坐标变换与全参数方程教案设计全
直角坐标系坐标系与参数方程数学教案

直角坐标系坐标系与参数方程数学教案【教案名称】:直角坐标系与参数方程的转化及应用【教学目标】:1.理解直角坐标系和参数方程的概念;2.掌握直角坐标系与参数方程之间的转化方法;3.能够应用直角坐标系与参数方程解决实际问题。
【教学重点】:1.直角坐标系与参数方程的概念;2.直角坐标系与参数方程的转化方法。
【教学难点】:【教学准备】:1.教师准备:投影仪、电脑;2.学生准备:纸和笔。
【教学过程】:一、引入(10分钟)1.教师通过投影仪展示直角坐标系的图片,让学生了解直角坐标系的概念和基本原理。
2.教师解释参数方程的概念,并通过实例引导学生理解参数方程代表了一种曲线的轨迹。
二、直角坐标系与参数方程的转化(30分钟)1.教师以一个简单的直角坐标系方程为例,将其转化为参数方程,详细解释转化的步骤和方法。
2.教师给学生讲解如何从参数方程反推回直角坐标系的方程,引导学生理解直角坐标系与参数方程之间的关系。
3.教师设计相关练习,让学生通过实践巩固掌握直角坐标系与参数方程的转化方法。
三、直角坐标系与参数方程的应用(40分钟)1.教师通过实际问题引导学生探究直角坐标系与参数方程的应用场景,如天梯问题、抛体运动问题等。
2.教师解答学生在探究过程中遇到的问题,引导学生分析解决问题的思路和方法。
3.教师设计相关练习,让学生通过实际应用问题的解决,巩固直角坐标系与参数方程的转化技巧。
四、归纳总结(10分钟)1.教师与学生一起总结直角坐标系与参数方程的转化方法和应用场景。
2.教师强调掌握直角坐标系与参数方程的转化方法对于解决实际问题的重要性。
【教学延伸】:教师可以引导有兴趣的学生进一步学习极坐标系与参数方程之间的转化方法和应用。
【板书设计】:x轴、y轴x=f(t)y=g(t)x=f(y)y=g(x)x=f(t)y=g(t)【教学反思】:本节课通过引入直角坐标系和参数方程的概念,让学生对两者有了初步的了解。
通过演示和实例讲解,学生能够理解直角坐标系和参数方程之间的转化方法。
坐标系与参数方程教案(教师版)

坐标系与参数方程主干知识一、坐标系1.平面直角坐标系的建立:在平面上,当取定两条互相垂直的直线的交点为原点,并确定了度量单位和这两条直线的方向,就建立了平面直角坐标系。
2.空间直角坐标系的建立:在空间中,选择两两垂直且交于一点的三条直线,当取定这三条直线的交点为原点,并确定了度量单位和这三条直线方向,就建立了空间直角坐标系。
3.极坐标系的建立:在平面上取一个定点O ,自点O 引一条射线OX ,同时确定一个单位长度和计算角度的正方向(通常取逆时针方向为正方向),这样就建立了一个极坐标系。
(其中O 称为极点,射线OX 称为极轴。
)① 设M 是平面上的任一点,ρ表示OM 的长度,θ表示以射线OX 为始边,射线OM 为终边所成的角。
那么有序数对(,)ρθ称为点M 的极坐标。
其中ρ称为极径,θ称为极角。
约定:极点的极坐标是ρ=0,θ可以取任意角。
4.直角坐标与极坐标的互化以直角坐标系的O 为极点,x 轴正半轴为极轴,且在两坐标系中取相同的单位长度平面内的任一点P 的直角坐标极坐标分别为(x ,y )和(,)ρθ,则x = 2ρ=y = tan θ=二、曲线的极坐标方程1.直线的极坐标方程:若直线过点00(,)M ρθ,且极轴到此直线的角为α,则它的方程为: 00sin()sin()ρθ-α=ρθ-α几个特殊位置的直线的极坐标方程(1)直线过极点 (2)直线过点M(a,0)且垂直于极轴 (3)直线过(,)2M b π且平行于极轴 图:方程:2.圆的极坐标方程: 若圆心为00(,)M ρθ,半径为r 的圆方程为: 2220002cos()0r ρρρθθρ--+-=几个特殊位置的圆的极坐标方程(1)当圆心位于极点 (2)当圆心位于(,0)M r (3)当圆心位于(,)2M r π图:方程:3.直线、圆的直角坐标方程与极坐标方程的互化 利用: x = 2ρ= y = tan θ=三、参数方程1.参数方程的意义在平面直角坐标系中,若曲线C 上的点(,)P x y 满足()()x f t y f t =⎧⎨=⎩,该方程叫曲线C 的参数方程,变量t 是参变数,简称参数2.参数方程与普通方程的互化(1)参数方程化为普通方程常见参数方程化为普通方程,并说明它们各表示什么曲线:⑴cos sin x a y b ϕϕ=⎧⎨=⎩(ϕ为参数); ⑵00(x x at t y y bt=+⎧⎨=+⎩为参数) (3)2sin cos x y θθ=⎧⎨=⎩[0,2)θπ∈ (4)1()21()2a x t t b y t t⎧=+⎪⎪⎨⎪=-⎪⎩(t 为参数) (5)cos sin x a r y b r ϕϕ=+⎧⎨=+⎩(ϕ为参数)☆参数方程通过代入消元或加减消元消去参数化为普通方程,不要忘了参数的范围!(2)普通方程化为参数方程常见化普通方程为参数方程,1、圆222()()x a y b r -+-=的参数方程。
坐标系与参数方程教案

坐标系与参数方程教案教案标题:坐标系与参数方程教案教案目标:1. 了解坐标系和参数方程的基本概念;2. 掌握坐标系和参数方程在二维图形中的应用;3. 能够根据给定的图形要求,构建相应的坐标系和参数方程。
教案步骤:一、导入(5分钟)1. 利用实例引入坐标系的概念,例如使用座标系向学生解释地理位置的界定等。
二、概念讲解(15分钟)1. 介绍笛卡尔坐标系,解释坐标轴、坐标点、坐标等基本概念;2. 解释参数方程的概念,讲解参数和参数方程的含义。
三、练习与巩固(20分钟)1. 学生通过练习在二维平面上标出给定点的坐标;2. 学生尝试画出给定的直线或曲线。
四、拓展应用(15分钟)1. 通过示例演示参数方程的使用,例如绘制心形线等特殊图形;2. 学生自主思考如何用参数方程绘制其他图形。
五、深入探究(15分钟)1. 学生讨论和探究坐标系和参数方程在三维空间中的应用;2. 学生尝试绘制立体图形的参数方程。
六、总结与评价(5分钟)1. 老师对学生学习的情况进行总结和评价;2. 学生发表对这次学习的体会和收获。
七、作业布置(5分钟)1. 布置相关的课后作业,如绘制给定图形的坐标系和参数方程。
教学资源:1. 教材《数学教材》;2. 讲义/课件。
评价方法:1. 课堂练习和教师观察:观察学生在练习和巩固环节的表现;2. 学生讨论和发言:评估学生在深入探究环节中的参与程度;3. 课后作业评分:评估学生对于坐标系和参数方程的独立应用能力。
教案备注:根据教学时间的具体安排和学生的实际情况,可以适当调整每个环节的时间分配。
同时,教师可以根据学生的学习进度和理解情况,加入适当的示例讲解,提高教学灵活性。
2014数学文补教案---选修4-4坐标系与参数方程

选修4-4 坐标系与参数方程
第一节坐标系
课时计划:
实际教学课时:
教学方法:
考纲点击
知识点:
1.平面直角坐标系中的坐标伸缩变换
设点P(x,y)是平面直角坐标系中的任意一点,在变换φ:______________的作用下,点P(x,y)对应到点P′(x′,y′),称φ为平面直角坐标系中的坐标伸缩变换,简称伸缩变换.
2.极坐标系与点的极坐标
(1)极坐标系:在平面内取一个定点O,叫做_____,自极点O引一条射线Ox,叫做_____;再选定一个长度单位、一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),就建立了极坐标系.
(2)点的极坐标:对于极坐标系所在平面内的任一点M,若设|OM|=ρ(ρ≥0),以极轴Ox 为始边,射线OM为终边的角为θ,则点M可用有序数对______表示.
(3)极坐标与直角坐标的互化公式:
设点P的直角坐标为(x,y),它的极坐标为(ρ,θ),则相互转化公式为
3.直线的极坐标方程
(1)特殊位置的直线的极坐标方程:
(2)一般位置的直线的极坐标方程:若直线l经过点M(ρ0,θ0),且极轴到此直线的角为α,直线l的极坐标方程为:ρsin(α-θ)=______________.
4.半径为r的圆的极坐标方程
(1)特殊位置的圆的极坐标方程:
(2)一般位置的圆的极坐标方程:圆心为M(ρ0,θ0),半径为r
的圆的极坐标方程为______________________________.
板书设计与典例分析:。
人教版高中数学选修4-4坐标系与参数方程全套教案(可编辑)

人教版高中数学选修4-4坐标系与参数方程全套教案课型:复习课课时数:讲学时间: 20101月18号班级:学号: 1、了解在平面直角坐标系伸缩变换作用下平面图形的变化情况。
2、能在极坐标系中用极坐标刻画点的位置,体会在极坐标系和平面直角坐标系中刻画点的位置的区别,能进行极坐标和直角坐标的互化。
3、能在极坐标系中给出简单图形(如过极点的直线、过极点或圆心在极点的圆)的方程。
通过比较这些图形在极坐标系和平面直角坐标系中的方程,体会在用方程刻画平面图形时选择适当坐标系的意义。
4、分析直线、圆和圆锥曲线的几何性质,选择适当的参数写出它们的参数方程,能进行参数方程与普通方程的互化。
二、【回归教材】:1、阅读《》,试了解1)设点是平面直角坐标系中的任意一点,在伸缩变换公式的作用下,如何找到点P的对应点?试找出变换为的伸缩变换公式 .(2)极坐标系是如何建立的?试类比平面直角坐标系的建立过程画一个,并写出点M的极径与极角来表示它的极坐标,体会在极坐标系和平面直角坐标系中刻画点的位置的区别,写出极坐标和直角坐标的互化公式 .(3)在平面直角坐标系中,曲线C可以用方程来表示,在极坐标系中,我们用什么方程来表示这段曲线呢?例如圆,直线,你是如何用极坐标方程表示它们的?2、阅读选修4-4《》2)将曲线的参数方程化为普通方程,有利于识别曲线的类型,我们是如何做到的?在互化的过程中,必须注意什么问题?试探究一下圆锥曲线的参数方程与普通方程的互化。
三、【达标练习与作业】:1、在同一平面直角坐标系中,曲线经过一个伸缩变换后变为,则这个伸缩变换为 .2、已知点的极坐标为,则它的直角坐标为;而如果点的直角坐标为,则它的极坐标为 .3、化极坐标方程为直角坐标方程是;则极坐标方程表示的曲线是;而圆心为,半径为3的圆所表示的极坐标方程为 .4、直线(t为参数)的倾斜角的大小是 .5、极坐标方程为,它所表示的圆的半径为 .6、(t为参数)上到点的距离为的点坐标为 .7、已知为参数,求点到方程表示的曲线的距离的最小值 .8、已知直线(t为参数),求被双曲线截得的弦长 .四、【课后反思】:书山有路勤为径,学海无涯苦作舟。
高二数学选修4-4 坐标系及参数方程教学案

第一章 坐标系第一课时 平面直角坐标系 一、理解新知 1.平面直角坐标系 (1)平面直角坐标系的作用:使平面上的点与 、曲线与 建立联系,从而实现 的结合. (2)坐标法解决几何问题的“三部曲”:第一步:建立适当坐标系,用坐标和方程表示问题中涉及的 元素,将几何问题转化为 问题;第二步:通过代数运算解决代数问题;第三步:把代数运算结果翻译成 结论. 2.平面直角坐标系中的伸缩变换 (1)平面直角坐标系中方程表示图形,那么平面图形的伸缩变换就可归纳为 伸缩变换,这就是用 研究 变换. (2)平面直角坐标系中的坐标伸缩变换:设点P (x ,y )是平面直角坐标系中任意一点,在变换φ:⎩⎪⎨⎪⎧x ′=λx (λ>0)y ′=μy (μ>0)的作用下,点P (x ,y )对应到点P ′(x ′,y ′),称 为平面直角坐标系中的坐标伸缩变换,简称伸缩变换.二、考点例题考点一 求轨迹方程[例1] (2012·湖北高考改编)设A 是单位圆122=+y x 上的任意一点,l 是过点A 与x 轴垂直的直线,D 是直线l 与x 轴的交点,点M 在直线l 上,且满足|DM |=m |DA |(m >0,且m ≠1).当点A 在圆上运动时,记点M 的轨迹为曲线C .求曲线C 的方程,判断曲线C 为何种圆锥曲线,并求其焦点坐标. 方法规律小结求轨迹的常用方法(1)直接法:如果题目中的条件有明显的等量关系或者可以推出某个等量关系,即可用求曲线方程的五个步骤直接求解.(2)定义法:如果动点的轨迹满足某种已知曲线的定义,则可依定义写出轨迹方程.(3)代入法:如果动点P (x ,y )依赖于另一动点Q (11,y x ),而Q (11,y x )又在某已知曲线上,则可先列出关于x ,y ,11,y x 的方程组,利用x 、y 表示11,y x ,把11,y x 代入已知曲线方程即为所求. (4)参数法:动点P (x ,y )的横纵坐标用一个或几个参数来表示,消去参数即得其轨迹方程. 变式训练1.二次方程x 2-ax +b =0的两根为sin θ,cos θ,求点P (a ,b )的轨迹方程(其中|θ|≤π4).2.△ABC 中,若BC 的长度为4,中线AD 的长为3,求A 点的轨迹方程.考点二 用坐标法解决几何问题[例2] 已知△ABC 中,AB =AC ,BD 、CE 分别为两腰上的高.求证:BD =CE . 方法规律小结建立平面直角坐标系的原则根据图形的几何特点选择适当的直角坐标系的一些规则:①如果图形有对称中心,选对称中心为原点,②如果图形有对称轴,可以选对称轴为坐标轴, ③使图形上的特殊点尽可能多地在坐标轴上. 变式训练1.求证等腰梯形对角线相等.已知:等腰梯形ABCD .求证:AC =BD . 2.已知△ABC 中,BD =CD , 求证:AB 2+AC 2=2(AD 2+BD 2). 考点三 直角坐标系中的伸缩变换[例3] 求满足下列图形变换的伸缩变换:由曲线x 2+y 2=1变成曲线x ′29+y ′24=1.方法规律小结 坐标伸缩变换φ:⎩⎪⎨⎪⎧x ′=λx λ>0y ′=μy μ>0注意变换中的系数均为正数.在伸缩变换下,平面直角坐标系保持不变,即在同一坐标系下只对点的坐标进行伸缩变换.利用坐标伸缩变换φ可以求变换前和变换后的曲线方程.已知前换前后曲线方程也可求伸缩变换φ. 变式训练1.求满足下列图形变换的伸缩变换:由曲线x 24+y 29=1变成曲线x ′216+y ′29=1.2.求4x 2-9y 2=1经过伸缩变换⎩⎪⎨⎪⎧x ′=2xy ′=3y 后的图形所对应的方程.第二课时 极坐标系理解新知1.极坐标系的概念(1)极坐标系的建立:在平面内取一个定点O ,叫做 ,自极点O 引一条射线Ox ,叫做 ;再选定一个 ,一个角度单位(通常取弧度)及其 (通常取逆时针方向),这样就建立了一个极坐标系. (2)极坐标系内一点的极坐标的规定:对于平面上任意一点M ,用ρ表示 ,用θ表示 ,ρ叫做点M 的 ,θ叫做点M 的 ,有序数对 就叫做点M 的极坐标,记作M (ρ,θ). 2.极坐标和直角坐标的互化(1)互化的前提条件:①极坐标系中的极点与直角坐标系中的原点重合;②极轴与x 轴的正半轴重合;③两种坐标系取相同的长度单位.(2)互化公式,二、考点例题考点一 求点的极坐标[例1] 已知点Q (ρ,θ),分别按下列条件求出点P 的极坐标.(1)点P 是点Q 关于极点O 的对称点; (2)点P 是点Q 关于直线θ=π2的对称点.方法规律小结设点M 的极坐标是),(θρ,则M 点关于极点的对称点的极坐标是),(θρ-或),(πθρ+;M 点关于极轴的对称点的极坐标是),(θρ-;M 点关于过极点且垂直于极轴的直线的对称点的极坐标是),(θπρ-或),(θρ--.另外要注意,平面上的点与这一点的极坐标不是一一对应的. 变式训练1.设点A (1,π3),直线l 为过极点且垂直于极轴的直线,分别求:(1)点A 关于极轴的对称点; (2)点A 关于直线l 的对称点;(3)点A 关于极点的对称点.(限定ρ>0,-π<θ≤π).2.在极坐标系中,点A 的极坐标是(3,π6),求点A 关于直线θ=π2的对称点的极坐标(规定ρ>0,θ∈[0,2π]).考点二 点的极坐标与直角坐标的互化[例2] (1)把点A 的极坐标(2,7π6)化成直角坐标;(2)把点P 的直角坐标(1,-3)化成极坐标.(ρ>0,0≤θ<2π).方法规律小结(1)极坐标和直角坐标互化的前提条件有三,即极点与原点重合,极轴与x 轴正半轴重合,有相同的长度单位,三者缺一不可.(2)熟记互化公式,必要时可画图来分析. 变式训练1.点P 的直角坐标为(-2,2),那么它的极坐标可表示为 ( ) A .(2,π4) B .(2,3π4) C .(2,5π4) D .(2,7π4)2.若以极点为原点,极轴为x 轴正半轴建立直角坐标系. (1)已知点A 的极坐标(4,5π3),求它的直角坐标; (2)已知点B 和点C 的直角坐标为(2,-2)和(0,-15),求它们的极坐标.(ρ>0,0≤θ<2π)第三课时 圆的极坐标方程理解新知1.曲线的极坐标方程(1)在极坐标系中,如果曲线C 上 的极坐标中有一个满足方程0),(=θρf ,并且坐标适合方程0),(=θρf 的点 ,那么方程0),(=θρf 叫做曲线C 的 . (2)建立曲线的极坐标方程的方法步骤是:①建立适当的极坐标系,设),(θρP 是曲线上任意一点. ②列出曲线上任意一点的极径与极角之间的关系式. ③将列出的关系式整理、化简.④证明所得方程就是曲线的极坐标方程.2.圆的极坐标方程(1)圆心在C (a,0)(a >0),半径为a 的圆的极坐标方程为 . (2)圆心在极点,半径为r 的圆的极坐标方程为 . (3)圆心在点(a ,π2)处且过极点的圆的方程为二、考点例题考点一 圆的极坐标方程[例1] 求圆心在),(00θρ,半径为r 的圆的方程. 方法规律小结几种特殊情形下的圆的极坐标方程当圆心在极轴上即θ0=0时,方程为r 2=ρ20+ρ2-2ρρ0cos θ,若再有ρ0=r ,则其方程为ρ=2ρ0cos θ=2r cos θ,若ρ0=r ,θ0≠0,则方程为ρ=2r cos(θ-θ0),这几个方程经常用来判断图形的形状和位置. 变式训练1.在极坐标系中,以(a 2,π2)为圆心,a2为半径的圆的方程是________.2.求圆心在A (2,3π2)处并且过极点的圆的极坐标方程.考点二 极坐标方程与直角坐标的互化[例2] 进行直角坐标方程与极坐标方程的互化:(1)y 2=4x ;(2)x 2+y 2-2x -1=0;(3)ρ=12-cos θ.方法规律小结在进行两种坐标方程间的互化时,要注意:(1)互化公式是有三个前提条件的,即极点与直角坐标系的原点重合、极轴与直角坐标系的横轴的正半轴重合,两种坐标系的单位长度相同.(2)由直角坐标求极坐标时,理论上不是惟一的,但这里约定只在0≤θ<2π范围内求值.(3)由直角坐标方程化为极坐标方程,最后要注意化简.(4)由极坐标方程化为直角坐标方程时要注意变形的等价性,通常总要用ρ去乘方程的两端,应该检查极点是否在曲线上,若在,是等价变形,否则,不是等价变形. 变式训练1.把下列直角坐标方程化为极坐标方程.(1)y =3x ;(2)x 2-y 2=1.2.把下列极坐标方程化为直角坐标方程. (1)ρ2cos 2θ=1;(2)ρ=2cos(θ-π4).第四课时 直线的极坐标方程理解新知1.直线的极坐标方程(1)若直线经过点M (ρ0,θ0),且极轴到此直线的角为α,则直线l 的极坐标方程为 . (2)当直线l 过极点,即ρ0=0时,l 的方程为 .(3)当直线l 过点M (a,0)且垂直于极轴时,l 的方程为 . (4)当直线l 过点M (b ,π2)且平行于极轴时,l 的方程为 .2.图形的对称性(1)若ρ(θ)=ρ(-θ),则相应图形关于 对称.(2)若ρ(θ)=ρ(π-θ),则图形关于射线 所在直线对称. (3)若ρ(θ)=ρ(π+θ),则图形关于 对称.二、考点例题考点一 求直线的极坐标方程[例1] 求从极点出发,倾斜角是π4的射线的极坐标方程.方法规律小结求直线的极坐标方程,首先应明确过点),(00θρM ,且极轴到此直线的角为α的直线极坐标方程的求法.另外,还要注意过极点、与极轴垂直和平行的三种特殊情况的直线的极坐标方程. 变式训练1.求过A (2,π4)且垂直于极轴的直线的方程.2.设点A 的极坐标为(2,π6),直线l 过点A 且与极轴所成的角为π3,求直线l 的极坐标方程.考点二 直线的极坐标方程的应用[例2] 在极坐标系中,直线l 的方程是ρsin(θ-π6)=1,求点P (2,-π6)到直线l 的距离.方法规律小结对于研究极坐标方程下的距离及位置关系等问题,通常是将它们化为直角坐标方程,在直角坐标系下研究.变式训练1.在极坐标系),(θρ(0≤θ<2π)中,曲线θρsin 2=与1cos -=θρ的交点的极坐标为________ 2.已知直线的极坐标方程为ρsin(θ+π4)=22,则点A (2,7π4)到这条直线的距离是________第五课时 柱坐标系理解新知柱坐标系(1)定义:建立空间直角坐标系O xyz ,设P 是空间任意一点,它在Oxy 平面上的射影为Q ,用),(θρ(ρ≥0,0≤θ<2π)来表示点Q 在平面Oxy 上的极坐标.这时点P 的位置可用有序数组 (z ∈R)表示,这样,我们建立了空间的点与有序数组),,(z θρ之间的一种对应关系,把建立上述对应关系的坐标系叫做柱坐标系,有序数组),,(z θρ叫做点P 的柱坐标,记作 ,其中 (2)空间点P 的直角坐标(x ,y ,z )与柱坐标),,(z θρ之间的变换公式为二、考点例题考点一 将直角坐标化为柱坐标[例1] 设点A 的直角坐标为(1,3,5),求它的柱坐标.方法规律小结知点的直角坐标,确定它的柱坐标关键是确定ρ和θ,尤其是θ,要注意求出θtan 后,还要根据点M 所在象限确定θ的值(θ的范围是[0,2π)). 变式训练1.点A 的直角坐标为(1,1,1),求它的柱坐标 2.点M 的直角坐标为(0,1,2),求它的柱坐标.考点二 把点的柱坐标化为直角坐标[例2] 已知点P 的柱坐标为(4,π3,8)求它的直角坐标.方法规律小结知柱坐标,求直角坐标,利用变换公式⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ,z =z 即可.变式训练1.点N 的柱坐标为(2,2π,3),求它的直角坐标. 2.已知点A 的柱坐标为(1,π,2),B 的柱坐标为(2,π2,1),求A 、B 两点间距离.第六课时 球坐标系理解新知球坐标系(1)定义:建立空间直角坐标系O xyz ,设P 是空间任意一点,连接OP ,记|OP |=r ,OP 与Oz 轴正向所夹的角为ϕ,设P 在Oxy 平面上的射影为Q ,Ox 轴按逆时针方向旋转到OQ 时所转过的最小正角θ,这样点P 的位置就可以用有序数组 表示.这样,空间的点与有序数组),,(θϕr 之间建立了一种对应关系,把建立上述对应关系的坐标系叫做球坐标系(或空间极坐标系),有序数组),,(θϕr 叫做点P 的球坐标,记作 ,其中(2)空间点P 的直角坐标(x ,y ,z )与球坐标),,(θϕr 之间的变换关系为 二、考点例题考点一 将点的球坐标系化为直角坐标[例1] 已知点P 的球坐标为(4,3π4,π4)求它的直角坐标.方法规律小结已知球坐标求直角坐标,可根据变换公式直接求得,但要分清哪个角是φ,哪个角是θ. 变式训练1.求下列各点的直角坐标:(1)M (2,π6,π3);(2)N (2,3π4,7π6).2.将M 的球坐标),,(πππ化成直角坐标.考点二 将点的直角坐标化为球坐标[例2] 设点M 的直角坐标为(1,1,2),求它的球坐标. 方法规律小结由直角坐标化为球坐标时,我们可以先设点M 的球坐标为(r ,φ,θ),再利用变换公式⎩⎪⎨⎪⎧x =r sin φcos θ,y =r sin φsin θ,z =r cos φ,求出r 、θ、φ代入点的球坐标即可;也可以利用r 2=x 2+y 2+z 2,tan θ=y x ,cos φ=zr .特别注意由直角坐标求球坐标时,θ和φ的取值应首先看清点所在的象限,准确取值,才能无误.变式训练1.求下列各点的球坐标:(1)M (1,3,2);(2)N (-1,1,-2).第二章 参数方程第一课时 参数方程的概念理解新知1.参数方程的概念在平面直角坐标系中,曲线上任一点的坐标x ,y 都是某个变数t (θ,φ,…)的函数:⎩⎪⎨⎪⎧x =fty =gt ①,并且对于每一个t 的允许值,方程组①所确定的点(x ,y ) ,那么方程组①就叫这条曲线的 ,t 叫做 ,相对于参数方程而言,直接给出坐标间关系的方程叫 .2.参数的意义是联系变数x ,y 的桥梁,可以是有 意义或 意义的变数,也可以是 的变数.二、考点例题考点一 求曲线的参数方程[例1] 如图,△ABP 是等腰直角三角形,∠B 是直角,腰长为a ,顶点B 、A 分别在x 轴、 y 轴上滑动,求点P 在第一象限的轨迹的参数方程.方法规律小结求曲线参数方程的主要步骤第一步,画出轨迹草图,设M (x ,y )是轨迹上任意一点的坐标.画图时要注意根据几何条件选择点的位置,以利于发现变量之间的关系.第二步,选择适当的参数.参数的选择要考虑以下两点:一是曲线上每一点的坐标x ,y 与参数的关系比较明显,容易列出方程;二是x ,y 的值可以由参数唯一确定.例如,在研究运动问题时,通常选时间为参数;在研究旋转问题时,通常选旋转角为参数.此外,离某一定点的“有向距离”、直线的倾斜角、斜率、截距等也常常被选为参数.第三步,根据已知条件、图形的几何性质、问题的物理意义等,建立点的坐标与参数的函数关系式,证明可以省略. 变式训练1.设质点沿以原点为圆心,半径为2的圆作匀角速度运动,角速度为π60 rad/s ,试以时间t 为参数,建立质点运动轨迹的参数方程.2.选取适当的参数,把直线方程y =2x +3化为参数方程.考点二 参数方程表示曲线上的点(1)判断点M 1(0,1),M 2(5,4)与曲线C 的位置关系.(2)已知点M 3(6,a )在曲线C 上,求a 的值.方法规律小结参数方程是曲线方程的另一种表达形式,点与曲线位置关系的判断,与平面直角坐标方程下的判断方法是一致的. 变式训练1.曲线4)1(22=+-y x 上的点可以表示为( ) A .(-1+cos θ,sin θ) B .(1+sin θ,cos θ) C .(-1+2cos θ,2sin θ) D .(1+2cos θ,2sin θ)2.已知某条曲线C 的参数方程为⎩⎪⎨⎪⎧x =1+2t ,y =at 2(其中t 为参数,a ∈R).点M (5,4)在该曲线上,求常数a .第二课时 圆的参数方程理解新知圆的参数方程(1)在t 时刻,圆周上某点M 转过的角度是θ,点M 的坐标是(x ,y ),那么θ=ωt (ω为角速度).设|OM |=r ,那么由三角函数定义,有cos ωt = ,sin ωt = ,即圆心在原点O ,半径为r 的圆的参数方程为 (t 为参数).其中参数t 的物理意义是:(2)若取θ为参数,因为θ=ωt ,于是圆心在原点O ,半径为r 的圆的参数方程为 (θ为参数).其中参数θ的几何意义是:OM 0(M 0为t =0时的位置)绕点O 时针旋转到 的位置时,OM 0转过的角度.(3)若圆心在点M 0(x 0,y 0),半径为R ,则圆的参数方程为二、考点例题考点一 求圆的的参数方程[例1] 圆)0()(222>=+-r r y r x ,点M 在圆上,O 为原点,以∠MOx =φ为参数,求圆的参数方程.方法规律小结(1)确定圆的参数方程,必须根据题目所给条件,否则,就会出现错误,如本题容易把参数方程写成⎩⎪⎨⎪⎧x =r +r cos φ,y =r sin φ.(2)由于选取的参数不同,圆有不同的参数方程. 变式训练1.已知圆的方程为x y x 222=+,写出它的参数方程.2.已知点P (2,0),点Q 是圆⎩⎪⎨⎪⎧x =cos θy =sin θ上一动点,求PQ 中点的轨迹方程,并说明轨迹是什么曲线.考点二 圆的参数方程的应用[例2] 若x ,y 满足4)2()1(22=++-y x ,求2x +y 的最值.方法规律小结圆的参数方程突出了工具性作用,应用时,把圆上的点的坐标设为参数方程形式,将问题转化为三角函数问题,利用三角函数知识解决问题. 变式训练1.求原点到曲线C :⎩⎪⎨⎪⎧x =3+2sin θ,y =-2+2cos θ(θ为参数)的最短距离.2.已知圆C ⎩⎪⎨⎪⎧x =cos θ,y =-1+sin θ与直线x +y +a =0有公共点,求实数a 的取值范围.第三课时 参数方程与普通方程的互化一、理解新知1.参数方程转化为普通方程曲线的参数方程和普通方程是曲线方程的不同形式.一般地,可以通过_________而从参数方程得到普通方程.2.普通方程转化为参数方程如果知道变数y x ,中的一个与参数t 的关系,例如)(t f x =,把它代入普通方程,求出另一个变数与参数的关系)(t g y =,那么⎩⎨⎧==)()(t g y t f x 就是曲线的参数方程。
坐标变换与参数方程教案全

坐标变换与参数方程教案全
一、概述
坐标变换是图形几何中最重要的概念之一,是指将坐标系中的点、线、曲线或曲面进行空间变换,以达到一定的几何要求。
它包括以下几种:平
移变换、旋转变换、缩放变换和投影变换等。
其中,参数方程是用于表示
几何形状及其变化的数学方法,可以用它来获得几何形状的参数表示,以
及其参数的变化情况。
本文主要讲解坐标变换,重点介绍参数方程的概念
和特点,并结合实例介绍如何使用参数方程进行坐标变换。
二、坐标变换
1.平移变换
平移变换是在坐标系中的点、线、曲线或曲面,分别沿着X、Y、Z三
个方向移动而形成的新点、线、曲线或曲面。
在三维坐标系中,平移变换
可以表示为:
X'=X+x,Y'=Y+y,Z'=Z+z
其中,x、y和z分别表示沿着X、Y、Z三个方向的移动距离。
2.旋转变换
旋转变换是指沿着其中一轴旋转形成的新点、线、曲线或曲面。
X'=X cos θ+Y sin θ,Y'=-X sin θ+Y cos θ,Z'=Z
其中,θ表示旋转角度。
3.缩放变换
缩放变换是指对坐标系中的点、线、曲线或曲面,分别沿着X、Y、Z 三个方向的缩放而形成的新点、线、曲线或曲面。
极坐标与全参数方程教案设计

极坐标与参数方程【教课目的】1、知识目标:( 1)掌握极坐标的意义,会把极坐标转变一般方程(2)掌握参数方程与一般方程的转变2、能力目标:经过对公式的应用,提升学生剖析问题和解决问题的能力,多方面考虑事物,培育他们的创新精神和思想谨慎性.3、感情目标:培育学生数形联合是思想方法.【教课重点】1、极坐标的与一般坐标的转变2、参数方程和一般方程的转变3、几何证明的整体思路【教课难点】极坐标意义和直角坐标的转变【考点剖析】坐标系与参数方程和几何证明在广东高考取为两者选一考,一般是 5 分的比较简单的题,知知趣对照较独立,与其余章节联系不大,简单拿分.依据不一样的几何问题能够成立不同的坐标系,坐标系选用的适合与否关系着解决平面内的点的坐标和线的方程的难易以及它们地点关系的数据确定.有些问题用极坐标系解答比较简单,而有些问题假如我们引入一个参数就能够使问题简单下手解答,计算简易.高考出现的题目常常是求曲线的极坐标方程、参数方程以及极坐标方程、参数方程与一般方程间的互相转变,并用极坐标方程、参数方程研究相关的距离问题,交点问题和地点关系的判断.【基本重点】一、极坐标和参数方程:1. 极坐标系的观点:在平面内取一个定点O,叫做极点;自极点O引一条射线Ox叫做极轴;再选定一个长度单位、一个角度单位( 往常取弧度 ) 及其正方向 ( 往常取逆时针方向) ,这样就成立了一个极坐标系.2.点 M的极坐标:设 M是平面内一点,极点O与点M的距离OM叫做点 M的极径,记为;以极轴O x 为始边,射线 OM为终边的∠ XOM叫做点 M的极角,记为.有序数对(, ) 叫做点1适用标准文案M 的极坐标 ,记为 M (,).极坐标( , ) 与 ( ,2k )(k Z) 表示同一个点.极点O 的坐标为 (0, )(R) .2x 2 y 2 , xcos ,3.极坐标与直角坐标的互化:ysin ,tany( x 0)x4.圆的极坐标方程: 在极坐标系中,以极点为圆心,r 为半径的圆的极坐标方程是r ;在极坐标系中, 以 C(a,0) (a>0) 为圆心, a 为半径的圆的极坐标方程是2acos ;在极坐标系中, 以 C(a,) (a>0) 为圆心, a 为半径的圆的极坐标方程是 2asin ;25.参数方程的观点: 在平面直角坐标系中,假如曲线上随意一点的坐标 x,y 都是某个变数 t的函数x f (t ),而且关于 t的每一个同意值, 由这个方程所确定的点M(x,y) 都在这条曲 yg(t ),线上,那么这个方程就叫做这条曲线的 参数方程 ,联系变数 x,y 的变数 t叫做参变数 ,简称参数 .相关于参数方程而言,直接给出点的坐标间关系的方程叫做一般方程 .6. 圆 (x a) 2( y b) 2 r 2 的参数方程可表示为x a rcos ,( 为参数) .yb rsin .椭圆x2y 2x acos ,1(a>b>0) 的参数方程可表示为y bsin . ( 为参数).a 2b 2抛物线 y 22px 的参数方程可表示为x 2pt 2,( t 为参数 ) .y 2pt.经过点 M O (x o , y o ) ,倾斜角为的直线 l的参数方程可表示为xx o tcos , ( t 为参y y o tsin .数).出色文档适用标准文案【典型例题】题型一:极坐标与直角坐标的互化和应用例 1、(1)点M的极坐标(5,2) 化为直角坐标为() B 3A.(5,5 3) B .(5,5 3) C .(5,5 3) D .(5,5 3) 22222222( 2)点 M的直角坐标为(3,1) 化为极坐标为() B. 5 )B .7)C.( 2,11 )D.(2,)A(2,(2,66 66评注:极坐标和直角坐标的互化,注意角度的范围.变式:( 1)点2, 2 的极坐标为.12A(1,) ,半径为1的圆的极坐标方程是___________.()在极坐标系中,圆心在4评注:注意曲线极坐标与直角坐标的互化之间的联系.例 2、(1)曲线的极坐标方程4sin化成直角坐标方程为()22222222A.x +(y+2)+(y-2)=4 C.(x-2)+y =4D.(x+2)+y =4【分析】将ρ = x2y2, sin θ =y2代入ρ =4sin θ,得x2+y2=4y,2yx即 x2+(y-2) 2=4. ∴应选 B.( 2)⊙ O1和⊙ O2的极坐标方程分别为=4cos , =-4sin.把⊙ O1和⊙ O2的极坐标方程化为直角坐标方程;求经过⊙ O1,⊙ O2交点的直线的直角坐标方程.出色文档【分析】以极点为原点,极轴为 x 轴正半轴,成立平面直角坐标系,两坐标系中取同样的长度单位 . ( 1) x= cos ,y= sin , 由 =4cos , 得2=4 cos .所以 x2+y2=4x. 即 x2+y2 -4x=0 为⊙ O1的直角坐标方程. 同理 x2+y2+4y=0 为⊙ O2的直角坐标方程.( 2)由x 2y 24x0,解得x10,或x22,即⊙ O,⊙ O 交于点( 0, 0)和( 2, -2 ) .22y0,y2 2.12x y4y0,1过交点的直线的直角坐标方程为y=-x.变式 1:极坐标ρ=cos() 表示的曲线是()4A. 双曲线B. 椭圆C. 抛物线D. 圆【分析】原极坐标方程化为ρ=1(cosθ+sinθ)2 2 =ρcosθ+ρsinθ,2∴一般方程为 2 (x2+y2)=x+y,表示圆.应选D.变式 2:在极坐标系中与圆4sin相切的一条直线的方程为()A.cos2B.sin2.4sin()D.4sin()C33【分析】A4sin 的一般方程为x2( y 2)2 4 ,cos2的一般方程为 x 2 圆x2( y 2)2 4 与直线x 2明显相切.例 3、在极坐标系中,已知两点P( 5,5),Q(1,) ,求线段PQ的长度;44变式 1、在极坐标系中,直线ρsin( θ + π)=2 被圆ρ =4 截得的弦长为.4变式 2、在极坐标系中,点 1,0 到直线cos sin 2 的距离为.例 4、极坐标方程分别为2 cos 和 sin 的两个圆的圆心距为 ____________ ;变式 1、把极坐标方程cos() 1 化为直角坐标方程是.6变式 2、在极坐标系中,圆心在 ( 2,) 且过极点的圆的方程为 _.变式 3A(3,0) 且与极轴垂直的直线交曲线4 cos 于 A 、B 两点,、在极坐标系中,若过点则 | AB | __________.题型二:参数方程的互化和应用x 1 2t(t4x ky 1垂直,则常数 k = .例 1、若直线2为参数)与直线y3tx 1 t( t 为参数),直线 l 2 的方程为 y=3x+4 则 l 1 与 l 2 的变式 1、设直线 l 1 的参数方程为1 3ty距离为 _______变式 2、l 1 :x 1 (t 为参数 )与直线 l 2 : 2x 4 y 5 订交于点 B ,又点 A(1,2) ,已知直线3ty 2 4t则 AB _______________ 。
高二数学平面直角坐标系与参数方程的优秀教案范本

高二数学平面直角坐标系与参数方程的优秀教案范本一、引言直角坐标系与参数方程是高中数学中重要的概念和工具。
本教案旨在通过合理设计的教学流程和活动,帮助学生深入理解直角坐标系与参数方程的概念、性质和应用,并能灵活运用于解决实际问题。
二、教学目标1. 理解直角坐标系的构建原理,并能准确描述平面上的点坐标。
2. 掌握参数方程的定义与基本性质,能用参数方程描述直线、圆和抛物线等基本几何图形。
3. 能够将参数方程与直角坐标系相互转换,建立二者之间的联系,并应用于解决实际问题。
4. 培养学生独立思考和合作探究的能力,培养学生对数学的兴趣和创新意识。
三、教学流程1. 第一步:引入直角坐标系的概念- 在黑板上画出直角坐标系的示意图,并引导学生认识坐标轴、原点和四象限的概念。
- 通过举例,让学生理解点坐标的表示方法,并进行实际测量和绘制。
- 练习题:给出几个点的坐标,要求学生用直角坐标系表示出来。
2. 第二步:介绍参数方程的定义与基本性质- 通过例题引导学生理解参数的概念,并给出参数方程的定义及其表示形式。
- 通过实例演示,解释参数方程的意义和应用领域。
- 练习题:给出几个参数方程,要求学生画出对应的几何图形。
3. 第三步:直角坐标系与参数方程的相互转换- 引导学生探究参数方程与直角坐标系之间的关系,建立二者之间的转换方法。
- 借助示意图和实例,演示直角坐标系与参数方程之间的转换过程。
- 练习题:给出几个参数方程,要求学生用直角坐标系表示出来;给出几个直角坐标系,要求学生写出对应的参数方程。
4. 第四步:应用实例分析- 给出一些实际问题,引导学生运用直角坐标系与参数方程的知识进行分析与解决。
- 提供适当的辅助材料,帮助学生加深对直角坐标系与参数方程在实际问题中的应用理解。
- 练习题:给出几个实际问题,要求学生运用所学知识解决。
五、教学活动与方法1. 教师讲解与演示:通过引入、例题演示、转换方法等方式,重点讲解直角坐标系与参数方程的概念和性质。
高中数学参数与坐标教案

高中数学参数与坐标教案教学目标:1. 了解参数方程和坐标的基本概念;2. 学会根据参数方程确定图形的特点和性质;3. 掌握参数方程与坐标系之间的转换方法;4. 能够应用参数方程和坐标系解决实际问题。
教学重点:1. 参数方程的理解和应用;2. 参数方程与坐标之间的转换;3. 解决实际问题的能力。
教学难点:1. 参数方程与坐标系之间的转换方法;2. 实际问题的解决方法。
教学过程:一、导入(5分钟)教师引导学生回顾直角坐标系和极坐标系的基本概念,并提出参数方程与坐标系的关系。
二、讲解参数方程(15分钟)1. 介绍参数方程的定义和表示方法;2. 通过例题讲解参数方程与图形的关系;3. 引导学生思考参数方程的应用场景。
三、讲解坐标与参数方程的转换(20分钟)1. 介绍参数方程与坐标系的转换方法;2. 通过实例演示参数方程转换为直角坐标系和极坐标系的过程;3. 练习相应的题目巩固知识点。
四、实际问题解决(15分钟)1. 给出实际问题,要求学生利用参数方程和坐标系解决;2. 引导学生分析问题、建立参数方程和运用坐标系解决问题。
五、总结与评价(5分钟)1. 整理本节课的主要内容和重点知识;2. 要求学生对本节课进行自我评价,并提出问题和建议。
六、作业布置(5分钟)老师布置适当数量的习题作业,以巩固学生对参数方程与坐标的理解和运用。
教学反思:1. 每个环节的时间控制要合理,确保学生能够充分理解和消化所学知识;2. 老师应该引导学生积极思考,培养学生的问题解决能力;3. 作业的布置要有针对性,既巩固知识点又提高学生的解决问题的能力。
坐标系与参数方程教案

学 校: 年 级: 教学课题:坐标系与参数方程 学员姓名: 辅导科目:数学 学科教师:教学目标 掌握坐标系与参数方程以及标准方程与极坐标方程的相互转化应用教学内容 一 、坐标系1.伸缩变换:设点),(y x P 是平面直角坐标系中的任意一点,在变换⎩⎨⎧>⋅='>⋅=').0(,y y 0),(x,x :μμλλϕ的作用下,点),(y x P 对应到点),(y x P ''',称ϕ为平面直角坐标系中的坐标伸缩变换,简称伸缩变换。
2.极坐标系的概念:在平面内取一个定点O ,叫做极点;自极点O 引一条射线Ox 叫做极轴;再选定一个长度单位、一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系。
3.点M 的极坐标:设M 是平面内一点,极点O 与点M 的距离||OM 叫做点M 的极径,记为ρ;以极轴Ox 为始边,射线OM 为终边的xOM ∠叫做点M 的极角,记为θ。
有序数对),(θρ叫做点M 的极坐标,记为),(θρM .极坐标),(θρ与)Z )(2,(∈+k k πθρ表示同一个点。
极点O 的坐标为)R )(,0(∈θθ.设M 是平面上的任一点,ρ表示OM 的长度,θ表示以射线OX 为始边,射线OM 为终边所成的角。
那么有序数对(,)ρθ称为点M 的极坐标。
其中ρ称为极径,θ称为极角。
约定:极点的极坐标是ρ=0,θ可以取任意角。
4.若0<ρ,则0>-ρ,规定点),(θρ-与点),(θρ关于极点对称,即),(θρ-与),(θπρ+表示同一点。
如果规定πθρ20,0≤≤>,那么除极点外,平面内的点可用唯一的极坐标),(θρ表示;同时,极坐标),(θρ表示的点也是唯一确定的。
5.极坐标直角坐标的互化6.圆的极坐标方程:在极坐标系中,以极点为圆心,r 为半径的圆的极坐标方程是 r =ρ;在极坐标系中,以 )0,(a C )0(>a 为圆心, a 为半径的圆的极坐标方程是 θρcos 2a =;在极坐标系中,以 )2,(πa C )0(>a 为圆心,a 为半径的圆的极坐标方程是θρsin 2a =;7.在极坐标系中,)0(≥=ραθ表示以极点为起点的一条射线;)R (∈=ραθ表示过极点的一条直线.)0(n t ,sin ,cos ,222≠===+=x x y a y x y x θθρθρρ在极坐标系中,过点)0)(0,(>a a A ,且垂直于极轴的直线l 的极坐标方程是a =θρcos .二、参数方程1.参数方程的概念:在平面直角坐标系中,如果曲线上任意一点的坐标y x ,都是某个变数t 的函数⎩⎨⎧==),(),(t g y t f x 并且对于t 的每一个允许值,由这个方程所确定的点),(y x M 都在这条曲线上,那么这个方程就叫做这条曲线的参数方程,联系变数y x ,的变数t 叫做参变数,简称参数。
坐标系与参数方程教案

坐标系与参数方程1、 极坐标系必备知识(1) 极坐标系的概念在平面内任取一个定点O ,叫做极点;自极点O 引一条射线Ox ,叫做极轴;再选定一 个长度单位、一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系。
设M 是平面内一点,极点O 与点M 的距离OM 叫做点M 的极径,记做ρ;以极轴Ox 为始边,射线OM 为终边的角xOM 叫做点M 的极角,记为θ。
有序数对(θρ,)叫做点M 的极坐标,记作(θρ,)。
(2) 极坐标和直角坐标的互化设M 是平面内任意一点,它的直角坐标是()y x ,,极坐标是(θρ,),可以得出它们之间的关系:θρcos =x ,θρsin =y 。
又可得到关系式:222y x +=ρ,)0(tan ≠=x xyθ。
这就是极坐标与直角坐标的互化公式。
(3) 圆的极坐标方程① 圆心在极点,半径为R 的圆的极坐标方程为R =ρ;② 圆心在极轴上的点(a,0)处,且圆过极点O 的圆的极坐标方程为θρcos 2a =; ③ 圆心在点)2,(πa 处且过极点的圆的极坐标方程为πθθρ≤≤=0,sin 2a 。
例题选讲例1.在极坐标系中,过圆ρ=6cos θ的圆心,且垂直于极轴的直线的极坐标方程为 分析:把极坐标方程化为普通方程求出直线,再得到极坐标方程。
解:由题意可知圆的标准方程为()2239x y -+=,圆心是(3.0)所求直线标准方程x =3,则坐标方程为ρcos θ=3. 答案:ρcos θ=3.评注:在研究极坐标问题时常常要把极坐标方程转化为普通方程解决问题。
例2.(08广东卷理13)已知曲线12C C ,的极坐标方程分别为cos 3ρθ=,π4cos 002ρθρθ⎛⎫=< ⎪⎝⎭,≥≤,则曲线1C 与2C 交点的极坐标为 .分析:本题给出的是极坐标方程,而所求的交点为极坐标,可以直接求解。
解:联立解方程组cos 3(0,0)4cos 2ρθπρθρθ=⎧≥≤<⎨=⎩解得6ρπθ⎧=⎪⎨=⎪⎩,即两曲线的交点为)6π。
第1讲 坐标系与参数方程(教案) (2)

第1讲 坐标系与参数方程高考主要考查平面直角坐标系中的伸缩变换、直线和圆的极坐标方程;参数方程与普通方程的互化,常见曲线的参数方程及参数方程的简单应用.以极坐标、参数方程与普通方程的互化为主要考查形式,同时考查直线与曲线位置关系等解析几何知识.热点一 极坐标与直角坐标的互化直角坐标与极坐标的互化把直角坐标系的原点作为极点,x 轴正半轴作为极轴,且在两坐标系中取相同的长度单位.如图,设M 是平面内的任意一点,它的直角坐标、极坐标分别为(x ,y )和(ρ,θ),则⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ,⎩⎪⎨⎪⎧ρ2=x 2+y 2,tan θ=y x (x ≠0).例1 (2017届江苏省苏北三市(连云港、徐州、宿迁)三模)在极坐标系中,已知点A ⎝⎛⎭⎫2,π2,点B 在直线l :ρcos θ+ρsin θ=0(0≤θ<2π)上.当线段AB 最短时,求点B 的极坐标.解 以极点为原点,极轴为x 轴正半轴,建立平面直角坐标系,则点A ⎝⎛⎭⎫2,π2的直角坐标为(0,2),直线l 的直角坐标方程为x +y =0.当线段AB 最短时,点B 为直线x -y +2=0与直线l 的交点,解⎩⎪⎨⎪⎧ x -y +2=0,x +y =0,得⎩⎪⎨⎪⎧x =-1,y =1.所以点B 的直角坐标为(-1,1). 所以点B 的极坐标为⎝⎛⎭⎫2,34π. 思维升华 (1)在由点的直角坐标化为极坐标时,一定要注意点所在的象限和极角的范围,否则点的极坐标将不唯一.(2)在与曲线的方程进行互化时,一定要注意变量的范围,要注意转化的等价性.跟踪演练1 在直角坐标系xOy 中,直线C 1:x =-2,圆C 2:(x -1)2+(y -2)2=1,以坐标原点为极点,x轴正半轴为极轴建立极坐标系. (1)求C 1,C 2的极坐标方程;(2)若直线C 3的极坐标方程为θ=π4(ρ∈R ),设C 2,C 3的交点为M ,N ,求△C 2MN 的面积.解 (1)因为x =ρcos θ,y =ρsin θ, 所以C 1的极坐标方程为ρcos θ=-2,C 2的极坐标方程为ρ2-2ρcos θ-4ρsin θ+4=0. (2)将θ=π4代入ρ2-2ρcos θ-4ρsin θ+4=0,得ρ2-32ρ+4=0,解得ρ1=22,ρ2=2, 所以|MN |=ρ1-ρ2= 2.因为C 2的半径为1, 所以△C 2MN 的面积为12×2×1×sin 45°=12.热点二 参数方程与普通方程的互化 1.直线的参数方程过定点M (x 0,y 0),倾斜角为α的直线l 的参数方程为⎩⎪⎨⎪⎧x =x 0+t cos α,y =y 0+t sin α(t 为参数).2.圆的参数方程圆心在点M (x 0,y 0),半径为r 的圆的参数方程为⎩⎪⎨⎪⎧x =x 0+r cos θ,y =y 0+r sin θ(θ为参数,0≤θ≤2π).3.圆锥曲线的参数方程(1)椭圆x 2a 2+y 2b 2=1的参数方程为⎩⎪⎨⎪⎧x =a cos θ,y =b sin θ(θ为参数).(2)抛物线y 2=2px (p >0)的参数方程为⎩⎪⎨⎪⎧x =2pt 2,y =2pt (t 为参数).例2 (2017·全国Ⅰ)在直角坐标系xOy 中,曲线C 的参数方程为⎩⎪⎨⎪⎧x =3cos θ,y =sin θ (θ为参数),直线l 的参数方程为⎩⎪⎨⎪⎧x =a +4t ,y =1-t (t 为参数).(1)若a =-1,求C 与l 的交点坐标;(2)若C 上的点到l 的距离的最大值为17,求a .解 (1)曲线C 的普通方程为x 29+y 2=1.当a =-1时,直线l 的普通方程为x +4y -3=0.由⎩⎪⎨⎪⎧x +4y -3=0,x 29+y 2=1,解得⎩⎪⎨⎪⎧x =3,y =0或⎩⎨⎧x =-2125,y =2425,从而C 与l 的交点坐标是(3,0),⎝⎛⎭⎫-2125,2425. (2)直线l 的普通方程是x +4y -4-a =0,故C 上的点(3cos θ,sin θ)到l 的距离为d =|3cos θ+4sin θ-a -4|17.当a ≥-4时,d 的最大值为a +917 .由题设得a +917=17,所以a =8;当a <-4时,d 的最大值为-a +117.由题设得-a +117=17,所以a =-16.综上,a =8或a =-16.思维升华 (1)将参数方程化为普通方程,需要根据参数方程的结构特征,选取适当的消参方法.常见的消参方法有代入消参法,加减消参法,平方消参法等.(2)将参数方程化为普通方程时,要注意两种方程的等价性,不要增解、漏解,若x ,y 有范围限制,要标出x ,y 的取值范围.跟踪演练2 (2017届广西柳州市模拟)以直角坐标系的原点O 为极点,x 轴的正半轴为极轴,且两个坐标系取相等的单位长度.已知直线l 的参数方程是⎩⎨⎧x =22t ,y =3+22t (t 为参数),曲线C 的极坐标方程是ρcos 2θ=2sin θ.(1)写出直线l 的普通方程和曲线C 的直角坐标方程;(2)设直线l 与曲线C 相交于A ,B 两点,点M 为AB 的中点,点P 的极坐标为⎝⎛⎭⎫2,π4,求|PM |的值. 解 (1)因为直线的参数方程是⎩⎨⎧x =22t ,y =3+22t (t 为参数),消去参数t ,得直线l 的普通方程为x -y +3=0.由曲线C 的极坐标方程ρcos 2θ=2sin θ, 得ρ2cos 2θ=2ρsin θ,所以曲线C 的直角坐标方程为x 2=2y .(2)由⎩⎪⎨⎪⎧y =x +3,x 2=2y ,得x 2-2x -6=0,设A (x 1,y 1),B (x 2,y 2), 则AB 的中点M ⎝⎛⎭⎪⎫x 1+x 22,y 1+y 22.因为x 1+x 2=2,所以M (1,4), 又点P 的直角坐标为(1,1), 所以|PM |=(1-1)2+(4-1)2=3.热点三 极坐标、参数方程的综合应用解决与圆、圆锥曲线的参数方程有关的综合问题时,要注意普通方程与参数方程的互化公式,主要是通过互化解决与圆、圆锥曲线上动点有关的问题,如最值、范围等.例3 (2017届湖南省衡阳市联考)以直角坐标系的原点O 为极点,x 轴的正半轴为极轴建立极坐标系,已知曲线C 的极坐标方程为ρ=1,直线l 的参数方程为⎩⎨⎧x =1+12t ,y =2+32t (t 为参数).(1)求直线l 的普通方程与曲线C 的直角坐标方程;(2)设曲线C 经过伸缩变换⎩⎪⎨⎪⎧x ′=2x ,y ′=y 得到曲线C ′,设曲线C ′上任一点为M (x ,y ),求x +23y 的最大值.解 (1)直线l 的普通方程为3x -y +2-3=0, 曲线C 的直角坐标方程为x 2+y 2=1.(2)因为⎩⎪⎨⎪⎧x ′=2x ,y ′=y ,所以⎩⎪⎨⎪⎧x =x ′2,y =y ′,代入C ,得C ′:x 24+y 2=1,曲线C ′为椭圆.设椭圆的参数方程为⎩⎪⎨⎪⎧x =2cos θ,y =sin θ(θ为参数),则x +23y =2cos θ+23sin θ=4sin ⎝⎛⎭⎫θ+π6. 所以x +23y 的最大值为4.思维升华 (1)利用参数方程解决问题,要理解参数的几何意义.(2)解决直线、圆和圆锥曲线的有关问题,将极坐标方程化为直角坐标方程或将参数方程化为普通方程,有助于认识方程所表示的曲线,从而达到化陌生为熟悉的目的,这是转化与化归思想的应用.跟踪演练3 (2017届湖南长沙雅礼中学月考)以坐标原点O 为极点,以x 轴正半轴为极轴,建立极坐标系,已知曲线C 的极坐标方程为2ρsin θ+ρcos θ=10,将曲线C 1:⎩⎪⎨⎪⎧x =cos α,y =sin α(α为参数)经过伸缩变换⎩⎪⎨⎪⎧x ′=3x ,y ′=2y 后得到曲线C 2. (1)求曲线C 2的参数方程;(2)若点M 在曲线C 2上运动,试求出点M 到曲线C 的距离的最小值.解 (1)将曲线C 1:⎩⎪⎨⎪⎧x =cos α,y =sin α(α为参数)化为x 2+y 2=1,由伸缩变换⎩⎪⎨⎪⎧x ′=3x ,y ′=2y ,化为⎩⎨⎧x =13x ′,y =12y ′,代入圆的方程,得⎝⎛⎭⎫13x ′2+⎝⎛⎭⎫12y ′2=1, 即(x ′)29+(y ′)24=1,可得曲线C 2的参数方程为⎩⎪⎨⎪⎧x ′=3cos α,y ′=2sin α(α为参数).(2)曲线C 的极坐标方程为2ρsin θ+ρcos θ=10, 化为直角坐标方程为2y +x -10=0,点M 到曲线C 的距离d =|3cos α+4sin α-10|5=|5sin (α+φ)-10|5≥55=5,其中tan φ=34.所以点M 到曲线C 的距离的最小值为 5.真题体验1.(2017·北京)在极坐标系中,点A 在圆ρ2-2ρcos θ-4ρsin θ+4=0上,点P 的坐标为(1,0),则|AP |的最小值为________. 答案 1解析 由ρ2-2ρcos θ-4ρsin θ+4=0,得 x 2+y 2-2x -4y +4=0, 即(x -1)2+(y -2)2=1, 圆心坐标为C (1,2),半径长为1.∵点P 的坐标为(1,0),∴点P 在圆C 外. 又∵点A 在圆C 上, ∴|AP |min =|PC |-1=2-1=1.2.(2017·全国Ⅱ)在直角坐标系xOy 中,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 1的极坐标方程为ρcos θ=4.(1)M 为曲线C 1上的动点,点P 在线段OM 上,且满足|OM |·|OP |=16,求点P 的轨迹C 2的直角坐标方程; (2)设点A 的极坐标为⎝⎛⎭⎫2,π3,点B 在曲线C 2上,求△OAB 面积的最大值. 解 (1)设点P 的极坐标为(ρ,θ)(ρ>0),点M 的极坐标为(ρ1,θ)(ρ1>0),由题设知, |OP |=ρ,|OM |=ρ1=4cos θ. 由|OM |·|OP |=16,得C 2的极坐标方程ρ=4cos θ(ρ>0). 所以C 2的直角坐标方程为(x -2)2+y 2=4(x ≠0). (2)设点B 的极坐标为(ρB ,α)(ρB >0). 由题设知|OA |=2,ρB =4cos α. 于是△OAB 的面积S =12|OA |·ρB ·sin ∠AOB =4cos α⎪⎪⎪⎪sin ⎝⎛⎭⎫α-π3 =4cos α⎪⎪⎪⎪12sin α-32cos α=|sin 2α-3cos 2α-3| =2⎪⎪⎪⎪sin ⎝⎛⎭⎫2α-π3-32≤2+ 3.当2α-π3=-π2,即α=-π12时,S 取得最大值2+3,所以△OAB 面积的最大值为2+ 3. 押题预测1.已知曲线C 的极坐标方程是ρ=4cos θ.以极点为平面直角坐标系的原点,极轴为x 轴的非负半轴,建立平面直角坐标系,直线l 的参数方程是⎩⎪⎨⎪⎧x =1+t cos α,y =t sin α(t 是参数).(1)将曲线C 的极坐标方程化为直角坐标方程;(2)若直线l 与曲线C 相交于A ,B 两点,且|AB |=13,求直线的倾斜角α的值.押题依据 极坐标方程和参数方程的综合问题一直是高考命题的热点.本题考查了等价转换思想,代数式变形能力,逻辑推理能力,是一道颇具代表性的题. 解 (1)由ρ=4cos θ,得ρ2=4ρcos θ.因为x 2+y 2=ρ2,x =ρcos θ,所以x 2+y 2=4x , 即曲线C 的直角坐标方程为(x -2)2+y 2=4.(2)将⎩⎪⎨⎪⎧x =1+t cos α,y =t sin α 代入圆的方程(x -2)2+y 2=4,得(t cos α-1)2+(t sin α)2=4, 化简得t 2-2t cos α-3=0.设A ,B 两点对应的参数分别为t 1,t 2,由根与系数的关系,得⎩⎪⎨⎪⎧t 1+t 2=2cos α,t 1t 2=-3,所以|AB |=|t 1-t 2|=(t 1+t 2)2-4t 1t 2=4cos 2α+12=13,故4cos 2α=1,解得cos α=±12.因为直线的倾斜角α∈[0,π),所以α=π3或2π3.2.在平面直角坐标系xOy 中,曲线C 1:⎩⎪⎨⎪⎧x =a cos φ,y =b sin φ(φ为参数),其中a >b >0.以O 为极点,x 轴的非负半轴为极轴的极坐标系中,曲线C 2:ρ=2cos θ,射线l :θ=α(ρ≥0).若射线l 与曲线C 1交于点P ,当α=0时,射线l 与曲线C 2交于点Q ,|PQ |=1;当α=π2时,射线l 与曲线C 2交于点O ,|OP |= 3.(1)求曲线C 1的普通方程;(2)设直线l ′:⎩⎨⎧x =-t ,y =3t(t 为参数,t ≠0)与曲线C 2交于点R ,若α=π3,求△OPR 的面积.押题依据 将椭圆和直线的参数方程、圆和射线的极坐标方程相交汇,考查相应知识的理解和运用,解题中,需要将已知条件合理转化,灵活变形,符合高考命题趋势.解 (1)因为曲线C 1的参数方程为⎩⎪⎨⎪⎧x =a cos φ,y =b sin φ(φ为参数),且a >b >0,所以曲线C 1的普通方程为x 2a 2+y 2b2=1,而其极坐标方程为ρ2cos 2θa 2+ρ2sin 2θb 2=1.将θ=0(ρ≥0)代入ρ2cos 2θa 2+ρ2sin 2θb 2=1,得ρ=a ,即点P 的极坐标为(a,0); 将θ=0(ρ≥0)代入ρ=2cos θ,得ρ=2, 即点Q 的极坐标为(2,0).因为|PQ |=1,所以|PQ |=|a -2|=1, 所以a =1或a =3.将θ=π2(ρ≥0)代入ρ2cos 2θa 2+ρ2sin 2θb 2=1,得ρ=b ,即点P 的极坐标为⎝⎛⎭⎫b ,π2, 因为|OP |=3,所以b = 3. 又因为a >b >0,所以a =3, 所以曲线C 1的普通方程为x 29+y 23=1.(2)因为直线l ′的参数方程为⎩⎪⎨⎪⎧x =-t ,y =3t(t 为参数,t ≠0),所以直线l ′的普通方程为y =-3x (x ≠0), 而其极坐标方程为θ=-π3(ρ∈R ,ρ≠0),所以将直线l ′的方程θ=-π3代入曲线C 2的方程ρ=2cos θ,得ρ=1,即|OR |=1.因为将射线l 的方程θ=π3(ρ≥0)代入曲线C 1的方程ρ2cos 2θ9+ρ2sin 2θ3=1,得ρ=3105,即|OP |=3105,所以S △OPR =12|OP ||OR |sin ∠POR=12×3105×1×sin 2π3=33020.A 组 专题通关1.(2017届江苏如东高级中学等四校联考)已知极坐标系中的曲线ρcos 2θ=sin θ与曲线ρsin ⎝⎛⎭⎫θ+π4=2交于A ,B 两点,求线段AB 的长. 解 曲线ρcos 2θ=sin θ可化为x 2=y , ρsin ⎝⎛⎭⎫θ+π4=2可化为x +y =2, 联立方程组⎩⎪⎨⎪⎧y =x 2,x +y =2,解得A (1,1),B (-2,4), 所以|AB |=(1+2)2+(1-4)2=3 2.2.已知曲线C 的参数方程为⎩⎪⎨⎪⎧x =3cos φ,y =3+3sin φ(φ为参数),以原点为极点,x 轴的非负半轴为极轴建立极坐标系.(1)求曲线C 的极坐标方程;(2)已知倾斜角为135°且过点P (1,2)的直线l 与曲线C 交于M ,N 两点,求1|PM |+1|PN |的值.解 (1)依题意知,曲线C 的普通方程为x 2+(y -3)2=9,即x 2+y 2-6y =0, 故x 2+y 2=6y ,故ρ2=6ρsin θ, 故所求极坐标方程为ρ=6sin θ.(2)设直线l 为⎩⎨⎧x =1-22t ,y =2+22t (t 为参数),将此参数方程代入x 2+y 2-6y =0中, 化简可得t 2-22t -7=0,显然Δ>0. 设M ,N 所对应的参数分别为t 1,t 2,故⎩⎪⎨⎪⎧t 1+t 2=22,t 1t 2=-7,1|PM |+1|PN |=|PM |+|PN ||PM ||PN |=|t 1-t 2||t 1t 2|=(t 1+t 2)2-4t 1t 2|t 1t 2|=67.3.(2017届河北省衡水中学押题卷)直线l 的参数方程为⎩⎨⎧x =-1+32t ,y =12t(t 为参数),在以坐标原点为极点,x 轴的非负半轴为极轴建立的极坐标系中,圆C 的极坐标方程为ρ=2 2.(1)求直线l 被圆C 截得的弦长;(2)若M 的坐标为(-1,0),直线l 与圆C 交于A ,B 两点,求|MA ||MB |的值.解 (1)将直线l 的参数方程化为普通方程,可得x -3y +1=0,而圆C 的极坐标方程可化为ρ2=8,化为普通方程,可得x 2+y 2=8, 圆心C 到直线l 的距离为d =11+3=12, 故直线l 被圆C 截得的弦长为28-⎝⎛⎭⎫122=31. (2)把⎩⎨⎧x =-1+32t ,y =12t代入x 2+y 2=8,可得t 2-3t -7=0.(*)设t 1,t 2是方程(*)的两个根,则t 1t 2=-7, 故|MA ||MB |=|t 1t 2|=7.4.(2017·全国Ⅲ)在直角坐标系xOy 中,直线l 1的参数方程为⎩⎪⎨⎪⎧x =2+t ,y =kt (t 为参数),直线l 2的参数方程为⎩⎪⎨⎪⎧x =-2+m ,y =m k(m 为参数).设l 1与l 2的交点为P ,当k 变化时,P 的轨迹为曲线C . (1)写出C 的普通方程;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,设l 3:ρ(cos θ+sin θ)-2=0,M 为l 3与C 的交点,求M 的极径.解 (1)消去参数t ,得l 1的普通方程l 1:y =k (x -2); 消去参数m ,得l 2的普通方程l 2:y =1k(x +2).设P (x ,y ),由题设得⎩⎪⎨⎪⎧y =k (x -2),y =1k (x +2),消去k ,得x 2-y 2=4(y ≠0),所以C 的普通方程为x 2-y 2=4(y ≠0).(2)C 的极坐标方程为ρ2(cos 2θ-sin 2θ)=4(0<θ<2π,θ≠π),联立⎩⎪⎨⎪⎧ρ2(cos 2θ-sin 2θ)=4,ρ(cos θ+sin θ)-2=0,得cos θ-sin θ=2(cos θ+sin θ).故tan θ=-13,从而cos 2θ=910,sin 2θ=110.代入ρ2(cos 2θ-sin 2θ)=4,得ρ2=5, 所以l 3与C 的交点M 的极径为 5.5.(2017届江西省重点中学协作体联考)已知直线l 的参数方程为⎩⎨⎧x =12t ,y =32t(t 为参数),曲线C 的参数方程为⎩⎨⎧x =1+2cos θ,y =23+2sin θ(θ为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,点P 的极坐标为⎝⎛⎭⎫23,2π3.(1)求直线l 以及曲线C 的极坐标方程;(2)设直线l 与曲线C 交于A ,B 两点,求△P AB 的面积.解 (1)由⎩⎨⎧x =12t ,y =32t ,消去t 得y =3x ,则ρsin θ=3ρcos θ,∴θ=π3,∴直线l 的极坐标方程为θ=π3(ρ∈R ).曲线C :(x -1)2+(y -23)2=4, 则(ρcos θ-1)2+(ρsin θ-23)2=4, ∴曲线C 的极坐标方程为 ρ2-2ρcos θ-43ρsin θ+9=0.(2)由⎩⎪⎨⎪⎧ρ2-2ρcos θ-43ρsin θ+9=0,θ=π3,得到ρ2-7ρ+9=0,设其两根为ρ1,ρ2, 则ρ1+ρ2=7,ρ1ρ2=9, ∴|AB |=|ρ2-ρ1|=(ρ1+ρ2)2-4ρ1ρ2=13.∵点P 的极坐标为⎝⎛⎭⎫23,2π3, ∴|OP |=23,∠POB =π3,∴S △P AB =|S △POB -S △POA | =12×32×23×|AB |=3132. B 组 能力提高6.(2017届广东省深圳市一模)在直角坐标系xOy 中,已知曲线E 经过点P ⎝⎛⎭⎫1,233,其参数方程为⎩⎨⎧x =a cos α,y =2sin α(α为参数),以原点O 为极点,x 轴的正半轴为极轴建立极坐标系. (1)求曲线E 的极坐标方程;(2)若直线l 交E 于点A ,B ,且OA ⊥OB ,求证:1|OA |2+1|OB |2为定值,并求出这个定值.(1)解 将点P ⎝⎛⎭⎫1,233代入曲线E 的方程得⎩⎪⎨⎪⎧1=a cos α,233=2sin α,解得a 2=3,所以曲线E 的普通方程为x 23+y 22=1,极坐标方程为ρ2⎝⎛⎭⎫13cos 2θ+12sin 2θ=1.(2)证明 不妨设点A ,B 的极坐标分别为A (ρ1,θ),B ⎝⎛⎭⎫ρ2,θ+π2,ρ1>0,ρ2>0, 则⎩⎨⎧13(ρ1cos θ)2+12(ρ1sin θ)2=1,13⎣⎡⎦⎤ρ2cos ⎝⎛⎭⎫θ+π22+12⎣⎡⎦⎤ρ2sin ⎝⎛⎭⎫θ+π22=1,即⎩⎨⎧1ρ21=13cos 2θ+12sin 2θ,1ρ22=13sin 2θ+12cos 2θ,所以1ρ21+1ρ22=56,即1|OA |2+1|OB |2=56, 所以1|OA |2+1|OB |2为定值56.7.(2017届广西玉林、贵港质检)已知在平面直角坐标系xOy 中,以O 为极点,x 轴的非负半轴为极轴建立极坐标系,P 点的极坐标为⎝⎛⎭⎫3,π4,曲线C 的参数方程为ρ=2cos ⎝⎛⎭⎫θ-π4(θ为参数). (1)写出点P 的直角坐标及曲线C 的直角坐标方程;(2)若Q 为曲线C 上的动点,求PQ 的中点M 到直线l :2ρcos θ+4ρsin θ=2的距离的最小值. 解 (1)点P 的直角坐标为⎝⎛⎭⎫322,322,由ρ=2cos ⎝⎛⎭⎫θ-π4, 得ρ2=2ρcos θ+2ρsin θ,①将ρ2=x 2+y 2,ρcos θ=x ,ρsin θ=y 代入①, 可得曲线C 的直角坐标方程为⎝⎛⎭⎫x -222+⎝⎛⎭⎫y -222=1.(2)直线2ρcos θ+4ρsin θ=2的直角坐标方程为2x +4y -2=0, 设点Q 的直角坐标为⎝⎛⎭⎫22+cos θ,22+sin θ,则M ⎝⎛⎭⎫2+cos θ2,2+sin θ2, ∴M 到直线l 的距离d =⎪⎪⎪⎪2⎝⎛⎭⎫2+cos θ2+4⎝⎛⎭⎫2+sin θ2-222+42=|52+cos θ+2sin θ|25=52+5sin (θ+φ)25,其中tan φ=12.∴d ≥52-525=10-12(当且仅当sin(θ+φ)=-1时取等号),∴M 到直线l :2ρcos θ+4ρsin θ=2的距离的最小值为10-12.8.(2017届四川省大教育联盟三诊)已知α∈[0,π),在直角坐标系xOy 中,直线l 1的参数方程为⎩⎪⎨⎪⎧x =t cos α,y =t sin α(t 为参数);在以坐标原点O 为极点,x 轴的正半轴为极轴的极坐标系中,直线l 2的极坐标方程为ρcos(θ-α)=2sin ⎝⎛⎭⎫α+π6.(1)求证:l 1⊥l 2;(2)设点A 的极坐标为⎝⎛⎭⎫2,π3,P 为直线l 1,l 2的交点,求|OP ||AP |的最大值. (1)证明 易知直线l 1的普通方程为x sin α-y cos α=0. 又ρcos(θ-α)=2sin ⎝⎛⎭⎫α+π6可变形为 ρcos θcos α+ρsin θsin α=2sin ⎝⎛⎭⎫α+π6, 即直线l 2的直角坐标方程为 x cos α+y sin α-2sin ⎝⎛⎭⎫α+π6=0. 因为sin αcos α+(-cos α)sin α=0, 根据两直线垂直的条件可知,l 1⊥l 2. (2)解 当ρ=2,θ=π3时,ρcos(θ-α)=2cos ⎝⎛⎭⎫π3-α=2sin ⎝⎛⎭⎫α+π6, 所以点A ⎝⎛⎭⎫2,π3在直线ρcos(θ-α)=2sin ⎝⎛⎭⎫α+π6上. 设点P 到直线OA 的距离为d ,由l 1⊥l 2可知,d 的最大值为|OA |2=1.于是|OP ||AP |=d ·|OA |=2d ≤2, 所以|OP ||AP |的最大值为2.。
阅读材料其他摆线-北师大版选修4-4坐标系与参数方程教案

坐标系与参数方程教案一、教学目标通过本节课的学习,学生应该能够:1.掌握二维直角坐标系和三维直角坐标系的定义和表示;2.理解二维和三维坐标系中的基本几何概念,如点、线、面等;3.掌握直线和平面的参数方程的概念和解法;4.能够应用参数方程求解二维和三维图形的问题。
二、教学内容1. 二维直角坐标系在数学中,直角坐标系是一个二维平面上的坐标系。
它由两条垂直的数轴组成,分别为水平的x轴和垂直的y轴。
x轴和y轴相交于原点,这个点的坐标为(0,0)。
我们可以通过二元有序对(x,y)表示平面上的点。
2. 三维直角坐标系除了二维的直角坐标系,我们还需要在三维空间中使用直角坐标系。
三维直角坐标系由三条相互垂直的坐标轴组成,分别为x轴、y轴和z轴,它们的交点称为空间原点。
我们可以通过三元有序组(x,y,z)表示空间中的点。
3. 直线和平面的参数方程在二维空间中,我们可以使用直线的斜率截距式表示直线方程,但是在三维空间中,这个方法无法使用,我们需要使用直线的参数方程。
直线的参数方程可以用向量或联立的方程表示。
在平面几何中,平面的方程通常表示为一般式或点法式。
但在三维空间中,我们也需要使用平面的参数方程。
平面的参数方程通常表示为一个点和两个方向向量的线性组合。
4. 应用参数方程解题在学习直线和平面的参数方程之后,我们可以用它们来解决更复杂的几何问题。
例如,在给定直线和平面的参数方程的情况下,可以计算它们的交点。
或者,如果给定一条直线和一个点,我们可以利用直线的参数方程计算出这条直线上距离该点最近的点。
三、教学方法1.在讲解直角坐标系的概念和表示方法时,可以使用PPT演示文稿或黑板进行展示;2.通过数学拓扑图和讲解,帮助学生理解坐标系中的基本几何概念;3.结合实例进行讲解,帮助学生理解直线和平面的参数方程的求解方法;4.设计课堂授课练习,让学生在解题中巩固所学知识。
四、教学步骤1. 理论部分1.介绍坐标系的概念和定义;2.分别讲解二维直角坐标系和三维直角坐标系的表示;3.介绍直线和平面的参数方程的定义和表示方法;4.演示几个典型的参数方程的例子。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§16.1坐标轴的平移(一)【教学目标】知识目标:(1)理解坐标轴平移的坐标变换公式;(2)掌握点在新坐标系中的坐标和在原坐标系中的坐标的计算; 能力目标:通过对坐标轴平移的坐标变换公式的学习,使学生的计算技能与计算工具使用技能得到锻炼和提高.【教学重点】坐标轴平移中,点的新坐标系坐标和原坐标系坐标的计算.【教学难点】坐标轴平移的坐标变换公式的运用.【教学设计】学生曾经学习过平移图形.平移坐标轴和平移图形是两种相关的变化方式,从平移的运动过程上看,平移坐标轴和平移图形是两种相反的过程.向左平移图形的效果相当于将坐标轴向右平移相同的单位;向上平移图形的效果相当于将坐标轴向下平移相同单位.要强调坐标轴平移只改变坐标原点的位置,而不改变坐标轴的方向和单位长度.坐标轴平移的坐标变换公式,教材中是利用向量来进行推证的,教学时要首先复习向量的相关知识.例1是利用坐标轴平移的坐标变换公式求点的新坐标系坐标的知识巩固性题目,教学中要强调公式中各量的位置,可以根据学生情况,适当补充求点在原坐标系中坐标的题目.例2是利用坐标轴平移的坐标变换公式化简曲线方程的知识巩固性题目.教学中要强调新坐标系原点设置的原因,让学生理解为什么要配方.【课时安排】1课时.【教学过程】揭示课题2.1坐标轴的平移与旋转 创设情境 兴趣导入在数控编程和机械加工中,经常出现工件只作旋转运动(主运动),而刀具发生与工件相对的进给运动.为了保证切削加工的顺利进行,经常需要变换坐标系.例如,圆心在O 1(2,1),半径为1的圆的方程为1)1()2(22=-+-y x .对应图形如图2-1所示.如果不改变坐标轴的方向和单位长度,将坐标原点移至点1O 处,那么,对于新坐标系111x O y ,该圆的方程就是12121=+y x .图2-1动脑思考 探索新知只改变坐标原点的位置,而不改变坐标轴的方向和单位长度的坐标系的变换,叫做坐标轴的平移.下面研究坐标轴平移前后,同一个点在两个坐标系中的坐标之间的关系,反映这种关系的式子叫做坐标变换公式.图2-2如图2-2所示,把原坐标系xOy 平移至新坐标系111x O y ,1O 在原坐标系中的坐标为),(00y x .设原坐标系xOy 两个坐标轴的单位向量分别为i 和j ,则新坐标系111x O y 的单位向量也分别为i 和j ,设点P 在原坐标系中的坐标为),(y x ,在新坐标系中的坐标为),(11y x ,于是有OP =x i +y j ,1O P =x 1i +y 1 j , 1OO =x 0i +y o j ,因为 11OP OO O P =+, 所以 0011 x y x y x y +=+++i j i j i j , 即 0101 )()x y x x y y +=+++i j i j (.(转下节)§16.1坐标轴的平移(二)【教学目标】知识目标:(1)理解坐标轴平移的坐标变换公式; (2会利用坐标轴平移化简曲线方程.(3)掌握点在新坐标系中的坐标和在原坐标系中的坐标的计算; 能力目标:通过对坐标轴平移的坐标变换公式的学习,使学生的计算技能与计算工具使用技能得到锻炼和提高.【教学重点】坐标轴平移中,点的新坐标系坐标和原坐标系坐标的计算.【教学难点】坐标轴平移的坐标变换公式的运用.【教学设计】学生曾经学习过平移图形.平移坐标轴和平移图形是两种相关的变化方式,从平移的运动过程上看,平移坐标轴和平移图形是两种相反的过程.向左平移图形的效果相当于将坐标轴向右平移相同的单位;向上平移图形的效果相当于将坐标轴向下平移相同单位.要强调坐标轴平移只改变坐标原点的位置,而不改变坐标轴的方向和单位长度.坐标轴平移的坐标变换公式,教材中是利用向量来进行推证的,教学时要首先复习向量的相关知识.例1是利用坐标轴平移的坐标变换公式求点的新坐标系坐标的知识巩固性题目,教学中要强调公式中各量的位置,可以根据学生情况,适当补充求点在原坐标系中坐标的题目.例2是利用坐标轴平移的坐标变换公式化简曲线方程的知识巩固性题目.教学中要强调新坐标系原点设置的原因,让学生理解为什么要配方.【课时安排】1课时.【教学过程】 (接上节)于是得到坐标轴平移的坐标变换公式⎩⎨⎧+=+=.,1010y y y x x x (2.1) 或 ⎩⎨⎧-=-=.,0101y y y x x x (2.2) 【想一想】公式(2.1)和公式(2.2)的区别在哪里?使用公式要注意些什么问题?巩固知识 典型例题例1 平移坐标轴,将坐标原点移至1O (2,-1),求下列各点的新坐标:O (0,0),A (2,1),B (-1,2),C (2,-4),D (-3,-1),E (0,5).解 由公式(2.2),得⎩⎨⎧+=-=.1,211y y x x 将各点的原坐标依次代入公式,得到各点的新坐标分别为O (-2,1),A (0,2),B (-3,3), C (0,-3),D (-5,0),E (-2,6).例2 利用坐标轴的平移化简圆042422=--++y x y x 的方程,并画出新坐标系和圆. 解 将方程的左边配方,得9)1()2(22=-++y x .这是以点(-2,1)为圆心,3为半径的圆.平移坐标轴,使得新坐标原点在点1O (-2,1),由公式(2.1)得112,1.x x y y =-⎧⎨=+⎩ 将上式代入圆的方程,得 92121=+y x . 这就是新坐标系111x O y 中,圆的方程.新坐标系和圆的图形如图2-3所示.运用知识 强化练习1.平移坐标轴,把坐标原点移至1O (-1,-3),求下列各点的新坐标:A (3,2),B (-5,4),C (6,-2),D (1,-3),E (-5,-1).2.利用平移坐标轴,化简方程226420x y x y ++-+=,并指出新坐标系原点的坐标. 继续探索 活动探究(1)读书部分:教材(2)书面作业:教材P40/练习1-2、P41/练习;教材P42/习题1-4§16.3 参数方程(一)【教学目标】知识目标:(1)理解曲线的参数方程的概念.(2)理解参变量的概念,会由参变量的取值范围确定函数的定义域.(3)会用“描点法”做出简单的参数方程的图像.能力目标:(1)通过参数方程的学习,了解通过选取适当的参变量来研究曲线的特征的方法.(2)提高分析和解决问题的能力.【教学重点】参数方程的概念及用“描点法”画出参数方程所表示的曲线.【教学难点】难点是用“描点法”画出参数方程所表示的曲线.【教学设计】对求曲线的参数方程不做过多的叙述.例题1的作用在于完成求曲线的参数方程与解析几何中求曲线的方程相衔接.参变量选取的不同,曲线会有不同形式的参数方程.由于学生的工作岗位是技能型岗位,遇到的问题中,参变量一般都是给定的,所以不要在“为什么选这个量作参变量”上下工夫.例1中,结合图形介绍选 为参变量即可.例题2是用“描点法”做出简单的参数方程的图像.用“描点法”作图关键是如何选点,一般都需要讨论范围和对称性,然后再选取一些点来用于描图.考虑到参数方程中,一般都已经确定参变量的取值范围,从中可以确定曲线的范围,而且讨论图形的对称性比较复杂,在实际作图中,只要求指明定义域,而不要求讨论对称性.对于基础比较好的学生可以在教师的指导下,做关于对称性的研讨.【课时安排】1课时.【教学过程】创设情境兴趣导入如图2-6所示,质点M从点(1,0)出发,沿着与x轴成60º角的方向,以10 m/s的速度运动.质点所做的运动是匀速直线运动,其运动轨迹是经过点(1,0),倾斜角为60º的直线(x轴上方的部分).容易求得其方程为01y x -=>().【想一想】为什么要附加条件1x >? 动脑思考 探索新知但是,这个方程不能直接反映出运动轨迹与时间t 的关系.为此,我们分别研究运动轨迹上的点M ),(y x 的坐标与时间t 的关系,得10cos601,(0)10sin 60,x t t y t ⎧=+⎪>⎨=⎪⎩即51,(0)x t t y =+⎧⎪>⎨=⎪⎩ 时间t 确定后,点M ),(y x 的位置也就随之确定. 【想一想】为什么要附加条件0>t ?由此看到,曲线上动点M (x ,y )的坐标 x 和y ,可以分别表示为一个新变量t 的函数.即可以用方程组⎩⎨⎧==).(),(t y y t x x (2.5) 来表示质点的运动轨迹.我们把方程(2.5)叫做曲线的参数方程,变量t 叫做参变量.相应地把以前所学过的曲线方程f (x ,y )=0叫做普通方程.(转下节)M§16.3 参数方程(二)【教学目标】知识目标:(1)理解曲线的参数方程的概念.(2)理解参变量的概念,会由参变量的取值范围确定函数的定义域.(3)会用“描点法”做出简单的参数方程的图像.能力目标:(1)通过参数方程的学习,了解通过选取适当的参变量来研究曲线的特征的方法.(2)提高分析和解决问题的能力.【教学重点】参数方程的概念及用“描点法”画出参数方程所表示的曲线.【教学难点】难点是用“描点法”画出参数方程所表示的曲线.【教学设计】对求曲线的参数方程不做过多的叙述.例题1的作用在于完成求曲线的参数方程与解析几何中求曲线的方程相衔接.参变量选取的不同,曲线会有不同形式的参数方程.由于学生的工作岗位是技能型岗位,遇到的问题中,参变量一般都是给定的,所以不要在“为什么选这个量作参变量”上下工夫.例1中,结合图形介绍选θ为参变量即可.例题2是用“描点法”做出简单的参数方程的图像.用“描点法”作图关键是如何选点,一般都需要讨论范围和对称性,然后再选取一些点来用于描图.考虑到参数方程中,一般都已经确定参变量的取值范围,从中可以确定曲线的范围,而且讨论图形的对称性比较复杂,在实际作图中,只要求指明定义域,而不要求讨论对称性.对于基础比较好的学生可以在教师的指导下,做关于对称性的研讨.【课时安排】1课时.【教学过程】巩固知识典型例题例1写出圆心在坐标原点,半径为r的圆的参数方程.解如图2-7所示,设圆上任意点P(x,y)联结OP,设角θ为参变量,则cossin x ry rθθ=⎧⎨=⎩为所求的圆的参数方程.与普通方程相类似,作参数方程所表示的曲线的图形时依然采用“描点法”.首先选取参变量的取值范围内的一些值,求出相应的x 与y 的对应值,以每一数对(x ,y )作为点的坐标描出相应的点,最后将这些点连成光滑的曲线就是所求的图形.例2 作出参数方程32(R)x t t y t⎧=∈⎨=⎩ 的图形.解 由于,t ∈R 所以x ∈R .选取参变量的取值范围内的一些值,列表:以表中的每对(x ,y )的值作为点的坐标,描出各点,用光滑的曲线联结各点得到图形,如图2-8所示.【想一想】如果例2中的参变量t 换为θsin ,那么,曲线的范围会不会发生变化? 继续探索 活动探究(1)读书部分:教材(2)书面作业:教材P48练习/1-3;教材P49练习/1-3;教材P52/习题1-4图2-7(3)实践调查:辨识专业课本上的参数方程并指出参数方程中的参数.§16.3参数方程与普通方程互化(一)【教学目标】知识目标:(1)掌握由曲线参数方程求曲线普通方程的基本方法,会将简单的参数方程化为普通方程.(2)掌握圆心为坐标原点半径为R的圆的参数方程.了解椭圆及其的参数方程,了解圆的渐开线、摆线的参数方程.能力目标:通过参数方程的学习,了解通过选取适当的参变量来研究曲线的特征的方法,提高分析和解决问题的能力.【教学重点】把曲线的参数方程化为普通方程.【教学难点】难点是曲线的参数方程化为普通方程.【教学设计】参数方程与普通方程的互化的重点是将参数方程化为普通方程.这是本章的教学重点和难点.有些参数方程是无法化为普通方程的.我们只能将一些简单的参数方程化为普通方程.常用的方法是代入消元法和加减消元法,加减消元法中经常使用一些三角恒等式.例题3的(1)和(2),在消去参数化为普通方程后,取值范围并没有改变.(3)中给出了参变量的取值范围,化为普通方程后,必须对变量x或y的取值进行限制,以保证方程是等价变换,不改变方程所表示图形的范围.生产实际中,会遇到用参数方程表示的曲线和用普通方程表示的曲线的交点的问题.解决这类问题的一般的方法是将参数方程代入普通方程,求出对应参变量的值.然后,再将参变量的取值代入参数方程,从而求出交点的坐标.需要注意的是,将参数方程代入普通方程求参变量的值时,必须考虑到各种情况,不要丢解.另一种方法是将参数方程化为普通方程,再联立两个普通方程为方程组,求方程组的解.椭圆、渐开线、摆线是与生产实际相联系的内容.在教学中,要特别注意不要加大难度和添加过多的内容,要考虑到学生的实际水平和生产的实际需要.【课时安排】课时.【教学过程】动脑思考探索新知实际应用中,主要是将参数方程化为普通方程.其核心是消去参变量,常用的方法是加减消元法、代入消元法. 巩固知识 典型例题例3 将下列参数方程化为普通方程.(1)1,3x t y t ⎧=⎪⎨⎪=⎩;(2)3cos ,3sin x y αα=⎧⎨=⎩;(3)51,(0)x t t y =+⎧⎪>⎨=⎪⎩. 解 (1)由11x t t x==得,代入3y t =,得3y x=. (2)由3cos x α=得22cos 9x α=, 由3sin y α=得22sin 9y α=. 将上面的两个等式两边分别相加,利用三角恒等式22sin cos 1αα+=,得229x y +=.【小提示】对于含有三角函数的参数方程,在利用加减消元法消去参数时,利用三角恒等式是经常使用的方法。