2011年中考数学模拟试题分类汇编--全等三角形.doc
2011中考模拟分类汇编.三角形全等
(第2题)① ② ③ A D F CBE(第3题)图) 三角形全等一、选择题1. (2011深圳市全真中考模拟一)如图,将两根钢条'AA 、'BB 的中点O 连在一起,使'AA 、'BB 可以绕着点0自由转动,就做成了一个测量工件,则''A B 的长等于内槽宽AB ,那么判定△AOB △''A OB 的理由是(A)边角边 (B)角边角 (C)边边边 (D)角角边 答案;A二、填空题 1、(2011北京四中模拟8)如图,∠ACB=∠ADB ,要使△ACB ≌△BDA ,请写出一个符合要求的条件答案 ∠CAB=∠DBA 或∠CBA=DAB2、(2011年北京四中模拟28) 如图,某人把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,最省事的办法是带编号为 的碎片去. 答案:③3.(2011年海宁市盐官片一模)如图,有一块边长为4的正方形塑料摸板ABCD ,将一块足够大的直角三角板的直角顶点落在A 点,两条直角边分别与CD 交于点F ,与CB 延长线交于点E .则四边形AECF 的面积是 . 答案:16三、解答题 A 组 1、(浙江省杭州市2011年中考数学模拟)如图,在△ABC 中,D 是BC 边上的点(不与B ,C 重合),F ,E 分别是AD 及其延长线上的点,CF ∥BE . 请你添加一个条件,使△BDE ≌△CDF (不再添加其它线段,不再标注或使用其他字母),并给出证明.第1题DCB A【根据习题改编】(1)你添加的条件是: ; (2)证明:答案: 解:(1)DC BD =(或点D 是线段BC 的中点),ED FD =,BE CF =中任选一个即可﹒(2)以DC BD =为例进行证明:∵ CF ∥BE , ∴ ∠FCD ﹦∠EBD .又∵DC BD =,∠FDC ﹦∠EDB , ∴ △BDE ≌△CDF .2、(2011年北京四中三模)如图,正方形ABCD 中,E 、F 分别是AB 和AD 上的点,已知CE ⊥BF ,垂足为M ,请找出和BE 相等的线段,并证明你的结论。
2011年全国各地中考数学真题分类汇编:第6章不等式
2011年全国各地100份中考数学试卷分类汇编第6章 不等式(组)一、选择题1. (2011湖南永州,15,3分)某市打市电话的收费标准是:每次3分钟以内(含3分钟)收费2.0元,以后每分钟收费1.0元(不足1分钟按1分钟计).某天小芳给同学打了一个6分钟的市话,所用电话费为5.0元;小刚现准备给同学打市电话6分钟,他经过思考以后,决定先打3分钟,挂断后再打3分钟,这样只需电话费4.0元.如果你想给某同学打市话,准备通话10分钟,则你所需要的电话费至少为( ) A .6.0元 B .7.0元 C .8.0元 D .9.0元 【答案】B .二、填空题1. (2011山东临沂,17,3分)有3人携带会议材料乘坐电梯,这3人的体重共210kg ,每捆材料中20kg ,电梯最大负荷为1050kg ,则该电梯在此3人乘坐的情况下最多还能搭载 捆材料. 【答案】422. (2011湖北襄阳,15,3分)我国从2011年5月1日起在公众场所实行“禁烟”,为配合“禁烟”行动,某校组织开展了“吸烟有害健康”的知识竞赛,共有20道题.答对一题记10分,答错(或不答)一题记5 分.小明参加本次竞赛得分要超过100分,他至少要答对 道题. 【答案】14 3.三、解答题1. (2011广东广州市,21,12分)某商店5月1日举行促销优惠活动,当天到该商店购买商品有两种方案,方案一:用168元购买会员卡成为会员后,凭会员卡购买商店内任何商品,一律按商品价格的8折优惠;方案二:若不购买会员卡,则购买商店内任何商品,一律按商品价格的9.5折优惠.已知小敏5月1日前不是该商店的会员.(1)若小敏不购买会员卡,所购买商品的价格为120元时,实际应支付多少元? (2)请帮小敏算一算,所购买商品的价格在什么范围内时,采用方案一更合算? 【答案】(1)120×0.95=114(元) 所以实际应支付114元.(2)设购买商品的价格为x 元,由题意得:0.8x +168<0.95x解得x>1120所以当购买商品的价格超过1120元时,采用方案一更合算.2. (2011湖北鄂州,20,8分)今年我省干旱灾情严重,甲地急需要抗旱用水15万吨,乙地13万吨.现有A 、B 两水库各调出14万吨水支援甲、乙两地抗旱.从A 地到甲地50千米,到乙地30千米;从B 地到甲地60千米,到乙地45千米. ⑴设从A 水库调往甲地的水量为x 万吨,完成下表甲 乙 总计 A x 14B14调入地 水量/万吨调出地总计15 13 28⑵请设计一个调运方案,使水的调运量尽可能小.(调运量=调运水的重量×调运的距离,单位:万吨•千米)【答案】⑴(从左至右,从上至下)14-x 15-x x-1⑵y=50x+(14-x)30+60(15-x)+(x-1)45=5x+1275解不等式1≤x≤14所以x=1时y取得最小值y min=12803. (2011 浙江湖州,23,10)我市水产养殖专业户王大爷承包了30亩水塘,分别养殖甲鱼和桂鱼.有关成本、销售额见下表:(1) 2011年,王大爷养殖甲鱼20亩,桂鱼10亩.求王大爷这一年共收益多少万元?(收益=销售额-成本)(2) 2011年,王大爷继续用这30亩水塘全部养殖甲鱼和桂鱼,计划投入成本不超过70万元.若每亩养殖的成本、销售额与2011年相同,要获得最大收益,他应养殖甲鱼和桂鱼各多少亩?(3) 已知甲鱼每亩需要饲料500kg,桂鱼每亩需要饲料700kg.根据(2)中的养殖亩数,为了节约运输成本,实际使用的运输车辆每载装载饲料的总量是原计划每次装载总量的2倍,结果运输养殖所需全部饲料比原计划减少了2次.求王大爷原定的运输车辆每次可装载饲料多少kg?【答案】解:(1)2011年王大爷的收益为:20.+.⨯⨯(3-24)10(25-2)=17(万元)(2)设养殖甲鱼x亩,则养殖桂鱼(30-x)亩.由题意得2.42(30)70,x x+-≤解得25x≤,又设王大爷可获得收益为y万元,则0.60.5(30)y x x=+-,即11510y x=+.∵函数值y随x的增大而增大,∴当x=25,可获得最大收益.答:要获得最大收益,应养殖甲鱼25亩,养殖桂鱼5亩.(3)设王大爷原定的运输车辆每次可装载饲料a kg,由(2)得,共需饲料为50025+700516000⨯⨯=(kg),根据题意,得160001600022a a-=,解得4000()a kg=.答:王大爷原定的运输车辆每次可装载饲料4000kg.4. (2011浙江绍兴,22,12分)筹建中的城南中学需720套担任课桌椅(如图),光明厂承担了这项生产任务,该厂生产桌子的必须5人一组,每组每天可生产12张;生产椅子的必须4人一组,每组每天可生产24把.已知学校筹建组要求光明厂6天完成这项生产任务.(1)问光明厂平均每天要生产多少套单人课桌椅?(2)先学校筹建组组要求至少提前1天完成这项生产任务,光明厂生产课桌椅的员工增加到84名,试给出一种分配生产桌子、椅子的员工数的方案.【答案】7206=120÷,∴光明厂平均每天要生产120套单人课桌椅.(2)设x人生产桌子,则(84)x-人生产椅子,则125720,584245720, 4xx⨯⨯≥-⨯⨯≥⎧⎨⎩解得6060,60,8424x x x≤≤∴=-=,∴生产桌子60人,生产椅子24人。
2011年全国各地市中考数学模拟试题分类汇编--21.数据的整理与分析
20093634322820092007数据的整理与分析一、选择题 A 组1. (2011年浙江省杭州市高桥初中中考数学模拟试卷)下列调查适合普查的是( ) A .调查2011年3月份市场上西湖龙井茶的质量B .了解萧山电视台188热线的收视率情况C .网上调查萧山人民的生活幸福指数D .了解全班同学身体健康状况 答案:D2. (2011年浙江省杭州市高桥初中中考数学模拟试卷)我校数学教研组有25名教师,将他们的年龄分成3组,在24~36岁组内有8名教师,那么这个小组的频率是( ) A. 0.12 B. 0.32 C. 0.38 D. 3.125 答案:B3.(2011武汉调考模拟)近四年来我市经济发展驶入快车道,某小型综合超市近四年的销售也取得较大突破,如图1反映的是该小型综合超市2006—2009年每年的投资额统计图,图2反映的是该超市2006—2009年每年的利润统计图(利润率=投资额利润×100%),观察图1、图2提供的信息.下列说法:①该超市2009年获得的利润最多达64万元;②该超市2007年获得的利润最多;③该超市计划2010年获得的利润与2009年持平,利润率不低于近四年的最高值,那么该超市2010年投资额约为178万元,其中正确的结论有( B )A .①② B.①③ C.②③ D.C②③ 答案:BB 组1. (2011杭州上城区一模)为了调查某小区居民的用水情况,随机抽查了10户家庭的月用水量,结果如下表:则关于这10户家庭的月用水量,下列说法错误..的是( ) A .中位数是5吨 B .众数是5吨C .极差是3吨D .平均数是5.3吨(℃)(第2题图)2.如图为我市5月某一周每天的最高气温统计,则这组数据(最高气温)的众数与中位数分别是 A .29,29B .29,30C .30,30D .30,29.5 答案:C3.(2011北京四中一模)某校举行“五·四”文艺会演,5位评委给各班演出的节目打分.在5个评分中,去掉一个最高分,再去掉 一个最低分,求出评分的平均数,作为该节目的实际得分.对于某节目的演出,评分如下8.9,9.1,9.3,9.4,9.2那么该节目实际得分是( ).(A )9.4(B )9.3(C )9.2(D )9.184. (2011深圳市全真中考模拟一) 一个不透明的袋中装有除颜色外均相同的5个红球和3个黄球,从中随机摸出一个,摸到黄球的概率是 (A)18 (B) 13 (C) 38 (D) 35答案:C5. (2011湖北武汉调考模拟二) 下列事件中,是必然事件是( ) A.-个星期有9天B .小红在元月调考中,数学会获得满分120分C .今天是星期一,明天是星期二D .明天武汉市一定下雨 答案:C6. (2011湖北武汉调考模拟二)一枚均匀的正方体骰子,连续抛掷两次,朝上一面分别为m ,n ,A 的坐标为(m ,n),则A 点在y=2x 上的概率为( ) A .121 B.31 C .41 D .617. (2011湖北武汉调考一模)下列事件中是不确定事件的为( ) A.367人中至少有2人的生日相同B .今年国庆节这一天,我市的最高气温是28°C C .掷6枚相同的硬币,3枚正面向上4枚正面向下D .掷两枚普通的骰子,掷得的点数之和不是奇数就是偶数 答案:B8. (2011湖北武汉调考一模)小明在做一道数学选择题时,经过审题,他知道在A 、B 、C 、D 四个备选答案中,只有一个是正确的一;但他只能确定选项D 是错误的,于是他在其它三个选项中随机选择了B ,那么,小明答对这道选择题的概率是( )A .41 B .31 C . 21D .1 答案:B9、(北京四中2011中考模拟12)对“五·一”黄金周7天假期去某景区旅游的人数进行统计,每天旅游的人数统计如下表:其中众数和中位数分别是 ( )A .1.2,2B .2,2.5C .2,2D .1.2,2.5 答案:C10、(北京四中2011中考模拟14)某校四个绿化小组一天植树棵数分别是10、10、x 、8,已知这组数据的众数与平均数相等,则这组数据的中位数是( )A 、8B 、 9C 、10D 、12 答案:C11.(2011年广东省澄海实验学校模拟)某地统计部门公布最近5年国民消费指数增长率分别为8.5%、9.2%、9.9%、10.2%、9.8%,业内人士评论说:“这五年消费指数增长率之间相当平稳”,从统计角度看,“增长率之间相当平稳”说明这组数据中比较小的是( )A .方差B .平均数C .众数D .中位数 答案:A12. (2011深圳市模四)国家规定“中小学生每天在校体育活动时间不低于1小时”.为此,我市就“你每天在校体育活动时间是多少”的问题随机调查了某区300名初中学生.根据调查结果绘制成的统计图(部分)如图所示,其中分组情况是: A组:0.5h t <; B组:0.5h 1h t <≤;C组:1h 1.5h t <≤; D组: 1.5h t ≥.根据上述信息,你认为本次调查数据的中位数落在( ) A .B 组 B .C 组 C .D 组 D .A 组 答案:B13.(2011湖北省崇阳县城关中学模拟)下列判断正确的是( ▲ ) A. “打开电视机,正在播NBA 篮球赛”是必然事件 B. “掷一枚硬币正面朝上的概率是21”表示每抛掷硬币2次就必有1次反面朝上 C. 一组数据2,3,4,5,5,6的众数和中位数都是5D. 甲组数据的方差S 甲2=0.24,乙组数据的方差S 乙2=0.03,则乙组数据比甲组数据稳定 答案:D14.(2011年杭州市上城区一模)为了调查某小区居民的用水情况,随机抽查了10户家庭的月用水量,结果如下表:则关于这10户家庭的月用水量,下列说法错误..的是( ) A .中位数是5吨 B .众数是5吨C .极差是3吨D .平均数是5.3吨答案:CA B C D 组别人数第2题图15. (2011年杭州市模拟)把过期的药品随意丢弃,会造成对土壤和水体的污染,危害人们的健康.如何处理过期药品,有关机构随机对若干家庭进行调查,调查结果如图所示.其中对过期药品处理不正..确.的家庭达到 A .75% B .82% C .22% D .78% 答案:D16.(2011年浙江省杭州市模2)下列判断正确的是( ) A. “打开电视机,正在播NBA 篮球赛”是必然事件 B. “掷一枚硬币正面朝上的概率是21”表示每抛掷硬币2次就必有1次反面朝上 C. 一组数据2,3,4,5,5,6的众数和中位数都是5D. 甲组数据的方差S 甲2=0.24,乙组数据的方差S 乙2=0.03,则乙组数据比甲组数据稳定 答案:D17、(赵州二中九年七班模拟)某一段时间,小芳测得连续五天的日最高气温后,整理得出下表(有两个数据被遮盖).被遮盖的两个数据依次是( )A .3℃,2B .3℃,4C .4℃,2D .4℃,4 答案:D18、(2011年北京四中33模)已知5个正数m 1,m 2,m 3,m 4,m 5的平均数为m ,且m 1<m 2<m 3<m 4<m 5,则数据m 1,m 2,0,m 3,m 4,m 5的平均数和中位数是()A .m ,m 3B. m ,243m m + C .m 65,232m m +D. m 65,243m m +答案C1%2%第15题22%19、(2011年浙江杭州28模)某商店在一周内卖出某种品牌衬衫的尺寸数据如下:38,42,38,41,36,41,39,40,41,40,43那么这组数据的中位数和众数分别为()(A)40,40 (B)41,40 (C)40,41 (D)41,41答案:C20、(2011北京四中模拟)有十八位同学参加智力竞赛,且他们的分数互不相同,按分数高低选九位同学进入下一轮比赛。
山东省17市2011年中考数学试题分类解析汇编 专题12 押轴题
三角形(多边形)的有关概念▴考点聚焦1.了解三角形、等腰三角形、等边三角形、直角三角形的概念,•并能按要求进行分类.2.掌握三角形的角平分线、高线、中线的作法,并注意其图形、式子、•文本语言三者之间的相互转化及简单应用.3.了解三角形的稳定性.4.了解三角形的内角和与外角和,掌握三角形内角与外角的关系.5.了解多边形的内角和与外角和.6.掌握三角形三边间的不等关系.7.了解平面图形的镶嵌.8.能用三角形、四边形、正六边形等进行平面镶嵌设计.▴备考兵法1.在运用三角形内、外角和定理、多边形的内、•外角和定理及正多边形的定义与性质解决有关计算或推理问题时,要注意运用方程思想、化归思想等.2.熟练运用不等式(组)的知识和三角形三边的关系,•解决已知三角形的两边的长度,确定第三边上中线的取值范围或求周长;在求第三边上中线的取值范围时,要注意通过旋转把AB ,AC 与AM 转化到一个三角形中来解决.如:△ABC中,•AB=6,AC=4,则BC 边上的中线AM 的取值范围为1<AM<5.3.用多边形(规则图形、不规则图形)进行平面镶嵌时,•要注意满足的条件.4.运用三角形三边的不等关系解决问题时,要分类讨论.▴识记巩固1.三角形是_____________.2.三角形的内角和是______,三角形的外角和是______.3.多边形的内角和是______,多边形的外角和是______.4.三角形三边的关系是__________.5.三角形的分类:(1)按角分:___________________________________________________⎧⎧⎪⎨⎨⎩⎪⎩(2)按边分:___________________________________________⎧⎪⎧⎨⎨⎪⎩⎩6.三角形的中位线性质:____________.7.只用一种正多边形可以铺满地板的有:__________.8.三角形的一个外角等于_____________;三角形的一个外角等于_______________.识记巩固参考答案:1.由不在同一直线上的三条线段首尾顺次连结所组成的封闭图形2.180•° •360°3.(n-2).180° 360°4.任意两边之和大于第三边,任意两边之差小于第三边5.(1)斜三角形 锐角三角形 钝角三角形 直角三角形 (2)•不等边三角形 等腰三角形 底和腰不相等的等腰三角形 等边三角形6.•三角形的中位线平行于第三边,且等于第三边的一半7.正三角形,正方形,正六边形8.•与它不相邻的两个内角的和 与它不相邻的任何一个内角典例解析▴例1 (2011上海,16,4分)如图, 点B 、C 、D 在同一条直线上,CE //AB ,∠ACB =90°,如果∠ECD =36°,那么∠A =_________.ED C BA例2已知a ,b ,c 为三个正整数,如果a+b+c=12,那么以a ,b ,c 为边能组成的三角形是:①等腰三角形;②等边三角形;③直角三角形;④钝角三角形.•以上符合条件的正确结论是_______.例2 已知D 是A B 边上的中点,将△ABC 沿过点D 的直线折叠,使点A 落在BC•边上的点F 处,若∠B=50°,则∠BDF=_______.拓展变式1 如图,将纸片△ABC 沿DE 折叠,点A 落在点A ′处,已知∠1+∠2=100°,则∠A 等于_______度.2011年中考真题一、选择题1. (2011福建福州,10,4分)如图3,在长方形网格中,每个小长方形的长为2,宽为1,A 、B 两点在网格格点上,若点C 也在网格格点上,以A 、B 、C 为顶点的三角形面积为2,则满足条件的点C 个数是( )A .2B .3C .4D . 52. (2011山东滨州,5,3分)若某三角形的两边长分别为3和4,则下列长度的线段能作为其第三边的是( )A. 1B. 5C. 7D.9图33. (2011山东菏泽,3,3分)一次数学活动课上,小聪将一副三角板按图中方式叠放,则∠α等于A .30°B .45°C .60°D .75°4. (2011山东济宁,3,3分)若一个三角形三个内角度数的比为2︰7︰4,那么这个三角形是( )A . 直角三角形B . 锐角三角形[来源:21世纪教育网]C . 钝角三角形D . 等边三角形5. (2011浙江义乌,2,3分)如图,DE 是△ABC 的中位线,若BC 的长是3cm ,则DE 的长是( )A .2cmB .1.5cmC .1.2cmD .1cm6. (2011台湾台北,23)如图(八),三边均不等长的ABC ∆,若在此三角形内找一点O ,使得OAB ∆、OBC ∆、OCA ∆的面积均相等。
2011中考模拟分类汇编.分式
分式一、 选择题 A 组1、(2011年北京四中模拟26) 若分式31xx -有意义,则x 应满足 ( ) A .x =0 B .x ≠0 C .x =1 D .x ≠1答案:D3、(淮安市启明外国语学校2010-2011学年度第二学期初三数学期中试卷)化简 m 2-1m ÷m+1m 的结果是( )A .m -1B .mC .1mD .1m -1答案:A 4、(2010-2011学年度河北省三河市九年级数学第一次教学质量检测试题)化简22424422x x xx x x x ⎛⎫--+÷ ⎪-++-⎝⎭,其结果是( ) A .82x -- B .82x - C .82x -+D .82x + 答案:D5、(2011年浙江杭州七模)在函数21-=x y 中,自变量x 的取值范围是( ) A .2-≠x B .2≠xC .x ≤2D .x ≥2答案:BB 组1、(2011浙江慈吉 模拟)已知分式xx -+21, 当x 取a 时, 该分式的值为0; 当x 取b 时, 分式无意义; 则ab 的值等于( ) A. 2- B. 21C. 1D. 2 答案:B2、(2011年三门峡实验中学3月模拟)要使式子a +2a 有意义,a 的取值范围是( )A 、a ≠0B 、a >-2且a ≠0C 、a >-2或a ≠0D 、a ≥-2且a ≠0 答案:D3、(2011杭州上城区一模)下列判断中,你认为正确的是( )A .0的倒数是0 B.2π是分数 C. 1.2大于1 D.4的值是±2答案:C4、(安徽芜湖2011模拟)化简29333a a a a a ⎛⎫++÷⎪--⎝⎭的结果为 ( ) A .aB .a -C .()23a +D .1答案: A5、(浙江杭州金山学校2011模拟)(原创)函数134y x x =-+-中自变量x 的取值范围是( ▲ )A .x ≤3B .x =4C . x <3且x≠4D .x≤3且x ≠4 答案:A6、(2011深圳市全真中考模拟一)化简24()22a a a a a a---+ 的结果是 (A)一4 (B)4 (C)2a (13) 2a +4 答案:A7、(2011年北京四中33模)若分式1632--x x 的值为0,则x 的值为( )A .4B. -4C. ±4D. 3答案D二、 填空题 A 组1、(2011年北京四中三模)若x 为12-的倒数,则633622-++÷---x x x x x x 的值为 .答案:221-2、(2011年北京四中四模)化简112-+x x 得___ __. 答案:11-x 4.(2011年江苏连云港)若一个分式含有字母m 2,且当5m =时,它的值为2,则这个分式可以是 . (写出一个..即可)答案250m (不唯一); B 组1、(2011浙江慈吉 模拟)化简: mm m -+-2242=______________. 答案:2--m2、(2011 天一实验学校 二模)在函数15y x =-中,自变量x 的取值范围是 . 答案: x ≠5__3、(2011北京四中模拟)化简:23224x x xx x x 骣÷ç-?÷ç÷ç桫++-答案:24x -4、(2011深圳市三模)函数函数12-+=x x y 中自变量x 的取值范围是 ;答案: 2-≥x 且1≠x ; 5、(浙江杭州靖江2011模拟)函数y=0)2(1--x x 的自变量x 的取值范围是_____________。
中考数学模拟试题分类汇编三角形全等
三角形全等一、选择题 1、(2012年江西南昌十五校联考)如图,在下列条件中,不能..证明△ABD ≌△ACD 的是条件( ).A. ∠B =∠C ,BD =DCB.∠ADB =∠ADC ,BD =DCC.∠B =∠C ,∠BAD =∠CADD. BD =DC , AB =AC 答案:A2、 3、二、填空题1、(2012年,辽宁省营口市)如图,在四边形ABCD 中,∠A =90°,AD =4,连接BD ,BD ⊥CD ,∠ADB =∠C .若P 是BC 边上一动点,则DP 长的最小值为 。
答案: 42(2012荆州中考模拟).如图, (甲)是四边形纸片ABCD ,其中∠B =120︒,∠D =50︒。
若将其右下角向内折出 PCR ,恰使CP∥AB ,RC∥AD ,如图(乙)所示,则∠C = °.答案:95︒三、解答题1、(2012年福建福州质量检查)(每小题7分,共14分)(1) 如图,在平行四边形ABCD 中,E 为BC 中点,AE 和延长线与DC 的延长线相交于点F .证明:△AB E ≌△FCE .ABCDEF第17(1)题图第17(2)题图AC DR图(乙) AD图(甲)(2) 如图,热气球的探测器显示,从热气球看一栋高楼顶部的仰角α为45°,看这栋高楼底部的俯角β为60°,热气球与高楼的水平距离AD =80m ,这栋高楼有多高(3≈1.732,结果保留小数点后一位)?答案:(1)证明:∵AB 与CD 是平行四边形ABCD 的对边,∴AB ∥CD , ······························································································· 2分 ∴∠F =∠F AB . ·························································································· 4分 ∵E 是BC 的中点, ∴BE =CE , ······························································ 5分 又∵ ∠AEB =∠FEC , ·············································································· 6分 ∴ △ABE ≌△FCE . ·················································································· 7分 (2)解:如图,α=45°,β=60°,AD =80.在Rt △ADB 中, ∵tan α=BDAD,∴BD =AD ·tan α=80×tan45°=80.………2分 在Rt △ADC 中, ∵tan β=CD AD,∴CD =AD ·tan β=80×tan60°=803.……5分∴BC =BD +CD =80+803≈218.6.答:这栋楼高约为218.6m . ………………7分2、(2012昆山一模)已知:如图所示,在△ABC 中,∠ABC =45°,CD ⊥AB 于点D ,BE 平分∠ABC ,且BE ⊥AC 于点E ,与CD 相交于点F ,H 是BC 边的中点,连接DH 与BE 相交于点G.(1)求证:BF=AC(2)猜想CE与BG的数量关系,并证明你的结论.答案:3、(2012兴仁中学一模)(10分)如图,在□ABCD中,E为BC的中点,连接DE.延长DE交AB的延长线于点F.求证:AB=BF.D CE【答案】解:由□ABCD 得AB ∥CD , ∴∠CDF =∠F ,∠CBF =∠C . 又∵E 为BC 的中点, ∴△DEC ≌△FEB . ∴DC =FB .由□ABCD 得AB =CD , ∵DC =FB ,AB =CD , ∴AB =BF .4.(2012温州市泰顺九校模拟)(本题6分) 如图,已知AD 是△ABC 的角平分线,在不添加任何辅助线的前提下,要使△AE D ≌△AFD ,需添加一个条件是:_______________,并给予证明.解法一:添加条件:AE =AF , ……2分证明:在△AED 与△AFD 中,∵AE =AF ,……1分 ∠EAD =∠FAD ,……1分 AD =AD ,……1分∴△AED ≌△AFD (SAS ). ……1分解法二:添加条件:∠EDA =∠FDA ,……2分证明:在△AED 与△AFD 中, ∵∠EAD =∠FAD ,……1分AD =AD ,……1分DCEB DC AE F B D CAEF∠EDA =∠FDA ,……1分∴△AED ≌△AFD (ASA ). ……1分 解法三:添加条件:∠DEA =∠DFA 略……6分5. (2012年江苏海安县质量与反馈)如图,ABC △和ECD △都是等腰直角三角形,90ACB DCE ==︒∠∠,D 为AB 边上一点. (1)求证:ACE BCD △≌△;(2)设AC 和DE 交于点M ,若AD =6,BD =8,求ED 与AM 的长.答案:(1)证明全等;(2) DE=10; AM=2724. 6、(2012温州市泰顺九校模拟) 如图,已知AD 是△ABC 的角平分线,在不添加任何辅助线的前提下,要使△AE D ≌△AFD ,需添加一个条件是:_______________,并给予证明. 答案:解法一:添加条件:AE =AF , ……2分证明:在△AED 与△AFD 中,∵AE =AF ,……1分 ∠EAD =∠FAD ,……1分 AD =AD ,……1分∴△AED ≌△AFD (SAS ). ……1分解法二:添加条件:∠EDA =∠FDA ,……2分证明:在△AED 与△AFD 中, ∵∠EAD =∠FAD ,……1分AD =AD ,……1分 ∠EDA =∠FDA ,……1分∴△AED ≌△AFD (ASA ). ……1分 解法三:添加条件:∠DEA =∠DFA 略……6分7(河南省信阳市二中)(9分)已知:如图,四边形ABCD 是平行四边形,延长BC 到E ,使AE =AB ,连接AC 、DE .(1)写出图中三对你认为全等的三角形(不再添加其他字母和辅助线); (2)选择你在(1)中写出的任意一对全等三角形进行证明. A D B CE M第1题图 B D CAEF、答案:( 1)①△ABC ≌△CDA ;②△ACE ≌△DEC ;③△CAD ≌△EDA ;④△ABC ≌△EAD .……………………………………………………………………3分 (2)证明:△ABC ≌△CDA . ………………………………………………………4分 ∵四边形ABCD 是平行四边形,∴AD =BC ,∠DAC =∠BCA .…………………………………………………………6分 又∵AC =CA ,∴△ABC ≌△CDA (SAS ).…………………………………………………………9分 8、(2012年4月韶山市初三质量检测)如图,矩形ABCD 中,点P 是线段AD 上一动点,O 为BD 的中点, PO 的延长线交BC 于Q. (1)求证:△ P O D ≌ △Q O B ;(2)若AD=8厘米,AB=6厘米,P 从点A 出发,以1厘米/秒的速度向D 运动(不与D 重合).设点P 运动时间为t 秒,请用t 表示PD 的长;并求t 为何值时,四边形P B Q D 是菱形.【答案】(1)证明: 四边形ABCD 是矩形, ∴AD ∥BC , ∴∠PDO=∠QBO ,又OB=OD ,∠POD=∠QOB , ∴△POD ≌△QOB (2)解法一: PD=8-t∵四边形ABCD 是矩形,∴∠A=90°,∵AD=8cm ,AB=6cm ,∴BD=10cm ,∴OD=5cm. 当四边形PBQD 是菱形时, PQ ⊥BD ,∴∠POD=∠A ,又∠ODP=∠ADB , ∴△ODP ∽△ADB ,C EDB∴OD AD PD BD =,即58810t =-,解得74t =,即运动时间为74秒时,四边形PBQD 是菱形. 解法二:PD=8-t当四边形PBQD 是菱形时,PB=PD=(8-t)cm ,∵四边形ABCD 是矩形,∴∠A=90°,在RT △ABP 中,AB=6cm , ∴222AP AB BP +=, ∴2226(8)t t +=-, 解得74t =,即运动时间为74秒时,四边形PBQD 是菱形.9、(2012年北京市顺义区一诊考试)已知:如图,在ABC △中,AB=AC ,点D 、E 在BC 上,且BD=CE .求证:∠ADE =∠AED .证明:∵AB=AC ,∴B C ∠=∠.在△ABD 和△ACE 中,,,,AB AC B C BD CE =⎧⎪∠=∠⎨⎪=⎩∴ △ABD ≌△ACE . ∴ AD=AE .∴∠ADE =∠AED .10、(2012年北京市延庆县一诊考试)已知:如图,□ABCD 中,点E 是AD 的中点,延长CE 交BA 的延长线于点F .求证:AB =AF .证明:∵四边形ABCD 是平行四边形,∴AB ∥CD 且AB=CD . ∴∠F =∠2, ∠1=∠D . ∵E 为AD 中点, ∴AE =ED .在△AEF 和△DEC 中 ECBA EBCDAF21F D AE ED ∠=∠⎧⎪∠=∠⎨⎪=⎩,,, ∴△AEF ≌△DEC . ∴AF =CD .∴AB =AF .11、(2012双柏县学业水平模拟考试)如图,四边形ABCD 的对角线AC 与BD 相交于O 点,∠1=∠2,∠3=∠4.求证:OB =OD .答案 :证明:在△ABC 和≌△ADC 中∵ ∠1=∠2 AC =AC ∠3=∠4 ∴ △ABC ≌△ADC ∴ AB =AD∴ △ABD 是等腰三角形,且∠1=∠2 ∴ OB =OD12、(2012年4月韶山市初三质量检测)如图,矩形ABCD 中,点P 是线段AD 上一动点,O 为BD 的中点, PO 的延长线交BC 于Q. (1)求证:△ P O D ≌ △Q O B ;(2)若AD=8厘米,AB=6厘米,P 从点A 出发,以1厘米/秒的速度向D 运动(不与D 重合).设点P 运动时间为t 秒,请用t 表示PD 的长;并求t 为何值时,四边形P B Q D 是菱形.【答案】(1)证明: 四边形ABCD 是矩形, ∴AD ∥BC , ∴∠PDO=∠QBO ,又OB=OD ,∠POD=∠QOB , ∴△POD ≌△QOB (2)解法一: PD=8-t∵四边形ABCD 是矩形,∴∠A=90°,∵AD=8cm ,AB=6cm ,∴BD=10cm ,∴OD=5cm. 当四边形PBQD 是菱形时, PQ ⊥BD ,∴∠POD=∠A ,又∠ODP=∠ADB , ∴△ODP ∽△ADB , DCB A O 12 3 4∴OD AD PD BD =,即58810t =-,解得74t =,即运动时间为74秒时,四边形PBQD 是菱形. 解法二:PD=8-t当四边形PBQD 是菱形时,PB=PD=(8-t)cm ,∵四边形ABCD 是矩形,∴∠A=90°,在RT △ABP 中,AB=6cm , ∴222AP AB BP +=, ∴2226(8)t t +=-, 解得74t =,即运动时间为74秒时,四边形PBQD 是菱形.13、(2012年北京市顺义区一诊考试)已知:如图,在ABC △中,AB=AC ,点D 、E 在BC 上,且BD=CE .求证:∠ADE =∠AED .证明:∵AB=AC ,∴B C ∠=∠.在△ABD 和△ACE 中,,,,AB AC B C BD CE =⎧⎪∠=∠⎨⎪=⎩∴ △ABD ≌△ACE . ∴ AD=AE .∴∠ADE =∠AED .14、(2012年北京市延庆县一诊考试)已知:如图,□ABCD 中,点E 是AD 的中点,延长CE 交BA 的延长线于点F .求证:AB =AF .证明:∵四边形ABCD 是平行四边形,∴AB ∥CD 且AB=CD . ∴∠F =∠2, ∠1=∠D . ∵E 为AD 中点, ∴AE =ED .在△AEF 和△DEC 中 ECBA EBCDAF21F D AE ED ∠=∠⎧⎪∠=∠⎨⎪=⎩,,, ∴△AEF ≌△DEC . ∴AF =CD . ∴AB =AF .15、(杭州市2012年中考数学模拟)如图,已知:点B 、E 、C 、F 在同一直线上,AB =DE ,∠A =∠D ,AC ∥DF .求证: BE =CF . 答案:证明:∵AC ∥DF ∴∠ACB =∠F在△ABC 与△DEF 中ACB F A DAB DE ∠=∠⎧⎪∠=∠⎨⎪=⎩∴ △ABC ≌△DEF ∴ BC = EF∴ BC –EC = EF –EC 即BE = CF 16.(杭州市2012年中考数学模拟)如图,在边长为6的正方形ABCD 中,点P 在AB 上从A 向B 运动,连接DP 交AC 于点,Q 连接.BQ⑴ 试证明:无论点P 运动到AB 上何处时,都有;ADQ ABQ ∆≅∆⑵ 当ADQ ∆的面积与正方形ABCD 面积之比为1:6时,求BQ 的长度,并直接写出....此时点P 在AB 上的位置. C D Q答案:(1) 证明:在正方形ABCD 中,AD AB DAQ BAQ AQ AQ =⎧⎪∠=∠⎨⎪=⎩∴ADQ ABQ ∆≅ (2) 解:∵ADQ ∆的面积与正方形ABCD 面积之比为1:6且正方形面积为36∴ADQ ∆的面积为6过点Q 作QE AD ⊥于,E QF AB ⊥于,F ∵ADQ ABQ ∆≅ ∴QE QF = ∴162AD QE ⋅= ∴2QE QF ==∵90BAD QEA QFA ∠=∠=∠=∴四边形AEQF 为矩形 ∴2AF QE ==∴624BF =-=在Rt QBF ∆中,BQ ===此时P 在AB 的中点位置(或者回答此时3AP =)17. (杭州市2012年中考数学模拟)如图:在平面直角坐标系中,现将一块等腰直角三角板ABC 放在第二象限,斜靠在两坐标轴上,与两坐标轴交点为点A 和点C ,与抛物线2y ax ax b =++交于点B ,其中点A (0,2),点B (– 3,1),抛物线与y 轴交点D (0,– 2).(1) 求抛物线的解析式; (2) 求点C 的坐标;(3) 在抛物线上是否还存在点P (点B 除外),使△ACP 仍然是以AC 为直角边的等腰直角三角形?若存在,求所有点P 的坐标;若不存在,请说明理由.答案:解:(1) 将(–3,1),(0,–2)代入得:1193222a a b a b b ⎧=-+=⎧⎪⎪⎨⎨-=⎪⎪⎩=-⎩解得 ABCD PQEF∴ 抛物线的解析式为:211222y x x =+- (2) 过B 作BE ⊥x 轴于E ,则E (–3,0),易证△BEC ≌△COA∴ BE = AO = 2 CO = 1 ∴ C (–1,0)(3) 延长BC 到P ,使CP = BC ,连结AP ,则△ACP 为以AC 为直角边的等腰直角三角形 过P 作PF ⊥x 轴于F ,易证△BEC ≌△DFC ∴ CF = CE = 2 PF= BE = 1 ∴ P (1,– 1)将(1,– 1)代入抛物线的解析式满足 若90CAP ∠=︒,AC = AP 则四边形ABCP 为平行四边形过P 作PG ⊥y 轴于G ,易证△PGA ≌△CEB ∴ PG = 2 AG = 1 ∴ P (2,1)在抛物线上∴ 存在P (1,– 1),(2,1)满足条件18.(海南省2012年中考数学科模拟)(本题满分11分)如图,在正方形ABCD 中,E 是AB 边上任意一点,BG ⊥CE ,垂足为点O,交AC 于点F ,交AD 于点G 。
2011年中考数学试题分类汇编_
-y
2011
=
. .
6. (2011 山东威海,13,3 分)计算 ( 50 8) 2 的结果是
8. (2011 浙江台州,11,5 分)若二次根式 x 1 有意义,则 x 的取值范围是 9. (2011 江苏泰州,9,3 分)16 的算术平方根是 10. (2011 山东聊城,13,3 分)化简: 20- 5 =_____________. 11. ( 2011 四川内江,加试 1 , 6 分)若 m 是 .
20. (2011 广东茂名,12,3 分)已知:一个正数的两个平方根分别 是 2a 2 和 a 4 ,则
a 的值是
. . .
2
y
21. (2011 广东肇庆,11,3 分)化简: 12 = 22. (2011 江苏盐城,9,3 分)27 的立方根为
23. (2011 内蒙古乌兰察布,13,4 分) x 1 y 2011 0则x =
24. (2011 广东中山,8,4 分)计算 (3 48 2 27) 3 =______ 25. ( 2011 湖 北 鄂 州 , 3 , 3 分 ) 要 使 式 子 _________________ 26. (2011 山东枣庄,16,4 分)对于任意不相等的两个实数 a、b,定义运算※如下:
2 2
.
2011 5 4 3 ,则 m 2 m 2011m 的值 2012 1
12. (2011 四川内江,加试 3,6 分)已知 6 3m (n 5) 3m 6 (m 3)n ,则
m n
. .
13. (2011 重庆綦江,12,4 分)若 2x 1 有意义,则 x 的取值范围是 14. (2011 江苏南京,9,2 分)计算 ( 2 1)(2 2) =_______________. 12. (2011 江苏南通,12,3 分)计算:
2011全国各省市中考数学试题分类汇编-—有理数
2011全国各省市中考数学试题分类汇编-—有理数(附答案) 一. 选择题1.(2011安徽中考)1. -2,0,2,-3这四个数中最大的是…………………【 】A.-1B.0C.1D.22.(2011广东中考)1.-2的倒数是( )A .2B .-2C .21 D .21-3.(2011扬州市中考)1.-5的倒数是( )A .-5B .5C .- 15D .154.(2011广东茂名市中考)1、计算:0)1(1---的结果正确..的是( ) A .0 B .1 C .2 D .2-5.(2011武汉市中考)1.有理数-3的相反数是( ) A.3. B.-3. C.31 D.31-.6.(2011连云港市中考)1.-2的相反数是( )A .2B .-2C . 2D .127.(2011苏州市中考)1.12()2⨯-的结果是( )A .-4B .-1C .14- D .328.(2011宿迁市中考)1.下列各数中,比0小的数是(▲)A .-1B .1C .2D .π9.(2011泰州市中考)1.21-的相反数是( )A .21- B .21 C .2 D .2-10.(2011大连市中考)1.-12的相反数是 ( ) A .-2 B .-12C .12D .211.(2011赤峰市中考)1.下列计算正确的是( )(A )088=--)( (B )1221=⨯)()(--(C )011--=() (D )22-|-|=12.(2011德州市中考)1.下列计算正确的是( )(A )088=--)( (B )1221=⨯)()(-- (C )011--=() (D )22-|-|=13.(2011菏泽市中考)1. -32的倒数是( )A.32B.23C.32- D.23-14.(2011·济宁中考)1、计算 -1-2的结果是( ) A.-1 B.1 C.-3 D. 315.(2011泰安市中考)1. 54-的倒数是( )(A )54 (B )45 (C )54- (D )45-16.(2011乐山市中考)1.小明家冰箱冷冻室的温度为-5℃,调高4℃后的温度为( )(A )4℃ (B )9℃ (C )-1℃ (D )-9℃17.(2011温州市中考)1、计算:2)1(+-的结果是( ) A 、-1 B 、1 C 、-3 D 、318.(2011无锡市中考)1.︳-3︳的值等于 ( ▲ ) A .3 8.-3 C .±3 D .319.(2011无锡市中考)2.若a>b ,则 ( ▲ ) A .a>-b B .a<-b C .-2a>-2b D .-2a<-2b20.(2011舟山市中考)1.-6的绝对值是( ▲ ) (A )-6(B )6(C )61 (D )61-21.(2011金华市中考)1.下列各组数中,互为相反数的是( ▲ )A .2和-2B .-2和12C .-2和12-D .12和222.(2011金华市中考)4.有四包真空小包装火腿,每包以标准克数(450克)为基准,超过的克数记作正数,不足的克数记作负数,以下数据是记录结果,其中表示实际克数最接近标准克数的是( ▲ )A .+2B .-3C .+3D .+423.(2011宁波市中考)1.下列各数中是正整数的是( )A .-1B . 2C .0.5D . 224.(2011台州市中考)1.在12、0、1、-2这四个数中,最小的数是【 】A .1 2B .0C .1D .-225.(2011盐城市中考)1.-2的绝对值是( )A .-2B .- 12C .2D .1226.(2011杭州市中考)3. =⨯36)102(( )A. 9106⨯B. 9108⨯C. 18102⨯ D. 18108⨯27.(2011重庆市中考)1.在-6,0,3,8这四个数中,最小的数是( ) A . -6 B .0 C .3 D . 828.(2011台湾中考)2.計算33)4(7-+之值為何?( ) (A) 9 (B) 27 (C) 279 (D) 40729.(2011台湾中考)12.判斷312是96的幾倍?( ) (A) 1 (B) (31)2(C) (31)6 (D) (-6)230.(2011台北市中考)1.图(一)数在线的O 是原点,A 、B 、C 三点所表示的数分别为a 、b 、c 。
中考数学备考专题复习 全等三角形(含解析)-人教版初中九年级全册数学试题
全等三角形一、单选题(共12题;共24分)1、下图中,全等的图形有()A、2组B、3组C、4组D、5组2、使两个直角三角形全等的条件是()A、一锐角对应相等B、两锐角对应相等C、一条边对应相等D、两条直角边对应相等3、下列说法错误的是()A、等腰三角形两腰上的中线相等B、等腰三角形两腰上的高线相等C、等腰三角形的中线与高重合D、等腰三角形底边的中线上任一点到两腰的距离相等4、如图,某同学把一块三角形的玻璃打破成了三块,现在他要到玻璃店去配一块完全一样形状的玻璃,那么最省事的办法是带()去配.A、①B、②C、③D、①和②5、长为1的一根绳,恰好可围成两个全等三角形,则其中一个三角形的最长边x 的取值X围为()A、B、C、D、6、已知等腰三角形一腰上的高线等于腰长的一半,那么这个等腰三角形的一个底角等于()A、15°或75°B、15°C、75°D、150°和30°7、如图,x的值可能为()A、10B、9C、7D、68、如图,△A BC中,AB=AC , EB=EC ,则由“SSS”可以判定()A、△ABD≌△ACDB、△ABE≌△ACEC、△BDE≌△CDED、以上答案都不对9、如果线段AB=3cm,BC=1cm,那么A、C两点的距离d的长度为()A、4cmB、2cmC、4cm或2cmD、小于或等于4cm,且大于或等于2cm10、(2016•滨州)如图,△ABC中,D为AB上一点,E为BC上一点,且AC=CD=BD=BE,∠A=50°,则∠CDE的度数为()A、50°B、51°C、51.5°D、52.5°11、(2016•某某)如图,已知∠ABC=∠BAD,添加下列条件还不能判定△ABC≌△BAD的是()A、AC=BDB、∠CAB=∠DBAC、∠C=∠DD、BC=AD12、如图,在△ABC中,∠A=20°,∠ABC与∠ACB的角平分线交于D1,∠ABD1与∠ACD1的角平分线交于点D2,依此类推,∠ABD4与∠ACD4的角平分线交于点D5,则∠BD5C的度数是()A、24°B、25°C、30°D、36°二、填空题(共5题;共6分)13、若△ABC≌△EFG,且∠B=60°,∠FGE-∠E=56°,,则∠A=________度.14、如图,BE,CD是△ABC的高,且BD=EC,判定△BCD≌△CBE的依据是“________”.15、如图,△ABC≌△ADE,∠B=100°,∠BAC=30°,那么∠AED=________°.16、如果△ABC 和△DEF 全等,△DEF 和△GHI 全等,则△ABC 和△GHI________全等,如果△ABC 和△DEF 不全等,△DEF 和△GHI 全等,则△A BC 和△GHI________全等.(填“一定”或“不一定”或“一定不”)17、(2016•某某)如图,在边长为4的正方形ABCD 中,P 是BC 边上一动点(不含B 、C 两点),将△ABP 沿直线AP 翻折,点B 落在点E 处;在CD 上有一点M ,使得将△CMP 沿直线MP 翻折后,点C 落在直线PE 上的点F 处,直线PE 交CD 于点N ,连接MA ,NA .则以下结论中正确的有________(写出所有正确结论的序号) ①△CMP∽△BPA;②四边形AMCB 的面积最大值为10;③当P 为BC 中点时,AE 为线段NP 的中垂线; ④线段AM 的最小值为2;⑤当△ABP≌△ADN 时,BP=4﹣4.三、综合题(共6题;共66分)18、如图,分别以Rt△ABC 的直角边AC 及斜边AB 向外作等边△ACD 及等边△ABE.已知∠BAC=30°,EF⊥AB,垂足为F ,连接DF .(1)试说明AC=EF ;(2)求证:四边形ADFE 是平行四边形.19、已知:如图,在正方形ABCD 中,G 是CD 上一点,延长BC 到E ,使CE=CG ,连接BG 并延长交DE 于F .(1)求证:△BCG≌△DCE;(2)将△DC E 绕点D 顺时针旋转90°得到△DAE′,判断四边形E′BGD 是什么特殊四边形,并说明理由。
2011年全国各地中考数学真题分类汇编
) .
D.x ≤ -2.
【答案】C 30. (2011 湖北黄石,10,3 分)已知梯形 ABCD 的四个顶点的坐标分别为 A(-1,0),B (5,0),C(2,2),D(0,2),直线 y=kx+2 将梯形分成面积相等的两部分,则 k 的值为 A. -
2 3
B. -
2 9
C. -
4 7
D. -
2 7
【答案】B 3. (2011 广东广州市,9,3 分)当实数 x 的取值使得 x-2有意义时,函数 y=4x+1 中 y 的取值范围是( ). A.y≥-7 B.y≥9 C.y>9 D.y≤9 【答案】B 4. (2011 山东滨州,6,3 分)关于一次函数 y=-x+1 的图像,下列所画正确的是( )
【答案】A 25. (2011 四川乐山 3,3 分)下列函数中,自变量 x 的取值范围为 x<1 的是 A. y 【答案】 D 26. (2011 四川乐山 8,3 分)已知一次函数 y ax b 的图象过第一、二、四象限,且与 x 轴交于点(2,0),则关于 x 的不等式 a( x 1) b 0 的解集为 A.x<-1 【答案】A B.x> -1 C. x>1 D.x<1
x 中自变量x的取值范围是( x 1
)
33. (2011贵州安顺,7,3分)函数x≠l C.x<0 D.x≥0且 x≠l 【答案】D 34. (2011 河北,5,2 分)一次函数 y=6x+1 的图象不经过( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 【答案】D 35.. (2011 浙江绍兴,9,4 分)小敏从 A 地出发向 B 地行走,同时小聪从 B 地出发向 A 地行走, 如图所示, 相交于点 P 的两条线段 l1、l2 分别表示小敏、 小聪离 B 地的距离 y (km)
2011年全国各地市中考数学模拟试题分类汇编--31.解直角三角形的应用
解直角三角形的应用一、选择题A 组1. (2011年北京四中中考全真模拟15)从小明家到学校有两条路。
一条沿北偏东45度方向可直达学校前门,另一条从小明家一直往东,到商店处向正北走200米,到学校后门。
若两条路的路程相等,学校南北走向。
学校的后门在小明家北偏东67.5度处。
学校从前门到后门的距离是( )米.;D.200米 答案:B2.(2011.河北廊坊安次区一模)如图4,市政府准备修建一座高AB =6m 的过街天桥,已知天桥的坡面AC 与地面BC 的夹角∠ACB 的余弦值为45,则坡面AC 的长度为 A .152m B .10 m Cm D.2m 答案:B3. (2011浙江省杭州市10模)如图,小亮同学在晚上由路灯A 走向路灯B ,当他走到点P 时,发现他的身影顶部正好接触路灯B 的底部,这时他离路灯A 25米,离路灯B 5米,如果小亮的身高为1.6米,那么路灯高度为 ( ▲ ) A .6.4米 B . 8米 C .9.6米 D . 11.2米 答案:C(第3题)第2题图4. (浙江省杭州市瓜沥镇初级中学2011年中考数学模拟试卷) 如图所示,平地上一棵树高为6米,两次观察地面上的影子,•第一次是当阳光与地面成60°时,第二次是阳光与地面成30°时,第二次观察长…………………( )A. B. 3- 3答案:B5.(河北省中考模拟试卷)石家庄市在“三年大变样”城中村改造建设中,计划在一块如图所示的三角形空地上种植某种草皮以美化环境,已知这种草皮每平方米售价a 元,则购买这种草皮至少需要……( )A .450a 元B .225a 元C .150a 元D .300a 元 答案:CB 组1.(2011杭州上城区一模)Rt △ABC 中,∠C =90°,a 、b 、c 分别是∠A 、∠B 、∠C 的对 边,那么c 等于( )A.cos sin a A b B +B.sin sin a A b B +C.sin sin a b A B +D.cos sin a b A B +答案:B2.(2011浙江杭州义蓬一中一模)如图,小明发现电线杆AB 的影子落在土坡的坡面CD 和地面BC 上,量得CD=8米,BC=20米,CD 与地面成30º角,且此时测得1米杆的影长为2米,则电线杆的高度为( )A .14米B .28米C .314+米D .3214+米 答案:D3.(安徽芜湖2011模拟)小明沿着坡度为1:2的山坡向上走了1000m ,则他升高了 ( )A .500mB .5200mC .3500mD .1000m 答案: B4.(浙江杭州进化2011一模)如图折叠直角三角形纸片的直角,使点C 落在斜边AB 上的点E 处. 已知AB=38, ∠B=30°, 则DE 的长是( ). A. 6 B. 4 C. 34 D. 23第5题(第1题)答案: B5、(2011年北京四中34模)如图,矩形ABCD 中,AB>AD ,AB=a ,过点A 作射线AM ,使得∠DAM=60°,DE ⊥AM 与E ,DF ⊥AM 与F ,则DE+CF 的值是7.13=)( ) A .a B . a 2017 C .a 275 D . 2a答案:D6.(2011年浙江省杭州市模2)如图,在菱形ABCD 中,DE ⊥AB ,3cos 5A =,BE=2,则tan ∠DBE 的值是( )A.12B .2 C答案:B二、填空题A 组1、(2011年北京四中模拟28)如图,一人乘雪橇沿坡比172米,那么他下降的高度为 __米. 答案:362. (2011浙江杭州模拟7)如图为护城河改造前后河床的横断面示意图,将河床原竖直迎水面BC 改建为坡度1:0.5的迎水坡AB ,已知AB=4 5 米,则河床 面的宽减少了_______ 米.(即求AC 的长)A CB.5 i 1:(第2题图)答案:43. (2011浙江省杭州市8模)如图,小明在A 时测得某树的影长为3米,B 时又测得该树的影长为12米,若两次日照的光线互相垂直,则树的高度为_____米.答案:64.(2011年宁夏银川)为了测量水塔的高度,取一根竹杆放在阳光下,已知2米长的竹杆投影长为1.5米,在同一时刻测得水塔的投影长为30米,则水塔高为_________米. 答案:40 B 组1.(2011灌南县新集中学一模)在△ABC 中,∠C =90°,AB =20,cosB =14,则BC 等于 . 答案:52.(2011灌南县新集中学一模)如图,在△ABC 中,∠C =90°,AC =8,CB =6,在斜边AB 上取一点M ,使MB =CB ,过M 作MN ⊥AB 交AC 于N ,则MN = .答案: 33. (河南新乡2011模拟)如图,甲、乙两楼相距20米,甲楼高20米,小明站在距甲楼10米的A 处目测得点A 与甲、乙楼顶B C 、刚好在同一直线上,若小明的身高忽略不计,则乙楼的高度是 米. 答案:60米(第3题)A 时B 时 (第2题图)NMCBA4、(北京四中2011中考模拟13)如图,沿倾斜角为30º的山坡植树, 要求相邻两棵树间的水平距离AC 为m 2,那么相邻两棵树的斜坡距离 AB 约为_________m ;(结果精确到0.1m ,可能用到的数据:3≈1.732, 2≈1.414).答案:约为3.25.(北京四中2011中考模拟14)如图:为了测量河对岸旗杆AB 的高度,在 点C 处测得顶端A 的仰角为30°,沿CB 方向前进20m 达到D 处,在D 点测得 旗杆顶端A 的仰角为45°,则旗杆AB 的高度为__________m.(精确到0.1m)答案:27.36. (2011深圳市模四) 如图所示,太阳光线与地面成60°角,一棵倾斜的大树与地面成30°角,•这时测得大树在地面上的影子约为10米,则大树的高约为________米.(•保留根号) 答案:3107、(2011年北京四中33模)如图所示,某河堤的横断面是梯形ABCD ,BC//AD ,迎水坡AB 长10m ,且34tan =∠BAE ,则河堤的高BE 为 m 。
2011年全国各地100份中考数学试卷分类汇编实数
2011年全国各地100份中考数学试卷分类汇编第2章 实数一、选择题1. (2011福建泉州,1,3分)如在实数0,-3,32-,|-2|中,最小的是( ). A .32-B . -3C .0D .|-2|【答案】B2. (2011广东广州市,1,3分)四个数-5,-0.1,12,3中为无理数的是( ).A. -5B. -0.1C. 12D. 3【答案】D3. (2011山东滨州,1,3分)在实数π、13、2、sin30°,无理数的个数为( ) A.1 B.2 C.3 D.4 【答案】B4. (2011福建泉州,2,3分)(-2)2的算术平方根是( ).A . 2B . ±2C .-2D .2【答案】A5. (2011四川成都,8,3分)已知实数m 、n 在数轴上的对应点的位置如图所示,则下列判断正确的是 (A)0>m (B)0<n (C)0<mn (D)0>-n m0m1n【答案】C6. (2011江苏苏州,1,3分)2×(-21)的结果是( ) A.-4 B.-1 C. -41 D.23【答案】B7. (2011山东济宁,1,3分)计算 ―1―2的结果是 A .-1 B .1 C .- 3 D .3 【答案】C8. (2011四川广安,2,3分)下列运算正确的是( ) A .(1)1x x --+=+ B .954-=C .3223-=- D .222()a b a b -=-【答案】C9. ( 2011重庆江津, 1,4分)2-3的值等于( ) A.1 B.-5 C.5 D.-1· 【答案】D ·10. (2011四川绵阳1,3)如计算:-1-2=A.-1B.1C.-3D.3 【答案】C11. (2011山东滨州,10,3分)在快速计算法中,法国的“小九九”从“一一得一”到“五五二十五”和我国的“小九九”算法是完全一样的,而后面“六到九”的运算就改用手势了.如计算8×9时,左手伸出3根手指,右手伸出4根手指,两只手伸出手指数的和为7,未伸出手指数的积为2,则8×9=10×7+2=72.那么在计算6×7时,左、右手伸出的手指数应该分别为 ( )[来源:] A.1,2 B.1,3 C.4,2 D.4,3 【答案】A12. (2011湖北鄂州,10,3分)计算()221222-+---1(-)=( ) A .2 B .-2 C .6 D .10【答案】A13. (2011山东菏泽,6,3分)定义一种运算☆,其规则为a ☆b =1a +1b,根据这个规则、计算2☆3的值是A . 56B . 15C .5D .6【答案】A14. (2011四川南充市,5,3分) 下列计算不正确的是( )(A )31222-+=- (B )21139⎛⎫-= ⎪⎝⎭ (C )33-= (D )1223= 【答案】A15. (2011浙江温州,1,4分)计算:(一1)+2的结果是( ) A .-1 B .1 C .-3 D .3 【答案】B16. (2011浙江丽水,4,3分)有四包真空小包装火腿,每包以标准克数(450克)为基数,超过的克数记作正数,不足的克数记作负数,以下数据是记录结果,其中表示实际克数最接近标准克数的是( ) A .+2 B .-3 C .+3 D .+4 【答案】A17. (2011台湾台北,2)计算(-3)3+52-(-2)2之值为何?A .2B . 5C .-3D .-6 【答案】D18. (2011台湾台北,11)计算45.247)6.1(÷÷--之值为何?A .-1.1B .-1.8C .-3.2D .-3.9【答案】C19. (2011台湾台北,19)若a 、b 两数满足a 567⨯3=103,a ÷103=b ,则b a ⨯之值为何?A .9656710B .9356710C .6356710 D .56710[来源:学科网ZXXK] 【答案】C20.(2011四川乐山1,3分)小明家冰箱冷冻室的温度为-5℃,调高4℃后的温度为A .4℃B .9℃C .-1℃D .-9℃ 【答案】 C21. (2011湖北黄冈,10,3分)计算()221222-+---1(-)=( ) A .2 B .-2 C .6 D .10 【答案】A22. (2011湖北黄石,2,3分)黄石市2011年6月份某日一天的温差为11o C ,最高气温为t o C ,则最低气温可表示为A. (11+t )oCB.(11-t ) oCC.(t -11) oCD. (-t -11) oC 【答案】C23. (2011广东茂名,1,3分)计算:0)1(1---的结果正确..的是 A .0 B .1C .2D .2-【答案】D24. (2011山东德州1,3分)下列计算正确的是(A )088=--)( (B )1221=⨯)()(-- (C )011--=() (D )22-|-|= 【答案】B25. (2011河北,1,2分)计算03的结果是( ) A .3B .30C .1D .0【答案】C26. (2011湖南湘潭市,1,3分)下列等式成立是 A. 22=- B. 1)1(-=-- C.1÷31)3(=- D.632=⨯- 【答案】A27.(2011台湾全区,2)计算33)4(7-+之值为何?A .9B . 27C . 279D . 407【答案】C28. (2011台湾全区,12)12.判断312是96的几倍?A . 1B . (31)2C . (31)6 D . (-6)2 【答案】A29. (2011台湾全区,14)14.计算)4(433221-⨯++之值为何?A .-1B .-611C .-512D .-323 【答案】B30. (2011湖南常德,9,3分)下列计算错误的是( )A.020111=B.819=±C.1133-⎛⎫= ⎪⎝⎭D.4216=【答案】B31. (2011湖北襄阳,6,3分)下列说法正确的是A.0)2(π是无理数B.33是有理数 C.4是无理数 D.38-是有理数【答案】D32.(20011江苏镇江,1,2分)在下列实数中,无理数是( ) A.2 B.0 C.5 D.13答案【 C 】33. (2011贵州贵阳,6,3分)如图,矩形OABC 的边OA 长为2 ,边AB 长为1,OA 在数轴上,以原点O 为圆心,对角线OB 的长为半径画弧,交正半轴于一点,则这个点表示的实数是(第6题图)(A )2.5 (B )2 2 (C ) 3 (D ) 5 【答案】D34(2011湖北宜昌,5,3分)如图,数轴上A ,B 两点分别对应实数a ,b ,则下列结论正确的是( )A . a < b B.a = b C. a > b D .ab > 0(第5题图)【答案】C35. (2011广东茂名,9,3分)对于实数a 、b ,给出以下三个判断: ①若b a =,则 b a =. ②若b a <,则 b a <.③若b a -=,则 22)(b a =-.其中正确的判断的个数是 A .3 B .2 C .1 D .0 【答案】C二、填空题1. (2011安徽,12,5分)根据里氏震级的定义,地震所释放的相对能量E 与震级n 的关系为E =10n ,那么9级地震所释放的相对能量是7级地震所释放的相对能量的倍数是 . 【答案】1002. (2011广东省,8,4分)按下面程序计算:输入x =3,则输出的答案是__ _ .【答案】263. (2011山东日照,13,4分)计算sin30°﹣2-= . 【答案】23-; 4. (2011四川南充市,11,3分)计算(π-3)0= .【答案】15. (2011江西,9,3分)计算:-2-1= .[来源:学科网ZXXK] 【答案】-36. (2011湖南常德,8,3分)先找规律,再填数:1111111111111111,,,,122342125633078456............111+_______.2011201220112012+-=+-=+-=+-=-=⨯则 【答案】110067. (2011江苏连云港,13,3分)如图,是一个数值转换机.若输入数为3,则输出数是______.【答案】658. (2011江西南昌,9,3分)计算:-2-1= . 【答案】-3输入数 ( )2-1 ( )2+1 输出数 减去59. (2011湖南怀化,11,3分)定义新运算:对任意实数a 、b ,都有ab=a 2-b,例如,32=32-2=7,那么21=_____________. 【答案】310.(2011安徽,14,5分)定义运算a ✞b=a (1-b ),下面给出了关于这种运算的几个结论:①2✞(-2)=6 ②a ✞b= b ✞ a[来源:学,科,网Z,X,X,K]③若a +b=0,则(a ✞ a )+(b ✞ b )=2 ab ④若a ✞b=0,则a =0其中正确结论的序号是 .(在横线上填上你认为所有正确结论的序号) 【答案】①③11. (2011广东汕头,8,4分)按下面程序计算:输入x =3,则输出的答案是__ _ .【答案】2612. (20011江苏镇江,9,2分)计算:-(-12)=______;12-=______;012⎛⎫- ⎪⎝⎭=______; 112-⎛⎫- ⎪⎝⎭=_______. 答案:12,12,1,-2 13.(2011广东湛江20,4分)已知:23233556326,54360,5432A A A A =⨯==⨯⨯==⨯⨯⨯=, ,观察前面的计算过程,寻找计算规律计算27A = (直接写出计算结果),并比较59A 310A (填“>”或“<”或“=”)【答案】>14. (2010湖北孝感,17,3分)对实数a 、b ,定义运算★如下:a ★b=(,0)(,0)bb a a b a a a b a -⎧>≠⎪⎨≤≠⎪⎩,例如2★3=2-3=18.计算[2★(﹣4)]×[(﹣4)★(﹣2)] 【答案】115. (2011湖南湘潭市,16,3分)规定一种新的运算:ba b a 11+=⊗,则=⊗21____. 【答案】112三、解答题1. (2011浙江金华,17,6分)计算:|-1|-128-(5-π)0+4cos45°.【解】原式=1-12×22-1+4×22=1-2-1+22=2.2. (2011广东东莞,11,6分)计算:001(20111)18sin452--+-【解】原式=1+2322⨯-4 =03. (1) (2011福建福州,16(1),7分)计算:016|-4|+2011- 【答案】解:原式414=+-1=[来源:Z|xx|]4. (2011江苏扬州,19(1),4分)(1)30)2(4)2011(23-÷+---【答案】(1)解:原式=)8(4123-÷+-=21123--=0 5. (2011山东滨州,19,6分)计算:()1013-3cos3012 1.22π-︒⎛⎫+-++- ⎪⎝⎭【答案】解:原式=332123122=23--++-+6. (2011山东菏泽,15(1),6分)计算:027(4)6cos302--π-+- 解:原式=333-16+22-⨯=1 7. (2011山东济宁,16,5分)计算:084sin 45(3)4-︒+-π+-【答案】.解:原式2224142=-⨯++ 5=8. (2011山东济宁,18,6分)观察下面的变形规律:211⨯ =1-12; 321⨯=12-31;431⨯=31-41;…… 解答下面的问题:(1)若n 为正整数,请你猜想)1(1+n n = ;(2)证明你猜想的结论; (3)求和:211⨯+321⨯+431⨯+…+201020091⨯ .【答案】(1)111n n -+ ············································································································ 1分 (2)证明:n 1-11+n =)1(1++n n n -)1(+n n n =1(1)n nn n +-+=)1(1+n n . ·························· 3分(3)原式=1-12+12-31+31-41+…+20091-20101=12009120102010-=. ………………5分 9. (2011 浙江湖州,17,6)计算:0022sin304(2)π--++- 【答案】解:原式=1222142-⨯++= 10.(2011浙江衢州,17(1),4分) 计算:()0232cos 45π---+︒.【答案】解:(1)原式2212122=-+⨯=+ 11. (2011浙江绍兴,17(1),4分)(1)计算:0182cos454π--+︒+(-2);[来源:Z§xx§]【答案】解:原式21=221224-+⨯+ 3=32.4-12. (2011浙江省,17(1),4分)(1)计算:12)21(30tan 3)21(01+-+---【答案】(1)解:12)21(30tan 3)21(01+-+---= 3213332++⨯--=13-13. (2011浙江台州,17,8分)计算:203)12(1+-+- 【答案】解:原式= 1+1+9=1114. (2011浙江温州,17(1),5分)计算:20(2)(2011)12-+--; 【答案】解:20(2)(2011)124123523-+--=+-=-15. (2011浙江义乌,17(1),6分)(1)计算: 45sin 2820110-+;【答案】(1)原式=1+22-2=1+ 216. (2011广东汕头,11,6分)计算:001(20111)18sin452--+-【解】原式=1+2322⨯-4 =017. (2011浙江省嘉兴,17,8分)(1)计算:202(3)9+--. 【答案】原式=4+1-3=218. (2011浙江丽水,17,6分)计算:|-1|-128-(5-π)0+4cos45°.【解】原式=1-12×22-1+4×22=1-2-1+22=2.19. (2011福建泉州,18,9分)计算:()()2201131313272π-⎛⎫-+-⨯--+ ⎪⎝⎭.【答案】解:原式=3+(-1)⨯1-3+4…………………………(6分) =3…………………………(9分)20.(2011湖南常德,17,5分)计算:()317223-÷-⨯【答案】2921. (2011湖南邵阳,17,8分)计算:0201043-+-。
2011年全国各地中考数学试卷试题分类汇编——第17章《事件与概率》
1 9
B.
1 3
C.
2 3
D.
2 9
【答案】A 8. (2011 浙江绍兴,7,4 分)在一个不透明的盒子中装有 8 个白球,若干个黄球,它们除 颜色不同外,其余均相同.若从中随机摸出一个球,它是白球的概率为 ( ) A.2 【答案】B 9. (2011 浙江义乌,9,3 分)某校安排三辆车,组织九年级学生团员去敬老院参加学雷 锋活动, 其中小王与小菲都可以从这三辆车中任选一辆搭乘, 则小王与小菲同车的概率为 ( ) 1 A. 3 【答案】A 10. (2011 浙江省嘉兴,12,5 分)从标有 1 到 9 序号的 9 张卡片中任意抽取一张,抽到序 号是 3 的倍数的概率是 【答案】 . 1 B. 9 1 C. 2 2 D. 3 B.4 C.12 D.16
【答案】C 21. (2011 山东临沂,10,3 分)如图,A、B 是数轴上的亮点,在线段 AB 上任取一点 C, 则点 C 到表示-1 的点的距离不大于 ...2 的概率是( A. ) D.
1 2
B.
2 3
C.
3 4
4 5
【答案】D 22. (2011 四川凉山州,4,4 分)下列说法正确的是( A.随机抛掷一枚均匀的硬币,落地后反面一定朝上。 B.从 1,2,3,4,5 中随机取一个数,取得奇数的可能性较大。 C.某彩票中奖率为 36 0 0 ,说明买 100 张彩票,有 36 张中奖。 D.打开电视,中央一套正在播放新闻联播。 【答案】B 23. (2011 四川绵阳 3,3)掷一个质地均匀且六个面上分别刻有 1 到 6 的点数的正方体骰 子,如图.观察向上的ー面的点数,下列属必然事件的是 )
1 【答案】 3 2. (2011 浙江省舟山,12,4 分)从标有 1 到 9 序号的 9 张卡片中任意抽取一张,抽到序 号是 3 的倍数的概率是 【答案】 .
2011年中考数学试题精选汇编《全等三角形》
2011年中考数学试题精选汇编《三角形全等》一、选择题1. (2011安徽芜湖,6,4分)如图,已知A B C △中,45ABC ∠= , F 是高A D 和B E 的交点,4C D =,则线段D F 的长度为( ).A. B . 4 C. D.【答案】B2. (2011山东威海,6,3分)在△ABC 中,AB >AC ,点D 、E 分别是边AB 、AC 的中点,点F 在BC 边上,连接DE ,DF ,EF .则添加下列哪一个条件后,仍无法判定△BFD 与△EDF 全等( ).A . EF ∥AB B .BF =CFC .∠A =∠DFED .∠B =∠DFE【答案】C3. (2011浙江衢州,1,3分)如图,O P 平分,MON PA ON ∠⊥于点A ,点Q 是射线O M 上的一个动点,若2PA =,则PQ 的最小值为( )A.1B.2C.3D. 4O N【答案】B4. (2011江西,7,3分)如图下列条件中,不能..证明△ABD ≌△ACD 的是( ). A.BD =DC ,AB =AC B.∠ADB =∠ADCC.∠B =∠C ,∠BAD =∠CADD.∠B =∠C ,BD =DC第7题图【答案】D5. (2011江苏宿迁,7,3分)如图,已知∠1=∠2,则不一定...能使△ABD ≌△ACD 的条件是(▲)A .AB =AC B .BD =CD C .∠B =∠C D .∠ BDA =∠CDA【答案】B6. (2011江西南昌,7,3分)如图下列条件中,不能..证明△ABD ≌△ACD 的是( ). A.BD =DC ,AB =AC B.∠ADB =∠ADCC.∠B =∠C ,∠BAD =∠CADD.∠B =∠C ,BD =DC第7题图【答案】D7. (2011上海,5,4分)下列命题中,真命题是( ).(A)周长相等的锐角三角形都全等; (B) 周长相等的直角三角形都全等;(C)周长相等的钝角三角形都全等; (D) 周长相等的等腰直角三角形都全等.【答案】D8. (2011安徽芜湖,6,4分)如图,已知A B C △中,45ABC ∠=, F 是高A D 和B E 的交点,4C D =,则线段D F 的长度为( ).A .B . 4C .D .【答案】B9.10.二、填空题1. (2011江西,16,3分)如图所示,两块完全相同的含30°角的直角三角形叠放在一起,且∠DAB=30°。
2011年中考数学试题精选汇编《解直角三角形》
2011年中考数学试题精选汇编《解直角三角形》一、选择题1. (2011湖北武汉市,10,3分)如图,铁路MN和公路PQ在点O处交汇,∠QON=30°.公路PQ上A处距离O点240米.如果火车行驶时,周围200米以内会受到噪音的影响.那么火车在铁路MN上沿ON方向以72千米/时的速度行驶时,A处受噪音影响的时间为A.12秒. B.16秒. C.20秒. D.24秒.【答案】B2. (2011湖南衡阳,9,3分)如图所示,河堤横断面迎水坡AB的坡比是1BC=5m,则坡面AB的长度是()A.10m B.C.15m D.m【答案】A3. (2011山东东营,8,3分)河堤横断面如图所示,堤高BC=5米,迎水坡AB的坡比1:BC与水平宽度AC之比),则AC的长是()A.B.10米C.15米D.【答案】A4. (2010湖北孝感,10,3分)如图,某航天飞船在地球表面P点的正上方A处,从A处观测到地球上的最远点Q,若∠QAP=α,地球半径为R,则航天飞船距离地球表面的最近距离AP,以及P、Q两点间的地面距离分别是()A.sin R α,180Rπα B. sin R R α-,()90180R απ- C. sin R R α-,()90180R απ+ D. cos RR α-,()90180R απ- 【答案】B5. (2011宁波市,9,3分)如图,某游乐场一山顶滑梯的高为h ,滑梯的坡角为a ,那么滑梯长l 为A .h sin a B . h tan a C . h cos aD . h ·sin a 【答案】A6. (2011台湾台北,34)图(十六)表示一个时钟的钟面垂直固定于水平桌面上,其中分针上有一点A ,且当钟面显示3点30分时,分针垂直于桌面,A 点距桌面的高度为10公分。
如图(十七),若此钟面显示3点45分时,A 点距桌面的高度为16公分,则钟面显示3点50分时,A 点距桌面的高度为多少公分?[来源:学科网]A .3322-B .π+16C .18D .19【答案】D7. (2011山东潍坊,10,3分)身高相等的四名同学甲、乙、丙、丁参加风筝比赛,四人放出风筝的线长、线与地面的夹角如下表(假设风筝线是拉直的),则四名同学所放的风筝中最高的是( )同学 甲 乙 丙 丁 放出风筝线长 140m 100m 95m 90m 线与地面夹角 30° 45° 45° 60° A.甲 B.乙 C.丙 D.丁 【答案】D8. (2011四川绵阳10,3)周末,身高都为1.6米的小芳、小丽来到溪江公园,准备用她们所学的知识测算南塔的高度.如图,小芳站在A 处测得她看塔顶的仰角α为45°,小丽站在B 处测得她看塔顶的仰角β为30°.她们又测出A 、B 两点的距离为30米。
2011年全国各地中考数学试卷试题分类汇编——第19章《图形的展开与叠折》
2011年全国各地中考数学试卷试题分类汇编
第19章 图形的展开与叠折
1. (2011山东德州16,4分)长为1,宽为a 的矩形纸片(12
1<<a ),如图那样折一下,剪下一个边长等于矩形宽度的正方形(称为第一次操作);再把剩下的矩形如图那样折一下,剪下一个边长等于此时矩形宽度的正方形(称为第二次操作);如此反复操作下去.若在第n 此操作后,剩下的矩形为
正方形,则操作终止.当n =3时,
a 的值为_____________.
【答案】
35或34
2. (2011浙江绍兴,15,5分) 取一张矩形纸片按照图1、图2中的方法对折,并沿图3中过矩形顶点的斜线(虚线)剪开,那剪下的①这部分展开,平铺在桌面上,若平铺的这个图形是正六边形,则这张矩形纸片的宽和长之比为
.
2
3. (2011甘肃兰州,20,4分)如图,依次连结第一个矩形各边的中点得到一个菱形,再依次连结菱形各边的中点得到第二个矩形,按照此方法继续下去。
已知第一个矩形的面积为1,则第n 个矩形的面积为 。
第一次操作
第二次操作
【答案】
1
14n
4. (2011四川绵阳17,4)如图,将长8cm ,宽4cm 的矩形纸片ABCD 折叠,使点A 与C 重合,则折痕EF 的长为
_____cm.
【答案】25
……。
全国各地中考数学分类汇编:全等三角形(含解析)
全等三角形一.选择题1. (2016·陕西·3分)如图,在正方形ABCD中,连接BD,点O是BD的中点,若M、N 是边AD上的两点,连接MO、NO,并分别延长交边BC于两点M′、N′,则图中的全等三角形共有()A.2对B.3对C.4对D.5对【考点】正方形的性质;全等三角形的判定.【分析】可以判断△ABD≌△BCD,△MDO≌△M′BO,△NOD≌△N′OB,△MON≌△M′ON′由此即可对称结论.【解答】解:∵四边形ABCD是正方形,∴AB=CD=CB=AD,∠A=∠C=∠ABC=∠ADC=90°,AD∥BC,在△ABD和△BCD中,,∴△ABD≌△BCD,∵AD∥BC,∴∠MDO=∠M′BO,在△MOD和△M′OB中,,∴△MDO≌△M′BO,同理可证△NOD≌△N′OB,∴△MON≌△M′ON′,∴全等三角形一共有4对.故选C.2. (2016·辽宁丹东·3分)如图,在△ABC中,AD和BE是高,∠ABE=45°,点F是AB 的中点,AD与FE、BE分别交于点G、H,∠CBE=∠BAD.有下列结论:①FD=FE;②AH=2CD;③BC•AD=AE2;④S△ABC=4S△ADF.其中正确的有()A.1个B.2 个C.3 个D.4个【考点】相似三角形的判定与性质;全等三角形的判定与性质.【分析】由直角三角形斜边上的中线性质得出FD=AB,证明△ABE是等腰直角三角形,得出AE=BE,证出FE=AB,延长FD=FE,①正确;证出∠ABC=∠C,得出AB=AC,由等腰三角形的性质得出BC=2CD,∠BAD=∠CAD=∠CBE,由ASA证明△AEH≌△BEC,得出AH=BC=2CD,②正确;证明△ABD~△BCE,得出=,即BC•AD=AB•BE,再由等腰直角三角形的性质和三角形的面积得出BC•AD=AE2;③正确;由F是AB的中点,BD=CD,得出S△ABC=2S△ABD=4S△ADF.④正确;即可得出结论.【解答】解:∵在△ABC中,AD和BE是高,∴∠ADB=∠AEB=∠CEB=90°,∵点F是AB的中点,∴FD=AB,∵∠ABE=45°,∴△ABE是等腰直角三角形,∴AE=BE,∵点F是AB的中点,∴FE=AB,∴FD=FE,①正确;∵∠CBE=∠BAD,∠CBE+∠C=90°,∠BAD+∠ABC=90°,∴∠ABC=∠C,∴AB=AC,∵AD⊥BC,∴BC=2CD,∠BAD=∠CAD=∠CBE,在△AEH和△BEC中,,∴△AEH≌△BEC(ASA),∴AH=BC=2CD,②正确;∵∠BAD=∠CBE,∠ADB=∠CEB,∴△ABD~△BCE,∴=,即BC•AD=AB•BE,∵AE2=AB•AE=AB•BE,BC•AD=AC•BE=AB•BE,∴BC•AD=AE2;③正确;∵F是AB的中点,BD=CD,∴S△ABC=2S△ABD=4S△ADF.④正确;故选:D.3. (2016·黑龙江龙东·3分)如图,在正方形ABCD中,E、F分别为BC、CD的中点,连接AE,BF交于点G,将△BCF沿BF对折,得到△BPF,延长FP交BA延长线于点Q,下列结论正确的个数是()①AE=BF;②AE⊥BF;③sin∠BQP=;④S=2S△BGE.四边形ECFGA.4 B.3 C.2 D.1【考点】四边形综合题.【分析】首先证明△ABE≌△BCF,再利用角的关系求得∠BGE=90°,即可得到①AE=BF;②AE⊥BF;△BCF沿BF对折,得到△BPF,利用角的关系求出QF=QB,解出BP,QB,根据正弦的定义即可求解;根据AA可证△BGE与△BCF相似,进一步得到相似比,再根据相似三角形的性质即可求解.【解答】解:∵E,F分别是正方形ABCD边BC,CD的中点,∴CF=BE,在△ABE和△BCF中,,∴Rt△ABE≌Rt△BCF(SAS),∴∠BAE=∠CBF,AE=BF,故①正确;又∵∠BAE+∠BEA=90°,∴∠CBF+∠BEA=90°,∴∠BGE=90°,∴AE⊥BF,故②正确;根据题意得,FP=FC,∠PFB=∠BFC,∠FPB=90°∵CD∥AB,∴∠CFB=∠ABF,∴∠ABF=∠PFB,∴QF=QB,令PF=k(k>0),则PB=2k在Rt△BPQ中,设QB=x,∴x2=(x﹣k)2+4k2,∴x=,∴sin=∠BQP==,故③正确;∵∠BGE=∠BCF,∠GBE=∠CBF,∴△BGE∽△BCF,∵BE=BC,BF=BC,∴BE:BF=1:,∴△BGE的面积:△BCF的面积=1:5,∴S=4S△BGE,故④错误.四边形ECFG故选:B.4.(2016·湖北荆门·3分)如图,在矩形ABCD中(AD>AB),点E是BC上一点,且DE=DA,AF⊥DE,垂足为点F,在下列结论中,不一定正确的是()A.△AFD≌△DCE B.AF=AD C.AB=AF D.BE=AD﹣DF【考点】矩形的性质;全等三角形的判定.【分析】先根据已知条件判定判定△AFD≌△DCE(AAS),再根据矩形的对边相等,以及全等三角形的对应边相等进行判断即可.【解答】解:(A)由矩形ABCD,AF⊥DE可得∠C=∠AFD=90°,AD∥BC,∴∠ADF=∠DEC.又∵DE=AD,∴△AFD≌△DCE(AAS),故(A)正确;(B)∵∠ADF不一定等于30°,∴直角三角形ADF中,AF不一定等于AD的一半,故(B)错误;(C)由△AFD≌△DCE,可得AF=CD,由矩形ABCD,可得AB=CD,∴AB=AF,故(C)正确;(D)由△AFD≌△DCE,可得CE=DF,由矩形ABCD,可得BC=AD,又∵BE=BC﹣EC,∴BE=AD﹣DF,故(D)正确;故选(B)5.(2016·山东省德州市·3分)在矩形ABCD中,AD=2AB=4,E是AD的中点,一块足够大的三角板的直角顶点与点E重合,将三角板绕点E旋转,三角板的两直角边分别交AB,BC(或它们的延长线)于点M,N,设∠AEM=α(0°<α<90°),给出下列四个结论:①AM=CN;②∠AME=∠BNE;③BN﹣AM=2;④S△EMN=.上述结论中正确的个数是()A.1 B.2 C.3 D.4【考点】全等三角形的判定与性质;旋转的性质.【分析】①作辅助线EF⊥BC于点F,然后证明Rt△AME≌Rt△FNE,从而求出AM=FN,所以BM与CN的长度相等.②由①Rt△AME≌Rt△FNE,即可得到结论正确;③经过简单的计算得到BN﹣AM=BC﹣CN﹣AM=BC﹣BM﹣AM=BC﹣(BM+AM)=BC﹣AB=4﹣2=2,④用面积的和和差进行计算,用数值代换即可.【解答】解:①如图,在矩形ABCD中,AD=2AB,E是AD的中点,作EF⊥BC于点F,则有AB=AE=EF=FC,∵∠AEM+∠DEN=90°,∠FEN+∠DEN=90°,∴∠AEM=∠FEN,在Rt△AME和Rt△FNE中,,∴Rt△AME≌Rt△FNE,∴AM=FN,∴MB=CN.∵AM不一定等于CN,∴AM不一定等于CN,∴①错误,②由①有Rt△AME≌Rt△FNE,∴∠AME=∠BNE,∴②正确,③由①得,BM=CN,∵AD=2AB=4,∴BC=4,AB=2∴BN﹣AM=BC﹣CN﹣AM=BC﹣BM﹣AM=BC﹣(BM+AM)=BC﹣AB=4﹣2=2,∴③正确,④如图,由①得,CN=CF﹣FN=2﹣AM,AE=AD=2,AM=FN∵tanα=,∴AM=AEtanα∵cosα==,∴cos2α=,∴=1+=1+()2=1+tan2α,∴=2(1+tan2α)∴S△EMN=S四边形ABNE﹣S△AME﹣S△MBN=(AE+BN)×AB﹣AE×AM﹣BN×BM=(AE+BC﹣CN)×2﹣AE×AM﹣(BC﹣CN)×CN=(AE+BC﹣CF+FN)×2﹣AE×AM﹣(BC﹣2+AM)(2﹣AM)=AE+BC﹣CF+AM﹣AE×AM﹣(2+AM)(2﹣AM)=AE+AM﹣AE×AM+AM2=AE+AEtanα﹣AE2tanα+AE2tan2α=2+2tanα﹣2tanα+2tan2α=2(1+tan2α)=.∴④正确.故选C.【点评】此题是全等三角形的性质和判定题,主要考查了全等三角形的性质和判定,图形面积的计算锐角三角函数,解本题的关键是Rt△AME≌Rt△FNE,难点是计算S△EMN.二.填空题1. (2016·辽宁丹东·3分)如图,在平面直角坐标系中,A、B两点分别在x轴、y轴上,OA=3,OB=4,连接AB.点P在平面内,若以点P、A、B为顶点的三角形与△AOB全等(点P与点O不重合),则点P的坐标为(3,4)或(\frac{96}{25},\frac{72}{25})或(﹣\frac{21}{25},\frac{28}{25}).【考点】全等三角形的判定;坐标与图形性质.【分析】由条件可知AB为两三角形的公共边,且△AOB为直角三角形,当△AOB和△APB 全等时,则可知△APB为直角三角形,再分三种情况进行讨论,可得出P点的坐标.【解答】解:如图所示:①∵OA=3,OB=4,∴P1(3,4);②连结OP2,设AB的解析式为y=kx+b,则,解得.故AB的解析式为y=﹣x+4,则OP2的解析式为y=x,联立方程组得,解得,则P2(,);③连结P2P3,∵(3+0)÷2=1.5,(0+4)÷2=2,∴E(1.5,2),∵1.5×2﹣=﹣,2×2﹣=,∴P3(﹣,).故点P的坐标为(3,4)或(,)或(﹣,).故答案为:(3,4)或(,)或(﹣,).2.(2016·山东省济宁市·3分)如图,△ABC中,AD⊥BC,CE⊥AB,垂足分别为D、E,AD、CE交于点H,请你添加一个适当的条件:AH=CB等(只要符合要求即可),使△AEH≌△CEB.【考点】全等三角形的判定.【分析】开放型题型,根据垂直关系,可以判断△AEH与△CEB有两对对应角相等,就只需要找它们的一对对应边相等就可以了.【解答】解:∵AD⊥BC,CE⊥AB,垂足分别为D、E,∴∠BEC=∠AEC=90°,在Rt△AEH中,∠EAH=90°﹣∠AHE,又∵∠EAH=∠BAD,∴∠BAD=90°﹣∠AHE,在Rt△AEH和Rt△CDH中,∠CHD=∠AHE,∴∠EAH=∠DCH,∴∠EAH=90°﹣∠CHD=∠BCE,所以根据AAS添加AH=CB或EH=EB;根据ASA添加AE=CE.可证△AEH≌△CEB.故填空答案:AH=CB或EH=EB或AE=CE.三.解答题1.(2016·山东省东营市·10分)如图1,△ABC是等腰直角三角形,∠BAC=90°,AB=AC,四边形ADEF是正方形,点B、C分别在边AD、AF上,此时BD=CF,BD⊥CF成立.(1)当△ABC绕点A逆时针旋转θ(0°<θ<90°)时,如图2,BD=CF成立吗?若成立,请证明;若不成立,请说明理由.(2)当△ABC绕点A逆时针旋转45°时,如图3,延长DB交CF于点H.①求证:BD⊥CF;②当AB=2,AD=32时,求线段DH的长.【知识点】等腰三角形——等腰三角形的现性质、特殊的平行四边形——正方形的性质、旋转——旋转的特性、全等三角形——全等三角形的判判定和性质、相似三角形——相似三角形的判判定和性质【思路分析】(1)先用“SAS”证明△CAF ≌△BAD ,再用全等三角形的性质即可得BD =CF 成立;(2)利用△HFN 与△AND 的内角和以及它们的等角,得到∠NHF =90°,即可得①的结论;(3)连接DF ,延长AB ,与DF 交于点M ,利用△BMD ∽△FHD 求解. 【解答】(l)解:BD =CF 成立.证明:∵AC =AB ,∠CAF =∠BAD =θ;AF =AD ,△ABD ≌△ACF ,∴BD =CF . (2)①证明:由(1)得,△ABD ≌△ACF ,∴∠HF N =∠ADN ,在△HFN 与△ADN 中,∵∠HFN =∠AND ,∠HNF =∠AND ,∴∠NHF =∠NAD =90°, ∴HD ⊥HF ,即BD ⊥CF .②解:如图,连接DF ,延长AB ,与DF 交于点M . 在△MAD 中,∵∠MAD =∠MDA =45°,∴∠BMD =90°.在Rt △BMD 与Rt △FHD 中,∵∠MDB =∠HDF ,∴△BMD ∽△FHD . ∴AB =2,AD =32,四边形ADEF 是正方形,∴MA =MD =322=3.∴MB =3-2=1,DB =12+32=10. ∵MD HD =BD FD .∴3 HD =106. ∴DH =9105.【方法总结】本题考查了全等三角形的判判定和性质,全等三角形的性质是证明等角、等线段的最为常用的方法;图形的旋转中,对应点到旋转中心的距离相等,对应线段的长度、对应角的大小相等,旋转前后图形的大小和形状没有改变;2.(2016·云南省昆明市)如图,点D是AB上一点,DF交AC于点E,DE=FE,FC∥AB 求证:AE=CE.【考点】全等三角形的判定与性质.【分析】根据平行线的性质得出∠A=∠ECF,∠ADE=∠CFE,再根据全等三角形的判定定理AAS得出△ADE≌△CFE,即可得出答案.【解答】证明:∵FC∥AB,∴∠A=∠ECF,∠ADE=∠CFE,在△ADE和△CFE中,,∴△ADE≌△CFE(AAS),∴AE=CE.3. (2016·重庆市A卷·7分)如图,点A,B,C,D在同一条直线上,CE∥DF,EC=BD,AC=FD.求证:AE=FB.【分析】根据CE∥DF,可得∠ACE=∠D,再利用SAS证明△ACE≌△FDB,得出对应边相等即可.【解答】证明:∵CE∥DF,∴∠ACE=∠D,在△ACE和△FDB中,,∴△ACE≌△FDB(SAS),∴AE=FB.【点评】此题主要考查全等三角形的判定与性质和平行线的性质;熟练掌握平行线的性质,证明三角形全等是解决问题的关键.4. (2016·重庆市B卷·7分)如图,在△ABC和△CED中,AB∥CD,AB=CE,AC=CD.求证:∠B=∠E.【考点】全等三角形的判定与性质.【专题】证明题.【分析】根据两直线平行,内错角相等可得∠BAC=∠ECD,再利用“边角边”证明△ABC和△CED全等,然后根据全等三角形对应角相等证明即可.【解答】证明:∵AB∥CD,∴∠BAC=∠ECD,在△ABC和△CED中,,∴△ABC≌△CED(SAS),∴∠B=∠E.【点评】本题考查了全等三角形的判定与性质,平行线的性质,熟练掌握三角形全等的判定方法并找出两边的夹角是解题的关键.5. (2016·浙江省绍兴市·8分)如果将四根木条首尾相连,在相连处用螺钉连接,就能构成一个平面图形.(1)若固定三根木条AB,BC,AD不动,AB=AD=2cm,BC=5cm,如图,量得第四根木条CD=5cm,判断此时∠B与∠D是否相等,并说明理由.(2)若固定一根木条AB不动,AB=2cm,量得木条CD=5cm,如果木条AD,BC的长度不变,当点D移到BA的延长线上时,点C也在BA的延长线上;当点C移到AB的延长线上时,点A、C、D能构成周长为30cm的三角形,求出木条AD,BC的长度.【考点】全等三角形的应用;二元一次方程组的应用;三角形三边关系.【分析】(1)相等.连接AC,根据SSS证明两个三角形全等即可.(2)分两种情形①当点C在点D右侧时,②当点C在点D左侧时,分别列出方程组即可解决问题,注意最后理由三角形三边关系定理,检验是否符合题意.【解答】解:(1)相等.理由:连接AC,在△ACD和△ACB中,,∴△ACD≌△ACB,∴∠B=∠D.(2)设AD=x,BC=y,当点C在点D右侧时,,解得,当点C在点D左侧时,解得,此时AC=17,CD=5,AD=8,5+8<17,∴不合题意,∴AD=13cm,BC=10cm.6.(2016·广西桂林·3分)如图,在Rt△ACB中,∠ACB=90°,AC=BC=3,CD=1,CH⊥BD 于H,点O是AB中点,连接OH,则OH=.【考点】相似三角形的判定与性质;全等三角形的判定与性质;等腰直角三角形.【分析】在BD上截取BE=CH,连接CO,OE,根据相似三角形的性质得到,求得CH= ,根据等腰直角三角形的性质得到AO=OB=OC,∠A=∠ACO=∠BCO=∠ABC=45°,等量代换得到∠OCH=∠ABD,根据全等三角形的性质得到OE=OH,∠BOE=∠HOC推出△HOE是等腰直角三角形,根据等腰直角三角形的性质即可得到结论.【解答】解:在BD上截取BE=CH,连接CO,OE,∵∠ACB=90°CH⊥BD,∵AC=BC=3,CD=1,∴BD= 10,∴△CDH∽△BDC,∴,∴CH= ,∵△ACB是等腰直角三角形,点O是AB中点,∴AO=OB=OC,∠A=∠ACO=∠BCO=∠ABC=45°,∴∠OCH+∠DCH=45°,∠ABD+∠DBC=45°,∵∠DCH=∠CBD,∴∠OCH=∠ABD,在△CHO与△BEO中,,∴△CHO≌△BEO,∴OE=OH,∠BOE=∠HOC,∵OC⊥BO,∴∠EOH=90°,即△HOE是等腰直角三角形,∵EH=BD﹣DH﹣CH=﹣﹣=,∴OH=EH×=,故答案为:.7.(2016·广西桂林·8分)如图,平行四边形ABCD的对角线AC、BD相交于点O,E,F 分别是OA,OC的中点,连接BE,DF(1)根据题意,补全原形;(2)求证:BE=DF.【考点】平行四边形的性质;全等三角形的判定与性质.【分析】(1)如图所示;(2)由全等三角形的判定定理SAS证得△BEO≌△DFO,得出全等三角形的对应边相等即可.【解答】(1)解:如图所示:(2)证明:∵四边形ABCD是平行四边形,对角线AC、BD交于点O,∴OB=OD,OA=OC.又∵E,F分别是OA、OC的中点,∴OE=OA,OF=OC,∴OE=OF.∵在△BEO与△DFO中,,∴△BEO≌△DFO(SAS),∴BE=DF.8.(2016·广西百色·8分)已知平行四边形ABCD中,CE平分∠BCD且交AD于点E,AF∥CE,且交BC于点F.(1)求证:△ABF≌△CDE;(2)如图,若∠1=65°,求∠B的大小.【考点】平行四边形的性质;全等三角形的判定与性质.【分析】(1)由平行四边形的性质得出AB=CD,AD∥BC,∠B=∠D,得出∠1=∠DCE,证出∠AFB=∠1,由AAS证明△ABF≌△CDE即可;(2)由(1)得∠1=∠DCE=65°,由平行四边形的性质和三角形内角和定理即可得出结果.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AB=CD,AD∥BC,∠B=∠D,∴∠1=∠DCE,∵AF∥CE,∴∠AFB=∠ECB,∵CE平分∠BCD,∴∠DCE=∠ECB,∴∠AFB=∠1,在△ABF和△CDE中,,∴△ABF≌△CDE(AAS);(2)解:由(1)得:∠1=∠ECB,∠DCE=∠ECB,∴∠1=∠DCE=65°,∴∠B=∠D=180°﹣2×65°=50°.9.(2016·贵州安顺·10分)如图,在▱ABCD中,BC=2AB=4,点E、F分别是BC、AD的中点.(1)求证:△ABE≌△CDF;(2)当四边形AECF为菱形时,求出该菱形的面积.【分析】第(1)问要证明三角形全等,由平行四边形的性质,很容易用SAS证全等.第(2)要求菱形的面积,在第(1)问的基础上很快知道△ABE为等边三角形.这样菱形的高就可求了,用面积公式可求得.【解答】(1)证明:∵在▱ABCD中,AB=CD,∴BC=AD,∠ABC=∠CDA.又∵BE=EC=BC,AF=DF=AD,∴BE=DF.∴△ABE≌△CDF.(2)解:∵四边形AECF为菱形时,∴AE=EC.又∵点E是边BC的中点,∴BE=EC,即BE=AE.又BC=2AB=4,∴AB=BC=BE,∴AB=BE=AE,即△ABE为等边三角形,(6分)▱ABCD的BC边上的高为2×sin60°=,(7分)∴菱形AECF的面积为2.(8分)【点评】考查了全等三角形,四边形的知识以及逻辑推理能力.(1)用SAS证全等;(2)若四边形AECF为菱形,则AE=EC=BE=AB,所以△ABE为等边三角形.10.(2016·黑龙江哈尔滨·8分)已知:如图,在正方形ABCD中,点E在边CD上,AQ⊥BE 于点Q,DP⊥AQ于点P.(1)求证:AP=BQ;(2)在不添加任何辅助线的情况下,请直接写出图中四对线段,使每对中较长线段与较短线段长度的差等于PQ的长.【考点】正方形的性质;全等三角形的判定与性质.【分析】(1)根据正方形的性质得出AD=BA,∠BAQ=∠ADP,再根据已知条件得到∠AQB=∠DPA,判定△AQB≌△DPA并得出结论;(2)根据AQ﹣AP=PQ和全等三角形的对应边相等进行判断分析.【解答】解:(1)∵正方形ABCD∴AD=BA,∠BAD=90°,即∠BAQ+∠DAP=90°∵DP⊥AQ∴∠ADP+∠DAP=90°∴∠BAQ=∠ADP∵AQ⊥BE于点Q,DP⊥AQ于点P∴∠AQB=∠DPA=90°∴△AQB≌△DPA(AAS)∴AP=BQ(2)①AQ﹣AP=PQ②AQ﹣BQ=PQ③DP﹣AP=PQ④DP﹣BQ=PQ11.(2016广西南宁)已知四边形ABCD是菱形,AB=4,∠ABC=60°,∠EAF的两边分别与射线CB,DC相交于点E,F,且∠EAF=60°.(1)如图1,当点E是线段CB的中点时,直接写出线段AE,EF,AF之间的数量关系;(2)如图2,当点E是线段CB上任意一点时(点E不与B、C重合),求证:BE=CF;(3)如图3,当点E在线段CB的延长线上,且∠EAB=15°时,求点F到BC的距离.【考点】四边形综合题.【分析】(1)结论AE=EF=AF.只要证明AE=AF即可证明△AEF是等边三角形.(2)欲证明BE=CF,只要证明△BAE≌△CAF即可.(3)过点A作AG⊥BC于点G,过点F作FH⊥EC于点H,根据FH=CF•cos30°,因为CF=BE,只要求出BE即可解决问题.【解答】(1)解:结论AE=EF=AF.理由:如图1中,连接AC,∵四边形ABCD是菱形,∠B=60°,∴AB=BC=CD=AD,∠B=∠D=60°,∴△ABC,△ADC是等边三角形,∴∠BAC=∠DAC=60°∵BE=EC,∴∠BAE=∠CAE=30°,AE⊥BC,∵∠EAF=60°,∴∠CAF=∠DAF=30°,∴AF⊥CD,∴AE=AF(菱形的高相等),∴△AEF是等边三角形,∴AE=EF=AF.(2)证明:如图2中,∵∠BAC=∠EAF=60°,∴∠BAE=∠CAE,在△BAE和△CAF中,,∴△BAE≌△CAF,∴BE=CF.(3)解:过点A作AG⊥BC于点G,过点F作FH⊥EC于点H,∵∠EAB=15°,∠ABC=60°,∴∠AEB=45°,在RT△AGB中,∵∠ABC=60°AB=4,∴BG=2,AG=2,在RT△AEG中,∵∠AEG=∠EAG=45°,∴AG=GE=2,∴EB=EG﹣BG=2﹣2,∵△AEB≌△AFC,∴AE=AF,EB=CF=2﹣2,∠AEB=∠AFC=45°,∵∠EAF=60°,AE=AF,∴△AEF是等边三角形,∴∠AEF=∠AFE=60°∵∠AEB=45°,∠AEF=60°,∴∠CEF=∠AEF﹣∠AEB=15°,在RT△EFH中,∠CEF=15°,∴∠EFH=75°,∵∠AFE=60°,∴∠AFH=∠EFH﹣∠AFE=15°,∵∠AFC=45°,∠CFH=∠AFC﹣∠AFH=30°,在RT△CHF中,∵∠CFH=30°,CF=2﹣2,∴FH=CF•cos30°=(2﹣2)•=3﹣.∴点F到BC的距离为3﹣.【点评】本题考查四边形综合题、菱形的性质、等边三角形的判定、全等三角形的判定和性质等知识,解题的关键是灵活应用这些知识解决问题,学会添加常用辅助线,属于中考压轴题.12.(2016贵州毕节)如图,已知△ABC中,AB=AC,把△ABC绕A点沿顺时针方向旋转得到△ADE,连接BD,CE交于点F.(1)求证:△AEC≌△ADB;(2)若AB=2,∠BAC=45°,当四边形ADFC是菱形时,求BF的长.【考点】旋转的性质;全等三角形的判定与性质;菱形的性质.【分析】(1)由旋转的性质得到三角形ABC与三角形ADE全等,以及AB=AC,利用全等三角形对应边相等,对应角相等得到两对边相等,一对角相等,利用SAS得到三角形AEC 与三角形ADB全等即可;(2)根据∠BAC=45°,四边形ADFC是菱形,得到∠DBA=∠BAC=45°,再由AB=AD,得到三角形ABD为等腰直角三角形,求出BD的长,由BD﹣DF求出BF的长即可.【解答】解:(1)由旋转的性质得:△ABC≌△ADE,且AB=AC,∴AE=AD,AC=AB,∠BAC=∠DAE,∴∠BAC+∠BAE=∠DAE+∠BAE,即∠CAE=∠DAB,在△AEC和△ADB中,,∴△AEC≌△ADB(SAS);(2)∵四边形ADFC是菱形,且∠BAC=45°,∴∠DBA=∠BAC=45°,由(1)得:AB=AD,∴∠DBA=∠BDA=45°,∴△ABD为直角边为2的等腰直角三角形,∴BD2=2AB2,即BD=2,∴AD=DF=FC=AC=AB=2,∴BF=BD﹣DF=2﹣2.3.(2016河北)(本小题满分9分)如图,点B,F,C,E在直线l上(F,C之间不能直接测量),点A,D在l异侧,测得AB=DE,AC=DF,BF=EC.(1)求证:△ABC≌△DEF;(2)指出图中所有平行的线段,并说明理由.第21题图解析:证明三角形全等的条件,SSS,SAS,ASA,AAS,直角三角形(HL),此题中只给了边,没有给角,又不是直角三角形,只能用SSS证明,用已知去求。
数学中考总复习(一轮复习)第17讲全等三角形
第17讲全等三角形【考点总汇】一、全等三角形的性质及判定定理 1•性质(1) _________________________ 全等三角形的对应边,对应角 。
(2) ________________________________ 全等三角形的对应边的中线 _______________________ ,对应角平分线 _____________________________________ ,对应边上的高 __________ ,全等三角 形的周长 _________ ,面积 _________ 。
2•判定定理(1)三边分别 _________ 的两个三角形全等(简写“边边边”或“ _______ ”)。
微拨炉:已知两边和一角判定三角形全等时,没有“ SSA ”定理,即不能错用成“两边及一边对角相等的两个三角形全等”。
二、角的平分线1•性质:角的平分线上的点到角的两边的距离 ___________ 。
2•判定:角的内部到角的两边的距离相等的点在 ____________ 。
3•三角形的三条角平分线相交于一点,并且这一点到三条边的距离 微拨炉: 1•三角形的角平分线是一条线段,不是射线。
2•角的平分线的性质定理和判定定理互为逆定理。
注意分清题设和结论。
高频考点1、全等三角形的判定与性质 【范例】如图,在△ ABC 中,AB=CB ,■ ABC =90,D 为AB 延长线上一点,点 E 在BC 边上, 且 BE 二 BD ,连接 AE 、DE 、DC 。
(2)两边和它们的夹角分别________ 的两个三角形全等(简写“边角边”或 ”) (3)两角和它们的夹边分别________ 的两个三角形全等(简写“角边角”或”)(4)斜边和一条直角边分别 的两个直角三角形全等(简写“斜边、直角边”或 ”)(1)求证:△ ABE ◎△ CBD(2)若• CAE =30 [求• BDC 的度数D得分要领:判定全等三角形的基本思路1•已知两边:(1)找夹角(SAS) ; (2)找直角(HL或SAS) ; (3)找第三边(SSS)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
全等三角形一、选择题1.(2010 年河南模拟)如图,给出下列四组条件: ①AB DE BC EF AC DF ===,,; ②AB DE B E BC EF =∠=∠=,,; ③B E BC EF C F ∠=∠=∠=∠,,; ④AB DE AC DF B E ==∠=∠,,.其中,能使ABC DEF △≌△的条件共有 ( ) A .1组 B .2组 C .3组 D .4组答案:C2.(2010年河南中考模拟题3)如图,在Rt △ABC 中,AB=AC ,D 、E 是斜边BC 上两点,且∠DAE=450,将△ADC 绕点A 顺时针旋转900后,得到△AFB ,连接EF,下列结论:(1)△AED≌△AEF;(2)△ABE∽△ACD;(3)BE+DC=DE;(4)BE2+DC2=DE2.其中正确的是( ) A .(2)(4) B .(1)(4) C .(2) (3) D .(1) (3) 答案:B二、填空题1.(2010年山东新泰)如图,在△ABC 和△ADE 中,有以下四个论断:① AB =AD ,② AC=AE ,③ ∠C=∠E,④ BC=DE ,请以其中三个论断为条件,余下一个论断为结论,写出一个真命题(用序号“☺☺☺⇨☺”的形式写出): . 答案:①②④⇨③,或 ②③④⇨①;2.(2010年浙江杭州)在△ABC 中,AB =6,AC =8,BC =10,P 为边BC 上一动点,PE ⊥AB 于E ,PF ⊥AC于F ,M 为EF 中点,则AM 的最小值为 . 答案:2.4三、解答题1.(2010年 河南模拟)已知:如图,已知:D 是△ABC 的边AB 上一点,CN ∥AB ,第1题第1题图DN 交AC 于,若MA=MC , 求证:CD=AN.证明:如图,因为 AB ∥CN所以 21∠=∠ 在AMD ∆和CMN ∆中⎪⎩⎪⎨⎧∠=∠=∠=∠CMN AMD CM AM 21AMD ∆ ≌CMN ∆ CN AD =∴CN AD //又ADCN 四边形∴是平行四边形AN CD =∴2.(2010年中考模拟2)如图,在等腰梯形ABCD 中,∠C=60°,AD∥BC,且AD=DC ,E 、F分别在AD 、DC 的延长线上,且DE=CF ,AF 、BE 交于点P . (1)求证:AF=BE ;(2)请你猜测∠BPF 的度数,并证明你的结论 . 答案:(1)∵BA=AD ,∠BAE=∠ADF,AE=DF , ∴△BAE ≌△ADF ,∴BE=AF ; (2)猜想∠BPF=120° .∵由(1)知△BAE ≌△ADF ,∴∠ABE=∠DAF .∴∠BPF=∠ABE+∠BAP=∠BAE ,而AD ∥BC ,∠C=∠ABC=60°, ∴∠BPF=1203.(2010年北京市中考模拟)已知:如图,在△ABC 中,∠ACB=90,CD AB ⊥于点D,点E 在AC 上,CE=BC,过E 点作AC 的垂线,交CD 的延长线于点F . 求证:AB=FC答案:证明:∵FE AC ⊥于点90E ACB ∠=,°,∴90FEC ACB ∠=∠=°。
∴90F ECF ∠+∠=°。
又∵CD AB ⊥于点D ,∴90A ECF ∠+∠=°。
∴A F ∠=∠.在ABC △和FCE △中,第1题A F ACB FEC BC CE ∠=∠⎧⎪∠=∠⎨⎪=⎩,,,∴ABC △≌FCE △。
∴AB FC =。
4.(2010年赤峰市中考模拟)如图,在四边形ABCD 中,AB=BC ,BF 是∠ABC 的平分线,AF ∥DC ,连接AC 、CF ,求证:CA 是∠DCF 的平分线. 答案:证明∵AB=BC ,BF 是∠ABC 的平分线, ∴∠ABF=∠CBF ,又∵BF=BF ,∴△ABF ≌△CBF 。
∴AF=CF 。
∴∠ACF=∠CAF.又∵AF ∥DC ,∴∠ACF=∠ACD 。
∴CA 是∠DCF 的平分线。
5.(2010年 湖里区 二次适应性考试)已知:如图,直径为OA 的M ⊙与x 轴交于点O 、A ,点B C 、把弧OA 分为三等分,连结MC 并延长交y 轴于D (0,3).(1)求证:OMD BAO △≌△;(2)若直线l :y kx b =+把M ⊙的面积分为二等分, 求证:30k b +=. 答案:证明:(1) 连接BM ,∵OA 是直径,且B C 、把弧OA三等分, ∴1560∠=∠=°, 又∵OM BM =,∴125302∠=∠=°, 又∵OA 为M ⊙直径,∴90ABO ∠=°,∴12AB OA OM ==,360∠=°,∴13∠=∠,90DOM ABO ∠=∠=°,在OMD △和BAO △中,13.OM AB DOM ABO ∠=∠⎧⎪=⎨⎪∠=∠⎩,,∴OMD BAO △≌△(ASA ) (2)若直线l 把M ⊙的面积分为二等份,yxC BA M O42 1 3)03D,5yxCBA MO42 1 3()03D ,(第5题图)则直线l 必过圆心M , ∵(03)D ,,160∠=°, ∴在Rt OMD △中,33tan 603OD OM ===°,∴(30)M ,, 把 (30)M ,代入y kx b =+得:30k b += 6.(2010年三亚市月考)如图,在正方形ABCD 中,E 是AB 边上任意一点,BG ⊥CE ,垂足为点O,交AC 于点F ,交AD 于点G 。
(1) 证明:BE=AG ;(2) 点E 位于什么位置时,∠AEF=∠CEB ,说明理由. 解(1)证明:∵四边形ABCD 是正方形 ∴∠ABC=∠BAD=90°,∴∠1+∠3=90°, ∵BG ⊥CE,∴∠BOC=90°∴∠2+∠3=90°, ∴∠1=∠2 ………………………2分 在△GAB 和△EBC 中,∵∠GAB=∠EBC=90°,AB=BC,∠1=∠2 ∴△GAB ≌△EBC (ASA) …………4分 ∴AG=BE ………………………… 5分(2)解:当点E 位于线段AB 中点时,∠AEF=∠CEB …… 6分 理由如下:若当点E 位于线段AB 中点时,则AE=BE, 由(1)可知,AG=BE ∴AG=AE …………………… 7分 ∵四边形ABCD 是正方形,∴∠GAF=∠EAF=45°… 8分 又∵AF=AF,∴△GAF ≌△EAF (SAS)∴∠AGF=∠AEF ………………………………………10分 由(1)知,△GAB ≌△EBC ∴∠AGF=∠CEB,∴∠AEF=∠CEB ………………………………… 11分7.(2010年广州市中考六模)、王叔叔家有一块等腰三角形的菜地,腰长为40米,一条笔直的水渠从菜地穿过,这条水渠恰好垂直平分等腰三角形的一腰,水渠穿过菜地部分的长为15米(水渠的宽不计),请你计算这块等腰三角形菜地的面积.1E BAO FG CD第6题图32F E DCBAE BAOFG CD 第6题图答案:情况1:锐角(1)证明△ADE∽△AFC 得到CF=24 S △ABC =480 情况2:钝角(2)证明△BDE∽△BFA 得到AF=24,BC=64 S △ABC =7688.(10年广州市中考六模)、如图,在正方形ABCD 中,点E 、F 分别在BC 、CD 上移动,但A 到EF 的距离AH 始终保持与AB 长相等,问在E 、F 移动过程中:(1)求证:∠EAF = 45o;(2)△ECF 的周长是否有变化?请说明理由. 答案:(1) 得到∠AHE=90o,Rt △ABE≌Rt△ABE (2) 得到∠B AE=∠HAE (3) 同理:∠D AF=∠HAF (4) 得到2∠EAF=∠BAD ,∠EAF=45o(2)△ECF 的周长是否有变化?请说明理由 (1) 不变(2) 由Rt △ABE≌Rt△ABE 得到BE=HE (3) 同理:DF=HF(4) C △ABC = CE+CF+EF=CE+CF+BE+DF=2AB9.(2010年广西桂林适应训练)已知:如图点C E B F ,,,在同一直线上,AC DF ∥,AC DF =,CE =BF .求证:AB‖DE .证明:∵AC DF ∥∴F C ∠=∠ ∵CE=BF ∴CE+BE=BF+BE ∴BC=EF ∵AC=DF∴△ACB ≌△DFE ∴DEF ABC ∠=∠ ∴AB ∥DE10.(2010年黑龙江一模)如图,D 是AB 上一点,DF 交AC 于点E ,AE =EC ,CF ∥AB .求证:AD =CF .8题图AFBECD9题图A BCD EF证明:AB CF ∥,A ECF ∴∠=∠. 又AED CEF ∠=∠,AE CE =,AED CEF ∴△≌△.AD CF ∴=.11.(2010年天水模拟)如图,△ABC 中,∠ABC=∠BAC=45°,点P 在AB 上,AD ⊥CP ,BE ⊥CP ,垂足分别为D 、E ,已知DC=2,求BE 的长。
解:∵∠ABC=∠BAC=45º ∴∠ACB=90º 又∵AD ⊥CP ,BE ⊥CP ∴BE ∥AD又∵∠1+∠2=90-∠3 ∠α=∠2+∠4 2∠2+∠4=90-∠3 又∵2(45°-∠4)=2∠2 ∴90-2∠2+∠4=90-∠3 ∴∠4=∠3又∵AC=BC; ∠ADC=∠BEC ∴△ADC △≌CEB DC=B 5=212.(2010年福建模拟)如图,在□ABCD 中,E 、F 为BC 两点,且BE =CF ,AF =DE . 求证:(1)△ABF ≌△DCE ; (2)四边形ABCD 是矩形.证明:(1)∵BE =CF BF =BE +EF CE =CF +EF∴BF =CE又∵在平行四边形ABCD 中,AB =CD ∴△ABF ≌ △DEC (sss ) (2)由(1)知△ABF ≌ △DEC ∴ ∠B=∠C 又∵在平行四边形ABCD 中,AB ∥CD ∴∠B+∠C=180° ∴∠C=90°∴四边形ABCDJ 是矩形.13.(2010年广州中考数学模拟试题(四))如图,在矩形ABCD 中,AE 平分∠DAB 交DC 于点E ,连接BE ,过E 作EF⊥BE 交AD 于E.(1)∠DEF 和∠CBE 相等吗?请说明理由;(2)请找出图中与EB 相等的线段(不另添加辅助线和字母),并说明理由. 答案:(1)相等.∵四边形ABCD 是矩形,∴∠C=∠D=90°.∴∠BEC+∠CBE=90°.∵EF⊥BE , ∴∠BEF=90°. ∴∠DEF+∠BEC=90°. ∴∠DEF=∠CBE .(2)BE=EF.∵AE 平分∠DAB , ∴∠DAE=∠BAE . ∵AB∥CD , ∴∠BAE=∠DEA . ∴∠DAE=∠DEA . ∴AD=ED=BCA .∵∠C=∠D=90°, ∠DEF=∠CBE , ∴△DEF≌△CBE(ASA ). ∴BE=EF .14.(2010年河南中考模拟题1)如图,要测量河两岸相对的两点A 、B 的距离,可以在AB 的垂线BF 上取两点B 、D ,使BC=CD ,再定出BF 的垂线DE ,使A 、C 、E 在一条直线上,这时测得DE 的长就是AB 的长。