昆明市小学奥数系列8-5-1操作与策略
8-5-1_操作与策略.题库教师版.doc
1.通过实际操作寻找题目中蕴含的数学规律2. 在操作过程中,体会数学规律的并且设计最优的策略和方案3.熟练掌握通过简单操作、染色、数论等综合知识解决策略问题实际操作与策略问题这类题目能够很好的提高学生思考问题的能力,激发学生探索数学规律的兴趣,并通过寻找最佳策略过程,培养学生的创造性思维能力,这也是各类考试命题者青睐的这类题目的原因。
模块一、探索与操作【例 1】 (全国华罗庚杯少年数学邀请赛)如图,将正方形纸片由下往上对折,再由左向右对折,称为完成一次操作.按上述规则完成五次操作以后,剪去所得小正方形的左下角.问:当展开这张正方形纸片后,一共有多少个小洞孔?【解析】 一次操作后,层数由1变为4,若剪去所得小正方形左下角,展开后只有1个小洞孔,恰是大正方形的中心.连续两次操作后,折纸层数为24,剪去所得小正方形左下角,展开后在大正方形上留有211444-==(个)小洞孔.连续三次操作后,折纸层数为34,剪去所得小正方形左下角,展开后大正方形留有3124416-==(个)小洞孔.按上述规律不难断定:连续五次操作后,折纸层数为54,剪去所得小正方形左下角,展开后大正方形纸片上共留有51444256-==(个)小洞孔.【例 2】 向电脑输入汉字,每个页面最多可输入1677个五号字.现在页面中有1个五号字,将它复制后粘贴到该面上,就得到2个字;再将这2个字复制后粘贴到该页面,就得到4个字.每次复制和粘贴为1次操作,要使整个页面都排满五号字,至少需要操作 次.【解析】 每次操作页面上的字数就增加一倍,第一次操作后页面上有2个字,第2次操作后页面上有224=(个)字,第3次操作后页面上有328=(个)字,…,则第10次操作后页面上有102个字,由于101121024167722048=<<=,因此使整个页面排满,至少需要操作11次.例题精讲知识点拨教学目标8-5操作与策略【巩固】 (2002年《小学生数学报》邀请赛)一个特别的计算器,只有蓝、红、黄三个键.蓝键为“输入/删除”键(按它一下可输入一个数,再按它一下则将显示屏上的数删除).每按一个红键,则显示屏上的数变为原来的2倍;每按一下黄键,则显示屏上的数的末位自动消失.现在先按蓝键输入21.请你设计一个操作过程,要求:⑴操作过程中只能按红键和黄键;⑵按键次数不超过6次;⑶最后输出的数是3.【解析】 需按4次红键2次黄键,有如下操作方式:214284168336333−−→−−→−−→−−→−−→−−→红红红红黄黄21428416816323−−→−−→−−→−−→−−→−−→红红红黄红黄21424816323−−→−−→−−→−−→−−→−−→红黄红红红黄2124816323−−→−−→−−→−−→−−→−−→黄红红红红黄【例 3】 (2005年武汉“明星奥数挑战赛”)有依次排列的3个数:2,0,5,对任意相邻的两个数,都用右边的数减去左边的数,所得之差写在这两个数之间,可产生一个新数串:2,2-,0,5,5,这称为第一次操作,第二次同样的操作后也可产生一个新数串:2,4-,2-,2,0,5,5,0,5.继续依次操作下去.问:从新数串2,0,5开始操作,第100次后产生的那个新数串的所有数之和是多少?【解析】 观察操作次数: 开始 第一次 第二次 第三次 …总 和: 7 10 13 16 …易发现每操作一次总和增加3.因此操作100次后产生的新数串所有数之和为73100307+⨯=.【巩固】 (武汉“明星奥数挑战赛”)将两个不同的自然数中较大数换成这两个数之差,称为一次操作.如对18和42可连续进行这样的操作,则有:18,42→18,24→18,6→12,6→6,.直到两数相同为止.试给出和最小的两个四位数,按照以上操作,最后得到的相同的数是15.这两个四位数是 与 .【解析】 由题意,我们可以多给几组数按题目所给操作方法进行操作,从中找出规律.例如:136,63→…→1,136,27→…→9,984,36→…→12,12考察操作后所得结果,不难发现每次所得的最终结果是开始两数的最大公约数,因此我们只需找到两个尽量小的四位数,他们都是15的倍数,可得1005和1020.【巩固】 (武汉“明星奥数挑战赛”)对任意两个不同的自然数,将其中较大数换成这两数之差,称为一次变换.如对18和42可作这样的连续变换:18,42→18,24→18,6→12,6→6,6直到两数相同为止.问:对1234和4321作这样的连续变换最后得到的两个相同的数是 .【解析】 操作如下:1234,4321→1234,3087→1234,1853→1234,619→615,619→615,447前一数每次减少→…→,4→3,4→3,1→2,1→1,1实际上按此法操作最后所得两相同的数为开始两数的最大公约数.即1234与4321的最大公约数为1.此法也称为辗转相减法求最大公约数.【例 4】 黑板上写着一个形如777…77的数,每次擦掉一个末位数,把前面的数乘以3,然后再加上刚才擦掉的数字.对所得的新数继续这样操作下去,证明:最后必获得数7.【解析】 黑板上起初数是777…77,每次操作后就变出一个新数.不妨设这个数的末位数为b ,前面的数为a ,所以就是形为10a b +的数.每次操作后,黑板上就成为3a b +,它比原数少了7a .由此可知:⑴每次操作将使原数逐步变小;⑵如果原数能被7整除,那么所得新数仍能被7整除.所以黑板上最后必将变成7,例如当原数为777时,就有777→238→77→28→14→7.【例 5】 (2008年“北京奥校杯”解题能力展示活动)将1—13这13个自然数分别写在13张卡片上,再将这13张卡片按一定的顺序从左至右排好.然后进行如下操作:将从左数第一张和第二张依次放到最后,将第三张取出而这张卡片上的数是1;再将下面的两张依次放到最后并取出下一张,取出的卡片上面的数是2;继续将下面的两张依次放到最后并取出下一张,取出的卡片上面的数是3……如此进行下去,直到取出最后一张是13为止.则13张卡片最初从左到右的顺序为 .【解析】 这13张卡片依次是原来的第3,第6,第9,第12,第2,第7,第11,第4,第10,第5,第1,第8,第13张,所以原来的顺序为11,5,1,8,10,2,6,12,3,9,7,4,13【例 6】 (2008年北京“数学解题能力展示”读者评选活动)在纸上写着一列自然数1,2,…,98,99.一次操作是指将这列数中最前面的三个数划去,然后把这三个数的和写在数列的最后面.例如第一次操作后得到4,5,…,98,99,6;而第二次操作后得到7,8,…,98,99,6,15.这样不断进行下去,最后将只剩下一个数,则最后剩下的数是 .【解析】 第一轮:分33次划1~9,后面写上6,15,24,…,294共33个数.第二轮:分11次划去这33个数,后面写上45,126,207,…,855,共11个数.之后的操作一次减少2个数,故还需操作5次.设这11个数为:1a ,2a ,…,11a .则接下去的数是:123()a a a ++,456()a a a ++,789()a a a ++,1011123()a a a a a ++++,4567891011123()a a a a a a a a a a a ++++++++++.因此最后一数为:1231112994950a a a a ++++=+++= .【巩固】 (第六届“迎春杯”决赛)在1,9,8,9后面写一串这样的数字:先计算原来这4个数的后两个之和8+9=17,取个位数字7写在1,9,8,9的后面成为1,9,8,9,7;再计算这5个数的后两个之和9+7=16;取个位数字6写在1,9,8,9,7的后面成为1,9,8,9,7,6;再计算这6个数的后两个之和7+6=13,取个位数字3写在1,9,8,9,7,6的后面成为1,9,8,9,7,6,3. 继续这样求和,这样添写,成为数串1,9,8,9,7,6,3,9,2,1,3,4…那么这个数串的前398个数字的和是________.【解析】 前16个数字是1,9,8,9,7,6,3,9,2,1,3,4,7,1,8,9可见除去前2个数字1、9后,每12个数字一组重复出现.因此前398个数字的和是1+9+(8+9+7+6+3+9+2+1+3+4+7+1)⨯398212-=10+60⨯33=1990【例 7】 圆周上放有N 枚棋子,如图所示,B 点的那枚棋子紧邻A 点的棋子.小洪首先拿走B 点处的1枚棋子,然后沿顺时针方向每隔1枚拿走2枚棋子,这样连续转了10周,9次越过A .当将要第10次越过A 处棋子取走其他棋子时,小洪发现圆周上余下20多枚棋子.若N 是14的倍数,请精确算出圆周上现在还有多少枚棋子?【解析】 设圆周上余a 枚棋子,从第9次越过A 处拿走2枚棋子到第10次将要越过A 处棋子时,小洪拿了2a 枚棋子,所以在第9次将要越过A 处棋子时,圆周上有3a 枚棋子.依次类推,在第8次将要越过A 处棋子时,圆周上有23a 枚棋子,…,在第1次将要越过A 处棋子时,圆周上有93a 枚棋子,在第1次将要越过A 处棋子之间,小洪拿走了()92311a -+枚棋子,所以99102(31)1331N a a a =-++=-.1031590491N a a =-=-是14的倍数,N 是2和7的公倍数,所以a 必须是奇数;又()78435417843541N a a a =⨯+-=⨯+-,所以41a -必须是7的倍数.当21a =,25,27,29时,41a -不是7的倍数,当23a =时,4191a -=是7的倍数.所以,圆周上还有23枚棋子.【例 8】 (圣彼得堡数学奥林匹克)尤拉想出一个数,将它乘以13,删去乘积的末位数,将所得的数再乘以7,再删去乘积的末位数,最终得到的数为21.问:尤拉最初所想的是哪一个数?【解析】 解法一:(从分析结果入手)在第二次删去末位数之前,尤拉面临的是一个三位数,其值在210至219之间.在这些数中,只有两个数是7的倍数:210730=⨯和217731=⨯.这就意味着在乘以7之前,尤拉的数是30或31.因而在第一次删去末位数之前,尤拉所面临的数为300到319之间的一个三位数.在这些数中只有一个数是13的倍数:3122413=⨯,所以尤拉最初所想出的数是24.解法二:(利用单调性)容易看出,如果增大一开始的数,发现最终所得的数不会减小,这是因为无论是乘法运算,还是删去末位数的操作,都具有“非降性”.如果开始所想的数是25,那么运算过程如下:25→325→32→224→22.综合上述两方面,即知尤拉最初所想的数是24.【巩固】 (2008年第二届两岸四地“华罗庚金杯”少年数学精英邀请赛)有足够多的盒子依次编号0,1,2,…,只有0号是黑盒,其余的都是白盒.开始时把10个球放入白盒中,允许进行这样的操作:如果k 号白盒中恰有k 个球,可将这k 个球取出,并给0号、1号、…,(1)k -号盒中各放1个.如果经过有限次这样的操作后,最终把10个球全放入黑盒中,那么4号盒中原有 个球.【解析】 使用倒推法.最终各盒中依次有球(10,0,0,0,…),前一次必然分的是1号盒中的球,否则1号盒中最终至少有1个球.所以,倒数第一次分前盒中依次有球(9,1,0,0,…).依次倒推,为:(10,0,0,0,…)←(9,1,0,0,…)←(8,0,2,0,0,…)←(7,1,2,0,0,…)←(6,0,1,3,0,…)←(5,1,1,3,0,…)←(4,0,0,2,4,…)←(3,1,0,2,4,…)←(2,0,2,2,4,…)←(1,1,2,2,4,…)←(0,0,1,1,3,5…),0号盒中此时为0个球,不能再倒推.所以,4号盒中原有3个球.【例 9】 一个数列有如下规则:当数n 是奇数时,下一个数是1n +;当数n 是偶数时,下一个数是2n.如果这列数的第一个数是奇数,第四个数是11,则这列数的第一个数是 .【解析】 本题可以进行倒推.11的前一个数只能是偶数22,22的前一个数可以是偶数44或奇数21,44的前一个是可以是偶数88或奇数43,而21的前一个只能是偶数42.由于这列数的第一个是奇数,所以只有43满足.故这列数的第一个数是43. 也可以顺着进行分析.假设第一个数是a ,由于a 是奇数,所以第二个数是1a +,是个偶数,那么第三个数是12a +,第四个数是11,11只能由偶数22得来,所以1222a +=,得到43a =,即这列数的第一个数是43.【巩固】 (2009年第七届“走进美妙的数学花园”初赛六年级)在信息时代信息安全十分重要,往往需要对信息进行加密,若按照“乘3加1取个位”的方式逐位加密,明码“16”加密之后的密码为“49”,若某个四位明码按照上述加密方式,经过两次加密得到的密码是“2445”,则明码是 .【解析】 0~9这10个数字乘以3所得的数的个位数字互不相同是本题可以进行判断的基础.采用倒推法,可以得到经过一次加密之后的密码是“7118”,再进行倒推,可以得到原来的明码是2009.【例 10】 (2005年武汉“明星奥数挑战赛”)设有25个标号筹码,其中每个筹码都标有从1到49中的一个不同的奇数,两个人轮流选取筹码.当一个人选取了标号为x 的筹码时,另一个人必须选取标号为99x -的最大奇因数的筹码.如果第一个被选取的筹码的编号为5,那么当游戏结束时还剩 个筹码.【解析】 解若 x99x - 5 4747 1313 4343 77 2323 1919 5当一个人拿到19时,下一个人就要拿5了,故游戏结束,拿了7个.剩25718-=(个).【例11】(2008年北大附中“资优博雅杯”数学竞赛)一个盒子里有400枚棋子,其中黑色和白色的棋子各200枚,我们对这些棋子做如下操作:每次拿出2枚棋子,如果颜色相同,就补1枚黑色棋子回去;如果颜色不同,就补1枚白色的棋子回去.这样的操作,实际上就是每次都少了1枚棋子,那么,经过399次操作后,最后剩下的棋子是颜色(填黑或者白)【解析】由于起初白子200枚是偶数,若同色,补黑子1枚,白子仍为偶数;若异色,补白子1枚,白子仍为偶数.因此最后1枚不可能是白子,故应是黑子.【巩固】 (第四届“走美”试题)30粒珠子依8粒红色、2粒黑色、8粒红色、2粒黑色、 的次序串成一圈.一只蚱蜢从第2粒黑珠子起跳,每次跳过6粒珠子落在下一粒珠子上.这只蚱蜢至少要跳几次才能再次落在黑珠子上.【解析】这些珠子按8粒红色、2粒黑色、8粒红色、2粒黑色、 的次序串成一圈,那么每10粒珠子一个周期,我们可以推断出这30粒珠子数到第9和10、19和20、29和30、39和40、49和50粒 的时候,会是黑珠子.刚才是从第10粒珠子开始跳,中间隔6粒,跳到第17粒,接下来是第24粒、31粒、38粒、45粒、52粒、59粒,一直跳到59粒的时候会是黑珠子,所以至少要跳7次.【巩固】在黑板上写上1、2、3、4、……、2008,按下列规定进行“操怍”:每次擦去其中的任意两个数a和b,然后写上它们的差(大数减小数),直到黑板上剩下一个数为止.问黑板上剩下的数是奇数还是偶数?为什么?【解析】根据等差数列求和公式,可知开始时黑板上所有数的和为123200820091004是一个++++=⨯偶数,而每一次“操作”,将a、b两个数变成了()a b-,它们的和减少了2b,即减少了一个偶数.那么从整体上看,总和减少了一个偶数,其奇偶性不变,还是一个偶数.所以每次操作后黑板上剩下的数的和都是偶数,那么最后黑板上剩下一个数时,这个数是个偶数.【例12】桌上有一堆石子共1001粒。
北京市小学数学小学奥数系列8-5-1操作与策略
北京市小学数学小学奥数系列8-5-1操作与策略姓名:________ 班级:________ 成绩:________亲爱的小朋友们,这一段时间的学习,你们收获怎么样呢?今天就让我们来检验一下吧!一、 (共26题;共110分)1. (5分)从下面的计算中,你能发现什么规律?0×9+8=9×9+7= 98×9+6= 987×9+5=仿照上面的算式,再写几道试一试2. (1分)两棵树上共停着21只小鸟,后来从第一棵树上飞到第二棵树上5只,又从第二棵树上飞走3只,这时两棵树上鸟的只数相等.原来第一棵树上有________只鸟,第二棵树上有________只鸟.3. (5分)一个最普通的火柴游戏就是两人一起玩,先置若干根火柴于桌上,两人轮流取,每次所取的数目可先做一些限制,规定取走最后一根火柴者获胜。
(1)规则一:若限制每次所取的火柴数目最少1根,最多3根,则如何制胜?例如:桌面上有n=15根火柴,甲、乙两人轮流取,甲先取,则甲应如何取才能制胜?(2)规则二:限制每次所取的火柴数目为1至4根,则如何制胜?(3)规则三:限制每次所取的火柴数目不是连续的数,而是一些不连续的数,如1、3、7,则又该如何制胜?(4)规则四:限制每次所取的火柴数是1或4(一个奇数,一个偶数)4. (1分)、、、、、六个足球队进行单循环比赛,每两个队之间都要赛一场,且只赛一场.胜者得3分,负者得0分,平局每队各得1分.比赛结果,各队得分由高到低恰好为一个等差数列,获得第3名的队得了8分,那么这次比赛中共有________场平局.5. (5分)有27枚金币,其中1枚是假金币(比真金币轻一些),称3次一定能找到这枚金币吗?6. (5分)有三个盒子,第一个盒子里装了两个5g的红球;第二个盒子里装了两个6g的红球;第三个盒子里装了一个5g的红球和个6g的红球。
每个盒子外面贴的标有球的质量的标签都是错的。
8-5-1_操作与策略.教师版
1. 通过实际操作寻找题目中蕴含的数学规律2. 在操作过程中,体会数学规律的并且设计最优的策略和方案3. 让孩子掌握各种趣题的不同思考方式.实际操作与策略问题这类题目能够很好的提高学生思考问题的能力,激发学生探索数学规律的兴趣,并通过寻找最佳策略过程,培养学生的创造性思维能力,这也是各类考试命题者青睐的这类题目的原因。
模块一、制胜策略【例 1】 (圣彼得堡数学奥林匹克)尤拉想出一个数,将它乘以13,删去乘积的末位数,将所得的数再乘以7,再删去乘积的末位数,最终得到的数为21.问:尤拉最初所想的是哪一个数?【解析】 解法一:(从分析结果入手)在第二次删去末位数之前,尤拉面临的是一个三位数,其值在210至219之间.在这些数中,只有两个数是7的倍数:210730=⨯和217731=⨯.这就意味着在乘以7之前,尤拉的数是30或31.因而在第一次删去末位数之前,尤拉所面临的数为300到319之间的一个三位数.在这些数中只有一个数是13的倍数:3122413=⨯,所以尤拉最初所想出的数是24. 解法二:(利用单调性)容易看出,如果增大一开始的数,发现最终所得的数不会减小,这是因为无论是乘法运算,还是删去末位数的操作,都具有“非降性”.如果开始所想的数是25,那么运算过程如下:25→325→32→224→22.综合上述两方面,即知尤拉最初所想的数是24.【巩固】 (2008年第二届两岸四地“华罗庚金杯”少年数学精英邀请赛)有足够多的盒子依次编号0,1,2,…,只有0号是黑盒,其余的都是白盒.开始时把10个球放入白盒中,允许进行这样的操作:如果k 号白盒中恰有k 个球,可将这k 个球取出,并给0号、1号、…,(1)k -号盒中各放1个.如果经过有限次这样的操作后,最终把10个球全放入黑盒中,那么4号盒中原有 个球.【解析】 使用倒推法.最终各盒中依次有球(10,0,0,0,…),前一次必然分的是1号盒中的球,否则1号盒中最终至少有1个球.所以,倒数第一次分前盒中依次有球(9,1,0,0,…).依次倒推,为:(10,0,0,0,…)←(9,1,0,0,…)←(8,0,2,0,0,…)←(7,1,2,0,0,…)←(6,0,1,3,0,…)←(5,1,1,3,0,…)←(4,0,0,2,4,…)←(3,1,0,2,4,…)←(2,0,2,2,4,…)←(1,1,2,2,4,…)←(0,0,1,1,3,5…),0号盒中此时为0个球,不能再倒推.所以,4号盒中原有3个球.【例 2】 圆周上放有N 枚棋子,如图所示,B 点的那枚棋子紧邻A 点的棋子.小洪首先拿走B 点处的1枚棋子,然后沿顺时针方向每隔1枚拿走2枚棋子,这样连续转了10周,9次越过A .当将要第10次越过A 处棋子取走其他棋子时,小洪发现圆周上余下20多枚棋子.若N 是14的倍数,请精确算出圆周上现在还有多少枚棋子?例题精讲知识点拨教学目标第十四讲:操作与策略【解析】 设圆周上余a 枚棋子,从第9次越过A 处拿走2枚棋子到第10次将要越过A 处棋子时,小洪拿了2a枚棋子,所以在第9次将要越过A 处棋子时,圆周上有3a 枚棋子.依次类推,在第8次将要越过A 处棋子时,圆周上有23a 枚棋子,…,在第1次将要越过A 处棋子时,圆周上有93a 枚棋子,在第1次将要越过A 处棋子之间,小洪拿走了()92311a -+枚棋子,所以99102(31)1331N a a a =-++=-.1031590491N a a =-=-是14的倍数,N 是2和7的公倍数,所以a 必须是奇数;又()78435417843541N a a a =⨯+-=⨯+-,所以41a -必须是7的倍数.当21a =,25,27,29时,41a -不是7的倍数,当23a =时,4191a -=是7的倍数.所以,圆周上还有23枚棋子.【例 3】 (2008年北大附中“资优博雅杯”数学竞赛)一个盒子里有400枚棋子,其中黑色和白色的棋子各200枚,我们对这些棋子做如下操作:每次拿出2枚棋子,如果颜色相同,就补1枚黑色棋子回去;如果颜色不同,就补1枚白色的棋子回去.这样的操作,实际上就是每次都少了1枚棋子,那么,经过399次操作后,最后剩下的棋子是 颜色(填黑或者白)【解析】 由于起初白子200枚是偶数,若同色,补黑子1枚,白子仍为偶数;若异色,补白子1枚,白子仍为偶数.因此最后1枚不可能是白子,故应是黑子.【例 4】 今有101枚硬币,其中有100枚同样的真币和1枚伪币,伪币和真币的重量不同.现需弄清楚伪币究竟比真币轻还是重、但只有一架没有砝码的天平,那么怎样利用这架天平称两次,来达到目的?【解析】 101枚硬币,如果进行称重的话应该保证天平两边的硬币数相等.因此应该首先拿掉一个,把剩下的100枚硬币在天平两边各放50个.如果这时天平两边重量相等的话,就说明剩下的那个是伪币.只要任意拿出一个真币和这个伪币再称一次就可以知道真币和伪币那种比较重了.如果天平两边重量不相等的话,就是说伪币还在这100个硬币中.可以拿出其中比较轻的50个.这时同样还是把他们分成两个25枚,分到天平两边称重.如果两边重量相等,说明这50个硬币都是真的.伪币在比较重的那50个中,因此伪币就应该比真币重.如果两边重量不相等,说明伪币就在这50个比较轻的硬币中,显然伪币就应该比真币轻. 同样道理,也可以把比较重的那50个硬币分成两个25进行称重,同样也可以得出结论【巩固】 9个金币中,有一个比真金币轻的假金币,你能用天平称两次就找出来吗(天平无砝码)?【解析】 第一次在左右两托盘各放置3个:(一)如果不平衡,那么较轻的一侧的3个中有一个是假的.从中任取两个分别放在两托盘内:①如果不平衡,较低的一侧的那个是假的;②如果平衡,剩下的一个是假的;(二)如果平衡,剩下的三个中必有一个为假的.从中任取两个分别放在两托盘内:①如果不平衡,较低的一侧的那个是假的;②如果平衡,剩下的那个是假的.这类称量找假币的问题,一定要会分类,并尽量是每一类对应天平称量时的不同状态(轻,重,平),所以分成3堆是很常见的分法.【例 5】 有大,中,小3个瓶子,最多分别可以装入水1000克,700克和300克.现在大瓶中装满水,希望通过水在3个瓶子间的流动使得中瓶和小瓶上标出100克水的刻度线,问最少要倒几次水?【解析】 通过对三个数字的分析,我们发现700-300-300=100,是计算步数最少的得到100的方法.而由于我们每计算一步就相当于倒一次水,所以倒水最少的方案应该是:1.大瓶往中瓶中倒满水.2.中瓶往小瓶中倒满水,这时中瓶中还剩下400克水.4.中瓶再往小瓶中倒满水,这时中瓶中只剩下100克水,标记.5.小瓶中水倒回大瓶.6.中瓶中100克水倒入小瓶,标记.所以最少要倒6次水.本题关键是,小瓶中的水每次都要倒掉,不然无法再往小瓶中倒水的.【例 6】 (第七届“华杯赛”决赛)对一个自然数作如下操作:如果是偶数则除以2;如果是奇数则加1. 如此进行直到为1操作停止. 求经过9次操作变为1的数有多少个?【分析】 可以先尝试一下,得出下面的图:其中经1次操作变为1的1个,即2,经2次操作变为1的1个,即4,经3次操作变为1的2个,即3,8,…,经6次操作变为1的有8个,即11,24,10,28,13,30,64,31.于是,经1、2、…次操作变为1的数的个数依次为1,1,2,3,5,8,… ①这一串数中有个特点:自第三个开始,每一个等于前两个的和,即2=1+1,3=2+1,5=3+2,8=5+3,…如果这个规律正确,那么8后面的数依次是8+5=13,13+8=21,21+13=34,…即经过9次操作变为1的数有34个.为什么上面的规律是正确的呢?道理也很简单. 设经过n 次操作变为1的数的个数为n a ,则1a =1,2a =1,3a =2,…【巩固】 对于任意一个自然数n ,当n 为奇数时,加上121;当n 为偶数时,除以2,这算一次操作.现在对231连续进行这种操作,在操作过程中是否可能出现100?为什么?【解析】 同学们碰到这种题,可能会“具体操作”一下,得到这个过程还可以继续下去,虽然一直没有得到100,但也不能肯定得不到100.当然,连续操作下去会发现,数字一旦重复出现后,这一过程就进入循环,这时就可以肯定不会出现100.因为这一过程很长,所以这不是好方法.我们可以从另一个方面来考虑,因为231和121都是11的倍数,而2不是11的倍数,所以在操作过程中产生的数也应当是11的倍数.100不是11的倍数,所以不可能出现.【巩固】 小牛对小猴说:“对一个自然数n 进行系列变换:当n 是奇数时,则加上2007;当n 是偶数时,则除以2.现在对2004连续做这种变换,变换中终于出现了数2008.”小猴说:“你骗人!不可能出现2008.”请问:小牛和小猴谁说得对呢?为什么?【解析】 试着按照规则进行变换,得到的结果依次如下:2004,1002,501,2508,1254,627,2634,1317,3324,1662,831,2838,……从中发现不了什么规律,所以应该从另外的角度进行分析.观察可知2004和2007都是3的倍数,那么不论变换多少次,得到的数也还是3的倍数.而2008不是3的倍数,所以不可能出现2008.【例 7】 (2005年武汉“明星奥数挑战赛”)有依次排列的3个数:2,0,5,对任意相邻的两个数,都用右边的数减去左边的数,所得之差写在这两个数之间,可产生一个新数串:2,2-,0,5,5,这称为第一次操作,第二次同样的操作后也可产生一个新数串:2,4-,2-,2,0,5,5,0,5.继续依次操作下去.问:从新数串2,0,5开始操作,第100次后产生的那个新数串的所有数之和是多少?【解析】 观察操作次数: 开始 第一次 第二次 第三次 …总 和: 7 10 13 16 …+⨯=.易发现每操作一次总和增加3.因此操作100次后产生的新数串所有数之和为73100307【巩固】 (武汉“明星奥数挑战赛”)将两个不同的自然数中较大数换成这两个数之差,称为一次操作.如对18和42可连续进行这样的操作,则有:18,42→18,24→18,6→12,6→6,.直到两数相同为止.试给出和最小的两个四位数,按照以上操作,最后得到的相同的数是15.这两个四位数是与.【解析】由题意,我们可以多给几组数按题目所给操作方法进行操作,从中找出规律.例如:136,63→…→1,136,27→…→9,984,36→…→12,12考察操作后所得结果,不难发现每次所得的最终结果是开始两数的最大公约数,因此我们只需找到两个尽量小的四位数,他们都是15的倍数,可得1005和1020.【例8】在2009张卡片上分别写着数字1、2、3、4、……、2009,现在将卡片的顺序打乱,让空白面朝上,并在空白面上又分别写上1、2、3、4、……、2009.然后将每一张卡片正反两个面上的数字相加,再将这2009个和相乘,所得的积能否确定是奇数还是偶数?【解析】从整体进行考虑.所得的2009个和相加,便等于1~2009的所有数的总和的2倍,是个偶数.2009个数的和是偶数,说明这2009个数中必有偶数,那么这2009个数的乘积是偶数.本题也可以考虑其中的奇数.由于1~2009中有1005个奇数,那么正反两面共有2010个奇数,而只有2009张卡片,根据抽屉原理,其中必有2个奇数在同一张卡片上,那么这张卡片上的数字的和是偶数,从而所有2009个和的乘积也是偶数.【巩固】先写出一个两位数62,接着在62右端写这两个数字的和8,得到628,再写末两位数字2和8的和10,得到62810,用上述方法得到一个有2006位的整数:6 2 8 1 0 1 1 2 3 ……则这个整数的数字之和是()。
小学奥数题库——操作与策略
【例1】 (全国华罗庚杯少年数学邀请赛)如图,将正方形纸片由下往上对折,再由左向右对折,称为完成一次操作.按上述规则完成五次操作以后,剪去所得小正方形的左下角.问:当展开这张正方形纸片后,一共有多少个小洞孔?【例2】 向电脑输入汉字,每个页面最多可输入1677个五号字.现在页面中有1个五号字,将它复制后粘贴到该面上,就得到2个字;再将这2个字复制后粘贴到该页面,就得到4个字.每次复制和粘贴为1次操作,要使整个页面都排满五号字,至少需要操作 次.【巩固】 (2002年《小学生数学报》邀请赛)一个特别的计算器,只有蓝、红、黄三个键.蓝键为“输入/删除”键(按它一下可输入一个数,再按它一下则将显示屏上的数删除).每按一个红键,则显示屏上的数变为原来的2倍;每按一下黄键,则显示屏上的数的末位自动消失.现在先按蓝键输入21.请你设计一个操作过程,要求:⑴操作过程中只能按红键和黄键;⑵按键次数不超过6次;⑶最后输出的数是3.【例3】 (2005年武汉“明星奥数挑战赛”)有依次排列的3个数:2,0,5,对任意相邻的两个数,都用右边的数减去左边的数,所得之差写在这两个数之间,可产生一个新数串:2,,0,5,5,这称为第一次操作,第二次同样的操作后也可产生一个新数串:2,,,2,0,5,5,0,5.继续依次操作下去.问:从新数串2,0,5开始操作,第100次后产生的那个新数串的所有数之和是多少?【巩固】 (武汉“明星奥数挑战赛”)将两个不同的自然数中较大数换成这两个数之差,称为一次操作.如对18和42可连续进行这样的操作,则有:18,42→18,24→18,6→12,6→6,.直到两数相同为止.试给出和最小的两个四位数,按照以上操作,最后得到的相同的数是15.这两个四位数是 与 .【巩固】 (武汉“明星奥数挑战赛”)对任意两个不同的自然数,将其中较大数换成这两数之差,称为一次变换.如对18和42可作这样的连续变换:18,42→18,24→18,6→12,6→6,6直到两数相同为止.问:对1234和4321作这样的连续变换最后得到的两个相同的数是 .【例4】 黑板上写着一个形如777…77的数,每次擦掉一个末位数,把前面的数乘以3,然后再加上刚才擦掉的数字.对所得的新数继续这样操作下去,证明:最后必获得数7.【例5】 (2008年“北京奥校杯”解题能力展示活动)将1—13这13个自然数分别写在13张卡片上,再将这13张卡片按一定的顺序从左至右排好.然后进行如下操作:将从左数第一张和第二张依次放到最后,将第三张取出而这张卡片上的数是1;再将下面的两张依次放到最后并取出下一张,取出的卡片上面的数是2;继续将下面的两张依次放到最后并取出下一张,取出的卡片上面的数是3……如此进行下去,直到取出最后一张是13为止.则13张卡片最初从左到右的顺序为 .【例6】 (2008年北京“数学解题能力展示”读者评选活动)在纸上写着一列自然数1,2,…,98,99.一次操作是指将这列数中最前面的三个数划去,然后把这三个数的和写在数列的最后面.例如第一次操作后得到4,5,…,98,99,6;而第二次操作后得到7,8,…,98,99,6,15.这样不断进行下去,最后将只剩下一个数,则最后剩下的数是 .【巩固】 (第六届“迎春杯”决赛)在1,9,8,9后面写一串这样的数字:先计算原来这4个数的后两个之和8917,取个位数字7写在1,9,8,9的后面成为1,9,8,9,7;再计算这5个数的后两个之和9716;取个位数字6写在1,9,8,9,7的后面成为1,9,8,9,7,6;再计算这6个数的后两个之和7613,取个位数字3写在1,9,8,9,7,6的后面成为1,9,8,9,7,6,3.继续这样求和,这样添写,成为数串1,9,8,9,7,6,3,9,2,1,3,4…那么这个数串的前398个数字的和是________.【例7】 圆周上放有枚棋子,如图所示,点的那枚棋子紧邻点的棋子.小洪首先拿走点处的1枚棋子,然后沿顺时针方向每隔1枚拿走2枚棋子,这样连续转了10周,9次越过.当将要第10次越过处棋子取走其他棋子时,小洪发现圆周上余下20多枚棋子.若是14的倍数,请精确算出圆周上现在还有多少枚棋子?【例8】 (圣彼得堡数学奥林匹克)尤拉想出一个数,将它乘以13,删去乘积的末位数,将所得的数再乘以7,再删去乘积的末位数,最终得到的数为21.问:尤拉最初所想的是哪一个数?【巩固】 (2008年第二届两岸四地“华罗庚金杯”少年数学精英邀请赛)有足够多的盒子依次编号0,1,2,…,只有0号是黑盒,其余的都是白盒.开始时把10个球放入白盒中,允许进行这样的操作:如果号白盒中恰有个球,可将这个球取出,并给0号、1号、…,号盒中各放1个.如果经过有限次这样的操作后,最终把10个球全放入黑盒中,那么4号盒中原有 个球.【例9】 一个数列有如下规则:当数是奇数时,下一个数是;当数是偶数时,下一个数是.如果这列数的第一个数是奇数,第四个数是,则这列数的第一个数是 .【巩固】 (2009年第七届“走进美妙的数学花园”初赛六年级)在信息时代信息安全十分重要,往往需要对信息进行加密,若按照“乘3加1取个位”的方式逐位加密,明码“16”加密之后的密码为“49”,若某个四位明码按照上述加密方式,经过两次加密得到的密码是“2445”,则明码是 .【例10】 (2005年武汉“明星奥数挑战赛”)设有25个标号筹码,其中每个筹码都标有从1到49中的一个不同的奇数,两个人轮流选取筹码.当一个人选取了标号为的筹码时,另一个人必须选取标号为的最大奇因数的筹码.如果第一个被选取的筹码的编号为5,那么当游戏结束时还剩 个筹码.【例11】 (2008年北大附中“资优博雅杯”数学竞赛)一个盒子里有400枚棋子,其中黑色和白色的棋子各200枚,我们对这些棋子做如下操作:每次拿出2枚棋子,如果颜色相同,就补1枚黑色棋子回去;如果颜色不同,就补1枚白色的棋子回去.这样的操作,实际上就是每次都少了1枚棋子,那么,经过399次操作后,最后剩下的棋子是 颜色(填黑或者白)【巩固】 (第四届“走美”试题)30粒珠子依8粒红色、2粒黑色、8粒红色、2粒黑色、的次序串成一圈.一只蚱蜢从第2粒黑珠子起跳,每次跳过6粒珠子落在下一粒珠子上.这只蚱蜢至少要跳几次才能再次落在黑珠子上.【巩固】 在黑板上写上、、、、……、,按下列规定进行“操怍”:每次擦去其中的任意两个数和,然后写上它们的差(大数减小数),直到黑板上剩下一个数为止.问黑板上剩下的数是奇数还是偶数?为什么?【例12】 桌上有一堆石子共1001粒。
小学奥数 游戏与策略 精选练习例题 含答案解析(附知识点拨及考点)
1. 通过实际操作寻找题目中蕴含的数学规律2. 在操作过程中,体会数学规律的并且设计最优的策略和方案3. 熟练掌握通过简单操作、染色、数论等综合知识解决策略问题实际操作与策略问题这类题目能够很好的提高学生思考问题的能力,激发学生探索数学规律的兴趣,并通过寻找最佳策略过程,培养学生的创造性思维能力,这也是各类考试命题者青睐的这类题目的原因。
模块一、探索与操作 【例 1】 将1—13这13个自然数分别写在13张卡片上,再将这13张卡片按一定的顺序从左至右排好.然后进行如下操作:将从左数第一张和第二张依次放到最后,将第三张取出而这张卡片上的数是1;再将下面的两张依次放到最后并取出下一张,取出的卡片上面的数是2;继续将下面的两张依次放到最后并取出下一张,取出的卡片上面的数是3……如此进行下去,直到取出最后一张是13为止.则13张卡片最初从左到右的顺序为 .【考点】游戏与策略 【难度】3星 【题型】填空【关键词】北京奥校杯【解析】 这13张卡片依次是原来的第3,第6,第9,第12,第2,第7,第11,第4,第10,第5,第1,第8,第13张,所以原来的顺序为11,5,1,8,10,2,6,12,3,9,7,4,13【答案】11,5,1,8,10,2,6,12,3,9,7,4,13【例 2】 在纸上写着一列自然数1,2,…,98,99.一次操作是指将这列数中最前面的三个数划去,然后把这三个数的和写在数列的最后面.例如第一次操作后得到4,5,…,98,99,6;而第二次操作后得到7,8,…,98,99,6,15.这样不断进行下去,最后将只剩下一个数,则最后剩下的数是 .【考点】游戏与策略 【难度】3星 【题型】填空【关键词】迎春杯【解析】 第一轮:分33次划1~9,后面写上6,15,24,…,294共33个数.第二轮:分11次划去这33个数,后面写上45,126,207,…,855,共11个数.之后的操作一次减少2个数,故还需例题精讲知识点拨教学目标游戏与策略操作5次.设这11个数为:1a ,2a ,…,11a .则接下去的数是:123()a a a ++,456()a a a ++,789()a a a ++,1011123()a a a a a ++++,4567891011123()a a a a a a a a a a a ++++++++++.因此最后一数为:1231112994950a a a a ++++=+++=.【答案】4950【巩固】 在1,9,8,9后面写一串这样的数字:先计算原来这4个数的后两个之和8+9=17,取个位数字7写在1,9,8,9的后面成为1,9,8,9,7;再计算这5个数的后两个之和9+7=16;取个位数字6写在1,9,8,9,7的后面成为1,9,8,9,7,6;再计算这6个数的后两个之和7+6=13,取个位数字3写在1,9,8,9,7,6的后面成为1,9,8,9,7,6,3. 继续这样求和,这样添写,成为数串1,9,8,9,7,6,3,9,2,1,3,4…那么这个数串的前398个数字的和是________.【考点】游戏与策略 【难度】3星 【题型】填空【关键词】迎春杯,决赛【解析】 前16个数字是1,9,8,9,7,6,3,9,2,1,3,4,7,1,8,9可见除去前2个数字1、9后,每12个数字一组重复出现.因此前398个数字的和是1+9+(8+9+7+6+3+9+2+1+3+4+7+1)⨯398212-=10+60⨯33=1990 【答案】1990【例 3】 圆周上放有N 枚棋子,如图所示,B 点的那枚棋子紧邻A 点的棋子.小洪首先拿走B 点处的1枚棋子,然后沿顺时针方向每隔1枚拿走2枚棋子,这样连续转了10周,9次越过A .当将要第10次越过A 处棋子取走其他棋子时,小洪发现圆周上余下20多枚棋子.若N 是14的倍数,请精确算出圆周上现在还有多少枚棋子?【考点】游戏与策略 【难度】3星 【题型】解答【解析】 设圆周上余a 枚棋子,从第9次越过A 处拿走2枚棋子到第10次将要越过A 处棋子时,小洪拿了2a 枚棋子,所以在第9次将要越过A 处棋子时,圆周上有3a 枚棋子.依次类推,在第8次将要越过A 处棋子时,圆周上有23a 枚棋子,…,在第1次将要越过A 处棋子时,圆周上有93a 枚棋子,在第1次将要越过A 处棋子之间,小洪拿走了()92311a -+枚棋子,所以99102(31)1331N a a a =-++=-.1031590491N a a =-=-是14的倍数,N 是2和7的公倍数,所以a 必须是奇数;又()78435417843541N a a a =⨯+-=⨯+-,所以41a -必须是7的倍数.当21a =,25,27,29时,41a -不是7的倍数,当23a =时,4191a -=是7的倍数.所以,圆周上还有23枚棋子.【答案】23【例 4】 有足够多的盒子依次编号0,1,2,…,只有0号是黑盒,其余的都是白盒.开始时把10个球放入白盒中,允许进行这样的操作:如果k 号白盒中恰有k 个球,可将这k 个球取出,并给0号、1号、…,(1)k -号盒中各放1个.如果经过有限次这样的操作后,最终把10个球全放入黑盒中,那么4号盒中原有 个球.【考点】游戏与策略 【难度】3星 【题型】填空【关键词】两岸四地,华杯赛【解析】 使用倒推法.最终各盒中依次有球(10,0,0,0,…),前一次必然分的是1号盒中的球,否则1号盒中最终至少有1个球.所以,倒数第一次分前盒中依次有球(9,1,0,0,…).依次倒推,为:(10,0,0,0,…)←(9,1,0,0,…)←(8,0,2,0,0,…)←(7,1,2,0,0,…)←(6,0,1,3,0,…)←(5,1,1,3,0,…)←(4,0,0,2,4,…)←(3,1,0,2,4,…)←(2,0,2,2,4,…)←(1,1,2,2,4,…)←(0,0,1,1,3,5…),0号盒中此时为0个球,不能再倒推.所以,4号盒中原有3个球.【答案】3【例 5】 一个数列有如下规则:当数n 是奇数时,下一个数是1n +;当数n 是偶数时,下一个数是2n .如果这列数的第一个数是奇数,第四个数是11,则这列数的第一个数是 .【考点】游戏与策略 【难度】3星 【题型】填空【解析】 本题可以进行倒推.11的前一个数只能是偶数22,22的前一个数可以是偶数44或奇数21,44的前一个是可以是偶数88或奇数43,而21的前一个只能是偶数42.由于这列数的第一个是奇数,所以只有43满足.故这列数的第一个数是43.也可以顺着进行分析.假设第一个数是a ,由于a 是奇数,所以第二个数是1a +,是个偶数,那么第三个数是12a +,第四个数是11,11只能由偶数22得来,所以1222a +=,得到43a =,即这列数的第一个数是43.【答案】43【巩固】 在信息时代信息安全十分重要,往往需要对信息进行加密,若按照“乘3加1取个位”的方式逐位加密,明码“16”加密之后的密码为“49”,若某个四位明码按照上述加密方式,经过两次加密得到的密码是“2445”,则明码是 .【考点】游戏与策略 【难度】3星 【题型】填空【关键词】走美杯,初赛,六年级【解析】 0~9这10个数字乘以3所得的数的个位数字互不相同是本题可以进行判断的基础.采用倒推法,可以得到经过一次加密之后的密码是“7118”,再进行倒推,可以得到原来的明码是2009.【答案】2009【例 6】 设有25个标号筹码,其中每个筹码都标有从1到49中的一个不同的奇数,两个人轮流选取筹码.当一个人选取了标号为x 的筹码时,另一个人必须选取标号为99x -的最大奇因数的筹码.如果第一个被选取的筹码的编号为5,那么当游戏结束时还剩 个筹码.【考点】游戏与策略 【难度】3星 【题型】解答【关键词】武汉,明星奥数挑战赛【解析】 解若 x 99x -5 4747 1313 4343 77 2323 1919 5当一个人拿到19时,下一个人就要拿5了,故游戏结束,拿了7个.剩25718-=(个).【答案】18【例 7】 一个盒子里有400枚棋子,其中黑色和白色的棋子各200枚,我们对这些棋子做如下操作:每次拿出2枚棋子,如果颜色相同,就补1枚黑色棋子回去;如果颜色不同,就补1枚白色的棋子回去.这样的操作,实际上就是每次都少了1枚棋子,那么,经过399次操作后,最后剩下的棋子是 颜色(填黑或者白)【考点】游戏与策略 【难度】3星 【题型】填空【关键词】北大附中,资优博雅杯【解析】 由于起初白子200枚是偶数,若同色,补黑子1枚,白子仍为偶数;若异色,补白子1枚,白子仍为偶数.因此最后1枚不可能是白子,故应是黑子.【答案】黑【巩固】 30粒珠子依8粒红色、2粒黑色、8粒红色、2粒黑色、的次序串成一圈.一只蚱蜢从第2粒黑珠子起跳,每次跳过6粒珠子落在下一粒珠子上.这只蚱蜢至少要跳几次才能再次落在黑珠子上.【考点】游戏与策略 【难度】3星 【题型】解答【关键词】走美杯,试题【解析】 这些珠子按8粒红色、2粒黑色、8粒红色、2粒黑色、的次序串成一圈,那么每10粒珠子一个周期,我们可以推断出这30粒珠子数到第9和10、19和20、29和30、39和40、49和50粒的时候,会是黑珠子.刚才是从第10粒珠子开始跳,中间隔6粒,跳到第17粒,接下来是第24粒、31粒、38粒、45粒、52粒、59粒,一直跳到59粒的时候会是黑珠子,所以至少要跳7次.【答案】7次【巩固】 在黑板上写上1、2、3、4、……、2008,按下列规定进行“操怍”:每次擦去其中的任意两个数a 和b ,然后写上它们的差(大数减小数),直到黑板上剩下一个数为止.问黑板上剩下的数是奇数还是偶数?为什么?【考点】游戏与策略 【难度】3星 【题型】解答【解析】 根据等差数列求和公式,可知开始时黑板上所有数的和为123200820091004++++=⨯是一个偶数,而每一次“操作”,将a 、b 两个数变成了()a b -,它们的和减少了2b ,即减少了一个偶数.那么从整体上看,总和减少了一个偶数,其奇偶性不变,还是一个偶数.所以每次操作后黑板上剩下的数的和都是偶数,那么最后黑板上剩下一个数时,这个数是个偶数.【答案】偶数【例 8】 桌上有一堆石子共1001粒。
辽宁省2020年小学奥数系列8-5-1操作与策略
辽宁省2020年小学奥数系列8-5-1操作与策略姓名:________ 班级:________ 成绩:________小朋友,带上你一段时间的学习成果,一起来做个自我检测吧,相信你一定是最棒的!一、 (共26题;共110分)1. (5分)(2011·广州模拟) 一个四位数,它的第一个数字等于这个数中数字0的个数,第二个数字表示这个数中数字1的个数,第三个数字表示这个数中数字2的个数,第四个数字等于这个数中数字3的个数,求出这个四位数.2. (1分)(2019·陆丰) 甲、乙、丙三人共有图书195本,甲拿15本给乙,乙拿20本给丙,丙拿30本给甲,则此时甲、乙、丙手中的图书一样多,那么原来甲有________本图书.3. (5分)一个最普通的火柴游戏就是两人一起玩,先置若干根火柴于桌上,两人轮流取,每次所取的数目可先做一些限制,规定取走最后一根火柴者获胜。
(1)规则一:若限制每次所取的火柴数目最少1根,最多3根,则如何制胜?例如:桌面上有n=15根火柴,甲、乙两人轮流取,甲先取,则甲应如何取才能制胜?(2)规则二:限制每次所取的火柴数目为1至4根,则如何制胜?(3)规则三:限制每次所取的火柴数目不是连续的数,而是一些不连续的数,如1、3、7,则又该如何制胜?(4)规则四:限制每次所取的火柴数是1或4(一个奇数,一个偶数)4. (1分)已知甲、乙两数的和为8,乙、丙两数的和为6,甲、丙两数的和为4,甲、乙、丙三个数各是多少?甲数是________乙数是________ 丙数是________5. (5分)小华买了7袋方便面,其中6袋质量相同,另有一袋质量不足。
请你帮小华设计用天平找出不足质量的这袋方便面的方案。
6. (5分) 2003年非典期间,每逢周六、周日育新中学初一(二)的全体同学都要向班主任刘老师汇报体温,怎样才能尽快地将班级60名同学的体温统计出来呢?(1)如果汇报的方式是打电话,而且每打一个电话需要1分钟,请讨论一下,设计出一个方案。
湖南省长沙市数学小学奥数系列8-5-1操作与策略
湖南省长沙市数学小学奥数系列8-5-1操作与策略姓名:________ 班级:________ 成绩:________亲爱的小朋友们,这一段时间的学习,你们收获怎么样呢?今天就让我们来检验一下吧!一、 (共26题;共110分)1. (5分)一个八位数,它的个位上的数字是6,十位上的数字是3,任意相邻三个数字之和都是15,这个八位数是多少?2. (1分)一根铁丝,第一次用去它的一半少1米,第二次用去剩下的一半多1米,最后剩5米。
这根铁丝原来长________米。
3. (5分) (2019五下·微山期中) 五(1)班有四十多名同学分组做游戏,如果3个人一组或5个人一组都剩下2人,五(1)班共有多少人参加做游戏?(写出过程)4. (1分) (2019五上·连云港期中) 三个同学比身高,小林比小月高0.04米,小月比小帆矮0.05米。
三个同学中最高的是________,最矮的是________。
5. (5分)有3袋糖果,其中两袋每袋1千克,另一袋不是1千克,但不知道比1千克重还是轻,你能用天平找出来吗?写出简要过程。
6. (5分)有11瓶牛奶,其中一瓶变质了(略重一些),用天平称,至少称多少次能保证找到变质的那瓶牛奶?7. (5分)(2020·成都模拟) 为创建“资源节约型社会”,某区对用电的收费标准如下:每月每户用电不超过10度的部分按照每度0.4元收费,超过10度而不超过20度的部分按照每度0.9元收费,超过20度的部分按照每度1.7元收费。
今年4月份,张叔叔家比李阿姨家多缴电费5.3元,李阿姨家比王奶奶家多缴6.6元,那么张叔叔,李阿姨和王奶奶三家四月份共交电费多少元?8. (5分)(2011·广州模拟) 下图是某一个浅湖泊的平面图,图中曲线都是湖岸(1)若P点在岸上,则A点在岸上还是水中?(2)某人过这湖泊,他下水时脱鞋,上岸时穿鞋.若有一点B,他脱鞋的次数与穿鞋的次数和是奇数,那么B点在岸上还是水中?说明理由.9. (5分) (2020五下·官渡期末) “植树节”到了,有25个小伙伴要分成甲、乙两个组去植树,如果甲队人数为奇数,那么乙队人数为奇数还是偶数?如果有1人请假未到,这时甲队人数为偶数,那么乙队人数呢?10. (5分)将自然数1、2、3、4、5依次重复写下去,得到多位数1234512345……组成一个1888位数,这个数是否含有因数3?是不是2的倍数?11. (5分) (2020二下·滕州期末) 按规律填一填。
辽宁省沈阳市小学数学小学奥数系列8-5-1操作与策略
辽宁省沈阳市小学数学小学奥数系列8-5-1操作与策略姓名:________ 班级:________ 成绩:________亲爱的小朋友们,这一段时间的学习,你们收获怎么样呢?今天就让我们来检验一下吧!一、 (共26题;共110分)1. (5分)一个八位数,它的个位上的数字是6,十位上的数字是3,任意相邻三个数字之和都是15,这个八位数是多少?2. (1分)(2019·陆丰) 甲、乙、丙三人共有图书195本,甲拿15本给乙,乙拿20本给丙,丙拿30本给甲,则此时甲、乙、丙手中的图书一样多,那么原来甲有________本图书.3. (5分)(丢番图是古希腊数学家,被誉为“代数学之父”。
而丢番图的墓碑,就包含了一个很有趣的数学问题)以下就是丢番图的墓碑原文,同学们能从其中看出丢番图一共活了多少岁吗?上帝给予的童年占六分之一,又过十二分之一,两颊长胡,再过七分之一,点燃起结婚的蜡烛。
五年之后天赐贵子,可怜迟到的宁馨儿,享年仅及其父之半,便进入冰冷的墓。
悲伤只有用数论的研究去弥补,又过四年,他也走完了人生的旅途。
4. (1分) (2019二下·麻城期末) 在下面的方格中,每行每列都有2、4、6、8这四个数,并且每行、每列都只出现一次。
那么,A是________,B是________。
5. (5分)有29瓶同样的纯净水,向其中一瓶中加入一些盐,如果用天平称,至少称几次能保证找出加盐的纯净水?6. (5分)红红家有5瓶相同的药,每颗药丸重10克,只有一瓶受到污染的药丸质量发生了变化,但是不知道是变轻了,还是变重了。
给你一台无砝码的天平,至少称几次能保证找出这瓶受污染的药?7. (5分)四对夫妇坐在一起闲谈.四个女人中,吃了个梨,吃了个,吃了个,吃了个;四个男人中,甲吃的梨和他妻子一样多,乙吃的是妻子的倍,丙吃的是妻子的倍,丁吃的是妻子的倍.四对夫妇共吃了个梨.问:丙的妻子是谁?8. (5分)对一个自然数作如下操作:如果是偶数则除以2;如果是奇数则加1. 如此进行直到为1操作停止. 求经过9次操作变为1的数有多少个?9. (5分)从下面选出三张数字卡片,组成满足下列条件的三位数。
西藏山南地区数学小学奥数系列8-5-1操作与策略
西藏山南地区数学小学奥数系列8-5-1操作与策略姓名:________ 班级:________ 成绩:________亲爱的同学,经过一段时间的学习,你们一定学到不少知识,今天就让我们大显身手吧!一、 (共26题;共110分)1. (5分)一个八位数,它的个位上的数字是6,十位上的数字是3,任意相邻三个数字之和都是15,这个八位数是多少?2. (1分)(2019·陆丰) 甲、乙、丙三人共有图书195本,甲拿15本给乙,乙拿20本给丙,丙拿30本给甲,则此时甲、乙、丙手中的图书一样多,那么原来甲有________本图书.3. (5分)(丢番图是古希腊数学家,被誉为“代数学之父”。
而丢番图的墓碑,就包含了一个很有趣的数学问题)以下就是丢番图的墓碑原文,同学们能从其中看出丢番图一共活了多少岁吗?上帝给予的童年占六分之一,又过十二分之一,两颊长胡,再过七分之一,点燃起结婚的蜡烛。
五年之后天赐贵子,可怜迟到的宁馨儿,享年仅及其父之半,便进入冰冷的墓。
悲伤只有用数论的研究去弥补,又过四年,他也走完了人生的旅途。
4. (1分)小强、小明、小勇三人参加数学竞赛,他们分别来自甲、乙、丙三个学校,并分别获得一、二、三等奖.已知:⑴小强不是甲校选手;⑵小明不是乙校选手;⑶甲校的选手不是一等奖;⑷乙校的选手得二等奖;⑸小明不是三等奖.根据上述情况,可判断出小勇是________校的选手,他得的是________等奖.5. (5分)李老师给幼儿园的小朋友买了6盒奶糖,调皮的东东偷偷将一盒中的奶糖吃了几颗。
李老师身边只有一架没有砝码的天平,她最少称几次能找出少了的那一盒糖?说说你的方法。
6. (5分) 2003年非典期间,每逢周六、周日育新中学初一(二)的全体同学都要向班主任刘老师汇报体温,怎样才能尽快地将班级60名同学的体温统计出来呢?(1)如果汇报的方式是打电话,而且每打一个电话需要1分钟,请讨论一下,设计出一个方案。
西宁市小学奥数系列8-5-1操作与策略
西宁市小学奥数系列8-5-1操作与策略姓名:________ 班级:________ 成绩:________小朋友,带上你一段时间的学习成果,一起来做个自我检测吧,相信你一定是最棒的!一、 (共26题;共110分)1. (5分)一个八位数,它的个位上的数字是6,十位上的数字是3,任意相邻三个数字之和都是15,这个八位数是多少?2. (1分)(2019·陆丰) 甲、乙、丙三人共有图书195本,甲拿15本给乙,乙拿20本给丙,丙拿30本给甲,则此时甲、乙、丙手中的图书一样多,那么原来甲有________本图书.3. (5分)一个最普通的火柴游戏就是两人一起玩,先置若干根火柴于桌上,两人轮流取,每次所取的数目可先做一些限制,规定取走最后一根火柴者获胜。
(1)规则一:若限制每次所取的火柴数目最少1根,最多3根,则如何制胜?例如:桌面上有n=15根火柴,甲、乙两人轮流取,甲先取,则甲应如何取才能制胜?(2)规则二:限制每次所取的火柴数目为1至4根,则如何制胜?(3)规则三:限制每次所取的火柴数目不是连续的数,而是一些不连续的数,如1、3、7,则又该如何制胜?(4)规则四:限制每次所取的火柴数是1或4(一个奇数,一个偶数)4. (1分)(2011·广州) 甲、乙、丙、丁、戊五位同学进行乒乓球赛,规定每两人都要赛一场,到现在为止,甲已赛了4场,乙已赛了3场,丙已赛了2场,丁已赛了1场,那么戊赛了________场。
5. (5分) 2003年非典期间,每逢周六、周日育新中学初一(二)的全体同学都要向班主任刘老师汇报体温,怎样才能尽快地将班级60名同学的体温统计出来呢?(1)如果汇报的方式是打电话,而且每打一个电话需要1分钟,请讨论一下,设计出一个方案。
(2)小明为此设计了一种方案:用,… 表示60名同学。
问:刘老师共接到了几次电话,一共需要几分钟?(3)小芳为此也设计了一种方案:她将班级同学分成了6个小组,每个小组有10名同学,安排1名同学当组长,其余9名同学将体温汇报给组长,组长再把体温汇报给刘老师。
湖北省武汉市数学小学奥数系列8-5-1操作与策略
湖北省武汉市数学小学奥数系列8-5-1操作与策略姓名:________ 班级:________ 成绩:________亲爱的小朋友们,这一段时间的学习,你们收获怎么样呢?今天就让我们来检验一下吧!一、 (共26题;共110分)1. (5分)一个八位数,它的个位上的数字是6,十位上的数字是3,任意相邻三个数字之和都是15,这个八位数是多少?2. (1分)(2019·邢台) 某剧场共有100个座位,如果当票价为10元时,票能售完,当票价超过10元时,每升高2元,就会少卖出5张票。
那么当总的售票收入为1360元时,票价为多少________。
3. (5分) (2019五下·微山期中) 五(1)班有四十多名同学分组做游戏,如果3个人一组或5个人一组都剩下2人,五(1)班共有多少人参加做游戏?(写出过程)4. (1分)先找规律,填好幻方,使下面幻方中竖的、横的、斜的3个数的和都是18.然后按从上到下,从左到右的顺序,填写结果.________5. (5分)李老师给幼儿园的小朋友买了6盒奶糖,调皮的东东偷偷将一盒中的奶糖吃了几颗。
李老师身边只有一架没有砝码的天平,她最少称几次能找出少了的那一盒糖?说说你的方法。
6. (5分)有21个小铁球,其中一个是空心的,你如何利用天平找到它。
7. (5分)有三个女孩穿着崭新的连衣裙去参加游园会。
一个穿花的,一个穿白的,一个穿红的,但不知哪一个姓王,哪一个姓李,哪一个姓刘。
只知道姓刘的不喜欢穿红色的,姓王的既不穿红裙子,也不穿花裙子。
你能猜出这三个女孩各姓什么吗?8. (5分)1+2+3+……+1996+3001的和是奇数还是偶数?9. (5分)教室里有一盏灯亮着,突然停电了。
停电后,李英拉了一下电灯的开关,过了一会儿,张明也拉了一下开关。
如果这个班有45名学生,每个人都拉一下开关,当最后一名学生拉了一下开关后,灯是开着,还是关着?你能说明理由吗?10. (5分)小李和小赵在研究数的倍数时,发现这样的现象:18是3的倍数,也是6的倍数;36是3的倍数,也是6的倍数;54是3的倍数,也是6的倍数……小李说:“我发现凡是3的倍数,它一定是6的倍数。
天津市数学小学奥数系列8-5-1操作与策略
天津市数学小学奥数系列8-5-1操作与策略姓名:________ 班级:________ 成绩:________亲爱的小朋友们,这一段时间的学习,你们收获怎么样呢?今天就让我们来检验一下吧!一、 (共26题;共110分)1. (5分)一个八位数,它的个位上的数字是6,十位上的数字是3,任意相邻三个数字之和都是15,这个八位数是多少?2. (1分)(2019·陆丰) 甲、乙、丙三人共有图书195本,甲拿15本给乙,乙拿20本给丙,丙拿30本给甲,则此时甲、乙、丙手中的图书一样多,那么原来甲有________本图书.3. (5分)一个最普通的火柴游戏就是两人一起玩,先置若干根火柴于桌上,两人轮流取,每次所取的数目可先做一些限制,规定取走最后一根火柴者获胜。
(1)规则一:若限制每次所取的火柴数目最少1根,最多3根,则如何制胜?例如:桌面上有n=15根火柴,甲、乙两人轮流取,甲先取,则甲应如何取才能制胜?(2)规则二:限制每次所取的火柴数目为1至4根,则如何制胜?(3)规则三:限制每次所取的火柴数目不是连续的数,而是一些不连续的数,如1、3、7,则又该如何制胜?(4)规则四:限制每次所取的火柴数是1或4(一个奇数,一个偶数)4. (1分) (2019六上·南康期末) 六年级1、2、3、4四个班举行拔河比赛,甲、乙、丙三个同学猜测四个班比赛的前三名名次.甲说:1班第三,3班第一;乙说:3班第二,2班第三;丙说:4班第二,1班第一.比赛结果,三个人都猜对了一半.那么,1班第________名,4班第________名.5. (5分)有29瓶同样的纯净水,向其中一瓶中加入一些盐,如果用天平称,至少称几次能保证找出加盐的纯净水?6. (5分)有7袋盐,其中6袋每袋500g,另外1袋不是500g,且不知道比500g重还是轻,你能用天平称出来吗?7. (5分)八一队、北京队、江苏队、山东队、广东队五队进行象棋友谊赛,每两个队都要赛一场,一个月过后,八一队赛了场,北京队赛了场,江苏队赛了场,山东队赛了场.那么广东队赛了几场?8. (5分)对一个自然数作如下操作:如果是偶数则除以2;如果是奇数则加1. 如此进行直到为1操作停止. 求经过9次操作变为1的数有多少个?9. (5分)桌子上放着7只茶杯,全部是杯底朝上,每次翻转2只茶杯,称为一次翻动,经过多少次翻动,能使7只茶杯的杯口全部朝上?10. (5分)将自然数1、2、3、4、5依次重复写下去,得到多位数1234512345……组成一个1888位数,这个数是否含有因数3?是不是2的倍数?11. (5分)(2012·嘉祥) 已知一串分数:,,,,,,,,,…(1)是此串分数中的第多少个分数?(2)第115个分数是多少?12. (1分)(丢番图是古希腊数学家,被誉为“代数学之父”。
河南省开封市小学数学小学奥数系列8-5-1操作与策略
河南省开封市小学数学小学奥数系列8-5-1操作与策略姓名:________ 班级:________ 成绩:________亲爱的小朋友们,这一段时间的学习,你们收获怎么样呢?今天就让我们来检验一下吧!一、 (共26题;共110分)1. (5分)(2018·长沙) 有一个两位数,如果用它去除以个位数字,商为9余数为6,如果用这个两位数除以个位数字与十位数字之和,则商为5余数为3,求这个两位数.2. (1分)爷爷沿着大堤走了全长的一半后,又走了剩下的一半,还剩下1千米,问:大堤全长是(________ )千米。
3. (5分) (2019五下·微山期中) 五(1)班有四十多名同学分组做游戏,如果3个人一组或5个人一组都剩下2人,五(1)班共有多少人参加做游戏?(写出过程)4. (1分)(2019·宁波) 甲、乙、丙三位同学进行跑步比赛,跑完后他们每人说了一句话,甲说:我是第一,乙说:我是第二,丙说:我不是第一.可是其中一人说了假话,那么得第一名的是________.5. (5分)有A、B、C三个金属球,A最轻(质量A<B<C),另外还有一个球D。
试用无砝码的天平称两次,你能确定球D按质量排序排在第几位吗?6. (5分)有11瓶牛奶,其中一瓶变质了(略重一些),用天平称,至少称多少次能保证找到变质的那瓶牛奶?7. (5分) 2004枚棋子,每次可以取1、3、4、7枚,最后取的获胜。
甲、乙轮流取,如果甲先取,如何才能保证赢?8. (5分) (2020五下·汉寿期中) 35名学生分成甲、乙两队。
如果甲队人数为偶数,乙队人数为奇数还是偶数?如果甲队人数为奇数呢?9. (5分)有36个苹果,把它放在13个盘子里,每个盘子里只能放奇数个,这件事你能办到吗?10. (5分)(2019五下·海珠期末)(1)先划去2的倍数,再依次划去3、5、7的倍数(2、3、5、7本身不划去)(2)没有划去的数都是什么数?(3)依据上面数表,猜一猜下面这个数最大是多少?2个2个地数剩1,5个5个地数剩4,3个3个地数正好数完,并且这个数小于50。
陕西省西安市数学小学奥数系列8-5-1操作与策略
陕西省西安市数学小学奥数系列8-5-1操作与策略姓名:________ 班级:________ 成绩:________亲爱的小朋友们,这一段时间的学习,你们收获怎么样呢?今天就让我们来检验一下吧!一、 (共26题;共110分)1. (5分)一个八位数,它的个位上的数字是6,十位上的数字是3,任意相邻三个数字之和都是15,这个八位数是多少?2. (1分)(2019·陆丰) 甲、乙、丙三人共有图书195本,甲拿15本给乙,乙拿20本给丙,丙拿30本给甲,则此时甲、乙、丙手中的图书一样多,那么原来甲有________本图书.3. (5分)(丢番图是古希腊数学家,被誉为“代数学之父”。
而丢番图的墓碑,就包含了一个很有趣的数学问题)以下就是丢番图的墓碑原文,同学们能从其中看出丢番图一共活了多少岁吗?上帝给予的童年占六分之一,又过十二分之一,两颊长胡,再过七分之一,点燃起结婚的蜡烛。
五年之后天赐贵子,可怜迟到的宁馨儿,享年仅及其父之半,便进入冰冷的墓。
悲伤只有用数论的研究去弥补,又过四年,他也走完了人生的旅途。
4. (1分)第四届东亚男足邀请赛共有四支足球队进行单循环赛,即每两队之间都要进行一场比赛,每场比赛胜者得分,负者得分,平局两队各得分.比赛完成之后各队得分是四个连续的自然数,请计算出输给第一名的球队的得分是________分.5. (5分)爸爸买来13本信笺,这13本信笺的质量相同,淘气的小明从一本信笺中撕了几页,你能用天平把这本被撕过的信笺找出来吗?你至少要称几次?请用图例说一说。
6. (5分)红红家有5瓶相同的药,每颗药丸重10克,只有一瓶受到污染的药丸质量发生了变化,但是不知道是变轻了,还是变重了。
给你一台无砝码的天平,至少称几次能保证找出这瓶受污染的药?7. (5分),,,分别是中国、日本、美国和法国人.已知:⑴ 和中国人是医生;⑵ 和法国人是教师;⑶ 和日本人职业不同;⑷ 不会看病.问:,,,各是哪国人,8. (5分)对一个自然数作如下操作:如果是偶数则除以2;如果是奇数则加1. 如此进行直到为1操作停止. 求经过9次操作变为1的数有多少个?9. (5分) (2019五下·卢龙期末) 小明去文具店买圆珠笔和文具盒。