物理学10章习题解答
《大学物理》 第二版 课后习题答案 第十章

习题精解10-1 在平面简谐波的波射线上,A,B,C,D 各点离波源的距离分别是3,,,424λλλλ。
设振源的振动方程为cos 2y A t πω⎛⎫=+ ⎪⎝⎭ ,振动周期为T.(1)这4点与振源的振动相位差各为多少?(2)这4点的初相位各为多少?(3)这4点开始运动的时刻比振源落后多少? 解 (1) 122,2,2xxπϕπϕππλλ∆∆∆==∆==3432,222x x πϕπϕππλλ∆∆∆==∆== (2)112233440,,2223,222πππϕϕϕϕππϕϕπϕϕπ=-∆==-∆=-=-∆=-=-∆=-(3) 1212343411,,,24223,,,242t T T t T T t T T t T Tϕϕππϕϕππ∆∆∆==∆==∆∆∆==∆==10-2 波源做谐振动,周期为0.01s ,振幅为21.010m -⨯,经平衡位置向y 轴正方向运动时,作为计时起点,设此振动以1400u m s -=∙的速度沿x 轴的正方向传播,试写出波动方程。
解 根据题意可知,波源振动的相位为32ϕπ= 2122200, 1.010,4000.01A m u m s T ππωπ--====⨯=∙ 波动方程231.010cos 2004002x y t m ππ-⎡⎤⎛⎫=⨯-+ ⎪⎢⎥⎝⎭⎣⎦10-3 一平面简谐波的波动方程为()0.05cos 410y x t m ππ=-,求(1)此波的频率、周期、波长、波速和振幅;(2)求x 轴上各质元振动的最大速度和最大加速度。
解 (1)比较系数法 将波动方程改写成0.05cos10 2.5x y t m π⎛⎫=-⎪⎝⎭与cos x y A t u ω⎛⎫=-⎪⎝⎭比较得1120.05;10;0.21015; 2.5;0.5A m T s v s u m s u T m Tπωππλ--=======∙=∙=(2)各质元的速度为()10.0510sin 410v x t m s πππ-=⨯-∙ 所以1max 0.0510 1.57()v m s π-=⨯=∙ 各质元的加速度为()220.05(10)cos 410a x t m s πππ-=-⨯-∙ 所以22max 0.05(10)49.3()a m s π-=⨯=∙10-4 设在某一时刻的横波波形曲线的一部分如图10.1所示。
《大学物理》第十章气体动理论习题参考答案

第十章 气体动理论一、选择题参考答案1. (B) ;2. (B );3. (C) ;4. (A) ;5. (C) ;6. (B );7. (C ); 8. (C) ;9. (D) ;10. (D) ;11. (C) ;12. (B) ;13. (B) ;14. (C) ;15. (B) ;16.(D) ;17. (C) ;18. (C) ;19. (B) ;20. (B) ;二、填空题参考答案1、体积、温度和压强,分子的运动速度(或分子的动量、分子的动能)2、一个点;一条曲线;一条封闭曲线。
3. kT 21 4、1:1;4:1 5、kT 23;kT 25;mol /25M MRT 6、12.5J ;20.8J ;24.9J 。
7、1:1;2:1;10:3。
8、241092.3⨯9、3m kg 04.1-⋅10、(1)⎰∞0d )(v v v Nf ;(2)⎰∞0d )(v v v f ;(3)⎰21d )(212v v v v v Nf m 11、氩;氦12、1000m/s ; 21000m/s13、1.514、215、12M M三、计算题参考答案1.解:氧气的使用过程中,氧气瓶的容积不变,压强减小,因此可由气体状态方程得到使用前后的氧气质量,进而将总的消耗量和每小时的消耗量比较求解。
已知atm 1301=p ,atm 102=p ,atm 13=p ;L 3221===V V V ,L 4003=V 。
质量分布为1m ,2m ,3m ,由题意可得RT Mm V p 11=RT Mm V p 22= RT M m V p 333=所以该瓶氧气使用的时间为h)(6.94000.132)10130(3321321=⨯⨯-=-=-=V p V p V p m m m t 2.解:设管内总分子数为N ,由V NkT nkT p ==有 1210611)(⨯==.kT pV N (个)空气分子的平均平动动能的总和= J 10238-=NkT 空气分子的平均转动动能的总和 = J 106670228-⨯=.NkT 空气分子的平均动能的总和 = J 10671258-⨯=.NkT3.解:(1)根据状态方程RT MRT MV m p RT M m pV ρ==⇒=得 ρp M RT = ,pRT M ρ= 气体分子的方均根速率为1-2s m 49533⋅===ρp M RT v (2)气体的摩尔质量为1-2m ol kg 108.2⋅⨯==-p RTM ρ所以气体为N 2或CO 。
川师大学物理第十章 静电场中的导体和电介质习题解

第十章 静电场中的导体和电介质10–1 如图10-1所示,有两块平行无限大导体平板,两板间距远小于平板的线度,设板面积为S ,两板分别带正电Q a 和Q b ,每板表面电荷面密度σ1= ,σ2= ,σ3= ,σ4= 。
解:建立如图10-2所示坐标系,设两导体平板上的面电荷密度分别为σ1,σ2,σ3,σ4。
由电荷守恒定律得12a S S Q σσ+= (1)34b S S Q σσ+= (2)设P ,Q 是分别位于二导体板内的两点,如图10-2所示,由于P ,Q 位于导板内,由静电平衡条件知,其场强为零,即3124000002222P E σσσσεεεε=---= (3)3124000002222Q E σσσσεεεε=++-= (4) 由方程(1)~(4)式得142abQ Q Sσσ+== (5) 232a bQ Q Sσσ-=-= (6) 由此可见,金属平板在相向的两面上(面2,3),带等量异号电荷,背向的两面上(面1,4),带等量同号电荷。
10–2 如图10-3所示,在半径为R 的金属球外距球心为a 的D 处放置点电荷+Q ,球内一点P 到球心的距离为r ,OP 与OD 夹角为θ,感应电荷在P 点产生的场强大小为 ,方向 ;P 点的电势为 。
解:(1)由于点电荷+Q 的存在,在金属球外表面将感应出等量的正负电荷,距+Q 的近端金属球外表面带负电,远端带正电,如图10-4所示。
P 点的场强是点电荷+Q 在P 点产生的场强E 1,与感应电荷在P 点产生的场强E 2的叠加,即E P =E 1+E 2,当静电平衡时,E P =E 1+E 2=0,由此可得21r 2204π(2cos )Qa r ar εθ=-=-+-E E e其中e r 是由D 指向P 点。
因此,感应电荷在P 点产生的场强E 2的大小为图10–4xσ2 4σQQ aQ b 图10-2σ1σ2 σ4σ3 Q a Q b图10-1图10-322204π(2cos )QE a r ar εθ=+-方向是从P 点指向D 点。
物理学10章习题解答

[物理学10章习题解答]10-3 两个相同的小球质量都是m ,并带有等量同号电荷q ,各用长为l 的丝线悬挂于同一点。
由于电荷的斥力作用,使小球处于图10-9所示的位置。
如果角很小,试证明两个小球的间距x 可近似地表示为.解 小球在三个力的共同作用下达到平衡,这三个力分别是重力m g 、绳子的张力t 和库仑力f 。
于是可以列出下面的方程式,(1),(2)(3)因为角很小,所以,.利用这个近似关系可以得到,(4). (5)将式(5)代入式(4),得,由上式可以解得图10-9.得证。
10-4在上题中,如果l = 120 cm,m = 0.010 kg,x = 5.0 cm,问每个小球所带的电量q为多大?解在上题的结果中,将q解出,再将已知数据代入,可得.10-5氢原子由一个质子和一个电子组成。
根据经典模型,在正常状态下,电子绕核作圆周运动,轨道半径是r0 = 5.291011m。
质子的质量m = 1.671027kg,电子的质量m = 9.111031kg,它们的电量为e =1.601019c。
(1)求电子所受的库仑力;(2)电子所受库仑力是质子对它的万有引力的多少倍?(3)求电子绕核运动的速率。
解(1)电子与质子之间的库仑力为.(2)电子与质子之间的万有引力为.所以.(3)质子对电子的高斯引力提供了电子作圆周运动的向心力,所以,从上式解出电子绕核运动的速率,为.10-6 边长为a的立方体,每一个顶角上放一个电荷q。
(1)证明任一顶角上的电荷所受合力的大小为.(2) f的方向如何?解立方体每个顶角上放一个电荷q,由于对称性,每个电荷的受力情况均相同。
对于任一顶角上的电荷,例如b角上的q b,它所受到的力、和大小也是相等的,即.首先让我们来计算的大小。
由图10-10可见,、和对的作用力不产生x方向的分量;对的作用力f1的大小为,f1的方向与x轴的夹角为45。
对的作用力f2的大小为,f2的方向与x轴的夹角为0。
大学物理学 第10章_静电场 习题解答 [王玉国 康山林 赵宝群]
![大学物理学 第10章_静电场 习题解答 [王玉国 康山林 赵宝群]](https://img.taocdn.com/s3/m/d8d02e12650e52ea55189898.png)
q 6 0 q ;如果它包含 q 所在 24 0
2 2
对于边长 a 的正方形,如果它不包含 q 所在的顶点,则 e 顶点则 e 0 .
(3) 因为通过半径为 R 的圆平面的电通量等于通过半径为 R x 的球冠面的电通 量,而球冠面积*
S 2π( R 2 x 2 )[1
P R q r P'
2q a O a 3q a
+Q q a
R
d
∞
题 10-10 图
题 10-11 图
题 10-12 图
10-12 如图所示.试验电荷 q , 在点电荷 Q 产生的电场中,沿半径为 R 的整个圆弧 的 3/4 圆弧轨道由 a 点移到 d 点的过程中电场力做功多大?从 d 点移到无穷远处的过程中, 电场力做功为多少? 解:因为在点电荷 Q 产生的电场中, U a U d 。故试验电荷 q 在点电荷 Q 产生的电 场中, 沿半径为 R 的整个圆弧的 3/4 圆弧轨道由 a 点移到 d 点的过程中电场力做功 Aad 0 ; 从 d 点移到无穷远处的过程中,电场力做功为
q0 2.0 105 C .试求该点电荷所受的电场力。
点电荷所在处产生场强为: d E
dx
4 0 d x
2 l
。整个杆上电荷在该点的场强为:
E
4 0
d x
0
dxLeabharlann 2l4 0 d d l
点电荷 q0 所受的电场力大小为:
F
方向:沿 x 轴负向
A q U d U qU d
[或另解: A
qQ 4 0 R
]
R
qE d r
大学物理第十章课后答案

题图10-1题10-1解图d第十章习题解答10-1 如题图10-1所示,三块平行的金属板A ,B 和C ,面积均为200cm 2,A 与B 相距4mm ,A 与C 相距2mm ,B 和C 两板均接地,若A 板所带电量Q =3.0×10-7C ,忽略边缘效应,求:(1)B 和C 上的感应电荷?(2)A 板的电势(设地面电势为零)。
分析:当导体处于静电平衡时,根据静电平衡条件和电荷守恒定律,可以求得导体的电荷分布,又因为B 、C 两板都接地,所以有ACAB U U =。
解:(1)设B 、C 板上的电荷分别为B q 、C q 。
因3块导体板靠的较近,可将6个导体面视为6个无限大带电平面。
导体表面电荷分布均匀,且其间的场强方向垂直于导体表面。
作如图中虚线所示的圆柱形高斯面。
因导体达到静电平衡后,内部场强为零,故由高斯定理得:1A C q q =-2A B q q =-即 ()A B C q q q =-+ ①又因为: ACAB U U =而: 2AC ACdU E =⋅ AB AB U E d =⋅∴ 2AC AB E E =于是:002C B σσεε =⋅ 两边乘以面积S 可得: 002C B S S σσεε =⋅即: 2C B q q = ②联立①②求得: 77210,110C B q C q C --=-⨯=-⨯题图10-2(2) 00222C C A AC C AC AC q d d d U U U U E S σεε =+==⋅=⋅=⋅ 733412210210 2.2610()200108.8510V ----⨯=⨯⨯=⨯⨯⨯⨯10-2 如题图10-2所示,平行板电容器充电后,A 和B 极板上的面电荷密度分别为+б和-б,设P 为两极板间任意一点,略去边缘效应,求:(1)A,B 板上的电荷分别在P 点产生的场强E A ,E B ;(2)A,B 板上的电荷在P 点产生的合场强E ; (3)拿走B 板后P 点处的场强E ′。
大学物理课后习题详解(第十章)中国石油大学

根据高斯定理可得 方向由的正负确定
10-22 如图所示,在xOy平面内有与y轴平行、位于和处的两条无限长平 行均匀带电直线,电荷线密度分别为和。求z轴上任一点的电场强度。
[解] 无限长带电直线在线外任一点的电场强度 所以 P点的场强 由对称性知合场强的z方向分量为零,x方向分量 而
所以 方向指向x轴负方向 10-23 如图所示,在半径为R,体电荷密度为的均匀带电球体内点处放
所以 证毕。
10-27 电量q均匀分布在长为2l的细杆上,求在杆外延长线上与杆端距离 为a的点P的电势(以无穷远为零电势点)。 [解] 取如图所示的电荷元dq,,它在P点产生的电势为
则整个带电直线在P点产生的电势为
10-28 如图所示,在点电荷+q的电场中,若取图中点P处为电势零点, 则点M的电势为多少? [解] 取P点为电势零点,则M点电势为
10-10 如图所示,一厚度为b的无限大带电平板,其体电荷密度为 (0≤x≤b),式中k为正常量。求:(1)平板外两侧任一点和处的场强大小; (2)平板内任一点P处的电场强度; (3)场强为零的点在何处? [解] (1)过点作一圆柱体穿过无限大带电平板,由高斯定理
即 所以 因此平板外一点的场强与距平板的距离无关, (2)板内(即0≤x≤b区域) (3)若电场强度为0,则 此时,此即为场强为0的点。
10-1l 一半无限长的均匀带电直线,线电荷密度为。试证明:在通过带 电直线端点与直线垂直的平面上,任一点的电场强度 E的方向都与这直 线成45°角。 [解] 如图选择直角坐标系,在棒上取电荷元
它在过棒端的垂直面上任意点贡献场强为
由于
且
所以
总场强的分量为 它与负y方向的夹角是
10-12 一带电细线弯成半径为R的半圆形,线电荷密度,式中为一常 量,为半径R与x轴所成的夹角,如图所示。试求环心O处的电场强度。 [解] 取电荷元
基础物理学下册【韩可芳】第10章习题答案

第十章第十章第十章第十章 波动光学波动光学波动光学波动光学思考题思考题思考题思考题10-1 普通光源中原子发光有何特征?答答答:答:::因为普通光源是大量不同原子在不同时刻发的光,是自然光,因此不满足干涉条件,所以一 般普通光源观察不到干涉现象。
10-2 如何用实验检验一束光是线偏振光、部分偏振光还是自然光?答答答:答:::拿一块偏振片迎着这束光,转动偏振片,观察透射光。
(1)视场中光强有变化且有消光现象 的为线偏振光;(2)光强有变化但无消光现象的为部分偏振光;(3)光强无变化的为自然光。
10-3 自然光可以用两个独立的、相互垂直的、振幅相等的光振动表示。
那么线偏振光是否也可以用两个相互垂直的光振动表示?如果可以,则这两个相互垂直的光振动之间关系如 何?10-4 如何用实验测定不透明媒质的折射率?答答答:答:::光线入射到不透明的媒介上,改变入射角i ,并同时用偏振片测定反射光线的偏振化程度。
当反射光线为完全偏振光时,此时入射角i0 即为布儒斯特角,满足tan 可求得不透明介质的折射率n 。
10-5 如图(a)所示,一束自然光入射在方解石晶体的表面上,入射光线与光轴成一定角度;问将有几条光线从方解石透射 出来?如果把方解石切割成等厚的A 、B 两块,并平行地移 开很短一段距离,如图(b)所示,此时光线通过这两块方解石后有多少条光线射出来?如果把B 块沿沿沿沿光线转过一个角度, 此时将有几条光线从B 块射出来?为什么?i 0n ,测得 i0 即考思考思考思考题题题题10-5图图图图10-6 从普通光源获得两束相干光的一般方法是什么?在光的干涉中决定相遇点产生明纹或暗纹的因素是什么?答答答:答:::分波阵面法和分振幅法。
波源的相位差和波源到相遇点的光程差决定相遇点产生明纹或暗纹。
10-7 如图所示,设光线a 、b 从周相相同的A 、B 点传至P 点,试讨论:(1)在图中的三种情况下,光线a 、b 在相遇处P 是 否存在光程差?为什么?(2)若a 、b 为相干光,那么在相遇处的干涉情况怎 样?考题思考题思考题思考题 10-7 图图图图10-8 在杨氏双缝实验中,当作如下调节时,屏幕上的干涉条纹将如何变化?(要说明理由)(1)使两缝之间的距离逐渐减小;(2)保持双缝的间距不变,使双缝与屏幕的距离逐渐减小;(3)如图所示,把双缝中的一条狭缝遮住,并在两缝的垂直平分线上放置一块平面反射镜。
大学基础物理学答案(习岗)第10章

129第十章 量子物理基础本章提要1. 光的量子性· 物体由于自身具有一定温度而以电磁波的形式向周围发射能量的现象称热辐射。
· 在任何温度下都能全部吸收照射到其表面上的各种波长的光(电磁波),的物体称为绝对黑体,简称黑体。
· 单位时间内从物体单位表面积发出的、波长在λ附近单位波长间隔内电磁波的能量称单色辐射本领(又称单色辐出度),用)(T M λ表示· 单位时间内物体单位表面积发出的包括所有波长在内的电磁波的辐射功率称为辐射出射度,用则M 表示,M 与)(T M λ的关系为0()d M M T λλ∞=⎰2. 维恩位移定律在不同的热力学温度T 下,单色辐射本领的实验曲线存在一个峰值波长λm , T 和λm 满足如下关系:λm T b =其中,b 是维恩常量。
该式称维恩位移定律。
3. 斯忒藩—玻尔兹曼定律· 黑体的辐射出射度M 与温度T 的关系为4T M σ=其中,σ为斯忒藩—玻尔兹曼常量。
该结果称斯忒藩—玻尔兹曼定律。
· 对于一般的物体4T M εσ=ε称发射率。
4. 黑体辐射· 能量子假说:黑体辐射不是连续地辐射能量,而是一份份地辐射能量,并且每一份能量与电磁波的频率ν成正比,满足条件E nhv =,其中n =1,2,3,…,等正整数,h 为普朗克常数。
这种能量分立的概念被称为能量量子化,130每一份最小的能量E hv =称为一个能量子。
· 普朗克黑体辐射公式(简称普朗克公式)为112)(/52-=kT hc e hc T M λλλπ其中,h 是普朗克常量。
由普朗克公式可以很好地解释黑体辐射现象。
· 光子假说:光是以光速运动的粒子流,这些粒子称为光量子,简称光子。
一个光子具有的能量为νh E =动量为 λh p =5. 粒子的波动性· 实物粒子也具有波粒二象性,它的能量E 、动量p 与和它相联系的波的频率ν、波长λ满足关系2E mc h ν==λh p m u ==这两个公式称为德布罗意公式或德布罗意假设。
大学物理教程第10章习题答案

思 考 题10.1 人体也向外发出热辐射,为什么在黑暗中还是看不见人呢? 答:人体的辐射频率太低, 远离可见光波段,在远红外波段, 由于为非可见光, 所以是看不到人体辐射的,在黑暗中也是如此。
10.1刚粉刷完的房间从房外远处看,即使在白天,它的开着的窗口也是黑的。
为什么? 答:光线从窗户进去后经过多次反射,反射光的强度越来越弱,能再从窗户射出的光线非常少,窗户外的人看到的光线非常弱,因此觉得窗口很暗。
10.3 在光电效应实验中,如果(1)入射光强度增加一倍;(2)入射光频率增加一倍,各对实验结果有什么影响?答:(1)在光电效应中每秒从光阴极发射的光电子数与入射光强成正比。
入射光强度增加一倍时,饱和电流增加一倍。
(2)当入射光的频率增大时,光电子的最大初动能增大,遏止电压也增大,但入射光的频率和遏止电压两者不是简单的正比关系。
10.4 若一个电子和一个质子具有同样的动能,哪个粒子的德布罗意波长较大? 答:电子的德布罗意波长较大。
10.5 n=3的壳层内有几个次壳层,各次壳层都可容纳多少个电子?答:n=3的壳层内有3个次壳层,各次壳层可容纳的电子数分别为2、6、10。
10.6 完成下列核衰变方程。
(1)?234238+−→−Th U(2)?9090+−→−Y Sr (3)?2929+−→−Ni Cu (4)Zn Cu 2929?−→−+ 答:(1)e H Th U 422349023892+−→−(2)e Y Sr 0190399038-+−→−(3)e Ni Cu 0129282929++−→−(4)Zn e Cu 2930012929−→−++习 题10.1 夜间地面降温主要是由于地面的热辐射。
如果晴天夜里地面温度为-50C ,按黑体辐射计算,每平方米地面失去热量的速率多大?解:依题意,可知地面每平方米失去的热量即为地面的辐射出射度2484/2922681067.5m W T M =⨯⨯==-σ10.2 宇宙大爆炸遗留在空间均匀、各向同性的背景热辐射相当于3K 的黑体辐射。
大学物理第十章有导体和电介质时的静电场习题解答和分析

第十章习题解答10-1 如题图10-1所示,三块平行的金属板A ,B 和C ,面积均为200cm 2,A 与B 相距4mm ,A 与C 相距2mm ,B 和C 两板均接地,若A 板所带电量Q =3.0×10-7C ,忽略边缘效应,求:(1)B 和C 上的感应电荷?(2)A 板的电势(设地面电势为零)。
分析:当导体处于静电平衡时,根据静电平衡条件和电荷守恒定律,可以求得导体的电荷分布,又因为B 、C 两板都接地,所以有AC AB U U =。
解:(1)设B 、C 板上的电荷分别为Bq 、C q 。
因3块导体板靠的较近,可将6个导体面视为6个无限大带电平面。
导体表面电荷分布均匀,且其间的场强方向垂直于导体表面。
作如图中虚线所示的圆柱形高斯面。
因导体达到静电平衡后,内部场强为零,故由高斯定理得:1A C q q =-2A B q q =-即 ()A B C q q q =-+ ① 又因为: AC AB U U = 而: 2AC AC d U E =⋅AB AB U E d =⋅∴ 2AC AB E E =于是:02C Bσσεε =⋅两边乘以面积S 可得:2C BS S σσεε =⋅即: 2C B q q = ②联立①②求得: 77210,110C B q C q C --=-⨯=-⨯题图10-1题10-1解图d(2) 00222C C A AC C AC AC q d d dU U U U E S σεε =+==⋅=⋅=⋅ 7334122102102.2610()200108.8510V ----⨯=⨯⨯=⨯⨯⨯⨯10-2 如题图10-2所示,平行板电容器充电后,A 和B 极板上的面电荷密度分别为+б和-б,设P 为两极板间任意一点,略去边缘效应,求: (1)A,B 板上的电荷分别在P 点产生的场强E A ,E B ; (2)A,B 板上的电荷在P 点产生的合场强E ; (3)拿走B 板后P 点处的场强E ′。
大学物理学 孙厚谦 第10章 习题

P /atm P2 C
A B
O
V1
习题 10-9 图
V 2 V /(103 m3 )
查看答案 10-9
10-10 如图所示,使 1mol 理想气体氧气进行 A→B→C→A 的循环,已知 A→B 为等温过程,C→A 为绝 热过程, (设 T1
300K ,V1 0.41103 m3 , V2 4.1103 m3 ),求(1)循环过程中所作的净
-3 3 -3 3
10-15 一个卡诺循环,当高温热源的温度为 107
0
C ,低温热源的温度为 270 C ,对外作的净功是
8000J,今维持低温热源的温度不变,提高高温热源的温度,使其对外作的净功增为 10000J,若两个卡 诺循环都工作在相同的二绝热线之间。求(1)第二个循环吸收的热量;(2)第二个循环的热效率;(3)第二 个循环的高温热源温度。 查看答案 10-15
E 0
Q W RTA ln
VB V p2V2 ln B VA VA
5 3
44.8 1.013 10 44.8 10 ln 22.4
返回 10-4
3.15 103 J
(2)整个过程
E 0
Q W WAC WCB WCB p2 (V2 V1 )
查看答案 10-3
23
10-4 如图所示,1mol 氧气(1)由状态 A 等温地变化到状态 B;(2)由状态 A 等体地变化到状态 C,再由 状态 C 等压地变到状态 B;试分别计算以上两种情况下,氧气的内能增量,对外做的功和吸收的热量。 (已知 V1
22.4 103 m3 , V2 44.8103 m3 , p2 1atm)
大学物理下册第10章课后题答案

习题10-3图第10章 静电场中的导体和电介质习 题一 选择题10-1当一个带电导体达到静电平衡时,[ ] (A) 表面上电荷密度较大处电势较高 (B) 表面曲率较大处电势较高(C) 导体内部的电势比导体表面的电势高(D) 导体内任一点与其表面上任一点的电势差等于零 答案:D解析:处于静电平衡的导体是一个等势体,表面是一个等势面,并且导体内部与表面的电势相等。
10-2将一个带正电的带电体A 从远处移到一个不带电的导体B 附近,导体B 的电势将[ ](A) 升高 (B)降低 (C)不会发生变化 (D)无法确定 答案:A解析:不带电的导体B 相对无穷远处为零电势。
由于带正电的带电体A 移到不带电的导体B 附近的近端感应负电荷;在远端感应正电荷,不带电导体的电势将高于无穷远处,因而正确答案为(A )。
10-3将一带负电的物体M 靠近一不带电的导体N ,在N 的左端感应出正电荷,右端感应出负电荷。
若将导体N 的左端接地(如图10-3所示),则[ ](A) N 上的负电荷入地 (B) N 上的正电荷入地 (C) N 上的所有电荷入地 (D) N 上所有的感应电荷入地 答案:A解析:带负电的带电体M移到不带电的导体N附近的近端感应正电荷;在远端感应负电荷,不带电导体的电势将低于无穷远处,因此导体N的电势小于0,即小于大地的电势,因而大地的正电荷将流入导体N,或导体N的负电荷入地。
故正确答案为(A)。
10-4 如图10-4所示,将一个电荷量为q电的导体球附近,点电荷距导体球球心为d。
设无穷远处为零电势,则在导体球球心O点有[ ](A)0E,4πε=qVd(B)24πε=qEd,4πε=qVd(C) 0E,0V(D)24πε=qEd,4πε=qVR答案:A解析:导体球处于静电平衡状态,导体球内部电场强度为零,因此0E。
导体球球心O点的电势为点电荷q及感应电荷所产生的电势叠加。
感应电荷分布于导体球表面,至球心O的距离皆为半径R,并且感应电荷量代数和q∑为0,因此4qVRπε==∑感应电荷。
大学物理习题答案第十章

[习题解答]10-1如果导线中的电流强度为8.2 A,问在15 s内有多少电子通过导线的横截面?解设在t秒内通过导线横截面的电子数为N,则电流可以表示为,所以.10-2 在玻璃管内充有适量的某种气体,并在其两端封有两个电极,构成一个气体放电管。
当两极之间所施加的电势差足够高时,管中的气体分子就被电离,电子和负离子向正极运动,正离子向负极运动,形成电流。
在一个氢气放电管中,如果在3 s内有2.8⨯1018 个电子和1.0⨯1018 个质子通过放电管的横截面,求管中电流的流向和这段时间内电流的平均值。
解放电管中的电流是由电子和质子共同提供的,所以.电流的流向与质子运动的方向相同。
10-3 两段横截面不同的同种导体串联在一起,如图10-7所示,两端施加的电势差为U。
问:(1)通过两导体的电流是否相同?(2)两导体内的电流密度是否相同?(3)两导体内的电场强度是否相同?(4)如果两导体的长度相同,两导体的电阻之比等于什么?(5)如果两导体横截面积之比为1: 9,求以上四个问题中各量的比例关系,以及两导体有相同电阻时的长度之比。
解(1)通过两导体的电流相同,。
(2)两导体的电流密度不相同,因为,又因为,所以.这表示截面积较小的导体电流密度较大。
(3)根据电导率的定义,在两种导体内的电场强度之比为.上面已经得到,故有.这表示截面积较小的导体中电场强度较大。
图10-7(4)根据公式,可以得到,这表示,两导体的电阻与它们的横截面积成反比。
(5)已知,容易得到其他各量的比例关系,,,.若,则两导体的长度之比为.10-4两个同心金属球壳的半径分别为a和b(>a),其间充满电导率为σ的材料。
已知σ是随电场而变化的,且可以表示为σ = kE,其中k为常量。
现在两球壳之间维持电压U,求两球壳间的电流。
解在两球壳之间作一半径为r的同心球面,若通过该球面的电流为I,则.又因为,所以.于是两球壳之间的电势差为.从上式解出电流I,得.10-5一个电阻接在电势差为180 V电路的两点之间,发出的热功率为250W。
大学物理学 (第3版.修订版) 北京邮电大学出版社 下册 第十章 习题10答案

习题1010.1选择题(1) 对于安培环路定理的理解,正确的是:(A )若环流等于零,则在回路L 上必定是H 处处为零; (B )若环流等于零,则在回路L 上必定不包围电流;(C )若环流等于零,则在回路L 所包围传导电流的代数和为零; (D )回路L 上各点的H 仅与回路L 包围的电流有关。
[答案:C](2) 对半径为R 载流为I 的无限长直圆柱体,距轴线r 处的磁感应强度B () (A )内外部磁感应强度B 都与r 成正比;(B )内部磁感应强度B 与r 成正比,外部磁感应强度B 与r 成反比; (C )内外部磁感应强度B 都与r 成反比;(D )内部磁感应强度B 与r 成反比,外部磁感应强度B 与r 成正比。
[答案:B](3)质量为m 电量为q 的粒子,以速率v 与均匀磁场B 成θ角射入磁场,轨迹为一螺旋线,若要增大螺距则要() (A ) 增加磁场B ;(B )减少磁场B ;(C )增加θ角;(D )减少速率v 。
[答案:B](4)一个100匝的圆形线圈,半径为5厘米,通过电流为0.1安,当线圈在1.5T 的磁场中从θ=0的位置转到180度(θ为磁场方向和线圈磁矩方向的夹角)时磁场力做功为() (A )0.24J ;(B )2.4J ;(C )0.14J ;(D )14J 。
[答案:A]10.2 填空题(1)边长为a 的正方形导线回路载有电流为I ,则其中心处的磁感应强度 。
[答案:aIπμ220,方向垂直正方形平面](2)计算有限长的直线电流产生的磁场 用毕奥——萨伐尔定律,而 用安培环路定理求得(填能或不能)。
[答案:能, 不能](3)电荷在静电场中沿任一闭合曲线移动一周,电场力做功为 。
电荷在磁场中沿任一闭合曲线移动一周,磁场力做功为 。
[答案:零,正或负或零](4)两个大小相同的螺线管一个有铁心一个没有铁心,当给两个螺线管通以 电流时,管内的磁力线H 分布相同,当把两螺线管放在同一介质中,管内的磁力线H 分布将 。
大学物理 第十章 波动部分习题

第十章 波动一、简答题1、什么是波动? 振动和波动有什么区别和联系?答:波动一般指振动在介质中的传播。
振动通常指一个质点在平衡位置附近往复地运动,波动是介质中的无数个质点振动的总体表现。
2、机械波的波长、频率、周期和波速四个量中,(1) 在同一介质中,哪些量是不变的? (2) 当波从一种介质进入另一种介质中,哪些量是不变的?答:(1) 频率、周期、波速、波长 (2)频率和周期3、波动方程⎪⎭⎫ ⎝⎛-=u x cos y t A ω中的u x 表示什么? 如果把它写成⎪⎭⎫ ⎝⎛-=u x cos y ωωt A ,u x ω又表示什么? 答:u x 表示原点处的振动状态传播到x 处所需的时间。
ux ω表示x 处的质点比原点处的质点所落后的相位。
4、波动的能量与哪些物理量有关? 比较波动的能量与简谐运动的能量.答:波的能量与振幅、角频率、介质密度以及所选择的波动区域的体积都有关系。
简谐运动中是振子的动能与势能相互转化,能量保持守恒的过程;而行波在传播过程中某一介质微元的总能量在随时间变化,从整体上看,介质中各个微元能量的变化体现了能量传播的过程。
5. 平面简谐波传播过程中的能量特点是什么?在什么位置能量为最大?答案:能量从波源向外传播,波传播时某一体元的能量不守桓,波的传播方向与能量的传播方向一致,量值按正弦或余弦函数形式变化,介质中某一体元的波动动能和势能相同,处于平衡位置处的质点,速度最大,其动能最大,在平衡位置附近介质发生的形变也最大,势能也为最大。
6. 驻波是如何形成的?驻波的相位特点什么?答案:驻波是两列振幅相同的相干波在同一直线上沿相反方向传播时叠加而成。
驻波的相位特点是:相邻波节之间各质点的相位相同,波节两边质点的振动有的相位差。
7 惠更斯原理的内容是什么?利用惠更斯原理可以定性解释哪些物理现象?答案:介质中任一波振面上的各点,都可以看做发射子波的波源,其后任一时刻,这些子波的包络面就是该时刻的波振面。
太原理工大学大学物理第五版第10章课后题答案

第10章 导体和电介质中的静电场(习题选解)10-1 如图所示,在一不带电的金属球旁有一点电荷q +,金属球半径为R ,已知q +与金属球心间距离为r 。
试求:(1)金属球上感应电荷在球心处产生的电场强度E 及此时球心处的电势V ;(2)若将金属球接地,球上的净电荷为多少?题10-1图解:(1)由于导体内部的电场强度为零,金属球上感应的电荷在球心处产生的电场强度E 与点电荷q +在球心处产生的电场强度'E 大小相等,方向相反。
204r q E E πε='= E 的方向由O 指向q +点电荷q +在球心处的电势为rq V q 04πε=金属球表面感应电荷在球心的电势为R V ,由于球表面感应电荷量总和为零,⎰⎰===ssR dq RRdq V 041400πεπε 故球心电势为q V 和R V 的代数和rq V V V R q 04πε=+=(2)若将金属球接地,金属球是一个等势体,球心的电势0=V 。
设球上净电荷为q '。
球面上的电荷在球心处的电势为⎰⎰'===ssR Rq dq R Rdq V 0004414πεπεπε点电荷q +在球心的电势为 rq V q 04πε=由电势叠加原理 0=+=q R V V Vq R V V -=rq Rq 0044πεπε-='q rR q -=' 10-2 如图所示,把一块原来不带电的金属板B 移近一块已带有正电荷Q +的金属板A ,平行放置。
设两板面积都是S ,板间距是d ,忽略边缘效应。
求:(1)B 板不接地时,两板间的电势差; (2)B 板接地时,两板间电势差。
Qσ12σ34题10-2图解:(1)如图,设A 、B 两金属板各表面的面电荷密度分别为1σ、2σ、3σ、4σ。
由静电平衡条件可知⎪⎪⎩⎪⎪⎨⎧=-++=---02222022220403020104030201εσεσεσεσεσεσεσεσ 解得 ⎩⎨⎧-==3241σσσσ又 430σσ+= Q S S =+21σσ 故 1242Q Sσσσ===32Q Sσ=-两板间为匀强电场,电场强度31240000022222Q E Sσσσσεεεεε=+--= 两板间的电势差 SQdEd U 02ε==(2)若B 板接地,则有 ⎪⎩⎪⎨⎧=-===S Q 32410σσσσ两板间的电场强度 3200022QE Sσσεεε=-= 两板间的电势差 SQdEd U 0ε== 10-3 B A 、为靠得很近的两块平行的大金属平板,板的面积为S ,板间距离为d ,使B A 、板带电分别为A q 、B q ,且A B q q >。
物理学10章习题解答

[物理学10章习题解答]10-3两个相同的小球质量都是m,并带有等量同号电荷q,各用长为l的丝线悬挂于同一点。
由于电荷的斥力作用,使小球处于图10-9所示的位置。
如果角很小,试证明两个小球的间距x可近似地表示为.解小球在三个力的共同作用下达到平衡,这三个力分别是重力m g、绳子的张力t和库仑力f。
于是可以列出下面的方程式,(1)图10-9,(2)(3)因为角很小,所以,.利用这个近似关系可以得到,(4).(5)将式(5)代入式(4),得,由上式可以解得.得证。
10-4在上题中,如果l = 120 cm,m = kg,x = cm,问每个小球所带的电量q 为多大解在上题的结果中,将q解出,再将已知数据代入,可得.10-5氢原子由一个质子和一个电子组成。
根据经典模型,在正常状态下,电子绕核作圆周运动,轨道半径是r0 = 1011m。
质子的质量m = 1027kg,电子的质量m = 1031kg,它们的电量为e =1019c。
(1)求电子所受的库仑力;(2)电子所受库仑力是质子对它的万有引力的多少倍(3)求电子绕核运动的速率。
解(1)电子与质子之间的库仑力为.(2)电子与质子之间的万有引力为.所以.(3)质子对电子的高斯引力提供了电子作圆周运动的向心力,所以,从上式解出电子绕核运动的速率,为.10-6 边长为a的立方体,每一个顶角上放一个电荷q。
(1)证明任一顶角上的电荷所受合力的大小为.(2) f的方向如何解立方体每个顶角上放一个电荷q,由于对称性,每个电荷的受力情况均相同。
对于任一顶角上的电荷,例如b 图10-10角上的q b ,它所受到的力、和大小也是相等的,即.首先让我们来计算的大小。
由图10-10可见,、和对的作用力不产生x方向的分量;对的作用力f1的大小为,f1的方向与x轴的夹角为45。
对的作用力f2的大小为,f2的方向与x轴的夹角为0。
对的作用力f3的大小为,f3的方向与x轴的夹角为45。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
[物理学10章习题解答]10-3两个相同的小球质量都是m,并带有等量同号电荷q,各用长为l的丝线悬挂于同一点。
由于电荷的斥力作用,使小球处于图10-9所示的位置。
如果角很小,试证明两个小球的间距x可近似地表示为图10-9.解小球在三个力的共同作用下达到平衡,这三个力分别是重力m g、绳子的张力t和库仑力f。
于是可以列出下面的方程式,(1),(2)(3)因为角很小,所以,.利用这个近似关系可以得到,(4). (5)将式(5)代入式(4),得,由上式可以解得.得证。
10-4在上题中,如果l = 120 cm,m = kg,x = cm,问每个小球所带的电量q 为多大?解在上题的结果中,将q解出,再将已知数据代入,可得.10-5氢原子由一个质子和一个电子组成。
根据经典模型,在正常状态下,电子绕核作圆周运动,轨道半径是r0 = 1011m。
质子的质量m = 1027kg,电子的质量m = 1031kg,它们的电量为e =1019c。
(1)求电子所受的库仑力;(2)电子所受库仑力是质子对它的万有引力的多少倍?(3)求电子绕核运动的速率。
解(1)电子与质子之间的库仑力为.(2)电子与质子之间的万有引力为.所以.(3)质子对电子的高斯引力提供了电子作圆周运动的向心力,所以,从上式解出电子绕核运动的速率,为.10-6 边长为a的立方体,每一个顶角上放一个电荷q。
(1)证明任一顶角上的电荷所受合力的大小为图10-10.(2) f的方向如何?解立方体每个顶角上放一个电荷q,由于对称性,每个电荷的受力情况均相同。
对于任一顶角上的电荷,例如b角上的q b,它所受到的力、和大小也是相等的,即.首先让我们来计算的大小。
由图10-10可见,、和对的作用力不产生x方向的分量;对的作用力f1的大小为,f的方向与x轴的夹角为45。
1对的作用力f2的大小为,f的方向与x轴的夹角为0。
2对的作用力f3的大小为,f的方向与x轴的夹角为45。
3对的作用力f4的大小为,f的方向与x轴的夹角为,。
4于是.所受合力的大小为.(2) f的方向:f与x轴、y轴和z轴的夹角分别为、和,并且,.10-7计算一个直径为 cm的铜球所包含的正电荷电量。
解根据铜的密度可以算的铜球的质量.铜球的摩尔数为.该铜球所包含的原子个数为.每个铜原子中包含了29个质子,而每个质子的电量为1019 c,所以铜球所带的正电荷为.10-8 一个带正电的小球用长丝线悬挂着。
如果要测量与该电荷处于同一水平面内某点的电场强度e,我们就把一个带正电的试探电荷q0 引入该点,测定f/q0。
问f/q0是小于、等于还是大于该点的电场强度e?解这样测得的f / q0是小于该点的电场强度e的。
因为正试探电荷使带正电的小球向远离试探电荷的方向移动,q0受力f减小了。
10-9根据点电荷的电场强度公式,当所考查的点到该点电荷的距离r接近零时,则电场强度趋于无限大,这显然是没有意义的。
对此应作何解释?解当r 0时,带电体q就不能再视为点电荷了,只适用于场源为点电荷的场强公式不再适用。
这时只能如实地将该电荷视为具有一定电荷体密度的带电体。
10-10离点电荷50 cm处的电场强度的大小为 n c 1 。
求此点电荷的电量。
解由于,所以有.10-11有两个点电荷,电量分别为107c 和108c,相距15 cm。
求:(1)一个电荷在另一个电荷处产生的电场强度;(2)作用在每个电荷上的力。
解已知 = 107c、 = 108c,它们相距r= 15 cm ,图10-11如图10-11所示。
(1) 在点b产生的电场强度的大小为,方向沿从a到b的延长线方向。
在点a 产生的电场强度的大小为 ,方向沿从b 到a 的延长线方向。
(2) 对 的作用力的大小为 ,方向沿从b 到a 的延长线方向。
对 的作用力的大小为 .方向沿从a 到b 的延长线方向。
10-12 求由相距l 的 q 电荷所组成的电偶极子,在下面的两个特殊空间内产生的电场强度:(1)轴的延长线上距轴心为r 处,并且r >>l ;(2)轴的中垂面上距轴心为r 处,并且r >>l 。
解(1)在轴的延长线上任取一点p ,如图10-12所示,该点距轴心的距离为r 。
p 点的电场强度为.在r >> l 的条件下,上式可以简化为.(1) 令 ,(2)这就是电偶极子的电矩。
这样,点p 的电场强度可以表示为.(3)(2)在轴的中垂面上任取一点q ,如图10-13所示,该点距轴心的距离为r 。
q 点的电场强度为图10-12图10-13也引入电偶极子电矩,将点q 的电场强度的大小和方向同时表示出来: .10-13 有一均匀带电的细棒,长度为l ,所带总电量为q 。
求: (1)细棒延长线上到棒中心的距离为a 处的电场强度,并且a >>l ; (2)细棒中垂线上到棒中心的距离为a 处的电场强度,并且a >>l 。
解(1)以棒中心为坐标原点建立如图10-14所示的坐标系。
在x 轴上到o 点距离为a 处取一点p ,在x 处取棒元d x ,它所带电荷元为d x ,该棒元到点p 的距离为ax ,它在p 点产生的电场强度为.整个带电细棒在p 点产生的电场强度为,方向沿x 轴方向。
(2)坐标系如图10-15所示。
在细棒中垂线(即y 轴)上到o 点距离为a 处取一点p ,由于对称性,整个细棒在p 点产生的电场强度只具有y 分量e y 。
所以只需计算e y 就够了。
仍然在x 处取棒元d x ,它所带电荷元为d x ,它在p 点产生电场强度的y 分量为.整个带电细棒在p 点产生的电场强度为 ,方向沿x 轴方向。
图10-14图10-1510-14 一个半径为r 的圆环均匀带电,线电荷密度为。
求过环心并垂直于环面的轴线上与环心相距a 的一点的电场强度。
解以环心为坐标原点,建立如图10-16所示的坐标系。
在x 轴上取一点p ,p 点到盘心的距离为a 。
在环上取元段d l ,元段所带电量为d q = d l ,在p 点产生的电场强度的大小为.由于对称性,整个环在p 点产生的电场强度只具有x 分量e x 。
所以只需计算e x 就够了。
所以.10-15 一个半径为r 的圆盘均匀带电,面电荷密度为。
求过盘心并垂直于盘面的轴线上与盘心相距a 的一点的电场强度。
解 取盘心为坐标原点建立如图10-17所示的坐标系。
在x 轴上取一点p ,p 点到盘心的距离为a 。
为计算整个圆盘在p 点产生的电场强度,可先在圆盘上取一宽度为d r 的圆环,该圆环在p 点产生的电场强度,可以套用上题的结果,即,的方向沿x 轴方向。
整个圆盘在p 点产生的电场强度,可对上式积分求得 .10-16 一个半径为R 的半球面均匀带电,面电荷密度为。
求球心的电场强度。
解 以球心o 为坐标原点,建立如图10-18所示的坐标系。
在球面上取宽度为d l 的圆环,圆环的半径为r 。
显然,圆环所带的电量为 .图10-16 图10-17图10-18根据题10-14的结果,该圆环在球心产生的电场强度为,方向沿x轴的反方向。
由图中可见, ,, 将这些关系代入上式,得.所以,e的方向沿x轴的反方向。
10-19 如果把电场中的所有电荷分为两类,一类是处于高斯面s内的电荷,其量用q表示,它们共同在高斯面上产生的电场强度为e,另一类是处于高斯面s外的电荷,它们共同在高斯面上产生的电场强度为e,显然高斯面上任一点的电场强度e= e+ e。
试证明:(1) ;(2) 。
解高斯面的电通量可以表示为.显然,上式中的第一项是高斯面内部电荷对高斯面电通量的贡献,第二项是高斯面外部电荷对高斯面电通量的贡献。
高斯定理表述为“通过任意闭合曲面s的电通量,等于该闭合曲面所包围的电量除以,而与s以外的电荷无关。
”可见,高斯面s以外的电荷对高斯面的电通量无贡献。
这句话在数学上应表示为. (1)所以,关系式的成立是高斯定理的直接结果。
因为,于是可以把高斯定理写为.将式(1)代入上式,即得. (2)10-20 一个半径为r 的球面均匀带电,面电荷密度为。
求球面内、外任意一点的电场强度。
解 由题意可知,电场分布也具有球对称性,可以用高斯定理求解。
在球内任取一点,到球心的距离为r 1,以r 1为半径作带电球面的同心球面s 1,如图10-19所示,并在该球面上运用高斯定理,得,由此解得球面内部的电场强度为 .在球外任取一点,到球心的距离为r 2,以r 2为半径作带电球面的同心球面s 2,如图10-19所示,并在该球面上运用高斯定理,得, 即 . 由此解得 ,e 2的方向沿径向向外。
10-21 一个半径为R 的无限长圆柱体均匀带电,体电荷密度为。
求圆柱体内、外任意一点的电场强度。
解 显然,电场的分布具有轴对称性,圆柱体内、外的电场强度呈辐射状、沿径向向外,可以用高斯定理求解。
在圆柱体内部取半径为r 1、长度为l 的同轴柱面s 1(见图10-20)作为高斯面并运用高斯定理.图10-19图10-20上式左边的积分实际上包含了三项,即对左底面、右底面和侧面的积分,前两项积分由于电场强度与面元相垂直而等于零,只剩下对侧面的积分,所以上式可化为,于是得,方向沿径向向外。
用同样的方法,在圆柱体外部作半径为r2、长度为l的同轴柱面s2,如图10-20所示。
在s2上运用高斯定理,得.根据相同的情况,上面的积分可以化为,由上式求得,方向沿径向向外。
10-22两个带有等量异号电荷的平行平板,面电荷密度为,两板相距d。
当d 比平板自身线度小得多时,可以认为两平行板之间的电场是匀强电场,并且电荷是均匀分布在两板相对的平面上。
(1)求两板之间的电场强度;(2)当一个电子处于负电板面上从静止状态释放,经过108 s的时间撞击在对面的正电板上,若d = cm,求电子撞击正电板的速率。
解(1)在题目所说情况下,带等量异号电荷的两平行板图10-21构成了一个电容器,并且电场都集中在两板之间的间隙中。
作底面积为s的柱状高斯面,使下底面处于两板间隙之中,而上底面处于两板间隙之外,并且与板面相平行,如图10-21所示。
在此高斯面上运用高斯定理,得,由此解得两板间隙中的电场强度为.(2)根据题意可以列出电子的运动学方程,.两式联立可以解得.10-24 一个半径为r的球体均匀带电,电量为q,求空间各点的电势。
解先由高斯定理求出电场强度的分布,再由电势的定义式求电势的分布。
在球内:,根据高斯定理,可列出下式,解得,方向沿径向向外。
在球外:,根据高斯定理,可得,解得,方向沿径向向外。
球内任意一点的电势:, ().球外任意一点的电势:, ().10-25 点电荷+q和3q相距d = m,求在它们的连线上电势为零和电场强度为零的位置。
解(1)电势为零的点:这点可能处于+q 的右侧,也可能处于+q 的左侧,先假设在+q 的右侧x 1处的p 1点,如图10-22所表示的那样可列出下面的方程式. 从中解得 .在+q 左侧x 2处的p 2点若也符合电势为零的要求,则有 . 解得 .(2)电场强度为零的点:由于电场强度是矢量,电场强度为零的点只能在 +q 的左侧,并设它距离+q 为x ,于是有. 解得 .10-26 两个点电荷q 1 = +40109c 和q 2 = 70109c ,相距10 cm 。