传感器原理与应用 第6章 电感式传感器

合集下载

传感器复习题与答案

传感器复习题与答案

传感器复习题与答案传感器原理与应⽤复习题第⼀章传感器概述1.什么是传感器?传感器由哪⼏个部分组成?试述它们的作⽤和相互关系。

(1)传感器定义:⼴义的定义:⼀种能把特定的信息(物理、化学、⽣物)按⼀定的规律转换成某种可⽤信号输出的器件和装置。

⼴义传感器⼀般由信号检出器件和信号处理器件两部分组成;狭义的定义:能把外界⾮电信号转换成电信号输出的器件。

我国国家标准对传感器的定义是:能够感受规定的被测量并按照⼀定规律转换成可⽤输出信号的器件和装置。

以上定义表明传感器有这样三层含义:它是由敏感元件和转换元件构成的⼀种检测装置;能按⼀定规律将被测量转换成电信号输出;传感器的输出与输⼊之间存在确定的关系。

(2)组成部分:传感器由敏感元件,转换元件,转换电路组成。

(3)他们的作⽤和相互关系:敏感元件是直接感受被测量,并输出与被测量成确定关系的物理量;转换元件把敏感元件的输出作为它的输⼊,转换成电路参量;上述电路参数接⼊基本转换电路,便可转换成电量输出。

2.传感器的总体发展趋势是什么?现代传感器有哪些特征,现在的传感器多以什么物理量输出?(1)发展趋势:①发展、利⽤新效应;②开发新材料;③提⾼传感器性能和检测范围;④微型化与微功耗;⑤集成化与多功能化;⑥传感器的智能化;⑦传感器的数字化和⽹络化。

(2)特征:由传统的分⽴式朝着集成化。

数字化、多动能化、微型化、智能化、⽹络化和光机电⼀体化的⽅向发展,具有⾼精度、⾼性能、⾼灵敏度、⾼可靠性、⾼稳定性、长寿命、⾼信噪⽐、宽量程和⽆维护等特点。

(3)输出:电量输出。

3.压⼒、加速度、转速等常见物理量可⽤什么传感器测量?各有什么特点?本⾝发热⼩,缺点是输出⾮线性。

4(1)按传感器检测的量分类,有物理量、化学量,⽣物量;(2)按传感器的输出信号性质分裂,有模拟和数字;(3)按传感器的结构分类,有结构性、物性型、复合型;(4)按传感器功能分类,单功能,多功能,智能;(5)按传感器转换原理分类,有机电、光电、热电、磁电、电化学;(6)按传感器能源分类,有有源和⽆源;根据我国的传感器分类体系表,主要分为物理量传感器、化学量传感器、⽣物量传感器三⼤类。

传感器原理及其应用 第6章 磁电式传感器

传感器原理及其应用 第6章 磁电式传感器

材料(单晶) N型锗(Ge) N型硅(Si) 锑化铟(InSb)
1/ 2
4000 1840 4200
砷化铟(InAs)
磷砷铟(InAsP) 砷化镓(GaAs)
0.36
0.63 1.47
0.0035
0.08 0.2
25000
10500 8500
100
850 1700
1530
3000 3800
哪种材料制作的霍尔元件灵敏度高
1、8—圆形弹簧片;2—圆环形阻尼器;3—永久磁铁;4—铝架; 5—心轴;6—工作线圈;7—壳体;9—引线 工作频率 固有频率 灵敏度 10~500 Hz 12 Hz 最大可测加速度 5g 可测振幅范围 精度 ≤10% 45mm×160 mm 0.7 kg
0.1~1000 m 外形尺寸 1.9 k 质量
d E N dt
武汉理工大学机电工程学院
第6章 磁电式传感器
磁通量的变化可以通过很多办法来实现,如磁铁与线圈之间作 相对运动;磁路中磁阻的变化;恒定磁场中线圈面积的变化等, 一般可将磁电感应式传感器分为恒磁通式和变磁通式两类。 6.1.1 恒磁通式磁电感应传感器结构与工作原理 恒磁通式磁电感应传感器结构中,工作气隙中的磁通恒定,感 应电动势是由于永久磁铁与线圈之间有相对运动——线圈切割 磁力线而产生。这类结构有动圈式和动铁式两种,如图所示。
武汉理工大学机电工程学院
第6章 磁电式传感器 磁铁与线圈相对运动使线圈切割磁力线,产生与运动速度dx/dt 成正比的感应电动势E,其大小为
dx E NBl dt
式中:N为线圈在工作气隙磁场中的匝数;B为工作气隙磁感应 强度;l为每匝线圈平均长度。 当传感器结构参数确定后,N、B和l均为恒定值,E与dx/dt成正 比,根据感应电动势E的大小就可以知道被测速度的大小。 由理论推导可得,当振动频率低于传感器的固有频率时,这种传 感器的灵敏度(E/v)是随振动频率而变化的;当振动频率远大于 固有频率时,传感器的灵敏度基本上不随振动频率而变化,而近 似为常数;当振动频率更高时,线圈阻抗增大,传感器灵敏度随 振动频率增加而下降。 不同结构的恒磁通磁电感应式传感器的频率响应特性是有差异的, 但一般频响范围为几十赫至几百赫。低的可到10 Hz左右,高的可 达2 kHz左右。

传感器与检测技术-电感式传感器

传感器与检测技术-电感式传感器

电感式传感器是利用线圈自感或互感的变化来实现测量的一种装置。

可以用来测量位移、振动、压力、流量、重量、力矩、应变等多种物理量。

电感式传感器的核心部分是可变自感或可变互感,在被测量转换成线圈自感或互感的变化时。

一般要利用磁场作为媒介或利用铁磁体的某些现象。

这类传感器的主要特征是具有线圈绕组。

丄3. 1自感式传感器丄3. 2变压器式传感器丄3. 3涡流式传感器丄3. 4压磁式传感器丄3. 5感应同步器*本章要点3. 1自感式传感器©3.1©3. 1 蛛3・1©3. 1©3. 11自感式传感器的工作原理2灵敏度与非线性3等效电路T<14转换电路5零点残余电压©3. 1 6自感式传感器的特点及应用3. 1. 1自感式传感器的工作原理电感值与以下几个参数有关:与线圈匝数W平方成正比;与空气隙有效截面积S。

成正比;与空气隙长度1。

所反比。

刪图3-1自感式传感器原理图刪图3-2截面型自感式传感器B为动铁芯(通称衔铁)A为固定铁芯辎图3-3差动自感式传感器3. L1自感式传感器的工作原理截面型自感式传感器3. 1. 1自感式传感器的工作原理图LT3. L1自感式传感器的工作原理差分自感式传感器丕页iHBr图库J■・■3. 1. 2灵敏度与非线性气隙型其灵敏度为: 差动式传感器其灵敏度:S==lo以上结论在满足A 1/10< VI时成立。

从提高灵敏度的角度看,初始空气隙1。

距离人应尽量小。

其结果是被测量的范围也变小。

同时,灵敏度的非线性也将增加。

如釆用增大空气隙等效截面积和增加线圈匝数的方法来提高灵敏度,则必将增大传感器的几何尺寸和重量。

这些矛盾在设计传感器时应适当考虑。

与截面型自感传感器相比,气隙型的灵敏度较高。

但其非线性严重,自由行程小,制造装配困难。

因此近年来这种类型的使用逐渐减少。

差动式传感器其灵敏度与单极式比较。

其灵敏度提高一倍,非线性大大减小。

第六章 电感式传感器

第六章 电感式传感器

0
3


灵敏度:
L2

L0
0
1
0


0
2


0
3


K


L / L0


1 2
0
L

L1

L2

2L0
0
1
0
2


实际上由于线圈内部的磁场是不均匀的,电感量的增 量ΔL与△x存在着一定的非线性。
为提高灵敏度和线性度,螺线管型自感式传感器常 采用差动结构。
6.1 自感式传感器
广西大学电气工程学院
双螺管型差动型
L1
L2
u
x
特性曲线
等效电路
将传感器两线圈接于电桥 的相邻桥臂时,其输出灵 敏度可提高一倍,并改善 了非线性特性,还能减少 干扰影响。
• 对电源采取稳压、稳频、屏蔽、加滤波电容等 措施,可减弱或消除电源的影响。
• 铁芯磁感应强度的工作点一定要选在磁化曲线 的线性段,以免在电源电压波动时,铁芯磁感 应强度进入饱和区而使导磁率发生很大变动。
6.1 自感式传感器
零点残余电压及其补偿
在电桥预平衡时,无法实 现平衡,最后总要存在着 某个输出值ΔU0,这称为 零点残余电压
应在设计制造时采取措施, 保证两电感线圈的对称。
减少电源中的谐波成分 在测量电桥中接入可调电
位器 采用相敏整流电路
广西大学电气工程学院
理想状态
ΔU0
实际状态
uo
理想状态
实际状态
第六章 电感式传感器
广西大学电气工程学院

第六章-自感式传感器

第六章-自感式传感器

L0
L10
L20
m
0W
2
mr
rc
l2 c
l2
k1
k2
m0W 2mr rc2
l2
综上所述,螺管式自感传感器的特点: ①结构简单,制造装配容易; ②由于空气间隙大,磁路的磁阻高,因此灵敏度低 ,但线性范围大; ③由于磁路大部分为空气,易受外部磁场干扰; ④由于磁阻高,为了达到某一自感量,需要的线圈 匝数多,因而线圈分布电容大; ⑤要求线圈框架尺寸和形状必须稳定,否则影响其 线性和稳定性。
2
3
(2)单线圈是忽略
0
以上高次项,差动式是忽略
0
以上偶次项,
因此差动式自感式传感器线性度得到明显改善。
*另一种形式: Π型
6 自感式传感器
6.1 工作原理 6.2 变气隙式自感传感器 6.3 变面积式自感传感器 6.4 螺线管式自感传感器 6.5 自感式传感器测量电路 6.6 自感式传感器应用举例
第6章 电感式传感器
电感式传感器是建立在电磁感应基础上,利用 线圈自感或互感的改变来实现测量的一种装置。它 可对直线位移和角位移进行直接测量,也可通过一 定的敏感元件把振动、压力、应变、流量等转换成 位移量而进行测量。通常可由下列方法使线圈的电 感变化:
(1)改变几何形状; (2)改变磁路的磁阻; (3)改变磁芯材料的导磁率; (4)改变一组线圈的两部分或几部分间的耦合度。
1. 交流电桥 2. 变压器电桥 3. 自感传感器的灵敏度
(一)交流电桥式测量电路
分析:
• 衔铁在初始位置时,电桥平衡
L1
L2
L0
W 2m0S 20
• 若衔铁上移,则:
1 0 ,2 0

传感器原理与工程应用完整版习题参考答案

传感器原理与工程应用完整版习题参考答案

《传感器原理及工程应用》完整版习题答案第1章 传感与检测技术的理论基础(P26)1—1:测量的定义?答:测量是以确定被测量的值或获取测量结果为目的的一系列操作。

所以, 测量也就是将被测量与同种性质的标准量进行比较, 确定被测量对标准量的倍数。

1—2:什么是测量值的绝对误差、相对误差、引用误差?1-3 用测量范围为-50~150kPa 的压力传感器测量140kPa 的压力时,传感器测得示值为142kPa ,求该示值的绝对误差、实际相对误差、标称相对误差和引用误差。

解:已知: 真值L =140kPa 测量值x =142kPa 测量上限=150kPa 测量下限=-50kPa∴ 绝对误差 Δ=x-L=142-140=2(kPa)实际相对误差 %==43.11402≈∆L δ标称相对误差%==41.11422≈∆x δ引用误差%--=测量上限-测量下限=1)50(1502≈∆γ1-10 对某节流元件(孔板)开孔直径d 20的尺寸进行了15次测量,测量数据如下(单位:mm ):120.42 120.43 120.40 120.42 120.43 120.39 120.30 120.40 120.43 120.41 120.43 120.42 120.39 120.39 120.40试用格拉布斯准则判断上述数据是否含有粗大误差,并写出其测量结果。

答:绝对误差是测量结果与真值之差, 即: 绝对误差=测量值—真值 相对误差是绝对误差与被测量真值之比,常用绝对误差与测量值之比,以百分数表示 , 即: 相对误差=绝对误差/测量值 ×100% 引用误差是绝对误差与量程之比,以百分数表示, 即: 引用误差=绝对误差/量程 ×100%解:当n =15时,若取置信概率P =0.95,查表可得格拉布斯系数G =2.41。

则 2072.410.03270.0788()0.104d G mm v σ=⨯=<=-,所以7d 为粗大误差数据,应当剔除。

电感式传感器原理

电感式传感器原理

电感式传感器原理
电感式传感器是一种利用电感效应进行测量和检测的传感器。

其基本原理是根据电感的特性来实现信号的转换和传输。

电感式传感器的工作原理是通过改变线圈中的电感值来感应外部的物理量。

当外部物理量发生变化时,线圈中的电感值也会相应地发生变化。

通过测量线圈的电感值的变化,可以得知外部物理量的变化情况。

电感是指导线圈中产生的自感应电动势。

当线圈中的电流发生变化时,会产生与电流变化方向相反的电动势。

这种电动势会产生磁场并储存能量。

当外部物理量改变线圈中的磁场时,会影响线圈中的电感值。

测量电感值的常用方法是利用谐振电路。

当外部物理量引起电感值变化时,会影响谐振电路的谐振频率。

通过测量谐振频率的变化,可以得到外部物理量的变化信息。

电感式传感器广泛应用于各种测量和控制领域。

例如,在温度传感中,可以利用电感式传感器测量温度变化引起的电感值变化;在位移传感中,可以利用电感式传感器测量物体位置的改变;在压力传感中,可以利用电感式传感器测量压力变化引起的电感值变化等。

总之,电感式传感器是一种利用电感效应进行测量和检测的传感器,通过测量线圈的电感值的变化来获取外部物理量的变化
信息。

由于其简单、可靠和精度高的特点,电感式传感器被广泛应用于各种工程领域。

传感器原理及应用-电感式传感器

传感器原理及应用-电感式传感器

§4.1 变磁阻式电感传感器
七、自感式传感器的测量电路
1、交流电桥式测量电路
电桥输出电压为
U o
RZ (L L ) U 1 2 Z ( Z R)
差动式传感器的电感灵敏度K0为
L 2 K0 / L0 0
线性处理 度是单线圈式的两倍。 ② 差动式的线性度明显改善。
线圈 铁芯 衔铁
L 1 K0 / A L0 A0
输出电感灵敏度与初始截面面积的 成反比关系。
§4.1 变磁阻式电感传感器
三、变截面式自感传感器的输出特性
§4.1 变磁阻式电感传感器
一、变磁阻式传感器工作原理 二、变磁阻式传感器基本类型 三、变截面式自感传感器输出特性 四、变间隙式自感传感器输出特性 五、差动式自感传感器 六、自感式传感器的等效电路 七、自感式传感器的测量电路
§4.1 变磁阻式电感传感器
七、自感式传感器的测量电路
电感式传感器的测量电路: 交流电桥、变压器式交流电桥以及 谐振式等。
1、交流电桥式测量电路
传感器的两线圈作为电桥的两相邻 桥臂 Z1 和 Z2 ,另两个相邻桥臂为纯电阻 R。设Z是衔铁在中间位置时单个线圈的 高 品 质 因 数 Q=ωL/R 的 复阻抗,ΔZ1、 ΔZ2分别是衔铁偏离中心 电感式传感器,线圈的电感 位置时两线圈阻抗的变化量,则 远远大于线圈的有功电阻, Z1=Z+ΔZ 即ωL>>R,则有 Z2=Z-ΔZ ΔZ1+ΔZ2≈jω(ΔL1+ΔL2)
R
2 0 A
§4.1 变磁阻式电感传感器
一、变磁阻式传感器工作原理 二、变磁阻式传感器基本类型 三、变截面式自感传感器输出特性 四、变间隙式自感传感器输出特性 五、差动式自感传感器 六、自感式传感器的等效电路 七、自感式传感器的测量电路

传感器技术与应用第2版-部分习题答案

传感器技术与应用第2版-部分习题答案

第1章传感器特性习题答案:5.答:静特性是当输入量为常数或变化极慢时,传感器的输入输出特性,其主要指标有线性度、迟滞、重复性、分辨力、稳定性、温度稳定性、各种抗干扰稳定性。

传感器的静特性由静特性曲线反映出来,静特性曲线由实际测绘中获得。

人们根据传感器的静特性来选择合适的传感器。

9.解:10. 解:11.解:带入数据拟合直线灵敏度 0.68,线性度±7% 。

,,,,,,13.解:此题与炉温实验的测试曲线类似:14.解:15.解:所求幅值误差为1.109,相位滞后33042,所求幅值误差为1.109,相位滞后33042,16.答:dy/dx=1-0.00014x。

微分值在x<7143Pa时为正,x>7143Pa时为负,故不能使用。

17.答:⑴20。

C时,0~100ppm对应得电阻变化为250~350 kΩ。

V0在48.78~67.63mV之间变化。

⑵如果R2=10 MΩ,R3=250 kΩ,20。

C时,V0在0~18.85mV之间变化。

30。

C时V0在46.46mV(0ppm)~64.43mV(100ppm)之间变化。

⑶20。

C时,V0为0~18.85mV,30。

C时V0为0~17.79mV,如果零点不随温度变化,灵敏度约降低4.9%。

但相对(2)得情况来说有很大的改善。

18.答:感应电压=2πfCRSVN,以f=50/60Hz, RS=1kΩ, VN=100代入,并保证单位一致,得:感应电压=2π*60*500*10-12*1000*100[V]=1.8*10-2V第3章应变式传感器概述习题答案9. 答:(1).全桥电路如下图所示(2).圆桶截面积应变片1、2、3、4感受纵向应变;应变片5、6、7、8感受纵向应变;满量程时:(3)10.答:敏感元件与弹性元件温度误差不同产生虚假误差,可采用自补偿和线路补偿。

11.解:12.解:13.解:①是ΔR/R=2(Δl/l)。

因为电阻变化率是ΔR/R=0.001,所以Δl/l(应变)=0.0005=5*10-4。

第6章压电式传感器原理及其应用

第6章压电式传感器原理及其应用
第6章 压电式传感器原理及其应用 章
6.1 压电效应和压电材料 6.2 压电元件的常用结构 6.3 压电式传感器等效电路和测量电路 6.4 压电式传感器的应用
压电式传感器概述
压电式传感器的压电元件是利用压电材料制成的, 压电式传感器的压电元件是利用压电材料制成的, 它是一种电量型传感器。 它是一种电量型传感器。 工作原理:以某些电介质的压电效应为基础 以某些电介质的压电效应为基础, 工作原理 以某些电介质的压电效应为基础,在外力 作用下,电介质的表面就会产生电荷,有电压输出, 作用下,电介质的表面就会产生电荷,有电压输出, M 从而实现力—电信号转换 再通过检测电荷量( 电信号转换, 从而实现力 电信号转换,再通过检测电荷量(或 输出电压)的大小,即可测出作用力的大小。 输出电压)的大小,即可测出作用力的大小。 压电元件是一种典型的力敏感元件, 压电元件是一种典型的力敏感元件,可用来测量最 终可变换为力的各种物理量,如测量压力、应力、 终可变换为力的各种物理量,如测量压力、应力、 加速度等。由于压电元件具有体积小、重量轻、 加速度等。由于压电元Байду номын сангаас具有体积小、重量轻、结 构简单、可靠性高、频带宽、 构简单、可靠性高、频带宽、灵敏度和信噪比高等 优点,压电式传感器也随之得到了飞速发展。 优点,压电式传感器也随之得到了飞速发展。 在声学、力学、 在声学、力学、医学和航空航天等领域都得到了广 泛应用。其缺点是无静态输出, 泛应用。其缺点是无静态输出,要求有很高的输出 阻抗,需用低电容的低噪声电缆等。 阻抗,需用低电容的低噪声电缆等。
铜芯线充当内电极铜网屏蔽层作外电极管状pvdf高分子压电材料为绝缘层最外层是橡胶保护层为承压弹性元件当管状高分子压电材料受压时其内外表面产生电荷可达到测量的目的图620高分子压电电缆2高分子压电电缆的典型应用高分子压电电缆测速系统由两根高分子压电电缆相隔一段距离平行埋设于柏油公路的路面下50mm处如图621所示

(第6章)磁电式传感器

(第6章)磁电式传感器

6.2.2 霍尔元件的应用
1.霍尔式微量位移的测量 .
由霍尔效应可知,当控制电流恒定时, 由霍尔效应可知,当控制电流恒定时, 霍尔电压U与磁感应强度B成正比,若磁感 成正比, 的函数, 应强度B是位置x的函数,即 UH=kx 13) (6-13) 式中: ——位移传感器灵敏度 位移传感器灵敏度。 式中:k——位移传感器灵敏度。
测量转速时,传感器的转轴1 测量转速时,传感器的转轴1与被测物 体转轴相连接,因而带动转子2转动。 体转轴相连接,因而带动转子2转动。当转 的齿与定子5的齿相对时,气隙最小, 子2的齿与定子5的齿相对时,气隙最小, 磁路系统中的磁通最大。而磁与槽相对时, 磁路系统中的磁通最大。而磁与槽相对时, 气隙最大,磁通最小。因此当转子2转动时, 气隙最大,磁通最小。因此当转子2转动时, 磁通就周期性地变化,从而在线圈3 磁通就周期性地变化,从而在线圈3中感应 出近似正弦波的电压信号, 出近似正弦波的电压信号,其频率与转速 成正比例关系。 成正比例关系。
2.霍尔元件基本结构 .
霍尔元件的外形结构图,它由霍尔片、 霍尔元件的外形结构图,它由霍尔片、 根引线和壳体组成, 4根引线和壳体组成,激励电极通常用红色 而霍尔电极通常用绿色或黄色线表示。 线,而霍尔电极通常用绿色或黄色线表示。
图6-8阻 )
I v= nebd

IB EH = nebd
IB UH = ned
式中: 称之为霍尔常数, 式中:令RH=1/ne,称之为霍尔常数, 其大小取决于导体载流子密度, 其大小取决于导体载流子密度,则
RH IB = K H IB UH = d
(6-12) 12)
称为霍尔片的灵敏度。 式中: 式中:KH=RH/d称为霍尔片的灵敏度。

电感式传感器的工作原理

电感式传感器的工作原理

电感式传感器的工作原理
电感式传感器是一种利用感应电磁场强度变化来测量物理量的传感器。

其工作原理基于法拉第电磁感应定律,即当磁场通过一个线圈时,线圈中的电流会发生变化。

电感式传感器由一个线圈和一个磁环组成。

当线圈通电时,会产生一个磁场,磁场的强度与通电电流成正比。

当有感应物体靠近磁环时,感应物体会改变磁环周围的磁场分布,进而影响到线圈中的电流。

根据法拉第电磁感应定律,线圈中的电流变化会导致感应电动势的变化。

通过测量感应电动势的变化,可以间接得到感应物体与传感器之间的相对位移、速度或位置等物理量。

具体来说,当感应物体靠近磁环时,感应物体的磁导率和磁阻率会改变,从而改变了磁场的分布。

这种磁场的变化会引起线圈中的感应电动势变化。

通过测量感应电动势的变化,可以得到感应物体的位置或其他物理量。

由于感应电动势与感应物体之间的距离、速度或位置等有关,因此电感式传感器可以用来测量这些物理量。

总之,电感式传感器利用感应电磁场强度变化来测量物理量。

当有感应物体靠近时,感应物体改变了磁场的分布,从而导致线圈中的感应电动势变化。

通过测量感应电动势的变化,可以间接测量感应物体与传感器之间的相对位移、速度或位置等物理量。

传感器原理及应用第六章 磁电式传感器

传感器原理及应用第六章 磁电式传感器

两者工作原理是完全相同的。 当壳体随被测振动体一起 振动时, 由于弹簧较软, 运动部件质量相对较大。当振动频率 足够高(远大于传感器固有频率)时, 运动部件惯性很大, 来 不及随振动体一起振动, 近乎静止不动, 振动能量几乎全被弹 簧吸收, 永久磁铁与线圈之间的相对运动速度接近于振动体振 动速度, 磁铁与线圈的相对运动切割磁力线, 从而产生感应电 势为
(一)磁电感应式传感器的工作原理
电磁式传感器工作原理
当一个W匝线圈相对静止地处于随时间变化的磁场中时,设穿 过线圈的磁通为Ф,则整个线圈中所产生的感应电动势e为
e W d dt
(二)磁电感应式传感器的结构及特点
1、磁电感应式传感器的结构
磁电式传感器基本上由以下三部分组成: ①磁路系统:它产生一个恒定的直流磁场,为了减小传感器 体积,一般都采用永久磁铁; ②线圈:它与磁铁中的磁通相交产生感应电动势; ③运动机构:它感受被测体的运动使线圈磁通发生变化。
式(7 - 7)可得近似值:
γt ≈(-4.5%)/10 ℃
(Hale Waihona Puke - 8)这一数值是很可观的, 所以需要进行温度补偿。 补偿通常采
用热磁分流器。热磁分流器由具有很大负温度系数的特殊磁
性材料做成。它在正常工作温度下已将空气隙磁通分路掉一
小部分。当温度升高时, 热磁分流器的磁导率显著下降, 经它
分流掉的磁通占总磁通的比例较正常工作温度下显著降低, 从
而保持空气隙的工作磁通不随温度变化, 维持传感器灵敏度为
常数。
(三)磁电感应式传感器的转换电路
磁电式传感器直接输出感应电势, 且传感器通常具有较高 的灵敏度, 所以一般不需要高增益放大器。但磁电式传感器是 速度传感器, 若要获取被测位移或加速度信号, 则需要配用积 分或微分电路。 图为一般测量电路方框图

传感器原理及应用课后习题答案(吴建平)

传感器原理及应用课后习题答案(吴建平)

传感器原理及应用课后习题答案吴建平第1章概述1.1 什么是传感器?按照国标定义,“传感器”应该如何说明含义?1.2 传感器由哪几部分组成?试述它们的作用及相互关系。

1.3 简述传感器主要发展趋势,并说明现代检测系统的特征。

1.4 传感器如何分类?按传感器检测的范畴可分为哪几种?1.5 传感器的图形符号如何表示?它们各部分代表什么含义?应注意哪些问题?1.6 用图形符号表示一电阻式温度传感器。

1.7 请例举出两个你用到或看到的传感器,并说明其作用。

如果没有传感器,应该出现哪种状况。

1.8 空调和电冰箱中采用了哪些传感器?它们分别起到什么作用?答案:1.1答:从广义的角度来说,感知信号检出器件和信号处理部分总称为传感器。

我们对传感器定义是:一种能把特定的信息(物理、化学、生物)按一定规律转换成某种可用信号输出的器件和装置。

从狭义角度对传感器定义是:能把外界非电信息转换成电信号输出的器件。

我国国家标准(GB7665—87)对传感器(Sensor/transducer)的定义是:“能够感受规定的被测量并按照一定规律转换成可用输出信号的器件和装置”。

定义表明传感器有这样三层含义:它是由敏感元件和转换元件构成的一种检测装置;能按一定规律将被测量转换成电信号输出;传感器的输出与输入之间存在确定的关系。

按使用的场合不同传感器又称为变换器、换能器、探测器。

1.2答:组成——由敏感元件、转换元件、基本电路组成;关系,作用——传感器处于研究对象与测试系统的接口位置,即检测与控制之首。

传感器是感知、获取与检测信息的窗口,一切科学研究与自动化生产过程要获取的信息都要通过传感器获取并通过它转换成容易传输与处理的电信号,其作用与地位特别重要。

1.3答:(略)答:按照我国制定的传感器分类体系表,传感器分为物理量传感器、化学量传感器以及生物量传感器三大类,含12个小类。

按传感器的检测对象可分为:力学量、热学量、流体量、光学量、电量、磁学量、声学量、化学量、生物量、机器人等等。

[整理版]传感器原理与应用习题_第6章压电式传感器

[整理版]传感器原理与应用习题_第6章压电式传感器

[整理版]传感器原理与应用习题_第6章压电式传感器《传感器原理与应用》习题集与部分参考答案教材:传感器技术(第3版)贾伯年主编,及其他参考书第6章压电式传感器6-1 何谓压电效应,何谓纵向压电效应和横向压电效应,答:一些离子型晶体的电介质不仅在电场力作用下,而且在机械力作用下,都会产生极化现象。

且其电位移D(在MKS单位制中即电荷密度σ)与外应力张量T成正比: D = dT 式中 d—压电常数矩阵。

当外力消失,电介质又恢复不带电原状;当外力变向,电荷极性随之而变。

这种现象称为正压电效应,或简称压电效应。

若对上述电介质施加电场作用时,同样会引起电介质内部正负电荷中心的相对位移而导致电介质产生变形,且其应变S与外电场强度E成正比: S=dE 式中 d——逆压电常数矩阵。

这种现象称为逆压电tt效应,或称电致伸缩。

6-2 压电材料的主要特性参数有哪些,试比较三类压电材料的应用特点。

答:主要特性:压电常数、弹性常数、介电常数、机电耦合系数、电阻、居里点。

压电单晶:时间稳定性好,居里点高,在高温、强辐射条件下,仍具有良好的压电性,且机械性能,如机电耦合系数、介电常数、频率常数等均保持不变。

此外,还在光电、微声和激光等器件方面都有重要应用。

不足之处是质地脆、抗机械和热冲击性差。

压电陶瓷:压电常数大,灵敏度高,制造工艺成熟,成形工艺性好,成本低廉,利于广泛应用,还具有热释电性。

新型压电材料:既具有压电特性又具有半导体特性。

因此既可用其压电性研制传感器,又可用其半导体特性制作电子器件;也可以两者合一,集元件与线路于一体,研制成新型集成压电传感器测试系统。

6-3 试述石英晶片切型()的含意。

yxlt,50:/45:6-4 为了提高压电式传感器的灵敏度,设计中常采用双晶片或多晶片组合,试说明其组合的方式和适用场合。

答:(1)并联:C′,2C,q′=2q,U′=U,因为输出电容大,输出电荷大,所以时间常数,适合于测量缓变信号,且以电荷作为输出的场合。

传感器原理及其应用(第二版)部分习题解答

传感器原理及其应用(第二版)部分习题解答
故将其做成差动结构后,灵敏度将提高一倍。
第3章 电感式传感器及其应用
15、试用差动变压器式传感器设计液罐内液体液位测量 系统,做出系统结构图,并分析工作原理。
解: 利用差动变压器式传感器设计的液位测量系统如图所示。 液位的高低变化可带动浮子上下移动,从而带动衔铁移动,差动 变压器的输出U0也随之发生变化,其大小与液位高低成函数关系 ,由此可测出液位。当某一设定液位使铁芯处于中心位置时,差 动变压器输出信号U0=0;当液位上升或下降时,U0≠0;通过相 应的测量电路便能确定液位的高低。
mU0 68103V 2.006kg KU0 0.0339Vkg
第2章 电阻应变式传感器及其应用
7. 图2.43为应变式力传感器的钢质圆柱体弹性元件,其直径d = 40 mm,钢的弹性模量 E = 2.1×105 N/mm2 ,泊松比μ=0.29 ,在 圆柱体表面粘贴四片阻值均为120Ω、灵敏系数κ=2.1的金属箔式 应变片(不考虑应变片的横向灵敏度), 并接入惠斯顿电桥。若供 桥电压Usr = 6V(DC),试求:该力传感器的灵敏度(V/N)?
Usc
UR 2R
kU 2
全桥输出电压及电U
第2章 电阻应变式传感器及其应用
6. 一台采用等强度梁的电子秤,如图2.40所示,在梁的上下两面 各贴有两片灵敏系数均为k = 2 的金属箔式应变片做成秤重传感 器。已知梁的L = 100mm,b=11mm,h= 3mm,梁的弹性模量 E=2.1×104 N/mm2。将应变片接入直流四臂电路,供桥电压Usr =6V。 试求:(1)秤重传感器的灵敏度(V/kg)? (2)当传感器的输出为68mV时,问物体的荷重为多少?
3、电感式传感器的测量电路起什么作用?变压器 电桥电路和带相敏整流的电桥电路哪个能更好地 起到测量转换作用?为什么?

2023大学_传感器原理及应用(王化祥著)课后答案下载

2023大学_传感器原理及应用(王化祥著)课后答案下载

2023传感器原理及应用(王化祥著)课后答案下载2023传感器原理及应用(王化祥著)课后答案下载前言绪论第一章传感器及其基本特性第一节传感器的定义、组成及分类第二节传感器的基本特性__小结习题与思考题第二章电阻应变式传感器第一节应变式传感器第二节应变式传感器的测量电路第三节压阻式传感器第四节应变式传感器的应用__小结习题与思考题第三章电容式传感器第一节电容式传感器的'工作原理与类型第二节电容式传感器的测量电路第三节电容式传感器的误差分析及补偿第四节电容式传感器的应用__小结习题与思考题第四章电感式传感器第一节自感式传感器第二节差动变压器式传感器第三节电涡流式传感器__小结习题与思考题第五章压电式传感器第一节压电效应与压电材料第二节压电传感器的等效电路和测量电路第三节引起/玉,E9式传感器测量误差的因素第四节压电传感器的应用__小结习题与思考题第一节磁电感应式传感器第二节霍尔传感器第三节磁敏电阻器第四节磁敏二极管和磁敏三极管第五节磁电传感器的应用__小结习题与思考题第七章热电式传感器第一节热电偶传感器第二节热电阻式传感器第三节半导体式热敏电阻第四节热电式传感器的应用__小结习题与思考题第八章光电传感器第一节光电效应第二节光电器件及其特性第三节红外传感器__小结习题与思考题第九章常用其他新型传感器第一节气体传感器第二节湿敏传感器第三节超声传感器第四节超导传感器第五节仿生传感器__小结习题与思考题第十章智能传感器第一节智能传感器概述第二节智能传感器的实现方式第三节智能传感器的应用第四节智能传感器的发展方向本?小结习题与思考题……第十一章传感器的标定与选用传感器原理及应用(王化祥著):基本信息点击此处下载传感器原理及应用(王化祥著)课后答案传感器原理及应用(王化祥著):目录作者:王桂荣,李宪芝主编出版社:中国电力出版社版次:1字数:500000印刷时间:-5-1ISBN:9787512304109。

电感式传感器

电感式传感器
式中,Rm为磁路总磁阻。
电感L为:
LW2 Rm
气隙很小,能够以为气隙中旳磁场是均匀旳。若忽
视磁路磁损,则磁路总磁阻为
Rm
l1
1S1
l2
2S2
2 0S0
一般气隙磁阻远不小于铁芯和衔铁旳磁阻,即
2 0S0
l1
1S1
2 0S0
l2
2S2
所以
Rm
2 0S0
电感L为:
W2 L
W 20S0
Rm
2
上式表白:当线圈匝数为常数时,电感L仅仅是磁路中 磁阻Rm旳函数,变化δ或S0均可造成电感变化,所以变
磁阻式传感器又可分为变气隙厚度δ旳传感器和变气隙
面积S0旳传感器。
二、输出特征
L与δ之间是非线性关系,特征曲线如图所示。
L
L W 2 W 20S0
Rm
2
L0+L
L0 L0-L
o - +
变隙式电感传感器旳L-δ特征
分析: 当衔铁处于初始位置时,初始电感量为
L0
0S0W 2 0
2
当衔铁上移Δδ时,传感器气隙减小Δδ,即δ=δ0-Δδ,
次级绕组。两个初级绕组旳同名端顺向串联, 而两个次级绕组 旳同名端则反相串联。
当没有位移时,衔铁C处于初始平衡位置,它与两个铁芯旳
间隙有δa0=δb0=δ0,则绕组W1a和W2a间旳互感Ma与绕组W1b和W2b 旳互感Mb相等,致使两个次级绕组旳互感电势相等,即e2a=e2b。 因为次级绕组反相串联,所以,差动变压器输出电压Uo=e2ae.2b=0。
Ui
分析:当衔铁处于初始平衡位置时,因δa=δb=δ0, 则Uo=0。 但是假如被测体带动衔铁移动,例如向上移动Δδ,则有

传感器原理及工程应用(第五版)电感式传感器

传感器原理及工程应用(第五版)电感式传感器

电感式传感器
3
图4-1 自感式传感器结构原理图
电感式传感器

4
根据对电感的定义,线圈中的电感量可由下式确定:
式中:Ψ——线圈总磁链; I——通过线圈的电流; W——线圈的匝数; Φ——穿过线圈的磁通。
由磁路欧姆定律,得
(4-1)
式中,Rm为磁路总磁阻。
(4-2)
电感式传感器
5
对于变隙式传感器,因为气隙很小,所以可以认为气隙 中的磁场是均匀的。若忽略磁路磁损,则磁路总磁阻为
式中:μ1——铁芯材料的导磁率; μ2——衔铁材料的导磁率; l1——磁通通过铁芯的长度; l2——磁通通过衔铁的长度; A1——铁芯的截面积; A2——衔铁的截面积; μ0——空气的导磁率; A0——气隙的截面积; δ——气隙的厚度。
(4-3)
电感式传感器
6
通常气隙磁阻远大于铁芯和衔铁的磁阻,即
电感式传感器
18
螺线管式电感传感器与前两种电感传感器相比较,变气
隙式灵敏度最高,螺线管式灵敏度最低。变气隙式非线性严
重,为了限制非线性,示值范围只能较小,它的自由行程受
铁芯限制,制造装配困难。变面积式和螺线管式的优点是具
有较好的线性,因而示值范围可取大些,自由行程可根据需
要,制造装配也较方便,螺线管式批量生产中的互换性好。
电感式传感器
27

ΔL
2L0
Δ 0
代入式(4-20)得
电桥输出电压与Δδ成正比关系。 图4-8所示电路为变压器式交流电桥测量电路,电桥两
臂Z1、Z2分别为传感器两线圈的阻抗,另外两桥臂分别为 电源变压器的两次级线圈,其阻抗为次级线圈总阻抗的一半。 当负载阻抗为无穷大时,桥路输出电压为
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
L W 2 / Rm W 2 . 0 e S / l
(3 4)
式中 0 — — 真空磁导率, 0 =4π×10-7(H/m)
2.铜损电阻 取决于导线材料及线圈的几何尺寸 Rc 3.涡流损耗电阻 由频率为f的交变电流激励产生
的交变磁场,会在线圈铁心中造成涡流及磁滞损耗。 Rh 4.磁滞损耗电阻 铁磁物质在交变磁化时,磁分子 来回翻转而要克服阻力,类似摩擦生热的能量损耗。 Re
6
电感式传感器及其应用
3.1 3.2 3.3 3.4
自感式传感器 差动变压器式电感式传感器 电涡流式电感传感器 电感式传感器的应用
电感传感器(Inductance sensor)
利用电磁感应原理将被测非电量转换 成线圈自感量或互感量的变化,进而 由测量电路转换为电压或电流的变化 量。电感式传感器种类很多,主要有 自感式、互感式和电涡流式三种。可 用来测量位移、压力、流量、振动等 非电量信号
1.线圈电感L
由磁路基本知识可知,匝数为W的线圈电感为 (3 1) L W 2 / Rm 式中
Rm —— 磁路总磁阻
当线圈具有闭合磁路时
L W
2
/ RF
(3 2)
RF -导磁体总磁阻
当线圈磁路具有小气隙时
L W 2 / R
(3 3)
式中
R
—— 气隙总磁阻
等效磁导率 :即将线圈等效成一封闭铁心线圈,其磁路等 效磁导率为μe,磁通截面积为S,磁路长度为l
Rm l / 0 e S
(3 13)
同时,由式(3-11)
1 l l 1 l l 1 Rm l S 0 S 0
(3 14)
式中 μ— — 铁心和衔铁的相对磁导率,通常 μ>>1。
所以
式中 Q— — 电感线圈的品质因数 Q L0 / r0(3 23) , 由式(3-23)可见,电桥输出电压包含着与电源同相和正 交的两个分量;而在实际使用时,希望只存在同相分 量。通常由于 L0 / L0 r / r0 ,因此要求线圈有较 高的Q值
这时
U0


E L
2 L
(3 7)
式中,总的损耗电阻
R ' R
c
R
e
品质因数
Q L ' / R '
当Q>>1时,1/Q2 可以忽略,式(3-7)可简化为
R' L'[(1 L' C 2 ) L' C 2 / Q 2 ] Z5 j 2 2 (1 L' C ) (1 L' C 2 ) 2 ( L' C 2 / Q) 2
3.1
3.1.1 3.1.2 3.1.3
自感式传感器
传感器线圈的电气参数分析 自感式传感器 自感式传感器的误差
3.1.1
一.传感器线圈的电气参数分析
如图,其为一种简单的自感式传感器,当衔铁随 被测量变化而上、下移动时,其与铁心间的气隙 发生变化,磁路磁阻随之变化,从而引起线圈电 感量的变化,然后通过测量电路转换成与位移成 比例的电量,实现了非量到电量的变换。可见, 这种传感器实质上是一个具有可变气隙的铁心线 圈。
5.并联寄生电容C的影响
并联寄生电容主要由线圈绕组的固有电容 与电缆分布电容所构成。先不考虑寄生电 容C,并将图3.2中的线圈电感与并联铁损 电阻等效为串联铁损电阻Re′与串联电感 L′的等效电路
如图3.3所示。这时Re′和L′的串联阻抗应该与 Re和L的并联阻抗相等,即
ReBiblioteka Re jLw R jL w Re jLw

2Z
Z R
2
Z
2
ER

2 r j L
R r0lL0
2
(3 26)
输出电压幅值和阻抗分别为
U 0 2 ER

r 2 L
2
2 2
R r0 jL0


2 RL
r0 R L0
dL 1 K L dl l l /
(3 17)
由上式可知,变气隙式传感器的输出特性是非线
性的,式中负号表示灵敏度随气隙增加而减小, 欲增大灵敏度,应减小 l ,但受到工艺和结构 的限制。为保证一定的测量范围与线性度,对变 气隙式传感器,常取δ= l /2=0.1~0.5m m,Δδ=(1/5~1/10)δ。
' e '
Re'
Re (1 Re / Lw 2 )
(3 5)
Re'
L'
L'
L 1 1 (Re / L )2
(3 6)
式(3-5)表明,铁损的串联等效电阻Re′与L有关。因此,当被测 非电量的变化引起线圈电感量改变时,其电阻值亦发生不希望有 变化。要减少这种附加电阻变化的影响,比值 小,以使
主要特点有:
结构简单、工作可靠; 灵敏度高,能分辨0.01μm的位移变化; 测量精度高、零点稳定、输出功率较大; 可实现信息的远距离传输、记录、显示和控制,在 工业自动 控制系统中被广泛采用;

主要缺点有:

灵敏度、线性度和测量范围相互制约; 传感器自身频率响应低,不适用于快速动态测量。
c) 螺管式自感传感器
螺管式自感传感器由平均半径为r的螺管线 圈、衔铁和磁性套筒等组成。随着衔铁插入 深度的不同将引起线圈泄漏路径中磁阻变 化,从而使线圈的电感发生变化。
d) 差动式自感传感器 绝大多数自感式传感器都运用与电阻差动式 类似的技术来改善性能:由两单一式结构对称 组合,构成差动式自感传感器。采用差动式结 构,除了可以改善非线性、提高灵敏度外,对 电源电压与频率的波动及温度变化等外界影响 也有补偿作用,从而提高了传感器的稳定性。 图3.5表示传感器非线性改善的情况。
对式(3-18)微分得灵敏度为
dL K ' (3 19) dS 可见,变面积式传感器在忽略气隙磁通边缘效应的 件下,输出特性呈线性,因此可望得到较大的线性 围。与变气隙式相比较,其灵敏度较低。欲提高灵 度,需减小 ,但同样受到工艺和结构的限制。 l6 l6 值的选取与变气隙式相同。 l KS
l1 l l2 L W / S S S 2 2 0 1 1
2
由式(3-12)可知,变气隙式传感器的工作原理:
当铁心、衔铁的材料和结构与线圈匝数确定 后,若保持S不变,则L即为 l 的单值函数, 利用等效磁导率 e 的概念,由式(3-4)可得
L1
U0

L2
图3.5差动式自感传 感器的输出特性
2.测量电路
1) 电桥电路
自感式传感器常用的交流电桥有以下几种。
Z1
i1
R1
i2
Z1
R2
U0
U0
Z2
Z2
(a)一般形式 图3.6输出端对称电桥
(b)变压器电桥
① 输出端对称电桥
图3.6(a)为输出端对称电桥 的一般形式。图中Z1 、Z2为传感器两线圈阻抗, R1、R2为外接电阻,设工作时电源电势为E,于是
2
2
2
E
(3 27)
U0
2 R r0 2 L0
2
R r0 lL0
(3 28)
2
这种电桥由于变压器次级接地,可避免静电感应
干扰,但由于开路时电桥本身存在非线性,故只 适用于示值范围较小的测量。
2)谐振电路 谐振电路如图3.8(a)所示。图中Z为传感器线圈,E为激 励电源。设图(b)中曲线1为图(a)回路的谐振曲线。若 激励源的频率为f,则可确定其工作在A点。当传感器 圈电感量变化时,谐振曲线将左右移动,工作点就在 一频率的纵坐标直线上移动(例如移至B点),于是输出 电压的幅值就发生相应变化。
(3 11)
式中,
l1 , l 2 S1 , S 2 1 , 2
S , l
— — 铁心和衔铁的磁路长度(m); — — 铁心和衔铁的截面积(m2); — — 铁心和衔铁的磁导率(H/m); — — 气隙磁通截面积(m2)和气隙总
长(m)。 将式(3-11)代入式(3-1),可得
(3 12)
Rc
Rh( f )
1 l0 2
Re
图3.2传感式线圈的等效电路 L-线圈电感;Rc -线圈铜耗电阻; 图3.1变气隙式自感传感器
Rh ( f )-铁心涡流损耗电阻; R -磁滞损耗电阻; e
C-线圈的寄生电容
类似于上述自感式传感器,变磁阻式传感 通常都具有铁心线圈或空心线圈(后者可视作前者 特例)。电路参数及其影响:
b) 变面积式自感传感器 如图,传感器的气隙长度保持不变,令磁通截面积随被 测非电量而变(衔铁水平方向移动),即构成变面积式自感 传感器。由式(3-16) W 2 0 L S K 'S l l /
(3 18)
2 W 0 为一常数。 式中: K ' l l /
1 e 1 l / l l l /
(3 15)
代入式(3-4)可得带气隙铁心线圈的电感为 W 2 0 e S 1 L K l l l /
(3 16)
式中 , K 0W 2 S 为一常数。 对式(3-16)进行微分可得传感器的灵敏度为
i1
R1
Uo
E
Z2
R2
② 电源端对称电桥 如图3.7所示,电桥输出电压为
Z 2 Z1 1 1 U o E R( ) ER Z1 Z Z 2 Z ( Z1 Z )( Z 2 Z )
相关文档
最新文档