合并同类项和方程

合集下载

2024版《合并同类项》PPT课件

2024版《合并同类项》PPT课件

PPT课件•合并同类项基本概念•一元一次方程中合并同类项•多元一次方程组中合并同类项•分式方程中合并同类项目•拓展应用:在其他数学问题中运用合并同类项•总结回顾与课堂互动录合并同类项基本概念01CATALOGUE同类项定义及性质同类项定义所含字母相同,并且相同字母的指数也相同的项叫做同类项。

同类项性质同类项的系数可以不同,但所含字母和字母的指数必须相同。

写出合并后的结果将合并后的系数与字母部分相乘,得到最终的多项式。

将提取出的公因子与剩余部分相加,得到合并后的系数。

提取公因子将同类项的系数提取出来,作为公因子。

合并同类项原则把同类项的系数相加,所得结果作为系数,字母和字母的指数不变。

识别同类项根据同类项的定义,识别出多项式中的同类项。

合并同类项原则与方法示例解析与练习示例解析通过具体例子展示如何识别同类项、提取公因子、合并系数以及写出合并后的结果。

练习提供多个练习题,让学生实践并掌握合并同类项的方法。

注意在扩展内容时,需要确保内容的准确性和专业性,同时尽量丰富内容,以便更好地帮助学生理解和掌握合并同类项的概念和方法。

一元一次方程中合并同类项02CATALOGUE1 2 3只含有一个未知数,且未知数的最高次数为1的整式方程。

一元一次方程定义ax + b = 0(a ≠ 0)。

一元一次方程标准形式去分母、去括号、移项、合并同类项、系数化为1。

解一元一次方程的基本步骤一元一次方程概述03合并同类项在解一元一次方程中的作用简化方程,降低求解难度。

01合并同类项定义把多项式中的同类项合并成一项,叫做合并同类项。

02合并同类项法则同类项的系数相加,所得的结果作为系数,字母和字母的指数不变。

合并同类项在解一元一次方程中应用通过具体的一元一次方程实例,展示如何运用合并同类项的方法解方程。

示例解析提供若干道一元一次方程练习题,让学生运用所学知识进行求解。

练习题目在解一元一次方程时,需要注意移项和合并同类项的步骤,确保计算正确。

3.2.1解一元一次方程——合并同类项

3.2.1解一元一次方程——合并同类项

根据问题中的相等关系: 前年购买量+去年购买量+今年购买量=140台
列得方程
x + 2x +4x = 140
x 2x 4x 140
合并同类项
7 x 140 x 20
根据等式的性质2
分析:解方程,就是把
系数化为1 方程变形,变为 x = a
(a为常数)的形式.
想一想:上面解方程中“合并同类项” 起了什么作用?
1 1 x x x 15 2 4
考考你
一个数,它的三分之二,它的一半,它的 七分之一,它的全部,加起来总共是33。 求这个数。
解:设这个数是x,则:
2 1 1 x x x x 33 3 2 7
1. 你今天学习的解方程有哪些步骤?
合并同类项 系数化为1 (等式性质2) 2:如何列方程?分哪些步骤?
一.设未知数: 二.分析题意找出等量关系: 三.根据等量关系列方程:
作业:
•P93 习题3.2第1题
点此播放教学视频
点此播放教学视频
在一卷公元前1600年左右遗留下来的古 埃及草卷中, 记载着一些数学问题.其中 一个翻译过来就是“啊哈,它的全部,它 的七分之一, 其和等于19”.你能求出问 题中的“它”吗?请你能根据题意列出 方程. 1 设 :“它”为x,列出方程: x+ x =19 7
请欣赏一首诗: 太阳下山晚霞红,我把鸭子赶回笼; 一半在外闹哄哄,一半的一半进笼中; 剩下十五围着我,共有多少请算清。 你能列出方程来解决这个问题吗?
(2)-3x 7 x
解:(1)3x 5x (3 5) x 2 x
问题1:
某校三年共购买计算机140台,去年购买 数量是前年的2倍,今年购买数量又是去年的2 倍.前年这个学校购买了多少台计算机?

3.2.1合并同类项解一元一次方程(教案)

3.2.1合并同类项解一元一次方程(教案)
(1)符号的变换:学生在移项时容易混淆正负号的变换,这是本节课的一个难点。
举例:在方程2x + 3 = 7中,将3移项到等号右边时,需要变为-3。
(2)合并同类项时系数的处理:学生在合并同类项时,可能会忽略系数相加减的规则,这是一个难点。
举例:对于方程3x + 4x = 20,学生需注意系数3和4相加得7。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了合并同类项解一元一次方程的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对这一知识点的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
(3)一元一次方程的应用:将实际问题转化为数学模型,并求解,是学生容易感到困惑的地方。
举例:当遇到“小明买了3本书和4本书一共花了20元”这样的问题时,学生需要学会将其转化为方程3x + 4x = 20。
(4)解决含有未知数系数的方程:对于系数不同的方程,学生需要学会通过运算将系数变为相同,然后进行合并同类项。
3.培养学生的数学建模能力:让学生在实际问题中运用一元一次方程,学会将现实问题转化为数学模型,从而增强数学应用意识。
4.培养学生的合作交流能力:通过小组讨论和课堂互动,引导学生分享解题思路,提高合作交流能力,培养团队精神。
三、教学难点与重点
1.教学重点
(1)合并同类项法则的应用:重点在于让学生掌握合并同类项的法则,并能够熟练应用于简化方程,为解一元一次方程打下基础。
具体内容包括以下方程类型的解题方法:
(1)x + a = b

一元一次方程(合并同类项移项)

一元一次方程(合并同类项移项)

一元一次方程(合并同类项、移项)知识梳理:一、方程的有关概念1 等式(1)等式的含义:用等号(=)表示相等关系的式子。

如:a+b=c注意:不能将等式和代数式混淆,代数式不含等号。

(2)等式的性质:*①性质1: 等式两边同时加上或减去同一个数或同一个代数式,所得结果仍是相等的。

即*②性质2:等式两边同时乘以同一个数(或除以同一个不为0的数),所得的结果仍是等式。

即③性质3:对称性----等式左右两边互换,所得结果仍是等式,即如果a=b,那么b=a*④性质4:传递性----如果a=b,b=c,那么a=c(等量代换)二、方程的概念含有未知数的等式叫等式。

含有两层含义:一是:方程是一个等式;二是方程中必有一个未知数,两者缺一不可。

3.方程的解使方程左右两边相等的未知数的值是方程的解。

只含有一个未知数的方程的解也叫方程的根。

4.解方程求方程的过程5. 同解方程的概念如果两个方程的解相同,那这两个方程叫同解方程如:x+2=5 和2x=6二、一元一次方程及其解法1.含义:只有一个未知数,并且未知数的次数是1系数不为0的整式方程,其标准形式是:ax+b=0 (a、b、为已知数,且a≠0)2. 移项法则方程中任何一项,都可以在改变符号后,从方程的一边移向方程另一边,这种变形叫移项。

注意:①所移动的是方程中的项,并且是从方程一边移到另一边,而不是在这个方程的一边变换两项的位置。

②移项时要变号。

如:-1+3x=-x+7→3x-1=7-x.这种移动是顺序变化,像这种改变位置的项就不能改变符号.合并:只有系数不同的两个式子才可以合并.合并的依据是分配律.合并时,把系数相加,字母和字母的指数不变.如:2x+x+4x+2a=(2+1+4)x+2a=7x+2a.例1】通过移项,解下列方程1)3x+1=2x 2)-7x+1=-8x+3解读移项的目的是把含未知数的项与不含未知数的项分别列于方程的两边.解(1)移项,得3x-2x=-1;合并,得x=-1;(2)移项,得-7x+8x=3-1;合并,得x=2;点拨移项时最易遇到的思维障碍是移什么项?移哪一项?从哪一边移到哪一边?往往会一筹莫展.解决这个问题很简单,有一定规律:不论左移还是右移,只要将未知项移到方程一边,常数项移到方程另一边就不会错,否则无功而返.常用的技巧是:把含未知数的项统一移到左边,不含未知数的项统一移到右边;但要注意的是,移项一定要改变符号2. 一元一次方程的基本变形与它的解法:2.1方程的变形:(1)方程两边都加上或减去同一个数或整式,方程的解不变;(2)方程的两边乘以或除以同一个不等于0的数,方程的解不变。

合并同类项(5种题型)-2023年新七年级数学核心知识点与常见题型(北师大版)(解析版)

合并同类项(5种题型)-2023年新七年级数学核心知识点与常见题型(北师大版)(解析版)

合并同类项(5种题型)【知识梳理】一、同类项定义:所含字母相同,并且相同字母的指数也分别相等的项叫做同类项.几个常数项也是同类项. 要点诠释:(1)判断是否同类项的两个条件:①所含字母相同;②相同字母的指数分别相等,同时具备这两个条件的项是同类项,缺一不可.(2)同类项与系数无关,与字母的排列顺序无关. (3)一个项的同类项有无数个,其本身也是它的同类项. 二、合并同类项1. 概念:把多项式中的同类项合并成一项,叫做合并同类项.2.法则:合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变. 要点诠释:合并同类项的根据是乘法分配律的逆运用,运用时应注意: (1)不是同类项的不能合并,无同类项的项不能遗漏,在每步运算中都含有. (2) 合并同类项,只把系数相加减,字母、指数不作运算.【考点剖析】题型一、同类项的概念例1.下列各组单项式中属于同类项的是: ①22m n 和22a b ;②312x y −和3yx ;③6xyz 和6xy ;④20.2x y 和20.2xy ; ⑤xy 和yx −;⑥12−和2.【答案】②⑤⑥【解析】①③两个单项式所含字母不相同;④相同字母的次数不相同.【总结】本题主要考查同类项的概念:所含字母相同,并且相同字母的指数也分别相同的单项式,注意同类项与字母的顺序无关.【变式1】指出下列各题中的两项是不是同类项,不是同类项的说明理由.(1)233x y 与32y x −; (2)22x yz 与22xyz ; (3)5x 与xy ; (4)5−与8【答案与解析】本题应用同类项的概念与识别进行判断:解:(1)(4)是同类项;(2)不是同类项,因为22x yz 与22xyz 所含字母,x z 的指数不相等; (3)不是同类项,因为5x 与xy 所含字母不相同.【总结升华】辨别同类项要把准“两相同,两无关”,“两相同”是指:①所含字母相同;②相同字母的指数相同. “两无关”是指:①与系数及系数的指数无关;②与字母的排列顺序无关. 【变式2】下列每组数中,是同类项的是( ) . ①2x 2y 3与x 3y 2 ②-x 2yz 与-x 2y ③10mn 与23mn ④(-a )5与(-3)5 ⑤-3x 2y 与0.5yx 2 ⑥-125与12A .①②③B .①③④⑥C .③⑤⑥D .只有⑥ 【答案】C【变式3】判别下列各题中的两个项是不是同类项: (1)-4a 2b 3与5b 3a 2;(2)2213x y z −与2213xy z −;(3)-8和0;(4)-6a 2b 3c 与8ca 2. 【答案与解析】 (1)-4a2b3与5b3a2是同类项;(2)不是同类项;(3)-8和0都是常数,是同类项;(4)-6a2c 与8ca2是同类项.【总结升华】辨别同类项要把准“两相同,两无关”,“两相同”是指:①所含字母相同;②相同字母的指数相同;“两无关”是指:①与系数及系数的指数无关;②与字母的排列顺序无关.此外注意常数项都是同类项.例2.单项式449m x y −与223n x y 是同类项,求23m n +的值. 【答案】7【解析】由题意,可得:4242m n =⎧⎨=⎩,解得:122m n ⎧=⎪⎨⎪=⎩,所以12323272m n +=⨯+⨯=. 【总结】本题主要考查同类项的概念. 【变式1】315212135m n m n x y x y −−+−若与是同类项,求出m, n 的值. 【答案与解析】因为 315212135m n m n x y x y −−+−与是同类项,所以 315,21 1.m n −=⎧⎨−=⎩ , 解得:2,1.m n =⎧⎨=⎩所以2,1m n ==【总结升华】概念的灵活运用.【变式2】如果单项式﹣x a+1y 3与x 2y b 是同类项,那么a 、b 的值分别为( ) A. a=2,b=3 B. a=1,b=2 C. a=1,b=3 D. a=2,b=2 【答案】C解:根据题意得:a+1=2,b=3, 则a=1.【变式3】单项式313a b a b x y +−−与23x y 是同类项,求a b −的值.【答案】32【解析】由题意,可得:231a b a b +=⎧⎨−=⎩,解得:7414a b ⎧=⎪⎪⎨⎪=⎪⎩,所以713442a b −=−=. 【总结】本题主要考查同类项的概念.题型二、合并同类项例3.合并下列各式中的同类项:(1)-2x 2-8y 2+4y 2-5x 2-5x+5x -6xy (2)3x 2y -4xy 2-3+5x 2y+2xy 2+5 【答案与解析】解: (1)-2x2-8y2+4y2-5x2-5x+5x-6xy=(-2-5)x2+(-8+4)y2+(-5+5)x-6xy =-7x2-4y2-6xy (2)3x2y-4xy2-3+5x2y+2xy2+5=(3+5)x2y+(-4+2)xy2+(-3+5)=8x2y-2xy2+2【总结升华】(1)所有的常数项都是同类项,合并时把它们结合在一起,运用有理数的运算法则进行合并;(2)在进行合并同类项时,可按照如下步骤进行:第一步:准确地找出多项式中的同类项(开始阶段可以用不同的符号标注),没有同类项的项每一步保留该项;第二步:利用乘法分配律的逆运用,把同类项的系数相加,结果用括号括起来,字母和字母的指数保持不变;第三步:写出合并后的结果. 【变式1】合并同类项: (1)22213224ab b a ab −+ (2)22222344x xy y xy y x −++−−; 解:2222213133(1).2(2)24244ab b a ab ab ab −+=−+=−;2222222222(2).2344(2)(4)(34)3x xy y xy y x x x xy xy y y x xy y −++−−=−+−++−=+−说明:多项式的同类项可以运用交换律、结合律、分配律进行合并. 注意: 在合并同类项时,应注意:(1)如果多项式中项数较多、较复杂时,可在同类项上标注记号,便于认清同类项,做到不遗漏、不重复. (2)所有常数项都是同类项,都可进行合并. 【变式2】合并下列同类项: (1)2215232x x x x −+−+−; (2)333332m n m n −−+;(3)2141732733m m a a a a −−+−+−.【答案】(1)211232x x −−+;(2)332m n −+;(3)25037a a m −−.【解析】(1)原式222111(3)(2)(5)2322x x x x x x =−+−−++=−−+; (2)原式333333(3)22m m n n m n =−+−+=+()-;(3)原式22411503(2)(7)33377a a a a m m a a m =+−+−+−−=−−.【总结】本题主要考查合并同类项的概念,合并时只需要将同类项的系数相加减即可. 【变式3】合并下列同类项 (1)2222210.120.150.12x y x y y yx +−+; (2)122121342n n n n n x y x y y x y x +++−−−;(3)2220.86 3.25a b ab a b ab a b −−++.【答案】(1)22220.620.150.1x y x y y x +−; (2)4n n x y −; (3)21.4a b ab −−. 【解析】(1)原式2222222221(0.12)0.150.10.620.150.12x y yx x y y x x y x y xy =++−=+−;(2)原式121212(32)44n n n n n n nx y x y x y x y x y +++=−−−=−;(3)原式222(0.8 3.2)(65) 1.4a b a b ab ab a b ab =−++−+=−−. 【变式4】合并同类项:()221324325x x x x −++−−;()2222265256a b ab b a −++−; ()2223542625yx xy xy x y xy −+−+++;()()()()()2323431215141x x x x −−−−−+− (注:将“1x −”或“1x −”看作整体)【思路点拨】同类项中,所含“字母”,可以表示字母,也可以表示多项式,如(4).【答案与解析】 (1)()()()22232234511x x x x x x =−+−++−=+−=+−原式(2)()()2222665522a a b b ab ab−+−++=原式=(3)原式=()()222562245x y x y xy xy xy −++−+++2245x y xy =++(4)()()()()()()223323315121412161x x x x x x ⎡⎤⎡⎤=−−−+−−−−=−−−−⎣⎦⎣⎦原式【总结升华】无同类项的项不能遗漏,在每步运算中照抄. 【变式5】化简:(1)32313125433xy x y xy x −−−+ (2) (a-2b)2+(2b-a)-2(2b-a)2+4(a-2b) 【答案】原式3323211231123()()53345334xy xy x x y xy x y =−+−−=−+−−3221.1512xy x y =−−−(2) (a-2b)2+(2b-a)-2(2b-a)2+4(a-2b) =(a-2b)2-2(a-2b)2+4(a-2b)-(a-2b) =(1-2)(a-2b)2+(4-1)(a-2b) =-(a-2b)2+3(a-2b). 【变式6】已知35414527m n ab pa b a b ++−=−,求m+n -p 的值.【思路点拨】两个单项式的和一般情形下为多项式.而条件给出的结果中仍是单项式,这就意味着352m a b+与41n pa b+是同类项.因此,可以利用同类项的定义解题.【答案与解析】解:依题意,得3+m =4,n+1=5,2-p =-7 解这三个方程得:m =1,n =4,p =9, ∴ m+n-p =1+4-9=-4.【总结升华】要善于利用题目中的隐含条件.题型三、化简求值例4.求代数式的值:2222345263x xy y xy y x −−+++−−,其中1,22x y ==.22222222(4)(32)6(53)236211113,22()3226222222x xy xy y y x x xy y x x y =+−++−+−+−=+−−+===⨯+⨯⨯−−⨯+=−解:原式当时,上式【变式1】当2,1p q ==时,分别求出下列各式的值. (1)221()2()()3()3p q p q q p p q −+−−−−−; (2)2283569p q q p −+−−【答案与解析】(1)把()p q −当作一个整体,先化简再求值: 解:22221()2()()3()31(1)()(23)()32()()3p q p q q p p q p q p q p q p q −+−−−−−=−−+−−=−−−−又 211p q −=−=所以,原式=22222()()111333p q p q −−−−=−⨯−=− (2解:2283569p q q p −+−− 2(86)(35)9p q =−+−+− 2229p q =+−当p =2,q =1时,原式=22229222191p q +−=⨯+⨯−=. 【总结升华】此类先化简后求值的题通常的步骤为:先合并同类项,再代入数值求出整式的值.【变式2】先化简,再求值:(1)2323381231x x x x x −+−−+,其中2x =;(2)222242923x xy y x xy y ++−−+,其中2x =,1y =.【答案】解: (1)原式322981x x x =−−−+,当2x =时,原式=32229282167−⨯−⨯−⨯+=−.(2)原式22210x xy y =−+,当2x =,1y =时,原式=22222110116⨯−⨯+⨯=.【变式3】化简求值:(1)当1,2a b ==−时,求多项式3232399111552424ab a b ab a b ab a b −−+−−−的值. (2)若243(32)0a b b +++=,求多项式222(23)3(23)8(23)7(23)a b a b a b a b +−+++−+的值. 【答案与解析】(1)先合并同类项,再代入求值:原式=32391911()(5)52244a b ab a b −++−−−−=32345a b a b −−− 将1,2a b ==−代入,得:3233234541(2)1(2)519a b a b −−−=−⨯⨯−−⨯−−=− (2)把(23)a b +当作一个整体,先化简再求值:原式=22(28)(23)(37)(23)10(23)10(23)a b a b a b a b +++−−+=+−+ 由243(32)0a b b +++=可得:430,320a b b +=+=两式相加可得:462a b +=−,所以有231a b +=− 代入可得:原式=210(1)10(1)20⨯−−⨯−=【总结升华】此类先化简后求值的题通常的步骤为:先合并同类项,再代入数值求出整式的值. 【变式4】3422323323622已知与是同类项,求代数式的值a b x y xy b a b b a b +−−−−+.【答案】()()()3422323223323323231,2 4.2, 6.362232624,2,66426228.a b x y xy a b a b b a b b a b b b a b a b b a b a b +−−∴+=−=∴=−=−−+=−+−+=−∴=−==−⨯−⨯=解:与是同类项,当时,原式题型四、“无关”与“不含”型问题例5.李华老师给学生出了一道题:当x =0.16,y =-0.2时,求6x 3-2x 3y -4x 3+2x 3y -2x 3+15的值.题目出完后,小明说:“老师给的条件x =0.16,y =-0.2是多余的”.王光说:“不给这两个条件,就不能求出结果,所以不是多余的.”你认为他们谁说的有道理?为什么?【思路点拨】要判断谁说的有道理,可以先合并同类项,如果最后的结果是个常数,则小明说得有道理,否则,王光说得有道理. 【答案与解析】解:333336242215x x y x x y x −−+−+=(6-4-2)x3+(-2+2)x3y+15=15 通过合并可知,合并后的结果为常数,与x 、y 的值无关,所以小明说得有道理.【总结升华】本题在化简时主要用的是合并同类项的方法,在合并同类项时,要明白:同类项的概念是所含字母相同,相同字母的指数也相同的项不是同类项的一定不能合并.【变式1】如果关于x 的多项式222542x x kx x −++−中没有2x 项,则k = .答案:2k=−解析:先合并含2x 的项:2222225422542(2)542x x kx x x kx x x k x x x −++−=+−+−=+−+−,如没有2x 项,即2x 项的系数为0,即20k +=,所以2k =−.【变式2】若关于x 的多项式-2x 2+mx+nx 2+5x-1的值与x 的值无关,求(x-m)2+n 的最小值. 【答案】 -2x2+mx+nx2+5x-1=nx2-2x2+mx+5x-1=(n-2)x2+(m+5)x-1 ∵ 此多项式的值与x ∴ 20,50.n m −=⎧⎨+=⎩ 解得: 25n m =⎧⎨=−⎩当n=2且m=-5时, (x-m)2+n=[x-(-5)]2+2≥0+2=2. ∵(x-m)2≥0,∴当且仅当x=m=-5时,(x-m)2=0,使(x-m)2+n 有最小值为2. 题型五、综合应用例6.若多项式-2+8x+(b-1)x 2+ax 3与多项式2x 3-7x 2-2(c+1)x+3d+7恒等,求ab-cd.【答案与解析】 法一:由已知ax3+(b-1)x2+8x-2≡2x3-7x2-2(c+1)x+(3d+7)∴ 2,17,82(1),237.a b c d =⎧⎪−=−⎪⎨=−+⎪⎪−=+⎩ 解得:2,6,5,3.a b c d =⎧⎪=−⎪⎨=−⎪⎪=−⎩∴ab-cd=2×(-6)-(-5)×(-3)=-12-15=-27. 法二:说明:此题的另一个解法为:由已知(a-2)x3+(b+6)x2+[2(c+1)+8]x-(3d+9)≡0. 因为无论x 取何值时,此多项式的值恒为零.所以它的各项系数皆为零,即从而解得解得:【总结升华】若等式两边恒等,则说明等号两边对应项系数相等;若某式恒为0,则说明各项系数均为0;若某式不含某项,则说明该项的系数为0.【变式】若关于,x y 的多项式:2223332m m m m x y mx y nx y x y m n −−−−++−++,化简后是四次三项式,求m+n的值.【答案】分别计算出各项的次数,找出该多项式的最高此项:因为22m x y −的次数是m ,2m mx y −的次数为1m −,33m nx y −的次数为m ,32m x y −−的次数为2m −, 又因为是三项式 ,所以前四项必有两项为同类项,显然2233m m x y nx y −−与是同类项,且合并后为0, 所以有5,10m n =+= ,5(1)4m n +=+−=.【过关检测】一.选择题(共8小题)1.(2022秋•长安区期末)已知单项式3x 2m ﹣1y 与﹣x 3y n﹣2是同类项,则m ﹣2n 的值为( )A .2B .﹣4C .﹣2D .﹣1【分析】直接利用同类项的定义得出关于m ,n 的值,再代入计算即可.20,60,2(1)80,(39)0.a b c d −=⎧⎪+=⎪⎨++=⎪⎪−+=⎩2,6,5,3.a b c d =⎧⎪=−⎪⎨=−⎪⎪=−⎩【解答】解:∵单项式3x2m﹣1y与﹣x3yn﹣2是同类项,∴2m﹣1=3,n﹣2=1,解得m=2,n=3,∴m﹣2n=2﹣2×3=﹣4.故选:B.【点评】本题考查了同类项,所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.2.(2022秋•昆都仑区校级期末)下列说法中正确的是()A.单项式2πx的次数和系数都是2B.单项式m2n和n2m是同类项C.多项式2x2y+3xy﹣4是三次三项式D.多项式﹣x2+2x﹣1的项是x2,2x和1【分析】分别根据同类项、单项式与多项式的概念判断即可.【解答】解:A.单项式2πx的次数1,系数是2π,故本选项不合题意;B.单项式m2n和n2m所含字母相同,但同字母的指数不相同,不是同类项,故本选项不合题意;C.多项式2x2y+3xy﹣4是三次三项式,说法正确,故本选项符合题意;D.多项式﹣x2+2x﹣1的项是﹣x2,2x和﹣1,故本选项不合题意.故选:C.【点评】此题考查的是同类项、单项式与多项式,掌握相关定义是解答本题的关键.3.(2023春•南安市期中)若3a x12与4a3b y+2是同类项,则x,y的值分别是()A.x=4,y=0B.x=4,y=2C.x=3,y=1D.x=1,y=3【分析】根据同类项的定义即可求出答案.【解答】解:∵3ax﹣1b2与4a3by+2是同类项,∴x﹣1=3,y+2=2,解得x=4,y=0.故选:A.【点评】本题考查同类项.解题的关键是熟练运用同类项的定义.同类项的定义:所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.4.(2022秋•河池期末)若2x2y+3x m y=5x2y,则m的值是()A.3B.2C.1D.0【分析】根据同类项的定义及合并同类项法则,即可求出m的值.【解答】解:∵2x2y+3xmy=5x2y,∴2x2y与3xmy是同类项,∴m=2,故选:B.【点评】本题考查了合并同类项,掌握同类项的定义是解决问题的关键.5.(2022秋•宣城期末)已知2a m b2和﹣a5b n是同类项,则m+n的值为()A.2B.3C.5D.7【分析】根据同类项的意义先求出m,n的值,然后再代入式子进行计算即可.【解答】解:∵2amb2和﹣a5bn是同类项,∴m=5,n=2,∴m+n=5+2=7,故选:D.【点评】本题考查了同类项,熟练掌握同类项的意义是解题的关键.6.(2022秋•曹县期末)已知单项式﹣a2m b2与单项式3a4b3+n的和仍然是一个单项式,则n m的值是()A.﹣1B.1C.2D.3【分析】利用同类项的定义可得:2m=4,3+n=2,从而可得m=2,n=﹣1,然后代入式子中进行计算即可解答.【解答】解:∵单项式﹣a2mb2与单项式3a4b3+n的和仍然是一个单项式,∴2m=4,3+n=2,∴m=2,n=﹣1,∴nm=(﹣1)2=1,故选:B.【点评】本题考查了合并同类项,单项式,熟练掌握同类项的定义是解题的关键.7.(2022秋•曹县期末)下列计算正确的是()A.3a+4b=7ab B.﹣3xy2﹣2y2x=﹣5xy2C.5ab﹣ab=4D.2a2+a2=3a4【分析】利用合并同类项的法则,进行计算逐一判断即可解答.【解答】解:A、3a与4b不能合并,故A不符合题意;B、﹣3xy2﹣2y2x=﹣5xy2,故B符合题意;C、5ab﹣ab=4ab,故C不符合题意;D、2a2+a2=3a2,故D不符合题意;故选:B.【点评】本题考查了合并同类项,熟练掌握合并同类项的法则是解题的关键.8.(2023春•曲阜市期中)若﹣3x m﹣n y2与x4y5m+n的和仍是单项式,则有()A.B.C.D.【分析】根据两式的和仍是单项式,得到两式为同类项,利用同类项定义列出方程组,求出方程组的解即可得到m与n的值.【解答】解:﹣3xm﹣ny2与x4y5m+n的和仍是单项式,∴,解得.故选:A.【点评】此题考查了解二元一次方程组,熟练掌握运算法则是解本题的关键.二.填空题(共10小题)9.(2023春•鲤城区校级期中)如果3x2n﹣1y m与﹣5x m y3是同类项,则m+n的值是.【分析】根据同类项的概念求解.【解答】解:∵3x2n﹣1ym与﹣是同类项,∴2n﹣1=m,m=3,∴m=3,n=2,则m+n=3+2=5.故答案为:5.【点评】本题考查了同类项的知识,解答本题的关键是掌握同类项定义中的两个“相同”:相同字母的指数相同.10.(2022秋•马尾区期末)﹣3ab2与是同类项.【分析】根据同类项的定义,所含字母相同且相同字母的指数也相同的项是同类项,可得答案.【解答】解:﹣3ab2与ab2是同类项.故答案为:ab2(答案不唯一).【点评】此题主要考查了同类项定义,关键是注意同类项定义中的三个“相同”:(1)所含字母相同;(2)相同字母的指数相同.11.(2022秋•鼓楼区校级期末)若单项式与2x3y n的和仍是单项式,则m+n=.【分析】根据和是单项式,可得它们是同类项,在根据同类项,可得m、n的值,根据有理数的加法法则,可得答案.【解答】解:∵单项式与2x3yn的和仍是单项式,∴单项式与2x3yn是同类项,∴m=3,n=2,m+n=3+2=5,故答案为:5.【点评】本题考查了合并同类项,掌握同类项的定义是解答本题的关键.12.(2023春•顺义区期末)若单项式﹣5a2b m﹣1与2a2b是同类项,则m=.【分析】直接利用同类项的定义分析得出答案.所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.【解答】解:因为单项式﹣5a2bm﹣1与2a2b是同类项,所以m﹣1=1,解得m=2.故答案为:2.13.(2023•株洲)计算:3a2﹣2a2=.【分析】利用合并同类项的法则运算即可.【解答】解:3a2﹣2a2=a2.故答案为:a2.【点评】本题主要考查了合并同类项,正确应用合并同类项的法则是解题的关键.14.(2022秋•金牛区期末)若关于x、y的多项式(m﹣1)x2﹣3xy+nxy+2x2+2y+x中不含二次项,则m+n =.【分析】直接利用多项式不含二次项,得出关于m,n的等式,求出答案.【解答】解:∵(m﹣1)x2﹣3xy+nxy+2x2+2y+x=(m﹣1+2)x2+(n﹣3)xy+2y+x,关于关于x、y的多项式(m﹣1)x2﹣3xy+nxy+2x2+2y+x不含二次项,∴m﹣1+2=0,n﹣3=0,解得m=﹣1,n=3,故答案为:2.【点评】此题主要考查了合并同类项、多项式,正确得出m,n的值是解题关键.15.(2022秋•杭州期末)合并同类项2x﹣7y﹣5x+11y﹣1=.【分析】根据合并同类项法则计算即可.【解答】解:2x﹣7y﹣5x+11y﹣1=(2x﹣5x)+(11y﹣7y)﹣1=﹣3x+4y﹣1.故答案为:﹣3x+4y﹣1.【点评】本题考查了合并同类项,掌握合并同类项法则是解答本题的关键.16.(2022秋•东港区校级期末)当k=时,多项式x2+(k﹣1)xy﹣3y3﹣4xy﹣6中不含xy项.【分析】先合并同类项,然后使xy的项的系数为0,即可得出答案.【解答】解:x2+(k﹣1)xy﹣3y2﹣4xy﹣6=x2+(k﹣5)xy﹣3y2﹣6,∵多项式不含xy项,∴k﹣5=0,解得:k=5,故答案为:5.【点评】本题考查了合并同类项,属于基础题,解答本题的关键是掌握合并同类项的法则.17.(2022秋•邗江区期末)若﹣4x5y+4x2n+1y=0,则常数n的值为.【分析】根据同类项“相同字母的指数相同”列式求解即可.【解答】解:根据题意可知,﹣与4x2n+1y是同类项,∴2n+1=5,解得n=2.故答案为:2.【点评】本题主要考查了合并同类项的知识,熟练掌握同类项的定义是解题关键.18.(2022秋•射洪市期末)已知关于x、y的多项式(3a+2)x2+(9a+10b)xy﹣x+2y+7中不含二次项,则6a﹣15b=.【分析】根据多项式不含二次项,确定出a与b的值,代入原式计算即可求出值.【解答】解:∵关于x、y的多项式(3a+2)x2+(9a+10b)xy﹣x+2y+7中不含二次项,∴3a+2=0,9a+10b=0,解得:a=﹣,b=,则6a﹣15b=6×(﹣)﹣15×=﹣4﹣9=﹣13.【点评】此题考查了合并同类项,多项式,熟练掌握各自的性质是解本题的关键.三.解答题(共10小题)19.(2022秋•洛川县校级期末)已知单项式2x2m y7与单项式5x6y n+8是同类项,求m2+2n的值.【分析】利用同类项的定义求出m与n的值即可,再代入所求式子计算即可.定义:所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.【解答】解:∵单项式2x2my7与单项式5x6yn+8是同类项,∴2m=6,n+8=7,解得m=3,n=﹣1,∴m2+2n=9﹣2=7.【点评】此题考查了同类项,以及代数式求值,熟练掌握同类项的定义求出m与n的值是解本题的关键.20.(2021秋•大荔县期末)找出下列式子中的同类项,并求这些同类项的和:ab,3xy2,,ab+1,6x2y,﹣5x2y.【分析】所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项,结合选项即可作出判断,然后进行合并即可.【解答】解:ab和是同类项,6x2y和﹣5x2y是同类项;,6x2y+(﹣5x2y)=x2y.【点评】本题考查同类项的定义,所含字母相同且相同字母的指数也相同的项是同类项.注意同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同.21.(2022秋•榆阳区校级期末)已知a,b是有理数,关于x、y的多项式x3y a﹣bx3+6x2y2+x的次数为5,且这个多项式中不含x3项,请你写出这个多项式.【分析】根据多项式的定义解答即可.【解答】解:∵关于x、y的多项式x3ya﹣bx3+6x2y2+x的次数为5,且这个多项式中不含x3项,∴,解得,∴这个多项式为:x3y2+6x2y2+x.【点评】本题考查了多项式以及合并同类项,解题的关键是掌握与整式相关的概念.22.(2022秋•北京期末)阅读材料:我们知道,4x﹣2x+x=(4﹣2+1)x=3x,类似地,我们把(a+b)看成一个整体,则4(a+b)﹣2(a+b)+(a+b)=(4﹣2+1)(a+b)=3(a+b).“整体思想”是中学数学解题中的一种重要的思想方法,它在多项式的化简与求值中应用极为广泛.尝试应用:(1)把(a﹣b)2看成一个整体,合并3(a﹣b)2﹣6(a﹣b)2+2(a﹣b)2的结果是;(2)已知x2﹣2y=4,求2﹣3x2+6y的值.【分析】(1)把(a﹣b)2看成一个整体,运用合并同类项法则进行计算即可;(2)把3x2﹣6y﹣21变形,得到3(x2﹣2y)﹣21,再根据整体代入法进行计算即可.【解答】解:(1)把(a﹣b)2看成一个整体,则3(a﹣b)2﹣6(a﹣b)2+2(a﹣b)2=(3﹣6+2)(a﹣b)2=﹣(a﹣b)2;故答案为:﹣(a﹣b)2;(2)∵x2﹣2y=4,∴原式=﹣3(x2﹣2y)+2=﹣12+2=﹣10.【点评】本题主要考查了整式的加减,解决问题的关键是运用整体思想;给出整式中字母的值,求整式的值的问题,一般要先化简,再把给定字母的值代入计算,得出整式的值,不能把数值直接代入整式中计算.23.(2022秋•吉林期中)已知多项式mx4+(m﹣2)x3+(n+1)x2﹣3x+n不含x2和x3的项,试写出这个多项式,再求当x=﹣1时该多项式的值.【分析】根据mx4+(m﹣2)x3+(n+1)x2﹣3x+n不含x2和x3的项可得出二次项和三次项的系数为0,从而求出m和n的值,再把x=﹣1【解答】解:∵多项式mx4+(m﹣2)x3+(n+1)x2﹣3x+n不含x2和x3的项,∴m﹣2=0,n+1=0,∴m=2,n=﹣1,∴多项式为2x4﹣3x﹣,当x=﹣1时,多项式为2×(﹣1)4﹣3×(﹣1)﹣1=2+3﹣1=4.【点评】本题主要考查多项式求值问题,关键是要能确定m和n的值.24.(2022秋•深圳校级期中)阅读材料:在合并同类项中,5a﹣3a+a=(5﹣3+1)a=3a,类似地,我们把(x+y)看成一个整体,则5(x+y)﹣3(x+y)+(x+y)=(5﹣3+1)(x+y)=3(x+y).“整体思想”是中学教学解题中的一种重要的思想,它在多项式的化简与求值中应用极为广泛.尝试应用:(1)把(x﹣y)2看成一个整体,合并3(x﹣y)2﹣6(x﹣y)2+2(x﹣y)2的结果是.(2)已知a2﹣2b=1,求3﹣2a2+4b的值;拓展探索:(3)已知a﹣2b=1,2b﹣c=﹣1,c﹣d=2,求a﹣6b+5c﹣3d的值.【分析】(1)把(x﹣y2)看作一个整体,合并即可得到结果;(2)原式后两项提取2变形后,将已知等式代入计算即可求出值;(3)原式整理后,将已知等式代入计算即可求出值.【解答】解:(1)把(x﹣y)2看成一个整体,合并3(x﹣y)2﹣6(x﹣y)2+2(x﹣y)2的结果是﹣(x﹣y)2,故答案为:﹣(x﹣y)2;(2)∵a2﹣2b=1,∴原式=3﹣2(a2﹣2b)=3﹣2=1;(3)∵a﹣2b=1,2b﹣c=﹣1,c﹣d=2,∴原式=a﹣2b﹣4b+2c+3c﹣3d=(a﹣2b)﹣2(2b﹣c)+3(c﹣d)=1+2+6=9.【点评】此题考查了合并同类项,代数式求值,熟练掌握运算法则是解本题的关键.25.(2022秋•顺义区期末)已知3x m y3与﹣2y n x2是同类项,求代数式m﹣2n﹣mn的值.【分析】根据同类项的定义:所含字母相同,并且相同字母的指数也相同即可求解.【解答】解:因为3xmy3与﹣2ynx2是同类项,所以m=2,n=3,所以m﹣2n﹣mn=2﹣6﹣6=﹣【点评】本题主要考查了同类项,掌握同类项的定义是解题的关键.26.(2021秋•韩城市期中)已知单项式﹣2x2m y7与单项式﹣5x6y n+8是同类项,求﹣m2﹣n2021的值.【分析】根据同类项:所含字母相同,并且相同字母的指数也相同,可得出m、n的值,代入计算即可得出答案.【解答】解:因为单项式﹣2x2my7与单项式﹣5x6yn+8是同类项,所以2m=6,n+8=7,所以m=3,n=﹣1,所以﹣m2﹣n2021=﹣32﹣(﹣1)2021=﹣8.【点评】本题考查了同类项的知识,属于基础题,掌握同类项中的两个相同是解答本题的关键.27.(2021秋•米脂县期末)已知单项式﹣2a2b与是同类项,多项式是五次三项式,求m﹣n的值.【分析】根据同类项的概念及多项式的有关概念求解.【解答】解:∵多项式是五次三项式,∴2+n=5,∴n=3,∵单项式﹣2a2b与是同类项,∴m=2.∴m﹣n=2﹣3=﹣1.【点评】本题考查了同类项的知识及多项式的有关概念,解答本题的关键是掌握同类项定义中的两个“相同”:相同字母的指数相同.28.(2022秋•大荔县期末)已知关于a,b的单项式na x﹣1b4与6a2b y+3和为0,请求出n+x+y的值.【分析】根据同类项的定义解答即可.【解答】解:∵单项式nax﹣1b4与6a2by+3和为0,∴n=﹣6,x﹣1=2,y+3=4,解得,n=﹣6,x=3,y=1,∴n+x+y=﹣6+3+1=﹣2.【点评】本题考查的是同类项的定义,掌握同类项的定义是解题的关键.。

3.2解一元一次方程-合并同类项(教案)

3.2解一元一次方程-合并同类项(教案)
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“合并同类项在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
(4)将现实问题转化为数学模型时,学生可能难以抓住关键信息,建立正确的方程。
举例:在上述买苹果的例子中,学生可能无法正确建立方程表示购买苹果和赠送苹果的关系。
针对以上教学难点,教师应采取以下措施:
(1)通过直观的例子和图示,帮助学生理解同类项的定义,强调指数相同的重要性。
(2)在合并同类项的运算过程中,指导学生注意符号和计算的准确性,提供适当的练习进行巩固。
3.重点难点解析:在讲授过程中,我会特别强调同类项的定义和合并同类项的法则这两个重点。对于难点部分,比如容易忽视指数相同这一条件,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与合并同类项相关的实际问题,如购物时如何合并同类商品。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。通过合并不同颜色的小球,演示同类项合并的基本原理。
(2)在合并同类项的过程中,学生可能会出现运算错误,如符为8x,正确应为2x。
(3)在解一元一次方程时,学生可能不知道如何将合并同类项的方法与方程的解法相结合。
举例:在解方程5x + 3 = 2x + 7时,不知道先将同类项5x和2x合并,然后再求解。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。

同类项与合并同类项

同类项与合并同类项

同类项与合并同类项在数学中,同类项指的是具有相同的字母部分的代数式中的各项。

同类项之间可以进行加减运算,从而简化和化简代数式。

合并同类项是指将具有相同字母部分的同类项进行合并,得到更简单的代数式。

本文将介绍同类项的概念以及如何合并同类项。

一、同类项的定义同类项是指具有相同字母部分的代数式中的各项。

例如,在代数式2x + 3x + 4x中,2x、3x和4x都是同类项,因为它们都具有相同的字母部分x。

而2x、3y和4z就不是同类项,因为它们的字母部分不同。

同类项之间可以进行加减运算。

例如,将2x + 3x合并为5x,即把相同字母部分的系数相加。

同样地,将4x - 2x合并为2x。

二、合并同类项的方法合并同类项的方法是将相同字母部分的系数相加,并保留字母部分不变。

下面是一些例子来说明合并同类项的具体步骤:例子1:合并同类项3x + 4x首先,我们将相同字母部分的系数相加。

3x + 4x的系数为3 + 4 = 7。

最终的合并结果为7x。

例子2:合并同类项5y - 2y + y首先,将相同字母部分的系数相加。

5y - 2y + y的系数为5 - 2 + 1 = 4。

最终的合并结果为4y。

例子3:合并同类项2a^2b - ab^2 + 3a^2b首先,将相同字母部分的系数相加。

2a^2b - ab^2 + 3a^2b的系数为2 +3 = 5。

最终的合并结果为5a^2b - ab^2。

通过上述例子,我们可以看出合并同类项只需将相同字母部分的系数相加,并保留字母部分不变。

这样可以将复杂的代数式简化为更简单的形式。

三、合并同类项的应用合并同类项在代数中的应用非常广泛,特别是在化简和解方程过程中。

通过合并同类项,我们可以简化代数式,使得计算更加简便和高效。

在解方程时,合并同类项可以帮助我们整合方程的各项,从而更好地观察和理解方程的性质。

通过整理方程并合并同类项,我们可以更快地找到方程的解。

此外,合并同类项还有助于我们理解和运用多项式的运算规则。

专题5-3 求解一元一次方程(一)-移项、合并同类项(知识讲解)

专题5-3 求解一元一次方程(一)-移项、合并同类项(知识讲解)

专题5.3 求解一元一次方程(一)-移项、合并同类项(知识讲解)【学习目标】1.会应用移项、合并同类项法则解一些简单的一元一次方程.2.通过具体的实例感知、归纳移项法则,进一步探索方程的解法.3.进一步认识解方程的基本变形,感悟解方程过程中的转化思想.【要点梳理】移项的概念:把等式一边的某项变号后移到另一边,叫做移项。

特别说明:通过移项,含未知数的项与常数项分别位于方程左右两边,使方程更接近于x=a的形式。

移项、合并同类项解方程步骤:解方程的步骤及依据分别是:(1)移项(等式的性质1)(2)合并(分配律)(3)系数化为1(等式的性质2)【典型例题】知识点一、解方程1.解方程:(1)x-3=31;(2)4x=3x-5;(3)-7x=21;(4)-32x=32.【答案】(1)x=34;(2)x=-5;(3)x=-3;(4)-1.【分析】(1)(2)移项合并即可求出解;(3)(4)将x系数化为1,即可求出解.解:(1) 移项,得x=31+3,x=34;(2)移项,得4x-3x=-5,x=-5;(3) 系数化为1,得x=-3;(4)方程两边同时乘以23⎛⎫-⎪⎝⎭,得x=32×23⎛⎫-⎪⎝⎭=-1.故答案为:(1)x=34;(2)x=-5;(3)x=-3;(4)-1.【点拨】本题考查解一元一次方程,其步骤为:去分母,去括号,移项合并,将未知数系数化为1,求出解.举一反三:【变式1】 解方程(1) 4 2.5 1.515x x x -+= (2)5757x x -=+【答案】(1)5;(2)-6【分析】(1)直接合并同类项,系数化1即可解得方程;(2)利用移项,合并同类项,系数化1即可解得方程;解:(1)4 2.5 1.515x x x -+=, 合并同类项得:315x =,系数化1得:x=5;(2)5757x x -=+, 移项得:575+7x x -=, 合并同类项得:212x -=,系数化1得:-6x =【点拨】本题主要考查一元一次方程的解法,解一元一次方程的基本步骤有:去分母,去括号,移项,合并同类项,系数化1,根据方程的特点,灵活运用相应步骤解方程.【变式2】解方程:(1)36156x x -=--; (2)45173x x +=-; (3) 2.57.5516y y y --=-; (4)11481.5533z z +=-. 【答案】(1)1x =-;(2)66x =-;(3)56y =;(4)407z =- 【分析】(1)(2)(3)(4)先移项,再合并同类项,最后系数化为1即可.解:(1)移项,得36156x x +=-+.合并同类项,得99x =-.系数化为1,得1x =-.(2)移项,得41753x x -=--. 合并同类项,得1223x =-. 系数化为1,得66x =-.(3)移项,得 2.57.5165y y y --+=.合并同类项,得65y =.系数化为1,得56y =. (4)移项,得11841.5533z z -=--. 合并同类项,得7410z =-. 系数化为1,得407z =-. 【点拨】本题考查了解一元一次方程的问题,掌握解一元一次方程的方法是解题的关键. 知识点二、一元一次方程中“纠错”题2.解方程:1145155x x +=--. 佳佳的解题过程如下:解:移项,得1145155x x +=-.① 合并同类项,得34x =.①系数化为1,得43x =.① 请问佳佳的解题步骤有误吗?如果有误,从第几步开始出错的?并且将正确答案写出来.【答案】有误,从第①步开始出错的.正确的解题过程见解析【分析】根据一元一次方程的解法步骤判断即可.解:有误,从第①步开始出错的.正确的解题过程:移项,得1145155x x +=--, 合并同类项,得36x =-,系数化为1,得2x =-. 【点拨】本题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.举一反三:【变式1】下面是两位同学的作业.请你用曲线把出错误的步骤画出来,并把正确的写在右边.(1) 解方程: 215x x -=-+.解:215x x -=+,6x =.(2)解方程:715y y =+. 解: 71y y =+,71y y -=,61y =,16y =. 【分析】根据解一元一次方程的步骤:移项,合并同类项,系数化为1,进行解方程即可求解. 解:①215x x -=+ 改正:215x x +=+ 2x =(2) 71y y =+ 改正:755y y =+ 52y = 【点拨】本题主要考查解一元一次方程的步骤,解决本题的关键是要熟练掌握解一元一次方程的步骤.【变式2】 下面是张铭同学今天做的家庭作业:问题:将等式5x ﹣3y=4x ﹣3y 变形.解:因为5x ﹣3y=4x ﹣3y ,所以5x=4x (第一步)所以5=4(第二步) 上述过程中,第一步是怎么得到的?第二步得出错误的结论,其原因是什么?【答案】第一步是两边都加3y ,第二步错误的原因是x=0时,两边都除以x 无意义 【解析】【分析】根据等式的性质逐步分析即可,等式的基本性质1是等式的两边都加上(或减去)同一个整式,所得的结果仍是等式;等式的基本性质2是等式的两边都乘以(或除以)同一个数(除数不能为0),所得的结果仍是等式.解:第一步是根据等式的性质1,把等式的两边都加3y ,第二步根据等式的性质2可知,错误的原因是x =0时,两边都除以x 无意义.【点拨】本题考查了等式的基本性质,熟练掌握等式的2条基本性质是解答本题的关键.【变式3】某同学解方程52486x x -=-的过程如下,请你指出他开始出错的一步及错误的原因,并改正.解:移项,得58624x x -=--,①合并同类项,得330x -=-,①方程两边同时除以-3,得10x =.①;【答案】该同学的移项是错误的,原因见解析.【分析】根据解一元一次方程的步骤及移项的定义进行分析,即可得到答案.解:该同学的移项是错误的,原因是-24进行移项后符号没有改变.根据移项的定义可知,正确移项是58624x x -=-+,合并同类项,得318x -=,方程两边同时除以-3, 得6x =-.【点拨】本题考查解一元一次方程——移项,解题的关键是熟练掌握移项.知识点三、一元一次方程中同解原理3、已知2(26)m -与|n+2|互为相反数,则求方程m x +3n=6的解. 【答案】4x =【分析】由题意可得()22620m n -++=,然后根据非负数的性质可求出m 、n ,代入原方程后再求解方程即可.解:由题意得:()22620m n -++=,所以260,20m n -=+=,解得3,2m n ==-,则方程mx+3n=6即为366x -=,移项、合并同类项,得3x=12,系数化为1,得x=4.【点拨】本题考查了非负数的性质和一元一次方程的解法,属于常考题型,正确理解题意、熟练掌握基本知识是解题的关键. 举一反三:【变式1】已知关于x 的方程3x+2a =x+7,某同学在解这个方程时,不小心把右端的+7抄成了-7,解得的结果为x =2,求原来方程的解.【答案】x =9【分析】根据方程的解满足方程,可得关于a 的方程,根据解方程,可得a 的值,根据移项、合并同类项、系数化为1,可得答案.解:将x=2代入3x+2a=x -7,得6+2a=-5,解得a=-112. 当a=-112时,原方程为3x -11=x+7, 移项、合并同类项,得2x=18,系数化为1,得x=9,原方程的解为x=9.【点拨】本题考查了一元一次方程的解,将方程的解代入方程得出a 的值是解题关键.【变式2】已知关于x 的方程130.58192x a a +=-与方程3122x x -=-的解互为相反数,求a 的值.【答案】3a =【分析】首先解得方程3122x x -=-的解,然后根据相反数的定义将方程3122x x -=-的解的相反数代入第一个方程来求a 的值即可.解:解方程3122x x -=-,得1x =-,∴方程130.58192x a a +=-的解是1x =把1x =代入130.58192x a a +=-,得130.58192a a , 解之得:3a = 【点拨】本题考查了一元一次方程的解的定义,熟悉相关性质是解题的关键.【变式3】已知关于x 的一元一次方程(m -6)x 2-2x+n=0与x -(3-x )=1的解相同,求m 、n 的值.【答案】m=6,n=4【分析】先根据等式的性质求出方程x -(3-x )=1的解;根据两个方程的解相同, 将求得的解代入到一元一次方程(m -6)x 2-2x+n=0中, 不难求出n 的值.解: 利用等式的基本性质求解方程,x -(3-x )=1, 可得x=2.因为方程(m -6)x2-2x+n=0为一元一次方程,得m -6=0,m=6,因为两方程的解相同,所以x=2也是方程(m -6)x2-2x+n=0的解.将x=2代入-2x+n=0可得: -4+n=0,解得n=4.故答案:m=6,n=4.【点拨】本题是一道关于解方程的问题, 解题的关键是求出第一个方程的解.知识点四、一元一次方程的创新题4、一般情况下a 2+b 3=a+b2+3不成立,但有些数可以使得它成立,例如:a =b =0,我们称使得a 2+b 3=a+b 2+3成立的一对数a ,b 为“相伴数对”,记为(a , b).(1)若(1 , b)是“相伴数对”,求b 的值;(2)若(m , n)是“相伴数对”,求代数式m −10n −2(5m −3n +1)的值.【答案】(1)−94;(2)-2【解析】(1)、首先根据“相伴数对”的定义列出关于b 的一元一次方程,从而求出b 的值;(2)、根据“相伴数对”的定义得出关于m 和n 的代数式,然后进行化简得出9m+4n=0,最后将所求的代数式进行化简,利用整体代入的思想进行求解.解 :(1)∵(1 , b)是“相伴数对”,∴12+b 3=1+b 2+3,解得:b =−94;(2)由(m , n)是“相伴数对”可得:m 2+n 3=m+n 2+3,则15m +10n =6m +6n ,即9m +4n =0,则原式=m −10n −10m +6n −2=−9m −4n −2=−2.举一反三:【变式1】数学课上,高老师和同学们做一个游戏:他在三张硬纸片上分别写出一个代数式,背面分别标上序号①、①、①,摆成如图所示的一个等式.然后翻开纸片①是4x 2+5x +6,翻开纸片①是-3x 2-x -2.解答下列问题:(1)求纸片①上的代数式;(2)若x 是方程2x =-x -9的解,求纸片①上代数式的值.【答案】(1)244x x ++;(2)1.【分析】(1)由①=①+①即可求解;(2)由方程2x =-x -9求出x 值,再代入纸片①上的代数式求值即可.解:(1)222456(32)44x x x x x x =+=+--=+-+①②③++,所以纸片①上的代数式为244x x ++;(2)解2x =-x -9得3x =-,将3x =-代入244x x ++得2(3)4(3)491241-+⨯-+=-+=,所以纸片①上代数式的值为1.【点拨】本题考查了整式的加减运算及代入求值,同时涉及了解一元一次方程,灵活掌握整式的加减运算是解题的关键.【变式2】下图是一个运算程序:(1)若2,3x y =-=,求m 的值;(2)若4x =,输出结果m 的值与输入y 的值相同,求y 的值.【答案】(1)-7;(2)-2 【分析】(1)根据x 、y 的值和运算程序得出3m x y =-,代入即可得出答案(2) 根据运算程序分4m >和4m ≤两种情况列出关于m 的方程,解方程即可得出y 的值解: (1)2,3x y =-=,x y ∴≤,32337m x y ∴=-=--⨯=-.(2)由己知条件可得4,x y m ==,当4m >时,由43m m +=,得2m =-,符合题意:当4m ≤时,由43m m -=得1m =,不符合题意,舍掉.2y ∴=-.【点拨】本题考查了代数式求值和一元一次方程的应用,把满足条件的字母的值代入计算得到对应的代数式的值.也考查了观察图表的能力.。

合并同类项与移项知识点总结

合并同类项与移项知识点总结

合并同类项与移项知识点总结
合并同类项与移项知识点总结
一、知识要点
1.合并同类项:合并同类项是将同类项的系数相加,字母和字母的指数不变。

例如,2a+3b+4a+5b=(2+4)a+(3+5)b=6a+8b。

2.移项:移项是将方程中的某一项从等号的一边移到另一边时,改变符号且不变号。

例如,3x-5=2x+7变形为3x-2x=7+5.
二、重难点精析
1.合并同类项时,需要注意以下几点:
(1) 准确识别同类项,即字母和字母的指数相同;
(2) 合并时,系数要相加,字母和字母的指数不变;
(3) 对于不能直接相加的项,需要先进行变形,化为完全相同的项再进行合并。

2.移项时,需要注意以下几点:
(1) 移项时要改变符号且不变号;
(2) 移项时要注意移动的项在等号两边是否同时进行移动;
(3) 对于含有未知数的项,移项后要注意保持相等关系。

1。

一元一次方程合并同类项与移项

一元一次方程合并同类项与移项

一元一次方程合并同类项与移项一元一次方程中,合并同类项和移项是常用的方法。

1. 合并同类项:
在方程中,如果同一项的系数相同,则可以将这些项合并。

例如,
对于方程 3x + 2x = 5x,我们可以将两个x的系数相加,得到5x。

2. 移项:
移项是将方程中的某一项移动到另一边,从而改变方程两边的数值。

在移项时,需要注意移项的符号。

如果某一项从方程的一边移到另一边,它的符号会发生变化。

例如,对于方程 3x - 5 = 2y + 4x,我们可以
将4x移动到左边,得到3x - 5 - 2y = -4x + 5。

这时,我们需要注意4x
从左边移到右边变成了-4x。

3.2解一元一次方程-合并同类项和移项(教案)

3.2解一元一次方程-合并同类项和移项(教案)
同学们,今天我们将要学习的是《解一元一次方程-合并同类项和移项》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要解决一些数量关系的问题?”比如,如果两个苹果和三个苹果一共是五个苹果,那两个苹果是多少?这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索一元一次方程的奥秘。
五、教学反思
在今天的课堂上,我们探讨了合并同类项和移项在解一元一次方程中的应用。回顾整个教学过程,我觉得有几个地方值得反思。
首先,我发现同学们在理解合并同类项的概念上存在一些困难。这让我意识到,在讲解这个概念时,需要更具体的例子和更详细的解释,帮助他们更好地理解同类项的定义和如何进行合并。在今后的教学中,我需要更加关注这个环节,尽量用生活中的实例来阐述,让学生感受到数学与生活的紧密联系。
3.重点难点解析:在讲授过程中,我会特别强调合并同类项的法则和移项的步骤这两个重点。对于难点部分,我会通过举例和比较来帮助大家理解,比如如何识别同类项,以及移项时如何正确改变符号。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与解一元一次方程相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示如何通过合并同类项和移项来解一个实际问题的方程。
举例:对于方程2x + 5 = 3x + 2,难点在于理解移项时不是简单地将x项移到一边,而是需要将3x项移至左边,同时将常数项2移至右边,并且注意在移动过程中改变符号(3x变为-3x,2变为-2)。学生可能会在这一过程中混淆符号的变换,或者在合并同类项时忽视变量的系数必须相同。
四、教学流程
(一)导入新课(用时5分钟)

合并同类项法则

合并同类项法则

如何克服合并同类项法则的局限性
结合其他数学法则
• 如:加法结合律、乘法结合律、分配律等
• 通过组合使用多种数学法则,解决更复杂的问题
使用更高级的数学方法
• 如:代数变换、数学归纳法等
• 对于复杂的问题,可以采用更高级的数学方法进行求解
提高数学素养和技能
• 通过学习和实践,提高对数学概念和方法的理解和运用能力
谢谢观看
DOCS
• 克服合并同类项法则的局限性,更好地解决问题
04
合并同类项法则与其他数学法则的结合与应用
合并同类项法则与加法结合律的结合与应用
加法结合律
合并同类项法则与加法结合律的结合
• a + (b + c) = (a + b) + c
• 可以将合并同类项法则应用于加法结合律的运算过程中
• 加法结合律描述了三个数相加的顺序无关性
• 对于数列:a + a + b + c = (a + a) + (b + c) = 2a + (b + c)
合并同类项法则的核心思想是化简和归纳
• 通过合并同类项,将复杂的表达式或数列化简为简单的形式
• 通过归纳法,找出具有相同属性的项并进行合并

⌛️
合并同类项法则在数学问题中的应用实例
01
代数表达式求值
• 3x + 2x + y = (3x + 2x) + y = 5x + y
• 通过合并同类项,简化表达式,便于求值
02
数列求和
• 1 + 2 + 3 + 4 + 5 = (1 + 2) + (3 + 4) + 5 = 3 + 7 +

第三章 一元一次方程—合并同类项

第三章 一元一次方程—合并同类项

3.2 解一元一次方程——合并同类项一、教学目标(一)知识与技能1、经历运用方程解决实际问题的过程,体会方程是刻画现实世界的有效模型。

2、学会合并同类项,会解“ax+bx=c”类型的一元一次方程。

(二)过程与方法1、通过观察、思考、类比、自主探究、交流与反思等教学活动,培养学生出利用合并同类项解一元一次方程的方法,渗透转化的数学思想,使学生学会学习。

2、通过知识梳理培养学生归纳、概括的能力,表达能力和逻辑思维能力,并学会用方程解决实际问题,体会方程是刻画显示世界的有效教学模型。

(三)情感、态度与价值观初步体会生活处处有数学,体会方程的应用价值,感受数学文化之艺术。

通过学生之间相互交流,培养他们的合作意识。

二、教学重难点重点:会用合并同类项解一元一次方程,建立方程解决实际问题的思想方法。

难点:分析实际问题中的已知量和未知量,找出相等关系,列出方程。

使学生逐步建立列方程解决实际问题的思想方法.。

三、教学方法:引导发现法,合作学习与自主探究相结合四、教学过程(一)温故知新,储备知识1、合并同类项:(1)3x -5x = ________;(2)-3x + 7x = ________;(3)y + 5y- 2y =________;2、用等式的性质解方程填空(1)若2x=4,根据________,则x = ________(2)若-3x=8,根据________,则x = ____【设计意图】由练习1复习合并同类项,为进一步学习利用合并同类项解一元一次方程做铺垫和知识储备,由抢答引入,能够更好的激发学生学习兴趣,调动学生学习的积极性让学生能够主动地参与到数学学习中。

利用练习2引出求方程的解时,要把系数化为1,并且引入如何利用等式的性质解复杂的一元一次方程。

(二)引入探究,激趣促思数字游戏同学们每人写下十以内的一个幸运数字,然后计算出本身与它的2倍,与它4倍的和。

将你的结果写在卡片上,举给老师看,老师就能说出你的幸运数。

合并同类项课件完整版

合并同类项课件完整版
分析
本题同样考查了分式的加减法运算。 两个分式已经有相同的分母$x-2$,因 此可以直接进行分子的加减运算。注 意在运算过程中要合并同类项。
典型例题分析与解答
解答:原式$= frac{(x^2 - 4x + 4) - (x^2 - 2x)}{x - 2}$ $= frac{x^2 - 4x + 4 - x^2 + 2x}{x - 2}$
合并同类项在解一元一次方程中的应用
03
通过合并同类项,简化方程,从而更容易求解未知数。
典型例题分析与解答
例题1
解方程 2x + 3 = 5x - 7。
分析
首先移项,将含x的项放在等式左边,常数项放在等式右边,得到 3x = -10。然后合并同类项,将x的系数化为1,得到 x = 10/3。
例题2
解方程 (x + 2)/3 - (2x - 1)/6 = 1。
03
分析
首先去分母,将方程两边分别乘以20(5、10和4的最小公倍数),得
到 4(2x - 1) + 2(3x + 2) = 5(2x + 3) - 20。然后去括号并移项,得到
8x - 4 + 6x + 4 = 10x + 15 - 20。接着合并同类项并化简得到 x = -
1/4。
03
二元一次方程组中合并同类项
一元一次方程标准形式
ax + b = 0(a ≠ 0)。
3
解一元一次方程的基本步骤
去分母、去括号、移项、合并同类项、系数化为 1。
合并同类项在解方程中应用
合并同类项的定义
01
把多项式中同类项合并成一项,叫做合并同类项。

七年级上册数学合并同类项讲解

七年级上册数学合并同类项讲解

七年级上册数学合并同类项讲解一、概述在七年级上学期的数学教学中,合并同类项是一个重要且基础的概念。

本文将从什么是合并同类项、合并同类项的原则、合并同类项的运算规律以及合并同类项的应用等方面进行详细讲解,希望能够为同学们对这一概念的理解提供帮助。

二、什么是合并同类项1. 同类项的定义同类项是指具有相同字母部分的代数式中的项。

3a和5a就是同类项,因为它们的字母部分都是a;而3a和5b就不是同类项,因为它们的字母部分不同。

2. 合并同类项的概念合并同类项就是将具有相同字母部分的代数式中的项相加或相减,从而合并成一个项的过程。

三、合并同类项的原则1. 相同字母部分的系数相加在合并同类项时,需要将相同字母部分的系数相加,而字母部分保持不变。

2. 不同字母部分的项保持不变不同字母部分的项无法合并,需要保持原样。

四、合并同类项的运算规律1. 合并同类项的加法规律合并同类项的加法规律是将具有相同字母部分的项的系数相加,而字母部分保持不变。

例如:3a + 5a = 8a。

2. 合并同类项的减法规律合并同类项的减法规律是将具有相同字母部分的项的系数相减,而字母部分保持不变。

例如:7b - 4b = 3b。

五、合并同类项的应用在代数式的化简、方程的解法等方面,合并同类项都有着重要的应用。

1. 代数式的化简通过合并同类项,可以对代数式进行化简,使得计算更加简便。

例如:3a + 2a = 5a。

2. 方程的解法在解方程的过程中,有时需要利用合并同类项的原理进行变形,从而解得方程的根。

例如:3x + 2x = 10,合并同类项可得5x = 10,进而解得x = 2。

六、结语合并同类项作为代数中的基础概念,对于学生来说具有重要的意义。

通过本文的讲解,相信同学们已经对合并同类项有了更清晰的认识。

希望同学们能够在学习中多加练习,巩固这一知识点,为今后的学习打下坚实的基础。

七、合并同类项的混合运算在实际应用中,合并同类项往往与其他代数运算混合进行。

一元一次方程的解法合并同类项

一元一次方程的解法合并同类项

错误3:错误地合并分数项
描述
在合并同类项时,容易错误地合并分数项。例如,在方程2/3x + 1/3x = x 中,分数项1/3和2/3是同类项,但它们并没有正确地被合并。
例子
将方程2/3x + 1/3x = x 中的同类项合并时,正确的做法是(2/3 + 1/3)x = x ,即1x = x。
错误4:忽略幂的合并
合并同类项的步骤
找出同类项
首先需要观察方程中是否有同 类项,包括相同的字母和相同
指数的项。
进行合并
将同类项的系数相加,字母和 指数不变。
化简方程
合并同类项后,可以简化方程 的形式,便于后续求解。
合并同类项的注意事项
注意符号
在合并同类项时,需要关注各项的符号。如果符号不同,需要将 系数相加后,再取相同的符号。
常见形式
合并同类项的主要形式是将常数项合并在一起,或者将同类变量的系数合并在一 起。
合并同类项的方法
步骤概述
要合并同类项,需要先识别方程中各项的变量和常数,然后 对相同变量的系数进行合并。
具体步骤
将同类项的系数相加,然后将常数项放在等号的一侧,将变 量的系数放在等号的另一侧。
合并同类项的应用
简化方程
2023
一元一次方程的解法合并 同类项
contents
目录
• 合并同类项概述 • 合并同类项的基本步骤 • 合并同类项的实例分析 • 如何有效地合并同类项 • 合并同类项的常见错误分析 • 合并同类项的练习与思考
01
合并同类项概述
合并同类项步骤
识别同类项
首先需要识别方程中哪些项是同类项,即具有相同的字母和 相同次数。
合并同类项的规则

初中数学 变形原理如何应用于合并同类项和移项操作

初中数学 变形原理如何应用于合并同类项和移项操作

初中数学变形原理如何应用于合并同类项和移项操作一、引言在初中数学中,变形原理是解决一元一次方程中合并同类项和移项操作的基础。

通过运用变形原理,我们可以将方程简化为更简洁的形式,从而更容易求解未知数。

本文将详细介绍变形原理在合并同类项和移项操作中的应用,并提供一些示例来帮助初学者更好地理解和应用这个概念。

二、合并同类项的变形原理合并同类项是解决一元一次方程中的重要步骤之一。

它可以帮助我们将方程中相同未知数的项合并为一个项,从而简化方程。

下面是合并同类项的变形原理:1. 合并未知数项:在方程中,如果有多个未知数项(如2x、3x),我们可以将它们合并为一个项(如5x)。

为了保持方程的平衡,我们需要在等式两边同时进行相同的加减操作。

示例1:方程2x + 3x = 5x。

我们可以合并未知数项2x和3x,得到方程5x = 5x。

这个方程说明x的值可以是任意实数,因此有无穷多个解。

2. 合并常数项:在方程中,如果有多个常数项(如3、4),我们可以将它们合并为一个项(如7)。

为了保持方程的平衡,我们需要在等式两边同时进行相同的加减操作。

示例2:方程x + 3 = 4x + 4。

我们可以合并常数项3和4,得到方程x - 4x = 4 - 3,即-3x = 1。

这个方程有唯一解x = -1/3。

三、移项的变形原理移项是解决一元一次方程中的另一个重要步骤。

它可以帮助我们将未知数项和常数项移动到方程的另一侧,从而简化方程的形式。

下面是移项的变形原理:1. 移动未知数项:在方程中,如果未知数项在等式的一侧,我们可以将其移动到另一侧。

为了保持方程的平衡,我们需要在等式两边同时进行相同的加减操作。

示例3:方程2x + 3 = 5。

我们可以将未知数项2x移动到等式的右侧,得到方程3 = 5 - 2x。

这个方程可以进一步简化为-2x = 2,即x = -1。

2. 移动常数项:在方程中,如果常数项在等式的一侧,我们可以将其移动到另一侧。

解方程的步骤及格式

解方程的步骤及格式

解方程的步骤及格式
解方程的步骤包括去分母、去括号、移项、合并同类项和化系数为1。

格式上需要注意移项要变号,移项后不含x的项移到等号的右边,移项后含x的项移到等号的左边。

具体步骤如下:
1. 有分母先去分母。

2. 有括号就去括号。

3. 需要移项就进行移项。

4. 合并同类项。

5. 系数化为1求得未知数的值。

以上是解一元一次方程的一般步骤,也可以用于其他简单的一元一次方程和二元一次方程组。

另外,解方程的方法还包括估算法、应用等式的性质、合并同类项、移项、去括号、公式法和函数图像法等。

在解方程时,需要根据方程的特点选择合适的方法,以达到快速准确的解题效果。

最后,需要注意解方程和检验的注意事项,即所有的方程都能用直接去分母的方法解答,但有的题目繁杂,不如用去括号的方法简单。

解方程时,需要把求得的x的值代入原方程进行检验,以确保所求的x的值就是原方程的解。

合并同类项计算题

合并同类项计算题

合并同类项计算题在数学中,合并同类项是一种常见的计算方法。

这种方法用于将表达式中的相同项相加,从而简化表达式并得到最终的结果。

本文将演示如何合并同类项,并提供一些相关的计算题目。

首先,让我们回顾一下什么是同类项。

在代数中,同类项是指具有相同字母指数的项。

例如,2x和3x就是同类项,因为它们都具有相同的字母x,并且其指数都为1、另外,4x²和7x²也是同类项,因为它们都具有相同的字母x,并且其指数都为2、然而,5xy²和3xy也是同类项,因为它们都具有相同的字母xy,并且指数分别为2和1下面是一些可以用来练习合并同类项的计算题目:1.合并以下同类项:3x-2x+4x-9x。

解答:首先,将所有同类项的系数相加。

将3x、-2x、4x和-9x相加,得到(3-2+4-9)x=-4x。

2. 合并以下同类项:2a²b - 3a²b + 5ab - 7ab。

解答:首先将所有同类项的系数相加。

将2a²b、-3a²b、5ab和-7ab相加,得到(2 - 3 + 5 - 7)ab = -3ab。

3. 合并以下同类项:4x²y - 2xy + 6x²y - 5xy。

解答:首先将所有同类项的系数相加。

将4x²y、-2xy、6x²y和-5xy相加,得到(4 + 6)x²y + (-2 - 5)xy = 10x²y - 7xy。

4. 合并以下同类项:4a³b² - 2a³b² + 3ab³ - ab³ + 5a³b²。

解答:首先将所有同类项的系数相加。

将4a³b²、-2a³b²、3ab³、-ab³和5a³b²相加,得到(4 - 2 + 5)a³b² + (3 - 1)ab³ = 7a³b² + 2ab³。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.若-3x m-1y4与是同类项,求m、n。

2.合并同类项:
⑴3x2-1-2x-5+3x-x2⑵-0.8a2b-6ab-1.2a2b+5ab+a2b
⑶⑷6x2y+2xy-3x2y2-7x-5yx-4y2x2-6x2y
(5) 4x2y-8xy2+7-4x2y+12xy2-4 (6) a2-2ab+b2+2a2+2ab-b2
(7)3ab2-5ab3+0.5a3b-3ab2+5 b3a (9)x n-0.5x n+1-0.2x n+x n+1-0.3x n+1
3.(1).先化简再求值:3x2y-[2x2y-(2xyz-x2z)-4x2z]-xyz,其中x=-2,y=-3,z=1。

(2).已知x=2,代数式3x2-(2t+1)x+5t的值是20,求当x=-2时,代数式的值。

4.解下列方程
(1);(2);(3).
5. 甲、乙两人要各自在车间加工一批数量相同的零件,甲每小时可加工25个,乙每小时可加工20个.甲由于先去参加了一个会议,比乙少工作了1小时,结果两人同时完成任务,求每人加工的总零件数量.
6. 甲、乙两辆汽车分别从A、B两站同时开出,相向而行,途中相遇后继续沿原路线行驶,再分别到达对方车站后立即返回,两车第二次相遇时距A站34km,已知甲车速度是70km/h,乙车速度是52km/h,求A、B两站间的距离.
7. 某商品标价1375元,打8折售出,仍可获利10%,求该商品的进价.
8. 小明的父亲把一笔钱存入银行,存期三年,年利率为3.5%,到期时交纳了20%的利息税后共拿到了10840元,求小明的父亲三年前存入银行的钱数.
5. 100
6. 122
7. 1000 8. 10000。

相关文档
最新文档