2021年高三上学期12月第四次月考数学文试题 含答案

合集下载

青海师范大学附属实验中学2022-2023学年高三上学期12月月考语文试题含答案

青海师范大学附属实验中学2022-2023学年高三上学期12月月考语文试题含答案

青海师范大学附属实验中学2022-2023学年度第一学期教学质量检测高三语文一、论述类文本阅读阅读下面的文字,完成下面小题。

意象就是客观物象融入主观精神而带有情意的艺术形象。

意象是我们民族诗歌领域的一个概念,从《楚辞》《诗经》到唐诗、宋词、元曲,都有着多姿多彩的意象。

意象赋予了我国诗歌强大的生命力。

后来,随着叙事作品对诗意的追求,意象也进入叙事作品中,成为我们民族文学传统中重要的叙事形式。

《红楼梦》是意象叙事的集大成者。

《红楼梦》的某些象征意义就是靠大量的意象来实现的,太虚幻境就是一个虚无缥缈的意象空间,金陵十二钗的判词和十二支词曲则是人物命运意象化的体现,而贾宝玉的通灵宝玉、林黛玉的花谢花飞,都是象征人物命运、性情的意象。

《红楼梦》意象运用的成功经验,启发了莫言的艺术灵感。

任何物象与意义的对应与融合都可以构成意象。

作者对意与象进行选择和加工,使之成为富有意义的审美载体,使之承载独特的人文精神。

莫言在小说中运用最多的是自然意象。

有植物,如红萝卜、红高粱、白棉花、红树林等;有动物,如红马驹、牛、驴、猪、狗等;还有人体意象,如红耳朵、脚蹼、丰乳肥臀等。

这些意象或增强了小说的诗意,或丰富了哲理的意蕴,或成为叙事过程的焦点,在小说叙事中起到不可或缺的重要作用。

有些自然意象并不是孤立的自然存在,往往包含着一些神话因素,如洪水意象。

洪水是“高密东北乡”创建过程中一个重要的因素。

在《秋水》中,“我爷爷”和“我奶奶”逃到高密东北乡这一蛮荒之地。

暴雨成灾,洪水淹没了周围的一切,只有小土山成为生命的避难场所,由此衍生出高密东北乡内在的丰富和神奇。

在中外神话故事中,洪水是最为常见的模式和意象,它是远古的洪水灾害给先民心灵留下的历史印记。

洪水承载了人类的原罪意识,意味着惩罚和灾难,但又提供了社会秩序得以重新组合的契机,也增强了人类生存的本领和创造的智慧。

《秋水》中的洪水虽然不能说是上天对“爷爷”杀人放火的惩罚,但也带有创世神话原型的意味,是自然现象与神话原型相融合的独特的审美意象。

山东省菏泽市鄄城县2023-2024学年高三上学期12月月考语文试题(含答案)

山东省菏泽市鄄城县2023-2024学年高三上学期12月月考语文试题(含答案)

鄄城县2023-2024学年高三上学期12月月考语文试题考生注意:1.本试卷满分150分,考试时间120分钟。

2.答题前,考生务必用直径0.5毫米黑色墨水签字笔将密封线内项目填写清楚。

3.考生作答时,请将答案答在答题卡上。

选择题每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;非选择题请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,超出答题区域书写的答案无效,在试题卷、草稿纸上作答无效。

4.本卷命题范围:人教版选择性必修上册第一、二单元。

一、基础巩固(本题共8小题,41分)1.下列各句中加点词语的解释,不正确的一项是(5分)()A.敏于事而慎于言敏:勤勉B.苟能充之,足以保四海保:安定C.凿户牖以为室户牖:门窗D.我树之成而实五石树:建立2.下列选项中不全含有通假字的一项是(5分)()A.苦火之始然其未兆易谋B.故盗贼有亡当察乱何自起C.知者不惑世世以洴澼絖为事D.曰余食赘行其脆易泮3.下列选项中加点词的意义和用法相同的一项是(5分)()A.多识于鸟兽草木之名民之从事,常于几成而败之B.知所先后,则近道矣于其身也,则耻师焉C.仁者不忧,勇者不惧古之欲明明德于天下者D.颜渊曰:请问其目子曰:其“恕”乎4.下列各句中,加点词语的意思与现代汉语相同的一项是(5分)()A.视弟子与臣若其身,恶施不慈 B.有一言而可以终身行之者乎C.一日克己复礼,天下归仁焉 D.企者不立,跨者不行5.下列选项中,加点词语活用类型不相同的一项是(5分)()A.譬如平地知所先后,则近道矣B.不贵难得之货不耻相师C.见贤思齐焉夫子固拙于用大矣D.大学之道,在明明德其安易持,其未兆易谋6.对下列句子的句式特点的分析,正确的一项是(5分)()①自天子以至于庶人②有一言而可以终身行之者乎③古之欲明明德于天下者④今人乍见孺子将入于井A.①②不同,③④相同 B.①②相同,③④不同C.①②不同,③④不同 D.①②相同,③④相同7.下列各项中对特殊句式的分类,正确的一项是(5分)()①胜人者有力,自胜者强②敏于事而慎于言③为之于未有④当察乱何自起⑤非所以要誉于乡党朋友也⑥与越人水战⑦故子墨子曰不可以不劝爱人者,此也⑧羞恶之心,义之端也⑨以盛水浆⑩宋人有善为不龟手之药者A.①③④/②⑤⑥/⑦⑧/⑨/⑩ B.①④/②③⑤/⑥⑨/⑦⑧/⑩C.①④⑩/②③⑤/⑥⑨/⑦⑧ D.①③④/②⑤/⑥⑩/⑦⑧/⑨8.补写出下列句子中的空缺部分。

2021-2022年高三4月月考数学试题 含答案

2021-2022年高三4月月考数学试题 含答案
又=n-1-=n-1+3×,
所以=n-2+3×()n(n∈N*),
所以Sn=-2n+3×=+3-.
由题意,记=.
要使数列{}为等差数列,只要- (n≥2)为常数.
===+(3-λ)×,
=+(3-λ)×,
则-=+(3-λ)×(-).
故当λ=2时,-=为常数,即数列{}为等差数列.
21
解:设B型号电视机的价值为万元(),农民得到的补贴为万元,
19. 在正三角形ABC中,E、F、P分别是AB、AC、BC边上的点,且满足=== (如图(1)),将△AEF沿EF折起到△EF的位置,使二面角EFB成直二面角,连接B、P(如图(2)).
(1)求证:E⊥平面BEP;
(2)求直线E与平面BP所成角的大小.
20.已知数列{}中,=,点(n,2-)(n∈N*)在直线y=x上.
2021年高三4月月考数学试题 含答案
一、选择题(本大题共12小题,每小题5分,共60分)
1.复数z=+,则等于( )
(A)i(B)-i(C)1+i(D)1-i
2.已知全集U=N*,集合P={1,2,3,4,5},Q={1,2,3,6,8},则P∩(∁UQ)等于( )
(A){1,2,3}(B){4,5}
8.如图所示,虚线部分是四个象限的角平分线,实线部分是函数y=f(x)的部分图象,则f(x)可能是( )
(A)xsin x(B)xcos x(C)cos x(D)sin x
9.函数f(x)=2cos(ωx+)(ω>0,0<<π)为奇函数,该函数的部分图象如图所示,点A、B分别为该部分图象的最高点与最低点,且这两点间的距离为,则函数f(x)图象的一条对称轴的方程为( )

广东2021届高三12月语文试卷精选汇编:写作专题(含答案)

广东2021届高三12月语文试卷精选汇编:写作专题(含答案)

写作专题广东省广州市实验中学2021届高三上学期第二次阶段考试(12月)语文试题四、写作(60分)23.阅读下面的材料,按要求写作。

(60分)今年国庆巧過中秋,国人纷纷出游。

人们出游的目的地五花八门,从古都到小村,从高原到大海,祖国大地到处都有游客的身影。

节后,高三(1)班乐珙同学做了一次以“美,无处不在”为主题的课前演讲。

在演讲中,乐珙同学介绍了她搜集的一些游客的说法。

有人说:“我看了一位网友上传的抖音视顷,介绍这里的一片古银杏树林,秋天分外灿烂,我就带着家人走进深山来了。

”有人说:“李子栄的视频让我感受到了乡村的慢生活,小时候觉得又脏又累的劳动也富有了诗き。

”还有人说:“央视有一个《航拍中国》的纪录片,我发现自已有些地方去过很多次,但都和ー些羡景擦肩而过了,我要利用难得的长假弥补一下这个遗憾。

”乐珙同学最后评价说:“我们宣传美的方式越来越多样化了,这体现了时代和文明的进步。

”而静怡同学听完演讲后却说:“这只能说明我们对美的感知カ在下降,只能靠越来越多的方式来刺激。

”这两位同学的观点,你更赞同哪一位?请你以同学文佳的身份继续发言,并结合材料进一步讨论,表达自己的看法与思考。

要求:选好角度,确定立意,明确文体,自拟标题;不要套作,不得抄複,不得泄露个人信息;不少于800字。

23.(60分)参考全国高考作文评分标准。

广东省2021届高三年级第一学期12月第二次质量检测语文试题四、写作(60分)23.阅读下面材料,根据要求作文。

(60分)为了让高一新生顺利开启嶄新的学习生活,南粤中学将办成长分享会,拟邀请一位优秀的高三学生,做主体为“新起点,新未来”的发言。

该校高三年级学生会提出了三名人选。

文佳,进入高中后积极参加各类社会实践活动,她与同学合作的模拟政协提案在“全国青少年模拟政协活动”中表现出色,被带到了全国“两会”,倍受社会瞩目。

刘江,痴迷于程序设计,在学习高中课程道的基础上不断深入研究,成功申请了一项国家专利,多所高校向他伸出了橄榄枝。

河南省濮阳市建业国际学校2022-2023学年高三上学期12月月考语文试题(含答案)

河南省濮阳市建业国际学校2022-2023学年高三上学期12月月考语文试题(含答案)

2022-2023学年上学期高三年级12月月考卷语文第Ⅰ卷一、现代文阅读(36分)(一)论述类文本阅读(本题共3小题,9分)阅读下面的文字,完成1-3题。

古代小说因地位卑下,作者常攀附经史等强势文体以自高,并在小说中谈文论艺,以示博学,提高小说的品位,因此,小说中蕴藏着丰沛的文论资源,值得挖掘和利用。

钱钟书先生早就注意到这一现象,他在《读拉奥孔》一文中说:“把它们演绎出来,对文艺理论很有贡献。

”可惜一直未受到学界重视。

谈文论艺所涉及的内容很广泛,诗文曲赋、小说戏曲、书画篆刻等无不应有尽有,或由作者直接介入发表,或借小说中的人物代言,其中不乏精辟之见,其价值主要体现在文艺理论和艺术两个方面。

文艺理论价值可从三个方面去认识:其一,发表文学艺术创作观点,如小说的虚实问题,冯梦龙在《警世通言叙》中有过精彩论述,指出小说中的“事”真假不重要,关键在于“理”是否“真”。

其二,品评作家、作品。

如《孽海花》第三十五回对李慈铭、黄遵宪、袁昶等近代诗人进行简评,如认为黄公度(黄遵宪)的《人境庐》“纵然气象万千,然辞语太没范围,不免鱼龙曼衍”。

明末清初才子佳人小说盛行,但千人一腔,千篇一律,《红楼梦》第一回借石头和空空道人的对话,斥责“历来野史”和才子佳人小说内容“屠毒笔墨,坏人子弟”,“千部共出一套”;又指出“市井俗人喜看理治之书者甚少,爱追趣闲文者特多”;宣称《石头记》乃“实录其事”。

这段对话涉及小说创作、小说批评和小说接受等诸多问题。

作者还借贾母之口,剖析才子佳人小说的创作心态:“有一等妒人家富贵,或有求不遂心,所以编出来污秽人家;再一等,他自己看了这些书看魔了,他也想一个佳人,所以编了出来取乐。

何尝他知道那世宦读书家的道理。

”斥责作者缺乏生活体验,胡编乱造,其实是为了获得某种心理补偿。

其三,传述创作技巧。

如《儒林外史》中多次论及八股技法,马二先生称“(八股)文章既不可带注疏气,尤不可带词赋气”。

从时代背景而言,八股是士子进入仕途的敲门砖,必须全力以赴,无暇顾及其他。

河北省邢台市第一中学2022-2023学年高三上学期12月月考语文试题含答案

河北省邢台市第一中学2022-2023学年高三上学期12月月考语文试题含答案

邢台一中2022-2023学年上学期第三次月考高三年级语文试题命题人李爱芬一、现代文阅读(35分)(一)现代文阅读I(本题共5小题,17分)阅读下面的文字,完成1-5题。

材料一:2021年12月,南京大学城市科学研究院副院长胡小武教授注意到,作为城市化过程中衍生的一种新现象,“断亲”似乎越来越多地发生在青年人身上。

“断亲”指的是基于血缘联结的亲戚关系逐渐淡化,一些“90后”“00后”越来越疏于与亲戚产生情感联系的一种现象。

“断亲”主要表现为“基本不走亲戚”,而非正式断绝亲戚关系。

相关调查显示,越是年纪大的人,与亲戚之间的联系越频繁,关系越密切;越是年轻人,“断亲”现象也就越普遍。

那么“断亲”背后,中国家庭亲缘关系究竟发生着怎样的变化?过去中国社会以扩大家庭为主,亲缘关系较为紧密。

由于交通信息相对闭塞,人们的社会活动空间相对有限,生产生活及情感所需的信任关系和互助资源,在很大程度上依托各种亲戚关系,因而基于血缘关系的亲戚是最可靠和稳定的社会关系。

进入现代化、开放性、高流动性的社会后,中国人的社会关系网络发生较大变化,以学缘而非血缘的同学关系、校友关系逐渐占据社会关系的重要方面。

再加上现代社会中血缘亲朋因拆迁、借贷、财产继承、家庭攀比等造成的心态失衡,亲缘之间的“利益冲突”逐渐超越“利益链接”的比重。

因此,从传统到现代社会的重大变迁中,亲戚关系式微成为一种客观社会事实。

“内卷”环境加剧。

00后的独生子女常年游走于各种课堂之中,他们从小在内卷化的教育体系内生长生活。

特别是大城市中的青少年学生,几乎从小就周旋于各类培训班,休闲生活被极大压缩,社会交往特别是走亲戚形态的交往更少。

久而久之,青少年成长过程中亲戚“不在场”或被同学所替代,致使“断亲”成为必然。

城市化与社会流动造成居住地分离。

中国开启加速城镇化进程后,有超6亿人口陆续从乡村迁移到城市,其中超过2亿人口实现跨省市居住流动。

远距离流动造成兄弟姐妹分别居住在不同城市。

山西省长治市第二中学校2022-2023学年高三上学期第四次月考数学含答案

山西省长治市第二中学校2022-2023学年高三上学期第四次月考数学含答案
已知公差不为零 等差数列 和等比数列 ,满足 , , .
(1)求数列 、 的通项公式:
(2)记数列 的前n项和为 .若 表示不大于m的正整数的个数,求 .
20.(本小题12分)
“斯诺克(Snooker)”是台球比赛的一种,意思是“阻碍、障碍”,随着生活水平的提高,“斯诺克”也成为人们喜欢的运动之一.现甲、乙两人进行比赛采用5局3胜制,各局比赛双方轮流开球(例如:若第一局甲开球,则第二局乙开球,第三局甲开球……),没有平局,已知在甲的“开球局”,甲获得该局比赛胜利的概率为 ,在乙的“开球局”,甲获得该局比赛胜利的概率为 ,并且通过“猜硬币”,甲获得了第一局比赛的开球权.
13.函数 的图象在 处的切线方程为 ,则 ______.
14.在边长为6的等边三角形 中,若 ,则 _____.
15.已知 , ,则 _____.
16.如图,正方形 的边长为 ,以点 为顶点,引出放射角为 的阴影部分区域,其中 , 记四边形 的面积为 ,则 的取值范围为________.
三、解答题:本大题共70分。
17.(本小题10分)
的内角 、 、 所对的边分别为 、 、 , .
(1)求 :
(2)若 是 的外接圆的劣弧 上一点,且 , , ,求 .
18.(本小题12分)
如图,在四棱锥 中,底面 为正方形, ,平面 平面 , 分别为线段 和 中点.
(1)证明: 平面 ;
(2)求平面 与平面 夹角的余弦值.
19.(本小题12分)
6.设等差数列 的前 项和为 ,若 , ,则
A. B. C. D.
7.函数 的图象大致是
A.B.C.D.
8.在 中,已知 ,则以下四个结论错误的是
A. 最大值 B. 最小值1

山东省潍坊市2022-2021学年高三上学期12月月考化学试题 Word版含答案

山东省潍坊市2022-2021学年高三上学期12月月考化学试题 Word版含答案

2022-2021高三上学期12月月考化学试题第I卷(选择题共48分)每小题只有一个正确选项,每题4分,共48分1.中国科学技术高校的钱逸泰教授等以CCl4和金属钠为原料,在700℃时反应制造出纳米级金刚石粉末和另—种化合物。

该成果发表在世界权威的《科学》杂志上,被科学家们高度评价为“稻草变黄金”。

同学们对此有以下“理解”,你认为其中错误的是A.该反应可能在空气中进行B. Na的还原性强于金刚石B.另一种化合物NaCl D.这个反应是置换反应2.下列推断合理的是A.盐酸酸性强于氢硫酸,说明非金属性Cl>SB.将氯气溶于水后溶液呈浅黄绿色且有漂白性,说明氯气与水没有完全反应C.由2Cu+O22CuO可推出S 能发生Cu+S CuSD.铁在常温下不溶于浓硝酸,说明铁与浓硝酸不反应3.肼(N2H4)是火箭常用的高能燃料.常温下为液体,其球棍模型如下图所示。

肼能与双氧水发生反应:N2H4+2H2O2====N2+4H2O。

N A表示阿伏加德罗常数的值,下列说法正确的是A.标准状况下,11.2 LN2中含电子总数为5 N AB.标准状况下,22.4LN2 H4中所含原子总数为6N AC.若生成3.6gH2O,则上述反应转移电子数为0.2N AD.标准状况下,3.2 gN2H4中含有共价键的总数为0.6N A4.将肯定量的氯气通入30 mL浓度为10.00 mol/L的氢氧化钠浓溶液中,加热少许时间后,恰好完全反应,溶液中形成NaCl、NaClO、NaClO,共存体系。

下列推断不正确的是A. n(Na+):n(Cl-)可能为 14:11B.与NaOH反应的氮气肯定为0.15 molC.若反应中转移的电子为n mol,则0.15≤n ≤ 0.25D. n(NaCl):n(NaClO): n(NaClO3)可能为 11:1:25.四种短周期元素在周期表中的位置如下图,其中M元素原子最外层电子数与电子层数相等,下列说法错误的是A.气态氢化物的稳定性:Y<ZB.M元素最高价氧化物对应水化物具有两性C.由X与Z两种元素组成的化合物不能与任何酸反应,但能与强碱反应D.元素的简洁离子半径Y>Z>M6.已知:①2C(s)+O2(g)===2CO(g) △H=-220 kJ·mol-1②氢气燃烧的能量变化示意图:下列说法正确的是7.下列各图所示试验设计能达到相应试验目的的是A.用图①装置验证氣、碳、硅元素非金属性B.用图②装罝能收集C02和H2C.用图③装置电解精炼铝D.用图④装置验证NaHC03和Na2C03的热稳定性8.在一恒温、恒容密闭容器中发生反应:Ni(s)+4C0(g) Ni(C0)4(g),△H<0,利用该反应可以将粗镍转化为纯度达99.9%的高纯镍,对该反应的说法正确的是A.增加Ni的量可提高C0的转化率,Ni的转化率降低B.缩小容器容积,平衡右移,△H减小C.反应达到平衡后,充入C0再次达到平衡时,C0的体积分数降低D.当CO))(N44(正正VCOiv 时或容器中混合气体密度不变时,都可说明反应已达化学平衡状态9.如图是一电池,下列有关说法正确的是A.该电池负极反应为:2 Fe2+-2e-= Fe3+B.当有6.02×1023电子转移时,Fe电极削减56gC.石墨电极上发生氧化反应D.盐桥中K+移向FeCl3溶液10.工业生产中物质的循环利用有多种,例如:下列表示不正确的是A.图I可表示合成氨,其中N2、H2被循环使用B.图II可表示电解熔融的Mg Cl2得到镁,其中X、Y分别为Mg(OH)2和盐酸C.图III可表示氨催化氧化法制硝酸,其中NO循环使用D.图Ⅰ可用于侯氐制纯碱C02的循环利用11.T o C时,在一固定容积的密闭容器中发生反应:A(g)+B(g)C(s) ∆H < 0,按不同配比充入A、B,达到平衡时容器中A、B浓度变化如图中曲线(实线)所示,下列说法中正确的是A.T o C时,该反应的平衡常数值为4B.c点没有达到平衡,此时反应向逆向进行C.若c点为平衡点,则此时容器内的温度高于T o CD.T o C时,直线cd上的点均为平衡状态12. 已知:镁电池的总反应为xMg+Mo3S4充电放电Mg x Mo3S4,锂硫电池的总反应为2Li+S 充电放电Li2S。

2024-2025学年高三上学期第一次联考(9月月考) 数学试题[含答案]

2024-2025学年高三上学期第一次联考(9月月考) 数学试题[含答案]

2024~2025学年高三第一次联考(月考)试卷数学考生注意:1.本试卷分选择题和非选择题两部分.满分150分,考试时间120分钟.2.答题前,考生务必用直径0.5毫米黑色墨水签字笔将密封线内项目填写清楚.3.考生作答时,请将答案答在答题卡上.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;非选择题请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,超出答题区域书写的答案无效,在试题卷、草稿纸上作答无效.4.本卷命题范围:集合、常用逻辑用语、不等式、函数、导数及其应用.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,,则集合的真子集的个数为(){}4,3,2,0,2,3,4A =---{}2290B x x =-≤A B ⋂A.7B.8C.31D.322.已知,,则“,”是“”的( )0x >0y >4x ≥6y ≥24xy ≥A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分又不必要条件3.国家速滑馆又称“冰丝带”,是北京冬奥会的标志性场馆,拥有亚洲最大的全冰面设计,但整个系统的碳排放接近于零,做到了真正的智慧场馆、绿色场馆,并且为了倡导绿色可循环的理念,场馆还配备了先进的污水、雨水过滤系统,已知过滤过程中废水的污染物数量与时间(小时)的关系为()mg /L N t (为最初污染物数量,且).如果前4个小时消除了的污染物,那么污染物消0e kt N N -=0N 00N >20%除至最初的还需要( )64%A.3.8小时 B.4小时C.4.4小时D.5小时4.若函数的值域为,则的取值范围是()()()2ln 22f x x mx m =-++R m A.B.()1,2-[]1,2-C.D.()(),12,-∞-⋃+∞(][),12,-∞-⋃+∞5.已知点在幂函数的图象上,设,(),27m ()()2n f x m x =-(4log a f =,,则,,的大小关系为( )()ln 3b f =123c f -⎛⎫= ⎪⎝⎭a b c A.B.c a b <<b a c<<C. D.a c b <<a b c<<6.已知函数若关于的不等式的解集为,则的()()2e ,0,44,0,x ax xf x x a x a x ⎧->⎪=⎨-+-+≤⎪⎩x ()0f x ≥[)4,-+∞a 取值范围为( )A.B. C. D.(2,e ⎤-∞⎦(],e -∞20,e ⎡⎤⎣⎦[]0,e 7.已知函数,的零点分别为,,则( )()41log 4xf x x ⎛⎫=- ⎪⎝⎭()141log 4xg x x ⎛⎫=- ⎪⎝⎭a b A. B.01ab <<1ab =C.D.12ab <<2ab ≥8.已知,,,且,则的最小值为( )0a >0b >0c >30a b c +-≥6b a a b c ++A. B. C. D.29495989二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.下列说法正确的是( )A.函数是相同的函数()f x =()g x =B.函数6()f x =C.若函数在定义域上为奇函数,则()313xx k f x k -=+⋅1k =D.已知函数的定义域为,则函数的定义域为()21f x +[]1,1-()f x []1,3-10.若,且,则下列说法正确的是()0a b <<0a b +>A. B.1a b >-110a b+>C. D.22a b <()()110a b --<11.已知函数,则下列说法正确的是( )()()3233f x x x a x b=-+--A.若在上单调递增,则的取值范围是()f x ()0,+∞a (),0-∞B.点为曲线的对称中心()()1,1f ()y f x =C.若过点可作出曲线的三条切线,则的取值范围是()2,m ()()3y f x a x b =+-+m ()5,4--D.若存在极值点,且,其中,则()f x 0x ()()01f x f x =01x x ≠1023x x +=三、填空题:本题共3小题,每小题5分,共15分.12.__________.22lg 2lg3381527log 5log 210--+⋅+=13.已知函数称为高斯函数,表示不超过的最大整数,如,,则不等式[]y x =x []3.43=[]1.62-=-的解集为__________;当时,的最大值为__________.[][]06x x <-0x >[][]29x x +14.设函数,若,则的最小值为__________.()()()ln ln f x x a x b =++()0f x ≥ab 四、解答题:本题共5小题、共77分.解答应写出文字说明、证明过程或演算步骤.15.(本小题满分13分)已知全集,集合,.U =R {}231030A x x x =-+≤{}220B x xa =+<(1)若,求和;8a =-A B ⋂A B ⋃(2)若,求的取值范围.()UA B B ⋂= a 16.(本小题满分15分)已知关于的不等式的解集为.x 2280ax x --<{}2x x b-<<(1)求,的值;a b (2)若,,且,求的最小值.0x >2y >-42a bx y +=+2x y +17.(本小题满分15分)已知函数.()()()211e 2x f x x ax a =--∈R (1)讨论的单调性;()f x (2)若对任意的恒成立,求的取值范围.()e x f x x ≥-[)0,x ∈+∞a 18.(本小题满分17分)已知函数是定义在上的奇函数.()22x xf x a -=⋅-R(1)求的值,并证明:在上单调递增;a ()f x R (2)求不等式的解集;()()23540f x x f x -+->(3)若在区间上的最小值为,求的值.()()442x x g x mf x -=+-[)1,-+∞2-m 19.(本小题满分17分)已知函数.()()214ln 32f x x a x x a =---∈R (1)若,求的图像在处的切线方程;1a =()f x 1x =(2)若恰有两个极值点,.()f x 1x ()212x x x <(i )求的取值范围;a (ii )证明:.()()124ln f x f x a+<-数学一参考答案、提示及评分细则1.A 由题意知,又,所以{}2290B x x ⎡=-=⎢⎣∣ {}4,3,2,0,2,3,4A =---,所以的元素个数为3,真子集的个数为.故选.{}2,0,2A B ⋂=-A B ⋂3217-=A 2.A 若,则,所以“”是“”的充分条件;若,满足4,6x y 24xy 4,6x y 24xy 1,25x y ==,但是,所以“”不是“”的必要条件,所以“”是24xy 4x <4,6x y 24xy 4,6x y “”的充分不必要条件.故选A.24xy 3.B 由题意可得,解得,令,可得4004e 5N N -=44e 5k -=20004e 0.645t N N N -⎛⎫== ⎪⎝⎭,解得,所以污染物消除至最初的还需要4小时.故选B.()248e e ek kk---==8t =64%4.D 依题意,函数的值域为,所以,解得()()2ln 22f x x mx m =-++R ()2Δ(2)420m m =--+ 或,即的取值范围是.故选D.2m 1m - m ][(),12,∞∞--⋃+5.C 因为是軍函数,所以,解得,又点在函数的图()()2nf x m x =-21m -=3m =()3,27()n f x x =象上,所以,解得,所以,易得函数在上单调递增,又273n=3n =()3f x x =()f x (),∞∞-+,所以.故选C.1241ln3lne 133log 2log 2->==>=>=>a c b <<6.D 由题意知,当时,;当时,;当时,(),4x ∞∈--()0f x <[]4,0x ∈-()0f x ()0,x ∞∈+.当时,,结合图象知;当时,,当()0f x 0x ()()()4f x x x a =-+-0a 0x >()e 0x f x ax =- 时,显然成立;当时,,令,所以,令,解0a =0a >1e x x a (),0e x x g x x =>()1e xxg x -='()0g x '>得,令0,解得,所以在上单调递增,在上单调递减,所以01x <<()g x '<1x >()g x ()0,1()1,∞+,所以,解得综上,的取值范围为.故选D.()max 1()1e g x g ==11e a0e a < a []0,e 7.A 依题意得,即两式相减得4141log ,41log ,4a b a b ⎧⎛⎫=⎪ ⎪⎝⎭⎪⎨⎛⎫⎪= ⎪⎪⎝⎭⎩441log ,41log ,4a ba b ⎧⎛⎫=⎪ ⎪⎪⎝⎭⎨⎛⎫⎪-= ⎪⎪⎝⎭⎩.在同一直角坐标系中作出的图()44411log log log 44a ba b ab ⎛⎫⎛⎫+==- ⎪ ⎪⎝⎭⎝⎭4141log ,log ,4xy x y x y ⎛⎫=== ⎪⎝⎭象,如图所示:由图象可知,所以,即,所以.故选A.a b >1144ab⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭()4log 0ab <01ab <<8.C 因为,所以,所以30a b c +- 30a b c +> 11911121519966399939911b a b a b b b b a b c a b a b a a a a ⎛⎫++=+=++--=-= ⎪+++⎝⎭++ ,当且仅当,即时等号成立,所以的最小值为.故选C.1911991b b a a ⎛⎫+= ⎪⎝⎭+29b a =6b aa b c ++599.AD 由解得,所以,由,解得10,10x x +⎧⎨-⎩ 11x - ()f x =[]1,1-210x -,所以的定义域为,又,故函数11x - ()g x =[]1,1-()()f x g x ===与是相同的函数,故A 正确;,()f x ()g x ()6f x ==当且仅当方程无解,等号不成立,故B 错误;函数=2169x +=在定义域上为奇函数,则,即,即()313x x k f x k -=+⋅()()f x f x -=-331313x xx x k k k k ----=-+⋅+⋅,即,整理得,即,()()33313313x x xxxxk k k k ----=-+⋅+⋅313313x x x x k kk k ⋅--=++⋅22919x x k k ⋅-=-()()21910x k -+=所以,解得.当时,,该函数定义域为,满足,210k -=1k =±1k =()1313xx f x -=+R ()()f x f x -=-符合题意;当时,,由可得,此时函数定义域为1k =-()13311331x x xxf x --+==--310x -≠0x ≠,满足,符合题意.综上,,故C 错误;由,得{}0x x ≠∣()()f x f x -=-1k =±[]1,1x ∈-,所以的定义域为,故D 正确.故选AD.[]211,3x +∈-()f x []1,3-10.AC 因为,且,所以,所以,即,故A 正确;0a b <<0a b +>0b a >->01a b <-<10ab -<<因为,所以,故В错误;因为,所以,0,0b a a b >->+>110a ba b ab ++=<0a b <<,a a b b =-=由可得,所以,故C 正确;因为当,此时,故0a b +>b a >22a b <11,32a b =-=()()110a b -->D 错误.故选AC.11.BCD 若在上单调递增,则在上佰成立,所以()f x ()0,∞+()23630f x x x a '=-+- ()0,x ∞∈+,解得,即的取值范围是,故A 错误;因为()min ()13630f x f a '==--'+ 0a a (],0∞-,所以,又()()32333(1)1f x x x a x b x ax b =-+--=---+()11f a b =--+,所以点()()()332(21)21(1)1222f x f x x a x b x ax b a b -+=-----++---+=--+为曲线的对称中心,故B 正确;由题意知,所以()()1,1f ()y f x =()()3233y f x a x b xx =+-+=-,设切点为,所以切线的斜率,所以切线的方程为236y x x =-'()32000,3x x x -20036k x x =-,所以,整理得()()()3220000336y x x x x x x --=--()()()322000003362m xx x x x --=--.记,所以3200029120x x x m -++=()322912h x x x x m =-++()26h x x '=-,令,解得或,当时,取得极大值,当时,1812x +()0h x '=1x =2x =1x =()h x ()15h m =+2x =取得极小值,因为过点可作出曲线的三条切线,所以()h x ()24h m=+()2,m ()()3y f x a x b =+-+解得,即的取值范围是,故C 正确;由题意知()()150,240,h m h m ⎧=+>⎪⎨=+<⎪⎩54m -<<-m ()5,4--,当在上单调递增,不符合题意;当,()223633(1)f x x x a x a =-+-=--'()0,a f x (),∞∞-+0a >令,解得,令,解得在()0f x '>1x <-1x >+()0f x '<11x -<<+()f x 上单调递增,在上单调递堿,在上单调递增,因为,1∞⎛- ⎝1⎛+ ⎝1∞⎛⎫+ ⎪ ⎪⎝⎭存在极值点,所以.由,得,令,所以,()f x 0x 0a >()00f x '=()2031x a-=102x x t+=102x t x =-又,所以,又,()()01f x f x =()()002f x f t x =-()()32333(1)1f x x x a x b x ax b =-+--=---+所以,又,所以()()()330000112121x ax b t x a t x b ---+=-----+()2031x a-=,化简得()()()()()()()322320000000013112121312x x x b x x b t x x t x b----=----=------,又,所以,故D 正确.故选BCD.()()20330t x t --=010,30x x x t ≠-≠103,23t x x =+=12. 由题意知10932232862log 184163381255127log 5log 210log 5log 121027---⎛⎫+⋅+=+⋅-+ ⎪⎝⎭62511411410log 5log 2109339339=-⋅+=-+=13.(2分)(3分) 因为,所以,解得,又函数[)1,616[][]06x x <-[][]()60x x -<[]06x <<称为高斯函数,表示不超过的最大整数,所以,即不等式的解集为.当[]y x =x 16x < [][]06x x <-[)1,6时,,此时;当时,,此时01x <<[]0x =[]2[]9x x =+1x []1x ,当且仅当3时等号成立.综上可得,当时,的[][][]2119[]96x x x x ==++[]x =0x >[]2[]9x x +最大值为.1614. 由题意可知:的定义域为,令,解得令,解21e -()f x (),b ∞-+ln 0x a +=ln ;x a =-()ln 0x b +=得.若,当时,可知,此时,不合题1x b =-ln a b -- (),1x b b ∈--()ln 0,ln 0x a x b +>+<()0f x <意;若,当时,可知,此时,不合ln 1b a b -<-<-()ln ,1x a b ∈--()ln 0,ln 0x a x b +>+<()0f x <题意;若,当时,可知,此时;当ln 1a b -=-(),1x b b ∈--()ln 0,ln 0x a x b +<+<()0f x >时,可知,此时,可知若,符合题意;若[)1,x b ∞∈-+()ln 0,ln 0x a x b ++ ()0f x ln 1a b -=-,当时,可知,此时,不合题意.综上所ln 1a b ->-()1,ln x b a ∈--()ln 0,ln 0x a x b +<+>()0f x <述:,即.所以,令,所以ln 1a b -=-ln 1b a =+()ln 1ab a a =+()()ln 1h x x x =+,令,然得,令,解得,所以在()ln 11ln 2h x x x '=++=+()0h x '<210e x <<()0h x '>21e x >()h x 上单调递堿,在上单调递增,所以,所以的最小值为.210,e ⎛⎫ ⎪⎝⎭21,e ∞⎛⎫+ ⎪⎝⎭min 2211()e e h x h ⎛⎫==- ⎪⎝⎭ab 21e -15.解:(1)由题意知,{}2131030,33A x x x ⎡⎤=-+=⎢⎥⎣⎦∣ 若,则,8a =-{}()22802,2B x x =-<=-∣所以.(]1,2,2,33A B A B ⎡⎫⋂=⋃=-⎪⎢⎣⎭(2)因为,所以,()UA B B ⋂= ()UB A ⊆ 当时,此时,符合题意;B =∅0a 当时,此时,所以,B ≠∅0a <{}220Bx x a ⎛=+<= ⎝∣又,U A ()1,3,3∞∞⎛⎫=-⋃+ ⎪⎝⎭13解得.209a -< 综上,的取值范围是.a 2,9∞⎡⎫-+⎪⎢⎣⎭16.解:(1)因为关于的不等式的解集为,x 2280ax x --<{2}xx b -<<∣所以和是关于的方程的两个实数根,且,所以2-b x 2280ax x --=0a >22,82,b a b a⎧=-⎪⎪⎨⎪-=-⎪⎩解得.1,4a b ==(2)由(1)知,所以1442x y +=+()()()221141422242241844242y xx y x y x y x y y x ⎡⎤+⎛⎫⎡⎤+=++-=+++-=+++-⎢⎥ ⎪⎣⎦++⎝⎭⎣⎦,179444⎡⎢+-=⎢⎣ 当且仅当,即时等号成立,所以.()2242y x y x +=+x y ==2x y +74-17.解:(1)由题意知,()()e e x x f x x ax x a=-=-'若,令.解得,令,解得,所以在上单调递琙,在0a ()0f x '<0x <()0f x '>0x >()f x (),0∞-上单调递增.()0,∞+若,当,即时,,所以在上单调递增;0a >ln 0a =1a =()0f x ' ()f x (),∞∞-+当,即时,令,解得或,令,解得,ln 0a >1a >()0f x '>0x <ln x a >()0f x '<0ln x a <<所以在上单调递增,在上单调递减,在上单调递增;()f x (),0∞-()0,ln a ()ln ,a ∞+当,即时,令,解得或,令,解得,ln 0a <01a <<()0f x '>ln x a <0x >()0f x '<ln 0a x <<所以在上单调递增,在上单调递减,在上单调递增.()f x (),ln a ∞-()ln ,0a ()0,∞+综上,当时,在上单调递减,在上单调递增;当时,在0a ()f x (),0∞-()0,∞+01a <<()f x 上单调递增,在上单调递减,在上单调递增当时,在上(,ln )a ∞-()ln ,0a ()0,∞+1a =()f x (),∞∞-+单调递增;当时,在上单调递增,在上单调递减,在上单调递增.1a >()f x (),0∞-()0,ln a ()ln ,a ∞+(2)若对任意的恒成立,即对任意的恒成立,()e xf x x - [)0,x ∞∈+21e 02xx ax x -- [)0,x ∞∈+即对任意的恒成立.1e 102x ax -- [)0,x ∞∈+令,所以,所以在上单调递增,当()1e 12x g x ax =--()1e 2x g x a=-'()g x '[)0,∞+,即时,,所以在上单调递增,所以()10102g a =-' 2a ()()00g x g '' ()g x [)0,∞+,符合题意;()()00g x g = 当,即时,令,解得,令,解得,所()10102g a =-<'2a >()0g x '>ln 2a x >()0g x '<0ln 2a x < 以在上单调递减,()g x 0,ln 2a ⎡⎫⎪⎢⎣⎭所以当时,,不符合题意.0,ln 2a x ⎛⎫∈ ⎪⎝⎭()()00g x g <=综上,的取值范围是.a (],2∞-18.(1)证明:因为是定义在上的奇函数,所以,()f x R ()010f a =-=解得,所以,1a =()22x xf x -=-此时,满足题意,所以.()()22x x f x f x --=-=-1a =任取,所以12x x <,()()()()211122121211122222122222222122x x x x x x x x x x x x f x f x x x --⎛⎫--=---=--=-+ ⎪++⎝⎭又,所以,即,又,12x x <1222x x <12220x x -<121102x x ++>所以,即,所以在上单调递增.()()120f x f x -<()()12f x f x <()f x R (2)解:因为,所以,()()23540f x x f x -+->()()2354f x x f x ->--又是定义在上的奇函数,所以,()f x R ()()2354f x x f x ->-+又在上单调递增,所以,()f x R 2354x x x ->-+解得或,即不等式的解集为.2x >23x <-()()23540f x x f x -+->()2,2,3∞∞⎛⎫--⋃+ ⎪⎝⎭(3)解:由题意知,令,()()()44244222xxxxxxg x mf x m ---=+-=+--322,,2x x t t ∞-⎡⎫=-∈-+⎪⎢⎣⎭所以,所以.()2222442x xxxt --=-=+-()2322,,2y g x t mt t ∞⎡⎫==-+∈-+⎪⎢⎣⎭当时,在上单调递增,所以32m -222y t mt =-+3,2∞⎡⎫-+⎪⎢⎣⎭,解得,符合题意;2min317()323224g x m m ⎛⎫=-++=+=- ⎪⎝⎭2512m =-当时,在上单调递减,在上单调递增,32m >-222y t mt =-+3,2m ⎛⎫- ⎪⎝⎭(),m ∞+所以,解得或(舍).222min ()2222g x m m m =-+=-=-2m =2m =-综上,的值为或2.m 2512-19.(1)解:若,则,所以,1a =()214ln 32f x x x x =---()14f x x x =--'所以,又,()14112f =--='()1114322f =--=所以的图象在处的切线方程为,即.()f x 1x =()1212y x -=-4230x y --=(2)(i )解:由题意知,()22444a x a x x x af x x x x x '---+=--==-又函数恰有两个极值点,所以在上有两个不等实根,()f x ()1212,x x x x <240x x a -+=()0,∞+令,所以()24h x x x a =-+()()00,240,h a h a ⎧=>⎪⎨=-<⎪⎩解得,即的取值范围是.04a <<a ()0,4(ii )证明:由(i )知,,且,12124,x x x x a +==04a <<所以()()2212111222114ln 34ln 322f x f x x a x x x a x x ⎛⎫⎛⎫+=---+--- ⎪ ⎪⎝⎭⎝⎭()()()2212121214ln ln 62x x a x x x x =+-+-+-,()()()21212121214ln 262x x a x x x x x x ⎡⎤=+--+--⎣⎦()116ln 1626ln 22a a a a a a =----=-+要证,即证,只需证.()()124ln f x f x a+<-ln 24ln a a a a -+<-()1ln 20a a a -+-<令,所以,()()()1ln 2,0,4m a a a a a =-+-∈()11ln 1ln a m a a a a a -=-++=-'令,所以,所以即在上单调递减,()()h a m a ='()2110h a a a =--<'()h a ()m a '()0,4又,所以,使得,即,()()1110,2ln202m m '-'=>=<()01,2a ∃∈()00m a '=001ln a a =所以当时,,当时,,所以在上单调递增,在()00,a a ∈()0m a '>()0,4a a ∈()0m a '<()m a ()00,a 上单调递减,所以.()0,4a ()()()max 00000000011()1ln 2123m a m a a a a a a a a a ==-+-=-+-=+-令,所以,所以在上单调递增,所以()()13,1,2u x x x x =+-∈()2110u x x =->'()u x ()1,2,所以,即,得证.()000111323022u a a a =+-<+-=-<()0m a <()()124ln f x f x a +<-。

2021-2022年高三上学期12月月考数学试卷(文科)含解析

2021-2022年高三上学期12月月考数学试卷(文科)含解析

2021年高三上学期12月月考数学试卷(文科)含解析一、选择题(每小题5分,共计50分)1.设i是虚数单位,复数( )A.3﹣2i B.3+2i C.2﹣3i D.2+3i2.集合A={x|x2﹣a≥0},B={x|x<2},若C R A⊆B,则实数a的取值范围是( ) A.(﹣∞,4] B.[0,4] C.(﹣∞,4)D.(0,4)3.已知a0=20.5,b=log32,c=log20.1,则( )A.a<b<c B.c<a<b C.c<b<a D.b<c<a4.下列四个结论:①若x>0,则x>sinx恒成立;②命题“若x﹣sinx=0则x=0”的逆命题为“若x≠0则x﹣sinx≠0”;③“命题p或q为真”是“命题p且q为真”的充分不必要条件;④命题“∀x∈R,x﹣lnx>0”的否定是“∃x0∈R,x0﹣lnx0≤0”.其中正确结论的个数是( )A.1个B.2个C.3个D.4个5.直线x+my+1=0与不等式组表示的平面区域有公共点,则实数m的取值范围是( )A.[,]B.[﹣,﹣]C.[,3] D.[﹣3,﹣]6.已知某几何体的三视图,则该几何体的体积是( )A.12 B.24 C.36 D.487.设0<a<1,则函数y=的图象大致为( )A.B.C.D.8.已知向量=(0,sinx),=(1,2cosx),函数f(x)=•,g(x)=2+2﹣,则f(x)的图象可由g(x)的图象经过怎样的变换得到( )A.向左平移个单位长度B.向右平移个单位长度C.向左平移个单位长度D.向右平移个单位长度9.已知函数f (x)=Asin(ωx+φ),(0<φ<π)的图象如图所示,若f (x0)=3,x0∈(,),则sinx0的值为( )A. B. C. D.10.设f(x)=|lnx|,若函数g(x)=f(x)﹣ax在区间(0,3]上有三个零点,则实数a的取值范围是( )A.(0,)B.(,e)C.(0,]D.[,)二、解答题(每小题5分共计25分)11.已知sinα﹣cosα=,α∈(0,π),tanα=__________.12.已知平面向量=(1,2),=(﹣2,m),且⊥,则2+3=__________.13.函数y=lg(1﹣)+的定义域是__________.14.设甲、乙两个圆柱的底面积分别为S1、S2,体积分别为υ1,υ2,若它们的侧面积相等,且的值为__________.15.给出下列四个命题:①命题“∀x∈R,cosx>0”的否定是“∃x∈R,cosx≤0”;②a、b、c是空间中的三条直线,a∥b的充要条件是a⊥c且b⊥c;③命题“在△ABC中,若A>B,则sinA>sinB”的逆命题为假命题;④对任意实数x,有f(﹣x)=f(x),且当x>0时,f′(x)>0,则当x<0时,f′(x)<0.其中的真命题是__________.(写出所有真命题的编号)三、解答题:16.已知函数f(x)=sinωxcosωx﹣cos2ωx﹣(ω>0,x∈R)的图象上相邻两个最高点的距离为π.(Ⅰ)求函数f(x)的单调递增区间;(Ⅱ)若△ABC三个内角A、B、C的对边分别为a、b、c,且c=,f(C)=0,sinB=3sinA,求a,b的值.17.已知数列{a n}前n项和S n满足:2S n+a n=1(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设b n=,数列{b n}的前n项和为T n,求证:T n<.18.已知函数.(1)求f(x)的最小正周期;(2)若将f(x)的图象向右平移个单位,得到函数g(x)的图象,求函数g(x)在区间上的最大值和最小值,并求出相应的x的值.19.如图正方形ABCD的边长为ABCD的边长为,四边形BDEF是平行四边形,BD与AC 交于点G,O为GC的中点,平面ABCD.(I)求证:AE∥平面BCF;(Ⅱ)若,求证CF⊥平面AEF.20.(13分)已知函数f(x)=lnx﹣mx,m∈R(Ⅰ)求f(x)的单调区间;(Ⅱ)若f(x)≤﹣2m+1在[1,+∞)上恒成立,求实数m的取值范围.21.(14分)近日,国家经贸委发出了关于深入开展增产节约运动,大力增产市场适销对路产品的通知,并发布了当前国内市场185种适销工业品和42种滞销产品的参考目录.为此,一公司举行某产品的促销活动,经测算该产品的销售量P万件(生产量与销售量相等)与促销费用x万元满足(其中0≤x≤a,a为正常数).已知生产该产品还需投入成本(10+2P)万元(不含促销费用),产品的销售价格定为元/件.(1)将该产品的利润y万元表示为促销费用x万元的函数;(2)促销费用投入多少万元时,厂家的利润最大.xx山东省潍坊市寿光五中高三(上)12月月考数学试卷(文科)一、选择题(每小题5分,共计50分)1.设i是虚数单位,复数( )A.3﹣2i B.3+2i C.2﹣3i D.2+3i【考点】复数代数形式的乘除运算.【专题】数系的扩充和复数.【分析】利用复数的运算法则即可得出.【解答】解:复数===3﹣2i,故选:A.【点评】本题考查了复数的运算法则,属于基础题.2.集合A={x|x2﹣a≥0},B={x|x<2},若C R A⊆B,则实数a的取值范围是( )A.(﹣∞,4]B.[0,4]C.(﹣∞,4)D.(0,4)【考点】补集及其运算;集合的包含关系判断及应用.【专题】集合.【分析】根据集合的补集关系进行求解即可.【解答】解:∵A={x|x2﹣a≥0}={x|x2≥a},∴C R A={x|x2≤a},若a<0,则C R A=∅,满足C R A⊆B,若a≥0,则C R A={x|x2<a}={x|﹣<x<},若C R A⊆B,则≤2,解得0≤a≤4,综上a≤4,故选:A【点评】本题主要考查集合的基本运算和集合关系的应用,注意分类讨论.3.已知a0=20.5,b=log32,c=log20.1,则( )A.a<b<c B.c<a<b C.c<b<a D.b<c<a【考点】对数值大小的比较.【专题】函数的性质及应用.【分析】利用指数函数和对数函数的单调性即可得出.【解答】解:∵a=20.5>20=1,0<b=log32<log33=1,c=log20.1<log21=0.∴c<b<a.故选:C.【点评】本题考查了指数函数和对数函数的单调性,属于基础题.4.下列四个结论:①若x>0,则x>sinx恒成立;②命题“若x﹣sinx=0则x=0”的逆命题为“若x≠0则x﹣sinx≠0”;③“命题p或q为真”是“命题p且q为真”的充分不必要条件;④命题“∀x∈R,x﹣lnx>0”的否定是“∃x0∈R,x0﹣lnx0≤0”.其中正确结论的个数是( )A.1个B.2个C.3个D.4个【考点】命题的真假判断与应用.【专题】规律型;探究型;构造法;导数的概念及应用;简易逻辑.【分析】令f(x)=x﹣sinx,利用导数分析其单调性,可判断①;写出原命题的逆命题,可判断②;根据充要条件的定义,可判断③;写出原命题的否定,可判断④.【解答】解:令f(x)=x﹣sinx,则f′(x)=1﹣cosx≥0恒成立,故f(x)=x﹣sinx在R上为增函数,故x>0时,f(x)>f(0)=0,即x>sinx恒成立,故①正确;命题“若x﹣sinx=0,则x=0”的逆命题为“若x=0,则x﹣sinx=0”,故②错误;“命题p或q为真”时,“命题p且q为真”不一定成立,“命题p且q为真”时,“命题p或q为真”成立,故“命题p或q为真”是“命题p且q为真”的必要不充分条件,故③错误;④命题“∀x∈R,x﹣lnx>0”的否定是“∃x0∈R,x0﹣lnx0≤0”,故正确.其中正确结论的个数是2个,故选:B【点评】本题考查的知识点是全称命题的否定,四种命题,复合命题,函数的单调性,难度中档.5.直线x+my+1=0与不等式组表示的平面区域有公共点,则实数m的取值范围是( )A.[,]B.[﹣,﹣]C.[,3] D.[﹣3,﹣]【考点】简单线性规划.【专题】不等式的解法及应用.【分析】作出不等式组对应的平面区域,利用线性规划的知识即可得到结论.【解答】解:即直线x+my+1=0过定点D(﹣1,0)作出不等式组对应的平面区域如图:当m=0时,直线为x=﹣1,此时直线和平面区域没有公共点,故m≠0,x+my+1=0的斜截式方程为y=x,斜率k=,要使直线和平面区域有公共点,则直线x+my+1=0的斜率k>0,即k=>0,即m<0,满足k CD≤k<k AB,此时AB的斜率k AB=2,由解得,即C(2,1),CD的斜率k CD==,由,解得,即A(2,4),AD的斜率k AD==,即≤k≤,则≤≤,解得﹣3≤m≤﹣,故选:D.【点评】本题主要考查线性规划以及斜率的应用,利用数形结合是解决本题的关键.6.已知某几何体的三视图,则该几何体的体积是( )A.12 B.24 C.36 D.48【考点】由三视图求面积、体积.【专题】计算题;空间位置关系与距离.【分析】利用三视图判断几何体的形状,通过三视图是数据,求出几何体的体积即可.【解答】解:三视图复原的几何体是底面为边长4、3的矩形,高为3的棱锥,高所在棱垂直底面矩形的一个得到,所以棱锥的体积为:=12.故选:A.【点评】本题主要考查关于“几何体的三视图”与“几何体的直观图”的相互转化的掌握情况,同时考查空间想象能力.7.设0<a<1,则函数y=的图象大致为( )A.B.C.D.【考点】函数的图象.【专题】函数的性质及应用.【分析】利用0<a<1,判断a x,x>0时的范围,以及x<0时的范围,然后求解a x﹣1的范围,倒数的范围,即可判断函数的图象.【解答】解:因为0<a<1,x>0时,0<a x<1,﹣1<a x﹣1<0,<﹣1,x<0时,a x>1,a x﹣1>0,>0,观察函数的图象可知:B满足题意.故选:B.【点评】本题考查指数函数的图象,解题时要认真审题,仔细解答,注意合理地进行等价转化,注意函数的值域以及指数函数的性质.8.已知向量=(0,sinx),=(1,2cosx),函数f(x)=•,g(x)=2+2﹣,则f(x)的图象可由g(x)的图象经过怎样的变换得到( )A.向左平移个单位长度B.向右平移个单位长度C.向左平移个单位长度D.向右平移个单位长度【考点】函数y=Asin(ωx+φ)的图象变换;平面向量数量积的运算.【专题】平面向量及应用.【分析】由题意利用两个向量的数量积公式、诱导公式可得函数f(x)=sin2x,g(x)=sin2(x+),再根据函数y=Asin(ωx+φ)的图象变换规律,可得结论.【解答】解:由题意可得函数f(x)=•=(2sinxcosx)=sin2x,g(x)=2+2﹣=sin2x+1+4cos2x﹣=3cos2x﹣=cos2x=sin(2x+)=sin2(x+),故把g(x)的图象向右平移个单位长度,可得f(x)的图象,故选:B.【点评】本题主要考查诱导公式的应用,函数y=Asin(ωx+φ)的图象变换规律,统一这两个三角函数的名称,是解题的关键,属于基础题.9.已知函数f (x)=Asin(ωx+φ),(0<φ<π)的图象如图所示,若f (x0)=3,x0∈(,),则sinx0的值为( )A. B. C. D.【考点】由y=Asin(ωx+φ)的部分图象确定其解析式.【专题】三角函数的图像与性质.【分析】由函数的最值求出A,由周期求出ω,由五点法作图求出φ的值,求出函数的解析式.再由f (x0)=3求出sin(x0+ )的值,可得cos(x0+ )的值,再由两角差的正弦公式求得sinx0 =sin[(x0+ )﹣]的值.【解答】解:由函数的图象可得A=5,且=,解得ω=1再由五点法作图可得1•+φ=,解得φ=.故函数的解析式为f(x)=5sin(x+ ).再由f (x0)=3,x0∈(,),可得5sin(1•x0+ )=3,解得sin(x0+ )=,故有cos(x0+ )=﹣,sinx0 =sin[(x0+ )﹣]=sin(x0+ )cos﹣cos(x0+ )sin=﹣(﹣)=.故选A.【点评】本题主要考查由函数y=Asin(ωx+∅)的部分图象求解析式,由函数的最值求出A,由周期求出ω,由五点法作图求出φ的值,两角差的正弦公式的应用,属于中档题.10.设f(x)=|lnx|,若函数g(x)=f(x)﹣ax在区间(0,3]上有三个零点,则实数a的取值范围是( )A.(0,)B.(,e)C.(0,]D.[,)【考点】根的存在性及根的个数判断;函数零点的判定定理.【专题】函数的性质及应用.【分析】首先,画出函数f(x)=|lnx|的图象,然后,借助于图象,结合在区间(0,3]上有三个零点,进行判断.【解答】解:函数f(x)=|lnx|的图象如图示:当a≤0时,显然,不合乎题意,当a>0时,如图示,当x∈(0,1]时,存在一个零点,当x>1时,f(x)=lnx,可得g(x)=lnx﹣ax,(x∈(1,3])g′(x)==,若g′(x)<0,可得x>,g(x)为减函数,若g′(x)>0,可得x<,g(x)为增函数,此时f(x)必须在[1,3]上有两个零点,∴解得,,在区间(0,3]上有三个零点时,,故选D.【点评】本题重点考查函数的零点,属于中档题,难度中等.二、解答题(每小题5分共计25分)11.已知sinα﹣cosα=,α∈(0,π),tanα=﹣1.【考点】同角三角函数间的基本关系.【专题】计算题;三角函数的求值.【分析】已知等式左边提取,利用两角和与差的正弦函数公式化简,求出sin(α﹣)的值为1,由α的范围,利用特殊角的三角函数值求出α的度数,即可求出tanα的值.【解答】解:∵sinα﹣cosα=sin(α﹣)=,∴sin(α﹣)=1,∵α∈(0,π),∴α﹣=,即α=,则tanα=﹣1.【点评】此题考查了同角三角函数间的基本关系,特殊角的三角函数值,以及两角和与差的正弦函数公式,熟练掌握公式及基本关系是解本题的关键.12.已知平面向量=(1,2),=(﹣2,m),且⊥,则2+3=(﹣4,7).【考点】平面向量的坐标运算.【专题】计算题;转化思想;向量法;平面向量及应用.【分析】由向量=(1,2),=(﹣2,m),且⊥,求出m的值,则2+3的答案可求.【解答】解:∵向量=(1,2),=(﹣2,m),且⊥,∴﹣2+2m=0,解得m=1,则2+3=2×(1,2)+3×(﹣2,1)=(﹣4,7).故答案为:(﹣4,7).【点评】本题考查了平面向量数量积的运算,考查了平面向量的坐标运算,是基础题.13.函数y=lg(1﹣)+的定义域是[log23,+∞).【考点】函数的定义域及其求法.【专题】函数的性质及应用.【分析】根据函数成立的条件,即可求出函数的定义域.【解答】解:要使函数有意义,则,即,∴x≥log23,即函数的定义域为[log23,+∞),故答案为:[log23,+∞)【点评】本题主要考查函数定义域的求法,要求熟练掌握常见函数成立的条件,比较基础.14.设甲、乙两个圆柱的底面积分别为S1、S2,体积分别为υ1,υ2,若它们的侧面积相等,且的值为.【考点】棱柱、棱锥、棱台的体积;棱柱、棱锥、棱台的侧面积和表面积.【专题】空间位置关系与距离.【分析】设两个圆柱的底面半径分别为R,r,高分别为H,h,由=,得=,由它们的侧面积相等,得=,由此能求出.【解答】解:设两个圆柱的底面半径分别为R,r,高分别为H,h,∵=,∴=,∵它们的侧面积相等,∴=1,∴=,∴==()2×=.故答案为:.【点评】本题考查两个圆柱的体积的比值的求法,是中档题,解题时要注意圆柱的体积和侧面积计算公式的合理运用.15.给出下列四个命题:①命题“∀x∈R,cosx>0”的否定是“∃x∈R,cosx≤0”;②a、b、c是空间中的三条直线,a∥b的充要条件是a⊥c且b⊥c;③命题“在△ABC中,若A>B,则sinA>sinB”的逆命题为假命题;④对任意实数x,有f(﹣x)=f(x),且当x>0时,f′(x)>0,则当x<0时,f′(x)<0.其中的真命题是①④.(写出所有真命题的编号)【考点】命题的真假判断与应用.【专题】简易逻辑.【分析】①利用命题的否定即可判断出;②由a⊥c且b⊥c可得a∥b或相交或为异面直线,另一方面由a∥b,推不出a⊥c,b⊥c,即可判断出;③在△ABC中,A>B⇔a>b,由正弦定理可得:,可得sinA>sinB.④利用偶函数的性质即可得出.【解答】解:①命题“∀x∈R,cosx>0”的否定是“∃x∈R,cosx≤0”,正确;②a、b、c是空间中的三条直线,由a⊥c且b⊥c可得a∥b或相交或为异面直线,由a∥b,推不出a⊥c,b⊥c,因此“a⊥c且b⊥c”是a∥b的既不充分也不必要条件,因此②不正确;③在△ABC中,由A>B⇔a>b,由正弦定理可得:,因此sinA>sinB.可知逆命题为真命题,因此不正确;④对任意实数x,有f(﹣x)=f(x),可知函数f(x)是偶函数.由当x>0时,f′(x)>0,则当x<0时,f′(x)<0.正确.综上可知:只有①④正确.故答案为:①④.【点评】本题综合考查了空间中的线线位置关系、三角形的边角关系、函数的奇偶性单调性、简易逻辑等基础知识与基本技能方法,属于基础题.三、解答题:16.已知函数f(x)=sinωxcosωx﹣cos2ωx﹣(ω>0,x∈R)的图象上相邻两个最高点的距离为π.(Ⅰ)求函数f(x)的单调递增区间;(Ⅱ)若△ABC三个内角A、B、C的对边分别为a、b、c,且c=,f(C)=0,sinB=3sinA,求a,b的值.【考点】余弦定理;两角和与差的正弦函数;正弦函数的单调性.【专题】解三角形.【分析】(Ⅰ)f(x)解析式利用二倍角的正弦、余弦函数公式化简,整理为一个角的正弦函数,根据题意确定出ω的值,确定出f(x)解析式,利用正弦函数的单调性求出函数f(x)的单调递增区间即可;(Ⅱ)由f(C)=0,求出C的度数,利用正弦定理化简sinB=3sinA,由余弦定理表示出cosC,把各自的值代入求出a与b的值即可.【解答】解:f(x)=sin2ωx﹣(1+cos2ωx)﹣=sin(2ωx﹣)﹣1,∵f (x )图象上相邻两个最高点的距离为π,∴=π,即ω=1,则f (x )=sin (2x ﹣)﹣1,(Ⅰ)令﹣+2k π≤2x ﹣≤+2k π,k ∈Z ,得到﹣+k π≤x ≤k π+,k ∈Z ,则函数f (x )的单调递增区间为[﹣+k π,k π+],k ∈Z ;(Ⅱ)由f (C )=0,得到f (C )=sin (2C ﹣)﹣1=0,即sin (2x ﹣)=1,∴2C ﹣=,即C=,由正弦定理=得:b=,把sinB=3sinA 代入得:b=3a ,由余弦定理及c=得:cosC===,整理得:10a 2﹣7=3a 2,解得:a=1,则b=3.【点评】此题考查了正弦、余弦定理,以及二倍角的正弦、余弦函数公式,熟练掌握定理是解本题的关键.17.已知数列{a n }前n 项和S n 满足:2S n +a n =1(Ⅰ)求数列{a n }的通项公式;(Ⅱ)设b n =,数列{b n }的前n 项和为T n ,求证:T n <.【考点】数列的求和;数列递推式.【专题】等差数列与等比数列.【分析】(I )利用递推式可得:.再利用等比数列的通项公式即可得出;(II )由(I )可得b n ==,;利用“裂项求和”即可得出数列{b n }的前n 项和为T n ,进而得到证明.【解答】(I )解:∵2S n +a n =1,∴当n ≥2时,2S n ﹣1+a n ﹣1=1,∴2a n +a n ﹣a n ﹣1=0,化为.当n=1时,2a 1+a 1=1,∴a 1=.∴数列{a n }是等比数列,首项与公比都为.∴.(II )证明:b n = ===,∴数列{b n }的前n 项和为T n =++…+=.∴T n <.【点评】本题考查了递推式的应用、等比数列的通项公式、“裂项求和”、不等式的证明,考查了推理能力与计算能力,属于中档题.18.已知函数.(1)求f(x)的最小正周期;(2)若将f(x)的图象向右平移个单位,得到函数g(x)的图象,求函数g(x)在区间上的最大值和最小值,并求出相应的x的值.【考点】函数y=Asin(ωx+φ)的图象变换;三角函数中的恒等变换应用.【专题】三角函数的图像与性质.【分析】(1)利用三角函数的倍角公式和诱导公式化简函数f(x),然后直接由周期公式求周期;(2)通过函数的图象的平移求解函数g(x)的解析式为g(x)=,由x的范围求出的范围,从而求得函数g(x)的最值,并得到相应的x的值.【解答】解:(1)由,得==.∴f(x)的最小正周期为π;(2)∵将f(x)的图象向右平移个单位,得到函数g(x)的图象,∴=.∵x∈[0,)时,,∴当,即时,g(x)取得最大值2;当,即x=0时,g(x)取得最小值.【点评】本题考查了三角函数的倍角公式及诱导公式,考查了三角函数的图象平移,训练了三角函数的最值得求法,是中档题.19.如图正方形ABCD的边长为ABCD的边长为,四边形BDEF是平行四边形,BD与AC 交于点G,O为GC的中点,平面ABCD.(I)求证:AE∥平面BCF;(Ⅱ)若,求证CF⊥平面AEF.【考点】直线与平面垂直的判定;直线与平面平行的判定.【专题】证明题;数形结合;数形结合法;空间位置关系与距离.【分析】(I)利用正方形,平行四边形的性质可得AD∥BC,DE∥BF,可证平面ADE∥平面BCF,即可证明AE∥平面BCF…5分(Ⅱ)由已知可证AC2=AF2+CF2,由勾股定理可得CF⊥AF,又FO⊥平面ABCD,可得FO⊥BD,又AC⊥BD,即可证明BD⊥平面AFC,结合EF∥BD,即可证明EF⊥CF,从而可证CF⊥平面AEF.【解答】证明:(I)∵四边形ABCD为正方形,四边形BDEF是平行四边形,∴AD∥BC,DE∥BF,∵AD∩DE=D,BC∩BF=B,∴平面ADE∥平面BCF,又∵AE⊂平面ADE,∴AE∥平面BCF…5分(Ⅱ)∵正方形ABCD边长为2,∴对角线AC=4,又∵O为GC中点,∴AO=3,OC=1又∵FO⊥平面ABCD,且FO=,∴AF2=AO2+OF2=9+3=12,CF2=OC2+OF2=1+3=4,又AC2=16,∴AC2=AF2+CF2,∴CF⊥AF,又FO⊥平面ABCD,BD⊂平面ABCD,∴FO⊥BD又∵AC⊥BD∴BD⊥平面AFC,又∵EF∥BD,∴EF⊥平面AFC∴EF⊥CF,又EF∩AF=F∴CF⊥平面AEF…12分【点评】本题主要考查了直线与平面垂直的判定,直线与平面平行的判定,考查了空间想象能力和推理论证能力,属于中档题.20.(13分)已知函数f(x)=lnx﹣mx,m∈R(Ⅰ)求f(x)的单调区间;(Ⅱ)若f(x)≤﹣2m+1在[1,+∞)上恒成立,求实数m的取值范围.【考点】利用导数求闭区间上函数的最值;利用导数研究函数的单调性.【专题】导数的概念及应用;导数的综合应用.【分析】(1)先对原函数求导数,然后通过解导数大于零或小于零的不等式得到原函数的单调区间;(2)先将原不等式归零化简,然后通过求函数的最值解决问题,只需利用导数研究函数的单调性即可,注意分类讨论.【解答】解:由题意可得,函数f(x)的定义域为(0,+∞),f′(x)=.(1)当m≤0时,f′(x)>0,此时函数f(x)在(0,+∞)上单调递增,当m>0时,令f′(x)>0,解得,令f′(x)<0,解得.所以当m≤0时,此时函数f(x)在(0,+∞)上单调递增;当m>0时,函数f(x)的单调递增区间为(0,),单调减区间为().(2)因为在[1,+∞)上恒成立.即在[1,+∞)上恒成立,令g(x)=,则,(1)当,即时,若,则g′(x)<0,g(x)是减函数,所以g(x)<g(1)=0,即g(x)≥0在[1,+∞)上不恒成立;(2)当,即时,若x>1,则g′(x)>0,g(x)是增函数,所以g(x)>g(1)=0,即,故当x≥1时,f(x)恒成立.综上所述,所求的正实数m的取值范围是.【点评】本题考查了利用导数研究函数的单调性的思路,以及不等式恒成立问题转化为函数的最值问题来解的基本思想.21.(14分)近日,国家经贸委发出了关于深入开展增产节约运动,大力增产市场适销对路产品的通知,并发布了当前国内市场185种适销工业品和42种滞销产品的参考目录.为此,一公司举行某产品的促销活动,经测算该产品的销售量P万件(生产量与销售量相等)与促销费用x万元满足(其中0≤x≤a,a为正常数).已知生产该产品还需投入成本(10+2P)万元(不含促销费用),产品的销售价格定为元/件.(1)将该产品的利润y万元表示为促销费用x万元的函数;(2)促销费用投入多少万元时,厂家的利润最大.【考点】基本不等式在最值问题中的应用.【专题】不等式的解法及应用.【分析】(1)根据产品的利润=销售额﹣产品的成本建立函数关系;(2)利用基本不等式可求出该函数的最值,注意等号成立的条件.【解答】解:(1)由题意知,,将代入化简得:(0≤x≤a).…(2),当且仅当,即x=1时,上式取等号.…当a≥1时,促销费用投入1万元时,厂家的利润最大;当a<1时,在[0,a]上单调递增,所以x=a时,函数有最大值.即促销费用投入a万元时,厂家的利润最大.综上,当a≥1时,促销费用投入1万元,厂家的利润最大;当a<1时,促销费用投入a万元,厂家的利润最大.…【点评】本题主要考查了函数模型的选择与应用,以及基本不等式在最值问题中的应用,同时考查了计算能力,属于中档题.。

河南省洛阳市宜阳县第一高级中学2022-2023学年高二上学期第四次月考数学文科试题(含答案)

河南省洛阳市宜阳县第一高级中学2022-2023学年高二上学期第四次月考数学文科试题(含答案)

2022-2023学年河南省洛阳市宜阳第一高级中学高二(上)第四次月考数学试卷(文科)一、单选题(本大题共12题,每题5分,共60分)1.直线l 过点()1,2-且与直线2310x y -+=垂直,则l 的方程是( ) A.3270x y ++= B.2350x y -+= C.3210x y +-= D.2380x y -+=2.设直线l 的方程为3410x y ++=,直线m 的方程为6830x y ++=,则直线l 与m 的距离为( ) A.25 B.110 C.15 D.3103.()2,5P 关于直线0x y +=的对称点的坐标是( ) A.()5,2 B.()2,5- C.()5,2-- D.()2,5--4.已知0a <,若直线1:210l ax y +-=与直线()2:140l x a y +++=平行,则它们之间的距离为( ) 72 52 5 5725.已知,圆221:O x y m +=与圆222:420O x y y +++=外切,则m 的值为( )A.22B.642-C.22D.642+6.若直线210x y +-=是圆22()1x a y -+=的一条对称轴,则a =( ) A.12 B.12- C.1 D.1- 7.若点()1,P a 到直线310ax y --=3a 的取值范围是( ) A.230,230⎡--+⎣ B.6⎡-⎣C.6,6⎡-⎣D.26,26⎡-+⎣8.数学家默拉在1765年提出定理,三角形的外心,重心,垂心(外心是三角形三条边的垂直平分线的交点,重心是三角形三条中线的交点,垂心是三角形三条高的交点)依次位于同一直线上,且重心到外心的距离是重心到垂心距离的一半,这条直线被后人称之为三角形的欧拉线,已知ABC 的顶点()()1,0,0,2,B C AB AC -=,则ABC 的欧拉线方程为( )A.2430x y --=B.2430x y ++=C.4230x y --=D.2430x y +-=9.点P 为圆22(1)2x y -+=上一动点,点P 到直线3y x =+的最短距离为( ) A.22B.1 2 D.22 10.一束光线从点()2,3A 射出,经x 轴上一点C 反射后到达圆22(3)(2)2x y ++-=上一点B ,则AC BC +的最小值为( )A.32B.52C.42D.6211.古希腊几何学家阿波罗尼斯证明过这样一个命题:平面内到两定点距离之比为常数(0,1)k k k >≠的点的轨迹是圆,后人将这个圆称为阿波罗尼斯圆.若平面内两定点,A B 的距离为2,动点P 满足3PB PA=P 不在直线AB 上,则PAB 面积的最大值为( )A.1 3 C.2 D.2312.已知圆22(1)4x y -+=内一点()2,1P ,则过P 点的最短弦所在的直线方程是( ) A.10x y --=B.30x y +-=C.30x y ++=D.2x =二、填空题(本大题共4题,每题5分,共20分)13.圆221:100C x y y +-=与圆222:10C x y +=的公共弦长为__________.14.已知实数,x y 满足直线l 的方程230x y ++=2221x y y +-+__________. 15.若圆224x y +=上恰有230x y m -+=的距离等于1,则m 的取值范围是__________. 16.过点()2,1与圆225x y +=相切的直线的方程为:__________.三、解答题(本大题共6题,共70分)17.(1)已知直线()1:2140l x m y +++=与直线2:320l mx y +-=平行,求实数m 的值(2)已知直线()()1:2110l a x a y ++--=与直线()()2:12320l a x a y -+++=垂直,求实数C 的值.18.直线34120x y -+=与坐标轴的交点是圆C 一条直径的两端点 (1)求圆C 的方程;(2)圆C 的弦AB 2111,2⎛⎫⎪⎝⎭,求弦AB 所在直线的方程. 19.已知圆C 经过()()2,4,1,3两点,圆心C 在直线10x y -+=上,过点()0,1A 且斜率为k 的直线l 与圆C 相交于,M N 两点. (1)求圆C 的标准方程;(2)若12OM ON ⋅=(O 为坐标原点),求直线l 的斜率.20.已知三点()()()2,0,1,3,2,2A B C 在圆C 上,直线:360l x y +-=, (1)求圆C 的方程;(2)判断直线l 与圆C 的位置关系;若相交,求直线l 被圆C 截得的弦长.21.已知直线():2130l x ay a a R --+=∈与圆22:440C x y x y +--=相交于,A B 两点. (1)求直线l 过定点P 的坐标;(2)若直线l 斜率存在,且__________,求直线l 的方程.从以下三个条件中任选一个,补充在横线上,并求解.①直线l 平分圆C ;①弦AB 最短;①27AB =. 22.已知点(),x y 在圆22(2)(3)1x y -++=上. (1)求x y +的最大值; (2)求yx的最大值; (322245x y x y ++-+.答案和解析1.【答案】C 【解析】解:直线2310x y -+=的斜率为23,由垂直可得所求直线的斜率为32-, ∴所求直线的方程为()3212y x -=-+,化为一般式可得3210x y +-=故选:C . 2.【答案】B【解析】解:直线m 的方程可化为33402x y ++=,由两条平行直线间的距离公式知,2231121034-=+.故选:B . 3.【答案】C【解析】解:0,,x y y x x y +==-=-,所以对称点是()5,2--,故选:C . 4.【答案】A【解析】解:直线1:210l ax y +-=与直线()2:140l x a y +++=平行, 所以()121a a +=⨯,且()2411,0a a ⨯≠-⨯+<, 解得2a =-或1a =(舍),所以直线1:2210l x y -+=,直线2:2280l x y -+=, 可得它们的距离22187242(2)d -==+-, 故选:A . 5.【答案】B【解析】解:由两圆外切,圆()2:0,2O -,圆()1:0,0O ,且12,2r m r ,则圆心距为半径的和,所以有1222OO m ==, 得642m =-B . 6.【答案】A【解析】解:圆22()1x a y -+=的圆心坐标为(),0a ,直线210x y +-=是圆22()1x a y -+=的一条对称轴,∴圆心在直线210x y +-=上,可得2010a +-=,即12a =.故选:A . 7.【答案】A【解析】解:由点到直线的距离公式及题意可得P 到直线的距离2223121(3)9a a a d a a--+==+-+,22139a a ++,整理可得:24260a a +-,解得230230a --+A . 8.【答案】D【解析】解:由于AB AC =,可得:ABC 的外心、重心、垂心都位于线段BC 的垂直平分线上,即ABC 的欧拉线即为线段BC 的垂直平分线.()()1,0,0,2B C -,BC ∴中点坐标为1,12⎛⎫- ⎪⎝⎭,直线BC 的斜率为()20201BC k -==--, 设线段BC 垂直平分线的斜率为k ,则11,2BC k k k ⋅=-∴=-, ABC ∴的欧拉线的方程为:11122y x ⎛⎫-=-+ ⎪⎝⎭,整理得:2430x y +-=故选:D . 9.【答案】C【解析】解:点P 到直线3y x =+的最短距离为圆心到直线距离再减去半径. 圆22(1)2x y -+=圆心为()1,0,则圆心()1,0到直线:30l x y -+=的距离为22103221(1)d -+==+-,又圆的半径2r =所以点P 到直线:30l x y -+=的最短距离为2222=故选C .10.【答案】C【解析】解:圆22(3)(2)1x y ++-=的圆心()3,2-关于x 轴的对称点为()3,2P --,则52242AC BC AP r +-==故选:C . 11.【答案】B【解析】解:设经过点,A B 的直线为x 轴,AB 的方向为x 轴正方向,线段AB 的垂直平分线为y 轴,线段AB 的中点O 为原点,建立平面直角坐标系,则()()1,0,1,0A B -,设(),P x y ,2222(1)3,3,(1)PB x y PAx y -+==++整理得22410x y x +++=,即22(2)3x y ++=,即点P 的轨迹为以点()2,0-3的圆,如图所示:要使PAB 面积的最大值,只需点P 到(AB x 轴)的距离最大时,即为圆22(2)3x y ++=3时面积为12332⨯=B .12.【答案】B【解析】解:由题意得圆心()1,0O ,当所求弦与OP 垂直时,弦长最短,因为OP 的斜率为1,此时弦所在的直线斜率为1-,此时直线方程为3y x =-+,即30x y +-=. 故选:B . 13.【答案】6【解析】解:因为圆221:100C x y y +-=与圆222:10C x y +=,两式相减得,公共弦所在直线的方程1010y =,即1y =,因为圆心()20,0C ,半径210r =,所以圆心1C 到公共弦的距离为1d =, 所以公共弦长为21016-=.故答案为6. 14.5【解析】解:直线l 的方程230x y ++=,可得23x y =--,所以22222221(23)21510105(1)55x y y y y y y y y +-+=--+-+=++++,当1y =-2221x y y +-+55. 15.【答案】()()6,22,6--⋃【解析】解:根据题意,圆224x y +=的圆心()0,0,半径为2,圆心()0,030x y m -+=的距离2m d =,若圆224x y +=上恰有230x y m -+=的距离等于1,则13d <<,即:132m <<,所以26m <<,解得:62m -<<-或26m <<,故答案为:()()6,22,6--⋃. 16.【答案】250x y +-=【解析】解:根据点()2,1在圆225x y +=上,故过点()2,1与圆225x y +=相切的直线的方程为25x y +=,即250x y +-=,故答案为:250x y +-=.由条件根据过圆222x y r +=上的一点()00,x y 的圆的切线方程为200x x y y r +=,可得结论.17.【答案】解:(1)根据题意,直线()1:2140l x m y +++=与直线2:320l mx y +-=平行, 则()2310m m ⨯-+=,解得3m =-或2m =,当3m =-时,此时直线1:2240l x y -+=与直线2:3320l x y -+-=平行,当2m =时,此时直线1:2340l x y ++=与直线2:2320l x y +-=平行,故3m =-或2m =. (2)直线()()1:2110l a x a y ++--=与直线()()2:12320l a x a y -+++=互相垂直, 所以()()()()211230a a a a +-+-+=,解得1a =±. 18.【答案】解:(1)由题意可得,()()0,34,0A B -AB 的中点32,2⎛⎫- ⎪⎝⎭为圆的圆心,直径5AB = 以线段AB 为直径的圆的方程22325(2)24x y ⎛⎫++-= ⎪⎝⎭; (2)圆C 的弦AB 211, 设直线方程为()112y k x -=-,即102kx y k --+=, 23111k k --=+,所以0k =或34-,所以弦AB 所在直线的方程为12y =或3450x y +-=.19.【答案】解:设圆C 的方程为:222()()x a y b r -+-=,依题意得:222222(2)(4)(1)(3)1a b r a b r r ⎧-+-=⎪-+-=⎨⎪=⎩解得23,1a b r =⎧⎪=⎨⎪=⎩则圆C 的方程为:22(2)(3)1x y -+-=(2)设直线l 的方程为1y kx =+, 设()()1122,,,M x y N x y ,将1y kx =+代入圆的方程并整理得:()()2214170k xk x +-++=,所以()121222417,11k x x x x k k++==++, 所以()()()212121212241118121k k OM ON x x y y k x x k x x k+⋅=+=++++=+=+,即()24141k k k +=+,解得1k =,又当1k =时,Δ0>,所以1k =,即直线斜率为1.20.【答案】解:(1)设圆C 的方程为:220x y Dx Ey F ++++=,由题意得:24031002280D F D E F D E F ++=⎧⎪+++=⎨⎪+++=⎩,消去F 得:362D E D E -=⎧⎨-+=-⎩,解得:02D E =⎧⎨=-⎩,4F ∴=-,∴圆C 的方程为:22240x y y +--=.(2)由(1)知:圆C 的标准方程为:22(1)5x y +-=,圆心()0,1C ,半径5r =点()0,1C 到直线l 的距离2230161031d ⨯+-==+ 由d r <知:直线l 与圆C 相交;直线l 被圆C 截得的弦长为:2255102r d -=-=. 21.【答案】解:(1)由直线():2130l x ay a a R --+=∈得()()1230x a y ---=,由10230x y -=⎧⎨-=⎩,解得13,2x y =⎧⎪⎨=⎪⎩∴直线l 过定点31,2P ⎛⎫ ⎪⎝⎭(2)由圆22:440C x y x y +--=,得22(2)(2)8x y -+-=,圆C 的圆心()2,2C ,半径22r =若选①:直线l 平分圆C ,则直线l 过圆心,222130C a a ∴-⨯-+=,1,a ∴=∴直线l 的方程为220x y -+=.若选①:当直线l 与PC 垂直时弦长最短,由3212212PCk -==-, ∴直线l 的斜率为2-,故直线l 的方程为()3212y x -=--,即4270x y +-=, 若选①:设圆心到直线l 的距离为d ,由27AB =22221,(7)8,12d AB r d d ⎛⎫∴+=∴+=∴= ⎪⎝⎭,22413114a aa --+=+,解得0a =或23a =-,∴直线l 的方程为1,3490x x y =∴+-=.22.【答案】解:(1)设x y z +=,即0x y z +-=, 当直线和圆相切时,圆心()2,3C -到直线的距离23111z d --==+,即12z +21z =或21z =-,故x y +21. (2)设yk x=,则直线方程为0kx y -=,当直线和圆相切时,圆心()2,3-到直线的距离22311k d k+=+,即231280k k ++,6236233k---+, 故y x 623-+; (32222245(1)(2)x y x y x y ++-+=++- 则根式的几何意义为圆上点到定点()1,2D -的距离, 则22(12)(32)34CD =--+--=22245x y x y ++-+341.。

甘肃省会宁县第一中学2021届高三上学期第四次月考数学(文)试题 含答案

甘肃省会宁县第一中学2021届高三上学期第四次月考数学(文)试题 含答案

2020-2021学年度第一学期高三第四次月考数学试卷(文科)一、选择题:(每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.复数z 1在复平面内对应的点为(1,3),z 2=﹣2+i (i 为虚数单位),则复数的虚部为()A .B .C .D .2.已知全集U =R ,集合A ={x |2x <1},B ={x |log 2x <1},则(∁U A )∩B =()A .{x |0≤x <1}B .{x |1≤x <2}C .{x |0<x <2}D .{x |0≤x <2}3.下列判断正确的是()A .若命题p 为真命题,命题q 为假命题,则命题“p ∧q ”为真命题B .命题“∀x ∈R ,2x >0”的否定是“∃x 0∈R ,2≤0”C .“”是“α=”的充分不必要条件D .命题“若xy =0,则x =0”的否命题为“若xy =0,则x ≠0”4.设a =1-3log 2,b =2log 4,c =2,则()A .a <b <cB .a <c <bC .c <b <aD .b <a <c5.设函数f (x )在R 上可导,其导函数为f ′(x ),且函数f (x )在x =﹣3处取得极大值,则函数y =xf ′(x )的图象可能是()A .B .C.D.6.数列{a n}中,a1=2,a n+1=2a n﹣1,则a10=()A.511B.513C.1025D.10247.已知二次不等式﹣2x2+bx+c<0的解集为{x|x<或x>},则关于x的不等式cx2﹣bx﹣2>0的解集为()A.{x|2<x<3}B.{x|﹣2<x<3}C.{x|﹣3<x<2}D.{x|﹣3<x<﹣2}8.已知△ABC中,角A,B,C的对边分别为a,b,c,且sin A,sin B,sin C成等比数列,则角B 的取值范围()A.B.C.D.9.函数f(x)=sin(ωx+φ)(其中ω>0,0<φ<)的图象如图所示,为了得到y=sin x图象,则需将y=f(x)的图象()A.横坐标缩短到原来的,再向右平移个单位B.B.横坐标缩短到原来的,再向左平移个单位C.横坐标伸长到原来的2倍,再向右平移个单位D.横坐标伸长到原来的2倍,再向左平移个单位10.已知向量=(4sinα,1﹣cosα),=(1,﹣2),若=﹣2,则=()A.1B.﹣1C.D.11.已知是两个不共线的向量,若,+,,则()A.A,B,C三点共线B.A,C,D三点共线C.A,B,D三点共线D.B,C,D三点共线12.已知在x=1处取得极值,则的最小值是()A.B.2C.D.二、填空题(本大题共4小题,每小题5分,共20分.将答案填在答题卷相应位置上.)13.已知函数f(x)=,若f(x﹣4)<f(2x﹣3),则实数x的取值范围是.14.已知α∈(0,),β∈(0,),sin(α﹣β)=,α+β=,则cos2α的值为.15.已知数列{a n}的前n项和为S n,且S n=n2+3n﹣1,则a n的通项为.16.不等式mx2﹣mx﹣2<0对任意x∈R恒成立的充要条件是m∈.三、解答题:本大题共6小题,满分70分.解答须写出文字说明、证明过程和演算步骤.17(本小题满分12分)已知函数.(1)求f(x)的最小正周期及单调增区间;(2)在△ABC中,角A,B,C的对边分别为a,b,c,若,,sin A=2sin B,求△ABC的周长.18(本小题满分12分)已知向量,满足:||=4,||=3,(﹣)•(+2)=0.(1)求|2+|的值;(2)若向量⊥(+λ),求实数λ的值.19(本小题满分12分)设S n为首项不为零等差数列{a n}的前n项和,已知a4a5=3a9,S5=20.(1)求数列{a n}的通项公式;(2)设T n为数列的前n项和,求的最大值.20(本小题满分12分)已知f(x)为R上的偶函数,当x≥0时,f(x)=ln(3x+2).(1)证明y=f(x)在[0,+∞)单调递增;(2)求f(x)的解析式;(3)求不等式f(x+2)≤f(2x)的解集.21(本小题满分12分)已知曲线f(x)=ax+bx2lnx在点(1,f(1))处的切线是y=2x﹣1.(1)求实数a,b的值;(2)若f(x)≥kx恒成立,求实数k的最大值.选考题:共10分。

天津市静海区第一中学2024届高三上学期12月月考数学试题含答案解析

天津市静海区第一中学2024届高三上学期12月月考数学试题含答案解析

静海一中2023-2024第一学期高三数学(12月)学生学业能力调研试卷命题人:李静审题人:陈中友考生注意:本试卷分第Ⅰ卷基础题(133分)和第Ⅱ卷提高题(14分)两部分,共147分.3分卷面分.知识技能学习能力内容集合简单逻辑函数圆锥曲线立体几何数列基本不等式平面向量三角函数复数关键环节分数10153520205518514第Ⅰ卷基础题(共131分)一、选择题(每小题5分,共45分)1.设集合{1,2,3,4,5,6},{1,3,6},{2,3,4}U A B ===,则()U A B =ð()A.{3}B.{1,6}C.{5,6}D.{1,3}2.设数列{}n a的公比为q ,则“10a>且01q <<”是“{}n a 是递减数列”的()A .充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3.函数()242log 2xf x x x+=-的大致图象是()A. B. C. D.4.设0.32,sin28,ln2a b c === ,则()A.c b a <<B.b c a <<C.a b c<< D.b a c<<5.已知2243x y ==,则3y xxy-的值为()A.1B.0C.1-D.26.若三棱锥-P ABC 中,已知PA ⊥底面ABC ,120BAC ∠=︒,2PA AB AC ===,若该三棱雉的顶点都在同一个球面上,则该球的表面积为()A.B.18πC.20πD.7.已知函数()3sin cos cos22f x x x x =+,则下列说法不正确的是()A.函数()f x 的最小正周期为πB.函数()f x 的图象关于点π,06⎛⎫⎪⎝⎭对称C.函数()f x 的图象可由πsin 3y x ⎛⎫=+⎪⎝⎭的图象上所有点横坐标缩短为原来的12,纵坐标不变得到D.函数()f x 的图象可由sin2y x =的图象上所有点向左平移π6个单位得到8.已知12,F F 分别为双曲线22221(0,0)x y a b a b-=>>的左、右焦点,过2F 与双曲线的一条渐近线平行的直线交双曲线于点P ,若213PF PF =,则双曲线的离心率为()A.3B.C.D.29.设a R ∈,函数2sin 2,0()474,0x x f x x x a x π<⎧=⎨-+-≥⎩,若()f x 在区间(),a ∞-+内恰有5个零点,则a 的取值范围是()A .7511,2,424⎡⎫⎡⎫⋃⎪⎪⎢⎢⎣⎭⎣⎭B.75,22,42⎡⎫⎛⎤⋃⎪ ⎢⎥⎣⎭⎝⎦C.37511,,2424⎛⎤⎡⎫⋃⎪⎥⎢⎝⎦⎣⎭D.375,2,242⎛⎤⎛⎤⋃⎥⎝⎦⎝⎦二、填空题:每小题5分,共30分.10.已知复数2i2i 1a +-是纯虚数,则实数=a ______.11.抛物线28y x =,过焦点的弦AB 长为8,则AB 中点M 的横坐标为____.12.已知圆()22200x ax y a =+->截直线0x y -=所得弦长是,则a 的值为______.13.设数列{}n a 的通项公式为()π21cos 2n n a n =-⋅,其前n 项和为n S ,则20S =__________14.已知0m >,0n >,21m n +=,则()()11m n mn++的最小值为______.15.如图是由两个有一个公共边的正六边形构成的平面图形Γ,其中正六边形边长为1,设AG xAB y AI =+,则x y +=______;P 是平面图形Γ边上的动点,则GE AP ⋅的取值范围是______.三、解答题:(本大题共5小题,共72分)16.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .已知sin A C =,150B =︒,ABC 的面积(1)求a 的值;(2)求sin A 的值;(3)求sin 26A π⎛⎫+⎪⎝⎭的值.17.如图,四棱锥P ABCD -中,底面ABCD 为平行四边形,PA ABCD ⊥面,M 是棱PD 的中点,且2AB AC PA ===,BC =(I )求证:CD PAC ⊥面;(Ⅱ)求二面角M AB C --的大小;(Ⅲ)若N 是AB 上一点,且直线CN 与平面MAB 成角的正弦值为5,求AN NB 的值.18.设椭圆22221(0)x y a b a b+=>>的右焦点为F ,左右顶点分别为A ,B .已知椭圆的离心率为12,||3AF =.(1)求椭圆的方程;(2)已知P 为椭圆上一动点(不与端点重合),直线BP 交y 轴于点Q ,若四边形OPQA 的面积是三角形BFP 面积的3倍,求直线BP 的方程.19.已知数列{}{},,n n n a b S 是数列{}n a 的前n 项和,已知对于任意N*n ∈,都有323n n a S =+,数列{}n b 是等差数列,131log b a =,且2465,1,3b b b ++-成等比数列.(1)求数列{}n a 和{}n b 的通项公式.(2)记211,N n n n n nb d n b b a *++-=∈,求数列{}n d 的前n 项和n T .(3)记2,,n n na n cb n ⎧⎪=⎨⎪⎩为奇数为偶数,求211n k k k c c +=∑.第Ⅱ卷提高题(共14分)20.已知函数()()e 11xf x a x =+--,其中a ∈R .(1)当3a =时,求曲线()y f x =在点()()0,0f 处的切线方程;(2)讨论函数()f x 的单调性;(3)当1a >时,证明:()ln cos f x x x a x >-.静海一中2023-2024第一学期高三数学(12月)学生学业能力调研试卷命题人:李静审题人:陈中友考生注意:本试卷分第Ⅰ卷基础题(133分)和第Ⅱ卷提高题(14分)两部分,共147分.3分卷面分.知识技能学习能力内容集合简单逻辑函数圆锥曲线立体几何数列基本不等式平面向量三角函数复数关键环节分数10153520205518514第Ⅰ卷基础题(共131分)一、选择题(每小题5分,共45分)1.设集合{1,2,3,4,5,6},{1,3,6},{2,3,4}U A B ===,则()U A B =ð()A.{3} B.{1,6}C.{5,6}D.{1,3}【答案】B 【解析】【分析】根据交集、补集的定义可求()U A B ⋂ð.【详解】由题设可得{}U 1,5,6B =ð,故(){}U 1,6A B ⋂=ð,故选:B.2.设数列{}n a 的公比为q ,则“10a >且01q <<”是“{}n a 是递减数列”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】A 【解析】【分析】根据题意,结合等比数列的通项公式,分别验证充分性以及必要性,即可得到结果.【详解】由等比数列的通项公式可得,111n nn a a a q q q-=⋅=⋅,当10a >且01q <<时,则10a q >,且n y q =单调递减,则1n n aa q q=⋅是递减数列,故充分性满足;当1n n a a q q =⋅是递减数列,可得1001a q >⎧⎨<<⎩或101a q <⎧⎨>⎩,故必要性不满足;所以“10a >且01q <<”是“{}n a 是递减数列”的充分不必要条件.故选:A3.函数()242log 2xf x x x+=-的大致图象是()A. B. C. D.【答案】D 【解析】【分析】方法一:根据函数的奇偶性及函数值的符号排除即可判断;方法二:根据函数的奇偶性及某个函数值的符号排除即可判断.【详解】方法一:因为202xx+>-,即()()220x x +⋅-<,所以22x -<<,所以函数()242log 2xf x x x+=-的定义域为()2,2-,关于原点对称,又()()242()log 2xf x x f x x--=-=-+,所以函数()f x 是奇函数,其图象关于原点对称,故排除B C ,;当()0,2x ∈时,212x x+>-,即42log 02xx +>-,因此()0f x >,故排除A.故选:D.方法二:由方法一,知函数()f x 是奇函数,其图象关于原点对称,故排除B C ,;又()211log 302f =>,所以排除A.故选:D.4.设0.32,sin28,ln2a b c === ,则()A.c b a <<B.b c a <<C.a b c <<D.b a c<<【答案】B 【解析】【分析】根据给定条件,利用指数、对数函数、正弦函数的性质,借助“媒介数”比较判断作答.【详解】00.32,si 2n n212i 81s 30a b >=<===2e <<,则1ln 212<<,即112c <<,所以b<c<a .故选:B5.已知2243xy==,则3y xxy-的值为()A.1B.0C.1- D.2【答案】C 【解析】【分析】利用指数与对数互化的公式表示出224log 3,log 3x y ==,再利用换底公式和对数的运算性质化简计算.【详解】因为2243x y ==,所以224log 3,log 3x y ==,由换底公式和对数的运算性质可得33333322433131813log 2log 24log 8log 24log log 1log 3log 3243y x xy x y -=-=-=-=-===-.故选:C6.若三棱锥-P ABC 中,已知PA ⊥底面ABC ,120BAC ∠=︒,2PA AB AC ===,若该三棱雉的顶点都在同一个球面上,则该球的表面积为()A.B.18πC.20πD.【答案】C 【解析】【分析】由题设知三棱锥-P ABC 是相应正六棱柱内的一个三棱锥,由此知该三棱锥的外接球即为该六棱柱的外接球,求出正六棱柱的外接球半径即可得.【详解】三棱锥-P ABC 中,已知PA ⊥底面ABC ,120BAC ∠=︒,2PA AB AC ===,故该三棱锥为图中正六棱柱内的三棱锥-P ABC ,所以该三棱锥的外接球即为该六棱柱的外接球,所以外接球的直径2R ==,则R =所以该球的表面积为224π4π20πS R ==⋅=.故选:C.7.已知函数()3sin cos cos22f x x x x =+,则下列说法不正确的是()A.函数()f x 的最小正周期为πB.函数()f x 的图象关于点π,06⎛⎫⎪⎝⎭对称C.函数()f x 的图象可由πsin 3y x ⎛⎫=+⎪⎝⎭的图象上所有点横坐标缩短为原来的12,纵坐标不变得到D.函数()f x 的图象可由sin2y x =的图象上所有点向左平移π6个单位得到【答案】B 【解析】【分析】首先化简函数()f x ,再根据三角函数的性质,求最小正周期判断A ,整体代入法判断对称中心判断B ,利用函数图象变换法则即可判断CD.【详解】()313πsin cos cos2sin 2cos 2sin 22223f x x x x x x x ⎛⎫=+=+=+ ⎪⎝⎭,所以函数的最小正周期2ππ2T ==,故A 正确;当π6x =时,πππ2π3sin 2sin 066332f ⎛⎫⎛⎫=⨯+==≠ ⎪ ⎪⎝⎭⎝⎭,所以π,06⎛⎫⎪⎝⎭不是函数()f x 的一个对称中心,故B 错误;由πsin 3y x ⎛⎫=+ ⎪⎝⎭的图象上所有点横坐标缩短为原来的12,纵坐标不变得到πsin(23y x =+,故C 正确;将sin2y x =的图象上所有点向左平移π6个单位得到ππsin[2(sin(2)63y x x =+=+,故D 正确.故选:B8.已知12,F F 分别为双曲线22221(0,0)x y a b a b-=>>的左、右焦点,过2F 与双曲线的一条渐近线平行的直线交双曲线于点P ,若213PF PF =,则双曲线的离心率为()A.3B.C.D.2【答案】C 【解析】【分析】设过2F 与双曲线的一条渐近线by x a=平行的直线交双曲线于点P ,运用双曲线的定义和条件可得1||3PF a =,2||PF a =,12||2F F c =,再由渐近线的斜率和余弦定理,结合离心率公式,计算即可得到所求值.【详解】设过2F 与双曲线的一条渐近线by x a=平行的直线交双曲线于点P ,由双曲线的定义可得12||||2PF PF a -=,由12||3||PF PF =,可得1||3PF a =,2||PF a =,12||2F F c =,由12tan bF F P a ∠=可得12cos aF F P c ∠=,在三角形12PF F 中,由余弦定理可得:222121221212||||||2||||cos PF PF F F PF F F F F P =+-⋅∠,即有2229422aa a c a c c=+-⨯⨯,化简可得223c a =,所以双曲线的离心率==ce a.故选:C .9.设a R ∈,函数2sin 2,0()474,0x x f x x x a x π<⎧=⎨-+-≥⎩,若()f x 在区间(),a ∞-+内恰有5个零点,则a 的取值范围是()A.7511,2,424⎡⎫⎡⎫⋃⎪⎪⎢⎢⎣⎭⎣⎭ B.75,22,42⎡⎫⎛⎤⋃⎪ ⎢⎥⎣⎭⎝⎦C.37511,,2424⎛⎤⎡⎫⋃⎪⎥⎢⎝⎦⎣⎭D.375,2,242⎛⎤⎛⎤⋃⎥⎝⎦⎝⎦【答案】D 【解析】【分析】解法一:利用排除法,分别令94a =和138a =求解函数的零点进行判断,解法二:分类讨论,分()f x 在区间(),0a -有5个零点且在区间[)0,∞+没有零点,()f x 在区间(),0a -有4个零点且在区间[)0,∞+有1个零点和()f x 在区间(),0a -有3个零点且在区间[)0,∞+有2个零点三种情况求解即可【详解】法一(排除法):令94a =,则2sin 2,0()42,0x x f x x x x π<⎧=⎨--≥⎩,当0x <时,()f x 在区间9,04⎛⎫- ⎪⎝⎭有4个零点,当0x ≥时,()020f =-<,Δ240=>,()f x 在区间[)0,∞+有1个零点,综上所述,()f x 在区间(),a ∞-+内有5个零点,符合题意,排除A 、C.令138a =,则2sin 2,0()14,02x x f x x x x π<⎧⎪=⎨-+≥⎪⎩,当0x <时,()f x 在区间13,08⎛⎫- ⎪⎝⎭有3个零点,当0x ≥时,()1002f =>,Δ140=>,()f x 在区间[)0,∞+有2个零点,综上所述,()f x 在区间(),a ∞-+内有5个零点,符合题意,排除B ,故选D.法二(分类讨论):①当()f x 在区间(),0a -有5个零点且在区间[)0,∞+没有零点时,满足0532a ∆<⎧⎪⎨-≤-<-⎪⎩,无解;②当()f x 在区间(),0a -有4个零点且在区间[)0,∞+有1个零点时,满足()000522f a ⎧⎪∆>⎪<⎨⎪⎪-≤-<-⎩,解得522a <≤;③当()f x 在区间(),0a -有3个零点且在区间[)0,∞+有2个零点时,满足()000322f a ⎧⎪∆>⎪≥⎨⎪⎪-≤-<-⎩,解得3724a <≤,综上所述,a 的取值范围是375,2,242⎛⎤⎛⎤⋃ ⎥⎥⎝⎦⎝⎦,故选:D.二、填空题:每小题5分,共30分.10.已知复数2i2i 1a +-是纯虚数,则实数=a ______.【答案】1【解析】【分析】由复数的除法运算、纯虚数的概念即可求得参数a .【详解】由题意()()()()()()2i 2i+12241i 41i2i 222i 12i 12i+14155a a a a a a +-++++-===-----,由题意复数2i 2i 1a +-是纯虚数,则2205a-=且4105a +-=,解得1a =.故答案为:1.11.抛物线28y x =,过焦点的弦AB 长为8,则AB 中点M 的横坐标为____.【答案】2【解析】【分析】利用梯形中位线定理,结合抛物线的定义,先求出弦AB 的中点M 到准线的距离,最后求出弦AB 的中点M 的横坐标.【详解】抛物线28y x =的准线l 的方程为:2x =-,焦点为(2,0)F ,分别过,,A B M ,作,,AC l BD l MH l ⊥⊥⊥,垂足为,,C D H ,在直角梯形ABDC 中,2AC BDMH +=,由抛物线的定义可知:,AC AF BD BF ==,因此有4222AC BDAF BFAB MH ++====,所以点M 的横坐标为422-=.故答案为:2.12.已知圆()22200x ax y a =+->截直线0x y -=所得弦长是,则a 的值为______.【答案】2【解析】【分析】化圆的方程为标准方程,可得圆心和半径,求得圆心到直线0x y -=的距离d ,代入弦长公式,即可求得答案.【详解】圆()22200x ax y a =+->可变形为:222()x a y a -+=,所以圆心为(,0)a ,半径r a =,所以圆心到直线0x y -=的距离22d ==,根据弦长公式可得2==,因为0a>,解得2a=.故答案为:213.设数列{}n a的通项公式为()π21cos2nna n=-⋅,其前n项和为n S,则20S=__________【答案】20【解析】【分析】先由()πcos2nf n=的周期性及函数值特点,分析数列{}n a的特点1234n n n na a a a++++++=()1,5,9,13,16n=,;再根据这个特点求解即可.【详解】由()πcos2nf n=可得:周期为2π4π2T==,()π1cos02f==,()2π2cos12f==-,()3π3cos02f==,()4π4cos12f==.因为()π21cos2nna n=-⋅,所以123n n n na a a a++++++()()()()()()()1π2π3ππ21cos221cos241cos261cos2222n n nnn n n n+++=-⋅++-⋅++-⋅+-⋅4=,()1,5,9,13,16n=,所以数列{}n a的前n项和具有周期为4的周期性,且这样一个周期内的和为4,所以204520S=⨯=.故答案为:2014.已知0m>,0n>,21m n+=,则()()11m nmn++的最小值为______.【答案】8+8【解析】【分析】对代数式结合已知等式进行变形,再利用基本不等式进行求解即可.【详解】因为21m n+=,所以()()()()1122262238m n m m n n m n n m n mmnmnm nmn++++++⎛⎫⎛⎫==++=++ ⎪⎪⎝⎭⎝⎭,因为0m >,0n >,所以62n m m n +≥=,当且仅当62n m m n =时取等号,即23n m =-=时,()()11m nmn++有最小值8+,故答案为:8+【点睛】关键点睛:利用等式把代数式()()11m n mn++变形为628n m mn++.15.如图是由两个有一个公共边的正六边形构成的平面图形Γ,其中正六边形边长为1,设AG xAB y AI =+,则x y +=______;P 是平面图形Γ边上的动点,则GE AP ⋅的取值范围是______.【答案】①.1②.3,32⎡⎤-⎢⎥⎣⎦【解析】【分析】以I 为原点,建立平面直角坐标系,根据,,G B I 三点共线,得到1x y +=,设(,)P x y ,求得()2GE AP x ⋅=+ ,令z x =+,转化为求该直线在y 轴上截距的取值范围,得到目标函数的最优解,代入即可求解.【详解】以I 为原点,,BG IO 所在的直线分别为,x y 轴,建立平面直角坐标系,如图所示,因为,,G B I 三点共线,且AG xAB y AI =+,所以1x y +=,由正六边形的内角均为120 ,且边长为1,可得3331((,,)2222G E A --,设(,)P x y ,可得31,),(,2222GE AP x y ==-+,则31,(,()22222GE AP x y x ⋅=⋅-+=+ ,令z x =,则3()3y x z =--,当该直线经过点C 时,截距最大,对应的z 最大,此时·GE AP最大值为3,当该直线经过点(G 时,截距最小,对应的z 最小,此时·GE AP的最小值为32-,所以·GE AP3,32⎡⎤∈-⎢⎥⎣⎦.故答案为:1;3[,3]2-.三、解答题:(本大题共5小题,共72分)16.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .已知sin A C =,150B =︒,ABC 的面积(1)求a 的值;(2)求sin A 的值;(3)求sin 26A π⎛⎫+⎪⎝⎭的值.【答案】(1);(2)2114;(3)1314.【解析】【分析】(1)已知条件结合三角形面积公式和正弦定理即可求a ;(2)由余弦定理求出b ,再根据正弦定理即可求出sin A ;(3)根据sin A 求出cos A ,再由正弦和角公式、正余弦二倍角公式即可求值.【小问1详解】∵sin A C =,∴由正弦定理得a =,又ABC 的1sin1502ac ︒=,解得2c =,∴a =;【小问2详解】由余弦定理有2222cos150b a c ac =+-︒,∴b =.由正弦定理sinsin sin 14a b A A B =⇒==.【小问3详解】∵B =150°,∴A <90°,∴由sin A =14得,cos 14A =,∴sin 22sin cos 14A A A ==,211cos 22cos 114A A =-=.∴13sin 2sin 2cos cos 2sin 66614A A A πππ⎛⎫+=+= ⎪⎝⎭.17.如图,四棱锥P ABCD -中,底面ABCD 为平行四边形,PA ABCD ⊥面,M 是棱PD 的中点,且2AB AC PA ===,BC =(I )求证:CD PAC ⊥面;(Ⅱ)求二面角M AB C --的大小;(Ⅲ)若N 是AB 上一点,且直线CN 与平面MAB 成角的正弦值为5,求AN NB 的值.【答案】(I )见解析;(Ⅱ)4π;(Ⅲ)1.【解析】【分析】【详解】试题分析:(I),,所以平面PAC;(II)建立空间直角坐标系,求出两个法向量,平面MAB的法向量,是平面ABC的一个法向量,求出二面角;(III)设,平面MAB的法向量,解得答案.试题解析:证明:(I)连结AC.因为为在中,,,所以,所以.因为AB//CD,所以.又因为地面ABCD,所以.因为,所以平面PAC.(II)如图建立空间直角坐标系,则.因为M是棱PD的中点,所以.所以,.设为平面MAB 的法向量,所以,即,令,则,所以平面MAB 的法向量.因为平面ABCD ,所以是平面ABC 的一个法向量.所以.因为二面角为锐二面角,所以二面角的大小为.(III)因为N 是棱AB 上一点,所以设,.设直线CN 与平面MAB 所成角为,因为平面MAB 的法向量,所以.解得,即,,所以.18.设椭圆22221(0)x y a b a b+=>>的右焦点为F ,左右顶点分别为A ,B .已知椭圆的离心率为12,||3AF =.(1)求椭圆的方程;(2)已知P 为椭圆上一动点(不与端点重合),直线BP 交y 轴于点Q ,若四边形OPQA 的面积是三角形BFP 面积的3倍,求直线BP 的方程.【答案】(1)22143x y +=(2)32(2)4y x =±-【解析】【分析】(1)根据已知线段长度与离心率,求解出,a c 的值,然后根据222a b c =+求解出b 的值,则椭圆方程可求;(2)根据条件将问题转化为三角形ABQ 与三角形OBP 的面积比,由此得到关于,P Q y y 的关系式,通过联立直线与椭圆方程求得对应坐标,然后求解出参数值得P 的坐标,则可求BP 直线方程.【小问1详解】因为,12c e a ==,||3AF =,所以2,3a c a c =+=,所以2,1a c ==,所以b ==所以椭圆方程为22143x y +=;【小问2详解】如图,因为四边形OPQA 与三角形BFP 的面积之比为3:1,所以三角形ABQ 与三角形OPB 的面积比为5:2,所以152122QP AB y OB y ⋅=⋅,所以54Q P y y =,显然直线BP 的斜率不为0,设直线BP 的方程为2x my =+,联立2223412x my x y =+⎧⎨+=⎩,所以()2234120m y my ++=,所以21234P m y m =-+,2Q y m=-,所以22512434m m m -=-+,解得223m =±,当m =22:23BP x y =+,当3m =-时,:23BP x y =-+,故直线BP的方程为(2)4y x =±-.19.已知数列{}{},,n n n a b S 是数列{}n a 的前n 项和,已知对于任意N*n ∈,都有323n n a S =+,数列{}n b 是等差数列,131log b a =,且2465,1,3b b b ++-成等比数列.(1)求数列{}n a 和{}n b 的通项公式.(2)记211,N n n n n nb d n b b a *++-=∈,求数列{}n d 的前n 项和n T .(3)记2,,n n na n cb n ⎧⎪=⎨⎪⎩为奇数为偶数,求211n k k k c c +=∑.【答案】(1)3nn a =,21n b n =-(2)1122(21)3n nT n =-+⋅(3)175402591648n n +-+⋅【解析】【分析】(1)首先根据n a 与n S 的关系得到n a ,再根据等比数列的性质即可得到n b ;(2)利用裂项相消法即可得结果;(3)将分组求和与错位相减法相结合即可得结果.【小问1详解】当1n =时,11323a a =+,解得13a =.当2n ≥时,11323n n a S --=+,所以113233n n nn n a a a a a --=⇒=-,即{}n a 是以首先13a =,公比为3的等比数列,即3nn a =.因为131log 3b ==,2465,1,3b b b ++-成等比数列,所以()()()2426153b b b +=+-,即()()()213115153d d d ++=+++-,解得2d =.所以()12121n b n n =+-=-.【小问2详解】由(1)得2112(2)2(21)(21)3n n nn n n b n d b b a n n ++-+-==-+⋅()()()()122111212132213213n n n n n n n n -⎡⎤+==-⎢⎥-+⋅-⋅+⋅⎢⎥⎣⎦,则123n nd d d d T +++⋅⋅⋅+=0112231111111111[()()()()]2133333535373(21)3(21)3n n n n -=-+-++⋅⋅⋅+-⨯⨯⨯⨯⨯⨯-⋅+⋅0111()213(21)3n n =-⨯+⋅1122(21)3nn =-+⋅【小问3详解】1223221211k k n n nk c c c c c c c c=++=+++∑ ,因为()()()()2121212221221211021332193n n n n n n n n n n c c c c c c c n n -+-+-++=+=-+=-⋅,设()219nn d n =-⋅,前n 项和为n K ,则()121939219nn K n =⨯+⨯++-⨯ ,()()23191939239219n n n K n n +=⨯+⨯++-⨯+-⨯ ,()()()()12118119892992199221919n n n n n K n n -++--=+++--⋅=+⨯--⋅- 1458593232n n n K +-=+⋅.所以211110754025931648n n n k k k c c n K +=+-==+⋅∑第Ⅱ卷提高题(共14分)20.已知函数()()e 11xf x a x =+--,其中a ∈R .(1)当3a =时,求曲线()y f x =在点()()0,0f 处的切线方程;(2)讨论函数()f x 的单调性;(3)当1a >时,证明:()ln cos f x x x a x >-.【答案】(1)30x y -=(2)答案见解析(3)证明见解析【解析】【分析】(1)求出()0f ',利用导数几何意义结合点斜式方程即可求出切线方程;(2)求出导函数,按照1a ≥和1a <分类讨论研究函数的单调性即可;(3)把原不等式作差变形得()()e cos 1ln 0,0,x a x x x x x x ∞++--->∈+,结合()cos cos a x x x x +>+,把不等式证明转化为e cos 1ln 0x x x x +-->问题,构造函数,求导,利用函数的单调性求得最值即可证明.【小问1详解】当3a =时,()e 21x x x f =+-,()e 2x f x '=+,所以()00e 23f '=+=,又()00e 10f =-=,由导数的几何意义知,曲线()y f x =在点()()0,0f 处的切线方程为()030y x -=-,即30x y -=.【小问2详解】因为()()e 11x f x a x =+--,所以()e 1xf x a =+-',当1a ≥时,()e 10xf x a =+->',函数()f x 在R 上单调递增;当1a <时,由()e 10x f x a =+->',得()ln 1x a >-,函数()f x 在区间()()ln 1,a ∞-+上单调递增,由()()e 10x f x a =+-<',得()ln 1x a <-,函数()f x 在区间()(),ln 1a -∞-上单调递减.【小问3详解】要证()ln cos f x x x a x >-,即证()()e 11ln cos ,0,x a x x x a x x ∞+-->-∈+,即证()()e cos 1ln 0,0,xa x x x x x x ∞++--->∈+,设()cos k x x x =+,则()1sin 0k x x ='-≥故()k x 在()0,∞+上单调递增,又()010k =>,所以()1k x >,又因为1a >,所以()cos cos a x x x x +>+,所以()e cos 1ln e cos 1ln x xa x x x x x x x x ++--->+--,①当01x <≤时,因为e cos 10,ln 0x x x x +->≤,所以e cos 1ln 0x x x x +-->;②当1x >时,令()e cos ln 1x g x x x x =+--,则()e ln sin 1xg x x x '=---,设()()h x g x '=,则()1e cos xh x x x=--',设()1e cos x m x x x =--,则()21e sin x m x x x =++',因为1x >,所以()0m x '>,所以()m x 即()h x '在()1,+∞上单调递增,所以()()1e 1cos10h x h >=--'>',所以()h x 在()1,+∞上单调递增,所以()()1e sin110h x h >=-->,即()0g x '>,所以()g x 在()1,+∞上单调递增,()()1e cos110g x g >=+->,即e cos 1ln 0x x x x +-->.综上可知,当1a >时,()e cos 1ln e cos 1ln 0x xa x x x x x x x x ++--->+-->,即()ln cos f x x x a x >-.【点睛】方法点睛:利用导数证明不等式的常见形式是()()f x g x >,一般可构造“左减右”的函数,即先将不等式()()f x g x >移项,构造函数()()()h x f x g x =-,转化为证不等式()0h x >,进而转化为证明min ()0h x >,因此只需在所给区间内判断()h x '的符号,从而得到函数()h x 的单调性,并求出函数()h x 的最小值即可.。

2023届安徽省滁州市定远县民族中学高三年级上册学期12月月考数学试题【含答案】

2023届安徽省滁州市定远县民族中学高三年级上册学期12月月考数学试题【含答案】

2023届安徽省滁州市定远县民族中学高三上学期12月月考数学试题一、单选题1.已知集合{}32A x x =-≤≤,{}2230B x x x =+-≤,则()RAB =( )A .(]1,2B .[]1,2C .[)3,1-D .[]3,1-【答案】A【分析】求出集合B ,用补集和交集的运算性质计算即可.【详解】因为集合{}{}223031B x x x x x =+-≤=-≤≤,所以{}31R B x x x =-或.又{}32A x x =-≤≤,所以(){}12R A B x x ⋂=<≤. 故选:A .2.设函数()2log f x x =,若13log 2a f ⎛⎫= ⎪⎝⎭,()5log 2b f =,()0.2C f e =,则a ,b ,c 的大小为( )A .b a c <<B .c<a<bC .b<c<aD .a b c <<【答案】A【分析】由题可得()f x 为偶函数,且在(0,)+∞上为增函数,由此可得3(log 2)a f =,然后利用对数函数和指数函数的性质比较0.253log 2,log 2,e 的大小,从而可比较出a ,b ,c 的大小【详解】解:因为22()log log ()f x x x f x -=-==,所以()f x 为偶函数,所以1333(lo lo g 2)(log 22)g a f f f ⎛⎫==-= ⎪⎝⎭,当0x >时,2(x)log f x =在(0,)+∞上为增函数, 因为530log 2log 21<<<,0.201e e >=, 所以0.2530log 2log 2e <<<, 因为()f x 在(0,)+∞上为增函数,所以0.253(log 2)(log 2)()f f f e <<,所以b a c <<, 故选:A【点睛】此题考查对数函数和指数函数的性质,考查函数的奇偶性和单调性的应用,考查转化能力,属于基础题.3.已知()f x ,()g x 分别为定义域为R 的偶函数和奇函数,且()()e xf xg x +=,若关于x 的不等式()()220f x ag x -≥在()0,ln3上恒成立,则正实数a 的取值范围是( )A .15,8⎡⎫+∞⎪⎢⎣⎭B .40,9⎡⎫+∞⎪⎢⎣⎭C .400,9⎛⎤ ⎥⎝⎦D .150,8⎛⎤ ⎥⎝⎦【答案】D【分析】由奇偶性求得()f x ,()g x ,化简不等式,并用分离参数法变形为()()24e e eex x xx a --+≤-,设e e x x t -+=,换元后利用函数的单调性求得不等式右边的取值范围,从而可得a 的范围.【详解】解:已知()f x ,()g x 分别为定义域为R 的偶函数和奇函数,则()()()(),f x f x g x g x =-=--,又()()e x f x g x +=①,则()()()()e e x xf xg x f x g x ---+-=⇒-=②,由①②可得()()e e e e ,22x x x xf xg x --+-==, 则不等式()()220f x ag x -≥在()0,ln3上恒成立,转化为:()2e e e e 04x xx x a ---+-≥在()0,ln3上恒成立,因为()0,ln3x ∈,所以e e 0x x -->,即()()()()224e e 4e e e e e e 4x xxxx xxxa ----++≤=-+-,令e e x x t -+=,则24444t a t t t≤=--,e e x x t -=+,()0,ln3x ∈,则e e 0x x t -'=->,e e x x t -=+在()0,ln3上是增函数,102,3t ⎛⎫∈ ⎪⎝⎭,又4y t t =-在102,3t ⎛⎫∈ ⎪⎝⎭时是增函数,所以432015t t <-<,则41548t t >-, 又()()24e e ee x x xx a --+≤-在()0,ln3x ∈上恒成立,则158a ≤. 则正实数a 的取值范围是150,8⎛⎤⎥⎝⎦.故选:D .4.函数()(1)ln 1f x x x =+-的大致图像是( )A .B .C .D .【答案】B【分析】由1()02f ->排除两个选项,再由2x >时,()0f x >排除一个选项后可得正确选项.【详解】∵()(1)ln 1f x x x =+-,所以113()ln 0222f -=>,故排除C ,D ,当2x >时,()(1)ln(1)0f x x x =+->恒成立,排除A , 故选:B .5.已知函数()()sin 0,0,2f x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭,4x π=-是函数的一个零点,且4x π=是其图象的一条对称轴.若,96ππ⎛⎫⎪⎝⎭是()f x 的一个单调区间,则ω的最大值为A .18B .17C .15D .13【答案】D【分析】由已知可得()221T k Z k π=∈+,结合2T πω=,得到21k ω=+(k Z ∈),再由96ππ⎛⎫⎪⎝⎭,是()f x 的一个单调区间,可得1692ππ-≤T ,即9T π≥,进一步得到8.5k ≤,然后对k 逐一取值,分类求解得答案.【详解】由题意,得()1+42442k T k Z πππ⎛⎫⎛⎫=--=∈ ⎪ ⎪⎝⎭⎝⎭,∴()221T k Z k π=∈+, 又2T πω=,∴21k ω=+(k Z ∈).∵96ππ⎛⎫⎪⎝⎭,是()f x 的一个单调区间,∴1692ππ-≤T ,即9T π≥,∵221T k π=+,∴2118k +≤,即8.5k ≤.①当8k =,即17ω=时,174k πϕπ-+=,k Z ∈,∴174k πϕπ=+,k Z ∈,∵||2ϕπ<,∴4πϕ=,此时()sin 174A x f x π⎛⎫=+ ⎪⎝⎭在96ππ⎛⎫ ⎪⎝⎭,上不单调,∴17ω=不符合题意; ②当7k =,即15ω=时,154k πϕπ-+=,k Z ∈,∴154k ϕππ=+,k Z ∈, ∵||2ϕπ<,∴4πϕ=-,此时()sin 154A x f x π⎛⎫=- ⎪⎝⎭在96ππ⎛⎫ ⎪⎝⎭,上不单调,∴15ω=不符合题意; ③当6k =,即13ω=时,134k πϕπ-+=,k Z ∈,∴134k ϕππ=+,k Z ∈. ∵||2ϕπ<,∴4πϕ=,此时()sin 134A x f x π⎛⎫=+ ⎪⎝⎭在96ππ⎛⎫ ⎪⎝⎭,上单调递增,∴13ω=符合题意,故选D .【点睛】本题主要考查正弦型函数的单调性,ω对周期的影响,零点与对称轴之间的距离与周期的关系,考查分类讨论的数学思想方法,考查逻辑思维能力与推理运算能力,结合选项逐步对系数进行讨论是解决该题的关键,属于中档题.6.如图所示,平面向量OA ,OB 的夹角为60°,22OB OA ==,点P 关于点A 的对称点Q ,点Q 关于点B 的对称点为点R ,则PR 为( )A 3B .3C .4D .无法确定【答案】B【分析】首先根据条件转化向量()2PR OB OA =-,再利用向量数量积求模. 【详解】()()222PR QR QP QB QA AB OB OA =-=-==-,()2222222PR OB OA OB OAOB OA OB OA ∴=-=-=+-⋅241221cos60=+-⨯⨯⨯3=.故选:B7.在等差数列{}n a 中,12022a =-,其前n 项和为n S ,若1082108S S -=,则2022S =( ) A .2021 B .-2021C .-2022D .2022【答案】C【分析】由等差数列前n 项和公式可得数列n S n ⎧⎫⎨⎬⎩⎭为等差数列,根据1082108S S -=可得公差为1,即可求解20222022S的值,即可得出结论.【详解】解:因为数列{}n a 为等差数列,故1()2n n n a a S +=,则12n n S a an +=,当2n ≥时,11112n n S a a n --+=-,则111111222n n n n n n S S a a a a a an n ---++--=-=-, 所以数列n S n ⎧⎫⎨⎬⎩⎭为等差数列,设其公差为d .又10822108S S d -==,即1d =,又1120221S a ==-,所以()202212023n S n n n =-+-=-+,所以20222023202212022S=-+=-,即20222022S =-. 故选:C.8.已知函数()f x 是定义在R 上的可导函数,对于任意的实数x ,都有()()2e xf x f x -=,当0x >时,()()0f x f x +'>,若()()1e 212a f a f a -+≥+,则实数a 的取值范围是( )A .[]1,1-B .[]22-,C .][(),11,-∞-⋃+∞D .][(),22,∞∞--⋃+【答案】C【分析】令()()e x g x f x =,根据()()2e xf x f x -=,可得()()g x g x -=,即()g x 为偶函数,再根据当0x >时,()()0f x f x +'>,利用导数判断函数()g x 在()0,∞+上得单调性,再根据()()1e 212a f a f a -+≥+,即()()212e21e 2a a f a f a +++≥+,即()()212g a g a +≥+,再根据函数的单调性即可得出答案.【详解】解:因为()()2e xf x f x -=,所以()()()e e ex x xf x f x f x --==-, 令()()e xg x f x =,则()()g x g x -=,所以()g x 为偶函数,当0x >时,()()0f x f x +'>,所以()()()e 0xg x f x f x ''=+>⎡⎤⎣⎦,所以函数()g x 在()0,∞+上单调递增,根据偶函数对称区间上单调性相反的性质可知()g x 在(),0∞-上单调递减, 因为()()1e212a f a f a -+≥+, 所以()()212e21e 2a a f a f a +++≥+,所以()()212g a g a +≥+, 即212a a +≥+, 解得1a ≤-或1a ≥. 故选:C.【点睛】本题重点考查利用函数的单调性与奇偶性解不等式,关键在于构造正确的函数,考查了利用导数判断函数在区间上的单调性,考查了数据分析能力,有一定的难度.二、多选题9.已知定义在R 上函数()f x 的图象是连续不断的,且满足以下条件:①x ∀∈R ,()()f x f x -=;②m ∀,()0,n ∈+∞,当m n ≠时,都有()()0f m f n m n-<-;③()10f -=.则下列选项成立的是( )A .()()34f f >-B .若()()12f m f -<,则()3,m ∈+∞C .若()0f x x<,()()1,01,x ∈-⋃+∞ D .x ∀∈R ,∃∈M R ,使得()f x M ≤【答案】ACD【分析】根据条件判断函数的奇偶性、单调性,对于A ,根据函数性质比较函数值大小;对于B ,()()12f m f -<,等价于12m ->,求得参数范围;对于C ,若()0f x x<,分类讨论求得不等式解集;对于D ,根据函数的性质知,函数存在最大值()0f ,从而满足条件.【详解】由①知函数()f x 为偶函数;由②知,函数()f x 在()0,x ∈+∞上单调递减; 则函数()f x 在(),0x ∈-∞上单调递增; 对于A ,()()3(3)4f f f =->-,故A 正确;对于B ,()()12f m f -<,则12m ->,解得()(,3,1)m ∈⋃-∞-+∞,故B 错误; 对于C ,若()0f x x<,由题知()1(1)0f f -==,则当0x >时,()0f x <,解得1x >;当0x <时,()0f x >,解得10x -<<,故C 正确;对于D ,根据函数单调性及函数在R 上的图形连续知,函数存在最大值()0f ,则只需()0M f ≥,即可满足条件,故D 正确; 故选:ACD10.如图,在平行六面体1111ABCD A B C D -中,以顶点A 为端点的三条棱长均为6,且它们彼此的夹角都是60°,下列说法正确的有( )A .166AC =B .BD ⊥平面1ACCC .向量1AA 与1B C 的夹角是60°D .直线1BD 与AC 6【答案】ABD【分析】利用空间向量法,根据空间向量的线性运算和数量积运算,及线面垂直的判定定理逐项分析即得.【详解】以{}1,,AB AD AA 为空间一组基底,则11AC AB AD AA =++, ()2211AC AB AD AA =++()2221112AB AD AA AB AD AD AA AB AA =+++⋅+⋅+⋅()3636362366cos60216=+++⨯⨯⨯︒=,所以166AC =A 选项正确;由题可知四边形ABCD 是菱形,所以⊥BD AC , 又BD AD AB =-,()1111BD CC AD AB AA AD AA AB AA ⋅=-⋅=⋅-⋅66cos6066cos600=⨯⨯︒-⨯⨯︒=,所以1BD CC ⊥,即1BD CC ⊥,由于1AC CC C ⋂=,AC ⊂平面1ACC ,1CC ⊂平面1ACC , 所以BD ⊥平面1ACC ,B 选项正确;由题可知1BB 与1B C 的夹角为120,也即1B C 与1AA 的夹角为120,C 选项错误;111BD AD AB AD AA AB =-=+-,()()22222111112BD AD AA ABAD AA AB AD AA AD AB AA AB =+-=+++⋅-⋅-⋅()363636266cos6066cos6066cos6072=+++⨯⨯⨯︒-⨯⨯︒-⨯⨯︒=,所以162BD =AC AB AD =+,()2222236266cos 6036108AC AB AD AB AB AD AD =+=+⋅+=+⨯⨯⨯︒+=,所以63AC =()()11BD AC AD AA AB AB AD ⋅=+-⋅+11AD AB AA AB AB AB AD AD AA AD AB AD =⋅+⋅-⋅+⋅+⋅-⋅ 266cos6036=⨯⨯⨯︒=,设直线1BD 与直线AC 所成角为θ,则111cos cos ,6BDAC BD AC BD ACθ⋅===⋅D 选项正确. 故选:ABD.11.关于函数()cos 2cos f x x x x =-⋅,则下列命题正确的是( ) A .存在1x 、2x 使得当12x x π-=时,12()()f x f x =成立 B .()f x 在区间[]63ππ-,上单调递增C .函数()f x 的图象关于点(0)12π,中心对称 D .将函数()f x 的图象向左平移512π个单位长度后与()2sin 2g x x =的图象重合. 【答案】AC【分析】化简f (x )的解析式,利用余弦型或正弦型函数的图像与性质即可逐项判断﹒【详解】()cos 2cos cos 222cos(2)3f x x x x x x x π=-⋅==+,A 选项,周期为22ππ=,根据f (x )图像的对称性知存在1x 、2x 使得当12x x π-=时,12()()f x f x =成立,A 对;B 选项,[],20,,2cos 633x x y t ππππ⎡⎤∈-⇒+∈=⎢⎥⎣⎦在[]0,t π∈上单调递减,故()f x 在区间[]63ππ-,上单调递减,B 错;C 选项,因为()2cos(2)012123f πππ=⨯+=,所以函数()f x 的图象关于点(0)12π,中心对称,C 对; D 选项,()f x 的图象向左平移512π个单位长度后为()52cos 22sin 22sin21233h x x x x πππ⎡⎤⎛⎫⎛⎫=++=-≠ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,D 错; 故选:AC.12.树人中学的“希望工程”中,甲、乙两个募捐小组暑假期间走上街头分别进行了为期两周的募捐活动.两个小组第1天都募得1000元,之后甲小组继续按第1天的方法进行募捐,则从第2天起,甲小组每一天得到的捐款都比前一天少50元;乙小组采取了积极措施,从第1天募得的1000元中拿出了600元印刷宣传材料,则从第2天起,第()*,2n n n ∈N 天募得的捐款数为1180012n -⎛⎫+ ⎪⎝⎭元.若甲小组前n 天募得捐款数累计为n S 元,乙小组前n 天募得捐款数累计为n T 元(需扣除印刷宣传材料的费用),则( ) A .66S T >B .甲小组募得捐款为9550元C .从第7天起,总有n n S T <D .121800800,2142n n nT n n --=+⋅≤≤且*n ∈N 【答案】AC【分析】利用等差数列求和公式求出甲小组两周的募捐的钱数,得到B 错误; 利用等比数列求和公式及分组求和,得到乙小组两周募捐的钱数,得到D 错误; 计算出66,S T ,比较得到大小;令21800252254002n n n n C T S n n -=-=--+,先计算出70C >,再结合数列单调性得到答案. 【详解】由题可知114n ≤≤且*n ∈N , 设n a 代表第n 天甲小组募得捐款,且0n a >,对于甲小组,11000,50a d ==-,所以()115010500n a a n d n =+-=-+>,所以120n ≤≤, 所以()12251025,142n n n a a S n n n +==-+且*n ∈N ,所以149450S =,故选项B 不正确;设n b 代表第n 天乙小组募得捐款,由题可知,11000,118001,22n n n b n -=⎧⎪=⎨⎛⎫⋅+≥ ⎪⎪⎝⎭⎩, 所以12321600111400800180018001222n n n T b b b b -⎛⎫⎛⎫⎛⎫=++++=+++++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭-()231111140080018002222n n -⎛⎫=+-+++++ ⎪⎝⎭,*1800800400,22,14n n n n -=+-∈≤≤N ,故选项D 错误; 因为6665250,5175S T S ==<,故该选项A 正确;选项C ,令21800252254002n n n n C T S n n -=-=--+,所以737.50C =>, 而当7n ≥时,18005020002n n n C C n +-=+->, 所以数列{}n C 为递增数列,因此0n n S T -<,所以n n S T <,故选项C 正确. 故选:AC三、填空题13.有关数据显示,中国快递行业产生的包装垃圾在2021年为3000万吨,2022年增长率约为50%.有专家预测,如果不采取措施,未来包装垃圾还将以此增长率增长,从______年开始,快递业产生的包装垃圾超过30000万吨.(参考数据:lg20.3010≈,lg30.4771≈) 【答案】2027【分析】n 年后产生的垃圾为()3000150%n⨯+,得到不等式()3000150%30000n⨯+>,解得答案. 【详解】n 年后产生的垃圾为()3000150%n ⨯+,故()3000150%30000n⨯+>,即3102n⎛⎫> ⎪⎝⎭,即()lg3lg21n ->,即1 5.68lg 3lg 2n >≈-,故6n ≥, 故2027年开始快递业产生的包装垃圾超过30000万吨. 故答案为:202714.在三角形ABC 中,已知1tan 2A =,1tan 3B =,若2sin()sin()sin cos x A x B C x ++=,则tan x 的值为__________. 【答案】43-或12【分析】由tan 12A =,1tan 3B =解出A ,B ,C 的正余弦值,将等式化简后代入,解出tan x . 【详解】因为tan 12A =,1tan 3B =,A ,()0,πB ∈, 所以5sin 5A =,5cos 52A =,10sin 10B =,310cos 10B =,2sin sin()sin cos cos sin 2C A B A B A B =+=+=. ()()()()22sin sin sin cos cos sin sin cos cos sin sin cos cos x A x B x A x A x B x B C xx++++==,即()()25102sin cos 3sin cos 2510cos 2x x x x x ⨯++=, 所以()()2tan 13tan 15x x ++=,解得4tan 3x =-或1tan 2x =.故答案为:43-或12.15.如图所示,半圆的直径4AB =,O 为圆心,C 是半圆上不同于A 、B 的任意一点,若P 为半径OC 上的动点,则()PA PB PC +⋅的最小值是___________【答案】2-【分析】由向量的线性运算得2PA PB PO +=,因此()22PA PB PC PO PC PO PC +⋅=⋅=-⋅,只要求得PO PC ⋅的最大值即可,这可由基本不等式得结论. 【详解】解:因为O 为AB 的中点,所以2PA PB PO +=,从而()22PA PB PC PO PC PO PC +⋅=⋅=-⋅.又2PO PC OC +==为定值,再根据2()12PO PCPO PC +⋅≤=,可得22PO PC -⋅≥-,所以当且仅当1PO PC ==时,即P 为OC 的中点时,等号成立,()PA PB PC +⋅取得最小值是2-, 故答案为:2-. 16.若函数()21ln 2f x x ax x =-+存在平行于x 轴的切线,则实数a 取值范围是______. 【答案】[)2,+∞【分析】求出导函数,只需()0f x '=有正解,分离参数可得1a x x=+,利用基本不等式即可求解. 【详解】函数定义域为()0,∞+,导函数为()1f x x a x'=-+,使得存在垂直于y 轴的切线,即()0f x '=有正解,可得1a x x=+有解, 因为0x >,所以12a x x =+≥,当且仅当“1x x=,即1x =”时等号成立, 所以实数a 的取值范围是[)2,+∞ 故答案为:[)2,+∞四、解答题17.在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知1126sin sin A B +=3C π=,6c =. (1)求证:2a b +=; (2)求ABC 的面积. 【答案】(1)证明见解析 (2)33【分析】(1)由已知条件结合正弦定理可得sin A =sin B =再由11sin sin A B+=11a b += (2)由余弦定理结合(1)的结论可求得12ab =,从而可求出三角形的面积 【详解】(1)证明:3C π=,6c =,所以sin cC=根据正弦定理得sin A =sin B =,又11sin sin A B+=所以11a b +=2a b +=(2)由余弦定理得()2222222cos 3c a b ab C a b ab a b ab =+-=+-=+-, 由(1),得a b +=,结合6c =可得()26720ab ab --=. 即()()1260ab ab -+=,解得12ab =或6ab =- (舍去),所以1sin 2ABCSab C ==18.已知数列{}n a 的前n 项和为n S ,2n n S a n =+. (1)证明:{}1n a -为等比数列; (2)设1n n b =-,若不等式12233411111n n t b b b b b b b b ++++⋅⋅⋅+<对*n N ∀∈恒成立,求t 的最小值. 【答案】(1)见解析(2)14【解析】(1)利用1n n n a S S -=-得到1,n n a a -的递推公式再构造数列证明即可.(2)根据(1)可求得12nn a =-,进而求得2n b n =,再用裂项求和求解12231111n n b b b b b b +++⋅⋅⋅+进而求得t 的最小值【详解】解:(1)11221n n n n n a S S a a --=-=--()1121(2)n n a a n -⇒-=-≥, 故{}1n a -为等比数列.(2)令1n =,则有111211S a a =+⇒=-, 所以()111122n n n a a --=-⋅=-,所以12n n a =-,令122n n n b n =-==,令1111141n n n c b b n n +⎛⎫==- ⎪+⎝⎭, 所以122311*********...412231n n b b b b b b n n +⎛⎫++⋅⋅⋅+=-+-++- ⎪+⎝⎭()111111414414n n ⎛⎫=-=-< ⎪++⎝⎭.所以14t ≥. 故t 的最小值为14.【点睛】本题主要考查了根据递推公式证明等比数列的方法,同时也考查了裂项相消求和的方法与不等式的范围问题,属于中等题型.19.第二届中国(宁夏)国际葡萄酒文化旅游博览会于2022年9月6—12日在银川市成功举办,某酒庄带来了葡萄酒新品参展,与采购商洽谈,并计划大量销往海内外.已知该新品年固定生产成本40万元,每生产一箱需另投入100元.若该酒庄一年内生产该葡萄酒x 万箱且全部售完,每万箱的销售收入为()H x 万元,2803,020,()3000(2)90,20.(1)x x H x x x x x -<≤⎧⎪=-⎨+>⎪+⎩(1)写出年利润()M x (万元)关于年产是x (万箱)的函数解析式(利润=销售收入-成本); (2)年产量为多少万箱时,该酒庄的利润最大?并求出最大利润. 【答案】(1)()()2318040,020300021040,201x x x M x x x x x ⎧-+-<≤⎪=⎨--+->⎪+⎩(2)年产量为29万箱时,该公司利润最大,最大利润为2370万元【分析】(1)分020x <≤和20x >两种情况讨论,根据利润=销售收入-成本得到函数解析式; (2)根据二次函数及基本不等式求出函数的最大值,即可得解.【详解】(1)解:当020x <≤时,()()2280340100318040M x x x x x x =---=-+-,当20x >时,()()()()()30002300029010040104011x x M x x x x x x x ⎡⎤--=+--=-+-⎢⎥++⎢⎥⎣⎦, 故()()2318040,020300021040,201x x x M x x x x x ⎧-+-<≤⎪=⎨--+->⎪+⎩; (2)解:当020x <≤时,()223180403(30)2660M x x x x =-+-=--+,对称轴为30x =,开口向下,故()max ()202360M x M ==,当20x >时,()()()3000210401x M x x x -=-+-+()()300013 10401x x x +-=-+-+90001029601x x =--++ ()900010129701x x =-+-++ ()90002101297023701x x ≤-+⋅+=+, 当且仅当()90001011x x +=+,即29x =时,等号成立,因为 23702360>,所以当29x =时,利润最大,最大值为2370万元,故年产量为29万箱时,该公司利润最大,最大利润为2370万元.20.如图,在四棱锥P ABCD -中,四边形ABCD 为矩形,且22AB AD ==,2PA =,3PAB PAD π∠=∠=.(1)求线段PC 的长度;(2)求异面直线PC 与BD 所成角的余弦值; (3)若E 为AB 的中点,证明:PA ED ⊥. 【答案】3215(3)证明见解析【分析】(1)由已知角的三边作为空间向量的一组基底,由基底表示PC 再进行模长计算即可; (2)由基底表示PC 、BD ,再代入向量夹角公式计算即可; (3)由()AP DE AP AE AD ⋅=⋅-计算即可得结果. 【详解】(1)因为PC PA AC PA AB AD =+=++,所以222222244122213PC PA AB AD PA AB PA AD AB AD =+++⋅+⋅+⋅=++-⨯-⨯=, ∴||3PC =,所以线段PC(2)∵()()PC BD PA AB AD AD AB ⋅=++⋅-PA AD AB AB AD AD PA AB AB AD AD AB=⋅-⋅+⋅-⋅+⋅-⋅111222112200222=-⨯⨯-⨯+⨯+⨯⨯+-=-,||5BD =,∴cos ,3PC BD PC BD PC BD⋅-<>===⋅故异面直线PC 与BD . (3)因为E 为AB 的中点,所以AD AE =,又∵()AP DE AP AE AD AP AE AP AD ⋅=⋅-=⋅-⋅112121022=⨯⨯-⨯⨯=,∴AP DE ⊥,即PA ED ⊥. 21.已知向量()()23cos ,1,sin ,cos (0)m x n x x ωωωω=-=>,函数()f x m n =⋅图象相邻两条对称轴之间的距离为2π. (1)求()f x 的解析式;(2)若07,412x ππ⎡⎤∈⎢⎥⎣⎦且()012f x =,求0cos2x 的值.【答案】(1)1()sin(2)62f x x π=--;(2)【分析】(1)由题知,根据向量数量积运算求得()23cos sin cos f x m n x x x ωωω=⋅=-,化简,由条件22T ππω==求得参数1ω=,从而写出解析式.(2)由()012f x =得0sin(2)6x π-=,根据角的范围求得0cos(2)6x π-,从而有0000cos(2)cos(2)cos sin(2)sin 666666cos2x x x x ππππππ=-+=---,求得结果.【详解】(1)由题知,()23cos sin cos f x m n x x x ωωω=⋅=-1cos 212sin(2)262x x x ωπωω+=-=--, 又函数相邻两条对称轴之间的距离为2π.即22T ππω==,则1ω=,1()sin(2)62f x x π=--(2)由题知,0011()sin(2)622f x x π=--=,则0sin(2)6x π-=07,412x ππ⎡⎤∈⎢⎥⎣⎦,则02,63x πππ⎡⎤-∈⎢⎥⎣⎦,当02,632x πππ⎡⎤-∈⎢⎥⎣⎦时,0)6sin(2x π-∈,而0sin(2)6x π-=, 因此02,62x πππ⎡⎤-∈⎢⎥⎣⎦,此时0cos(2)6x π-= 则0000cos(2)cos(2)cos sin(2)sin 666666cos2x x x x ππππππ=-+=---12==22.已知函数()()1ln R f x x a ax=+∈在1x =处的切线与直线210x y -+=平行.(1)求实数a 的值,并判断函数()f x 的单调性;(2)若函数()f x m =有两个零点12x x ,,且12x x <,求证:121x x +>.【答案】(1)=2a ,()f x 在10,2⎛⎫ ⎪⎝⎭上是单调递减,()f x 在1,2⎛⎫+∞ ⎪⎝⎭上是单调递增;(2)证明见解析【分析】(1)求导函数,利用导数的几何意义求出a ,然后分析导函数的符号得出函数()f x 的单调性;(2)由已知得121211ln ,ln 22x m x m x x +=+=,两式相减,得121211ln ln 022x x x x -+-=,即有1212122ln x x x x x x -=,令12,x t x =构造函数()()12ln 01h t t t t t =--<<,求导函数,分析导函数的符号,得出函数()h t 的单调性和范围可得证.【详解】(1)函数()f x 的定义域:()0,∞+,由()1ln f x x ax =+可得()211f x x ax'=-, 所以由题意可得()11112f a=-=',解得=2a , ()1ln 2f x x x∴=+, ()22112122x f x x x x -'∴=-=, 令()0f x '<,解得102x <<,故()f x 在10,2⎛⎫⎪⎝⎭上是单调递减;令0fx,解得12x >,故()f x 在1,2⎛⎫+∞ ⎪⎝⎭上是单调递增; (2)由12,x x 为函数()f x m =的两个零点,得121211ln ,ln 22x m x m x x +=+=, 两式相减,可得121211ln ln 022x x x x -+-=即112212ln 2x x x x x x -=,1212122ln x x x x x x -=, 因此1211212ln x x x x x -=,2121212lnx x x x x -=,令12x t x =,由12x x <,得01t <<, 则121111+=2ln 2ln 2ln t t t t x x t t t---+=,构造函数()()12ln 01h t t t t t =--<<, 则()()22211210t h t t t t-=+-=>',所以函数()h t 在()0,1上单调递增,故()()1h t h <,即12ln 0t t t--<,可知112ln t t t->,故命题121x x +>得证【点睛】关键点点睛:本题考查导数的几何意义,用导数证明有关函数零点的不等式,解题思路是对两个零点120x x <<,引入参数1201x t x <=<,把有关12,x x 的表达式表示为t 的函数,然后再由导数研究新函数得证结论。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2021年高三上学期12月第四次月考数学文试题 含答案
(文科数学)
本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

本试卷满分150分,考试时间120分钟。

考查范围:集合、逻辑、函数、导数、三角函数、向量、数列、不等式、立体几何。

第Ⅰ卷(选择题 共60分)
一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项
中,只有一项是符合题目要求的. 1、计算:等于( )
A .
B .
C .
D .
2、在中,,,,则( ). A .或 B . C .
D .
3、如图,若一个空间几何体的三视图中,正视图和侧视图都是直角三角形,其
直角边均为1,则该几何体的侧面积为
A .
B .
C .
D .
4、若,,,则( ) A . B .
C .
D .
5、设满足则 ( )
A .有最大值3,无最小值
B .有最小值2,无最大值
C .有最小值-1,最大值
D .既无最小值,也无最大值6、公比不为1等比数列的前项和为,且成等差数列,若,则 A . B . C .
D .
7、函数 为增函数的区间是( )
A. B. C. D.
侧视图
8、已知直线,平面,且,给出四个命题: ①若∥,则;
②若,则∥;③若,则l ∥m ;④若l ∥m ,则.真命题的个数是( )
A .4
B .3
C .2
D .1 9、将函数y =的图像上所有的点向右平行移动个单位长度,再把所得各点的横 坐标伸长到原来的2倍(纵坐标不变),所得图像的函数解析式是( ). A 、y =sin (2x -) B .y =sin (2x -)C .y =sin (x -) D .y =sin (x -)
10、已知向量,是不平行于轴的单位向量,且,则( )
A .()
B .()
C .()
D .()
11、若曲线与曲线在交点处有公切线,则b= A . B . C .
D .
12、不等式对任意实数恒成立,则实数的取值范围为( )
A .
B .
C .
D .
13、已知四点,则向量在向量方向上的射影为 . 14、已知,且满足,则的最小值为 .
15、曲线在点处的切线与坐标轴围成的三角形面积为 16、如图,在正方体中,、分别是、的中点, 则异面直线与所成的角的大小是____________。

三、解答题:(本大题共6小题,满分70分.解答时须在指定位置处,写出必要的文字说明、证
明过程和演算步骤,写错位置不得分)
17、(本小题满分10分)已知函数,当时, ; 当时,。

(1)求在上的值域。

(2)c 为何值时,的解集为R 。

18、(本小题满分12分)A 、B 、C 为△ABC 的三内角,且其对边分别为a 、b 、c , 若 ,,且·=1
2。

M
P
D
B
A
(1)求角A 的大小; (2)若a =2
3,三角形面积S =
3,求b +c 的值
19、(本小题满分12分)如图,直三棱柱ABC -A 1B 1C 1中,AC =BC =1
2
AA 1,D 是棱AA 1
的中点, DC 1⊥BD . (1)证明:DC 1⊥BC ;
(2)求二面角A 1-BD -C 1的大小.
20、(本小题满分12分)在数列中,已知*1114
11
,,23log ().44n n n n a a b a n N a +==+=∈.
(1)求数列的通项公式; (2)设数列满足,求的前n 项和.
21、(本小题满分12分)如图,在四棱锥中,为平行四边形,且平 面, ,为的中点,.AB=1。

(Ⅰ)求证:∥平面; (Ⅱ)求三棱锥A —MBC 的高。

22、(本小题满分12分)设且.
(Ⅰ)讨论函数的单调性;
(Ⅱ)若,证明:成立.
霍市一中xx届高三12月第四次月考答题纸
(文科数学)
第Ⅰ卷(共60分)
一.选择题(每小题5分,共60分)
第Ⅱ卷(共90分)
二、填空题(每小题5分,共20分)
13、 14、 15、 16、
三、解答题本大题共6小题,满分70分.解答时须在指定位置处,写出必要的文字说明、
证明过程和演算步骤,写错位置不得分)
17、
18、
19、
M
P
D
B A
20、
21、
22、
霍市一中xx 届高三12月第四次月考答题纸 (文科数学)
第Ⅰ卷(共60分)
一.选择题(每小题5分,共60分)
第Ⅱ卷(共90分)
二、填空题(每小题5分,共20分)
13、 14、 3 15、 1/9 16、 三、解答题本大题共6小题,满分70分.解答时须在指定位置处,写出必要的文字说明、 证明过程和演算步骤,写错位置不得分) 17、17:解析:(1)∵,,且·=1
2

∴-cos 2
A 2+sin 2A 2=12, 即-cosA =1
2
,又A ∈(0,π),
∴A =2
3
π,
(2)S △ABC =12bc ·sin A =12b ·c ·sin 2
3
π=
3错误!未找到引用源。

,∴bc =4,
又由余弦定理得:a2=b2+c2-2bc·cos120°=b2+c2+bc ,
∴16=(b+c)2,故b+c=4
18、
(2)令
要使的解集为R,则需方程的根的判别式即
25+12c≤0,解得…………………………12分
19、解:(1)证明:由题设知,三棱柱的侧面为矩形.
由于D 为AA 1的中点,故DC =DC 1.
又AC =12AA 1,可得DC 2
1+DC 2=CC 21, 所以DC 1⊥DC .
而DC 1⊥BD ,DC ∩BD =D ,所以DC 1⊥平面BCD . BC ⊂平面BCD ,故DC 1⊥BC .
(2)由(1)知BC ⊥DC 1,且BC ⊥CC 1,则BC ⊥平面ACC 1,所以CA ,CB ,CC 1两两相互垂直.
以C 为坐标原点,CA →的方向为x 轴的正方向,|CA →
|为单位长,建立如图所示的空间直角坐标系C -xyz .
由题意知A 1(1,0,2),B (0,1,0),D (1,0,1),C 1(0,0,2).
则A 1D →=(0,0,-1),BD →=(1,-1,1),DC 1→
=(-1,0,1). 设n =(x ,y ,z )是平面A 1B 1BD 的法向量,则
⎩⎪⎨
⎪⎧
n ·BD →=0,n ·
A 1D →=0,即

⎪⎨
⎪⎧
x -y +z =0,
z =0.可取n =(1,1,0). 同理,设m 是平面C 1BD 的法向量,则⎩⎪⎨⎪⎧
m ·
BD →=0,m ·DC 1→=0.可得m =(1,2,1).
从而cos 〈n ,m 〉=n ·m |n |·|m |=3
2.
故二面角A 1-BD -C 1的大小为30°.
两式①-②相减得2313111113[()()()](32)()444444n n n S n +=+++⋯+--⨯ =.………………………………………………………………………11分
21、
22、
o24709 6085 悅•Z27473 6B51 歑30067 7573 畳36764 8F9C 辜39890 9BD2 鯒m35425 8A61 詡27834 6CBA 沺sB40783 9F4F 齏。

相关文档
最新文档