高中数学 2.1.1离散型随机变量教案 新人教版选修2-3

合集下载

高中数学 2.3.1离散型随机变量的均值教案 新人教版选修2-3最新修正版

高中数学 2.3.1离散型随机变量的均值教案 新人教版选修2-3最新修正版

§2.3离散型随机变量的均值与方差 §2.3.1离散型随机变量的均值教学目标: 知识与技能:了解离散型随机变量的均值或期望的意义,会根据离散型随机变量的分布列求出均值或期望. 过程与方法:理解公式“E (a ξ+b )=aE ξ+b ”,以及“若ξB (n,p ),则E ξ=np ”.能熟练地应用它们求相应的离散型随机变量的均值或期望。

情感、态度与价值观:承前启后,感悟数学与生活的和谐之美 ,体现数学的文化功能与人文价值。

教学重点:离散型随机变量的均值或期望的概念教学难点:根据离散型随机变量的分布列求出均值或期望 授课类型:新授课 课时安排:1课时 教学过程:一、复习引入:1.离散型随机变量的二项分布:在一次随机试验中,某事件可能发生也可能不发生,在n 次独立重复试验中这个事件发生的次数ξ是一个随机变量.如果在一次试验中某事件发生的概率是P ,那么在n 次独立重复试验中这个事件恰好发生k 次的概率是k n k kn n q p C k P -==)(ξ,(k =0,1,2,…,n ,p q -=1).于是得到随机变量ξ的概率分布如下:ξ 0 1… k … nPnn q p C 00111-n n q p C … kn k k n q p C - …q p C n n n称这样的随机变量ξ服从二项分布,记作ξ~B(n ,p),其中n ,p 为参数,并记kn k k n q p C -=b(k ;n ,p).二、讲解新课:根据已知随机变量的分布列,我们可以方便的得出随机变量的某些制定的概率,但分布列的用途远不止于此,例如:已知某射手射击所得环数ξ的分布列如下ξ 4 5 6 7 8 9 10 P 0.02 0.04 0.06 0.09 0.28 0.29 0.22在n 次射击之前,可以根据这个分布列估计n 次射击的平均环数.这就是我们今天要学习的离散型随机变量的均值或期望根据射手射击所得环数ξ的分布列,我们可以估计,在n 次射击中,预计大约有n n P 02.0)4(=⨯=ξ 次得4环;n n P 04.0)5(=⨯=ξ 次得5环;…………n n P 22.0)10(=⨯=ξ 次得10环.故在n 次射击的总环数大约为+⨯⨯n 02.04++⨯⨯ n 04.05n ⨯⨯22.010+⨯=02.04(++⨯ 04.05n ⨯⨯)22.010,从而,预计n 次射击的平均环数约为+⨯02.04++⨯ 04.0532.822.010=⨯.这是一个由射手射击所得环数的分布列得到的,只与射击环数的可能取值及其相应的概率有关的常数,它反映了射手射击的平均水平.对于任一射手,若已知其射击所得环数ξ的分布列,即已知各个)(i P =ξ(i=0,1,2,…,10),我们可以同样预计他任意n 次射击的平均环数:+=⨯)0(0ξP +=⨯)1(1ξP …)10(10=⨯+ξP .1. 均值或数学期望:一般地,若离散型随机变量ξ的概率分布为则称 =ξE +11p x +22p x …++n n p x … 为ξ的均值或数学期望,简称期望.2. 均值或数学期望是离散型随机变量的一个特征数,它反映了离散型随机变量取值的平均水平3. 平均数、均值:一般地,在有限取值离散型随机变量ξ的概率分布中,令=1p =2p …n p =,则有=1p =2p …n p n 1==,=ξE +1(x +2x …nx n 1)⨯+,所以ξ的数学期望又称为平均数、均值4. 均值或期望的一个性质:若b a +=ξη(a 、b 是常数),ξ是随机变量,则η也是随机变量,它们的分布列为于是=ηE ++11)(p b ax ++22)(p b ax …+++n n p b ax )(… =+11(p x a +22p x …++n n p x …)++1(p b +2p …++n p …) =b aE +ξ,由此,我们得到了期望的一个性质:b aE b a E +=+ξξ)( 5.若ξB (n,p ),则E ξ=np证明如下:∵ kn k k n k n k k n q p C p p C k P --=-==)1()(ξ, ∴ =ξE 0×n n q p C 00+1×111-n n q p C +2×222-n n q p C +…+k ×k n k k n q p C -+…+n ×0q p C n n n .又∵ 11)]!1()1[()!1()!1()!(!!--=-----⋅=-⋅=k n kn nC k n k n n k n k n k kC ,∴=ξE (np 001n n C pq --+2111--n n q p C +…+)1()1(111------k n k k n q p C +…+)0111q pC n n n ---np q p np n =+=-1)(. 故 若ξ~B(n ,p),则=ξE np .三、讲解范例:例1. 篮球运动员在比赛中每次罚球命中得1分,罚不中得0分,已知他命中的概率为0.7,求他罚球一次得分ξ的期望解:因为3.0)0(,7.0)1(====ξξP P , 所以.03.007.01=⨯+⨯=ξE例2. 一次单元测验由20个选择题构成,每个选择题有4个选项,其中有且仅有一个选项是正确答案,每题选择正确答案得5分,不作出选择或选错不得分,满分100分 学生甲选对任一题的概率为0.9,学生乙则在测验中对每题都从4个选择中随机地选择一个,求学生甲和乙在这次英语单元测验中的成绩的期望解:设学生甲和乙在这次英语测验中正确答案的选择题个数分别是ηξ,,则ξ~ B (20,0.9),)25.0,20(~B η,525.020,189.020=⨯==⨯=∴ηξE E由于答对每题得5分,学生甲和乙在这次英语测验中的成绩分别是5ξ和5η 的成绩的期望分别是:2555)(5)5(,90185)(5)5(=⨯===⨯==ηηξξE E E E例3.随机抛掷一枚骰子,求所得骰子点数ξ的期望解:∵6,,2,1,6/1)(⋅⋅⋅===i i P ξ,6/166/126/11⨯+⋅⋅⋅+⨯+⨯=∴ξE =3.5例4.随机的抛掷一个骰子,求所得骰子的点数ξ的数学期望. 解:抛掷骰子所得点数ξ的概率分布为ξ 1 2 3 4 56P6161 61 61 61 61 所以=ξE 1×61+2×61+3×61+4×61+5×61+6×61=(1+2+3+4+5+6)×61=3.5.抛掷骰子所得点数ξ的数学期望,就是ξ的所有可能取值的平均值.四、课堂练习:1. 口袋中有5只球,编号为1,2,3,4,5,从中任取3球,以ξ表示取出球的最大号码,则E ξ=( )A .4;B .5;C .4.5;D .4.75答案:C2. 篮球运动员在比赛中每次罚球命中的1分,罚不中得0分.已知某运动员罚球命中的概率为0.7,求⑴他罚球1次的得分ξ的数学期望; ⑵他罚球2次的得分η的数学期望; ⑶他罚球3次的得分ξ的数学期望.3.设有m 升水,其中含有大肠杆菌n 个.今取水1升进行化验,设其中含有大肠杆菌的个数为ξ,求ξ的数学期望.五、小结 :(1)离散型随机变量的期望,反映了随机变量取值的平均水平; (2)求离散型随机变量ξ的期望的基本步骤: ①理解ξ的意义,写出ξ可能取的全部值; ②求ξ取各个值的概率,写出分布列;③根据分布列,由期望的定义求出E ξ 公式E (a ξ+b )= aE ξ+b ,以及服从二项分布的随机变量的期望E ξ=np六、布置作业:练习册七、板书设计(略)八、教学反思:(1)离散型随机变量的期望,反映了随机变量取值的平均水平;(2)求离散型随机变量ξ的期望的基本步骤: ①理解ξ的意义,写出ξ可能取的全部值; ②求ξ取各个值的概率,写出分布列;③根据分布列,由期望的定义求出E ξ 公式E (a ξ+b )= aE ξ+b ,以及服从二项分布的随机变量的期望E ξ=np 。

数学选修2-3讲义:第2章2.12.1.1 离散型随机变量含答案

数学选修2-3讲义:第2章2.12.1.1 离散型随机变量含答案

2.1离散型随机变量及其分布列2.1.1离散型随机变量学习目标:1.理解随机变量及离散型随机变量的含义.(重点)2.了解随机变量与函数的区别与联系.(易混点)3.会用离散型随机变量描述随机现象.(难点)教材整理离散型随机变量阅读教材P40练习以上部分,完成下列问题.1.随机变量(1)定义:在试验中,试验可能出现的结果可以用一个变量X来表示,并且X 是随着试验的结果的不同而变化的,我们把这样的变量X叫做一个随机变量.(2)表示:随机变量常用大写字母X,Y,…表示.2.离散型随机变量如果随机变量X的所有可能的取值都能一一列举出来,则称X为离散型随机变量.判断(正确的打“√”,错误的打“×”)(1)随机变量的取值可以是有限个,也可以是无限个.()(2)在抛掷一枚质地均匀的硬币试验中,“出现正面的次数”为随机变量.()(3)随机变量是用来表示不同试验结果的量.()(4)试验之前可以判断离散型随机变量的所有值.()(5)在掷一枚质地均匀的骰子试验中,“出现的点数”是一个随机变量,它有6个取值.()【解析】(1)√因为随机变量的每一个取值,均代表一个试验结果,试验结果有限个,随机变量的取值就有有限个,试验结果有无限个,随机变量的取值就有无限个.(2)√因为掷一枚硬币,可能出现的结果是正面向上或反面向上,以一个标准如正面向上的次数来描述这一随机试验,那么正面向上的次数就是随机变量ξ,ξ的取值是0,1.(3)√因为由随机变量的定义可知,该说法正确.(4)√因为随机试验所有可能的结果是明确并且不只一个,只不过在试验之前不能确定试验结果会出现哪一个,故该说法正确.(5)√因为掷一枚质地均匀的骰子试验中,所有可能结果有6个,故“出现的点数”这一随机变量的取值为6个.【答案】(1)√(2)√(3)√(4)√(5)√随机变量的概念【例1】判断下列各个量,哪些是随机变量,哪些不是随机变量,并说明理由.(1)北京国际机场候机厅中2019年5月1日的旅客数量;(2)2019年5月1日至10月1日期间所查酒驾的人数;(3)2019年6月1日济南到北京的某次动车到北京站的时间;(4)体积为1 000 cm3的球的半径长.【精彩点拨】利用随机变量的定义判断.【解】(1)旅客人数可能是0,1,2,…,出现哪一个结果是随机的,因此是随机变量.(2)所查酒驾的人数可能是0,1,2,…,出现哪一个结果是随机的,因此是随机变量.(3)动车到达的时间可在某一区间内任取一值,是随机的,因此是随机变量.(4)球的体积为1 000 cm3时,球的半径为定值,不是随机变量.随机变量的辨析方法1.随机试验的结果具有可变性,即每次试验对应的结果不尽相同.2.随机试验的结果具有确定性,即每次试验总是恰好出现这些结果中的一个,但在一次试验之前却不能肯定这次试验会出现哪一个结果.如果一个随机试验的结果对应的变量具有以上两点,则该变量即为随机变量.1.(1)下列变量中,不是随机变量的是()A.一射击手射击一次命中的环数B.标准状态下,水沸腾时的温度C.抛掷两枚骰子,所得点数之和D.某电话总机在时间区间(0,T)内收到的呼叫次数(2)10件产品中有3件次品,从中任取2件,可作为随机变量的是()A.取到产品的件数B.取到正品的概率C.取到次品的件数D.取到次品的概率【解析】(1)B项中水沸腾时的温度是一个确定值.(2)A中取到产品的件数是一个常量不是变量,B,D也是一个定值,而C中取到次品的件数可能是0,1,2,是随机变量.【答案】(1)B(2)C离散型随机变量的判定【例2】指出下列随机变量是否是离散型随机变量,并说明理由.(1)某座大桥一天经过的车辆数X;(2)某超市5月份每天的销售额;(3)某加工厂加工的一批某种钢管的外径与规定的外径尺寸之差ξ;(4)江西九江市长江水位监测站所测水位在(0,29]这一范围内变化,该水位站所测水位ξ.【精彩点拨】随机变量的实际背景→判断取值是否具有可列性→得出结论【解】(1)车辆数X的取值可以一一列出,故X为离散型随机变量.(2)某超市5月份每天销售额可以一一列出,故为离散型随机变量.(3)实际测量值与规定值之间的差值无法一一列出,不是离散型随机变量.(4)不是离散型随机变量,水位在(0,29]这一范围内变化,不能按次序一一列举.“三步法”判定离散型随机变量1.依据具体情境分析变量是否为随机变量.2.由条件求解随机变量的值域.3.判断变量的取值能否被一一列举出来,若能,则是离散型随机变量;否则,不是离散型随机变量.2.一个袋中装有5个白球和5个黑球,从中任取3个,其中所含白球的个数为ξ.(1)列表说明可能出现的结果与对应的ξ的值;(2)若规定抽取3个球中,每抽到一个白球加5分,抽到黑球不加分,且最后结果都加上6分,求最终得分η的可能取值,并判定η是否为离散型随机变量.【解】(1)(2)由题意可得:η=5ξ+6,而ξ可能的取值范围为{0,1,2,3},所以η对应的各值是:5×0+6,5×1+6,5×2+6,5×3+6.故η的可能取值为6,11,16,21.显然,η为离散型随机变量.随机变量的可能取值及试验结果[探究问题]1.抛掷一枚质地均匀的硬币,可能出现正面向上、反面向上两种结果.这种试验结果能用数字表示吗?【提示】 可以.用数字1和0分别表示正面向上和反面向上.2.在一块地里种10棵树苗,设成活的树苗数为X ,则X 可取哪些数字?【提示】 X =0,1,2,3,4,5,6,7,8,9,10.3.抛掷一枚质地均匀的骰子,出现向上的点数为ξ,则“ξ≥4”表示的随机事件是什么?【提示】 “ξ≥4”表示出现的点数为4点,5点,6点.【例3】 写出下列随机变量可能取的值,并说明随机变量所取的值和所表示的随机试验的结果.(1)袋中有大小相同的红球10个,白球5个,从袋中每次任取1个球,直到取出的球是白球为止,所需要的取球次数;(2)从标有1,2,3,4,5,6的6张卡片中任取2张,所取卡片上的数字之和.【精彩点拨】分析题意→写出X可能取的值→分别写出取值所表示的结果【解】(1)设所需的取球次数为X,则X=1,2,3,4,…,10,11,X=i表示前i-1次取到红球,第i次取到白球,这里i=1,2, (11)(2)设所取卡片上的数字和为X,则X=3,4,5, (11)X=3,表示“取出标有1,2的两张卡片”;X=4,表示“取出标有1,3的两张卡片”;X=5,表示“取出标有2,3或标有1,4的两张卡片”;X=6,表示“取出标有2,4或1,5的两张卡片”;X=7,表示“取出标有3,4或2,5或1,6的两张卡片”;X=8,表示“取出标有2,6或3,5的两张卡片”;X=9,表示“取出标有3,6或4,5的两张卡片”;X=10,表示“取出标有4,6的两张卡片”;X=11,表示“取出标有5,6的两张卡片”.用随机变量表示随机试验的结果问题的关键点和注意点1.关键点:解决此类问题的关键是明确随机变量的所有可能取值,以及取每一个值时对应的意义,即一个随机变量的取值可能对应一个或多个随机试验的结果.2.注意点:解答过程中不要漏掉某些试验结果.3.写出下列各随机变量可能取的值,并说明随机变量所取的值表示的随机试验的结果.(1)在2018年北京大学的自主招生中,参与面试的5名考生中,通过面试的考生人数X;(2)射手对目标进行射击,击中目标得1分,未击中目标得0分,该射手在一次射击中的得分用ξ表示.【解】(1)X可能取值0,1,2,3,4,5,X=i表示面试通过的有i人,其中i=0,1,2,3,4,5.(2)ξ可能取值为0,1,当ξ=0时,表明该射手在本次射击中没有击中目标;当ξ=1时,表明该射手在本次射击中击中目标.1.给出下列四个命题:①15秒内,通过某十字路口的汽车的数量是随机变量;②在一段时间内,某候车室内候车的旅客人数是随机变量;③一条河流每年的最大流量是随机变量;④一个剧场共有三个出口,散场后某一出口退场的人数是随机变量.其中正确的个数是()A.1B.2C.3D.4【解析】由随机变量定义可以直接判断①②③④都是正确的.故选D.【答案】 D2.某人进行射击,共有5发子弹,击中目标或子弹打完就停止射击,射击次数为ξ,则{ξ=5}表示的试验结果是()A第5次击中目标B.第5次未击中目标C.前4次均未击中目标D.第4次击中目标【解析】{ξ=5}表示前4次均未击中,而第5次可能击中,也可能未击中,故选C.【答案】 C3.袋中有大小相同的5个球,分别标有1,2,3,4,5五个号码,现在在有放回抽取的条件下依次取出两个球,设两个球号码之和为随机变量X,则X所有可能取值的个数是________.【解析】由于抽球是在有放回条件下进行的,所以每次抽取的球号均可能是1,2,3,4,5中某个.故两次抽取球号码之和可能为2,3,4,5,6,7,8,9,10,共9种.【答案】94.甲进行3次射击,甲击中目标的概率为12,记甲击中目标的次数为ξ,则ξ的可能取值为________.【解析】甲可能在3次射击中,一次也未中,也可能中1次,2次,3次.【答案】0,1,2,35.写出下列各随机变量可能的取值,并说明这些值所表示的随机试验的结果.(1)从一个装有编号为1号到10号的10个球的袋中,任取1球,取出的球的编号为X;(2)一个袋中装有10个红球,5个白球,从中任取4个球,其中所含红球的个数为X;(3)投掷两枚骰子,所得点数之和是偶数X.【解】(1)X的可能取值为1,2,3, (10)X=k(k=1,2,…,10)表示取出第k号球.(2)X的可能取值为0,1,2,3,4.X=k表示取出k个红球,4-k个白球,其中k=0,1,2,3,4.(3)X的可能取值为2,4,6,8,10,12.X=2表示(1,1);X=4表示(1,3),(2,2),(3,1);…;X=12表示(6,6).X的可能取值为2,4,6,8,10,12.。

高中数学新人教版A版精品教案《2.1.1离散型随机变量》

高中数学新人教版A版精品教案《2.1.1离散型随机变量》

2.1.1 离散型随机变量
一、教材分析
《离散型随机变量》是本章的第一课。

因此,在本节课中,让学生了解本章的主要内容及其研究该内容所用的数学思想方法,对学生明确学习目标和学习任务,提高他们的求知欲望,激发他们的学习兴趣非常重要。

对于随机试验,只要了解了它可能出现的结果,以及每一个结果发生的概率,也就基本把握了它的统计规律。

为了使用数学工具研究随机现象,需要用数字描述随机现象,建立起连接数和随机现象的桥梁——随机变量。

高中阶段主要研究的是有限的离散型的随机变量,因此,本节课的教学任务就是通过具体实例,帮助学生掌握随机变量和离散型随机变量的概念,理解它们的意义和作用,能对一个随机试验的结果,用一个随机变量表示,并能确定其取值范围。

二、教学目标
知识与技能:理解随机变量和离散型随机变量的描述性定义;随机变量如何表示。

过程与方法:学会区分离散型与非离散型随机变量,并能举出离散型随机变量的例子;掌握随机变量与函数的关系,能够把一个随机试验的结果用随机变量表示,能够根据所关心的问题定义一个随机变
量。

情感态度与价值观:理解随机变量所表示试验结果的含义,并恰当地定义随机变量发展抽象、概括能力,提高实际解决问题的能力学会合作探讨,体验成功,提高学习数学的兴趣。

三、教学重难点
重点:用随机变量表示随机试验结果的意义和方法。

难点:对随机变量意义的理解;构造随机变量的方法;随机变量取值范围的确定。

四、教学过程。

高中数学选修2-3 第二章随机变量及其分布 2-1-1离散型随机变量

高中数学选修2-3 第二章随机变量及其分布 2-1-1离散型随机变量

一区间内的一切值,无法一一列出,故不是离散型随机变
量.
答案: B
2.某人练习射击,共有5发子弹,击中目标或子弹打完 则停止射击,射击次数为X,则“X=5”表示的试验结果为 ()
A.第5次击中目标 B.第5次未击中目标 C.前4次均未击中目标 D.前5次均未击中目标 解析: 射击次数X是一随机变量,“X=5”表示试验 结果“前4次均未击中目标”. 答案: C
(4)体积为64 cm3的正方体的棱长. [思路点拨] 要根据随机变量的定义考虑所有情况.
(1)接到咨询电话的个数可能是0,1,2,…出现 哪一个结果都是随机的,因此是随机变量.
(2)该运动员在某场比赛的上场时间在[0,48]内,是随机 的,故是随机变量.
(3)获得的奖次可能是1,2,3,出现哪一个结果都是随机 的,因此是随机变量.
人教版高中数学选修2-3 第二章 随机变量及其分布
第二章 随机变量及其分布
2.1 离散型随机变量及其分布列 2.1.1 离散型随机变量
课前预习
1.在一块地里种下10颗树苗,成活的树苗棵树为X. [问题1] X取什么数字? [提示] X=0,1,2…10.
2.掷一枚硬币,可能出现正面向上,反面向上两种结 果.
3.一个袋中装有5个白球和5个红球,从中任取3个.其 中所含白球的个数记为ξ,则随机变量ξ的值域为________.
解析: 依题意知,ξ的所有可能取值为0,1,2,3,故ξ的 值域为{0,1,2,3}.
答案: {0,1,2,3}
4.写出下列随机变量ξ可能取的值,并说明随机变量ξ =4所表示的随机试验的结果.
[问题2] 这种试验的结果能用数字表示吗? [提示] 可以,用数1和0分别表示正面向上和反面向 上. [问题3] 10件产品中有3件次品,从中任取2件,所含次 品个数为x,试写出x的值. [提示] x=0,1,2.

人教版选修2-3 2.1.1 离散型随机变量导学案

人教版选修2-3  2.1.1 离散型随机变量导学案

2.1.1《离散型随机变量》导学案制作王敬审核高二数学组2016-05-27【学习目标】1.通过实例了解随机变量的概念,理解离散型随机变量的概念.2.能写出离散型随机变量的可能取值,并能解释其意义.【重点难点】重点:离散型随机变量的概念.难点:离散型随机变量的意义.【预习导航】1.一个试验如果满足下列条件:(1)试验可以在相同的情形下__________进行;(2)试验的所有可能结果是__________的,并且不只一个;(3)每次试验总是恰好出现这些可能结果中的__________,但在一次试验之前却不能肯定这次试验会出现哪一个结果.这种试验就是一个随机试验,为了方便起见,也简称试验.2.随着__________变化而变化的变量称为随机变量,随机变量常用字母X、Y、ξ、η等表示.3.______________________的随机变量,称为离散型随机变量.【问题整合】【问题1】一个正四面体玩具,四个面分别涂有红、黄、绿、黑,投掷一次观察落地一面的颜色,有多少种可能的结果?这些结果可以用数字表示吗?【问题2】在一块地里种了6棵树苗,设成活的树苗棵数为X,则X可取哪些数字?【探究活动一】随机变量及其取值的意义例1写出下列各随机变量可能的取值,并说明随机变量的值所表示的随机试验的结果.(1)正方体的骰子,各面分别刻着1、2、3、4、5、6,随意掷两次,所得的点数之和为ξ;(2)一个人要开房门,他共有10把钥匙,其中仅有一把是能开门的,他随机取钥匙去开门并且用后不放回,其中打开门所试的钥匙个数为ξ;(3)电台在每个整点都报时,某人随机打开收音机对表,他所等待的时间ξ(min).方法规律总结跟踪训练1100件产品中,含有5件次品,任意抽取4件产品,其中含有的次品数为ξ,抽取产品的件数为η,ξ、η是随机变量吗?【探究活动二】离散型随机变量例2①某座大桥一天经过的中华牌轿车的辆数为ξ;②某网站中歌曲《爱我中华》一天内被点击的次数为ξ;③一天内的温度为ξ;④射手对目标进行射击,击中目标得1分,未击中目标得0分,用ξ表示该射手在一次射击中的得分.上述问题中的ξ是离散型随机变量的是()A.①②③④B.①②④C.①③④D.②③④【方法规律总结】【方法规律总结】跟踪训练3盒中有9个正品和3个次品共12个零件,每次从中取一个零件,如果取出的是次品,则不再放回,直到取出正品为止,设取得正品前已取出的次品数为X.(1)写出X的所有可能取值.(2)写出X=2所表示的事件.(3)求X=2的概率.跟踪训练2下列随机变量中不是离散型随机变量的是()A.盒子里有除颜色不同,其他完全相同的红球和白球各5个,从中摸出3个球,白球的个数XB.小明回答20道选择题,答对的题数XC.某人早晨在车站等出租车的时间XD.某人投篮10次投中的次数X【探究三】离散型随机变量的取值及其概率写出下列各随机变量可能的取值,并说明随机变量所取的值表示的随机试验的结果.(1)从一个装有编号为1号到10号的10个球的袋中任取1球,被取出的球的编号为X;(2)一个袋中装有10个红球,5个白球,从中任取4个球,其中所含红球的个数为X;(3)投掷甲、乙两枚骰子,所得点数之和为X,所得点数之和是偶数为Y.【总结概括】本节课的收获:【课后作业】必做题:课本习题2.1A组1,2题选做题:同步练习册知能提升。

高中数学 2.1.1离散型随机变量教案 新人教B版选修2-3

高中数学 2.1.1离散型随机变量教案 新人教B版选修2-3

2.1.1离散型随机变量知识目标:1.理解随机变量的意义;2.理解随机变量所表示试验结果的含义,并恰当地定义随机变量. 教学重点:随机变量、离散型随机变量的意义一、课前预习:定义1:在一些试验中,试验可能出现的结果可以用________________来表示,并且随着试验结果变化而变化的,我们把____________________称为一个随机变量.随机变量常用字母 X , Y,ξ,η,…表示.定义2:如果随机变量X的所有可能的取值都能_______________________,则称X为离散型随机变量二、例题分析例1.写出下列随机变量可能取的值:(1)从10张已编号的卡片(1~10)中任取一张,被取出的卡片的号数;(2)抛掷一个骰子得到的点数;(3)一个袋子里装有5个白球和5个黑球。

从中任取3个,其中所含白球的个数;(4)同时抛掷5枚硬币,得到硬币反面向上的个数。

例2.写出下列随机变量可能取的值一袋中装有5只同样大小的白球,编号为1,2,3,4,5现从该袋内随机取出3只球,被取出的球的最大号码数ξ;例3. 假设进行一次从袋中摸出一个球的游戏,袋中有3个红球,4个白球,一个篮球,2个黑球,摸到红球得2分,白球得0分,篮球得1分,黑球得-2分,试列表写出可能的结果、对应的分值X及相应的概率。

例4、1.①某寻呼台一小时内收到的寻呼次数ξ;②长江上某水文站观察到一天中的水位ξ;③某超市一天中的顾客量ξ其中的ξ是连续型随机变量的是()A.①;B.②;C.③;D.①②③2.随机变量ξ的所有等可能取值为1,2,,n…,若()40.3Pξ<=,则()A.3n=;B.4n=;C.10n=;D.不能确定3.抛掷两次骰子,两个点的和不等于8的概率为()A.1112;B.3136;C.536;D.112课堂小结:2. 1.2离散型随机变量的分布列知识与技能:会求出某些简单的离散型随机变量的概率分布。

教学重点:离散型随机变量的分布列的概念求简单的离散型随机变量的分布列一、新课探究:1. 要掌握一个离散型随机变量X 的取值规律,必须知道: (1)___________________________________(2)___________________________________ 则列表我们称这个表为随机变量X 的概率分布,或称为_________________________.2. :1)(0≤≤A P ,并且不可能事件的概率为______,必然事件的概率为_______.由此你可以得出离散型随机变量的分布列都具有下面两个性质: (1)___________________________________ (2)___________________________________在掷一枚图钉的随机试验中,令⎧⎨⎩1,针尖向上;X=0,针尖向下.如果针尖向上的概率为p ,试写出随机变量 X 的分布列.解:根据分布列的性质,针尖向下的概率是(1p -) .于是,随机变量 X像上面这样的分布列称为________________________.二、例题分析:例1、篮球运动员在比赛中每次罚球命中得1分,不中得0分。

高中数学 第二章 概率 2.1 离散型随机变量教案 新人教B版选修2-3-新人教B版高二选修2-3数

高中数学 第二章 概率 2.1 离散型随机变量教案 新人教B版选修2-3-新人教B版高二选修2-3数

2.1 离散型随机变量一、教学目标:1、知识目标:⑴理解随机变量的意义;⑵学会区分离散型与非离散型随机变量,并能举出离散性随机变量的例子;⑶理解随机变量所表示试验结果的含义,并恰当地定义随机变量。

2、能力目标:发展抽象、概括能力,提高实际解决问题的能力。

3、情感目标:学会合作探讨,体验成功,提高学习数学的兴趣.二、教学重点:随机变量、离散型随机变量、连续型随机变量的意义教学难点:随机变量、离散型随机变量、连续型随机变量的意义三、教学方法:讨论交流,探析归纳四、教学过程〔一〕、复习知识:1.随机事件及其概率:在每次试验的结果中,如果某事件一定发生,那么称为必然事件,记为U;相反,如果某事件一定不发生,那么称为不可能事件,记为φ.随机试验:为了研究随机现象的统计规律性,我们把各种科学实验和对事物的观测统称为试验.如果试验具有下述特点:〔1〕试验可以在相同条件下重复进行;〔2〕每次试验的所有可能结果都是明确可知的,并且不止一个;〔3〕每次试验之前不能预知将会出现哪一个结果,那么称这种试验为随机试验简称试验。

2.样本空间:样本点:在相同的条件下重复地进行试验,虽然每次试验的结果中所有可能发生的事件是可以明确知道的,并且其中必有且仅有一个事件发生,但是在试验之前却无法预知究意哪一个事件将在试验的结果中发生.试验的结果中每一个可能发生的事件叫做试验的样本点,通常用字母ω表示.样本空间:试验的所有样本点ω1,ω2,ω3,…构成的集合叫做样本空间,通常用字母Ω表示,于是,我们有Ω={ω1,ω2,ω3,… }3.古典概型的特征:古典概型的随机试验具有下面两个特征:〔1〕有限性.只有有限多个不同的基本事件;〔2〕等可能性.每个基本事件出现的可能性相等.概率的古典定义在古典概型中,如果基本事件的总数为n,事件A所包含的基本事件个数为r〔〕,那么定义事件A的概率为.即(二)、探析新课:1、随机变量的概念:随机变量是概率论的重要概念,把随机试验的结果数量化可使我们对随机试验有更清晰的了解,还可借助更多的数学知识对其进行深入研究.有的试验结果本身已具数值意义,如产品抽样检查时的废品数,而有些虽本无数值意义但可用某种方式与数值联系,如抛硬币时规定出现徽花时用1表示,出现字时用0表示.这些数值因试验结果的不确定而带有随机性,因此也就称为随机变量.2、随机变量的定义:如果对于试验的样本空间中的每一个样本点,变量都有一个确定的实数值与之对应,那么变量是样本点的实函数,记作.我们称这样的变量为随机变量.3、假设随机变量只能取有限个数值或可列无穷多个数值那么称为离散随机变量,在高中阶段我们只研究随机变量取有限个数值的情形〔三〕、例题探析例1、在10件产品中有2件不合格品。

高中数学 第二章 随机变量及其分布 2.1.2 离散型随机变量的分布列学案 新人教A版选修2-3-新

高中数学 第二章 随机变量及其分布 2.1.2 离散型随机变量的分布列学案 新人教A版选修2-3-新

2.1.2 离散型随机变量的分布列1.理解取有限值的离散型随机变量及其分布列的概念与性质.2.会求某些简单的离散型随机变量的分布列.3.理解两点分布和超几何分布及其推导过程,并能简单的运用.,1.离散型随机变量的分布列(1)一般地,若离散型随机变量X可能取的不同值为x1,x2,…,x i,…,x n,X取每一个值x i(i=1,2,…,n)的概率P(X=x i)=p i,以表格的形式表示如下:X x1x2…x i…x nP p1p2…p i…p n这个表格称为离散型随机变量X的概率分布列,简称为X的分布列.(2)离散型随机变量的分布列的性质:①p i≥0,i=1,2,…,n;(1)离散型随机变量的分布列完全描述了由这个随机变量所刻画的随机现象.和函数的表示法一样,离散型随机变量的分布列也可以用表格、等式P(X=x i)=p i,i=1,2,…,n 和图象表示.(2)随机变量的分布列不仅能清楚地反映随机变量的所有可能取值,而且能清楚地看到取每一个值的概率的大小,从而反映了随机变量在随机试验中取值的分布情况.2.两个特殊分布(1)两点分布X 0 1P 1-p p若随机变量X 的分布列具有上表的形式,则称X 服从两点分布,并称p =P (X =1)为成功概率.(2)超几何分布一般地,在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则P (X =k )=C k M C n -kN -MC n N,k =0,1,2,…,m ,即X 0 1 … mPC 0M C n -0N -MC n NC 1M C n -1N -MC n N…C m M C n -mN -MC n N其中m =min{M ,n },且n ≤N ,M ≤N ,n ,M ,N ∈N *.如果随机变量X 的分布列具有上表的形式,则称随机变量X 服从超几何分布.(1)超几何分布的模型是不放回抽样. (2)超几何分布中的参数是M ,N ,n .(3)超几何分布可解决产品中的正品和次品、盒中的白球和黑球、同学中的男和女等问题,往往由差异明显的两部分组成.判断正误(正确的打“√”,错误的打“×”)(1)在离散型随机变量分布列中每一个可能值对应的概率可以为任意的实数.( ) (2)在离散型随机变量分布列中,在某一范围内取值的概率等于它取这个范围内各值的概率之积.( )(3)在离散型随机变量分布列中,所有概率之和为1.( ) (4)超几何分布的模型是放回抽样.( ) 答案:(1)× (2)× (3)√ (4)×下列表中能成为随机变量ξ的分布列的是( ) A.ξ -1 0 1 P0.30.40.4B.ξ 1 2 3 P0.40.7-0.1C.ξ -1 0 1 P0.30.40.3D.ξ 1 2 3 P0.30.10.4答案:C若随机变量X 服从两点分布,且P (X =0)=0.8,P (X =1)=0.2.令Y =3X -2,则P (Y =-2)=________. 答案:0.8探究点1 离散型随机变量的分布列某班有学生45人,其中O 型血的有15人,A 型血的有10人,B 型血的有12人,AB 型血的有8人.将O ,A ,B ,AB 四种血型分别编号为1,2,3,4,现从中抽1人,其血型编号为随机变量X ,求X 的分布列. 【解】 X 的可能取值为1,2,3,4. P (X =1)=C 115C 145=13,P (X =2)=C 110C 145=29,P (X =3)=C 112C 145=415,P (X =4)=C 18C 145=845.故X 的分布列为X 1 2 3 4 P1329415845求离散型随机变量分布列的一般步骤(1)确定X 的所有可能取值x i (i =1,2,…)以及每个取值所表示的意义. (2)利用概率的相关知识,求出每个取值相应的概率P (X =x i )=p i (i =1,2,…). (3)写出分布列.(4)根据分布列的性质对结果进行检验.抛掷甲,乙两个质地均匀且四个面上分别标有1,2,3,4的正四面体,其底面落于桌面,记底面上的数字分别为x ,y .设ξ为随机变量,若x y 为整数,则ξ=0;若x y为小于1的分数,则ξ=-1;若x y为大于1的分数,则ξ=1. (1)求概率P (ξ=0); (2)求ξ的分布列.解:(1)依题意,数对(x ,y )共有16种情况,其中使x y为整数的有以下8种: (1,1),(2,2),(3,3),(4,4),(2,1),(3,1),(4,1),(4,2), 所以P (ξ=0)=816=12.(2)随机变量ξ的所有取值为-1,0,1. 由(1)知P (ξ=0)=12;ξ=-1有以下6种情况:(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),故P (ξ=-1)=616=38;ξ=1有以下2种情况:(3,2),(4,3),故P (ξ=1)=216=18,所以随机变量ξ的分布列为ξ -1 0 1 P381218探究点2 离散型随机变量的分布列的性质设随机变量X 的分布列P (X =k5)=ak (k =1,2,3,4,5).(1)求常数a 的值;(2)求P (X ≥35);(3)求P (110<X <710).【解】 (1)由P (X =k5)=ak ,k =1,2,3,4,5可知,∑k =15P (X =k5)=∑k =15ak =a +2a +3a +4a +5a =1,解得a =115.(2)由(1)可知P (X =k 5)=k15(k =1,2,3,4,5),所以P (X ≥35)=P (X =35)+P (X =45)+P (X =1)=315+415+515=45. (3)P (110<X <710)=P (X =15)+P (X =25)+P (X =35)=115+215+315=25.离散型随机变量分布列的性质的应用(1)利用离散型随机变量的分布列的性质可以求与概率有关的参数的取值或范围,还可以检验所求分布列是否正确.(2)由于离散型随机变量的各个可能值表示的事件是彼此互斥的,所以离散型随机变量在某一范围内取值的概率等于它取这个范围内各个值的概率之和.(2018·河北邢台一中月考)随机变量X 的分布列为P (X =k )=ck (k +1),k=1,2,3,4,c 为常数,则P ⎝ ⎛⎭⎪⎫23<X <52的值为( )A.45 B.56 C.23D.34解析:选B.由题意c 1×2+c 2×3+c 3×4+c4×5=1,即45c =1,c =54, 所以P ⎝ ⎛⎭⎪⎫23<X <52=P (X =1)+P (X =2) =54×⎝ ⎛⎭⎪⎫11×2+12×3=56.故选B. 探究点3 两点分布与超几何分布一个袋中装有6个形状大小完全相同的小球,其中红球有3个,编号为1,2,3;黑球有2个,编号为1,2;白球有1个,编号为1.现从袋中一次随机抽取3个球. (1)求取出的3个球的颜色都不相同的概率.(2)记取得1号球的个数为随机变量X ,求随机变量X 的分布列.【解】 (1)从袋中一次随机抽取3个球,基本事件总数n =C 36=20,取出的3个球的颜色都不相同包含的基本事件的个数为C 13C 12C 11=6,所以取出的3个球的颜色都不相同的概率P =620=310. (2)由题意知X =0,1,2,3.P (X =0)=C 33C 36=120,P (X =1)=C 13C 23C 36=920,P (X =2)=C 23C 13C 36=920,P (X =3)=C 33C 36=120,所以X 的分布列为X 0 1 2 3 P120920920 1201.[变问法]在本例条件下,记取到白球的个数为随机变量η,求随机变量η的分布列. 解:由题意知η=0,1,服从两点分布,又P (η=1)=C 25C 36=12,所以随机变量η的分布列为η 0 1 P12122.[变条件]将本例的条件“一次随机抽取3个球”改为“有放回地抽取3次球,每次抽取1个球”其他条件不变,结果又如何?解:(1)取出3个球颜色都不相同的概率P =C 13×C 12×C 11×A 3363=16. (2)由题意知X =0,1,2,3. P (X =0)=3363=18,P (X =1)=C 13×3×3×363=38. P (X =2)=C 23C 13×3×363=38, P (X =3)=3363=18.所以X 的分布列为X 0 1 2 3 P18383818求超几何分布问题的注意事项(1)在产品抽样检验中,如果采用的是不放回抽样,则抽到的次品数服从超几何分布. (2)在超几何分布公式中,P (X =k )=C k M C n -kN -MC n N ,k =0,1,2,…,m ,其中,m =min{M ,n },且0≤n ≤N ,0≤k ≤n ,0≤k ≤M ,0≤n -k ≤N -M .(3)如果随机变量X 服从超几何分布,只要代入公式即可求得相应概率,关键是明确随机变量X 的所有取值.(4)当超几何分布用表格表示较繁杂时,可用解析式法表示.某高校文学院和理学院的学生组队参加大学生电视辩论赛,文学院推荐了2名男生,3名女生,理学院推荐了4名男生,3名女生,文学院和理学院所推荐的学生一起参加集训,由于集训后学生水平相当,从参加集训的男生中随机抽取3人,女生中随机抽取3人组成代表队.(1)求文学院至少有一名学生入选代表队的概率;(2)某场比赛前,从代表队的6名学生再随机抽取4名参赛,记X 表示参赛的男生人数,求X 的分布列.解:(1)由题意,参加集训的男、女学生各有6人,参赛学生全从理学院中抽出(等价于文学院中没有学生入选代表队)的概率为:C 33C 34C 36C 36=1100,因此文学院至少有一名学生入选代表队的概率为:1-1100=99100.(2)某场比赛前,从代表队的6名队员中随机抽取4人参赛,X 表示参赛的男生人数, 则X 的可能取值为:1,2,3.P (X =1)=C 13C 33C 46=15,P (X =2)=C 23C 23C 46=35,P (X =3)=C 13C 33C 46=15.所以X 的分布列为X 1 2 3 P1535151.设某项试验的成功率是失败率的2倍,用随机变量ξ描述一次试验的成功次数,则P (ξ=0)等于( )A .0 B.13 C.12D.23解析:选B.设P (ξ=1)=p ,则P (ξ=0)=1-p . 依题意知,p =2(1-p ),解得p =23.故P (ξ=0)=1-p =13.2.(2018·昆明质检)一盒中有12个乒乓球,其中9个新的,3个旧的,从盒中任取3个球来用,用完后装回盒中,此时盒中旧球个数X 是一个随机变量,则P (X =4)的值为( ) A.1220 B.2755C.27220D.2125解析:选C.X =4表示取出的3个球为2个旧球1个新球,故P (X =4)=C 23C 19C 312=27220.3.随机变量η的分布列如下η 1 23 4 5 6 P0.2x0.350.10.150.2则x =________,P (η≤3)=________. 解析:由分布列的性质得0.2+x +0.35+0.1+0.15+0.2=1,解得x =0.故P (η≤3)=P (η=1)+P (η=2)+P (η=3)=0.2+0.35=0.55. 答案:0 0.554.某高二数学兴趣小组有7位同学,其中有4位同学参加过高一数学“南方杯”竞赛.若从该小组中任选3位同学参加高二数学“南方杯”竞赛,求这3位同学中参加过高一数学“南方杯”竞赛的同学数ξ的分布列及P (ξ<2). 解:由题意可知,ξ的可能取值为0,1,2,3. 则P (ξ=0)=C 04C 33C 37=135,P (ξ=1)=C 14C 23C 37=1235,P (ξ=2)=C 24C 13C 37=1835,P (ξ=3)=C 34C 03C 37=435.所以随机变量ξ的分布列为ξ 0 1 2 3 P13512351835435P (ξ<2)=P (ξ=0)+P (ξ=1)=135+1235=1335.知识结构深化拓展1.离散型随机变量分布列的性质是检验一个分布列正确与否的重要依据(即看分布列中的概率是否均为非负实数且所有的概率之和是否等于1),还可以利用性质②求出分布列中的某些参数,也就是利用概率和为1这一条件求出参数. 2.超几何分布在实际生产中常用来检验产品的次品数,只要知道N 、M 和n 就可以根据公式:P (X =k )=C k M C n -kN -MC n N 求出X 取不同值k 时的概率.学习时,不能机械地去记忆公式,而要结合条件以及组合知识理解M 、N 、n 、k 的含义., [A 基础达标]1.袋中有大小相同的5个球,分别标有1,2,3,4,5五个号码,现在在有放回抽取的条件下依次取出两个球,设两个球号码之和为随机变量X ,则X 所有可能取值的个数是( ) A .5 B .9 C .10D .25解析:选B.号码之和可能为2,3,4,5,6,7,8,9,10,共9种.2.随机变量X 所有可能取值的集合是{-2,0,3,5},且P (X =-2)=14,P (X =3)=12,P (X=5)=112,则P (X =0)的值为( )A .0 B.14C.16D.18解析:选C.因为P (X =-2)+P (X =0)+P (X =3)+P (X =5)=1,即14+P (X =0)+12+112=1,所以P (X =0)=212=16,故选C.3.设随机变量X 的概率分布列为则P (|X -3|=1)=A.712 B.512C.14D.16解析:选B.根据概率分布列的性质得出:13+m +14+16=1,所以m =14,随机变量X 的概率分布列为所以P (|X -3|=1)=P (X =4)+P (X =2)=12.故选B.4.若随机变量η的分布列如下:则当P (η<x )=0.8A .x ≤1 B .1≤x ≤2 C .1<x ≤2D .1≤x <2解析:选C.由分布列知,P (η=-2)+P (η=-1)+P (η=0)+P (η=1)=0.1+0.2+0.2+0.3=0.8, 所以P (η<2)=0.8,故1<x ≤2.5.(2018·湖北武汉二中期中)袋子中装有大小相同的8个小球,其中白球5个,分别编号1,2,3,4,5;红球3个,分别编号1,2,3,现从袋子中任取3个小球,它们的最大编号为随机变量X ,则P (X =3)等于( )287C.1556 D.27解析:选D.X =3第一种情况表示1个3,P 1=C 12·C 24C 38=314,第二种情况表示2个3,P 2=C 22·C 14C 38=114,所以P (X =3)=P 1+P 2=314+114=27.故选D. 6.随机变量Y 的分布列如下:则(1)x =________(3)P (1<Y ≤4)=________.解析:(1)由∑6i =1p i =1,得x =0.1. (2)P (Y >3)=P (Y =4)+P (Y =5)+P (Y =6)=0.1+0.15+0.2=0.45. (3)P (1<Y ≤4)=P (Y =2)+P (Y =3)+P (Y =4)=0.1+0.35+0.1=0.55. 答案:(1)0.1 (2)0.45 (3)0.557.某篮球运动员在一次投篮训练中的得分X 的分布列如下表,其中a ,b ,c 成等差数列,且c =ab .则这名运动员得3分的概率是________. 解析:由题意得,2b =a +c ,c =ab ,a +b +c =1,且a ≥0,b ≥0,c ≥0, 联立得a =12,b =13,c =16,故得3分的概率是16.68.一袋中装有10个大小相同的黑球和白球.已知从袋中任意摸出2个球,至少得到1个白球的概率是79.从袋中任意摸出3个球,记得到白球的个数为X ,则P (X =2)=________.解析:设10个球中有白球m 个,则C 210-m C 210=1-79,解得:m =5.P (X =2)=C 25C 15C 310=512.答案:5129.设离散型随机变量X 的分布列为:试求:(1)2X +1的分布列; (2)|X -1|的分布列.解:由分布列的性质知0.2+0.1+0.1+0.3+m =1, 所以m =0.3. 列表为:(1)2X +1的分布列为:(2)|X -1|10.从集合{1,2,3,4,5}中,等可能地取出一个非空子集.(1)记性质r :集合中的所有元素之和为10,求所取出的非空子集满足性质r 的概率; (2)记所取出的非空子集的元素个数为X ,求X 的分布列. 解:(1)记“所取出的非空子集满足性质r ”为事件A . 基本事件总数n =C 15+C 25+C 35+C 45+C 55=31.事件A 包含的基本事件是{1,4,5},{2,3,5},{1,2,3,4},事件A 包含的基本事件数m =3.所以P (A )=m n =331.(2)依题意,X 的所有可能值为1,2,3,4,5. 又P (X =1)=C 1531=531,P (X =2)=C 2531=1031,P (X =3)=C 3531=1031,P (X =4)=C 4531=531,P (X =5)=C 5531=131.故X 的分布列为11.已知随机变量ξ只能取三个值x 1,x 2,x 3,其概率依次成等差数列,则该等差数列公差的取值范围是( )A.⎣⎢⎡⎦⎥⎤0,13 B.⎣⎢⎡⎦⎥⎤-13,13 C .[-3,3]D .[0,1]解析:选B.设随机变量ξ取x 1,x 2,x 3的概率分别为a -d ,a ,a +d ,则由分布列的性质得(a -d )+a +(a +d )=1,故a =13,由⎩⎪⎨⎪⎧13-d ≥013+d ≥0,解得-13≤d ≤13.12.袋中装有5只红球和4只黑球,从袋中任取4只球,取到1只红球得3分,取到1只黑球得1分,设得分为随机变量ξ,则ξ≥8的概率P (ξ≥8)=________. 解析:由题意知P (ξ≥8)=1-P (ξ=6)-P (ξ=4)=1-C 15C 34C 49-C 44C 49=56.答案:5613.某食品厂为了检查一条自动包装流水线的生产情况,随机抽取该流水线上40件产品作为样本,称出它们的质量(单位:g),质量的分组区间为(490,495],(495,500],…,(510,515],由此得到样本的频率分布直方图,如图所示.(1)根据频率分布直方图,求质量超过505 g 的产品数量;(2)在上述抽取的40件产品中任取2件,设Y 为质量超过505 g 的产品数量,求Y 的分布列. 解:(1)根据频率分布直方图可知,质量超过505 g 的产品数量为40×(0.05×5+0.01×5)=40×0.3=12(件).(2)随机变量Y 的可能取值为0,1,2,且Y 服从参数为N =40,M =12,n =2的超几何分布,故P (Y =0)=C 012C 228C 240=63130,P (Y =1)=C 112C 128C 240=2865,P (Y =2)=C 212C 028C 240=11130.所以随机变量Y 的分布列为Y 0 1 2 P6313028651113014.(选做题)袋中装着外形完全相同且标有数字1,2,3,4,5的小球各2个,从袋中任取3个小球,按3个小球上最大数字的9倍计分,每个小球被取出的可能性都相等,用X 表示取出的3个小球上的最大数字,求:(1)取出的3个小球上的数字互不相同的概率; (2)随机变量X 的分布列;(3)计算介于20分到40分之间的概率.解:(1)“一次取出的3个小球上的数字互不相同”的事件记为A , 则P (A )=C 35C 12C 12C 12C 310=23.(2)由题意,知X 的所有可能取值为2,3,4,5, P (X =2)=C 22C 12+C 12C 22C 310=130, P (X =3)=C 22C 14+C 12C 24C 310=215, P (X =4)=C 22C 16+C 12C 26C 310=310, P (X =5)=C 22C 18+C 12C 28C 310=815. 所以随机变量X 的分布列为则P (C )=P (X =3)+P (X =4)=215+310=1330.。

高中数学选修2-3第二章2[1].1教案

高中数学选修2-3第二章2[1].1教案

2.1.1离散型随机变量知识目标:1.理解随机变量的意义;2.学会区分离散型与非离散型随机变量,并能举出离散随机变量的例子;3.理解随机变量所表示试验结果的含义,并恰当地定义随机变量.能力目标:发展抽象、概括能力,提高实际解决问题的能力.教学重点:随机变量、离散型随机变量、连续型随机变量的意义.教学难点:随机变量、离散型随机变量、连续型随机变量的意义.授课类型:新授课.课时安排:1课时.内容分析:本章是在初中“统计初步”和高中必修课“概率”的基础上,学习随机变量和统计的一些知识.学习这些知识后,我们将能解决类似引言中的一些实际问题教学过程:一、复习引入:展示教科书章头提出的两个实际问题,激发学生的求知欲某人射击一次,可能出现命中0环,命中1环,…,命中10环等结果,即可能出现的结果可能由0,1,……10这11个数表示;某次产品检验,在可能含有次品的100件产品中任意抽取4件,那么其中含有的次品可能是0件,1件,2件,3件,4件,即可能出现的结果可以由0,1,2,3,4这5个数表示在这些随机试验中,可能出现的结果都可以用一个数来表示.这个数在随机试验前是否是预先确定的?在不同的随机试验中,结果是否不变?观察,概括出它们的共同特点二、讲解新课:掷一枚骰子,出现的点数可以用数字1 , 2 ,3,4,5,6来表示.那么掷一枚硬币的结果是否也可以用数字来表示呢?掷一枚硬币,可能出现正面向上、反面向上两种结果.虽然这个随机试验的结果不具有数量性质,但我们可以用数1和 0分别表示正面向上和反面向上(图2.1一1 ) .在掷骰子和掷硬币的随机试验中,我们确定了一个对应关系,使得每一个试验结果都用一个确定的数字表示.在这个对应关系下,数字随着试验结果的变化而变化.知识点1:在随着试验中,试验的可能出现的结果可以用一个变量X来表示,并且X是随着试验的结果的不同而变化的,我们把这样的变量X叫做一个随机变量(random variable ).随机变量常用大写字母 X , Y…表示.随机变量和函数有类似的地方吗?联系:随机变量和函数都是一种映射,随机变量是随机试验的结果到实数的映射,函数是实数到实数的映射;在这两种映射之间,试验结果的范围相当于函数的定义域,随机变量的取值范围相当于函数的值域.我们把随机变量的取值范围叫做随机变量的值域.区别:函数的自变量是实数x ,而在随机变量的概念中,随机变量的自变量是实验结果.例如,在含有10件次品的100 件产品中,任意抽取4件,可能含有的次品件数X 将随着抽取结果的变化而变化,是一个随机变量,其值域是{0, 1, 2 , 3, 4 } .利用随机变量可以表达一些事件.例如{X=0}表示“抽出0件次品” , {X =4}表示“抽出4件次品”等.你能说出{X< 3 }在这里表示什么事件吗?“抽出 3 件以上次品”又如何用 X 表示呢?知识点2:如果随机变量X 所有可能的取值都能一一列举出来,则称为离散型随机变量 ( discrete random variable ) .离散型随机变量的例子很多.例如某人射击一次可能命中的环数 X 是一个离散型随机变量,它的所有可能取值为0,1,…,10;某网页在24小时内被浏览的次数Y 也是一个离散型随机变量,它的所有可能取值为0, 1,2,….电灯的寿命X 是离散型随机变量吗?电灯泡的寿命 X 的可能取值是任何一个非负实数,而所有非负实数不能一一列出,所以 X 不是离散型随机变量.在研究随机现象时,需要根据所关心的问题恰当地定义随机变量.例如,如果我们仅关心电灯泡的使用寿命是否超过1000 小时,那么就可以定义如下的随机变量:⎧⎨≥⎩0,寿命<1000小时;Y=1,寿命1000小时.与电灯泡的寿命 X 相比较,随机变量Y 的构造更简单,它只取两个不同的值0和1,是一个离散型随机变量,研究起来更加容易.连续型随机变量: 一般地,如果随机变量可以取某一个区间内的任意一个值,则称这样的随机变量为连续型随机变量.离散型随机变量与连续型随机变量的区别与联系: 离散型随机变量与连续型随机变量都是用变量表示随机试验的结果;但是离散型随机变量的结果可以按一定次序一一列出,或者说取值为有限个或多至可列个,而连续性随机变量的结果不可以一一列出.如某林场树木最高达30米,则林场树木的高度ξ是一个随机变量,它可以取(0,30]内的一切值. 三、讲解范例:例1. 写出下列随机变量可能取的值,并说明随机变量所取的值表示的随机试验的结果.(1)一袋中装有5只同样大小的白球,编号为1,2,3,4,5.现从该袋内随机取出3只球,被取出的球的最大号码数ξ;(2)某单位的某部电话在单位时间内收到的呼叫次数η. 解:(1) ξ可取3,4,5.ξ=3,表示取出的3个球的编号为1,2,3; ξ=4,表示取出的3个球的编号为1,2,4或1,3,4或2,3,4;ξ=5,表示取出的3个球的编号为1,2,5或1,3,5或1,4,5或2,3或3,4,5.(2)η可取0,1,…,n ,…. η=i ,表示被呼叫i 次,其中i=0,1,2,….例2. 抛掷两枚骰子各一次,记第一枚骰子掷出的点数与第二枚骰子掷出的点数的差为ξ,试问:“ξ> 4”表示的试验结果是什么?答:因为一枚骰子的点数可以是1,2,3,4,5,6六种结果之一,由已知得-5≤ξ≤5,也就是说“ξ>4”就是“ξ=5”所以,“ξ>4”表示第一枚为6点,第二枚为1点.例3.某城市出租汽车的起步价为10元,行驶路程不超出4km ,则按10元的标准收租车费.若行驶路程超出4km ,则按每超出lkm 加收2元计费(超出不足1km 的部分按lkm 计).从这个城市的民航机场到某宾馆的路程为15km .某司机常驾车在机场与此宾馆之间接送旅客,由于行车路线的不同以及途中停车时间要转换成行车路程(这个城市规定,每停车5分钟按lkm 路程计费),这个司机一次接送旅客的行车路程ξ是一个随机变量,他收旅客的租车费可也是一个随机变量.(1)求租车费η关于行车路程ξ的关系式;(Ⅱ)已知某旅客实付租车费38元,而出租汽车实际行驶了15km ,问出租车在途中因故停车累计最多几分钟? 解:(1)依题意得η=2(ξ-4)+10,即η=2ξ+2. (Ⅱ)由38=2ξ+2,得ξ=18,5×(18-15)=15. 所以,出租车在途中因故停车累计最多15分钟. 四、课堂练习:1.①某寻呼台一小时内收到的寻呼次数ξ;②长江上某水文站观察到一天中的水位ξ;③某超市一天中的顾客量ξ 其中的ξ是连续型随机变量的是( )A .①;B .②;C .③;D .①②③2.随机变量ξ的所有等可能取值为1,2,,n …,若()40.3P ξ<=,则( ) A .3n =; B .4n =; C .10n =; D .不能确定 3.抛掷两次骰子,两个点的和不等于8的概率为( ) A .1112; B .3136; C .536; D .112 4.如果ξ是一个离散型随机变量,则假命题是( )A. ξ取每一个可能值的概率都是非负数;B. ξ取所有可能值的概率之和为1;C. ξ取某几个值的概率等于分别取其中每个值的概率之和;D. ξ在某一范围内取值的概率大于它取这个范围内各个值的概率之和. 答案:1.B 2.C 3.B 4.D五、小结 :随机变量离散型、随机变量连续型、随机变量的概念.随机变量ξ是关于试验结果的函数,即每一个试验结果对应着一个实数;随机变量ξ的线性组合η=a ξ+b(其中a 、b 是常数)也是随机变量.2.1.2离散型随机变量的分布列及超几何分布知识与技能:会求出某些简单的离散型随机变量的概率分布. 过程与方法:认识概率分布对于刻画随机现象的重要性.情感、态度与价值观:认识概率分布对于刻画随机现象的重要性. 教学重点:离散型随机变量的分布列的概念. 教学难点:求简单的离散型随机变量的分布列. 授课类型:新授课. 课时安排:2课时. 教学过程:一、复习引入:1.随机变量:如果随机试验的结果可以用一个变量来表示,那么这样的变量叫做随机变量.随机变量常用希腊字母ξ、η等表示.2. 离散型随机变量:对于随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.3.连续型随机变量: 对于随机变量可能取的值,可以取某一区间内的一切值,这样的变量就叫做连续型随机变量.4.离散型随机变量与连续型随机变量的区别与联系: 离散型随机变量与连续型随机变量都是用变量表示随机试验的结果;但是离散型随机变量的结果可以按一定次序一一列出,而连续性随机变量的结果不可以一一列出.若ξ是随机变量,b a b a ,,+=ξη是常数,则η也是随机变量.并且不改变其属性(离散型、连续型) 二、讲解新课:对于一个离散型随机变量来说,我们不仅要知道它的可能取哪些值,更重要的是要知道它取各个值得概率分别有多大,这样才能对这个离散型随机变量有深刻的了解.例如:在射击问题里,我们只要知道命中环数为0,1,2,…,10的概率分别是多少,才能了解选手的射击水平有多高.根据某个选手在一段时间里的成绩,可以得到下表命中环数X 0 1 2345 6 78910 10概率P0.01 0.01 0.02 0.020.060.09 0.28 0.290.22通过这个例子我们可以了解到:知识点3:要掌握一个离散型随机变量X 的取值规律,必须要知道:(1)X 所有可能取的值x 1,x 2,…,x n ,…(2)X 取每一个值x i (i=1,2,…)的概率为()i i P x p ξ==, 这就是说,需要列出下表:ξ x 1 x 2 … x i … PP 1P 2…P i…我们称这个表为离散型随机变量X 的概率分布,或成为离散型随机变量X 的分布列.知识点4:通过对上例的分析我们可以知道分布列的两个性质:任何随机事件发生的概率都满足:1)(0≤≤A P ,并且不可能事件的概率为0,必然事件的概率为1.由此可以得出离散型随机变量的分布列都具有下面两个性质: (1)P i ≥0,i =1,2,…n ; (2)P 1+P 2+…P n =1.对于离散型随机变量在某一范围内取值的概率等于它取这个范围内各个值的概率的和.即⋅⋅⋅+=+==≥+)()()(1k k k x P x P x P ξξξ.讲解教材42-43页例题1到3. 知识点5:两点分布列:例1.在掷一枚图钉的随机试验中,令⎧⎨⎩1,针尖向上;X=0,针尖向下.如果针尖向上的概率为p ,试写出随机变量 X 的分布列. 解:根据分布列的性质,针尖向下的概率是(1p -) .于是,随机变量 X 的分布列是 ξ 01P1p -p像上面这样的分布列称为两点分布列.两点分布又称0~1分布.两点分布列的应用非常广泛.如抽取的彩券是否中奖;买回的一件产品是否为正品;新生婴儿的性别;投篮是否命中等,都可以用两点分布列来研究.如果随机变量X 的分布列为两点分布列,就称X 服从两点分布,而称p =P(X=1)为成功概率.例 2.在含有 5 件次品的 100 件产品中,任取 3 件,试求: (1)取到的次品数X 的分布列;(2)至少取到1件次品的概率.解: (1)由于从 100 件产品中任取3 件的结果数为310C ,从100 件产品中任取3件,其中恰有k 件次品的结果数为3595k k C C -,那么从 100 件产品中任取 3 件,其中恰有 k 件次品的概率为35953100(),0,1,2,3k kC C P X k k C -===。

人教版高中数学 选修2-3 2.1.1 离散型随机变量的概念教案设计

人教版高中数学 选修2-3 2.1.1 离散型随机变量的概念教案设计
离散型随机变量的定义:
所有取值可以一一列举出的随机变量,称为离散型随机变量.
除了离散型随机变量外,还有连续型随机变量,而上面的例子就是连续性随机变量.
(有的随机变量,它可以取某一区间内的一切值这样的随机变量叫做连续型随机变量.)
思考:
问题(3)中,如果将使用寿命超过1500小时的灯泡视为合格品;不足1500小时的视为不合格品。
函数的理解:
实数实数
类比函数的概念,提出对随机变量的理解:
随机变量:
随机试验的结果实数
提出问题:
在掷骰子的试验中,如果我们仅关心的是“掷出的点数是否为偶数”,怎样构造随机变量?
教师提出问题,引导学生根据第一个例子,去发现定义.
猜想硬币投掷的表示结果
引导学生思考随机变量的定义过程,对比函数的定义,从映射的角度对随机变量进行理解。
(1)在含有10件次品的100件产品中,任意抽取4件,可能含有的次品的件数;
(2)某人射击10次,命中目标的次数;
(3)任意选取一枚某种寿命不超过2000小时的电灯泡,它的寿命X.
分析发现,可以用随机变量X表示,但是X的取值不是简单的几个数,而是一个区间.
对比上面例子,总结归纳离散型随机变量的定义:
在上面两个随机变量举例的基础上,让学生对第三个例子进行理解.而学生也会意识到他们之间的不同,进而对离散型随机变量形成一个模糊的概念.
在教师的引导下,学生进行讨论
学生分组活动,进行成果展示,教师适当点评。
巩固并加深学生对随机变量定义的理解
通过两类截然不同的例子,使得学生更易接受新知识
根据实际问题恰当的定义随机变量;连续型随机变量有时可以转化成离散型随机变量
使学生了解离散型随机变量的取值不一定是有限的

人教版高中数学选修2-3 教学案:2.1.1 离散型随机变量

人教版高中数学选修2-3 教学案:2.1.1 离散型随机变量

2.1.1离散型随机变量预习课本P44~45,思考并完成以下问题1.随机变量和离散型随机变量的概念是什么?随机变量是如何表示的?2.随机变量与函数的关系?[新知初探]1.随机变量(1)定义:在一个对应关系下,随着试验结果变化而变化的变量称为随机变量.(2)表示:随机变量常用字母X,Y,ξ,η等表示.2.离散型随机变量如果随机变量X的所有可能的取值都能一一列举出来,则称X为离散型随机变量.3.随机变量和函数的关系随机变量和函数都是一种映射,随机变量把随机试验的结果映射为实数,函数把实数映射为实数.在这两种映射之间,试验结果的范围相当于函数的定义域,随机变量的取值范围相当于函数的值域.[小试身手]1.判断下列命题是否正确.(正确的打“√”,错误的打“×”)(1)随机变量的取值可以是有限个,也可以是无限个.()(2)手机电池的使用寿命X是离数型随机变量.()答案:(1)√(2)×2.下列变量中,是离散型随机变量的是()A.到2016年5月1日止,我国被确诊的爱滋病人数B.一只刚出生的大熊猫,一年以后的身高C.某人在车站等出租车的时间D.某人投篮10次,可能投中的次数答案:D3.袋中有大小相同的红球6个,白球5个,从袋中无放回的条件下每次任意取出一个球,直到取出的球是白色为止,所需要的取球次数为随机变量X,则X的可能取值为()A.1,2,…,6B.1,2,…,7C.1,2,…,11D.1,2,3,…答案:B4.在考试中,需回答三个问题,考试规则规定:每题回答正确得100分,回答不正确得-100分,则这名同学回答这三个问题的总得分ξ的所有可能取值是________.答案:300, 100, -100, -300[典例](1)抛掷一枚均匀硬币一次,随机变量为()A.抛掷硬币的次数B.出现正面的次数C.出现正面或反面的次数D.出现正面和反面的次数之和(2)6件产品中有2件次品,4件正品,从中任取1件,则可以作为随机变量的是()A.取到的产品个数B.取到的正品个数C.取到正品的概率D.取到次品的概率[解](1)抛掷一枚硬币一次,可能出现的结果是正面向上或反面向上.以某一个为标准,如正面向上的次数来描述这一随机试验,那么正面向上的次数就是随机变量ξ,ξ的取值是0,1,故选B.而A项中抛掷次数就是1,不是随机变量;C项中标准不明;D项中,出现正面和反面的次数之和为必然事件,试验前便知是必然出现的结果,也不是随机变量.(2)由随机变量的定义知,随机变量是随机试验的结果,排除C、D项,又取到的产品个数是一个确定值,排除A项.故选B项.[答案](1)B(2)B判断一个试验是否是随机试验,依据是这个试验是否满足随机试验的三个条件,即(1)试验在相同条件下是否可重复进行;(2)试验的所有可能的结果是否是明确的,并且试验的结果不止一个;(3)每次试验的结果恰好是一个,而且在一次试验前无法预知出现哪个结果.[活学活用]指出下列哪些是随机变量,哪些不是随机变量,并说明理由:(1)某人射击一次命中的环数;(2)掷一枚质地均匀的骰子,出现的点数;(3)某个人的属相随年龄的变化.解:(1)某人射击一次,可能命中的所有环数是0,1,…,10,而且出现哪一个结果是随机的,因此命中的环数是随机变量.(2)掷一枚骰子,出现的结果是1点,2点,3点,4点,5点,6点中的一个且出现哪一个结果是随机的,因此出现的点数是随机变量.(3)一个人的属相在他出生时就确定了,不随年龄的变化而变化,因此属相不是随机变量.离散型随机变量的判定[典例]指出下列随机变量是否是离散型随机变量,并说明理由.(1)湖南矮寨大桥桥面一侧每隔30米有一路灯,将所有路灯进行编号,其中某一路灯的编号X;(2)在一次数学竞赛中,设一、二、三等奖,小明同学参加竞赛获得的奖次X;(3)丁俊晖在2016年世锦赛中每局所得的分数.[解](1)桥面上的路灯是可数的,编号X可以一一列出,是离散型随机变量.(2)小明获奖等次X可以一一列出,是离散型随机变量.(3)每局所得的分数X可以一一列举出来,是离散型随机变量.判断离散型随机变量的方法(1)明确随机试验的所有可能结果.(2)将随机试验的结果数量化.(3)确定试验结果所对应的实数是否可以一一列出,如能一一列出,则该随机变量是离散型随机变量,否则不是.[活学活用]下列随机变量中不是离散型随机变量的是________(填序号).①广州白云机场候机室中一天的旅客数量X;②广州某水文站观察到一天中珠江的水位X;③某工厂加工的某种钢管,外径与规定的外径尺寸之差X;④虎门大桥一天经过的车辆数X.解析:①④中的随机变量X的所有取值,我们都可以按照一定的次序一一列出,因此它们是离散型随机变量,②中的随机变量X可以取某一区间内的一切值,但无法按一定次序一一列出,故不是离散型随机变量.③中X的取值为某一范围内的实数,无法全部列出,不是离散型随机变量,故不是离散型随机变量.答案:②③用随机变量表示试验的结果(1)袋中有大小相同的红球10个,白球5个,从袋中每次任取1个球,取后不放回,直到取出的球是白球为止,所需要的取球次数.(2)从标有数字1,2,3,4,5,6的6张卡片中任取2张,所取卡片上的数字之和.[解](1)设所需的取球次数为X, 则X=1,2,3,4,...,10,11,X=i表示前(i-1)次取到的均是红球,第i次取到白球,这里i=1,2,3,4, (11)(2)设所取卡片上的数字之和为X, 则X=3,4,5, (11)X=3, 表示“取出标有1,2的两张卡片”;X=4, 表示“取出标有1,3的两张卡片”;X=5, 表示“取出标有2,3或1,4的两张卡片”;X=6, 表示“取出标有2,4或1,5的两张卡片”;X=7, 表示“取出标有3,4或2,5或1,6的两张卡片”;X=8, 表示“取出标有2,6或3,5的两张卡片”;X=9, 表示“取出标有3,6或4,5的两张卡片”;X=10, 表示“取出标有4,6的两张卡片”;X=11, 表示“取出标有5,6的两张卡片”.[一题多变]1.[变条件]若本例(2)中条件不变,所取卡片上的数字之差的绝对值为随机变量ξ,请问ξ有哪些取值?其中ξ=4表示什么含义?解:ξ的所有可能取值有:1,2,3,4,5.ξ=4表示“取出标有1,5或2,6的两张卡片”.2.[变条件,变问法]甲、乙两队员进行乒乓球单打比赛,规定采用“七局四胜制”,用X表示需要比赛的局数,写出X所有可能的取值,并写出表示的试验结果.解:根据题意可知X的可能取值为4,5,6,7.X=4表示共打了4局,甲、乙两人有1人连胜4局.X=5表示在前4局中有1人输了一局,最后一局此人胜出.X=6表示在前5局中有1人输了2局,最后一局此人胜出.X=7表示在前6局中,两人打平,后一局有1人胜出.解答用随机变量表示随机试验的结果问题的关键点和注意点(1)关键点:解决此类问题的关键是明确随机变量的所有可能取值,以及取每一个值对应的意义,即一个随机变量的取值对应一个或多个随机试验的结果.(2)注意点:解答过程中不要漏掉某些试验结果.层级一学业水平达标1.给出下列四个命题:①15秒内,通过某十字路口的汽车的数量是随机变量;②解答高考数学乙卷的时间是随机变量;③一条河流每年的最大流量是随机变量;④一个剧场共有三个出口,散场后某一出口退场的人数是随机变量.其中正确的个数是()A.1B.2C.3 D.4解析:选D由随机变量的概念可以直接判断①②③④都是正确的.2.随机变量X是某城市1天之中发生的火警次数,随机变量Y是某城市1天之内的温度.随机变量ξ是某火车站1小时内的旅客流动人数.这三个随机变量中不是离散型随机变量的是()A.X和ξB.只有YC.Y和ξD.只有ξ解析:选B某城市1天之内的温度不能一一列举,故不是离散型随机变量,故选B.3.抛掷两颗骰子,所得点数之和为ξ,那么ξ=4表示的随机试验结果是()A.两颗都是2点B.一颗是3点,另一颗是1点C.两颗都是4点D.一颗是3点,一颗是1点或两颗都是2点解析:选Dξ=4表示两颗骰子的点数和为4.4.袋中有大小相同的5个钢球,分别标有1,2,3,4,5五个号码.在有放回地抽取条件下依次取出2个球,设两个球号码之和为随机变量ξ,则ξ所有可能取值的个数是() A.25 B.10C.9 D.5解析:选C第一次可取1,2,3,4,5中的任意一个,由于是有放回抽取,第二次也可取1,2,3,4,5中的任何一个,两次的号码和可能为2,3,4,5,6,7,8,9,10.故选C.5.对一批产品逐个进行检测,第一次检测到次品前已检测的产品个数为ξ,则ξ=k表示的试验结果为()A .第k -1次检测到正品,而第k 次检测到次品B .第k 次检测到正品,而第k +1次检测到次品C .前k -1次检测到正品,而第k 次检测到次品D .前k 次检测到正品,而第k +1次检测到次品解析:选D ξ就是检测到次品前正品的个数,ξ=k 表明前k 次检测到的都是正品,第k +1次检测到的是次品.6.甲进行3次射击,甲击中目标的概率为12,记甲击中目标的次数为X ,则X 的可能取值为________.解析:甲可能在3次射击中,一次未中,也可能中1次,2次,3次.答案:0,1,2,37.在8件产品中,有3件次品,5件正品,从中任取3件,记次品的件数为ξ,则{ξ<2}表示的试验结果是________.解析:应分ξ=0和ξ=1两类.ξ=0表示取到3件正品;ξ=1表示取到1件次品、2件正品.故{ξ<2}表示的试验结果为取到1件次品、2件正品或取到3件正品.答案:取到1件次品、2件正品或取到3件正品8.一袋中装有6个同样大小的黑球,编号为1,2,3,4,5,6.现从中随机取出3个球,以ξ表示取出的球的最大号码,用(x ,y ,z )表示取出的三个球编号为x ,y ,z (x <y <z ),则ξ=5表示的试验结果构成的集合是____________________________________________________.解析:从6个球中选出3个球,其中有一个是5号球,其余的2个球是1,2,3,4号球中的任意2个.∴试验结果构成的集合是{(1,2,5),(1,3,5),(1,4,5),(2,3,5),(2,4,5),(3,4,5)}.答案:{(1,2,5),(1,3,5),(1,4,5),(2,3,5),(2,4,5),(3,4,5)}9.某车间三天内每天生产10件某产品,其中第一天,第二天分别生产了1件次品、2件次品,而质检部门每天要在生产的10件产品中随机抽取4件进行检查,若发现有次品,则当天的产品不能通过.若厂内对车间生产的产品采用记分制,两天全不通过检查得0分,通过一天、两天分别得1分、2分,设该车间在这两天内得分为ξ,写出ξ的可能取值.解:ξ的可能取值为0,1,2.ξ=0表示在两天检查中均发现了次品.ξ=1表示在两天检查中有1天没有检查到次品,1天检查到了次品.ξ=2表示在两天检查中没有发现次品.10.已知在10件产品中有2件不合格品,现从这10件产品中任取3件,这是一个随机现象.(1)写出该随机现象所有可能出现的结果.(2)试用随机变量来描述上述结果.解:(1)从10件产品中任取3件,所有可能出现的结果是:“不含不合格品”“恰有1件不合格品”“恰有2件不合格品”.(2)令X表示取出的3件产品中的不合格品数.则X所有可能的取值为0,1,2,对应着任取3件产品所有可能出现的结果.即“X=0”表示“不含不合格品”;“X=1”表示“恰有1件不合格品”;“X=2”表示“恰有2件不合格品”.层级二应试能力达标1.①某电话亭内的一部电话1小时内使用的次数记为X;②某人射击2次,击中目标的环数之和记为X;③测量一批电阻,阻值在950 Ω~1 200 Ω之间;④一个在数轴上随机运动的质点,它在数轴上的位置记为X.其中是离散型随机变量的是()A.①②B.①③C.①④D.①②④解析:选A①②中变量X所有可能取值是可以一一列举出来的,是离散型随机变量,而③④中的结果不能一一列出,故不是离散型随机变量.2.抛掷两枚骰子,记第一枚骰子掷出的点数与第二枚骰子掷出的点数之差为ξ,则“ξ>4”表示的试验结果是()A.第一枚6点,第二枚2点B.第一枚5点,第二枚1点C.第一枚2点,第二枚6点D.第一枚6点,第二枚1点解析:选D只有D中的点数差为6-1=5>4,其余均不是,应选D.3.袋中装有10个红球,5个黑球,每次随机抽取一个球,若取得黑球,则另换一个红球放回袋中,直到取到红球为止,若抽取的次数为X,则表示“放回5个球”的事件为() A.X=4 B.X=5C.X=6 D.X≤4解析:选C第一次取到黑球,则放回1个球,第二次取到黑球,则共放回2个球…,共放了五回,第六次取到了红球,试验终止,故X=6.4.袋中有大小相同的5个球,分别标有1,2,3,4,5五个号码,任意抽取2个球,设2个球号码之和为y,则y所有可能值的个数是()A.25 B.10C.7 D.6解析:选C∵y表示取出的2个球的号码之和,又1+2=3,1+3=4,1+4=5,1+5=6,2+3=5,2+4=6,2+5=7,3+4=7,3+5=8,4+5=9,故y的所有可能取值为3,4,5,6,7,8,9,共7个.5.一串钥匙有5把,只有一把能打开锁,依次试验,打不开的扔掉,直到找到能开锁的钥匙为止,则试验次数X的最大值可能为________.解析:由题意可知X取最大值时只剩下一把钥匙,但锁此时未打开,故试验次数为4.答案:46.一用户在打电话时忘了号码的最后四位数字,只记得最后四位数字两两不同,且都大于5,于是他随机拨最后四位数字(两两不同),设他拨到所要号码时总共拨的次数为ξ,则随机变量ξ的所有可能取值的种数为________.解析:由于后四位数字两两不同,且都大于5,因此只能是6,7,8,9四位数字的不同排列,故有A44=24种.答案:247.写出下列随机变量可能取的值,并说明随机变量所取的值表示的随机试验的结果.(1)一个袋中装有2个白球和5个黑球,从中任取3个,其中所含白球的个数ξ;(2)抛掷甲、乙两枚骰子,所得点数之和Y.解:(1)ξ可取0,1,2.ξ=i,表示取出的3个球中有i个白球,3-i个黑球,其中i=0,1,2.(2)Y的可能取值为2,3,4,…,12.若以(i,j)表示抛掷甲、乙两枚骰子后骰子甲得i点且骰子乙得j点,则{Y=2}表示(1,1);{Y=3}表示(1,2),(2,1);{Y=4}表示(1,3),(2,2),(3,1);…;{Y=12}表示(6,6).8.写出下列随机变量可能的取值,并说明随机变量所表示的随机试验的结果.在一个盒子中,放有标号分别为1,2,3的三张卡片,现从这个盒子中,有放回地先后抽得两张卡片的标号分别为x,y,记ξ=|x-2|+|y-x|.解:因为x,y可能取的值为1,2,3,所以0≤|x-2|≤1,0≤|x-y|≤2,所以0≤ξ≤3,所以ξ可能的取值为0,1,2,3,用(x,y)表示第一次抽到卡片号码为x,第二次抽到卡片号码为y,则随机变量ξ取各值的意义为:ξ=0表示两次抽到卡片编号都是2,即(2,2).ξ=1表示(1,1),(2,1),(2,3),(3,3).ξ=2表示(1,2),(3,2).ξ=3表示(1,3),(3,1).。

高二数学选修2_3第二章随机变量和分布

高二数学选修2_3第二章随机变量和分布

§2.1.1离散型随机变量一、教学目标1.复习古典概型、几何概型有关知识。

2.理解离散型随机变量的概念,学会区分离散型与非离散型随机变量。

3. 理解随机变量所表示试验结果的含义,并恰当地定义随机变量.重点:离散型随机变量的概念,以及在实际问题中如何恰当地定义随机变量.难点:对引入随机变量目的的认识,了解什么样的随机变量便于研究.二、复习引入:1.试验中不能的随机事件,其他事件可以用它们来,这样的事件称为。

所有基本事件构成的集合称为,常用大写希腊字母表示。

2.一次试验中的两个事件叫做互斥事件(或称互不相容事件)。

互斥事件的概率加法公式。

3. 一次试验中的两个事件叫做互为对立事件,事件A的对立事件记作,对立事件的概率公式4.古典概型的两个特征:(1) .(2) .5.概率的古典定义:P(A)= 。

6.几何概型中的概率定义:P(A)= 。

三、预习自测:1.在随机试验中,试验可能出现的结果,并且X是随着试验的结果的不同而的,这样的变量X叫做一个。

常用表示。

2.如果随机变量X的所有可能的取值,则称X为。

四、典例解析:例1写出下列各随机变量可能取得值:(1)抛掷一枚骰子得到的点数。

(2)袋中装有6个红球,4个白球,从中任取5个球,其中所含白球的个数。

(3)抛掷两枚骰子得到的点数之和。

(4)某项试验的成功率为0.001,在n次试验中成功的次数。

(5)某射手有五发子弹,射击一次命中率为0.9,若命中了就停止射击,若不命中就一直射到子弹耗尽.求这名射手的射击次数X的可能取值例2随机变量X为抛掷两枚硬币时正面向上的硬币数,求X的所有可能取值及相应概率。

变式训练一只口袋装有6个小球,其中有3个白球,3个红球,从中任取2个小球,取得白球的个数为X,求X的所有可能取值及相应概率。

例3△ABC中,D,E分别为AB,AC的中点,向△ABC部随意投入一个小球,求小球落在△ADE 中的概率。

五、当堂检测1.将一颗均匀骰子掷两次,不能作为随机变量的是:()(A)两次出现的点数之和;(B)两次掷出的最大点数;(C)第一次减去第二次的点数差;(D)抛掷的次数。

高中数学人教A版选修2-3第二章2.1.1离散型随机变量教学设计

高中数学人教A版选修2-3第二章2.1.1离散型随机变量教学设计

高中数学人教A版选修2-3第二章2.1.1离散型随机变量教
学设计
【名师授课教案】
1教学目标
1.理解随机变量及离散型随机变量的含义.
2.了解随机变量与函数的区别与联系.
2学情分析
引进随机变量的概念,就可以用数字描述随机现象,建立连接数和随机现象的桥梁.
3重点难点
通过随机变量和函数类比,可以更好地理解随机变量的定义,随机变量是函数概念的推广. 4教学过程
4.1第一学时
4.1.1教学活动
活动1【讲授】2.1.1 离散型随机变量
一、填一填:
1.随机试验:一般地,一个试验如果满足下列条件:
(1)试验可以在相同的情形下重复进行;
(2)试验所有可能的结果是明确的,并且不只一个;
(3)每次试验总是恰好出现这些可能结果中的一个,但在一次试验之前却不能肯定这次试验的结果会出现哪一个.
这种试验就是一个随机试验.
2.随机变量:在随机试验中,随着变化而变化的变量称为随机变量.
3.离散型随机变量:所有取值可以的随机变量,称为离散型随机变量.
二、研一研:
探究点一随机变量的概念。

离散型随机变量

离散型随机变量
2.随机变量分为离散型随机变量和连续型随机变量. 随机变量分为离散型随机变量和连续型随机变量. 随机变量分为离散型随机变量 3. 若ξ是随机变量,则η=aξ+b(其中 ,b是常数)也是 是随机变量, 是常数) 是随机变量 (其中a, 是常数 随机变量 .
课外练习:1. 某城市出租汽车的起步价为10元 , 行驶路程不超出 课外练习: 某城市出租汽车的起步价为10元 10 km,则按10元的标准收租车费.若行驶路程超出4km, 10元的标准收租车费 4km,则按10元的标准收租车费.若行驶路程超出4km,则按每超 km加收 元计费(超出不足1km的部分按 km计 加收2 的部分按1 出1km加收2元计费(超出不足1km的部分按1km计)从这个城市 的民航机场到某宾馆的路程为15km. 15km 的民航机场到某宾馆的路程为15km.某司机常驾车在机场与此宾 馆之间接送旅客, 馆之间接送旅客,由于行车路线的不同以及途中停车时间要转换 成行车路程(这个城市规定,每停车5分钟按1km路程计费),这 成行车路程(这个城市规定,每停车5分钟按1km路程计费) 路程计费 个司机一次接送旅客的行车路程多少是一个随机变量, 个司机一次接送旅客的行车路程多少是一个随机变量,他收旅客 的租车费也是一个随机变量. 的租车费也是一个随机变量. 的关系式; (Ⅰ)求租车费 ξ 关于行车路程 η 的关系式; η 已知某旅客实付租车费38 38元 而出租汽车实际行驶了15km (Ⅱ)已知某旅客实付租车费38元,而出租汽车实际行驶了15km ,问出租车在途中因故停车累计最多几分钟? 问出租车在途中因故停车累计最多几分钟? 解:(Ⅰ)依题意得 η = 2(ξ 4) + 10 ,即 η = 2ξ + 2 :(Ⅰ (Ⅱ)由 38 = 2ξ + 2 ,得 ξ = 18,5 × (18 15 ) = 15. 所以,出租车在途中因故停车累计最多15分钟 分钟. 所以,出租车在途中因故停车累计最多 分钟.

高中数学 2.1.1离散型随机变量教案 新人教版选修2-3.doc

高中数学 2.1.1离散型随机变量教案 新人教版选修2-3.doc

§2.1.1离散型随机变量教学目标:知识目标:1.理解随机变量的意义;2.学会区分离散型与非离散型随机变量,并能举出离散性随机变量的例子;3.理解随机变量所表示试验结果的含义,并恰当地定义随机变量.能力目标:发展抽象、概括能力,提高实际解决问题的能力.情感目标:学会合作探讨,体验成功,提高学习数学的兴趣.教学重点:随机变量、离散型随机变量、连续型随机变量的意义教学难点:随机变量、离散型随机变量、连续型随机变量的意义授课类型:新授课课时安排:1课时内容分析:本章是在初中“统计初步”和高中必修课“概率”的基础上,学习随机变量和统计的一些知识.学习这些知识后,我们将能解决类似引言中的一些实际问题教学过程:一、复习引入:展示教科书章头提出的两个实际问题(有条件的学校可用计算机制作好课件辅助教学),激发学生的求知欲某人射击一次,可能出现命中0环,命中1环,…,命中10环等结果,即可能出现的结果可能由0,1,……10这11个数表示;某次产品检验,在可能含有次品的100件产品中任意抽取4件,那么其中含有的次品可能是0件,1件,2件,3件,4件,即可能出现的结果可以由0,1,2,3,4这5个数表示在这些随机试验中,可能出现的结果都可以用一个数来表示.这个数在随机试验前是否是预先确定的?在不同的随机试验中,结果是否不变?观察,概括出它们的共同特点二、讲解新课:思考1:掷一枚骰子,出现的点数可以用数字1 , 2 ,3,4,5,6来表示.那么掷一枚硬币的结果是否也可以用数字来表示呢?掷一枚硬币,可能出现正面向上、反面向上两种结果.虽然这个随机试验的结果不具有数量性质,但我们可以用数1和 0分别表示正面向上和反面向上(图2.1一1 ) .在掷骰子和掷硬币的随机试验中,我们确定了一个对应关系,使得每一个试验结果都用一个确定的数字表示.在这个对应关系下,数字随着试验结果的变化而变化.定义1:随着试验结果变化而变化的变量称为随机变量(random variable ).随机变量常用字母 X , Y,ξ,η,…表示.思考2:随机变量和函数有类似的地方吗?随机变量和函数都是一种映射,随机变量把随机试验的结果映为实数,函数把实数映为实数.在这两种映射之间,试验结果的范围相当于函数的定义域,随机变量的取值范围相当于函数的值域.我们把随机变量的取值范围叫做随机变量的值域.例如,在含有10件次品的100 件产品中,任意抽取4件,可能含有的次品件数X 将随着抽取结果的变化而变化,是一个随机变量,其值域是{0, 1, 2 , 3, 4 } .利用随机变量可以表达一些事件.例如{X=0}表示“抽出0件次品” , {X =4}表示“抽出4件次品”等.你能说出{X< 3 }在这里表示什么事件吗?“抽出 3 件以上次品”又如何用 X 表示呢?定义2:所有取值可以一一列出的随机变量,称为离散型随机变量 ( discrete random variable ) .离散型随机变量的例子很多.例如某人射击一次可能命中的环数 X 是一个离散型随机变量,它的所有可能取值为0,1,…,10;某网页在24小时内被浏览的次数Y 也是一个离散型随机变量,它的所有可能取值为0, 1,2,….思考3:电灯的寿命X 是离散型随机变量吗?电灯泡的寿命 X 的可能取值是任何一个非负实数,而所有非负实数不能一一列出,所以 X 不是离散型随机变量.在研究随机现象时,需要根据所关心的问题恰当地定义随机变量.例如,如果我们仅关心电灯泡的使用寿命是否超过1000 小时,那么就可以定义如下的随机变量:⎧⎨≥⎩0,寿命<1000小时;Y=1,寿命1000小时.与电灯泡的寿命 X 相比较,随机变量Y 的构造更简单,它只取两个不同的值0和1,是一个离散型随机变量,研究起来更加容易.连续型随机变量: 对于随机变量可能取的值,可以取某一区间内的一切值,这样的变量就叫做连续型随机变量如某林场树木最高达30米,则林场树木的高度ξ是一个随机变量,它可以取(0,30]内的一切值4.离散型随机变量与连续型随机变量的区别与联系: 离散型随机变量与连续型随机变量都是用变量表示随机试验的结果;但是离散型随机变量的结果可以按一定次序一一列出,而连续性随机变量注意:(1)有些随机试验的结果虽然不具有数量性质,但可以用数量来表达如投掷一枚硬币,ξ=0,表示正面向上,ξ=1,表示反面向上(2)若ξ是随机变量,b a b a ,,+=ξη是常数,则η也是随机变量三、讲解范例:例1. 写出下列随机变量可能取的值,并说明随机变量所取的值表示的随机试验的结果(1)一袋中装有5只同样大小的白球,编号为1,2,3,4,5 现从该袋内随机取出3只球,被取出的球的最大号码数ξ;(2)某单位的某部电话在单位时间内收到的呼叫次数η 解:(1) ξ可取3,4,5ξ=3,表示取出的3个球的编号为1,2,3;ξ=4,表示取出的3个球的编号为1,2,4或1,3,4或2,3,4;ξ=5,表示取出的3个球的编号为1,2,5或1,3,5或1,4,5或2,3或3,4,5(2)η可取0,1,…,n ,…η=i ,表示被呼叫i 次,其中i=0,1,2,…例2. 抛掷两枚骰子各一次,记第一枚骰子掷出的点数与第二枚骰子掷出的点数的差为ξ,试问:“ξ> 4”表示的试验结果是什么?答:因为一枚骰子的点数可以是1,2,3,4,5,6六种结果之一,由已知得-5≤ξ≤5,也就是说“ξ>4”就是“ξ=5”所以,“ξ>4”表示第一枚为6点,第二枚为1点例3 某城市出租汽车的起步价为10元,行驶路程不超出4km ,则按10元的标准收租车费若行驶路程超出4km ,则按每超出lkm 加收2元计费(超出不足1km 的部分按lkm 计).从这个城市的民航机场到某宾馆的路程为15km .某司机常驾车在机场与此宾馆之间接送旅客,由于行车路线的不同以及途中停车时间要转换成行车路程(这个城市规定,每停车5分钟按lkm 路程计费),这个司机一次接送旅客的行车路程ξ是一个随机变量,他收旅客的租车费可也是一个随机变量(1)求租车费η关于行车路程ξ的关系式;(Ⅱ)已知某旅客实付租车费38元,而出租汽车实际行驶了15km ,问出租车在途中因故停车累计最多几分钟?解:(1)依题意得η=2(ξ-4)+10,即η=2ξ+2(Ⅱ)由38=2ξ+2,得ξ=18,5×(18-15)=15.所以,出租车在途中因故停车累计最多15分钟.四、课堂练习:1.①某寻呼台一小时内收到的寻呼次数ξ;②长江上某水文站观察到一天中的水位ξ;③某超市一天中的顾客量ξ 其中的ξ是连续型随机变量的是( )A .①;B .②;C .③;D .①②③2.随机变量ξ的所有等可能取值为1,2,,n …,若()40.3P ξ<=,则( )A .3n =;B .4n =;C .10n =;D .不能确定3.抛掷两次骰子,两个点的和不等于8的概率为( )A .1112;B .3136;C .536; D .112 4.如果ξ是一个离散型随机变量,则假命题是( )A. ξ取每一个可能值的概率都是非负数;B. ξ取所有可能值的概率之和为1;C. ξ取某几个值的概率等于分别取其中每个值的概率之和;D. ξ在某一范围内取值的概率大于它取这个范围内各个值的概率之和答案:1.B 2.C 3.B 4.D五、小结 :随机变量离散型、随机变量连续型随机变量的概念 随机变量ξ是关于试验结果的函数,即每一个试验结果对应着一个实数;随机变量ξ的线性组合η=a ξ+b(其中a 、b 是常数)也是随机变量六、课后作业:七、板书设计(略)八、教学反思:1、怎样防止所谓新课程理念流于形式,如何合理选择值得讨论的问题,实现学生实质意义的参与.2、防止过于追求教学的情境化倾向,怎样把握一个度.。

高中数学新人教版B版精品教案《人教版B高中数学选修2-3 2.1.2 离散型随机变量的分布列》42

高中数学新人教版B版精品教案《人教版B高中数学选修2-3 2.1.2 离散型随机变量的分布列》42

《离散型随机变量的分布列的应用》教学设计喀左四高中王德江教材说明人教B版选修2-3第二章第二节课型习题课课时1课时学情分析学生对选修2-3第二章《离散型随机变量及其分布列》中的离散型随机变量的概念,如何求离散型随机变量分布列,二点分布的概念及其应用都有了一定程度的掌握,但对分布列的性质还不能很好的理解和应用,故拟定通过本课加强学生对离散型随机变量的分布列性质的掌握和应用教学内容分析一、教学主要内容在“离散型随机变量及其分布列”这一小节中,两点分布、超几何分布、二项分布是概率论中最重要的几种分布之一,在实际应用和理论分析中都有重要的地位,因此本节内容的重点是离散型随机变量的分布列二、教材编写特点由于随机变量与离散型随机变量不同于从前学习函数时遇到的变量,所以教材的编写体现了知识形成的过程,按学生的现有知识和认识水平难以透彻理解,所以教学难点是建立随机变量与离散型随机变量的概念,以及对它们有正确的理解;关键是多考察实际例子,通过它们加深对随机试验、随机变量及离散型随机变量的认识,并熟悉它们的分布列三、教材内容的数学核心思想函数的思想,化归与转化的思想等教学目标知识与技能:能根据分布列求出某事件的概率;会求离散型随机变量的分布列;培养学生的收集信息、分析问题和解决问题的实际应用能力过程与方法:通过学生自主独立思考,解决一些较容易的问题;帮助学生在原有经验上对新知识主动建构,在交流合作中学习情感态度与价值观:优化学生的思维品质;通过自主探索、合作交流,增强学生对数学的情感体验,提高创新意识;充分体会数学生的应用意识教学重点与教学难点重点:1.通过分布列计算随机事件的概率;2.会求离散型随机变量的分布列难点:1.确定随机变量的取值范围;2.计算相关随机事件的概率教学策略选择与设计本节课根据内容特点尽量采用“过程完整化”教学模式,小结如何解离散型随机变量及其分布列问题,在选题方面以基础题为主,题的背景都是学生熟悉的生活情境,有助于基础较差学生的理解由于本节课是复习课,根据学生答题情况和教学目标,实施过程中以问题和任务为载体,以师生合作探究为主线,以思维训练为核心,以能力发展为目标,充分调动一切可利用的因素,激发学生的参与意识,使学生经历知识的理解、分析和升华的过程,在和谐、愉悦的氛围中获取知识,掌握解题思路和方法整个教学中既突出了学生的主体地位,又发挥了教师的指导作用教学资源与手段资源:多媒体课件,实物投影仪.手段:多媒体辅助教学,形象直观.教学过程设计。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§2.1.1离散型随机变量教学目标:知识目标:1.理解随机变量的意义;2.学会区分离散型与非离散型随机变量,并能举出离散性随机变量的例子;3.理解随机变量所表示试验结果的含义,并恰当地定义随机变量.能力目标:发展抽象、概括能力,提高实际解决问题的能力.情感目标:学会合作探讨,体验成功,提高学习数学的兴趣.教学重点:随机变量、离散型随机变量、连续型随机变量的意义教学难点:随机变量、离散型随机变量、连续型随机变量的意义授课类型:新授课课时安排:1课时内容分析:本章是在初中“统计初步”和高中必修课“概率”的基础上,学习随机变量和统计的一些知识.学习这些知识后,我们将能解决类似引言中的一些实际问题教学过程:一、复习引入:展示教科书章头提出的两个实际问题(有条件的学校可用计算机制作好课件辅助教学),激发学生的求知欲某人射击一次,可能出现命中0环,命中1环,…,命中10环等结果,即可能出现的结果可能由0,1,……10这11个数表示;某次产品检验,在可能含有次品的100件产品中任意抽取4件,那么其中含有的次品可能是0件,1件,2件,3件,4件,即可能出现的结果可以由0,1,2,3,4这5个数表示在这些随机试验中,可能出现的结果都可以用一个数来表示.这个数在随机试验前是否是预先确定的?在不同的随机试验中,结果是否不变?观察,概括出它们的共同特点二、讲解新课:思考1:掷一枚骰子,出现的点数可以用数字1 , 2 ,3,4,5,6来表示.那么掷一枚硬币的结果是否也可以用数字来表示呢?掷一枚硬币,可能出现正面向上、反面向上两种结果.虽然这个随机试验的结果不具有数量性质,但我们可以用数1和 0分别表示正面向上和反面向上(图2.1一1 ) .在掷骰子和掷硬币的随机试验中,我们确定了一个对应关系,使得每一个试验结果都用一个确定的数字表示.在这个对应关系下,数字随着试验结果的变化而变化.定义1:随着试验结果变化而变化的变量称为随机变量(random variable ).随机变量常用字母 X , Y,ξ,η,…表示.思考2:随机变量和函数有类似的地方吗?随机变量和函数都是一种映射,随机变量把随机试验的结果映为实数,函数把实数映为实数.在这两种映射之间,试验结果的范围相当于函数的定义域,随机变量的取值范围相当于函数的值域.我们把随机变量的取值范围叫做随机变量的值域.例如,在含有10件次品的100 件产品中,任意抽取4件,可能含有的次品件数X 将随着抽取结果的变化而变化,是一个随机变量,其值域是{0, 1, 2 , 3, 4 } .利用随机变量可以表达一些事件.例如{X=0}表示“抽出0件次品” , {X =4}表示“抽出4件次品”等.你能说出{X< 3 }在这里表示什么事件吗?“抽出 3 件以上次品”又如何用 X 表示呢?定义2:所有取值可以一一列出的随机变量,称为离散型随机变量 ( discrete random variable ) .离散型随机变量的例子很多.例如某人射击一次可能命中的环数X 是一个离散型随机变量,它的所有可能取值为0,1,…,10;某网页在24小时内被浏览的次数Y 也是一个离散型随机变量,它的所有可能取值为0, 1,2,….思考3:电灯的寿命X 是离散型随机变量吗?电灯泡的寿命 X 的可能取值是任何一个非负实数,而所有非负实数不能一一列出,所以 X 不是离散型随机变量.在研究随机现象时,需要根据所关心的问题恰当地定义随机变量.例如,如果我们仅关心电灯泡的使用寿命是否超过1000 小时,那么就可以定义如下的随机变量:⎧⎨≥⎩0,寿命<1000小时;Y=1,寿命1000小时.与电灯泡的寿命 X 相比较,随机变量Y 的构造更简单,它只取两个不同的值0和1,是一个离散型随机变量,研究起来更加容易.连续型随机变量: 对于随机变量可能取的值,可以取某一区间内的一切值,这样的变量就叫做连续型随机变量如某林场树木最高达30米,则林场树木的高度是一个随机变量,它可以取(0,30]内的一切值4.离散型随机变量与连续型随机变量的区别与联系: 离散型随机变量与连续型随机变量都是用变量表示随机试验的结果;但是离散型随机变量的结果可以按一定次序一一列出,而连续性随机变量的结果不可以一一列出注意:(1)有些随机试验的结果虽然不具有数量性质,但可以用数量来表达如投掷一枚硬币, =0,表示正面向上, =1,表示反面向上(2)若是随机变量,b a b a ,,+=ξη是常数,则也是随机变量三、讲解范例:例1. 写出下列随机变量可能取的值,并说明随机变量所取的值表示的随机试验的结果(1)一袋中装有5只同样大小的白球,编号为1,2,3,4,5 现从该袋内随机取出3只球,被取出的球的最大号码数ξ;(2)某单位的某部电话在单位时间内收到的呼叫次数η解:(1) ξ可取3,4,5ξ=3,表示取出的3个球的编号为1,2,3;ξ=4,表示取出的3个球的编号为1,2,4或1,3,4或2,3,4;ξ=5,表示取出的3个球的编号为1,2,5或1,3,5或1,4,5或2,3或3,4,5(2)η可取0,1,…,n ,…η=i ,表示被呼叫i 次,其中i=0,1,2,…例2. 抛掷两枚骰子各一次,记第一枚骰子掷出的点数与第二枚骰子掷出的点数的差为ξ,试问:“ξ> 4”表示的试验结果是什么?答:因为一枚骰子的点数可以是1,2,3,4,5,6六种结果之一,由已知得-5≤ξ≤5,也就是说“ξ>4”就是“ξ=5”所以,“ξ>4”表示第一枚为6点,第二枚为1点例3 某城市出租汽车的起步价为10元,行驶路程不超出4km ,则按10元的标准收租车费若行驶路程超出4km ,则按每超出lkm 加收2元计费(超出不足1km 的部分按lkm 计).从这个城市的民航机场到某宾馆的路程为15km .某司机常驾车在机场与此宾馆之间接送旅客,由于行车路线的不同以及途中停车时间要转换成行车路程(这个城市规定,每停车5分钟按lkm 路程计费),这个司机一次接送旅客的行车路程ξ是一个随机变量,他收旅客的租车费可也是一个随机变量(1)求租车费η关于行车路程ξ的关系式;(Ⅱ)已知某旅客实付租车费38元,而出租汽车实际行驶了15km ,问出租车在途中因故停车累计最多几分钟?解:(1)依题意得η=2(ξ-4)+10,即η=2ξ+2(Ⅱ)由38=2ξ+2,得ξ=18,5×(18-15)=15.所以,出租车在途中因故停车累计最多15分钟.四、课堂练习:1.①某寻呼台一小时内收到的寻呼次数ξ;②长江上某水文站观察到一天中的水位ξ;③某超市一天中的顾客量ξ其中的ξ是连续型随机变量的是( )A .①;B .②;C .③;D .①②③2.随机变量ξ的所有等可能取值为1,2,,n …,若()40.3P ξ<=,则( )A .3n =;B .4n =;C .10n =;D .不能确定3.抛掷两次骰子,两个点的和不等于8的概率为( )A .1112;B .3136;C .536; D .112 4.如果ξ是一个离散型随机变量,则假命题是( )A. ξ取每一个可能值的概率都是非负数;B. ξ取所有可能值的概率之和为1;C. ξ取某几个值的概率等于分别取其中每个值的概率之和;D. ξ在某一范围内取值的概率大于它取这个范围内各个值的概率之和答案:1.B 2.C 3.B 4.D五、小结 :随机变量离散型、随机变量连续型随机变量的概念 随机变量ξ是关于试验结果的函数,即每一个试验结果对应着一个实数;随机变量ξ的线性组合η=a ξ+b(其中a 、b 是常数)也是随机变量六、课后作业:七、板书设计(略)八、教学反思:1、怎样防止所谓新课程理念流于形式,如何合理选择值得讨论的问题,实现学生实质意义的参与.2、防止过于追求教学的情境化倾向,怎样把握一个度.中国书法艺术说课教案今天我要说课的题目是中国书法艺术,下面我将从教材分析、教学方法、教学过程、课堂评价四个方面对这堂课进行设计。

一、教材分析:本节课讲的是中国书法艺术主要是为了提高学生对书法基础知识的掌握,让学生开始对书法的入门学习有一定了解。

书法作为中国特有的一门线条艺术,在书写中与笔、墨、纸、砚相得益彰,是中国人民勤劳智慧的结晶,是举世公认的艺术奇葩。

早在5000年以前的甲骨文就初露端倪,书法从文字产生到形成文字的书写体系,几经变革创造了多种体式的书写艺术。

1、教学目标:使学生了解书法的发展史概况和特点及书法的总体情况,通过分析代表作品,获得如何欣赏书法作品的知识,并能作简单的书法练习。

2、教学重点与难点:(一)教学重点了解中国书法的基础知识,掌握其基本特点,进行大量的书法练习。

(二)教学难点:如何感受、认识书法作品中的线条美、结构美、气韵美。

3、教具准备:粉笔,钢笔,书写纸等。

4、课时:一课时二、教学方法:要让学生在教学过程中有所收获,并达到一定的教学目标,在本节课的教学中,我将采用欣赏法、讲授法、练习法来设计本节课。

(1)欣赏法:通过幻灯片让学生欣赏大量优秀的书法作品,使学生对书法产生浓厚的兴趣。

(2)讲授法:讲解书法文字的发展简史,和形式特征,让学生对书法作进一步的了解和认识,通过对书法理论的了解,更深刻的认识书法,从而为以后的书法练习作重要铺垫!(3)练习法:为了使学生充分了解、认识书法名家名作的书法功底和技巧,请学生进行局部临摹练习。

三、教学过程:(一)组织教学让学生准备好上课用的工具,如钢笔,书与纸等;做好上课准备,以便在以下的教学过程中有一个良好的学习气氛。

(二)引入新课,通过对上节课所学知识的总结,让学生认识到学习书法的意义和重要性!(三)讲授新课1、在讲授新课之前,通过大量幻灯片让学生欣赏一些优秀的书法作品,使学生对书法产生浓厚的兴趣。

2、讲解书法文字的发展简史和形式特征,让学生对书法作品进一步的了解和认识通过对书法理论的了解,更深刻的认识书法,从而为以后的书法练习作重要铺垫!A书法文字发展简史:①古文字系统甲古文——钟鼎文——篆书早在5000年以前我们中华民族的祖先就在龟甲、兽骨上刻出了许多用于记载占卜、天文历法、医术的原始文字“甲骨文”;到了夏商周时期,由于生产力的发展,人们掌握了金属的治炼技术,便在金属器皿上铸上当时的一些天文,历法等情况,这就是“钟鼎文”(又名金文);秦统一全国以后为了方便政治、经济、文化的交流,便将各国纷杂的文字统一为“秦篆”,为了有别于以前的大篆又称小篆。

(请学生讨论这几种字体的特点?)古文字是一种以象形为主的字体。

②今文字系统隶书——草书——行书——楷书到了秦末、汉初这一时期,各地交流日见繁多而小篆书写较慢,不能满足需要,隶书便在这种情况下产生了,隶书另一层意思是平民使用,同时还出现了一种草写的章草(独草),这时笔墨纸都已出现,对书法的独立创作起到了积极的推动作用。

相关文档
最新文档