研究生高级生物化学总结资料
生物化学知识点总结
生物化学知识点总结1. 生物大分子的结构与功能- 蛋白质:氨基酸序列、一级结构、二级结构(α-螺旋、β-折叠)、三级结构、四级结构。
- 核酸:DNA和RNA的化学结构、碱基配对原则、双螺旋结构。
- 糖类:单糖、二糖、多糖的结构和功能。
- 脂质:甘油三酯、磷脂、固醇的结构和生物学功能。
2. 酶学- 酶的定义、催化机制、酶活性的影响因素(pH、温度、底物浓度)。
- 酶动力学:米氏方程、最大速率(Vmax)、米氏常数(Km)。
- 酶抑制:竞争性抑制、非竞争性抑制、不可逆抑制。
3. 代谢途径- 糖酵解:步骤、ATP产量、调节点。
- 柠檬酸循环(TCA循环):反应步骤、能量产生。
- 电子传递链和氧化磷酸化:电子载体、质子梯度、ATP合成。
- 光合作用:光依赖反应、光合电子传递链、ATP和NADPH的生成。
- 氨基酸代谢:脱氨基作用、尿素循环。
- 脂质代谢:脂肪酸的氧化、合成、甘油代谢。
4. 信号传导- 受体类型:G蛋白偶联受体、酪氨酸激酶受体、离子通道受体。
- 第二信使:cAMP、IP3、DAG、Ca2+。
- 信号传导途径:MAPK途径、PI3K/Akt途径、Wnt/β-catenin途径。
5. 基因表达与调控- DNA复制:半保留复制、DNA聚合酶。
- 转录:RNA聚合酶、启动子、增强子、沉默子。
- 翻译:核糖体结构、tRNA作用、密码子、起始和终止密码子。
- 基因调控:表观遗传学、非编码RNA、microRNA。
6. 分子生物学技术- PCR技术:原理、引物设计、扩增过程。
- 克隆技术:载体选择、限制性内切酶、连接酶。
- 基因编辑:CRISPR-Cas9系统、基因敲除、基因敲入。
- 蛋白质组学:质谱分析、蛋白质标记、蛋白质互作。
7. 生物化学研究方法- 分子杂交技术:Southern印迹、Northern印迹、Western印迹。
- 色谱法:离子交换色谱、凝胶渗透色谱、亲和色谱。
- 光谱学方法:紫外光谱、红外光谱、核磁共振(NMR)。
考研生化重点知识归纳总结
考研生化重点知识归纳总结考研生化重点知识主要包括以下内容:蛋白质化学:蛋白质是生命活动中重要的分子之一,具有多种结构和功能。
考研生化学科中,需要掌握蛋白质的基本组成单位、氨基酸的分类及三字符表示法、肽的概念及理化性质、蛋白质层面结构与功能关系、蛋白质相对分子量、两性电离及等电点、蛋白质的胶体性质、紫外光吸收特征、变性与复性等知识点。
核酸化学:核酸是生物体的遗传物质,分为DNA和RNA两种。
在考研生化学科中,需要掌握核酸的种类和组成单位、DNA的一级结构、二级结构、三级结构和RNA的分子结构、核酸的一般性质、紫外光吸收特征、核酸的变性与复性等知识点。
酶:酶是由生物体内活细胞产生的具有催化作用的有机物,是生物体内化学反应的催化剂。
在考研生化学科中,需要掌握酶的概念、作用机制、酶促反应动力学、酶的抑制剂等知识点。
糖类:糖类是生物体内重要的供能物质,分为单糖、二糖和多糖。
在考研生化学科中,需要掌握单糖的结构及性质、二糖的结构及性质、多糖的结构及性质等知识点。
脂类与生物膜:脂类是生物体内重要的组成部分,具有多种生理功能。
生物膜是细胞膜的组成成分,由脂类和蛋白质组成。
在考研生化学科中,需要掌握脂类的分类及性质、生物膜的组成及功能等知识点。
生物氧化与代谢:生物氧化和代谢是生物体内化学反应的重要过程,涉及到能量的转换和物质的合成与分解。
在考研生化学科中,需要掌握生物氧化和代谢的基本概念、呼吸链和氧化磷酸化作用等知识点。
蛋白质合成与基因表达:蛋白质合成是生物体内分子合成的重要过程,基因表达则是指基因转录和翻译的过程。
在考研生化学科中,需要掌握蛋白质合成的原料及步骤、遗传密码等知识点。
以上是考研生化学科中的重点知识,考生需要认真学习和掌握。
同时,考生还需要了解学科前沿动态和最新研究成果,以更好地应对考试和未来的学术研究工作。
生物化学重点知识点总结
生物化学重点知识点总结生物化学是研究生物体化学组成和生命过程中化学变化规律的科学,它涵盖了从分子水平到细胞水平的生命现象。
以下是生物化学中的一些重点知识点。
一、蛋白质蛋白质是生命活动的主要承担者,具有多种重要的功能。
1、氨基酸组成蛋白质由 20 种基本氨基酸通过肽键连接而成。
这些氨基酸根据其侧链的性质可分为极性、非极性、酸性和碱性等不同类型。
2、蛋白质的结构层次蛋白质具有一级、二级、三级和四级结构。
一级结构是指氨基酸的线性排列顺序,通过肽键连接。
二级结构包括α螺旋、β折叠和β转角等,主要依靠氢键维持。
三级结构是指整条肽链的三维空间结构,由疏水作用、氢键、离子键等多种作用力维持。
四级结构则是指多个亚基组成的蛋白质的结构,亚基之间通过非共价键相互作用。
3、蛋白质的性质蛋白质具有两性解离、胶体性质、变性和复性等特性。
变性是指蛋白质在某些物理或化学因素作用下,其空间结构被破坏,导致生物活性丧失,但一级结构不变。
复性则是变性的蛋白质在适当条件下恢复其天然构象和生物活性。
二、核酸核酸包括脱氧核糖核酸(DNA)和核糖核酸(RNA),是遗传信息的携带者。
1、 DNA 的结构DNA 是双螺旋结构,由两条反向平行的多核苷酸链围绕同一中心轴相互缠绕而成。
碱基之间通过氢键配对,A 与 T 配对,G 与 C 配对。
2、 RNA 的种类和结构RNA 主要有信使 RNA(mRNA)、转运 RNA(tRNA)和核糖体RNA(rRNA)。
mRNA 是蛋白质合成的模板,tRNA 负责携带氨基酸,rRNA 是核糖体的组成成分。
3、核酸的性质核酸具有紫外吸收特性,在 260nm 处有最大吸收峰。
此外,核酸还具有变性和复性的特点。
三、酶酶是生物体内具有催化作用的蛋白质或 RNA。
1、酶的特性酶具有高效性、专一性和可调节性。
高效性是指酶能够大大加速化学反应的速度;专一性是指一种酶只能催化一种或一类化学反应;可调节性是指酶的活性可以受到多种因素的调节。
生物化学各章知识点总结
生物化学各章知识点总结一、生物化学基本概念1. 生物化学的基本概念生物化学是在分子水平上研究生物体内各种生物分子之间的相互作用和生物体内生物分子的合成、转化和降解规律的一门学科。
生物体内的生物分子包括蛋白质、核酸、碳水化合物、脂类等,它们是生物体内最基本的能量来源和结构组分。
2. 生物大分子的结构和功能(1)蛋白质是生物体内最重要的大分子,是生命活动的基本组成单元,具有结构、酶、携氧、抗体等生物学功能。
(2)核酸是生物体遗传信息的基本载体,包括DNA和RNA两大类,是生物体的遗传物质,具有储存遗传信息和遗传信息传递的功能。
(3)碳水化合物是生物体内最常见的有机化合物,是生物体内能量转化和物质代谢的主要来源。
(4)脂类是生物体内主要的储存能量的物质,还在细胞膜的结构和功能中起重要作用。
二、蛋白质的结构和功能1. 蛋白质的结构(1)蛋白质的结构级别蛋白质的结构级别包括一级结构、二级结构、三级结构和四级结构。
一级结构是指蛋白质的氨基酸序列,二级结构是指蛋白质的α-螺旋、β-折叠等次级结构,三级结构是指蛋白质的立体构象,四级结构是指蛋白质的多肽链之间的相互作用。
(2)蛋白质的构象变化蛋白质的构象包括原生构象、变性构象和热力学稳定性构象。
蛋白质的构象变化直接影响着蛋白质的功能。
2. 蛋白质的功能蛋白质作为生物体内最主要的功能分子,具有结构、酶、携氧、抗体等多种功能。
其中,酶是蛋白质的主要功能之一,是细胞内代谢调节的主要媒介,参与了生物体内几乎所有的代谢过程。
三、酶的性质和功能1. 酶的结构和功能(1)酶的结构酶是一种大分子蛋白质,其结构由氨基酸残基序列决定,具有特定的三级结构和活性位点。
(2)酶的功能酶是生物体内最主要的催化剂,能够加速生物体内化学反应的进行,参与了生物体内的新陈代谢。
2. 酶的性质(1)酶的活性酶的活性受到多种因素的影响,包括温度、pH值、金属离子等。
(2)酶的抑制酶的活性可以被抑制,包括竞争性抑制、非竞争性抑制等。
生物化学期末考研知识点总结
生物化学期末考研知识点总结●一、糖类(一)★糖的生理功能●1、通过氧化放能为生物体提供能量,如葡萄糖的生物氧化。
●2、作为生物体主要的能源储存方式,如糖原和淀粉。
●3、作为生物体的结构物质,如纤维素,起支持和保护作用。
●4、作为合成其他生物分子的前体成分。
●5、参与的细饱间的分子识别和信号转导。
(二)单糖●重要的单糖:●呋喃糖和吡喃糖:●吡喃糖:在己糖中,含氧6个碳原子的碳化称为吡喃糖,有椅式结构和船式结构,船式结构比椅式结构更稳定的原因是有C-C键的重叠和相邻原子间的作用。
●呋喃糖:在戊糖中,含氧5个碳的碳环的单糖称为呋喃糖。
●甘油醛:有光学活性最简单的单糖●核糖和脱氧核糖:是RNA和DNA的主要组成部分●葡萄糖(G):是生物体代谢的主要来源●半乳糖:与一分子葡萄糖形成乳糖●果糖(F):自然界含量最丰富的酮糖●赤藓糖:在藻类地衣等低等植物中存在●物理性质●旋光性:可用来区分单糖●甜度:以蔗糖的甜度为标准●溶解性:易溶于水,难溶于乙醇、乙醚等有机溶剂●化学性质●异构化:在碱性条件下,D-葡萄糖、D-甘露糖、D-果糖可以相互转化,在D-葡萄糖和D-甘露糖的转化中,有一个手性碳发生构型的变化,称为差向异构化。
●氧化反应:可以生成醛糖酸和酮醛酸。
●还原反应:可以被还原醇●糖脎反应(亲核加成):糖脎可以结晶,可以根据结晶的形状判断单糖的类型。
●酯化作用:单糖可以看作多元醇,可以与酸成酯,生物化学上较重要的糖脂是磷酸酯,它是糖代谢的中间产物。
●糖苷化:单糖环上的半缩醛羟基可以与酚或醇上的羟基脱水缩合成缩醛式衍生物,即糖苷。
●糖醛反应(与无机酸的反应):●Molisch反应:可以用于鉴定单糖的存在●Seliwannoff反应以及溴水:可以辨别醛糖和酮糖●高碘酸氧化反应:可以根据IO₄⁻的消耗和甲酸的合成确定该糖苷是呋喃型还是吡喃型,还可以计算多糖支链的数目(三)★寡糖●糖苷键:α-糖苷键;β-糖苷键●常见的二糖●蔗糖:一分子葡萄糖和一分子果糖以β-2,1糖苷键连接(因没有潜在自由的醛基,所以没有还原性)●麦芽糖:两分子葡萄糖以α-1,4糖苷键连接●乳糖:一分子半乳糖和一分子葡萄糖以β-1,4糖苷键连接(四)★多糖●淀粉●直链淀粉:以α-1,4糖苷键连接,遇碘呈深蓝色,没有分支,水解产物有一种双糖麦芽糖和一种单糖葡萄糖●支链淀粉:以α-1,6糖苷键连接,遇碘呈紫红色,有分支,水解产物只有一种二糖麦芽糖●糖原:与支链淀粉相似,分支程度更高,有支链,遇碘呈红棕色或红褐色,水解产物为葡萄糖●纤维素:以β-1,4糖苷键连接成直连,是植物细胞壁的重要组分●几丁质(壳多糖):N-乙酰葡萄糖胺以β-1,4糖苷键连接成直连,是昆虫类,甲壳类动物骨骼以及细菌细胞壁的重要成分(五)★糖蛋白●包括:分泌蛋白、膜蛋白●糖和氨基酸的连接:●O连接:单糖的半缩醛羟基与丝氨酸、苏氨酸残基上的羟基连接。
(完整word版)生物化学部分总结
第19章代谢总论1、分解代谢: 有机营养物, 不管是从环境获得的, 还是自身储存的, 通过一系列反应步骤变为较小的, 较简单的物质的过程称为分解代谢。
2、合成代谢: 又称生物合成, 是生物体利用小分子或大分子的结构原件建造成自身大分子的过程。
3、ATP储存自由能为生物体的一切生命活动提供能量。
满足以下四方面的需要: ①生物合成、②肌肉收缩、③营养物逆浓度梯度跨膜运送、④在DNA、RNA、蛋白质能生物合成中, 以特殊方式起递能作用。
4、能够直接提供自由能推动生物体多种化学反应的核苷酸类分子除ATP外, 还有GTP, UTP, CTP。
GTP对G蛋白的活化, 蛋白质的生物合成, 蛋白质的寻靶作用, 蛋白质的转运等等都作为推动力提供自由能。
5、FMN, 黄素腺嘌呤单核苷酸, FAD, 黄素腺嘌呤二核苷酸, 它们是另一类在传递电子和氢原子中起作用的载体。
FMN和FAD都能接受两个电子和两个氢原子, 它们在氧化还原反应中, 特别是在氧化呼吸链中起着传递电子和氢原子的作用。
6、辅酶A, 简写为CoA, 分子中含有腺嘌呤、D-核糖、磷酸、焦磷酸、泛酸和巯基乙胺。
在水解时释放出大量的自由能。
第20章遗传缺欠症缺乏尿黑酸氧化酶, 导致酪氨酸的代谢中间物尿黑酸不能氧化而随尿排出体外, 在空气中使尿变成黑色。
苯丙酮尿症, 是苯丙氨酸发生异常代谢的结果, 这是尿中出现苯丙氨酸。
但酪氨酸的代谢仍然正常。
通过以上两种不正常的代谢现象, 是苯丙氨酸的代谢途径得到了阐明。
第21章生物能学1、高能磷酸化合物的类型.碳氧键..氮磷键型-如胍基磷酸化合物。
1.磷酸肌酸。
2.磷酸精氨酸..硫酯键型-活性硫酸基.1.3’-腺苷磷酸5’-磷酰硫酸.2.酰基辅酶A..甲硫键型-活性甲硫氨.2、ATP水解释放的自由能收到许多因素的影响。
当ph升高时ATP释放的自由能明显升高。
还受到Mg2+等其他一些2价阳离子的复杂的影响。
3、ATP在磷酸基团转移中作为中间递体而起作用。
生物化学重点知识点总结
生物化学重点知识点总结生物化学是研究生物体及其组成部分的化学性质和化学过程的科学,它主要关注生物大分子的组成、结构和功能以及生物体内的各种化学反应。
以下是生物化学的重点知识点总结:1.生物大分子:生物大分子主要包括蛋白质、核酸、多糖和脂类。
蛋白质是生物体内最重要的大分子,它是组成细胞和组织的基本结构单元,参与几乎所有的生物功能。
核酸是存储和传递遗传信息的重要分子,包括DNA和RNA。
多糖是由单糖分子组成的长链聚合物,如淀粉和纤维素。
脂类是由甘油和脂肪酸组成的生物大分子,它们在细胞膜的构建和能量的储存中起重要作用。
2.生物大分子的结构和功能:生物大分子的结构决定了它们的功能。
蛋白质的结构包括四个层次:一级结构是由氨基酸的线性序列决定的,二级结构是由氢键形成的α螺旋和β折叠,三级结构是蛋白质的立体构象,四级结构是由多个蛋白质亚基组成的复合物的空间结构。
核酸的结构包括双螺旋的DNA和单链的RNA。
多糖的结构包括淀粉的分支链和纤维素的线性链。
脂类的结构包括单酰甘油、双酰甘油和磷脂。
3.生物体内的化学反应:生物体内的化学反应包括代谢途径和信号传导。
代谢途径包括蛋白质、核酸、多糖和脂类的合成和降解过程。
信号传导是细胞内外信息传递的过程,包括细胞膜受体介导的信号转导、细胞内信号分子的产生和调控。
4.酶和酶动力学:酶是催化生物体内化学反应的蛋白质,它们可以提高反应速率。
酶的催化机理包括亲和性和瞬态稳定性理论。
酶动力学研究酶的催化速率和底物浓度的关系,包括酶的速率方程、酶的底物浓度和酶的浓度对速率的影响。
5.代谢途径和调控:代谢途径是生物体内化学反应的网络,包括能量代谢途径和物质代谢途径。
能量代谢途径包括糖酵解、细胞呼吸和光合作用。
物质代谢途径包括核酸合成、脂类合成和蛋白质合成。
代谢途径的调控通过正反馈和负反馈机制来维持生物体内化学平衡,包括酶的合成和降解、调控基因表达和细胞信号传导。
6. 遗传信息的传递和表达:遗传信息通过DNA的复制和转录转化为RNA,再经过翻译转化为蛋白质。
生物化学重点知识点归纳总结
生物化学重点知识点归纳总结生物化学是研究生物体内生物分子的组成、结构、功能和相互作用的科学,这里给出一些生物化学的重点知识点的归纳总结。
1.氨基酸和蛋白质:氨基酸是构成蛋白质的基本单位,共有20种常见的氨基酸。
氨基酸之间通过肽键连接形成多肽链,进一步折叠形成蛋白质。
蛋白质的结构包括一级、二级、三级和四级结构,这些结构决定了蛋白质的功能。
2.核酸:核酸是遗传物质的基本单位,包括DNA和RNA。
DNA负责储存遗传信息,RNA负责转录和转译遗传信息。
核酸由核苷酸组成,包括碱基、磷酸和核糖(RNA)或脱氧核糖(DNA)。
3.酶和酶促反应:酶是生物体内催化化学反应的蛋白质,具有高度特异性和高效催化作用。
酶促反应是通过降低活化能来加速化学反应速率。
酶的催化作用受到温度、pH值、底物浓度等因素的影响。
4.代谢途径:代谢是生物体内发生的各种化学反应的综合体。
常见的代谢途径包括糖酵解、脂肪酸合成和分解、蛋白质合成和降解等。
这些途径通过一系列的酶促反应来完成能量的转化和物质的合成。
5.能量转化:细胞内能量的转化主要通过三个主要过程进行,即酵解、有氧呼吸和光合作用。
酵解是无需氧气的糖代谢过程,有氧呼吸是需要氧气的糖代谢过程,光合作用则是通过光能转化为化学能。
6.细胞膜:细胞膜是包裹细胞的薄膜,具有选择性通透性。
细胞膜由脂质双层构成,这些脂质双层中嵌入了多种蛋白质。
细胞膜还具有糖脂、胆固醇等成分,这些成分在细胞膜的结构和功能中起着重要作用。
7.生物催化:生物体内许多化学反应都需要催化剂来加速反应速率,这些催化剂主要是酶。
酶对于反应底物的选择性较高,催化速率也很快,并且能够通过调整活性来适应细胞内不同环境。
8.免疫系统:免疫系统是人体内对抗病原体的防御系统,包括先天免疫和获得性免疫。
免疫系统主要通过抗体和免疫细胞来识别和清除病原体。
9.信号转导:细胞内外的信号物质通过特定的受体与细胞膜上的受体结合,从而启动细胞内的信号转导路径。
生化重点知识归纳总结
生化重点知识归纳总结生化学(生物化学)是研究生物体内化学成分、化学反应和化学转化的一门科学。
在这篇文章中,将对生化学中的重点知识进行归纳总结,以帮助读者更好地理解和掌握这一领域的知识。
1. 分子生物学1.1 DNA与RNADNA是生物体内存储遗传信息的分子,决定了生物的遗传特征。
RNA则参与了蛋白质的合成过程。
DNA由四种碱基(腺嘌呤、鸟嘌呤、胸腺嘧啶和鸟嘌呤)组成,而RNA中胸腺嘧啶是由腺嘌呤与尿嘧啶二聚而成。
1.2 蛋白质合成蛋白质合成是通过转录和翻译过程实现的。
转录将DNA的信息转录成mRNA,然后mRNA与核糖体进行翻译,合成蛋白质。
2. 代谢途径2.1 糖酵解糖酵解是将葡萄糖分解为乳酸或乙醇等产物,同时释放能量。
它分为糖原酵解和无氧酵解两种类型。
2.2 糖异生糖异生是指从非糖类物质合成葡萄糖的过程。
这在饥饿或低碳水化合物摄入的情况下起关键作用。
2.3 脂肪酸合成与分解脂肪酸合成是指在胞质内,将乙酰辅酶A逐步合成长链脂肪酸的过程。
脂肪酸分解则是将脂肪酸分解为乙酰辅酶A,释放能量。
2.4 氨基酸代谢氨基酸代谢包括氨基酸降解和合成两个方面。
氨基酸在生物体内经过一系列反应,最终被降解为尿素,并通过尿液排出体外。
3. 酶与酶动力学3.1 酶的性质酶是在生物体内催化化学反应的蛋白质。
它们能够降低反应的活化能,加快反应速率。
3.2 酶的分类酶根据催化反应的方式,可分为氧化还原酶、转移酶、水解酶等不同类型。
3.3 酶动力学酶动力学研究酶催化反应速率与底物浓度、温度和pH等因素之间的关系。
其中,酶的最适温度和最适pH是使酶活性最大的温度和pH 值。
4. 代谢调节生物体内的代谢途径受到许多调节机制的控制。
4.1 负反馈调节负反馈调节是通过逆向调节酶的活性来调节代谢途径。
当代谢物浓度增加时,酶活性会被抑制,从而减少代谢途径产物的合成。
4.2 激酶与磷酸酶激酶和磷酸酶是参与调节代谢途径的重要酶。
激酶能够增加酶的活性,而磷酸酶则能够降低酶的活性。
考研生物化学知识点详解
考研生物化学知识点详解一、蛋白质的组成和结构1. 氨基酸氨基酸是蛋白质的组成单位,包含氨基基团和羧基基团。
根据侧链的化学性质,氨基酸可分为疏水性氨基酸、极性氨基酸和带电氨基酸。
2. 蛋白质的结构级别蛋白质的结构级别包括主链折叠方式、空间结构和亚结构。
主链折叠方式包括α-螺旋、β-折叠和无规卷曲。
空间结构有原代结构、二级结构、三级结构和四级结构。
亚结构有协同结构、复合物和超分子结构。
3. 蛋白质的功能蛋白质具有各种生物学功能,包括酶催化、结构支持、传递信息、运输物质、免疫防御等。
二、生物膜的组成和功能1. 生物膜的组成生物膜主要由磷脂双分子层组成,其中磷脂的疏水性脂肪酸尾部朝内,极性亲水性磷酰头部朝外。
其他组成成分包括蛋白质、糖类和胆固醇等。
2. 生物膜的功能生物膜具有细胞保护、物质通道和信号传递等功能。
通过磷脂双分子层和膜蛋白形成的通道,物质可以在细胞内外之间进行选择性传递。
三、酶的介绍和机制1. 酶的定义和特点酶是生物催化剂,具有高效、特异、可逆等特点。
酶可以加速化学反应的速率,而不改变反应的平衡常数。
2. 酶的机制酶催化反应可分为酶底物复合物形成、过渡态形成和产物释放三个步骤。
酶可以通过降低活化能、提供酸碱催化、调整构象等机制来加速反应。
四、代谢与能量转化1. 代谢的概念和类型代谢是生物体内发生的一系列化学反应,可以分为合成代谢和分解代谢。
合成代谢包括合成物质和储存能量,而分解代谢则是将有机物分解为能量和废物。
2. 能量转化的过程生物体内的能量转化可以通过有氧呼吸和无氧呼吸进行。
有氧呼吸通过氧气和有机物质产生二氧化碳、水和能量,无氧呼吸则是在缺氧条件下进行能量转化。
五、核酸的结构和功能1. 核酸的组成核酸由核苷酸组成,核苷酸包括糖、磷酸和碱基。
DNA中的糖是脱氧核糖,RNA中的糖是核糖。
2. 核酸的结构和功能核酸具有双螺旋结构,碱基之间通过氢键连接。
核酸的功能包括遗传信息传递、蛋白质合成和调节基因表达等。
高级生物化学汇总
高级生物化学汇总生物化学作为一门研究生命体内化学过程的科学,对于理解生命的本质和运作机制至关重要。
而高级生物化学则在基础生物化学的基础上,进一步深入探讨了更为复杂和前沿的领域。
从分子层面来看,高级生物化学关注的重点之一是蛋白质的结构与功能。
蛋白质是生命活动的主要执行者,其结构的多样性决定了功能的复杂性。
例如,酶作为一类特殊的蛋白质,能够催化生物体内的各种化学反应,具有高度的特异性和高效性。
了解酶的结构和作用机制,对于研究新陈代谢过程以及开发新型药物都具有重要意义。
通过X射线衍射、核磁共振等技术,科学家们能够解析蛋白质的三维结构,从而揭示其功能的奥秘。
核酸在高级生物化学中也占据着关键地位。
DNA 携带了生物体的遗传信息,其双螺旋结构的发现是生物化学领域的重大突破。
基因的表达和调控是一个复杂而精细的过程,涉及到 DNA 的转录、RNA 的加工以及蛋白质的翻译等多个环节。
深入研究这些过程,有助于我们理解遗传疾病的发生机制,并为基因治疗提供理论基础。
代谢途径的调控是高级生物化学的另一个重要方面。
生物体内的代谢网络错综复杂,各种物质的合成与分解相互关联、相互制约。
例如,糖代谢、脂代谢和蛋白质代谢之间存在着密切的联系,通过一系列的酶促反应和信号转导机制进行协调。
细胞能够根据内外环境的变化,对代谢途径进行精准的调控,以维持生命活动的平衡和稳定。
这种调控机制的失调可能导致多种疾病的发生,如糖尿病、肥胖症等。
在信号转导领域,高级生物化学研究细胞如何感知外界信号并将其转化为内部的生化反应。
细胞表面的受体能够识别各种信号分子,如激素、神经递质等,并通过一系列的蛋白质相互作用将信号传递到细胞内部,引发相应的生理反应。
信号转导通路的异常与许多疾病,如癌症、心血管疾病等密切相关,因此对其的研究为疾病的诊断和治疗提供了新的靶点。
膜生物化学也是不可忽视的一部分。
生物膜不仅是细胞的边界,还参与了物质运输、能量转换和信号传递等重要过程。
生物化学知识点总整理
生物化学知识点总整理生物化学是研究生命体内分子结构、组成及其相互作用的化学学科。
它涵盖了许多重要的生物分子和反应过程,对于理解生命活动的分子基础和生物学功能至关重要。
下面是生物化学的一些重要知识点的总整理。
1.生物大分子:生物体内的大分子包括蛋白质、核酸、多糖和脂质等。
它们是生命的基础,参与了生物体内许多重要的结构和功能。
2.蛋白质:蛋白质是生物体内最重要的大分子之一、它们由氨基酸链组成,具有三级结构:一级结构是氨基酸的线性排列顺序,二级结构是通过氢键和范德华力形成的局部空间结构,三级结构是整个蛋白质折叠成特定的形状。
3.核酸:核酸是生物体内编码和传递遗传信息的分子。
DNA和RNA是两种最重要的核酸。
DNA通过碱基配对和双螺旋结构来存储和传递遗传信息,RNA则参与了蛋白质的合成过程中。
4.酶:酶是生物体内催化化学反应的蛋白质,可以加速反应速率。
酶与底物结合形成复合物,通过降低活化能来促进反应的进行。
5.代谢途径:生物体内的代谢活动通过一系列的化学反应途径进行。
这些途径包括糖酵解、柠檬酸循环、呼吸链和光合作用等。
代谢途径提供能量和合成生物分子所需的原料。
7.柠檬酸循环:柠檬酸循环是将葡萄糖代谢产生的乙酰辅酶A进一步氧化,产生更多的ATP、NADH和FADH28.呼吸链:呼吸链是将NADH和FADH2的电子逐步传递给氧气,生成水,并产生ATP的过程。
它包括细胞色素和膜蛋白等。
9.光合作用:光合作用是植物细胞中通过光能将水和二氧化碳转化为葡萄糖和氧气的过程。
光合作用产生的葡萄糖可以作为能量和碳源。
10.脂质:脂质是不溶于水的有机分子,包括脂肪酸、甘油和脂类等。
脂质在生物体内具有重要的结构和功能,如构成细胞膜、提供能量储存等。
11.生物膜:生物膜是由脂质和蛋白质共同组成的结构,包围着细胞和细胞器。
生物膜具有选择性渗透性,参与了许多生物活动,如物质输运、信号转导等。
12.分子遗传学:分子遗传学研究基因的组成和结构,以及基因的表达调控。
生物化学重点整理,考研可用
生物化学第一篇:生物分子结构与功能蛋白质,核酸,酶,聚糖,维生素。
一共五章。
第二篇:物质代谢及其调节糖代谢,脂质代谢,生物氧化,氨基酸代谢,核甘酸代谢,非营养物质代谢以及各种重要物质代谢的相互联系与调节规律,共七章第三篇:遗传信息的传递遗传信息的传递及其调节过程,包才DNA的生物合成、DNA的损伤和修复,rna的生物合成、蛋白质的生物合成、基因表达调控与细胞信号转导,共六章中心法则;| DNA以半保留复制的方式将亲代细胞的遗传物质高度忠实的传递给子代。
细胞内所有蛋白质的一级结构的信息全部来源于DNA序列。
以DNA为模板转录生成的mrna作为信使,其核甘酸序列构成的密码子在合成蛋白质时被翻译为肽链中氨基酸的排列顺序。
复制-转录-翻译第四篇:分子医学专题分子生物学技术的原理及其应用、重组DNA技术、基因的结构与功能分析、疾病相关基因,癌基因/肿瘤抑制基因与生长因子、基因诊断与基因治疗,组学与医学,共七章第一章:蛋白质的结构与功能蛋白质是由氨基酸组成的复合物第一节:蛋白质的分子组成蛋白质x16%=含氮量含氮量x6.25=蛋白质的质量一:组成人体蛋白质的20种l-a-氨基酸甘氨酸除外二:氨基酸可根据侧链结构和理化性质进行分类1.芳香族氨基酸:色氨酸,酪氨酸,苯丙氨酸色老笨2.碱性氨基酸:精氨酸,赖氨酸,组氨酸住进来,贱不贱3.酸性氨基酸:天冬氨酸,谷氨酸4.必需氨基酸:缴氨酸,异亮氨酸,亮氨酸,苯丙氨酸,蛋氨酸二甲硫氨酸,色氨酸,苏氨酸,赖氨酸携一两本淡色书来5.支链氨基酸:缴氨酸,异亮氨酸,亮氨酸三:20种氨基酸具有共同或特异的理化性质(一)氨基酸具有两性解离的性质等电点=pi:在某一ph溶液中,氨基酸解离成阳离子和阴离子的趋势及程度相等,成为兼性离子,呈电中性,此时溶液的ph称为氨基酸的等电点。
(二)含共轲双键的氨基酸具有紫外吸收的性质色氨酸,酪氨酸的最大吸收峰在280nm附近。
共轲双键具有紫外吸收性质。
生物化学知识点总结完整版
生物化学知识点总结完整版生物化学是研究生物体在细胞、组织和器官水平上的化学过程的一门学科。
它涉及了生命体内物质的合成、降解和转化过程,以及这些过程对生命活动的调控和影响。
生物化学知识点包括了生物分子的结构及功能、生物体内的代谢过程、遗传信息的传递及表达等内容。
下面就对生物化学的一些重要知识点进行总结:一、生物分子的结构和功能1. 蛋白质:蛋白质是生物体内最丰富的一类生物大分子,由氨基酸通过肽键连接而成。
蛋白质在生物体内起着结构支持、酶催化、运输、信号传导等重要功能。
2. 碳水化合物:碳水化合物是生物体内最基本的能量来源,也是构成细胞壁、核酸、多糖等物质的重要成分。
3. 脂类:脂类是生物体内主要的能量储存物质,同时也是细胞膜的主要构成成分。
4. 核酸:核酸是生物体内的遗传物质,包括DNA和RNA两类,它们负责存储遗传信息和传递遗传信息。
二、生物体内的代谢过程1. 糖代谢:糖代谢是生物体内重要的能量来源,包括糖原合成、糖原降解、糖酵解等过程。
2. 脂质代谢:脂质代谢包括脂肪酸的合成、分解和氧化,以及胆固醇的合成和降解。
3. 蛋白质代谢:蛋白质代谢包括蛋白质合成、降解和氨基酸的代谢。
4. 核酸代谢:核酸代谢包括核苷酸的合成和降解过程。
5. 能量代谢:生物体内能量的产生主要依靠有机物的氧化和磷酸化过程。
这些过程包括糖酵解、三羧酸循环和氧化磷酸化等。
三、遗传信息的传递和表达1. DNA的结构和功能:DNA是双螺旋结构,由脱氧核苷酸通过磷酸二酯键连接而成。
DNA负责存储遗传信息,并通过转录和翻译的过程进行表达。
2. RNA的结构和功能:RNA是单链结构,由核糖核苷酸通过磷酸二酯键连接而成。
RNA包括mRNA、tRNA和rRNA等,它们分别参与遗传信息的转录、转运和翻译。
3. 蛋白质合成的过程:蛋白质合成包括转录和翻译两个过程。
转录是指DNA的信息转录成RNA的过程,而翻译是指mRNA上的密码子与tRNA上的反密码子匹配,从而在核糖体上合成蛋白质的过程。
生物化学专业的知识总结
生物化学专业的知识总结生物化学是研究生物体内化学成分和生命过程的学科,涉及到生物分子的结构、功能和相互作用等方面。
本文将对生物化学专业的知识进行总结,包括基本概念、重要分子和反应、研究方法等内容。
一、基本概念1. 生物分子:生物体内的化学物质,包括蛋白质、核酸、碳水化合物和脂质等。
2. 蛋白质:生物体内最重要的大分子,由氨基酸组成,具有结构和功能多样性。
3. 核酸:DNA和RNA是生物体内的两种核酸,负责遗传信息的传递和蛋白质合成。
4. 碳水化合物:生物体内的主要能量来源,包括单糖、双糖和多糖等。
5. 脂质:构成生物膜的主要成分,同时也是能量储存和信号传递的重要分子。
二、重要分子和反应1. 氨基酸:构成蛋白质的基本单位,通过肽键连接成多肽链。
2. 酶:催化生物体内化学反应的蛋白质,具有高度的选择性和效率。
3. 代谢途径:生物体内物质的合成和降解过程,包括糖酵解、脂肪酸合成等。
4. 光合作用:植物利用光能将二氧化碳和水转化为有机物质和氧气。
5. 呼吸作用:生物体内将有机物质氧化释放能量的过程,包括有氧呼吸和无氧呼吸。
三、研究方法1. 分离和纯化:通过技术手段将生物体内的分子分离和提纯,如电泳和层析。
2. 光谱学:利用不同波长的光与分子相互作用,如紫外-可见吸收光谱和红外光谱。
3. 核磁共振:通过核磁共振现象研究分子的结构和相互作用。
4. 质谱:通过对分子的质量和电荷比进行测定,确定分子的结构和组成。
5. 生物化学实验:通过设计和进行实验验证生物化学理论和假设。
综上所述,生物化学专业的知识总结包括基本概念、重要分子和反应、研究方法等内容。
生物化学作为一门交叉学科,对于深入理解生命的本质和生物体内的化学过程具有重要意义。
通过掌握这些知识,我们可以更好地理解生物体内的化学变化和相互作用,为生物医学研究和药物开发提供基础。
希望本文的总结能够对生物化学专业的学习和研究有所帮助。
研究生高级生物化学总结材料资料
第一章蛋白质的结构与功能1. 氨基酸的两性解离与等电点(1)氨基酸的两性解离氨基酸同时含有氨基和羧基,是两性电解质,在水溶液以兼性离子或偶极离子的形式存在。
氨基酸的兼性离子在酸性溶液中可接受质子形成阳离子,在碱性溶液中则释放质子形成阴离子。
(2)氨基酸的等电点调节溶液的pH值,到某一点时羧基所带的负电荷与氨基所带的正电荷相同,氨基酸表现为整体不带电,这点的pH值就是氨基酸的等电点。
2. 蛋白质的结构层次蛋白质是具有特定构象的大分子,为研究方便,将蛋白质结构分为几个结构水平,包括一级结构、二级结构、三级结构和四级结构以及超二级结构结合域。
一级结构:氨基酸排列顺序,其维持键为肽键及二硫键。
二级结构:指蛋白质多肽链本身的折叠和盘绕方式。
二级结构主要有ɑ-螺旋、β-折叠、β-转角。
二级结构是通过骨架上的羰基和酰胺基团之间形成的氢键维持的,氢键是稳定二级结构的主要作用力。
三级结构:蛋白质分子处于它的天然折叠状态的三维构象。
三级结构是在二级结构的基础上进一步盘绕、折叠形成的,三级结构主要是靠氨基酸侧链之间的疏水相互作用,氢键,范德华力和静电作用维持。
四级结构:在体内许多蛋白质含有两条或两条以上的多肽链,才能全面执行功能。
每一条多肽链都有其完整的三级结构,称为亚基,这种蛋白质分子中各亚基的空间排布及亚基接触部位的布局和相互作用,称为蛋白质的四级结构。
其结合键为疏水键、离子键,氢键和范德华力。
超二级结构和结构域是介于二、三级结构之间的两个结构层次:超二级结构是有规则的二级结构聚合体,如 集合体等,而结构域是较大蛋白质中空间上可明显区分的相对独立的区域性结构。
3. 稳定蛋白质空间结构的作用力维持蛋白质一级结构的化学键有肽键和二硫键;维持二级结构靠氢键;维持三级结构和四级结构靠次级键,其中包括疏水建、氢键、盐碱和二硫键。
(1)范德华力:非特异性相互作用,存在于所有分子及分子之间,在两个结构互补的大分子间大量存在,介导酶与底物,抗原抗体结合力很弱。
生物化学专业资料总结
生物化学专业资料总结生物化学是研究生物体内化学成分及其相互作用的学科。
它涉及到生物分子的结构、功能和代谢途径等方面的研究。
本文将对生物化学专业的相关资料进行总结,以帮助读者更好地了解该领域的知识。
首先,生物化学的研究对象主要包括蛋白质、核酸、碳水化合物和脂类等生物分子。
蛋白质是生物体内最重要的分子之一,它们在细胞结构和功能中起着关键作用。
核酸则是遗传信息的携带者,包括DNA和RNA。
碳水化合物是生物体内的主要能量来源,同时也参与细胞信号传导和结构支持等功能。
脂类则是细胞膜的主要组成部分,同时也参与能量存储和信号传导等过程。
其次,生物化学研究的一个重要方向是代谢途径的研究。
代谢是生物体内化学反应的总称,包括物质的合成和降解等过程。
生物化学家通过研究代谢途径,可以揭示生物体内各种化学反应的机制和调控方式。
例如,糖酵解和细胞呼吸是生物体内能量供应的主要途径,生物化学家通过研究这些途径可以了解细胞如何利用碳水化合物来产生能量。
此外,生物化学还研究了脂肪酸和胆固醇的合成途径,以及氨基酸的合成和降解途径等。
另外,生物化学还涉及到酶的研究。
酶是生物体内催化化学反应的蛋白质,它们可以加速化学反应的速率。
生物化学家通过研究酶的结构和功能,可以了解酶催化的机制和调控方式。
酶的研究对于理解生物体内化学反应的速率和选择性具有重要意义,同时也为药物设计和生物工程等领域提供了理论基础。
最后,生物化学还与许多其他学科有着密切的联系。
例如,生物化学与分子生物学、生物物理学和生物工程等学科有着紧密的交叉。
生物化学的研究方法和技术也在不断发展和创新,如基因工程、蛋白质工程和代谢工程等。
这些交叉和创新为生物化学的发展提供了新的机遇和挑战。
综上所述,生物化学是研究生物体内化学成分及其相互作用的学科,涉及到生物分子的结构、功能和代谢途径等方面的研究。
通过对生物化学的研究,我们可以更好地了解生物体内化学反应的机制和调控方式,为解决生物学和医学等领域的问题提供理论基础和实践指导。
上海市考研生物学专业生物化学重点知识总结
上海市考研生物学专业生物化学重点知识总结生物化学作为生物学的重要分支学科,在考研生物学专业中占据着重要的地位。
了解和掌握生物化学的重点知识,对于考研生物学专业的学生来说,是非常必要的。
本文将对上海市考研生物学专业生物化学的重点知识进行总结。
一、生物化学的基本概念生物化学是研究生物体分子组成、结构、性质和转化规律的学科。
它主要涉及到生物体内各种分子,如碳水化合物、脂类、蛋白质、核酸等的组成、结构、功能以及它们之间的相互作用等方面的内容。
二、生物分子的组成和结构1. 碳水化合物:碳水化合物是生物体内最重要的有机化合物之一,包括单糖、双糖和多糖。
它们是能量的主要源泉,同时也具有结构和识别功能。
2. 脂类:脂类是由甘油和脂肪酸组成的,是一类重要的生物分子。
它们在生物体内担任着储能、保护和调节物质运输等功能。
3. 蛋白质:蛋白质是生物体内最重要的大分子化合物之一,由氨基酸组成。
它们在细胞中起着酶催化、结构支持和信号传导等多种生物学功能。
4. 核酸:核酸是生物体内储存和传递遗传信息的大分子化合物,包括DNA和RNA。
它们在遗传信息的传递和蛋白质合成过程中发挥着重要的作用。
三、生物化学反应生物体内的化学反应主要包括代谢反应和能量反应两个方面。
1. 代谢反应:代谢反应是维持生命活动的基本过程,包括合成代谢和分解代谢两种类型。
合成代谢是有机物的合成过程,分解代谢则是有机物的降解过程。
2. 能量反应:生物体内的能量反应主要是通过细胞呼吸和光合作用来实现的。
细胞呼吸是指有机物被氧化释放能量的过程,而光合作用是太阳能被转化为化学能的过程。
四、酶的作用和调控酶是生物体内催化化学反应的蛋白质,具有高效、专一和可逆性等特点。
酶在生物化学反应中起着极为重要的作用,它们能够降低活化能,促进反应的进行。
同时,酶的活性也受到多种因素的调控,包括温度、pH值、底物浓度和酶活化剂或抑制剂等。
五、遗传信息的传递和蛋白质合成遗传信息的传递是生物化学的重要内容之一。
生物化学总结
生物化学总结第一篇:生物化学总结一、符号题1、GSH:还原性谷胱甘肽,是某些酶的辅酶,在体内氧化还原作用中起重要作用。
2、DNFB:2,4-二硝基氟苯,可以与氨基酸反应生成稳定的2,4-二硝基苯氨酸,可用于肽的N端氨基酸测定。
3、PI:等电点,指两性电解质所带净电荷为零时外界溶液的PH 值。
4、cAMP:3,5-环腺苷酸,第二信使,在激素调节中起作用。
5、Cgmp:3,5-环鸟苷酸,第二信使,在激素调节中起作用。
6、Ta:退火温度,使变性的DNA缓慢冷却使其复性时的温度,一般以低于变性温度Tm20-25为宜。
7、tRNA:转移核糖核酸,与氨基酸结合,携带氨基酸进入mRNA-核糖体复合物的特定位置用于蛋白质合成。
8、hnRNA:核内不均一RNA。
mRNA的前体,加工后可转变为mRNA。
9、CoASH:辅酶A,乙酰基团载体。
10、NAD(P)+:氧化型烟酰胺腺嘌呤二核苷酸磷酸,脱氢酶的辅酶,为脱氢反应转移H原子或者电子。
11、NADP:还原型烟酰胺腺嘌呤二核苷酸磷酸,还原力,为生物体合成反应提供[H].12、FMN:黄素腺嘌呤单核苷酸,脱氢酶的辅基。
13、FAD: 黄素腺嘌呤二核苷酸,脱氢酶的辅基。
14、THF/FH4:四氢叶酸,一碳单位的载体。
15、TPP:焦磷酸硫胺素,脱羧酶的辅酶。
16、PLP:磷酸吡哆醛,转氨酶的辅酶。
17、Km:米氏常数,反应速度达到最大反应速度一半时的底物浓度。
18、UDOG:尿苷二磷酸葡萄糖,合成蔗糖时葡萄糖的供体19、ADPG:腺苷二磷酸葡萄糖,合成淀粉时葡萄糖的供体20、PEP:磷酸烯醇式丙酮酸,含高能磷酸键属于高能磷酸化合物,在糖酵解中生成21、HMP:磷酸戊糖途径,产生细胞所需的具有重要生理作用的特殊物质nadph和5-磷酸核糖。
22、G-1-P:葡萄糖-1-磷酸,由葡萄糖激酶催化葡萄糖生成,不含高能键。
23、PCR:聚合酶链式反应,细胞外DNA分子克隆或无细胞DNA分子克隆。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章蛋白质的结构与功能1. 氨基酸的两性解离与等电点(1)氨基酸的两性解离氨基酸同时含有氨基和羧基,是两性电解质,在水溶液以兼性离子或偶极离子的形式存在。
氨基酸的兼性离子在酸性溶液中可接受质子形成阳离子,在碱性溶液中则释放质子形成阴离子。
(2)氨基酸的等电点调节溶液的pH值,到某一点时羧基所带的负电荷与氨基所带的正电荷相同,氨基酸表现为整体不带电,这点的pH值就是氨基酸的等电点。
2. 蛋白质的结构层次蛋白质是具有特定构象的大分子,为研究方便,将蛋白质结构分为几个结构水平,包括一级结构、二级结构、三级结构和四级结构以及超二级结构结合域。
一级结构:氨基酸排列顺序,其维持键为肽键及二硫键。
二级结构:指蛋白质多肽链本身的折叠和盘绕方式。
二级结构主要有ɑ-螺旋、β-折叠、β-转角。
二级结构是通过骨架上的羰基和酰胺基团之间形成的氢键维持的,氢键是稳定二级结构的主要作用力。
三级结构:蛋白质分子处于它的天然折叠状态的三维构象。
三级结构是在二级结构的基础上进一步盘绕、折叠形成的,三级结构主要是靠氨基酸侧链之间的疏水相互作用,氢键,范德华力和静电作用维持。
四级结构:在体内许多蛋白质含有两条或两条以上的多肽链,才能全面执行功能。
每一条多肽链都有其完整的三级结构,称为亚基,这种蛋白质分子中各亚基的空间排布及亚基接触部位的布局和相互作用,称为蛋白质的四级结构。
其结合键为疏水键、离子键,氢键和范德华力。
超二级结构和结构域是介于二、三级结构之间的两个结构层次:超二级结构是有规则的二级结构聚合体,如 集合体等,而结构域是较大蛋白质中空间上可明显区分的相对独立的区域性结构。
3. 稳定蛋白质空间结构的作用力维持蛋白质一级结构的化学键有肽键和二硫键;维持二级结构靠氢键;维持三级结构和四级结构靠次级键,其中包括疏水建、氢键、盐碱和二硫键。
(1)范德华力:非特异性相互作用,存在于所有分子及分子之间,在两个结构互补的大分子间大量存在,介导酶与底物,抗原抗体结合力很弱。
(2)氢键:呈直线排列,是维持蛋白质构象的重要作用力。
(3)离子键:数量较少,主要在R侧链间起作用。
(4)疏水作用:是球状蛋白形成稳定构象的主要作用力。
(5)二硫键:分子量较大的蛋白多借二硫键稳固其结构。
4. 二级结构的种类和特征天然蛋白质的二级结构主要有三种类型:ɑ-螺旋、β-折叠、β-转角(一)ɑ-螺旋的结构特点:(1)蛋白质多肽链主链像螺旋状盘曲,每隔3.6个氨基酸残基沿中心轴螺旋上升一圈,每上升一圈相当于向上平移0.54nm,即每个氨基酸残基向上升高0.15nm,每个氨基酸残基沿中心轴旋转100o 。
(2)ɑ-螺旋的稳定性是靠链内氢键维持的,相邻的螺圈之间形成键内氢键,氢键的取向几乎与中心轴平行,氢键是由每个氨基酸残基的N-H与前面隔3个氨基酸的C=O形成的,肽链上所有的肽键都参与氢键的形成,因此,ɑ-螺旋相当稳定。
(3)ɑ-螺旋中氨基酸残基的侧链伸向外侧。
ɑ-螺旋有左手螺旋和右手螺旋两种,但天然蛋白质ɑ-螺旋,绝大多数都是右手螺旋。
(二)β-折叠的结构特点(1)β-折叠结构中两个氨基酸残基之间的轴心距为0.35nm(反式平行)及0.325nm(平行式)(2)肽链按层排列,靠键间氢键维持其结构的稳定性,β-折叠结构的氢键是由相邻肽键主链上的N-H和C=O之间形成的。
(3)相邻肽链走向可以平行也可以反平行,肽链的N端在同侧为平行式,在不同侧为反平行式,(即相邻肽链的N端一顺一倒地排列),从能量角度考虑,反平行式更稳定。
(4)肽链中氨基酸残基的R侧链交替分布在片层上下。
(三)β-转角的结构特点(1)当蛋白质多肽链以180°回折时,这种回折部分就是β-转角,它是由第一个氨基酸残基的C=O与第四个氨基酸残基N-H之间形成氢键,产生的一种不很稳定的环形结构。
(2)由于β-转角结构,可使多肽链走向发生改变,目前发现的β-转角多数都处于球状蛋白质分子的表面,在这里改变多肽链的方向阻力比较小。
5. 蛋白质一级结构与高级结构及功能的关系蛋白质一级结构决定于高级结构,而高级结构决定功能。
蛋白质天然构象一般是自由能最低的状态,蛋白质合成后要形成特定的立体结构才有活性,对每种蛋白质而言,有活性的立体结构是特定的和唯一的,称之为天然结构。
蛋白质的天然立体机构在溶液中有一定的可塑性。
牛胰RNAse变性,复性实验证明蛋白质的以一级结构决定高级结构,一级结构包含了决定高级结构的全部信息,因此可根据一级结构预测三级结构;根据已知氨基酸序列和结构的蛋白质,预测另一个与它序列相似的蛋白质结构与功能。
第二章蛋白质的研究技术6.引起蛋白质变性的理化因素有那些,蛋白质变性后哪些性质发生了变化?物理因素:加热,紫外线等射线照射,超声波,高压处理等;化学因素主要有:强碱,强酸,脲,胍,去垢剂,重金属盐,生物碱试剂及有机溶剂等。
蛋白质变性后:1.生物活性丧失,如酶失去催化活性,抗体丧失其识别与结合抗原的能力。
血红蛋白失去载氧能力,调节蛋白质丧失其调节功能等。
2.溶解度降低,粘度增大,扩散系数变小。
3.原来隐藏在内部的疏水侧链基因暴露,导致光学性质变化。
4.对蛋白酶降解的敏感性增大。
5.亲水基因相对减少。
蛋白质变形后一级结构不变,组成成分和相对分子质量不变,只是二、三级以上的高级结构发生巨大的改变,从而导致蛋白质表面结构发生变化,性质也变化。
7. 简述2种利用电荷性质差异分离纯化蛋白质的方法。
(1)等电点聚焦电泳:电泳时PAGE胶中的两性电解质形成连续的PH梯度,电泳后各种蛋白质停留在与其中等电点相同的位置,从而分离纯化蛋白质,他能分离PI值仅相差0.01的蛋白质。
(等电点Mark)(2)离子交换层析:蛋白质中的氨基酸有等电点,当氨基酸处于不同PH条件下,其带电情况也不同。
阴离子交换基质结合带负点的蛋白质,这类蛋白质被留在柱子上,然后用洗脱液将其洗脱下来,结合较弱的蛋白质先被洗脱下来,阳离子交换基质结合带正电荷的蛋白质,然后用不同PH值或盐浓度的缓冲液将其洗脱下来。
8. 简述蛋白质双向电泳的分离原理及其用途。
双向电泳二等电点聚焦电泳(IEF)+SDS-聚丙烯酰胺凝胶电泳(SDS-PAGE).第一向:等电点聚焦电泳。
根据蛋白质等电点不同进行分离,溶液PH>PI带负电荷,溶液PH<PI 带负电荷,溶液PH=PI电荷为零。
第二向:SDS-PAGE.蛋白质与SDS结合成蛋白质-SDS复合物,其电泳迁移率不受蛋白质原有电荷的影响,主要取决于蛋白质分子量的大小。
有些蛋白质分子量相近,但等电点不同;而等电点相近的蛋白质分子量不同,因此可用此法把原来用一种方法无法分离的蛋白质分开。
第三章蛋白质的转运、加工与修饰9. 真核细胞分泌蛋白的合成和转运途径。
(1)合成途径:首先通过细胞内的游离核糖体形成氨基酸肽链,然后在糙面内质网内肽链盘曲折叠构成蛋白质,接着糙面内质网膜会形成一些小泡,里面包裹着蛋白质,小泡运输蛋白质到高尔基体,蛋白质进入高尔基体后,进行进一步的加工。
(2)转运途径:①翻译同步转运:进入内质网腔或膜的蛋白质一部分留在内质网,另一部分形成转运小泡被运输到个网状内皮系统或分泌到细胞外。
②翻译后转运:一种途径是蛋白质通过核孔进入细胞核内,另一种途径是蛋白质跨膜转运到线粒体、叶绿体、过氧化体中。
10. 受体介导的胞吞作用的功能。
(1)将胞外物质运输到胞内。
如铁离子,LDL,维生素,B12等。
(2)是细胞答应肽类激素和生长因子的调节方式之一。
通过胞吞作用使细胞表面受体数目较少,使细胞对激素及生长因子的答应减弱,称为受体的下降调节。
(3)将需要降解的蛋白质通过内吞作用进入细胞后转运到溶酶体。
如巨噬细胞清除血液循环中被损坏的蛋白质。
(4)某些病毒或细菌毒素能通过这种作用进入细胞。
如HIV病毒,白喉毒素等。
11. 蛋白质生物合成中的加工、修饰包括那些方面。
(1)二硫键的形成。
(在内质网腔中形成二硫键)(2)内质网中蛋白质的质量控制(1.蛋白质折叠,2.未折叠或错误折叠的蛋白质留在内质网中3.泛素介导的蛋白质降解 4.内质网蛋白从内侧高尔基体运回内质网)(3)蛋白质的共价修饰(氨基酸侧链的修饰,蛋白质与膜中脂类共价结合、肽链中L氨基酸的D构型化)(4)蛋白质前体的加工(将蛋白原加工成成熟、有活性的蛋白质)(5)多亚基蛋白的组装(两条或两条以上的肽链组成寡聚体)(6)蛋白质糖基化(O-连接糖链和N-连接糖链)12.蛋白质磷酸化修饰的生物学意义。
蛋白质的磷酸化反应是指通过酶促反应把磷酸基团从一个化合物转移到另一个化合物上的过程,是生物体内存在的一种普遍的调节方式,在细胞信号的传递过程中占有极其重要的地位。
(1). 在胞内介导胞外信号时具有专一应答特点。
与信号传递有关的蛋白激酶类主要受控于胞内信使,这种共价修饰调节方式显然比变构调节更少的受胞内代谢产物的影响。
(2).蛋白质的磷酸化与脱磷酸化控制了细胞内已有的酶"活性"。
与酶的重新合成及分解相比,这种方式能对外界刺激做出更迅速的反应。
(3).对外界信号具有级联放大作用;(4).蛋白质的磷酸化与脱磷酸化保证了细胞对外界信号的持续反应。
第四章激素与信号传递13. 几种主要的信号传递途径(1)cAMP传导途径:通过G蛋白作用于腺苷酸环化酶,调节cAMP的合成。
(2)Ca2+传递途径:通过信使分子IP3从内质网中释放Ca2+。
(3)DAG/PKC传递途径:DAG与蛋白激酶C(pkc)结合并使其活化。
PKC进一步使其他激酶磷酸化,调节细胞的生理过程。
(4)IP3/Ca2+信号传递途径:I P3→促使Ca2+库释放Ca2+→增加细胞质Ca2+的信号传导。
14. cAMP信号传递途径cAMP信号通路的主要效应是激活靶酶和开启基因表达,这是通过蛋白激酶完成的。
该信号途径涉及的反应链可以表示为:激素→G蛋白偶联受体→G蛋白→腺苷酸环化酶→激活cAMP→cAMP依赖的蛋白激酶A→基因调控蛋白→基因转录(1)细胞膜上存在受体、G蛋白、腺苷酸环化酶三种蛋白质;(2)胞外的刺激信号与抑制信号分别被刺激性或抑制性受体(Rs或Ri)所接受,(3)通过刺激性或者抑制性G蛋白(Gs及Gi)传递给一个共同的腺苷酸环化酶(AC),使其激活或者钝化;(4)当腺苷酸环化酶被激活时,细胞溶质产生cAMP信号,并通过PKA使蛋白质磷酸化,进而调节细胞反应。
15. 肾上腺素调节肝糖元分解的信号传递途径肾上腺素是一种含氮激素,当肾上腺素到达靶细胞后通过与受体结合,激活环化酶,生成cAMP,经一系列的级联放大作用,在极短的时间内可以提高血糖含量,促进糖的分解代谢,产生大量的A TP,供给能量,其过程如下:(1)肾上腺素与其受体结合,通过G蛋白偶联激活腺苷酸环化酶;(2)活化的腺苷酸环化酶催化ATP生成cAMP;(3)cAMP别构刺激蛋白激酶活性;(4)蛋白激酶使糖原合成酶磷酸化;(5)磷酸化激酶使糖原磷酸化酶磷酸化,成为有活性的磷酸化酶a,磷酸化酶a又催化糖原转化----磷酸葡萄糖,然后1-磷酸葡萄糖再转变成葡萄糖。