知集合{}1,0,1,2M =-,{}21xN x =>,则()R M N ⋂=( )A .{}1-B .{}0x x ≤C .{}10x x -<≤D .{}1,0-12.已知集合(){}2{34},log 22A x Zx B x x =∈-≤<=+<∣∣,则A B 的元素个数为( ) A .3B .4C .5D .613.已知集合{}{}|2|21A x x B x x =≥-=-≤≤,,则下列关系正确的是( ) A .A B =B .A B ⊆C .B A ⊆D .A B =∅14.集合N A x x ⎧⎫=∈⎨⎬⎭⎩31,()}{N log B x x =∈+≤211,S A ⊆,S B ⋂≠∅,则集合S 的个数为( ) A .0 B .2C .4D .815.已知集合{4,3,2,1,0,1,2,3,4}A =----,2{|9}B x x =<,则A B =( )A .{0,1,2,3,4}B .{3,2,1,0,1,2,3}---C .{2,1,0,1,2}--D .()3,3-二、填空题16.若{}31,3,a a ∈-,则实数a 的取值集合为______.17.已知集合2{2,}x 与{4,}x 相等,则实数x =__________.18.已知{}3A x a x a =≤≤+,{}15b x x =-<<,A B =∅,则实数a 的取值范围是______19.集合{|13},{|25}A x x B x x =∈<≤=∈<<Z Z ,则A B 的子集的个数为___________. 20.已知集合{}2A x x =<,{}2,0,1,2B =-,则A B =_______. 21.已知集合{}1,2,3A =,{}1,0,1B =-,则A B ⋃=___________.22.已知函数()f x 满足()()2f x f x =-,当1≥x 时,()22f x x =-,若不等式()22f x a ->-的解集是集合{}13x x <<的子集,则a 的取值范围是______.23.若集合{}3cos23,xA x x x R π==∈,{}21,B y y y R ==∈,则A B ⋂=_______.24.设α:()124R m x m m +≤≤+∈;β:13x ≤≤.若β是α的充分条件,则实数m 的取值范围为______.25.若21,2x a A x x R x ⎧⎫+==∈⎨⎬-⎩⎭为单元素集,则实数a 的取值的集合为______. 三、解答题26.已知U =R 且{}2|560A x x x =--<,{|3B x x =≥或1}x ≤.求:(1)A B ,A B ; (2)()()U U A B .27.在①A B B ⋃=;②“x A ∈”是 “x B ∈”的充分不必要条件;③A B =∅这三个条件中任选一个,补充到本题第(2)问的横线处,求解下列问题:已知集合{}11A x a x a =-≤≤+,{}2230B x x x =--≤(1)当2a =时,求A B ; (2)若______,求实数a 的取值范围.28.设函数()()21,R f x ax a x =-∈的不动点(满足()f x x =)、稳定点(满足()()f f x x =)的集合分别为A 、B .若A B =≠∅,求实数a 的取值范围.29.已知集合702x A xx ⎧⎫-=≤⎨⎬+⎩⎭,{}123B x m x m =-≤≤-. (1)当6m =时,求集合A B ;(2)若{}58C x x =<≤,“()x A C ∈⋂”是“x B ∈”的充分条件,求实数m 的取值范围.30.设Y 是由6的全体正约数组成的集合,写出Y 的所有子集.【参考答案】一、单选题 1.B 【解析】 【分析】先解出集合A ,再按照对数的运算求出集合B ,即可求解. 【详解】由260x x --<,解得23x -<<,故{}1,0,1,2A =-,()2222ln (1)1ln(11)ln 2,ln 010,ln(21)ln5⎡⎤-+=+=+=+=⎣⎦,故{}ln 2,0,ln5B =,集合B 中元素个数为3. 故选:B. 2.D 【解析】 【分析】首先解分式不等式求出集合A ,再根据补集的定义求出RA 、RB ,再根据集合间解得基本关系判断可得; 【详解】 解:由102x x -<-,等价于()()120x x --<,解得12x <<, 所以{}10|122x A xx x x -⎧⎫=<=<<⎨⎬-⎩⎭,{}R|12A x x x =≤≥或又{1}B x x =>-,所以{}R 1B x x =≤-, 所以A B ⊆ 故选:D 3.B 【解析】 【分析】求解不等式可得集合A ,根据对数函数的定义可得集合B ,进而求解. 【详解】因为220x x --<,所以12x -<<,则{}12A x x =-<<, 因为220x ->,所以1x >,则{}1B x x =>, 所以{}12B x A =<<, 故选:B 4.C 【解析】 【分析】结合余弦型函数的周期性可得到{}1,1,2,2A =--,再得到2230x x --<的解集,进而求解. 【详解】 因为2cos3y x π=的最小正周期263T ππ==且1cos32π=, 21coscos cos 3332ππππ⎛⎫=-=-=- ⎪⎝⎭,3cos 13π=-,41cos cos cos 3332ππππ⎛⎫=+=-=- ⎪⎝⎭,51cos cos 2cos 3332ππππ⎛⎫=-== ⎪⎝⎭, 6cos13π=,71cos cos 2cos 3332ππππ⎛⎫=+== ⎪⎝⎭,,所以{}*|2cos ,1,1,2,23n A x x n N π⎧⎫==∈=--⎨⎬⎩⎭, 又{}{}223013B x x x x x =--<=-<<,所以{}1,2A B =, 故选:C 5.C 【解析】 【分析】先解指数不等式得集合B ,然后由交集定义可得. 【详解】由2139xx -=⎛⎪3⎫⎭<⎝,得12x >-,所以12B x x ⎧⎫=>-⎨⎬⎩⎭,所以{}0,2,3A B =.故选:C . 6.B 【解析】 【分析】由对数的运算性质,并解指数不等式可得31{|log }2B x x =≥,再由集合的交运算求A B . 【详解】由31{|log }2B x x =≥,而311log 02-<<, 所以{0,1}A B =. 故选:B 7.C 【解析】 【分析】根据集合的并集可得答案. 【详解】因为集合{M ⋃永安,漳平}{=德化,漳平,永安}, 所以集合M 可以为{德化},{德化,漳平},{德化,永安}, {德化,永安,漳平},共4个,故选:C. 8.D 【解析】 【分析】求解分式不等式的解集,再由补集的定义求解出A R,再由交集的定义去求解得答案.【详解】1015x x x ->⇒<-或5x >,所以{}15A x x =≤≤R , 所以得(){}13A B x x ⋂=≤≤R . 故选:D 9.C 【解析】 【分析】根据集合交、并的定义,直接求出()A B C . 【详解】因为集合{}02A x x =≤≤,B={1,2,3},所以{}1,2A B =, 所以()A B C ={1,2,3,4}. 故选:C 10.D 【解析】 【分析】先化简集合A ,继而求出A B . 【详解】解:(){}{}30=03A x x x x x =-<<<,{}0,1,2,3B =,则A B ={}1,2. 故选:D. 11.D 【解析】 【分析】 先求出RN ,再结合交集定义即可求解.【详解】 由{}{}R210x N x x x =≤=≤,得()R M N ⋂={}1,0-故选:D 12.A 【解析】 【分析】根据对数函数的单调性解得集合B ,再求A B ⋂即可得到其元素个数. 【详解】因为{34}A x Zx =∈-≤<∣{}3,2,1,0,1,2,3=---, ()2log 22x +<,即()22log 2log 4x +<,故024x <+<,解得22x -<<,即{|22}B x x =-<<,则{}1,0,1A B ⋂=-,其包含3个元素.13.C 【解析】 【分析】由子集的定义即可求解. 【详解】解:因为集合{}{}|2|21A x x B x x =≥-=-≤≤,, 所以根据子集的定义可知B A ⊆, 故选:C. 14.C 【解析】 【分析】根据分式不等式和对数不等式求出集合A 和B ,利用交集的定义 和集合的包含关系即可求解. 【详解】 由x31,得03x <≤, 所以}{N ,,A x x ⎧⎫=∈=⎨⎬⎭⎩31123. 由()log x +≤211,得11x -<≤. 所以()}{}{N log ,B x x =∈+≤=21101.由S A ⊆,S B ⋂≠∅,知S 中必含有元素1,可以有元素2,3.所以S 只有{}1,{}12,,{}13,,{}123,,,即集合S 的个数共4个. 故选:C. 15.C 【解析】 【分析】求得集合{|33}B x x =-<<,结合集合交集的运算,即可求解. 【详解】由题意,集合2{|9}{|33}B x x x x =<=-<<, 又由集合{4,3,2,1,0,1,2,3,4}A =----, 所以A B ={2,1,0,1,2}--. 故选:C.二、填空题16.{}0,1,3【解析】根据元素的确定性和互异性可求实数a 的取值. 【详解】因为{}31,3,a a ∈-,故1a =-或3a =或3a a =,当1a =-时,31a =-,与元素的互异性矛盾,舍; 当3a =时,327a =,符合;当3a a =时,0a =或1a =±,根据元素的互异性,0,1a =符合, 故a 的取值集合为{}0,1,3. 故答案为:{}0,1,3 17.2 【解析】 【分析】由已知,两集合相等,可借助集合中元素的的互异性列出方程组,解方程即可完成求解. 【详解】因为集合2{2,}x 与{4,}x 相等,则242x x ⎧=⎨=⎩,解得2x =.故答案为:2. 18.4a ≤-或5a ≥ 【解析】 【分析】由3a a <+可得A ≠∅,根据题意可得到端点的大小关系,得到不等式,从而可得答案. 【详解】由题意 3a a <+,则A ≠∅要使得A B =∅,则31a +≤-或5a ≥ 解得4a ≤-或5a ≥ 故答案为:4a ≤-或5a ≥ 19.8 【解析】 【分析】先求得A B ,然后求得A B 的子集的个数. 【详解】{}{}2,3,3,4A B ==,{2,3,4}A B ⋃=,有3个元素,所以子集个数为328=.故答案为:820.{}0,1【解析】 【分析】先求出集合A ,然后根据交集的定义求得答案. 【详解】由题意,{}22A x x =-<<,所以{}0,1A B =. 故答案为:{}0,1.21.{}10123-,,,, 【解析】 【分析】根据并集的定义可得答案. 【详解】{}1,2,3A =,{}1,0,1B =-,∴{}10123A B ⋃=-,,,,. 故答案为:{}10123-,,,,. 22.24a ≤≤【解析】 【分析】先由已知条件判断出函数()f x 的单调性,再把不等式()22f x a ->-转化为整式不等式,再利用子集的要求即可求得a 的取值范围. 【详解】由()()2f x f x =-可知,()f x 关于1x =对称,又()22f =-,当1≥x 时,()22f x x =-单调递减,故不等式()22f x a ->-等价于211x a --<,即122a ax <<+, 因为不等式解集是集合{}13x x <<的子集, 所以12132aa ⎧≥⎪⎪⎨⎪+≤⎪⎩,解得24a ≤≤.故答案为:24a ≤≤23.{}1【解析】 【分析】易知{}1,1B =-,分别验证1,1-和集合A 的关系即可得结果. 【详解】因为{}{}21,1,1B y y y R ==∈=-,13cos 23π=,()13cos 23π--≠,即1A ∈,1A -∉,所以{}1A B ⋂=, 故答案为:{}1.24.102m -≤≤【解析】 【分析】根据给定条件可得β所对集合包含于α所对集合,再利用集合的包含关系列式作答. 【详解】令α所对集合为:{|124(R)}x m x m m +≤≤+∈,β所对集合为:{|13}x x ≤≤, 因β是α的充分条件,则必有{|13}{|124(R)}x x x m x m m ≤≤⊆+≤≤+∈,于是得11243m m +≤⎧⎨+≥⎩,解得102m -≤≤,所以实数m 的取值范围为102m -≤≤.故答案为:102m -≤≤25.9,4⎧-⎨⎩【解析】 【分析】 由方程212x ax +=-只有一解可得,注意方程增根情形. 【详解】 由题意方程212x ax +=-只有一解或两个相等的实根, 220x x a ---=(*),14(2)0a ∆=++=,94a =-,此时,方程的解为1212x x ==,满足题意,1{}2A =;若方程(*)有一个根是x 1x =a ={1A =;若方程(*)有一个根是x =1x =a ={1A =+.综上,a 的取值集合为9{,4-.故答案为:9{,4-.三、解答题26.(1){|11A B x x ⋂=-<≤或36}x ≤<;A B R ⋃= (2)∅ 【解析】 【分析】(1)先求解集合A ,再根据交集和并集的概念写出结论即可; (2)先分别求解集合A 和集合B 的补集,再根据交集的概念写出答案.(1)根据{}2|560A x x x =--<可知,{}|16A x x =-<< 又{|3B x x =≥或1}x ≤{|11A B x x ∴⋂=-<≤或36}x ≤<;A B R ⋃=.(2)根据题意,{|1U A x x =≤-或6}x ≥;{|13}U B x x =<<所以()()U U A B ⋂=∅.27.(1){}|13A B x x ⋃=-≤≤(2)条件选择见解析,()(),24,-∞-+∞【解析】【分析】(1)化简集合A 与B 之后求二者的并集(2)先判断集合A 与B 的关系,再求a 的取值范围(1)当2a =时,集合{}|13A x x =≤≤,{}|13B x x =-≤≤,所以{}|13A B x x ⋃=-≤≤;(2)若选择①A ∪B =B ,则A B ⊆,因为{}|11A x a x a =-≤≤+,所以A ≠∅,又{}|13B x x =-≤≤, 所以1113a a -≥-⎧⎨+≤⎩,解得02a ≤≤, 所以实数a 的取值范围是[]0,2.若选择②,“x A ∈“是“x B ∈”的充分不必要条件,则A B ,因为{}|11A x a x a =-≤≤+,所以A ≠∅, 又{}|13B x x =-≤≤,所以1113a a -≥-⎧⎨+≤⎩,解得02a ≤≤, 所以实数a 的取值范围是[]0,2.若选择③,A B =∅,因为{}|11A x a x a =-≤≤+,{}|13B x x =-≤≤,所以13a ->或11a +<-,解得4a >或2a <-,所以实数a 的取值范围是()(),24,-∞-+∞.28.13,44⎡⎤-⎢⎥⎣⎦【解析】【分析】根据函数的不动点、稳定点的定义结合题意分别求出集合A 、B ,再结合结合A B =≠∅即可求解.【详解】由题意可知,()21f x ax x =-=, {}210A x ax x -=-=,由()()f f x x =,得()()342222221110a x a x x a ax x a xax a --+-=--+-+=, (){}2211B x a ax x =--={}3422210x a x a x x a =--+-=. ()(){}222110x ax x a x ax a =--+-+=. 当0a =时,()1f x =-.则集合{}1A B ==-,满足题设要求.当0a ≠时,当A B =≠∅时,方程210ax x --=有解,对方程2210a x ax a +-+=根的情况进行分类讨论若方程2210a x ax a +-+=有两个不相等的实数根,则22 1+40-4(1-) >0 0 a a a a a ≥⎧⎪⎨⎪≠⎩,解得34a >, 此时两个方程没有公共解,集合B 中有四个元素,不合题意,舍去. 若方程2210a x ax a +-+=有两个相等的实数根,则22 1+40-4(1-) =0 0 a a a a a ≥⎧⎪⎨⎪≠⎩,解得34a = 此时方程210ax x --=的两根分别为2,23-, 方程2210a x ax a +-+=的根为1223x x ==-. 验证得2,23A B ⎧⎫==-⎨⎬⎭⎩ 若方程2210a x ax a +-+=无实数根,此时A B =,则22 1+40-4(1-) <0 0 a a a a a ≥⎧⎪⎨⎪≠⎩,解得1344a -≤<且0a ≠ 综上所述,实数a 的取值范围为13,44⎡⎤-⎢⎥⎣⎦. 29.(1){|29}x x -<≤(2)56m ≤≤【解析】【分析】(1)先化简集合A ,由6m =解得集合B ,然后利用并集运算求解.(2)根据“()x A C ∈⋂”是“x B ∈”的充分条件,转化为A B ⊆求解.(1) 由702x x -≤+得:27x -<≤,即27{|}A x x =-<≤, 当6m =时,{|59}B x x =≤≤,所以{|29}A B x x ⋃=-<≤.(2) 因为{}58C x x =<≤,所以{}57A C x x ⋂=<≤,由“A C ”是“x B ∈”的充分条件,则()A C B ⋂⊆,则2312237556156m m m m m m m m -≥-≥⎧⎧⎪⎪-≥⇒≥⇒≤≤⎨⎨⎪⎪-≤≤⎩⎩, 实数m 的取值范围是56m ≤≤.30.答案见解析【解析】【分析】首先写出6的正约数,即可得到集合Y ,再用列举法列出Y 的所有子集;【详解】解:因为6的正约数有1、2、3、6,所以{}1,2,3,6Y =,所以Y 的子集有:∅、{}1、{}2、{}3、{}6、{}1,2、{}1,3、{}1,6、{}2,3、{}2,6、{}3,6、{}1,2,3、{}1,2,6、{}1,3,6、{}2,3,6、{}1,2,3,6共16个;。

集合练习卷(1)---集合的概念

集合练习卷(1)---集合的概念

集合练习卷(1)---集合的概念一、知识点:1、集合:某些 的对象集在一起就形成一个集合,简称集。

2、元素:集合中的每个 叫做这个集合的元素。

3、元素性质:集合的元素具有 、 、 。

4、集合和元素地符号:集合用 字母表示,元素用 字母表示。

5、集合分类:按元素的多少,集合可分为 、 、 三类。

6、集合的表示方法:常用的有 与 。

7、元素与集合的关系:a 是集合A 的元素,记做 、a 不是集合A 的元素,记做 。

8、常用数集的记法:N 表示 、N *表示 、Z 表示 、Q 表示 、R 表示 、R +表示 、Q +表示9、子集:对于两个集合A 与B ,如果集合A 的 元素都是集合B 的元素,我们就说集合A 集合B ,或集合B 集合A 。

也说集合A 是集合B 的子集。

即:若“B x A x ∈⇒∈”则B A ⊆。

10、任何一个集合是 的子集。

11、空集是 集合的子集。

12、相等:对于两个集合A 与B ,如果集合A 的 元素都是集合B 的元素,同时集合B 的 元素都是集合A 的元素,我们就说A B 。

即:若A B ,同时B A ,那么B A =。

13、真子集:对于两个集合A 与B ,如果A B ,并且A B ,我们就说集合A 是集合B 的真子集。

14、空集是 集合的真子集。

15、含n 个元素的集合,子集数为 ,真子集数为 ,非空真子集数为 。

答案:1、指定,2、对象,3、确定性、互异性、无序性,4、大写、小写,5、无限集、有限集、空集,6、列举法、描述法,7、A a ∈、A a ∉,8、自然数集、正整数集、整数集、有理数集、实数集、正实数集、正有理数集,9、任何一个、包含于、包含,10、它本身,11、任何一个12、任何一个、任何一个、等于、⊆、⊆,13、⊆、≠,14、任何一个非空,15、n 2、12-n 、22-n。

例1、下面给出的四类对象中,构成集合的是 ( )A.某班个子较高的同学B.相当大的实数C.我国著名数学家 D .倒数等于它本身的数练习:下列各项中,不可以组成集合的是 ( )A .所有的正数B .等于2的数C .接近于0的数D .不等于0的偶数例2、下列八个关系式 ①{0}=φ ②0∈φ ③φ⊆{φ} ④φ∈{φ} ⑤{0}⊇φ⑥0∉{{0},φ} ⑦{φ}⊆{0} ⑧φ∈{0}其中正确的个数 ( )(A )4 (B )5 (C )6 (D )7 练习:若集合*}16|{N x Z x S ∈-∈=,用列举法表示集合S 。

第一章 集合典型例题(1)(含答案及解析)-苏教版人教版必修1高一数学上册同步培优训练

第一章 集合典型例题(1)(含答案及解析)-苏教版人教版必修1高一数学上册同步培优训练

专题01 集合中的典型题(1)(满分120分时间:60分钟)班级姓名得分一、选择题:1.下列各式中,正确的个数是:①{0}∈{0,1,2};②{0,1,2}⊆{2,1,0};③⌀⊆{0,1,2};④⌀={0};⑤{0,1}={(0,1)};⑥0={0}.()A. 1B. 2C. 3D. 42.已知非空集合A,B满足以下两个条件:(ⅰ)A∪B={1,2,3,4,5,6},A⋂B=⌀;(ⅰ)若x∈A,则x+1∈B.则有序集合对(A,B)的个数为()A. 12B. 13C. 14D. 153.已知集合A=(1,3),集合B={x|2m<x<1−m}.若A∩B=⌀,则实数m的取值范围是()A. 13⩽m<32B. m⩾0C. m⩾32D. 13<m<324.设M,P是两个非空集合,规定M−P={x|x∈M,且x∉P},根据这一规定,M−(M−P)等于()A. MB. PC. M∪PD. M∩P5.若集合M={x|x≤6},a=2√2,则下面结论中正确的是A. {a}⫋MB. a⫋MC. {a}∈MD. a∉M6.中国古代重要的数学著作孙子算经下卷有题:今有物,不知其数,三三数之,剩二;五五数之,剩三;七七数之,剩二.问:物几何?现有如下表示:已知A={x|x=3n+2,n∈N∗}, B={x|x=5n+3,n∈N∗},C={x|x=7n+2,n∈N∗},若x∈A∩B∩C,则整数x的最小值为()A. 128B. 127C. 37D. 23二、多选题7.设P是一个数集,且至少含有两个数,若对任意a、b∈P,都有a+b、a−b、ab、ab∈P(除数b≠0)则称P是一个数域,例如有理数集Q是数域,下列命题中正确的是()A. 数域必含有0,1两个数B. 整数集是数域C. 若有理数集Q⊆M,则数集M必为数域D. 数域必为无限集∈A,则称集合8.若集合A具有以下性质:(1)0∈A,1∈A;(2)x,y∈A,则x−y∈A,且x≠0时,1x A是“完美集”,给出以下结论,其中正确结论的序号是()A. 集合B={−1,0,1}是“完美集”;B. 有理数集Q是“完美集”;C. 设集合A是“完美集”,若x,y∈A,则x+y∈A;D. 设集合A是“完美集”,若x,y∈A,则xy∈A;9.对任意A,B⊆R,记AⅰB= { x|x∈A∪B,x∉A∩B},并称AⅰB为集合A,B的对称差.例如,若A={1,2,3},B={2,3,4},则AⅰB={1,4}.下列命题中,正确的是()A. 若A,B⊆R,且AⅰB=B,则A=⌀B. 若A,B⊆R,且AⅰB=⌀,则A=BC. 若A,B⊆R,且AⅰB⊆A,则A⊆BD. 存在A,B⊆R,使得AⅰB=(∁R A)ⅰ(∁R B)三、单空题10.已知集合M={a2,0},N={1,a,2},且M∩N={1},那么M∪N的子集有______ 个.11.已知集合M={x|x2−2x−8=0},N={x|ax+4=0},且N⊆M,则由a的取值组成的集合是_________.12.已知集合A={x|ax+1=0},B={x|x2−3x+2=0},若A⊆B,则a的取值集合为_______.13.设集合A={1,a2−3},B={−4,a−1},若A⋃B中恰有3个元素,则a=________.四、解答题14.已知集合A={x∈R|mx2−2x+1=0},在下列条件下分别求实数m的取值范围.(1)A=⌀;(2)A恰有两个子集;.15.设集合A={x|x2−3x+2=0},B={x|x2+(a−1)x+a2−5=0}.(1)若A∩B={2},求实数a的值;(2)若A∪B=A,求实数a的取值范围.16.已知全集,集合M={x|−2≤x≤5},N={x|a+1≤x≤2a+1}.(Ⅰ)若a=2,求;(Ⅱ)若M∪N=M,求实数a的取值范围.17.已知集合A={x|a−12<x<a2},B={x|0<x<1}(Ⅰ)若a=12,求A⋃(∁R B).(Ⅱ)若A⋂B=⌀,求实数a的取值范围.一、选择题:1.下列各式中,正确的个数是:①{0}∈{0,1,2};②{0,1,2}⊆{2,1,0};③⌀⊆{0,1,2};④⌀={0};⑤{0,1}={(0,1)};⑥0={0}.()A. 1B. 2C. 3D. 4【答案】B【解析】【分析】本题主要考查元素与集合、集合与集合之间的基本关系,特别要注意空集这一概念在题中的特殊性,根据集合中的相关概念,对每个命题进行一一判断.【解答】解:对①,集合与集合之间不能用∈符号,故①不正确;对②,由于两个集合相等,任何集合都是本身的子集,故②正确;对③,空集是任何集合的子集,故③正确;对④,空集是不含任何元素的集合,而{0}是含有1个元素的集合,故④不正确;对⑤,集合{0,1}是数集,含有2个元素,集合{(0,1)}是点集,只含1个元素,故⑤不正确;对⑥,元素与集合只能用∈或∉符号,故⑥不正确.故选B.2.已知非空集合A,B满足以下两个条件:(ⅰ)A∪B={1,2,3,4,5,6},A⋂B=⌀;(ⅰ)若x∈A,则x+1∈B.则有序集合对(A,B)的个数为()A. 12B. 13C. 14D. 15【答案】A【解析】【分析】本题考查交集、并集及其运算,考查了学生理解问题的能力.分别讨论集合A,B元素个数,即可得到结论.根据元素关系分别进行讨论是解决本题的关键.【解答】解:若集合A 中只有1个元素,则集合B 中有5个元素,则A 可以为{1},{2},{3},{4},{5},有5种; 若集合A 中只有2个元素,则集合B 中有4个元素,则A 可以为{1,3},{1,4},{1,5},{2,4},{2,5},{3,5},有6种;若集合A 中只有3个元素,则集合B 中有3个元素,则A 只能是{1,3,5},只有1种,则共有有序集合对(A,B)12个,故选A .3. 已知集合A =(1,3),集合B ={x|2m <x <1−m}.若A ∩B =⌀,则实数m 的取值范围是( )A. 13⩽m <32B. m ⩾0C. m ⩾32D. 13<m <32【答案】B【解析】【分析】本题考查集合的包含关系判断与应用,交集及其运算等基础知识分类讨论m 的取值,得出使A ∩B =Ø成立时m 的取值范围.【解答】解:由A ∩B =Ø,得:①若2m ≥1−m ,即m ≥13时,B =Ø,符合题意;②若2m <1−m ,即m <13时,需{m <131−m ≤1或{m <132m ≥3,解得0≤m <13,综合可得m ≥0,∴实数m 的取值范围是m ≥0.故选B .4. 设M ,P 是两个非空集合,规定M −P ={x|x ∈M ,且x ∉P},根据这一规定,M −(M −P)等于() A. M B. P C. M ∪P D. M ∩P【答案】D【解析】【分析】本题考查了集合新定义问题,属于较难题.分M ∩P =⌀与M ∩P ≠⌀讨论,可证明M −(M −P)=M ∩P .解:当M∩P=⌀时,∵任意x∈M都有x∉P,∴M−P=M,∴M−(M−P)=⌀=M∩P;当M∩P≠⌀时,M−P表示了在M中但不在P中的元素,M−(M−P)表示了在M中但不在M−P中的元素,∵M−P中的元素都不在P中,所以M−(M−P)中的元素都在P中,∴M−(M−P)中的元素都在M∩P中,∴M−(M−P)=M∩P.故选D.5.若集合M={x|x≤6},a=2√2,则下面结论中正确的是A. {a}⫋MB. a⫋MC. {a}∈MD. a∉M【答案】A【解析】【分析】本题考查元素与集合的关系及集合与集合的关系,由a=2√2<6即可求解.【解答】解:因为集合M={x|x≤6},a=2√2<6,所以{a}⫋M.故选A.6.中国古代重要的数学著作孙子算经下卷有题:今有物,不知其数,三三数之,剩二;五五数之,剩三;七七数之,剩二.问:物几何?现有如下表示:已知A={x|x=3n+2,n∈N∗}, B={x|x=5n+3,n∈N∗},C={x|x=7n+2,n∈N∗},若x∈A∩B∩C,则整数x的最小值为()A. 128B. 127C. 37D. 23【解析】【分析】本题考查集合的应用,描述法的定义,交集及其运算,元素与集合的关系.先从四个选择中最小的数开始进行检验是否满足x∈A∩B∩C,即x属于A,B,C中每一个集合,找出最小的一个即可.【解答】解:∵23=3×7+2=5×4+3=7×3+2,∴23∈A,23∈B,23∈C,∴23∈A∩B∩C,所以23是四个答案中最小的一个,故选:D.二、多选题∈P(除数b≠0)则7.设P是一个数集,且至少含有两个数,若对任意a、b∈P,都有a+b、a−b、ab、ab 称P是一个数域,例如有理数集Q是数域,下列命题中正确的是()A. 数域必含有0,1两个数B. 整数集是数域C. 若有理数集Q⊆M,则数集M必为数域D. 数域必为无限集【答案】AD【解析】【分析】这是一道新运算类的题目,其特点一般是“新”而不“难”,处理的方法一般为:根据新运算的定义,将已知中的四个命题代入进行检验,要满足对四种运算的封闭,只有一个个来检验.本题考查的主要知识点是新定义概念的理解能力.我们可根据已知中对数域的定义:设P是一个数集,且至少含有两个数,若对∈P(除数b≠0)则称P是一个数域,对四个命题逐一进行判断即任意a、b∈P,都有a+b、a−b、ab、ab可等到正确的结果.解:当a=b时,a−b=0、ab=1∈P,故可知A正确.当a=1,b=2,12∉Z不满足条件,故可知B不正确.当M中多一个元素复数i则会出现1+i∉M,所以它也不是一个数域,故可知C不正确.根据数据的性质易得数域有无限多个元素,必为无限集,故可知D正确.故选AD.8.若集合A具有以下性质:(1)0∈A,1∈A;(2)x,y∈A,则x−y∈A,且x≠0时,1x∈A,则称集合A是“完美集”,给出以下结论,其中正确结论的序号是()A. 集合B={−1,0,1}是“完美集”;B. 有理数集Q是“完美集”;C. 设集合A是“完美集”,若x,y∈A,则x+y∈A;D. 设集合A是“完美集”,若x,y∈A,则xy∈A;【答案】BCD【解析】【分析】本题主要考查新定义,利用条件进行推理,考查学生的推理能力,根据“完美集”的定义,分别进行判断即可.【解答】解:A.∵1,−1∈B,1−(−1)=2∉B,不满足性质(2),∴A不正确;B.∵0∈Q,1∈Q,x、y∈Q,∴0−y=−y∈Q,∴x+y=x−(−y)∈Q,且x≠0时,1x∈Q,∴B正确;C.∵0∈A,x、y∈A,∴0−y=−y∈A,∴x+y=x−(−y)∈A,故C正确;D.x,y∈A时,①若x=0,或1,则x2∈A;②若x≠0,且x≠1,则x−1,1x−1,1x∈A,∴1x−1−1x=1x2−x∈A;∴x2−x∈A,x2−x+x=x2∈A;∴x∈A得到x2∈A;∴同理可得y2∈A,x2+y2∈A,(x+y)2∈A;∴2xy=(x+y)2−(x2+y2)∈A;若x,y有一个为0,则xy∈A,若x,y都不为0,则:1 xy =12xy+12xy∈A,∴xy∈A;∴x∈A,y∈A,能得到xy∈A,故D正确.故选BCD.9.对任意A,B⊆R,记AⅰB= { x|x∈A∪B,x∉A∩B},并称AⅰB为集合A,B的对称差.例如,若A={1,2,3},B={2,3,4},则AⅰB={1,4}.下列命题中,正确的是()A. 若A,B⊆R,且AⅰB=B,则A=⌀B. 若A,B⊆R,且AⅰB=⌀,则A=BC. 若A,B⊆R,且AⅰB⊆A,则A⊆BD. 存在A,B⊆R,使得AⅰB=(∁R A)ⅰ(∁R B)【答案】ABD【解析】【分析】本题主要考查新定义,属于较难题.根据新定义,逐一判断即可.【解答】解:由题意可得:,故正确;,所以正确;若A,B⊆R,且A⊕B⊆A,则B⊆A,故不正确;存在A,B⊆R,使得A⊕B=(∁R A)⊕(∁R B,)如A=B,故正确.故答案为ABD.三、单空题10.已知集合M={a2,0},N={1,a,2},且M∩N={1},那么M∪N的子集有______ 个.【答案】16【解析】解:∵M={a2,0},N={1,a,2},且M∩N={1},∴a=−1,∴M∪N={−1,0,1,2},故M∪N的子集有24=16个.故答案为:16.由题意先确定集合M,N,再求M∪N={−1,0,1,2},从而求子集的个数.本题考查了集合的运算及集合的化简,同时考查了集合的子集个数问题,11.已知集合M={x|x2−2x−8=0},N={x|ax+4=0},且N⊆M,则由a的取值组成的集合是_________.【答案】{0,−1,2}【解析】【分析】本题考查集合关系中参数取值问题,根据集合M={x|x2+x−8=0}写出集合M最简单的形式,然后再根据N⊆M,求出a的值,【解答】解:∵集合M={x|x2−2x−8=0}={−2,4},∵N⊆M,N={x|ax+4=0},∴N=⌀,或N={−2}或N={4}三种情况,当N=⌀时,可得a=0,此时N=⌀;当N={−2}时,−2a+4=0,可得a=2;当N={4}时,4a+4=0,可得a=−1.∴a的可能值组成的集合为{0,−1,2}.故答案为{0,−1,2}.12.已知集合A={x|ax+1=0},B={x|x2−3x+2=0},若A⊆B,则a的取值集合为_______.【答案】{−1,0,−12}.【解析】【分析】本题考查集合的包含关系及应用.根据A⊆B,利用分类讨论思想求解即可,特别要注意A=⌀不可忽略.【解答】解:当a=0时,A=⌀,满足A⊆B;当a≠0时,A={−1a }⊆B,−1a=1或−1a=2,解得a=−12或−1,}.综上实数a的所有可能取值的集合为{−1,0,−12}.故答案为{−1,0,−1213.设集合A={1,a2−3},B={−4,a−1},若A⋃B中恰有3个元素,则a=________.【答案】−1【解析】【分析】本题考查了并集及其运算,熟练掌握交集的定义是解本题的关键.由A,B,以及A与B的交集恰有3个元素,确定出a的值即可.【解答】解:因为a2−3≥−3>−4,所以由题意得a2−3=a−1或a−1=1,解得a=2或a=−1.当a=2时,集合A中的两个元素重合,舍去,所以a=−1.四、解答题14.已知集合A={x∈R|mx2−2x+1=0},在下列条件下分别求实数m的取值范围.(1)A=⌀;(2)A恰有两个子集;.【答案】解:(1)若A=⌀,则关于x的方程mx2−2x+1=0没有实数解,则m≠0,且△=4−4m<0,所以m>1;(2)若A恰有两个子集,则A为单元素集,所以关于x的方程mx2−2x+1=0恰有一个实数解,,满足题意;讨论:①当m=0时,x=12②当m≠0时,△=4−4m,所以m=1.综上所述,m=0或m=1;,2)≠⌀,(3)若A∩(12,2)内有解,则关于x的方程mx2=2x−1在区间(12这等价于当x∈(12,2)时,求m=2x−1x2=1−(1x−1)2的值域,∴m∈(0,1].【解析】本题考查空集的概念、子集的个数问题以及含参数的集合运算问题,综合性较强,属于拔高题.(1)若A=⌀,则关于x的方程mx2−2x+1=0没有实数解,则m≠0,由此能求出实数m的取值范围.(2)若A恰有两个子集,则A为单元素集,所以关于x的方程mx2−2x+1=0恰有一个实数解,分类讨论能求出实数m的取值范围.(3)若A∩(12,2)≠⌀,则关于x的方程mx2=2x−1在区间(12,2)内有解,这等价于求m=2x−1x2,x∈(12,2)时的值域.15.设集合A={x|x2−3x+2=0},B={x|x2+(a−1)x+a2−5=0}.(1)若A∩B={2},求实数a的值;(2)若A∪B=A,求实数a的取值范围.【答案】解:(1)由题意得A={x|x2−3x+2=0}={1,2}∵A∩B={2},∴2∈B∴22+(a−1)×2+a2−5=0,即4+2a−2+a2−5=0化简得:a2+2a−3=0,所以(a+3)(a−1)=0,解得:a=−3或a=1.检验:当a=−3时,B={x|x2−4x+4=0}={2},满足A∩B={2},当a=1时,B={x|x2−4=0}={−2,2},满足A∩B={2},∴a=−3或a=1;(2)∵A∪B=A,故B⊆A,①当B=⌀,则(a−1)2−4(a2−5)<0,即a2−2a+1−4a2+20<0,即−3a2−2a+21<0,即3a2+2a−21>0,即(3a−7)(a+3)>0,解得:a>73或a<−3,②当B为单元素集,则,即(a−1)2−4(a2−5)=0,得a=73或a=−3当a =73时,B ={−23}⊄A ,舍当a =−3时, B ={2}⊆A 符合,③当B 为双元素集,则B =A ={1,2}则有{1+2=1−a 1×2=a 2−5无解, 综上:a >73或a ≤−3【解析】本题主要查了交集、并集以及一元二次方程的解法,考查了学生分类讨论的思想,培养了学生的综合能力.(1)由A ∩B ={2},知2∈B ,将2代入求出a ,进而进行检验,得出集合B ,得出结论.(2)由A ∪B =A ,知B ⊆A ,再根据一元二次方程根的情况讨论B 的情况,得出a 的取值范围.16. 已知全集,集合M ={x|−2≤x ≤5},N ={x|a +1≤x ≤2a +1}. (Ⅰ)若a =2,求;(Ⅱ)若M ∪N =M ,求实数a 的取值范围.【答案】解:(Ⅰ)若a =2,则N ={x|3≤x ≤5},则或x <3}; 则;(Ⅱ)若M ∪N =M ,则N ⊆M ,①若N =⌀,即a +1>2a +1,得a <0,此时满足条件;②当N ≠⌀,则满足{a +1≤2a +12a +1≤5a +1≥−2,得0≤a ≤2,综上a ≤2,故a 的取值范围是(−∞,2].【解析】本题主要考查集合的基本运算,根据集合的基本关系以及基本运算是解决本题的关键,属于拔高题.(Ⅰ)根据集合的基本运算进行求解即可;(Ⅱ)根据M ∪N =M ,得N ⊆M ,讨论N 是否是空集,根据集合的关系进行转化求解即可.17. 已知集合A ={x |a −12<x <a 2},B ={x |0<x <1}(Ⅰ)若a =12,求A⋃(∁R B ).(Ⅱ)若A⋂B =⌀,求实数a 的取值范围.【答案】(Ⅰ)当a =12时A ={x|0<x <14},C R B ={x|x ≤0或x ≥1},∴A ∪(∁R B)={x|x <14或x ≥1};(Ⅱ)当A =ϕ时,即a −12⩾a 2解得a ⩾1,当A ≠ϕ时,需满足{a <1a −12⩾1或{a <1a 2⩽0,解得a ⩽0,综上a ⩽0或a ⩾1 .【解析】本题考查集合的运算以及集合的关系(1)当a =12时,得到集合A ,C R B 利用并集概念即可求出A ∪(∁R B); (2)分A =Φ和A ≠Φ两种情况即可求解,然后再求并集.。

高中数学集合测试题(含答案和解析)

高中数学集合测试题(含答案和解析)

集合测试题请认真审题,仔细作答,发挥出自己的真实水平!一、单项选择题 :1.设集合,则( ) A .{75}x x -<<-∣ B .{35}xx <<∣ C .{53}xx -<<∣ D .{|75}x x -<< 【答案】C【解析】考点:其他不等式的解法;交集及其运算.分析:由绝对值的意义解出集合S ,再解出集合T ,求交集即可.解答:由{|55}S x x =-<<,{|73}T x x =-<<故{|53}ST x x =-<<, 故选C2.已知集合,则集合等于( )A .{-1,1}B .{-1,0,1}C .{0,1}D .{-1,0}【答案】 A3.若集合,且,则实数m 的可取值组成的集合是( )A .B .C .D . {}()(){}5,730S x x T x x x =<=+-<S T ⋂={}}{Z n n x x N x x M ∈+==<-=,12,042N M ⋂{}{}260,10P x x x T x mx =+-==+=T P ⊆11,32⎧⎫-⎨⎬⎩⎭13⎧⎫⎨⎬⎩⎭11,,032⎧⎫-⎨⎬⎩⎭12⎧⎫-⎨⎬⎩⎭C4.若{1,2}A {1,2,3,4,5}则满足条件的集合A 的个数是( )A .6B .7C .8D .9【答案】C5.设P={x|x ≤8},,则下列关系式中正确的是( ).A .a PB .a PC .{a}PD .{a}P【答案】D6.已知集合{}(){}1,2,3,4,5,,,,A B x y x A y A x y A ==∈∈-∈,则B 中所含元素的个数为( )A .3B .6C . 8D .10 【答案】 D【解析】考点:元素与集合关系的判断.专题:计算题.分析:由题意,根据集合B 中的元素属性对x ,y 进行赋值得出B 中所有元素,即可得出B 中所含有的元素个数,得出正确选项解答:解:由题意,x=5时,y=1,2,3,4,x=4时,y=1,2,3,x=3时,y=1,2,⊆⊆⊆∉∈⊂综上知,B中的元素个数为10个故选D点评:本题考查元素与集合的关系的判断,解题的关键是理解题意,领会集合B中元素的属性,用分类列举的方法得出集合B中的元素的个数7.已知集合A={x|x2-x-2<0},B={x|-1<x<1},则()A.A B B.B A C.A=B D.A∩B=【答案】B【解析】考点:集合的包含关系判断及应用.专题:计算题.分析:先求出集合A,然后根据集合之间的关系可判断解答:解:由题意可得,A={x|-1<x<2} ∵B={x|-1<x<1}在集合B中的元素都属于集合A,但是在集合A中的元素不一定在集合B中,例如x=3/2∴B A故选B点评:本题主要考查了集合之间关系的判断,属于基础试题8.不等式﹣x2﹣5x+6≤0的解集为()【答案】D【解析】考点:一元二次不等式的解法。

高一数学集合练习题及答案(5篇)

高一数学集合练习题及答案(5篇)

高一数学集合练习题及答案(5篇)高一数学练习题及答案篇1一、填空题.(每题有且只有一个正确答案,5分×10=50分)1、已知全集U = {1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 }, A= {3 ,4 ,5 }, B= {1 ,3 ,6 },那么集合 { 2 ,7 ,8}是 ( )2 . 假如集合A={x|ax2+2x+1=0}中只有一个元素,则a的值是 ( )A.0B.0 或1C.1D.不能确定3. 设集合A={x|1A.{a|a ≥2}B.{a|a≤1}C.{a|a≥1}.D.{a|a≤2}.5. 满意{1,2,3} M {1,2,3,4,5,6}的集合M的个数是 ( )A.8B.7C.6D.56. 集合A={a2,a+1,1},B={2a1,| a2 |, 3a2+4},A∩B={1},则a的值是( )A.1B.0 或1C.2D.07. 已知全集I=N,集合A={x|x=2n,n∈N},B={x|x=4n,n∈N},则 ( )A.I=A∪BB.I=( )∪BC.I=A∪( )D.I=( )∪( )8. 设集合M= ,则 ( )A.M =NB. M NC.M ND. N9 . 集合A={x|x=2n+1,n∈Z},B={y|y=4k±1,k∈Z},则A 与B的关系为 ( )A.A BB.A BC.A=BD.A≠B10.设U={1,2,3,4,5},若A∩B={2},( UA)∩B={4},( UA)∩( UB)={1,5},则以下结论正确的选项是( )A.3 A且3 BB.3 B且3∈AC.3 A且3∈BD.3∈A且3∈B二.填空题(5分×5=25分)11 .某班有同学55人,其中音乐爱好者34人,体育爱好者43人,还有4人既不爱好体育也不爱好音乐,则班级中即爱好体育又爱好音乐的有人.12. 设集合U={(x,y)|y=3x1},A={(x,y)| =3},则 A= .13. 集合M={y∣y= x2 +1,x∈ R},N={y∣ y=5 x2,x∈ R},则M∪N=_ __.14. 集合M={a| ∈N,且a∈Z},用列举法表示集合M=_15、已知集合A={1,1},B={x|mx=1},且A∪B=A,则m的值为三.解答题.10+10+10=3016. 设集合A={x, x2,y21},B={0,|x|,,y}且A=B,求x, y的值17.设集合A={x|x2+4x=0},B={x|x2+2(a+1)x+a21=0} ,A∩B=B,求实数a的值.18. 集合A={x|x2ax+a219=0},B={x|x25x+6=0},C={x|x2+2x8=0}.?(1)若A∩B=A∪B,求a的值;(2)若A∩B,A∩C= ,求a的值.19.(本小题总分10分)已知集合A={x|x23x+2=0},B={x|x2ax+3a5=0}.若A∩B=B,求实数a的取值范围.20、已知A={x|x2+3x+2 ≥0}, B={x|mx24x+m10 ,m∈R}, 若A∩B=φ, 且A∪B=A, 求m的取值范围.21、已知集合,B={x|2参考答案C B AD C D C D C B26 {(1,2)} R {4,3,2,1} 1或1或016、x=1 y=117、解:A={0,4} 又(1)若B= ,则,(2)若B={0},把x=0代入方程得a= 当a=1时,B=(3)若B={4}时,把x=4代入得a=1或a=7.当a=1时,B={0,4}≠{4},∴a≠1.当a=7时,B={4,12}≠{4},∴a≠7.(4)若B={0,4},则a=1 ,当a=1时,B={0,4},∴a=1综上所述:a18、.解:由已知,得B={2,3},C={2,4}.(1)∵A∩B=A∪B,∴A=B于是2,3是一元二次方程x2ax+a219=0的两个根,由韦达定理知:解之得a=5.(2)由A∩B ∩ ,又A∩C= ,得3∈A,2 A,4 A,由3∈A,得323a+a219=0,解得a=5或a=2?当a=5时,A={x|x25x+6=0}={2,3},与2 A冲突;当a=2时,A={x|x2+2x15=0}={3,5},符合题意.∴a=2.19、解:A={x|x23x+2=0}={1,2},由x2ax+3a5=0,知Δ=a24(3a5)=a212a+20=(a2)(a10).(1)当2(2)当a≤2或a≥10时,Δ≥0,则B≠ .若x=1,则1a+3a5=0,得a=2,此时B={x|x22x+1=0}={1} A;若x=2,则42a+3a5=0,得a=1,此时B={2,1} A.综上所述,当2≤a10时,均有A∩B=B.20、解:由已知A={x|x2+3x+2 }得得.(1)∵A非空,∴B= ;(2)∵A={x|x }∴ 另一方面,,于是上面(2)不成立,否则,与题设冲突.由上面分析知,B= .由已知B= 结合B= ,得对一切x 恒成立,于是,有的取值范围是21、∵A={x|(x1)(x+2)≤0}={x|2≤x≤1},B={x|1∵ ,(A∪B)∪C=R,∴全集U=R。

高一数学必修一集合练习试题及答案

高一数学必修一集合练习试题及答案

高一数学必修一集合练习试题及答案高一数学必修一集合练习试题及答案一、选择题1.下列各组对象能构成集合的有()①美丽的小鸟;②不超过10的非负整数;③立方接近零的正数;④高一年级视力比较好的同学A.1个B.2个C.3个D.4个【解析】①③中“美丽”“接近零”的范畴太广,标准不明确,因此不能构成集合;②中不超过10的非负整数有:0,1,2,3,4,5,6,7,8,9,10共十一个数,是确定的,故能够构成集合;④中“比较好”,没有明确的界限,不满足元素的确定性,故不能构成集合.【答案】A2.小于2的自然数集用列举法可以表示为()A.{0,1,2}B.{1}C.{0,1}D.{1,2}【解析】小于2的自然数为0,1,应选C.【答案】C3.下列各组集合,表示相等集合的是()①M={(3,2)},N={(2,3)};②M={3,2},N={2,3};③M={(1,2)},N={1,2}.A.①B.②C.③D.以上都不对【解析】①中M中表示点(3,2),N中表示点(2,3),②中由元素的无序性知是相等集合,③中M表示一个元素:点(1,2),N中表示两个元素分别为1,2.【答案】B4.集合A中含有三个元素2,4,6,若a∈A,则6-a∈A,那么a为()A.2B.2或4C.4D.0【解析】若a=2,则6-a=6-2=4∈A,符合要求;若a=4,则6-a=6-4=2∈A,符合要求;若a=6,则6-a=6-6=0∉A,不符合要求.∴a=2或a=4.【答案】B5.(2013•曲靖高一检测)已知集合M中含有3个元素;0,x2,-x,则x满足的条件是()A.x≠0B.x≠-1C.x≠0且x≠-1D.x≠0且x≠1【解析】由x2≠0,x2≠-x,-x≠0,解得x≠0且x≠-1.【答案】C二、填空题6.用符号“∈”或“∉”填空(1)22________R,22________{x|x7};(2)3________{x|x=n2+1,n∈N+};(3)(1,1)________{y|y=x2};(1,1)________{(x,y)|y=x2}.【解析】(1)22∈R,而22=87,∴22∉{x|x7}.(2)∵n2+1=3,∴n=±2∉N+,∴3∉{x|x=n2+1,n∈N+}.(3)(1,1)是一个有序实数对,在坐标平面上表示一个点,而{y|y=x2}表示二次函数函数值构成的集合,故(1,1)∉{y|y=x2}.集合{(x,y)|y=x2}表示抛物线y=x2上的点构成的集合(点集),且满足y=x2,∴(1,1)∈{(x,y)|y=x2}.【答案】(1)∈∉(2)∉(3)∉∈7.已知集合C={x|63-x∈Z,x∈N_},用列举法表示C=________.【解析】由题意知3-x=±1,±2,±3,±6,∴x=0,-3,1,2,4,5,6,9.又∵x∈N_,∴C={1,2,4,5,6,9}.【答案】{1,2,4,5,6,9}8.已知集合A={-2,4,x2-x},若6∈A,则x=________.【解析】由于6∈A,所以x2-x=6,即x2-x-6=0,解得x=-2或x=3.【答案】-2或3三、解答题9.选择适当的方法表示下列集合:(1)绝对值不大于3的整数组成的集合;(2)方程(3x-5)(x+2)=0的实数解组成的集合;(3)一次函数y=x+6图像上所有点组成的集合.【解】(1)绝对值不大于3的整数是-3,-2,-1,0,1,2,3,共有7个元素,用列举法表示为{-3,-2,-1,0,1,2,3};(2)方程(3x-5)(x+2)=0的实数解仅有两个,分别是53,-2,用列举法表示为{53,-2};(3)一次函数y=x+6图像上有无数个点,用描述法表示为{(x,y)|y=x+6}.10.已知集合A中含有a-2,2a2+5a,3三个元素,且-3∈A,求a的值.【解】由-3∈A,得a-2=-3或2a2+5a=-3.(1)若a-2=-3,则a=-1,当a=-1时,2a2+5a=-3,∴a=-1不符合题意.(2)若2a2+5a=-3,则a=-1或-32.当a=-32时,a-2=-72,符合题意;当a=-1时,由(1)知,不符合题意.综上可知,实数a的值为-32.11.已知数集A满足条件:若a∈A,则11-a∈A(a≠1),如果a=2,试求出A中的所有元素.【解】∵2∈A,由题意可知,11-2=-1∈A;由-1∈A可知,11--1=12∈A;由12∈A可知,11-12=2∈A.故集合A中共有3个元素,它们分别是-1,12,2.学好数学的几条建议1、要有学习数学的兴趣。

高一数学集合练习题附答案

高一数学集合练习题附答案

高一数学集合练习题附答案一、单选题1.设全集U =R ,集合302x A xx ⎧⎫-=≤⎨⎬+⎩⎭,集合{}ln 1B x x =≥,则()UA B =( )A .()e,3B .[]e,3C .[)2,e -D .()2,e -2.设M ,N ,U 均为非空集合,且满足M ⫋N ⫋U ,则()()U U M N ⋂=( ) A .MB .NC .u MD .u N3.已知集合{A xy =∣,{}0,1,2,3B =,则A B =( ) A .{3} B .{2,3} C .{1,2,3} D .{0,1,2,3}4.设全集(){},|R,R U x y x y =∈∈,集合(){},|cos sin 10A x y x y θθ=+-=,则UA 所表示的平面区域的面积为( )A .1πB C .1D .π5.若集合{A y y ==,{}3log 2B x x =≤,则A B =( ) A .(]0,9B .[)4,9C .[]4,6D .[]0,96.已知集合{}i ,N nM m m n ==∈,其中i 为虚数单位,则下列元素属于集合M 的是( ) A .()()1i 1i -+ B .1i1i-+ C .i 1i- D .()21i -7.设集合{}|14A x x =<<,集合2{|230}B x x x =≤一一,则A B =( ) A .[一1,4)B .(一1,4)C .(1,3]D .(1,3)8.已知集合{}24A x N x =∈≤,{}1,B a =,B A ⊆,则实数a 的取值集合为( )A .{}0,1,2B .{}1,2C .{}0,2D .{}29.若集合302x A xx ⎧⎫-=<⎨⎬+⎩⎭,{}0B x x =>,则A B ⋃=( ) A .{}02x x << B .{}3x x > C .{}2x x >- D .{}3x x >-10.已知集合02A x x,{}0,1B =,则A B ⋃=( )A .{}01x x <<B .{}01x x ≤≤C .{}02x x <≤D .{}02x x ≤≤11.已知集合{123}M =,,,{134}N =,,,则M N ⋂等于( ) A .{13},B .{1234},,, C .{24},D .{134},,12.满足条件{M ⋃永安,漳平}{=德化,漳平,永安}的集合M 的个数是( ) A .6B .5C .4D .313.设全集{}U 0|x x =≥,集合2{|}0M x x x =-<,{}|1N x x =≥,则()UM N =( ) A .()0,1B .[)0,1C .()1,+∞D .[)0,∞+14.已知函数()2log f x x =,()2g x a x =-,若存在[]12,1,2x x ∈,使得()()12f x g x =,则实数a 的取值范围是( ) A .()(),25,-∞⋃+∞ B .(][),25,-∞⋃+∞ C .()2,5D .[]2,515.已知集合{}2230A x x x =--<,{}15B x x =≤≤,则A B =( )A .(]1,3-B .[)1,3C .(]1,5-D .(]3,5二、填空题16.设集合{}13A x x =<<,{}B x x a =<,若A B ⊆,则a 的取值范围是_________.17.若集合{}{}220,10M x x x N x ax =+-==+=,且N M ⊆,则实数a 的取值集合为____.18.已知{}3A x a x a =≤≤+,{}15b x x =-<<,A B =∅,则实数a 的取值范围是______19.已知集合{}N 4sin ,02A x x θθπ=∈<≤≤,若集合A 中至少有3个元素,则实数θ取值范围为________20.某班有学生45人,参加了数学小组的学生有31人,参加了英语小组的学生有26人.已知该班每个学生都至少参加了这两个小组中的一个小组,则该班学生中既参加了数学小组,又参加了英语小组的学生有___________人.21.某学校开设校本课程,高一(2110)班确定了数学类、英语类、历史类三个类别校本课程供班上的40名学生选择参加,且40名学生全部参与选择.其中只选数学类的有8人,只选英语类的有8人,只选历史类的有8人,既选数学类又选英语类的有7人,既选数学类又选历史类的有11人,既选英语类又选历史类的有8人,则三类课程都选择参加的有___________人.22.若全集{}0,1,2,3,4U =,{}0,1,2,3A =,{}2,3,4B =,则A B ⋃=______. 23.已知集合A ={x |2<x <4},B ={x |(x -1)(x -3)<0},则A ∩B 等于________. 24.若集合A ={x ∈R|ax 2+ax +1=0}中只有一个元素,则a =________.25.已知集合{}2202120200A x x x =-+<,{}B x x a =<,若A B ⊆,则实数a 的取值范围是______.三、解答题26.立德中学高一年级共有200名学生,报名参加学校团委与学生会组织的社团组织,据统计,参加艺术社团组织的学生有103人,参加体育社团组织的学生有120人(并非每个学生必须参加某个社团).求在高一年级的报名学生中,同时参加这2个社团的最多有多少人?最少有有多少人?27.函数()f x 满足(21)41f x x +=-. (1)求()f x 的解析式;(2)集合{}2|()30A x x f x =++=,写出集合A 的所有子集.28.已知集合{12}S n =,,,(3n ≥且*n N ∈),12{}m A a a a =,,,,且A S ⊆.若对任意i j a A a A ∈∈,(1i j m ≤≤≤),当i j a a n +≤时,存在k a A ∈(1km ≤≤),使得i j k a a a +=,则称A 是S 的m 元完美子集.(1)判断下列集合是否是{12345}S =,,,,的3元完美子集,并说明理由; ①1{124}A =,,; ②2{245}A =,,.(2)若123{}A a a a =,,是{127}S =,,,的3元完美子集,求123a a a ++的最小值; (3)若12{}m A a a a =,,,是{12}S n =,,,(3n ≥且*n N ∈)的m 元完美子集,求证:12(+1)2m m n a a a +++≥,并指出等号成立的条件.29.设全集为R ,{3A x x =≤或}9x ≥,{}29B x x =-<≤. (1)求A B ,A B ; (2)求()R B A .30.已知集合{}2,560|U R A x x x ==-+≤,112B xx ⎧⎫=≤⎨⎬-⎩⎭. (1)求,A B ;(2)判断Ux A ∈是x B ∈的什么条件.【参考答案】一、单选题 1.D 【解析】 【分析】求出集合A 、B ,利用交集和补集的定义可求得集合()U A B ∩. 【详解】因为{}30232x A xx x x ⎧⎫-=≤=-<≤⎨⎬+⎩⎭,{}{}ln 1e B x x x x =≥=≥, 所以,{}e UB x x =<,因此,()()2,e UA B =-.故选:D. 2.D 【解析】 【分析】利用()()()U U uM N M N ⋂=⋃,判断相互之间的关系.【详解】()()()UU uM N M N ⋂=⋃,M N N ⋃=,()u uM N N ⋃=.故选D. 3.C 【解析】 【分析】先由y =A ,再根据集合交集的原则即可求解. 【详解】对于集合A ,10x -≥,即1≥x ,则{}1A x x =≥, 所以{}1,2,3A B =, 故选:C 4.D 【解析】 【分析】求出原点到直线(系)的距离,即可判断集合A ,从而得到UA ,即可求出所表示的平面区域的面积; 【详解】解:对于直线(系)cos sin 10x y θθ+-=,则坐标原点()0,0到直线的距离1d ==,则集合(){},|cos sin 10A x y x y θθ=+-=表示平面上所有到原点距离等于1的直线上的点组成的集合,全集(){},|R,R U x y x y =∈∈表示坐标平面上的所有点的集合, 所以(){}22,|1UA x y x y =+<,则UA 所表示的平面区域的面积为π;故选:D 5.A 【解析】 【分析】先解出集合A 、B,再求A B . 【详解】因为{{}0A y y y y ===≥,{}{}3log 209B x x x x =≤=<≤,所以{}09A B x x ⋂=<≤.故选:A . 6.B 【解析】 【分析】计算出集合M ,在利用复数的四则运算化简各选项中的复数,即可得出合适的选项. 【详解】当N k ∈时,4i 1k =,41i i k +=,422i i 1k +==-,433i i i k +==-,则{}i,1,i,1M =--, ()()1i 1i 112M -+=+=∉,()()()21i1i 2i i 1i 1i 1i 2M ---===-∈++-,()()()i 1i i 11i 1i 1i 1i 22M +==-+∉--+,()2i 1i 2M =-∉-, 故选:B. 7.A 【解析】 【分析】解二次不等式求得集合B 然后根据并集的定义即得. 【详解】由2230x x --≤,解得13x -≤≤,[]1,3B ∴=-,又()1,4A =,[1,4)A B ∴⋃=-.故选:A. 8.C 【解析】 【分析】化简集合A ,根据B A ⊆求实数a 的可能取值,由此可得结果. 【详解】因为集合{}24A x N x =∈≤化简可得{0,1,2}A =又{}1,B a =,B A ⊆, 所以0a =或2a =,故实数a 的取值集合为{0,2}, 故选:C. 9.C 【解析】 【分析】解分式不等式确定集合A ,再由并集的定义计算. 【详解】解:依题意,{}30232x A xx x x ⎧⎫-=<=-<<⎨⎬+⎩⎭,则{}2A B x x ⋃=>-, 故选:C . 10.D 【解析】 【分析】根据集合的并集的定义即可求解. 【详解】 {}{}{}200,102A B x x x x ==<≤≤≤.故选: D. 11.A 【解析】 【分析】根据交集的定义计算可得; 【详解】解:因为{}1,2,3M =,{}1,3,4N =,所以{}1,3M N ⋂=; 故选:A 12.C 【解析】 【分析】根据集合的并集可得答案. 【详解】因为集合{M ⋃永安,漳平}{=德化,漳平,永安}, 所以集合M 可以为{德化},{德化,漳平},{德化,永安}, {德化,永安,漳平},共4个,故选:C. 13.B 【解析】 【分析】首先解一元二次不等式求出集合M ,再根据补集、并集的定义计算可得; 【详解】解:由20x x -<,即()10x x -<,解得01x <<,所以{}{}210||0M x x x x x -=<=<<,因为{}|1N x x =≥,{}U 0|x x =≥,所以{}U|01N x x =≤<,所以(){}U|01MN x x =≤<;故选:B 14.D 【解析】 【分析】根据条件求出两个函数在[1,2]上的值域,结合若存在[]12,1,2x x ∈,使得12()()f x g x =,等价为两个集合有公共元素,然后根据集合关系进行求解即可. 【详解】当12x ≤≤时,22log 1()log 2f x ≤≤,即0()1f x ≤≤,则()f x 的值域为[0,1], 当12x ≤≤时,4()2a g x a -≤≤-,则()g x 的值域为[4,2]a a --, 因为存在[]12,1,2x x ∈,使得12()()f x g x =, 则[4,2][0,1]a a --≠∅ 若[4,2][0,1]a a --=∅, 则14a <-或02a >-, 得5a >或2a <,则当[4,2][0,1]a a --≠∅时,25a ≤≤, 即实数a 的取值范围是[2,5],A ,B ,C 错,D 对. 故选:D . 15.B 【解析】 【分析】求出集合{}2230A x x x =--<,再根据集合的交集运算求得答案.【详解】由题意,{}2230{|13}A x x x x x =--<=-<<,故{}{|13}15{|13}A B x x x x x x ⋂=-<<⋂≤≤=≤<, 故选:B二、填空题16.[)3,+∞【解析】 【分析】根据A B ⊆列出不等式即可求解. 【详解】因为{}13A x x =<<,{}B x x a =<,A B ⊆,故只需3a ≥即可满足题意. 故答案为:[)3,+∞.17.10,1,2⎧⎫-⎨⎬⎩⎭【解析】 【详解】先求出集合M ,然后分N =∅和N ≠∅两种情况求解 【点睛】由220x x +-=,得(1)(2)0x x -+=,解得1x =或2x =-, 所以{}1,2M =-,当N =∅时,满足N M ⊆,此时0a = 当N ≠∅时,即0a ≠,则1N a ⎧⎫=-⎨⎬⎩⎭,因为N M ⊆,所以1M a-∈,所以11a -=或12a-=-, 解得1a =-或12a =, 综上,12a =,或1a =-,或0a =, 所以实数a 的取值集合为10,1,2⎧⎫-⎨⎬⎩⎭,故答案为:10,1,2⎧⎫-⎨⎬⎩⎭18.4a ≤-或5a ≥ 【解析】 【分析】由3a a <+可得A ≠∅,根据题意可得到端点的大小关系,得到不等式,从而可得答案. 【详解】由题意 3a a <+,则A ≠∅要使得A B =∅,则31a +≤-或5a ≥ 解得4a ≤-或5a ≥ 故答案为:4a ≤-或5a ≥ 19.5,66ππ⎛⎫⎪⎝⎭【解析】 【分析】分析可知元素0、1、2必属于集合A ,可得出1sin 2θ>,由[]0,2θπ∈可求得θ的取值范围. 【详解】要使集合A 中至少有3个元素,则元素0、1、2必属于集合A ,所以只需4sin 2θ>,即1sin 2θ>, 又[]0,2θπ∈,解得5,66ππθ⎛⎫∈ ⎪⎝⎭. 故答案为:5,66ππ⎛⎫⎪⎝⎭.20.12 【解析】 【分析】设该班学生中既参加了数学小组,又参加了英语小组的学生有x 人,列方程求解即可. 【详解】设该班学生中既参加了数学小组,又参加了英语小组的学生有x 人,则31264512x =+-=. 故答案为:12. 21.5 【解析】 【分析】设三类课程都选择参加的学生有x 人,由题意得()()()83711840x x x x ⨯+-+-+-+=,解方程可求得结果 【详解】设三类课程都选择参加的学生有x 人,由题意得()()()83711840x x x x ⨯+-+-+-+=,解得5x =. 故答案为:522.{}0,1,4【解析】 【分析】根据集合的运算法则计算. 【详解】由已知{4}A =,{0,1}B =,所以{0,1,4}A B =. 故答案为:{0,1,4}. 23.{x |2<x <3} 【解析】 【分析】解二次不等式可得集合B ,再求交集即可. 【详解】∵A ={x |2<x <4},B ={x |(x -1)(x -3)<0}={x |1<x <3}, ∴A ∩B ={x |2<x <3}. 故答案为:{x |2<x <3} 24.4 【解析】 【分析】集合A 只有一个元素,分别讨论当0a =和0a ≠时对应的等价条件即可 【详解】解:2{|10}A x R ax ax =∈++=中只有一个元素, ∴若0a =,方程等价为10=,等式不成立,不满足条件.若0a ≠,则方程满足0∆=,即240a a -=,解得4a =或0a =(舍去). 故答案为:425.[)2020,∞+【解析】 【分析】解一元二次不等式求得集合A ,根据A B ⊆求a 的取值范围. 【详解】由2202120200x x -+<,解得:12020x <<, ∴()1,2020A =,又A B ⊆,且{}|B x x a =<, ∴2020a ≥,故a 的取值范围为[)2020,∞+. 故答案为:[)2020,∞+三、解答题26.103;23. 【解析】 【分析】由题可知当艺术社团组织的学生都参加体育社团组织时,同时参加这2个社团的人数最多,当每个学生都参加某个社团时,同时参加这2个社团的学生最少. 【详解】由题意:当艺术社团组织的103名学生都参加体育社团组织时,同时参加这2个社团的学生最多,且有103人;当每个学生都参加某个社团时,同时参加这2个社团的学生最少,且有10312020023+-=人,所以同时参加这2个社团的最多有103名学生,最少有23名学生. 27.(1)()23f x x =-(2){}0,{}2-,{}0,2-和∅【解析】【分析】(1)利用换元法:21t x =+,求出()f t ,即可求出()f x 的解析式;(2)根据()230x f x ++=求出集合A 的元素,根据元素即可写出集合A 的所有子集.(1)令21x t +=,所以12t x -=, 所以()141232t f t t -=⋅-=-,即()23f x x =-; (2)因为()23f x x =-, {}{}22|()30|20A x x f x x x x =++==+=,因为220x x +=,解得0x =或2x =-,所以{}0,2A =-,所以集合A 的所有子集为:{}0,{}2-,{}0,2-和∅.28.(1)1A 不是S 的3元完美子集;2A 是S 的3元完美子集;理由见解析(2)12(3)证明见解析;等号成立的条件是11N 1n a m +=∈+*且(1)(2)1i n i a i m m +=+≤≤ 【解析】【分析】(1)根据m 元完美子集的定义判断可得结论;(2)不妨设123a a a <<.由11a =,12a =,13a ≥分别由定义可求得123a a a ++的最小值; (3)不妨设12m a a a <<<,有121i i i i m i a a a a a a a n +-<+<+<<+≤.121i i i m i a a a a a a +-+++,,,是A 中1m i +-个不同的元素,且均属于集合12{}i i m a a a ++,,,,此时该集合恰有m i -个不同的元素,显然矛盾.因此对任意1i m ≤≤,都有11i m i a a n +-++≥,由此可得证.(1)解:(1)①因为1235+=≤,又13A ∉,所以1A 不是S 的3元完美子集. ②因为2245+=≤,且24A ∈,而55454425245+>+>+>+>+>, 所以2A 是S 的3元完美子集.(2)解:不妨设123a a a <<.若11a =,则112a a A +=∈,123A +=∈,134A +=∈,与3元完美子集矛盾; 若12a =,则114a a A +=∈,246A +=∈,而267+>,符合题意,此时12312a a a ++=. 若13a ≥,则116a a +≥,于是24a ≥,36a ≥,所以123+13a a a +≥. 综上,123a a a ++的最小值是12.(3)证明:不妨设12m a a a <<<.对任意1i m ≤≤,都有11i m i a a n +-++≥,否则,存在某个(1)i i m ≤≤,使得1i m i a a n +-+≤. 由12m a a a <<<,得121i i i i m i a a a a a a a n +-<+<+<<+≤. 所以121i i i m i a a a a a a +-+++,,,是A 中1m i +-个不同的元素,且均属于集合12{}i i m a a a ++,,,, 该集合恰有m i -个不同的元素,显然矛盾.所以对任意1i m ≤≤,都有11i m i a a n +-++≥. 于是1211211212()()()()()(1)m m m m m m a a a a a a a a a a a a m n ---++++=+++++++++≥. 即12(1)2m m n a a a ++++≥. 等号成立的条件是11N 1n a m +=∈+*且(1)(2)1i n i a i m m +=+≤≤. 29.(1){23A B x x ⋂=-<≤或}9x =,A B R =(2)(){2R B A x x ⋂=≤-或}9x >【解析】【分析】(1)根据集合的交集和并集的定义即可求解; (2)先根据补集的定义求出B R ,然后再由交集的定义即可求解. (1) 解:因为{3A x x =≤或}9x ≥,{}29B x x =-<≤, 所以{23A B x x ⋂=-<≤或}9x =,A B R =;(2)解:因为全集为R ,{3A x x =≤或}9x ≥,{}29B x x =-<≤, 所以{2R B x x =≤-或}9x >,所以(){2R B A x x ⋂=≤-或}9x >.30.(1){}|23A x x =≤≤;{2B x x =<或}3x ≥.(2)充分不必要条件【解析】【分析】(1)分别解一元二次不等式和分式不等式即可得答案; (2)由题知{2U A x x =<或}3x >,进而根据充分不必要条件判断即可.(1)解:解不等式2560x x -+≤得23x ≤≤,故{}|23A x x =≤≤; 解不等式()()320113110022220x x x x x x x ⎧--≤-≤⇔-≤⇔≤⇔⎨----≠⎩, 解得2x <或3x ≥,故{2B x x =<或}3x ≥.(2)解:因为{}|23A x x =≤≤, 所以{2U A x x =<或}3x >, 因为{2B x x =<或}3x ≥, 所以U x A ∈是x B ∈的充分不必要条件.。

高一集合练习题(推荐8篇)

高一集合练习题(推荐8篇)

高一集合练习题(推荐8篇)高一集合练习题(1)(一)1、集合的含义:“集合”这个词首先让我们想到的是上体育课或者开会时老师经常喊的“全体集合”。

数学上的“集合”和这个意思是一样的,只不过一个是动词一个是名词而已。

所以集合的含义是:某些指定的对象集在一起就成为一个集合,简称集,其中每一个对象叫元素。

比如高一二班集合,那么所有高一二班的同学就构成了一个集合,每一个同学就称为这个集合的元素。

2、集合的表示通常用大写字母表示集合,用小写字母表示元素,如集合A={a,b,c}。

a、b、c就是集合A中的元素,记作a∈A,相反,d不属于集合A,记作d?A。

有一些特殊的集合需要记忆:非负整数集(即自然数集)N正整数集N_或N+整数集Z有理数集Q实数集R集合的表示方法:列举法与描述法。

①列举法:{a,b,c……}②描述法:将集合中的元素的公共属性描述出来。

如{x?R|x-3>2},{x|x-3>2},{(x,y)|y=x2+1}③语言描述法:例:{不是直角三角形的三角形}例:不等式x-3>2的解集是{x?R|x-3>2}或{x|x-3>2}强调:描述法表示集合应注意集合的代表元素A={(x,y)|y=x2+3x+2}与B={y|y=x2+3x+2}不同。

集合A中是数组元素(x,y),集合B中只有元素y。

3、集合的三个特性(1)无序性指集合中的元素排列没有顺序,如集合A={1,2},集合B={2,1},则集合A=B。

例题:集合A={1,2},B={a,b},若A=B,求a、b的值。

解:,A=B注意:该题有两组解。

(2)互异性指集合中的元素不能重复,A={2,2}只能表示为{2}(3)确定性集合的确定性是指组成集合的元素的性质必须明确,不允许有模棱两可、含混不清的情况。

(二)子集,A包含于B,有两种可能(1)A是B的一部分,(2)A与B是同一集合,A=B,A、B两集合中元素都相同。

反之:集合A不包含于集合B。

高中数学必修一练习题(一)集合(详细答案)

高中数学必修一练习题(一)集合(详细答案)

高中数学必修一练习题(一)集合(详细答案)班号姓名集合的含义与表示1.下面的结论正确的是()A.a∈Q,则a∈NC.某2-1=0的解集是{-1,1}2.下列说法正确的是()A.某班中年龄较小的同学能够形成一个集合B.由1,2,3和9,1,4组成的集合不相等C.不超过20的非负数组成一个集合D.方程某2-4=0和方程|某-1|=1的解构成了一个四元集3.用列举法表示{(某,y)|某∈N+,y∈N+,某+y=4}应为()A.{(1,3),(3,1)}B.{(2,2)}D.{(4,0),(0,4)}B.a∈Z,则a∈ND.以上结论均不正确C.{(1,3),(3,1),(2,2)}4.下列命题:(1)方程某-2+|y+2|=0的解集为{2,-2};(2)集合{y|y=某2-1,某∈R}与{y|y=某-1,某∈R}的公共元素所组成的集合是{0,1};(3)集合{某|某-1<0}与集合{某|某>a,a∈R}没有公共元素.其中正确的个数为()A.0B.1C.2D.35.对于集合A={2,4,6,8},若a∈A,则8-a∈A,则a的取值构成的集合是________.6.定义集合A某B={某|某=a-b,a∈A,b∈B},若A={1,2},B={0,2},则A某B中所有元素之和为________.7.若集合A={-1,2},集合B={某|某2+a某+b=0},且A=B,则求实数a,b的值.8.已知集合A={a-3,2a-1,a2+1},a∈R.(1)若-3∈A,求实数a的值;(2)当a为何值时,集合A的表示不正确.集合间的基本关系1.下列关系中正确的个数为()①0∈{0};②{0};③{(0,1)}{(0,1)};④{(a,b)}={(b,a)}.A.1 B.2C.3D.42.已知集合A={某|-1BB.ABC.BAD.AB3.已知{1,2}M{1,2,3,4},则符合条件的集合M的个数是()A.3B.4C.6D.8M,则a的取值为()4.集合M={1,2,a,a2-3a-1},N={-1,3},若3∈M且NA.-1 B.4C.-1或-4D.-4或15.集合A中有m个元素,若在A中增加一个元素,则它的子集增加的个数是__________.6.已知M={y|y=某2-2某-1,某∈R},N={某|-2≤某≤4},则集合M与N之间的关系是________.7.若集合M={某|某2+某-6=0},N={某|(某-2)(某-a)=0},且NM,求实数a的值.8.设集合A={某|a-2<某<a+2},B={某|-2<某<3},(1)若A B,求实数a的取值范围;(2)是否存在实数a使BA并集与交集1.A∩B=A,B∪C=C,则A,C之间的关系必有()A.ACB.CAC.A=CD.以上都不对2.A={0,2,a},B={1,a2},A∪B={0,1,2,4,16},则a的值为()A.0B.1C.2D.43.已知全集U=R,集合M={某|-2≤某-1≤2}和N={某|某=2k-1,k∈N某}的关系的韦恩(Venn)图如图所示,则阴影部分所示的集合的元素共有()A.2个B.3个C.1个D.无穷多个4.设集合M={某|-3≤某<7},N={某|2某+k≤0},若M∩N≠,则k 的取值范围是()A.k≤3B.k≥-3C.k>6D.k≤65.已知集合M={某|-35},则M∪N=________,M∩N=________.6.已知集合A={(某,y)|y=某2,某∈R},B={(某,y)|y=某,某∈R},则A∩B中的元素个数为___.7.已知集合A={某|某2+p某+q=0},B={某|某2-p某-2q=0},且A∩B={-1},求A∪B.8.已知A={某|某3},B={某|4某+m<0,m∈R},当A∩B=B时,求m的取值范围.集合的补集运算1.已知全集U={1,2,3,4,5,6,7,8},M={1,3,5,7},N ={5,6,7},则U(M∪N)=()A.{5,7}B.{2,4}C.{2,4,8}D.{1,3,5,6,7}2.已知全集U={2,3,5},集合A={2,|a-5|},若UA={3},则a的值为()A.0B.10C.0或10D.0或-103.已知全集U=R,集合A={某|-2≤某≤3},B={某|某<-1或某>4},那么集合A∩(UB)等于()A.{某|-2≤某<4}B.{某|某≤3或某≥4}C.{某|-2≤某<-1}D.{某|-1≤某≤3}4.如图所示,U是全集,A,B是U的子集,则阴影部分所表示的合是()A.A∩BB.A∪BC.B∩(UA)D.A∩(UB)5.已知全集S=R,A={某|某≤1},B={某|0≤某≤5},则(SA)∩B=________.6.定义集合A某B={某|某∈A,且某B},若A={1,2,3,4,5},B={2,4,5},则A某B的子集的个数是________.7.已知全集U=R,A={某|-4≤某≤2},B={某|-12},(1)求A∩B;(2)求(UB)∪P;(3)求(A∩B)∩(UP).8.已知集合A={某|2a-2集参考答案集合的含义与表示1.选C对于A,a属于有理数,则a属于自然数,显然是错误的,对于B,a属于整数,则a属于自然数当然也是错的,对于C的解集用列举法可用它来表示.故C正确.2.选CA项中元素不确定;B项中两个集合元素相同,因集合中的元素具有无序性,所以两个集合相等;D项中两个方程的解分别是±2,0,2,由互异性知,可构成一个三元集.3.选C某=1时,y=3;某=2时,y=2;某=3时,y=1.某=2,某-2=0,4.选A(1)故解集为{(2,-2)},而不是{2,-2};y=-2.|y+2|=0(2)集合{y|y=某2-1,某∈R}表示使y=某2-1有意义的因变量y的范围,而y=某2-1≥-1,故{y|y=某2-1,某∈R}={y|y≥-1}.同理集合{y|y=某-1,某∈R}=R.结合数轴(图1)知,两个集合的公共元素所组成的集合为{y|y≥-1};(3)集合{某|某-1<0}表示不等式某-1<0的解集,即{某|某<1}.而{某|某>a,a∈R}就是某>a的解集.结合图2,当a≥1时两个集合没有公共元素;当a<1时,两个集合有公共元素,形成的集合为{某|a5.解析:当a=2时,8-a=6∈A;a=4时,8-a=4∈A;a=6时,8-a=2∈A;a=8时,8-a=0A.∴所求集合为{2,4,6}.答案:{2,4,6}6.解析:A某B={1,-1,2,0},∴A某B中所有元素之和为1-1+2+0=2.答案:27.解:由题意知-1,2是方程某2+a某+b=0的两个根,1-a+b=0,由根与系数的关系可知有故有a=-1,b=-2.4+2a+b=0,当a-3=-3时,a=0,集合A={-3,-1,1},满足题意;当2a-1=-3时,a=-1,集合A={-4,-3,2},满足题意;当a2+1=-3时,a无解.综上所述,a=0或a=-1.(2)若元素不互异,则集合A的表示不正确若a-3=2a-1,则a=-2;若a-3=a2+1,则方程无解;若2a-1=a2+1,则方程无解.综上所述,a=-2.集合间的基本关系1.选C①、②、③均正确;④不正确.a≠b时,(a,b)与(b,a)是不同的元素.2.C3.选A符合条件的集合M有{1,2},{1,2,3},{1,2,4}共3个.4.选B(1)若a=3,则a2-3a-1=-1,即M={1,2,3,-1},显然NM,不合题意.(2)若a2-3a-1=3,即a=4或a=-1(舍去),当a=4时,M={1,2,4,3},满足要求.5.解析:由2m+1-2m=2·2m-2m=2m.答案:2m6.解析:∵y=(某-1)2-2≥-2,∴M={y|y≥-2},∴NM.答案:NM7.解:由某2+某-6=0,得某=2或某=-3.因此,M={2,-3}.若a=2,则N={2},此时NM;若a=-3,则N={2,-3},此时N=M;若a≠2且a≠-3,则N={2,a},此时N不是M的子集,故所求实数a的值为2或-3.a-2>-2,a-2≥-2,8.解:(1)借助数轴可得,a应满足的条件为或解得0≤a≤1.a+2≤3,a+2<3,a-2≤-2,(2)同理可得a应满足的条件为得a无解,所以不存在实数a使BA.a+2≥3,并集与交集1.选AA∩B=AAB,B∪C=CBC,∴AC.a=4,2.选D∵A={0,2,a},B={1,a2},A∪B={0,1,2,4,16},则∴a=4.a=16.23.选AM={某|-1≤某≤3},N={某|某=2k-1,k∈N某},∴M∩N ={1,3}.kk4.选D因为N={某|2某+k≤0}={某|某≤-},且M∩N≠,所以-≥-3k≤6.225.解析:借助数轴可知:M∪N={某|某>-5},M∩N={某|-3-5}{某|-3y=某2,某=0,某=1,6.解析:由得或答案:2y=某,y=0y=1.7.解:因为A∩B={-1},所以-1∈A且-1∈B,将某=-1分别代入两个方程,得1-p+q=0p=3,解得.所以A={某|某2+3某+2=0}={-1,-2},1+p-2q=0q=2B={某|某2-3某-4=0}={-1,4},所以A∪B={-1,-2,4}.m8.解:由题知,B={某|某4m所以由数轴(如图)可得-≤-2,所以m≥8,即m的取值范围是m≥8. 4集合的补集运算1.选CM∪N={1,3,5,6,7}.∴U(M∪N)={2,4,8}.2.选C由UA={3},知3A,3∈U.∴|a-5|=5,∴a=0或a=10.3.选D由题意可得,UB={某|-1≤某≤4},A={某|-2≤某≤3},所以A∩(UB)={某|-1≤某≤3}.端点处的取舍易出错.4.选C阴影部分表示集合B与集合A的补集的交集.因此,阴影部分所表示的集合为B∩(UA).5.解析:由已知可得SA={某|某>1},∴(SA)∩B={某|某>1}∩{某|0≤某≤5}={某|1答案:{某|16.解析:由题意知A某B={1,3}.则A某B的子集有22=4个.答案:47.解:借助数轴,如图.(1)A∩B={某|-15(2)∵UB={某|某≤-1或某>3},∴(UB)∪P={某|某≤0或某≥}.255(3)UP={某|0228.解:RB={某|某≤1或某≥2}≠,∵ARB,∴分A=和A≠两种情况讨论.(1)若A=,此时有2a-2≥a,∴a≥2.2a-2<a2a-2综上所述,a≤1或a≥2.。

苏教版必修1高一数学《集合》练习及答案.doc

苏教版必修1高一数学《集合》练习及答案.doc

高一数学《集合》练习05、9姓名 ________ 学号_____ 成绩____一、选择题(每题4分,共40分)1、下列四组对象,能构成集合的是()A某班所有高个子的学生B著名的艺术家C 一切很大的书D倒数等于它自身的实数2、集合{a, b, c}的真子集共有__________个()A 7B 8C 9D 103、若{1, 2}G A Q{1, 2, 3, 4, 5}则满足条件的集合A的个数是()A. 6B. 7C. 8D. 94、若U={1, 2, 3, 4}, M={1, 2}, N={2, 3},贝U Cu CMUN)= ()A. {1, 2, 3}B. {2}C. {1, 3, 4}D. {4}f x+y=l5、方程组I x-尸-1 的解集是()A.{x=0,y=l}B. {0,1}C. {(0,1)}D. {(x,y)lx=0 或y=l}6、以下六个关系式:0 G {o}, {0} n 0 , 0.3^0, Qe N , [a,b] cz [b,a],{.rl.r-2^0,.reZ}是空集中,错误的个数是()A 4B 3C 2D 17、点的集合皿={ (x, y) | xy20}是指()A.第一象限内的点集B.第三象限内的点集C.第一、第三象限内的点集D.不在第二、第四象限内的点集8、设集合A={x|l<x<2}, B={x|x<a},若AgB,则a的取值范围是()A {a|a>2}B {a|aVl}C {a|a〉l}D {a|a<2}9、满足条件MU {1} ={1,2,3}的集合M的个数是()A 1B 2C 3D 410、集合P = {x 丨x = w Z}, Q = [x \ x = 2k +l,k E , R = [x \ x = 4k + l,k e Z}, ^.aeP,beQ,则有()A a+b e PB a-\-b G QDa+b不属于P、Q、R中的任意一个二、填空题(每题3分,共18分)11、若A = {—2,2,3,4}, B = {x\x = t2,teA],用列举法表示 B ________________12> 集合A={xl X2+X-6=0}, B={xl ax+l=O},若BuA,则a= ___________13、设全集U ={2,3,y + 2Q— 3} , A={2,b}, Ct/A={5},贝, b — __________________ 。

(压轴题)高中数学必修一第一单元《集合》测试卷(有答案解析)(1)

(压轴题)高中数学必修一第一单元《集合》测试卷(有答案解析)(1)

一、选择题1.设集合2{|}A x x x =<,2}6{|0B x x x =+-<,则A B =( )A .(0,1)B .()()3,01,2-⋃C .(-3,1)D .()()2,01,3-⋃2.若{}|28A x Z x =∈≤<,{}5|log 1B x R x =∈<,则R A C B ⋂的元素个数为( ) A .0B .1C .2D .33.对于非空集合P ,Q ,定义集合间的一种运算“★”:{P Q x x P Q =∈★∣且}x P Q ∉⋂.如果{111},{1}P x x Q x y x =-≤-≤==-∣∣,则P Q =★( )A .{12}xx ≤≤∣ B .{01xx ≤≤∣或2}x ≥ C .{01xx ≤<∣或2}x > D .{01xx ≤≤∣或2}x > 4.如图所示的韦恩图中,A 、B 是非空集合,定义*A B 表示阴影部分的集合,若x ,y ∈R ,2{|4}{|3,0}x A x y x x B y y x ==-==>,则A *B 为( )A .{|04}x x <≤B .{|01x x ≤≤或4}x >C .{|01x x ≤≤或2}x ≥D .{|01x x ≤≤或2}x >5.已知集合{}4A x a x =<<,{}2|560B x x x =-+>,若{|34}A B x x ⋂=<<,则a 的值不可能为( ) A 2B 5C 6D .36.已知集合{}2|230A x x x =--<,集合{}1|21x B x +=>,则C B A =( )A .[3,)+∞B .(3,)+∞C .(,1][3,)-∞-⋃+∞D .(,1)(3,)-∞-+∞7.设U 为全集,()UB A B =,则A B 为( )A .AB .BC .UB D .∅8.能正确表示集合{}02M x x =∈≤≤R 和集合{}20N x x x =∈-=R 的关系的韦恩图的是( )A .B .C .D .9.已知集合A ={}{}3(,),(,)x y y x B x y y x ===,则A ∩B 的元素个数是( )A .4B .3C .2D .110.设所有被4除余数为()0,1,2,3k k =的整数组成的集合为k A ,即{}4,k A x x n k n Z ==+∈,则下列结论中错误的是( )A .02020A ∈B .3a b A +∈,则1a A ∈,2b A ∈C .31A -∈D .k a A ∈,k b A ∈,则0a b A -∈11.如果集合{}2210A x ax x =--=只有一个元素,则a 的值是( ) A .0B .0或1C .1-D .0或1-12.已知集合{}11A x x =-≤≤,{}220B x x x =-≤,则AB =( )A .{}12x x -≤≤B .{}10x x -≤≤C .{}12x x ≤≤D .{}01x x ≤≤二、填空题13.已知集合:A ={x |x 2=1},B ={x |ax =1},且A ∩B =B ,则实数a 的取值集合为______. 14.已知集合{}2|60M x x x =+->,{}2|230,0N x x ax a =-+≤>,若M N ⋂中恰有一个整数,则a 的最小值为_________. 15.用列举法表示集合*6,5A aN a Z a ⎧⎫=∈∈=⎨⎬-⎩⎭__________.16.已知集合{}1,1A =-,{}|10B x ax =+=,若B A ⊆,则实数a 所有取值的集合为_____17.设集合A 、B 是实数集R 的子集,[2,0]AB =-R,[1,2]BA =R,()()[3,5]A B =R R ,则A =________18.若集合2{320}A x ax x =++=中至多有一个元素,则a 的取值范围是__________. 19.记[]x 为不大于x 的最大整数,设有集合[]{}{}2|2=|2A x x x B x x =-=<,,则A B =_____.20.不等式31x x a-≥+的解集为M ,若2M -∉,则实数a 的取值范围为________. 三、解答题21.已知集合{|314}A x x =-<+,{|213}B x m x m =-<+. (1)当1m =时,求AB ;(2)若A B A ⋃=,求m 的取值范围.22.已知集合{}|123A x a x a =-<<+,2{|280}B x x x =--≤. (1)当a =2时,求AB ;(2)若___________,求实数a 的取值范围.在①AB A =,②()R AC B A =,③A B ⋂=∅这三个条件中任选一个,补充在(2)问中的横线上,并求解.(注:如果选择多个条件分别解答,按第一个解答计分)23.已知集合2A {x |x x 20}=--≥,集合()22{|1210,}B x mxmx m R =-+-<∈()1当m 2=时,求集合R A 和集合B ;()2若集合B Z ⋂为单元素集,求实数m 的取值集合;()3若集合()A B Z ⋂⋂的元素个数为()*n n N ∈个,求实数m 的取值集合24.已知集合A ={x |a -1≤x ≤2a +3},B ={x |-2≤x ≤4},全集U =R . (1)当a =2时,求A ∪B 和(∁R A )∩B ; (2)若A ∩B =A ,求实数a 的取值范围.25.已知p :x ∈A={x|x 2﹣2x ﹣3≤0,x ∈R},q :x ∈B={x|x 2﹣2mx+m 2﹣9≤0,x ∈R ,m ∈R}. (1)若A∩B=[1,3],求实数m 的值;(2)若p 是¬q 的充分条件,求实数m 的取值范围. 26.设集合{}|36A x x =≤<,集合{}|19B x x =<≤. 求:(1)AB ;(2)()R C A B ⋃.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】化简集合A ,B ,根据交集运算即可求值.【详解】因为2{|}A x x x =<(,0)(1,)=-∞⋃+∞,26{|}(32)0,B x x x =+-<=-所以()()3,01,2A B ⋂=-⋃. 故选:B 【点睛】本题主要考查了一元二次不等式的解法,集合的运算,属于中档题.2.D解析:D 【分析】化简集合A 、B ,根据补集与交集的定义写出RA B ,即可得出结论.【详解】集合{|28}{2A x Z x =∈<=,3,4,5,6,7},51{||log |1}{|5}5B x R x x R x =∈<=∈<<,1{|5R B x R x ∴=∈或5}x , {5RAB ∴=,6,7}.∴其中元素个数为3个.故选:D . 【点睛】本题考查了集合的化简与运算问题,是基础题.3.C解析:C 【分析】先确定,P Q ,计算P Q 和P Q ,然后由新定义得结论.【详解】由题意{|02}P x x =≤≤,{|10}{|1}Q x x x x =-≥=≥, 则{|0}PQ x x =≥,{|12}P Q x x =≤≤,∴{|01P Q x x =≤<★或2}x >. 故选:C . 【点睛】本题考查集合新定义运算,解题关键是正确理解新定义,确定新定义与集合的交并补运算之间的关系.从而把新定义运算转化为集合的交并补运算.4.B解析:B 【分析】弄清新定义的集合与我们所学知识的联系:所求的集合是指将A B ⋃除去A B ⋂后剩余的元素所构成的集合.再利用函数的定义域、值域的思想确定出集合A ,B ,代入可得答案. 【详解】依据定义,*A B 就是指将A B ⋃除去A B ⋂后剩余的元素所构成的集合;对于集合A ,求的是函数y 解得:{|04}A x x =≤≤;对于集合B ,求的是函数3(0)xy x =>的值域,解得{}1B y y =;依据定义,借助数轴得:*{|01A B x x =≤≤或4}x >. 故选:B . 【点睛】本小题考查数形结合的思想,考查集合交并运算的知识,借助数轴保证集合运算的准确性,属于中档题.5.A解析:A 【分析】求出{2B x x =<或}3x >,利用{|34}A B x x ⋂=<<,得23a ≤≤. 【详解】集合{}4A x a x =<<,{}{25602B x x x x x =-+=<或}3x >,{|34}A B x x ⋂=<<, ∴23a ≤≤, ∴a故选:A. 【点睛】本题考查了根据集合间的基本关系求解参数范围的问题,属于中档题.解决此类问题,一般要把参与运算的集合化为最简形式,借助数轴求解参数的范围.6.A解析:A 【分析】首先解得集合A ,B ,再根据补集的定义求解即可. 【详解】 解:{}2|230{|13}A x x x x x =--<=-<<,{}1|21{|1}x B x x x +=>=>-,{}C |3[3,)B A x x ∴=≥=+∞,故选A .【点睛】本题考查一元二次不等式的解法,指数不等式的解法以及补集的运算,属于基础题.7.D解析:D 【分析】根据题意作出“韦恩图”,得出集合A 与集合B 没有公共元素,即可求解. 【详解】由题意,集合U 为全集,()UBA B =,如图所示,可得集合A 与集合B 没有公共元素,即A B =∅,故选D.【点睛】本题主要考查了集合的运算及应用,其中解答中根据题设条件,作出韦恩图确定两集合的关系是解答的关键,着重考查了推理与论证能力,属于基础题.8.B解析:B 【分析】根据题意,{0N =,1},而{|02}M x R x =∈,易得N 是M 的子集,分析选项可得答案. 【详解】{}{}{}200,102N x x x M x x =∈-==⊆=∈≤≤R R ,故选B.【点睛】本题考查集合间关系的判断以及用venn 图表示集合的关系,判断出M 、N 的关系,是解题的关键.9.B解析:B 【解析】 【分析】首先求解方程组3y x y x ⎧=⎨=⎩,得到两曲线的交点坐标,进而可得答案.【详解】联立3y x y x⎧=⎨=⎩,解得1,0,1x =-即3y x =和y x =的图象有3个交点()11--,,()0,0,(11),, ∴集合A B 有3个元素,故选B.【点睛】本题考查了交集及其运算,考查了方程组的解法,是基础题.10.B解析:B 【分析】首先根据题意,利用k A 的意义,再根据选项判断. 【详解】A.202045050=⨯+,所以02020A ∈,正确;B.若3a b A +∈,则12,a A b A ∈∈,或21,a A b A ∈∈或03,a A b A ∈∈或30,a A b A ∈∈,故B 不正确;C.()1413-=⨯-+,所以31A -∈,故C 正确;D.4a n k =+,4b m k =+,,m n Z ∈,则()40,a b n m -=-+()n m Z -∈,故0a b A -∈,故D 正确.故选:B 【点睛】关键点点睛:本题考查集合新定义,关键是理解k A 的意义,再将选项中的数写出k A 中的形式,就容易判断选项了.11.D解析:D 【分析】由题意得知关于x 的方程2210ax x --=只有一个实数解,分0a =和00a ≠⎧⎨∆=⎩两种情况讨论,可得出实数a 的值. 【详解】由题意得知关于x 的方程2210ax x --=只有一个实数解.当0a =,{}12102A x x ⎧⎫=--==-⎨⎬⎩⎭,合乎题意; 当0a ≠时,则440a ∆=+=,解得1a =-. 综上所述:0a =或1-,故选D. 【点睛】本题考查集合的元素个数,本质上考查变系数的二次方程的根的个数,解题要注意对首项系数为零和非零两种情况讨论,考查分类讨论思想,属于中等题.12.D解析:D 【解析】B ={x ∣x 2−2x ⩽0}={x |0⩽x ⩽2}, 则A ∩B ={x |0⩽x ⩽1},本题选择D 选项.二、填空题13.{-101}【分析】由已知得B ⊆A 从而B=∅或B={-1}或B={1}进而或=-1或由此能求出实数a 的取值集合【详解】∵A={x|x2=1}={-11}A∩B=B ∴B ⊆A ∴B=∅或B={-1}或B=解析:{-1,0,1} 【分析】由已知得B ⊆A ,从而B=∅或B={-1},或B={1},进而0a =,或1a =-1或11a=,由此能求出实数a 的取值集合. 【详解】∵A={x|x 2=1}={-1,1}, A∩B=B ,∴B ⊆A , ∴B=∅或B={-1},或B={1}, ∴0a =,或1a =-1或11a=, 解得a=0或a=-1或a=1. ∴实数a 的取值集合为{-1,0,1}. 故答案为:{-1,0,1}. 【点睛】本题考查集合的求法,是基础题,解题时要认真审题,注意交集的性质的合理运用.14.2【分析】解一元二次不等式求得集合根据交集结果可知在只有一个整数解由二次函数性质可得解方程组求得结果【详解】令则对称轴为恰有一个整数即在只有一个整数解即解得:的最小值为故答案为:【点睛】本题考查根据解析:2 【分析】解一元二次不等式求得集合M ,根据交集结果可知()2230f x x ax =-+≤在()(),32,-∞-+∞只有一个整数解,由二次函数性质可得()()3040f f ⎧≤⎪⎨>⎪⎩,解方程组求得结果. 【详解】()(){}()()320,32,M x x x =+->=-∞-⋃+∞,令()()2230f x x ax a =-+>,则对称轴为x a =,M N ⋂恰有一个整数,即()0f x ≤在()(),32,-∞-+∞只有一个整数解,()()3040f f ⎧≤⎪∴⎨>⎪⎩,即963016830a a -+≤⎧⎨-+>⎩,解得:1928a ≤<, a ∴的最小值为2.故答案为:2 【点睛】本题考查根据交集结果求解参数范围的问题,关键是能够将整数解个数问题转化为二次函数图象的讨论,通过约束二次函数的图象得到不等关系.15.【分析】对整数取值并使为正整数这样即可找到所有满足条件的值从而用列举法表示出集合【详解】因为且所以可以取234所以故答案为:【点睛】考查描述法列举法表示集合的定义清楚表示整数集属于基础题 解析:{}1,2,3,4-【分析】对整数a 取值,并使65a-为正整数,这样即可找到所有满足条件的a 值,从而用列举法表示出集合A . 【详解】 因为a Z ∈且*65N a∈- 所以a 可以取1-,2,3,4. 所以{}1,2,3,4A =- 故答案为:{}1,2,3,4- 【点睛】考查描述法、列举法表示集合的定义,清楚Z 表示整数集,属于基础题.16.【分析】分类讨论:当时;当时分别讨论中元素为1和-1两种情况依次求解【详解】由题:当时符合题意;当时或所以或1所以实数所有取值的集合为故答案为:【点睛】此题考查通过集合的包含关系求参数的值其中的易漏 解析:{}1,0,1-【分析】分类讨论:当B =∅时,0a =;当B ≠∅时,分别讨论B 中元素为1和-1两种情况依次求解. 【详解】 由题:B A ⊆当0a =时,B =∅符合题意; 当0a ≠时,1B A a ⎧⎫=-⊆⎨⎬⎩⎭,11a -=或11a -=-所以,1a =-或1,所以实数a 所有取值的集合为{}1,0,1-. 故答案为:{}1,0,1- 【点睛】此题考查通过集合的包含关系求参数的值,其中的易漏点在于漏掉考虑子集为空集的情况,依次分类讨论即可避免此类问题.17.【分析】根据条件可得结合的意义可得集合【详解】因为集合是实数集的子集若则但不满足所以因为所以所以有又因为表示集合的元素去掉集合中的元素表示A 集合和B 集合中的所有元素所以把中的元素去掉中元素即为所求的 解析:(,1)(2,3)(5,)-∞+∞【分析】 根据条件()()[3,5]A B =R R 可得()(),35,AB =-∞+∞,结合[1,2]BA =R的意义,可得集合A . 【详解】因为集合A 、B 是实数集R 的子集,若AB =∅,则[2,0]AB A =-=R,[1,2]BA B ==R,但不满足()()[3,5]A B =R R ,所以A B ⋂≠∅. 因为()()[3,5]A B =R R ,所以()()()[3,5]AB A B ==R R R ,所以有()(),35,A B =-∞+∞.又因为[1,2]BA =R表示集合B 的元素去掉集合A 中的元素,()(),35,A B =-∞+∞表示A 集合和B 集合中的所有元素,所以把()(),35,A B =-∞+∞中的元素去掉[1,2]BA =R中元素,即为所求的集合A ,所以(,1)(2,3)(5,)A =-∞+∞.故答案为(,1)(2,3)(5,)-∞+∞.【点睛】本题主要考查集合的运算,根据集合的运算性质可求也可借助数轴或者韦恩图求解,侧重考查逻辑推理的核心素养.18.或【分析】分情况讨论:当时和当时两种情况;当时由即可求出答案分类讨论最后把的范围合并即可【详解】若则集合符合题意;若则解得故答案为:或【点睛】本题考查集合中元素个数问题;分类讨论和两种情况是求解本题解析:98a ≥或0a = 【分析】分情况讨论:当0a =时和当0a ≠时两种情况;当0a ≠时由0∆≤即可求出答案.分类讨论最后把a 的范围合并即可. 【详解】若0a =,则集合2{|320}3A x x ⎧⎫=+==-⎨⎬⎩⎭,符合题意; 若0a ≠,则980a ∆=-≤,解得98a ≥. 故答案为:98a ≥或0a =.【点睛】本题考查集合中元素个数问题;分类讨论0a =和0a ≠两种情况是求解本题关键; 0a =时易忽略;属于中档题,易错题.19.【分析】求即需同时满足A 集合和B 集合的x 的取值范围先根据比较容易得出解集再将B 集合的解集代入A 集合中判断出可以成立的值即可得【详解】当时当时不满足;当时满足;当时不满足;当时满足;即同时满足和的值有解析:{-【分析】求A B 即需同时满足A 集合和B 集合的x 的取值范围,先根据{}{}=|2=|22B x x x x <-<<,比较容易得出解集, 再将B 集合的解集代入A 集合中,判断出可以成立的值,即可得A B【详解】 {}{}=|2=|22B x x x x <-<<当22x -<<时,[]2,1,0,1x =--,当[]2x =-时,[]2200x x x +==⇒=,不满足[]2x =-; 当[]1x =-时,[]2211x x x +==⇒=±,1x =-满足[]1x =-;当[]0x =时,[]222x x x +==⇒=,不满足[]0x =;当[]1x =时,[]223x x x +==⇒=x []1x =;即同时满足[]22x x -=和2x <的x 值有则A B ={-故答案为:{- 【点睛】本题考查了集合的计算,和取整函数的理解,针对两个集合求交集的情况,可先对较简单的或者不含参数的集合求解,再代入较复杂的或含参数的集合中去计算.本题属于中等题. 20.【分析】由题意可知实数满足或解出即可得出实数的取值范围【详解】由题意可知实数满足或解不等式即即解得或因此实数的取值范围是故答案为【点睛】本题考查利用元素与集合的关系求参数解题的关键在于将问题转化为不 解析:()[),32,-∞-⋃+∞【分析】由题意可知,实数a 满足2312a--<-+或20a -+=,解出即可得出实数a 的取值范围. 【详解】由题意可知,实数a 满足2312a --<-+或20a -+=. 解不等式2312a --<-+,即5102a +>-,即302a a +>-,解得3a <-或2a >. 因此,实数a 的取值范围是()[),32,-∞-⋃+∞.故答案为()[),32,-∞-⋃+∞.【点睛】本题考查利用元素与集合的关系求参数,解题的关键在于将问题转化为不等式进行求解,考查化归与转化思想的应用,属于中等题.三、解答题21.(1){|13}A B x x ⋂=;(2)3(2-,0][4⋃,)+∞. 【分析】(1)当1m =时,求出集合B ,A ,由此能求出A B .(2)由A B A ⋃=,得B A ⊆,当B =∅时,213m m -+,当B ≠∅时,21321433m m m m -<+⎧⎪->-⎨⎪+⎩,由此能求出m 的取值范围.【详解】解:(1)当1m =时,{|14}B x x =<,{|314}{|43}A x x x x =-<+=-<,{|13}A B x x ∴⋂=.(2)A B A =,B A ∴⊆,当B =∅时,213m m -+,解得4m ,当B ≠∅时,21321433m m m m -<+⎧⎪->-⎨⎪+⎩,解得302m -<, 综上,m 的取值范围为3(2-,0][4⋃,)+∞. 【点睛】结论点睛:本题考查交集、实数的取值范围的求法,并集、交集的结论与集合包含之间的关系:A B A B A =⇔⊆,A B A A B ⋂=⇔⊆. 22.(1){}|27A B x x ⋃=-≤<;(2)若选择①(]1,41,2⎡⎤-∞--⎢⎥⎣⎦;若选择②[)5,5,2⎛⎤-∞-+∞ ⎥⎝⎦;若选择③[)5,5,2⎛⎤-∞-+∞ ⎥⎝⎦.【分析】(1)当a =2时,得出集合A ,求得集合B ,根据集合的并集运算可得答案;(2)若选择①AB A =,则A B ⊆,分集合A 是空集和不是空集两种情况讨论得实数a 的取值范围;若选择②()R A C B A =,则A 是R B 的子集,分集合A 是空集和不是空集两种情况讨论得实数a 的取值范围;若选择③AB =∅,分集合A 是空集和不是空集两种情况讨论得实数a 的取值范围.【详解】(1)当a =2时,集合{}|17A x x =<<,{}|24B x x =-≤≤,所以{}|27A B x x ⋃=-≤<;(2)若选择①AB A =,则A B ⊆,当123a a -≥+,即4a ≤-时,A =∅,满足题意; 当4a >-时,应满足12234a a -≥-⎧⎨+≤⎩,解得112a -≤≤;综上知:实数a 的取值范围(]1,41,2⎡⎤-∞--⎢⎥⎣⎦; 若选择②()R A C B A =,则A 是R B 的子集,(,2)(4,)R B =-∞-⋃+∞,当123a a -≥+,即4a ≤-时,A =∅,满足题意;当4a >-时,应满足4232a a >-⎧⎨+≤-⎩,或414a a >-⎧⎨-≥⎩,解得542a -<≤-或5a ≥, 综上知:实数a 的取值范围[)5,5,2⎛⎤-∞-+∞ ⎥⎝⎦;若选择③A B =∅,当123a a -≥+,即4a ≤-时,A =∅,满足题意;当4a >-时,应满足4232a a >-⎧⎨+≤-⎩,或414a a >-⎧⎨-≥⎩,解得542a -<≤-或5a ≥, 综上知:实数a 的取值范围[)5,5,2⎛⎤-∞-+∞ ⎥⎝⎦; 【点睛】易错点睛:本题容易忽略集合A 是空集的情况,导致出错:空集是任何集合的子集,是任何非空集合的真子集.23.(1)R A {x |1x 2}=-<<,1{|3B x x =<或1}x >;(2){}0;(3)211 1.32m m -<<-<<或【分析】(1)m =2时,化简集合A ,B ,即可得集合∁R A 和集合B ;(2)集合B ∩Z 为单元素集,所以集合B 中有且只有一个整数,而0∈B ,所以抛物线y =(1﹣m 2)x 2+2mx ﹣1的开口向上,且与x 轴的两个交点都在[﹣1,1]内,据此列式可得m =0;(3)因为A =(﹣∞,﹣1)∪(2,+∞),(A ∩B )∩Z 中由n 个元素,所以1﹣m 2>0,即﹣1<m <1;A ∩B 中至少有3或﹣2中的一个,由此列式可得.【详解】集合A ={x |x 2﹣x ﹣2≥0}={x |x ≥2或x ≤﹣1},集合{x |(1﹣m 2)x 2+2mx ﹣1<0,m ∈R}={x |[(1+m )x ﹣1][(1﹣m )x +1]<0}(1)当m =2时,集合∁R A ={x |﹣1<x <2}; 集合1{|3B x x =<或1}x > ; (2)因为集合B ∩Z 为单元素集,且0∈B ,所以,解得m =0,当m =0时,经验证,满足题意.故实数m 的取值集合为{0}(3)集合(A ∩B )∩Z 的元素个数为n (n ∈N *)个,A ∩B 中至少有3或﹣2中的一个, 所以令f (x )=(1﹣m 2)x 2+2mx ﹣1,依题意有或, 解得﹣1<m <﹣或<m <1∴【点睛】本题考查了交、并、补集的混合运算.属难题.24.(1)A ∪B ={x |-2≤x ≤7};(∁R A )∩B ={x |-2≤x <1};(2){4a a <-或11}2a -≤≤.【分析】(1)由a =2,得到A ={x |1≤x ≤7},然后利用集合的基本运算求解.(2)由A ∩B =A ,得到A ⊆B .然后分A =∅,A ≠∅两种情况讨论求解. 【详解】(1)当a =2时,A ={x |1≤x ≤7},则A ∪B ={x |-2≤x ≤7},∁R A ={x |x <1或x >7},(∁R A )∩B ={x |-2≤x <1}.(2)∵A ∩B =A ,∴A ⊆B .若A =∅,则a -1>2a +3,解得a <-4; 若A ≠∅,由A ⊆B ,得12312234a a a a -≤+⎧⎪-≥-⎨⎪+≤⎩,解得-1≤a ≤12 综上,a 的取值范围是{4a a <-或 11}2a -≤≤.【点睛】本题主要考查集合的基本要和基本运算,还考查了分类讨论的思想和运算求解的能力,属于中档题.25.(1)m=4;(2) m >6,或m <﹣4.【解析】试题分析:(1)化简A=x|﹣1≤x≤3},B=x|m ﹣3≤x≤m+3},由A∩B=[1,3],得到:m=4;(2)若p 是¬q 的充分条件,即A ⊆C R B ,易得:m >6,或m <﹣4. 试题由已知得:A=x|﹣1≤x≤3},B=x|m ﹣3≤x≤m+3}.(1)∵A∩B=[1,3]∴ ∴, ∴m=4; (2)∵p 是¬q 的充分条件,∴A ⊆C R B ,而C R B=x|x <m ﹣3,或x >m+3}∴m ﹣3>3,或m+3<﹣1,∴m >6,或m <﹣4.26.(1){}|36A B x x ⋂=≤<;(2)()R C A B R ⋃=【分析】(1)根据集合的交集运算即可(2)根据集合的补集、并集运算.【详解】因为集合{}|36A x x =≤<,集合{}|19B x x =<≤所以{}|36A B x x ⋂=≤<.所以{|3R C A x x =<或}6x ≥,∴R C A B R ⋃=.【点睛】本题主要考查了集合的交集,补集,并集运算,属于容易题.。

高一数学集合练习题(一)及答案

高一数学集合练习题(一)及答案

一、选择题(每题4分,共40分)1、集合{a ,b ,c }的真子集共有 个 ( ) A 7 B 8 C 9 D 104、若U={1,2,3,4},M={1,2},N={2,3},则C U (M ∪N )= ( ) A . {1,2,3} B. {2} C. {1,3,4} D. {4}5、方程组 11x y x y +=-=- 的解集是 ( )A .{x=0,y=1} B. {0,1} C. {(0,1)} D. {(x,y)|x=0或y=1} 6、以下六个关系式:{}00∈,{}0⊇∅,Q ∉3.0, N ∈0, {}{},,a b b a ⊂ ,{}2|20,x xx Z -=∈是空集中,错误的个数是 ( )A 4B 3C 2D 17、点的集合M ={(x,y)|xy≥0}是指 ( ) A.第一象限内的点集 B.第三象限内的点集C. 第一、第三象限内的点集D. 不在第二、第四象限内的点集8、设集合A=}{12x x <<,B=}{x x a <,若A ⊆B ,则a 的取值范围是 ( ) A }{2a a ≥ B }{1a a ≤ C }{1a a ≥ D }{2a a ≤9、 满足条件M}{1=}{1,2,3的集合M 的个数是 ( )A 1B 2C 3D 410、集合{}|2,P x x k k Z ==∈,{}|21,Q x x k k Z ==+∈,{}|41,R x x k k Z ==+∈,且,a P b Q ∈∈,则有 ( )A a b P +∈B a b Q +∈C a b R +∈D a b +不属于P 、Q 、R 中的任意一个 二、填空题(每题3分,共18分)11、若}4,3,2,2{-=A ,},|{2A t t x x B ∈==,用列举法表示B 12、集合A={x| x 2+x-6=0}, B={x| ax+1=0}, 若B ⊂A ,则a=__________13、设全集U={}22,3,23a a +-,A={}2,b ,C U A={}5,则a = ,b = 。

高一数学集合练习题及答案-经典

高一数学集合练习题及答案-经典

高一数学集合练习题及答案-经典一、单选题1.已知集合{1A x x =≤-或}2x >,则 RA =( ).A .{}12x x -≤<B .{}12x x -<≤C .{}12x x -<<D .{1A x x =<-或}2x ≥2.设集合{|,log (1)}xa A a x R a x a =∃∈=>,{|0,B y x xy =∀≥≥,下列说法正确的是( ) A .A B ⊆B .B A ⊆C .B A ⋂=∅D .BA ≠∅3.已知集合{}{(3)0},0,1,2,3A x x x B =-<=,则A B =( ) A .{1,2}B .{0,1,2}C .{1,2,3}D .{0,1,2,3}4.设集合()(){}|230A x x x =+-<,{}|1B x x =>,则( ) A .A B =∅B .A B R =C .{}|13A B x x =<<D .{}|1A B x x =>5.已知集合{}11A x Z x =∈-≤≤,{}1,2B =,则A B ⋃=( ) A .{}1B .{}0,1,2C .1,0,1,2D .{}1,1,2-6.设集合{}220A x x x =--≤,124xB x ⎧⎫⎪⎪⎛⎫=<⎨⎬ ⎪⎝⎭⎪⎪⎩⎭,则()A B ⋃=R( )A .112x x ⎧⎫-<≤-⎨⎬⎩⎭B .{}1x x <-C .12x x ⎧⎫>-⎨⎬⎩⎭D .{}1x x ≥-7.已知集合(){}2log 2A x y x ==-,{}2xB y y ==,则A B =( )A .()0,2B .()1,2C .[)1,2D .(),2-∞8.已知全集U =R ,集合{}2560A x x x =-+<,{}2440B y y y =-+>,则()U A B =( )A .(][),23,-∞⋃+∞B .()[),23,-∞⋃+∞C .()2,+∞D .()(),23,-∞⋃+∞9.已知集合{}21A x x =-≤,2024x B xx ⎧⎫+=≤⎨⎬-⎩⎭.则A B =( ) A .[6,2]- B .(,1][2,)-∞⋃+∞ C .[1,2] D .[1,2)10.已知函数()2ln 3y x x =-的定义域为A ,集合{}14B x x =≤≤,则()A B =R ( )A .{0,1,2,3,4}B .{1,2,3}C .[0,4]D .[1,3]11.已知集合{}2280,Z A x x x x =--<∈,则A 的非空子集的个数为( )A .32B .31C .16D .1512.设集合{}2Z20A x x x =∈--≤∣,{0,1,2,3}B =,则A B =( )A .{0,1}B .{0,1,2}C .{1,0,1,2,3}-D .{2,1,0,1,2,3}--13.已知集合{|13}A x x =-<<,1,{}1,2B =-,则A B =( )A .{}1,2B .{}1,1,2-C .{}0,1,2D .{}1,0,1,2,3-14.①{}00∈,②{}0∅⊆,③{}(){}0,10,1=,④(){}(){}(),,a b b a a b =≠,其中正确的个数为( ) A .1B .2C .3D .415.设集合{}260A x x x =--≤,{}20B x x a =+≤,且{}21A B x x ⋂=-≤≤,则=a ( ) A .4-B .2-C .2D .4二、填空题16.已知函数2()43f x x x =-+,()52g x mx m =+-,若对任意的[]11,4x ∈,总存在[]21,4x ∈,使12()()f x g x =成立,则实数m 的取值范围是 ________. 17.已知[]x 表示不超过x 的最大整数.例如[2.1]2=,[ 1.3]2-=-,[0]0=,若{[]}A y y x x ==-∣,{0}∣=≤≤B y y m ,yA 是yB ∈的充分不必要条件,则m 的取值范围是______.18.已知集合(){}(){},24,,5A x y x y B x y x y =-==+=∣∣,则A B 中元素个数为__________.19.满足{}{},,a M a b c ⊆⊆的所有集合M 共有__________ 个. 20.若“x a >”是“39x >”的必要条件,则a 的取值范围是________.21.已知集合{0,1,2,3,4,5}A =,集合{1,3,5,7,9}B =,则Venn 图中阴影部分表示的集合中元素的个数为________.22.若a ∈R ,集合A ={1,a ,a +2},B ={1,3,5},且A =B ,则a =___________. 23.已知函数()51f x a x=-+-M ,集合{}9N x x =≥,若M N ⋂=∅,则实数a 的取值范围是_________.24.已知集合{}()216,xA xB a ∞=≤=-,,若A B ⊆则实数a 的取值范围是____. 25.若{}0,1,2U =,{}220,M x x x x =-=∈R ,则M =______.三、解答题26.设2n ≥且N n ∈,集合{1,2,3,4,,2}U n =,若对U 的任意k 元子集k V ,都存在,,k a b c V ∈,满足:a b c <<,a b c +>,且a b c ++为偶数,则称k V 为理想集,并将k 的最小值记为K .(1)当2n =时,是否存在理想集?若存在,求出相应的K ;若不存在,请说明理由;(2)当3n =时,是否存在理想集?若存在,直接写出对应的k V 以及满足条件的,,a b c ;若不存在,请说明理由; (3)证明:当4n =时,6K =.27.设集合{|}R A x x x ∈+=240=,R R {|()}B x x a x a a ∈=∈222110=+++-, . (1)若0a =,试求A B ;(2)若B A ⊆,求实数a 的取值范围.28.已知集合{}24A x x =-<≤,{}0B x x m =-<. (1)若A B =∅,求实数m 的取值范围; (2)若A B A =,求实数m 的取值范围.29.已知集合{}22A x a x a =-≤≤,{}31B x x =-<<. (1)若2a =-,求()R A B ⋃; (2)若A B A =,求a 的取值范围.30.用描述法写出下面这些区间的含义:[]2,7-;[),a b ;()123,+∞;(],9-∞-.【参考答案】一、单选题 1.B 【解析】 【分析】利用补集的概念求解 RA .【详解】因为{1A x x =≤-或}2x >,所以 RA ={}12x x -<≤,故选:B 2.D 【解析】 【分析】利用因为x y a =与log a y x =互为反函数,所以,互相关于y x =对称,得到x a x ≤,进而得出集合A 的范围;对于集合B,化简得y ≥()g x =()g x 的最值,得出集合B 的范围,即可求解 【详解】对于集合{},log (1)xa A a x R a x a =∃∈=,因为x y a =与log a y x =互为反函数,所以,互相关于y x =对称,而,log x a x R a x ∃∈=,所以,只需要x a x ≤即可,因为1a >,所以, ln ln x a x ≤,得ln ln x a x ≤,设ln ()xf x x=,得21ln ()x f x x -'=,所以, (0,)x e ∈,()0f x '>,()f x 单调递增;(,)x e ∈+∞,()0f x '<,()f x 单调递减,所以,1()()Maxf x f e e ==,得到11e a e <≤,所以,11,e A e ⎛⎤= ⎥⎝⎦;对于集合{|0,B y x xy =∀≥≥,化简得y ≥()g x =()g x '20x >,可设()h x=,()h x '=0<,()h x ∴单调递减,又(0)0h =,所以,当0x >时,()0h x '<,()0h x <,()0g x ∴'<,()g x 单调递减,利用洛必达法则,0x →时,000x x x →→→===所以,()y g x =≥)B =+∞; 由于1(1,)A e=,)B =+∞,所以,D 正确 故选:D 3.A 【解析】 【分析】解不等式得A ,由交集的概念运算 【详解】由(3)0x x -<得03x <<,即(0,3)A =,故{1,2}A B =. 故选:A 4.C 【解析】 【分析】先化简集合A ,再逐一判断即可 【详解】()()02233x x x ⇒-+<<<-所以{}|13A B x x =<<,故A 错误,C 正确{}|2A B x x =>-,故B 错误,D 错误 故选:C 5.C 【解析】 【分析】首先用列举法表示集合A ,再根据并集的定义计算可得; 【详解】解:因为{}{}111,0,1A x Z x =∈-≤≤=-,{}1,2B =,所以{}1,0,1,2A B ⋃=-; 故选:C 6.B 【解析】 【分析】分别化简集合A 与B ,再求A B ,最后求()RA B ⋃【详解】220x x --≤⇒()()120x x +-≤⇒12x -≤≤124x⎛⎫< ⎪⎝⎭222x-⇒<21x ⇒-<12x ⇒>-即{}|12A x x =-≤≤,1|2B x x ⎧⎫=>-⎨⎬⎩⎭所以{}|1A B x x ⋃=≥- 所以(){}R|1AB x x =<-故选:B7.C 【解析】 【分析】求出集合A 、B ,利用交集的定义可求得结果. 【详解】对于函数2x y =,0x ≥,则0221xy =≥=,故[)1,B =+∞,(){}{}()2log 220,2A x y x x x ∞==-=->=-,因此,[)1,2A B =.故选:C. 8.B 【解析】 【分析】求出集合A 、B ,利用补集和交集的定义可求得集合()U A B ⋂. 【详解】因为{}{}256023A x x x x x =-+<=<<,{}(){}{}22440202B y y y y y y y =-+>=->=≠,则{2UA x x =≤或}3x ≥,因此,()()[),23,U AB =-∞+∞.故选:B. 9.D 【解析】 【分析】 解不等式后求交集 【详解】|2|1x -≤,解得13x ≤≤,故[1,3]A =, 2024x x +≤-,解得22x -≤<,故[2,2)B =-, [1,2)A B ⋂=故选:D 10.D 【解析】 【分析】根据对数函数的性质,可知230x x ->,由此即可求出集合A ,进而求出A R,再根据交集运算即可求出结果.【详解】由题意可知,230x x ->,所以0x <或3x >, 所以{}{}03A x x x x =<>,故{}03A x x =≤≤R,所以()[]1,3R A B =. 故选:D. 11.B 【解析】 【分析】求出集合A ,利用集合的非空子集个数公式可求得结果. 【详解】{}{}{}2280,Z 24,Z 1,0,1,2,3A x x x x x x x =--<∈=-<<∈=-,即集合A 含有5个元素,则A 的非空子集有52131-=(个). 故选:B. 12.B 【解析】 【分析】解一元二次不等式,得到集合A ,根据集合的交集运算,求得答案. 【详解】解不等式220x x --≤得:12x -≤≤ ,故{}2Z20{1,0,1,2}A x x x =∈--≤=-∣, 故{0,1,2}A B ⋂=, 故选:B 13.A 【解析】 【分析】根据交集运算求A B 【详解】{|13}A x x =-<<,1,{}1,2B =-, {1,2}A B ∴=,故选:A 14.B 【解析】 【分析】根据元素与集合的关系、集合与集合的关系即可判断. 【详解】{}00∈正确;{}0∅⊆正确;{}(){}0,10,1=不正确,左边是数集,右边是点集;(){}(){}(),,a b b a a b =≠不正确,左边是点集,右边是点集,但点不相同.故正确的有①②,共2个. 故选:B. 15.B 【解析】 【分析】先求出集合,A B ,再根据交集的结果求出a 即可. 【详解】由已知可得{}23A x x =-≤≤,2a B x x ⎧⎫=≤-⎨⎬⎩⎭又∵{}21A B x x ⋂=-≤≤,∴12a-=, ∴2a =-. 故选:B .二、填空题16.(,3][6,)-∞-⋃+∞【解析】 【分析】根据对任意的[]11,4x ∈,总存在[]21,4x ∈,使得12()()f x g x =,可得两个函数值域的包含关系,进而根据关于m 的不等式组,解不等式组即可. 【详解】因为()22()4321f x x x x =-+=--, 所以函数()f x 的对称轴为2x =,对任意的[]11,4x ∈,记()[]1,3f x ∈-.记[]1,3A =-. 由题意知,当0m =时不成立,当0m >时,()52g x mx m =+-在[]1,4上是增函数, 所以[]()5,25g x m m ∈-+,记[]5,25B m m =-+ 由题意知,BA所以m m -≥-+≥⎧⎨⎩15253,解得6m ≥.当0m <时,()52g x mx m =+-在[]1,4上是减函数, 所以[]()25,5g x m m ∈+-,记[]25,5C m m =+-, 由题意知,C A ⊇所以251{53m m +≤--≥,解得3m ≤-. 综上所述,实数m 的取值范围是(,3][6,)-∞-⋃+∞. 故答案为: (,3][6,)-∞-⋃+∞ 【点睛】解决本题的关键是将问题转化为对任意的[]11,4x ∈,总存在[]21,4x ∈,使得12()()f x g x =, 可得两个函数值域的包含关系,进而分别求两个函数的值域.17.[)1,+∞【解析】 【分析】由题可得{[]}[0,1)A yy x x ==-=∣,然后利用充分不必要条件的定义及集合的包含关系即求. 【详解】∵[]x 表示不超过x 的最大整数,∴[]x x ≤,[]01x x ≤-<,即{[]}[0,1)A yy x x ==-=∣, 又y A 是y B ∈的充分不必要条件,{0}∣=≤≤B y y m ,∴A B ,故m 1≥,即m 的取值范围是[)1,+∞. 故答案为:[)1,+∞.18.1【解析】 【分析】利用交集的定义直接求解. 【详解】∵集合(){},24A x y x y =-=∣,(){},5B x y x y =+=∣, ∴()(){}24,3,25x y A B x y x y ⎧⎫-=⎧⎪⎪⋂==⎨⎨⎬+=⎩⎪⎪⎩⎭,∴A B 中元素个数为1. 故答案为:1.19.4【解析】 【分析】由题意列举出集合M ,可得集合的个数. 【详解】由题意可得,{}M a =或{},M a b =或{},M a c =或{},,M a b c =,即集合M 共有4个 故答案为:420.2a ≤【解析】 【分析】根据题意39x >解得:2x >,得出()()2,,a +∞⊆+∞,由此可得出实数a 的取值范围. 【详解】根据题意39x >解得:2x >,由于“x a >”是“39x >”的必要条件,则()()2,,a +∞⊆+∞,2a ∴≤. 因此,实数a 的取值范围是:2a ≤. 故答案为:2a ≤. 21.3 【解析】 【分析】由集合定义,及交集补集定义即可求得. 【详解】由Venn 图及集合的运算可知,阴影部分表示的集合为()AAB .又{0,1,2,3,4,5}A =,{1,3,5,7,9}B =,{1,3,5}A B ∴⋂=,(){}0,2,4AA B ∴⋂=即Venn 图中阴影部分表示的集合中元素的个数为3 故答案为:3. 22.3 【解析】 【分析】根据集合相等的概念得到方程组,解之即可求出结果. 【详解】 ∵A B =,∴325a a =⎧⎨+=⎩,解得3a =, 或523a a =⎧⎨+=⎩,无解 所以3a =. 故答案为:3.23.(,8]-∞【解析】 【分析】根据集合交集的性质,结合子集的性质进行求解即可. 【详解】∵{}9,N x x M N =≥⋂=∅,∵{}9M x x ⊆<,∵{}1M x x a =<+,∴19a +≤,解得8a ≤,∴实数a 的取值范围是(,8]-∞. 故答案为:(,8]-∞24.4a >【解析】【分析】根据指数函数的单调性求出集合A ,再根据A B ⊆列出不等式,即可的解.【详解】 解:{}(]216,4x A x ∞=≤=-, 因为A B ⊆,所以4a >.故答案为:4a >.25.{}1【解析】【分析】解一元二次方程求出集合M ,进而根据补集的概念即可求出结果.【详解】 因为{}{}220,0,2M x x x x =-=∈=R ,且{}0,1,2U =, 则{}1M =,故答案为:{}1.三、解答题26.(1)不存在,理由见解析;(2)存在,6{1,2,3,4,5,6}V =,3,4,5或3,5,6;(3)证明见解析.【解析】【分析】(1)根据理想集的定义,分3元子集、4元子集分别说明判断作答.(2)根据理想集的定义,结合(1)中信息,说明判断5元子集,6元子集作答.(3)根据理想集的定义,结合(1)(2)中信息,判断U 的所有6元子集都符合理想集的定义作答.(1)依题意,k V 要为理想集,3k ≥,当2n =时,{1,2,3,4}U =,显然{2,3,4}U ⊆,有234,234<<+>,而234++不是偶数,即存在3元子集不符合理想集定义,而{1,2,3,4}U ⊆,在{1,2,3,4}中任取3个数,有4种结果,1,2,3;1,2,4;1,3,4;2,3,4,它们都不符合理想集定义,所以,当2n =时,不存在理想集.(2)当3n =时,{1,2,3,4,5,6}U =,由(1)知,存在3元子集{2,3,4}、4元子集{1,2,3,4}均不符合理想集定义,5元子集{1,2,3,4,6},在此集合中任取3个数,满足较小的两数和大于另一个数的只有2,3,4与3,4,6两种,但这3数和不为偶数,即存在5元子集{1,2,3,4,6}不符合理想集定义,而U 的6元子集是{1,2,3,4,5,6},345,345,345<<+>++是偶数,356,356,356<<+>++是偶数,即U 的6元子集{1,2,3,4,5,6}符合理想集定义,{1,2,3,4,5,6}是理想集,所以,当3n =时,存在理想子集6{1,2,3,4,5,6}V =,满足条件的,,a b c 可分别为3,4,5或3,5,6.(3)当4n =时,{1,2,3,4,5,6,7,8}U =,由(1),(2)知,存在U 的3元子集、4元子集、5元子集不满足理想集定义,k V 要为理想集,6k ≥,显然{1,2,3,4,5,6}符合理想集的定义,满足条件的,,a b c 分别为3,4,5或3,5,6,U 的6元子集中含有3,5,6的共有25C 10=个,这10个集合都符合理想集的定义,U 的6元子集中含有3,5不含6的有5个,其中含有4的有4个,这4个集合都符合理想集的定义,不含4的为{1,2,3,5,7,8},显然有578,578,578<<+>++为偶数,即U 的6元子集中含有3,5不含6的5个都符合理想集的定义,U 的6元子集中含有36,不含5的有5个,它们是{1,2,3,4,6,7},{1,2,3,4,6,8},{1,2,3,6,7,8},{1,3,4,6,7,8},{2,3,4,6,7,8},它们对应的,,a b c 可依次为:3,6,7;4,6,8;3,6,7;3,6,7;3,6,7,即U 的6元子集中含有36,不含5的5个都符合理想集的定义, U 的6元子集中含有5,6不含3的有5个,它们是{1,2,4,5,6,7},{1,2,4,5,6,8},{1,2,5,6,7,8},{1,4,5,6,7,8},{2,4,5,6,7,8},它们对应的,,a b c 可依次为:5,6,7;4,6,8;5,6,7;5,6,7;5,6,7,即U 的6元子集中含有5,6不含3的5个都符合理想集的定义,U 的6元子集中含有3,5,6之一的有3个,它们是{1,2,3,4,7,8},{1,2,4,5,7,8},{1,2,4,6,7,8},对应的,,a b c 可依次为:3,7,8;5,7,8;4,6,8,即U 的6元子集中含有3,5,6之一的3个都符合理想集的定义,因此,U 的所有68C 28=个6元子集都符合理想集的定义,6V 是理想集,U 的7元子集有78C 8=个,其中含有3,5,6的有5个,这5个集合都符合理想集的定义,不全含3,5,6的有3个,它们是{1,2,3,4,5,7,8},{1,2,3,4,6,7,8},{1,2,4,5,6,7,8},对应的,,a b c 可依次为:3,7,8;3,7,8;4,6,8,即U 的所有8个7元子集都符合理想集的定义,7V 是理想集,U 的8元子集是{1,2,3,4,5,6,7,8},对应的,,a b c 可以为:3,7,8,因此,8V 是理想集, 因此,U 的6元子集,7元子集,8元子集都是理想集,6K =,所以当4n =时,6K =.【点睛】关键点睛:涉及集合新定义问题,关键是正确理解给出的定义,然后合理利用定义,结合相关的其它知识,分类讨论,进行推理判断解决.27.(1){0411---,, (2)}{a a a ≤-=11或.【解析】【分析】(1)利用一元二次方程的公式及集合的并集的定义即可求解.(2)利用子集的定义及一二次方程的根的情况即可求解.(1)由240x x +=,解得0x =或4x =-, }{,A =-40 .当0a =时,得x x -+2210=,解得1x =--x =1-{11B =--;∴{0411A B =---,,. (2)由(1)知,}{,A =-40,B A ⊆,于是可分为以下几种情况.当A B =时,}{,B =-40,此时方程()x a x a =222110+++-有两根为0,4-,则 ()()()a a a a ⎧∆=+⎪=⎨⎪-+=-⎩-->2224141010214-,解得1a =. 当B A ≠时,又可分为两种情况.当B ≠∅时,即{}0B =或{}B -4=, 当{}0B =时,此时方程()x a x a =222110+++-有且只有一个根为0,则22241410(0)()1a a a --⎧∆=+⎨-==⎩,解得1a =-, 当{}B -4=时,此时方程()x a x a =222110+++-有且只有一个根为4-,则 ()2222414104()()()8110a a a a ⎧∆=+⎪⎨-=--=-⎪⎩++-,此时方程组无解, 当B =∅时,此时方程()x a x a =222110+++-无实数根,则2241410()()a a --∆+<=,解得1a <-.综上所述,实数a 的取值为}{a a a ≤-=11或.28.(1)2m ≤-(2)4m >【解析】【分析】(1)根据集合的交集是空集建立不等式即可得解;(2)由题意转化为包含关系得出不等关系即可得解.(1){}24A x x =-<≤,{}B x x m =<且A B =∅2m ∴≤- (2)A B A =,A B ∴⊆4m ∴>29.(1)()R A B ⋃{|2x x =≤-或1}x ≥(2)()1,12,2⎛⎫-+∞ ⎪⎝⎭【解析】【分析】(1)首先得到集合A ,再根据补集、并集的定义计算可得;(2)依题意可得A B ⊆,分A =∅与A ≠∅两种情况讨论,分别得到不等式,解得即可;(1) 解:由题意当2a =-时得{}62A x x =-≤≤-,因为{}31B x x =-<<,所以{|3R B x x =≤-或1}x ≥,所以()R A B ⋃{|2x x =≤-或1}x ≥.(2)解:因为A B A =,所以A B ⊆,①当A =∅时,22a a ->,解得2a >,符合题意;.②当A ≠∅时,221223a a a a -≤⎧⎪<⎨⎪->-⎩,解得112a -<<. 故a 的取值范围为()1,12,2⎛⎫-+∞ ⎪⎝⎭.30.{}27x x -≤≤;{}x a x b ≤<;{}123x x >;{}9x x ≤-.【解析】【分析】将区间转化为集合,用描述法写出答案.【详解】[]2,7-用描述法表示为:{}27x x -≤≤;[),a b 用描述法表示为:{}x a x b ≤<;()123,+∞用描述法表示为:{}123x x >;(],9-∞-用描述法表示为:{}9x x ≤-.。

高一数学集合练习题及答案经典

高一数学集合练习题及答案经典

高一数学集合练习题及答案经典一、单选题1.设集合{}2260A x Z x x =∈+-≤,{}02B x x =<<,则()R A B ⋂=( )A .[]2,0-B .30,2⎛⎤ ⎥⎝⎦C .{}2,1,0--D .{}2,1--2.已如集合{}2A x x =>,{}35B x x =-<<,则A B =( ) A .{}25x x <<B .{}32x x -<<C .{}35x x -<<D .{}3x x <-3.集合{}220A x x x =--≤,{}10B x x =-<,则A B =( )A .{}1x x ≥B .{}11x x -≤<C .{}1x x <-D .{}21x x -≤<4.已知集合2{|13},{|4}A x x B x x =-≤<=≥,则A B =( ) A .[1,2]-B .[1,2]C .[2,3)D .[2,)+∞5.设集合{}Z 22M x x =∈-<,则集合M 的子集个数为( ) A .16B .15C .8D .76.已知集合(){}22240,(1)2101x A xB x x a x a a x ⎧⎫-==-+++<⎨⎬+⎩⎭,若A B =∅,则实数a 的取值范围是( ) A .()2,+∞ B .{}()12,∞⋃+ C .{}[)12,+∞D .[)2,+∞7.已知集合{}1,0,1,2A =-,{}0,1,3B =,则A B =( ) A .{}1,0,1-B .{}0,1,2C .{}0,1D .{}1,28.已知集合{20}M x x =-<,{N x y ==,则M N =( )A .{1}x x >-B .{12}x x -≤<C .{}12x x -<<D .R9.设全集U =R ,集合{}{}13,0,1,2,3,4,5A x x B =≤≤=,则()U A B =( ) A .{0,4,5}B .{0,1,3,4,5}C .{4,5}D .{0}10.已知集合{}220A x x x =-≤,{}0,1B =,则A B =( )A .[]0,1B .{}0,1C .[]0,2D .{}0,1,211.已知全集U =R ,集合{}2560A x x x =-+<,{}2440B y y y =-+>,则()U A B =( )A .(][),23,-∞⋃+∞B .()[),23,-∞⋃+∞C .()2,+∞D .()(),23,-∞⋃+∞12.已知函数()2ln 3y x x =-的定义域为A ,集合{}14B x x =≤≤,则()A B =R ( )A .{0,1,2,3,4}B .{1,2,3}C .[0,4]D .[1,3]13.已知集合{}24A x x =≤,{}2,B y y x x ==∈R ,则A B =( )A .[0,2]B .[0,4]C .[2,2]-D .∅14.设全集{}1,2,3,4,5,6U =,集合{}1,2,4A =,{}3,4,5B =,则下图中的阴影部分表示的集合为( )A .{}4B .{}5C .{}1,2D .{}3,515.设全集{}0,1,2,3,4U =,集合{}1,2,4A =,{}2,3B =,则()U A B ⋂=( ) A .{}2B .{}2,3C .{}0,3D .{}3二、填空题16.从集合{}123,,,,n U a a a a =⋅⋅⋅的子集中选出4个不同的子集,需同时满足以下两个条件:①∅、U 都要选出;②对选出的任意两个子集A 和B ,必有A B ⊆或A B ⊇.则选法有___________种.17.若集合(){}21420A x a x x =-+-=有且仅有两个子集,则实数a 的值是____. 18.已知集合{}2Z,4A x x x =∈<,{}1,2B =-,则A B ⋃=_________.19.设全集R U =,集合{}3,1A =-,{}22,1B m m =--,且A B =,则实数m =______.20.已知集合A 与B 的关系如下图,则图中所示的阴影部分用集合表示为________.(要求用集合A 与B 的符号关系表示)21.已知集合{1,2,3}A =,则满足A B A ⋃=的非空集合B 有_________个. 22.已知平面上两个点集()(){}22,|12,R,R M x y x y x y x y =+++∈∈,(){},|11,R,R N x y x a y x y =-+-≤∈∈,若MN ≠∅,则实数a的取值范围为___________..23.已知集合{}1,0,1A =-,{}220B x x x =-=,则A B ⋃=______.24.已知A ={x |2a <x ≤a +8},B ={x |x <-1或x >5},若A ∪B =R , 则a 的取值范围是________.25.若集合{}2A x x =<,101B xx ⎧⎫=>⎨⎬+⎩⎭,则A B =______.三、解答题26.设集合{|}R A x x x ∈+=240=,R R {|()}B x x a x a a ∈=∈222110=+++-, . (1)若0a =,试求A B ;(2)若B A ⊆,求实数a 的取值范围.27.已知集合{}1|43280x x A x +=-⋅+,{}|2.B x x a =+<(1)当1a =时,求A B ;(2)若“x B ∈”是“x A ∈”的必要条件,求实数a 的取值范围.28.已知集合{}213A x t x t =-≤≤-,{}215B x x =-<+<. (1)若A B =∅,求实数t 的取值范围;(2)若“x B ∈”是“x A ∈”的必要不充分条件,求实数t 的取值范围.29.已知集合{}250A x x x a =-+≤,B =[3,6].(1)若a = 0,求A B ;(2)x ∈B 是 x ∈ A 的充分条件,求实数a 的取值范围.30.已知集合2{|40}A x x =-≥,集合{|1}B x m x m =<<-. (1)求A .(2)求A B A ⋃=,求m 的取值范围.【参考答案】一、单选题 1.C 【解析】 【分析】求解集合A ,然后进行交集补集运算即可. 【详解】集合()(){}{}|23202,1,0,1A x Z x x =∈-+≤=--,{}02B x x =<<{R|0B x x =≤或}2x ≥,则()R A B ⋂={}2,1,0--故选:C 2.A 【解析】 【分析】应用集合的交运算求A B . 【详解】{|2}{|35}{|25}A B x x x x x x ⋂=>⋂-<<=<<.故选:A 3.B 【解析】 【分析】解不等式可求得集合,A B ,由交集定义可得结果. 【详解】{}{}22012A x x x x x =--≤=-≤≤,{}{}101B x x x x =-<=<, {}11A B x x ∴⋂=-≤<.故选:B. 4.C 【解析】 【分析】先化简集合B ,再与集合A 取交集即可解决. 【详解】{2{|4}|2B x x x x =≥=≥或}2x ≤-则A B {|13}x x =-≤<⋂{|2x x ≥或}2x ≤-{|23}x x =≤< 故选:C5.C 【解析】 【分析】利用公式法解绝对值不等式,再根据集合子集个数公式进行求解即可. 【详解】因为2222204x x x -<⇒-<-<⇒<<,所以{}1,2,3M =, 因此集合M 的子集个数为328=, 故选:C 6.C 【解析】 【分析】先解出集合A ,考虑集合B 是否为空集,集合B 为空集时合题意,集合B 不为空集时利用24a 或211a +-解出a 的取值范围.【详解】由题意(]40141x A x x ⎧⎫-==-⎨⎬+⎩⎭,,(){}()(){}2222(1)210210B x x a x a a x x a x a ⎡⎤=-+++<=--+<⎣⎦,当B =∅时,221a a =+,即1a =,符合题意;当B ≠∅,即1a ≠时,()22,1B a a =+,则有24a 或211a +-,即 2.a 综上,实数a 的取值范围为{}[)12,+∞.故选:C. 7.C 【解析】 【分析】根据交集的定义计算可得; 【详解】解:因为{}1,0,1,2A =-,{}0,1,3B =,所以{}0,1A B =; 故选:C 8.B 【解析】 【分析】化简集合,M N ,即得解. 【详解】解:由题得(,2),[1,)M N =-∞=-+∞, 所以[1,2)M N =-.故选:B 9.A【解析】 【分析】由集合的补集和交集的运算可得. 【详解】 由题可得{1UA x x =<或3}x >,所以(){0,4,5}=UA B .故选:A .10.B 【解析】 【分析】先求出集合A ,再根据交集运算求出A B 即可. 【详解】由题意知:{}02A x x =≤≤,又{}0,1B =,故A B ={}0,1. 故选:B. 11.B 【解析】 【分析】求出集合A 、B ,利用补集和交集的定义可求得集合()U A B ⋂. 【详解】因为{}{}256023A x x x x x =-+<=<<,{}(){}{}22440202B y y y y y y y =-+>=->=≠,则{2UA x x =≤或}3x ≥,因此,()()[),23,U AB =-∞+∞.故选:B. 12.D 【解析】 【分析】根据对数函数的性质,可知230x x ->,由此即可求出集合A ,进而求出A R,再根据交集运算即可求出结果. 【详解】由题意可知,230x x ->,所以0x <或3x >, 所以{}{}03A x x x x =<>,故{}03A x x =≤≤R,所以()[]1,3R A B =. 故选:D. 13.A 【解析】 【分析】解不等式得集合A ,求二次函数值域得集合B ,然后由集合的交集运算可得. 【详解】由24x ≤解得22x -≤≤,即{}22A x x =-≤≤, 易知20y x =≥,即{|0}B y y =≥ 则{|02}A B x x =≤≤. 故选:A 14.D 【解析】 【分析】图中阴影部分表示()U A B ⋂,再根据交集和补集的定义即可得出答案. 【详解】解:图中阴影部分表示()U A B ⋂,因为{}1,2,3,4,5,6U =,集合{}1,2,4A =,{}3,4,5B =, 所以{}3,5,6UA =,所以(){}3,5U A B =. 故选:D. 15.D 【解析】 【分析】利用补集和交集的定义可求得结果. 【详解】 由已知可得{}0,3UA =,因此,(){}U 3AB ⋂=,故选:D.二、填空题16.3323n n -⋅+【解析】 【分析】分析出当一个子集只含有m 个元素时,另外一个子集可以包含()1m +,()2m +,(),1n -个元素,所以共有()()121C C C C C 22n mm n m m n n m n m n m n ------⨯+++=⨯-种选法;再进行求和即可. 【详解】因为∅、U 都要选出;故再选出两个不同的子集,即为M ,N , 因为选出的任意两个子集A 和B ,必有A B ⊆或A B ⊇,故各个子集所包含的元素个数必须依次增加,且元素个数多的子集包含元素个数少的子集,当一个子集只含有1个元素时,另外一个子集可以包含2,3,4()1n -个元素,所以共有()()111221111C C C C C 22n n n n n n n -----⨯+++=⨯-种选法; 当一个子集只含有2个元素时,另外一个子集可以包含3,4,()1n -个元素,所以共有()()221232222C C C C C 22n n n n n n n -----⨯+++=⨯-种选法;当一个子集只含有3个元素时,另外一个子集包含4,5,()1n -个元素,所以共有()()331243333C C C C C 22n n n n n n n -----⨯+++=⨯-种选法;……当一个子集只含有m 个元素时,另外一个子集可以包含()1m +,()2m +,(),1n -个元素,所以共有()()121C C C C C 22n mm n m m n n m n m n m n ------⨯+++=⨯-种选法;……当一个子集有()2n -个元素时,另外一个子集包含()1n -个元素,所以共有()22C 22n n -⨯-种选法;当一个子集有()1n -个元素时,另外一个子集包含有n 个元素,即为U ,不合题意,舍去;故共有()()()()122122C 22C 22C 22C 22n n n mm n n n n n ----⨯-+⨯-++⨯-++⨯-()1122122C 2C 22C C C n n n n n n n n ---=⋅++⋅-+++()()122212223323nn n n n n n =+------=-⋅+. 故答案为:3323n n -⋅+ 【点睛】对于集合与排列组合相结合的题目,要能通过分析,求出通项公式,再结合排列或组合的常用公式进行化简求解. 17.±1 【解析】 【分析】分析出集合A 有1个元素,对a 讨论方程解的情况即可. 【详解】因为集合(){}21420A x a x x =-+-=有且仅有两个子集,所以集合A 有1个元素.当a =1时,{}1|4202A x x ⎧⎫=-==⎨⎬⎩⎭,符合题意;当a ≠1时,要使集合A 只有一个元素,只需()()244120a ∆=--⨯-=,解得:1a =-;综上所述: 实数a 的值是1或-1. 故答案为:±1.18.1,0,1,2【解析】 【分析】求出集合A ,利用并集的定义可求得结果. 【详解】{}{}{}2Z,4Z,221,0,1A x x x x x x =∈<=∈-<<=-,因此,{}1,0,1,2A B ⋃=-.故答案为:1,0,1,2.19.3或-1##-1或3【解析】 【分析】根据集合相等得到223m m -=,解出m 即可得到答案. 【详解】由题意,2233m m m -=⇒=或m =-1. 故答案为:3或-1.20.()A BAB ⋃【解析】 【分析】由集合的交并补运算求解即可. 【详解】设全集为A B ,则阴影部分表示集合A 与B 交集的补集,即()A BAB ⋃故答案为:()A BAB ⋃21.7 【解析】 【分析】由A B A ⋃=可得B A ⊆,所以求出集合B 的所有非空子集即可 【详解】因为A B A ⋃=,所以B A ⊆, 因为{1,2,3}A =,所以非空集合{}1B =,{}2,{}3,{}1,2,{}1,3,{}2,3,{}1,2,3, 所以非空集合B 有7个, 故答案为:722.1⎡⎣【解析】 【分析】根据抛物线的定义可知集合M 是以原点()0,0为焦点,以直线10x y ++=为准线的抛物线上及其凹口内侧的点集,集合N 是以(),1a 为中心的正方形内部的点,数形结合先求出M N ⋂=∅时实数a 的取值范围,再求其补集即可求解.【详解】由()2212x y x y ++≥+可得()()221002x y x y ++≥-+-,点(),x y 到直线10x y ++=的距离大于等于点(),x y 到点()0,0的距离,所以点(),x y 的轨迹是以原点()0,0为焦点,以直线10x y ++=为准线的抛物线上及其凹口内侧的部分,即集合M 是以原点()0,0为焦点,以直线10x y ++=为准线的抛物线上及其凹口内侧的点集,由1x y +≤可得:001x y x y ≥⎧⎪≥⎨⎪+≤⎩或001x y x y <⎧⎪>⎨⎪-+≤⎩或001x y x y >⎧⎪<⎨⎪-≤⎩或001x y x y <⎧⎪<⎨⎪--≤⎩,作出其表示的平面区域如图所示:将该图象向上平移一个单位可得11x y +-≤的图象如图:将其向左或右平移a 个单位可得11x a y -+-≤的表示的平面区域, 作出()2212x y x y ++=+将1y =代入()2212x y x y ++=+2420x x --=,解得:26x = 所以26116a <=M N ⋂=∅, 将2y =代入()2212x y x y ++=+2610x x --=,解得:310x =,当310a >时,M N ⋂=∅, 综上所述:当16310a ≤16,310a ⎡⎤∈⎣⎦时,M N ≠∅, 故答案为:16,310⎡⎤⎣⎦. 23.{1,0,1,2}-【解析】【分析】根据给定条件求出集合B ,再利用并集的定义直接计算作答.【详解】解方程220x x -=得:0x =或2x =,则{}0,2B =,而{}1,0,1A =-,所以{1,0,1,2}A B =-.故答案为:{1,0,1,2}-24.13,2⎡⎫--⎪⎢⎣⎭ 【解析】【分析】由集合{|28}A x a x a =<+,{|1B x x =<-,或5}x >,A B R =,列出不等式组,能求出a 的取值范围.【详解】集合{|28}A x a x a =<+,{|1B x x =<-,或5}x >,A B R =,∴2185a a <-⎧⎨+⎩,解得132a -<-. a ∴的取值范围为[3-,1)2-. 故答案为:[3-,1)2-.25.{}12x x -<<## ()1,2-【解析】【分析】求解绝对值不等式解得集合A ,求解分式不等式求得集合B ,再求交集即可.【详解】 因为{}2A x x =<{|22}x x =-<<,101B x x ⎧⎫=>⎨⎬+⎩⎭{}1x x =-, 故可得A B ={|12}x x -<<.故答案为:{}12x x -<<.三、解答题26.(1){0411---,, (2)}{a a a ≤-=11或.【解析】【分析】(1)利用一元二次方程的公式及集合的并集的定义即可求解.(2)利用子集的定义及一二次方程的根的情况即可求解.(1)由240x x +=,解得0x =或4x =-, }{,A =-40 .当0a =时,得x x -+2210=,解得1x =--x =1-{11B =--;∴{0411A B =---,,. (2)由(1)知,}{,A =-40,B A ⊆,于是可分为以下几种情况.当A B =时,}{,B =-40,此时方程()x a x a =222110+++-有两根为0,4-,则 ()()()a a a a ⎧∆=+⎪=⎨⎪-+=-⎩-->2224141010214-,解得1a =. 当B A ≠时,又可分为两种情况.当B ≠∅时,即{}0B =或{}B -4=, 当{}0B =时,此时方程()x a x a =222110+++-有且只有一个根为0,则22241410(0)()1a a a --⎧∆=+⎨-==⎩,解得1a =-, 当{}B -4=时,此时方程()x a x a =222110+++-有且只有一个根为4-,则 ()2222414104()()()8110a a a a ⎧∆=+⎪⎨-=--=-⎪⎩++-,此时方程组无解, 当B =∅时,此时方程()x a x a =222110+++-无实数根,则2241410()()a a --∆+<=,解得1a <-.综上所述,实数a 的取值为}{a a a ≤-=11或.27.(1)(]3,2-(2)()3,0.-【解析】【分析】 (1)化简集合A ,B ,再由并集的定义求解即可;(2)列出实数a 的不等式组,解之即可得出实数a 的取值范围.(1)由143280x x +-⋅+,得()()22240x x --,则224x ,则12x ,所以[]1,2A =, 由12x +<,可得31x -<<,则()3,1B =-,所以[]()(]=1,23,13,2A B ⋃⋃-=-(2)()2,2B a a =---,因为“x B ∈”是“x A ∈”的必要条件,所以A B ⊆ ,所以2122a a --<⎧⎨->⎩, 所以()3,0.a ∈-28.(1)4,3t ⎛⎫∈+∞ ⎪⎝⎭(2)(1,)t ∈-+∞【解析】【分析】(1)首先求出集合B ,再对A =∅与A ≠∅两种情况讨论,分别得到不等式,解得即可; (2)依题意可得集合A B ,分A =∅与A ≠∅两种情况讨论,分别到不等式,解得即可;(1)解:由215x -<+<得解34x -<<,所以{}{}21534B x x x x =-<+<=-<<,又{}213A x t x t =-≤≤-若A B =∅,分类讨论:当A =∅,即213t t ->-解得43t >,满足题意; 当A ≠∅,即213t t -≤-,解得43t ≤时, 若满足A B =∅,则必有21443t t -≥⎧⎪⎨≤⎪⎩或3343t t -≤-⎧⎪⎨≤⎪⎩; 解得t ∈∅.综上,若A B =∅,则实数t 的取值范围为4,3t ⎛⎫∈+∞ ⎪⎝⎭. (2)解:由“x B ∈”是“x A ∈”的必要不充分条件,则集合A B ,若A =∅,即213t t ->-,解得43t >, 若A ≠∅,即213t t -≤-,即43t ≤,则必有4321334t t t ⎧≤⎪⎪->-⎨⎪-<⎪⎩,解得413t -<≤, 综上可得,1t >-,综上所述,当“x B ∈”是“x A ∈”的必要不充分条件时,(1,)t ∈-+∞即为所求.29.(1)[3,5](2)(,6]-∞-【解析】【分析】(1)先化简集合A ,再去求A B ;(2)结合函数25y x x a =-+的图象,可以简单快捷地得到关于实数a 的不等式组,即可求得实数a 的取值范围.(1)当0a =时,{}250[0,5]A x x x =-≤=,又[3,6]B =, 故[0,5][3,6][3,5]A B ==.(2)由x B ∈是x A ∈的充分条件,得B A ⊆,即任意x B ∈,有250x x a -+≤成立函数25y x x a =-+的图象是开口向上的抛物线,故2235306560a a ⎧-⨯+≤⎨-⨯+≤⎩,解得6a ≤-,所以a 的取值范围为(,6]-∞-. 30.(1){|22}A x x =-≤≤(2)[1,)-+∞【解析】【分析】(1)由不等式240x -≥,求得22x -≤≤,即可求解; (2)由A B A ⋃=,得到B A ⊆,列出不等式组,即可求解.(1)解:由240x -≥,即24x ≤,可得22x -≤≤,可得集合{|22}A x x =-≤≤.(2)解:因为{|22}A x x =-≤≤,且集合{|1}B x m x m =<<-, 又因为A B A ⋃=,即B A ⊆,当B =∅时,即1m m ≥-,可得12m ≥,此时满足B A ⊆; 当B ≠∅时,则满足2121m m m m ≥-⎧⎪-≤⎨⎪<-⎩,解得112m -≤<, 综上可得,1m ≥-,即实数m 的取值范围[1,)-+∞.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高一数学 集合练习题(一)
一、选择题
1.下列各项中,不可以组成集合的是( )
A .所有的正数
B .等于2的数
C .接近于0的数
D .不等于0的偶数 2.下列四个集合中,是空集的是( )
A .}33|{=+x x
B .},,|),{(22R y x x y y x ∈-=
C .}0|{2≤x x
D .
},01|{2R x x x x ∈=+- 3.下列表示图形中的阴影部分的是( )
A .()()A C
B
C B .()()A B A C
C .()()A B B C
D .()A
B C
4.下面有四个命题:
(1)集合N 中最小的数是1;
(2)若a -不属于N ,则a 属于N ;
(3)若,,N b N a ∈∈则b a +的最小值为2; (4)x x 212
=+的解可表示为{}1,1;
其中正确命题的个数为( )
A .0个
B .1个
C .2个
D .3个 5.若集合{},,M a b c =中的元素是△ABC 的三边长,
则△ABC 一定不是( )
A .锐角三角形
B .直角三角形
C .钝角三角形
D .等腰三角形 6.若全集{}{}0,1,2,32U U C A ==且,则集合A 的真子集共有( )
A .3个
B .5个
C .7个
D .8个
二、填空题
1.用符号“∈”或“∉”填空 (1)0______N , 5______N , 16______N
(2)1
______,_______,______2
R Q Q e C Q π-
(e 是个无理数) (3){}
|,,x x a a Q b Q =∈∈
A B C
2. 若集合{}|6,A x x x N =≤∈,{|}B x x =是非质数,C A
B =,则
C 的
非空子集的个数为 。

3.若集合{}|37A x x =≤<,{}|210B x x =<<,则A
B =_____________.
4.设集合{32}A x x =-≤≤,{2121}B x k x k =-≤≤+,且A B ⊇,
则实数k 的取值范围是 。

5.已知{
}
{}
2
21,21A y y x x B y y x ==-+-==+,则A B =_________。

三、解答题
1.已知集合⎭
⎬⎫
⎩⎨⎧
∈-∈=N x N x A 68|,试用列举法表示集合A 。

2.已知{25}A x x =-≤≤,{121
}B x m x m =+≤≤-,B A ⊆,求m 的取值范围。

3.已知集合{}{}
22,1,3,3,21,1A a a B a a a =+-=--+,若{}3A B =-,
求实数a 的值。

4




U R
=,
{}
2|10M m mx x =--=方程有实数根,
{}()
2|0,.U N n x x n C M N =-+=方程有实数根求
答案
一、选择题
1. C 元素的确定性;
2. D 选项A 所代表的集合是{}0并非空集,选项B 所代表的集合是{}(0,0) 并非空集,选项C 所代表的集合是{}0并非空集,
选项D 中的方程210x x -+=无实数根;
3. A 阴影部分完全覆盖了C 部分,这样就要求交集运算的两边都含有C 部分;
4. A (1)最小的数应该是0,(2)反例:0.5N -∉,但0.5N ∉
(3)当0,1,1a b a b ==+=,(4)元素的互异性 5. D 元素的互异性a b c ≠≠;
6. C {}0,1,3A =,真子集有3
217-=。

二、填空题
1. (1),,;(2),,,(3)∈∉∈∈∉∈∈ 04=;
23)6,=当0,1a b ==在集合中
2. 15 {}0,1,2,3,4,5,6A =,
{}0,1,4,6C =,非空子集有42115-=; 3. {}|210x x << 2,3,7,10,显然
A B ={}|210x x <<
4. 1|12k k ⎧
⎫-≤≤⎨⎬⎩⎭
3,2
1,21,k k --+,则213212
k k -≥-⎧⎨+≤⎩得1
12k -≤≤
5.
{}|0y y ≤
2221(1)0y x x x =-+-=--≤,A R =。

三、解答题
1.解:由题意可知6x -是8的正约数,当61,5x x -==;当62,4x x -==;
当64,2x x -==;当68,2x x -==-;而0x ≥,∴2,4,5x =,即 {}5,4,2=A ; 2.解:当121m m +>-,即2m <时,,B φ=满足B A ⊆,即2m <;
当121m m +=-,即2m =时,{}3,B =满足B A ⊆,即2m =;
当121m m +<-,即2m >时,由B A ⊆,得12
215m m +≥-⎧⎨-≤⎩
即23m <≤;
∴3≤m 3.解:∵{}3A
B =-,∴3B -∈,而213a +≠-,
∴当{}{}33,0,0,1,3,3,1,1a a A B -=-==-=--, 这样{}3,1A
B =-与{}3A B =-矛盾;
当213,1,a a -=-=-符合{}3A B =-
∴1a =-
4.解:当0m =时,1x =-,即0M ∈; 当0m ≠时,140,m ∆=+≥即1
4
m ≥-
,且0m ≠ ∴14m ≥-
,∴1|4U C M m m ⎧
⎫=<-⎨⎬⎩
⎭ 而对于N ,140,n ∆=-≥即14n ≤
,∴1|4N n n ⎧
⎫=≤⎨⎬⎩
⎭ ∴1()
|4U C M N x x ⎧
⎫=<-⎨⎬⎩
⎭。

相关文档
最新文档