锁相环路的基本工作基本知识
锁相环路的工作原理

解决方案
减小环路带宽,降低VCO的调谐灵敏度,减小环路增益。
Part
05
锁相环路的优化设计
选择合适的鉴相器与压控振荡器
鉴相器选择
鉴相器是锁相环路中的核心元件,用于比较输入信号与压控振荡器输出信号的 相位差。根据应用需求,选择合适的鉴相器,如模拟鉴相器和数字鉴相器,确 保环路性能达到最佳。
高速锁定
锁相环路具有快速锁定能力,能够在短时间内实现相位同 步。
自动跟踪相位变化
锁相环路能够自动跟踪输入信号的相位变化,实现输出信 号与输入信号的相位同步。
高精度相位调整
锁相环路能够实现高精度相位调整,具有较低的相位噪声 。
工作原理概述
鉴相器
鉴相器用于比较输入信号 和输出信号的相位差,产 生一个误差信号。
雷达系统中的信号处理
雷达系统在探测、跟踪和识别目标时,需要处理大量的回波 信号。锁相环路在雷达信号处理中起到关键作用,用于实现 回波信号的频率跟踪和信号解调。
通过比较回波信号与本地振荡器信号的相位差,锁相环路能 够自动调整本地振荡器信号的频率,使其与回波信号的频率 一致,实现回波信号的准确解调。这有助于提高雷达系统的 目标检测和识别能力。
Part
06
锁相环路的实际应用案例
无线通信中的频率合成
频率合成器是无线通信系统中的关键组成部分,用于产生高精度、高稳定度的频率信号。 锁相环路被广泛应用于频率合成器中,通过比较输出信号与参考信号的相位差,自动调 整输出信号的频率,实现输出信号与参考信号的相位同步。
锁相环路在频率合成中的应用,能够提高频率信号的稳定性和精度,减小信号的相位噪 声,为无线通信系统的稳定运行提供保障。
锁相环的组成,工作原理和应用

1.锁相环的基本组成许多电子设备要正常工作,通常需要外部的输入信号与内部的振荡信号同步,利用锁相环路就可以实现这个目的。
锁相环路是一种反馈控制电路,简称锁相环(PLL)。
锁相环的特点是:利用外部输入的参考信号控制环路内部振荡信号的频率和相位。
因锁相环可以实现输出信号频率对输入信号频率的自动跟踪,所以锁相环通常用于闭环跟踪电路。
锁相环在工作的过程中,当输出信号的频率与输入信号的频率相等时,输出电压与输入电压保持固定的相位差值,即输出电压与输入电压的相位被锁住,这就是锁相环名称的由来。
锁相环通常由鉴相器(PD)、环路滤波器(LF)和压控振荡器(VCO)三部分组成,锁相环组成的原理框图如图8-4-1所示。
锁相环中的鉴相器又称为相位比较器,它的作用是检测输入信号和输出信号的相位差,并将检测出的相位差信号转换成u D(t)电压信号输出,该信号经低通滤波器滤波后形成压控振荡器的控制电压u C(t),对振荡器输出信号的频率实施控制。
2.锁相环的工作原理锁相环中的鉴相器通常由模拟乘法器组成,利用模拟乘法器组成的鉴相器电路如图8-4-2所示。
鉴相器的工作原理是:设外界输入的信号电压和压控振荡器输出的信号电压分别为:(8-4-1)(8-4-2)式中的ω0为压控振荡器在输入控制电压为零或为直流电压时的振荡角频率,称为电路的固有振荡角频率。
则模拟乘法器的输出电压u D为:用低通滤波器LF将上式中的和频分量滤掉,剩下的差频分量作为压控振荡器的输入控制电压u (t)。
即u C(t)为:C(8-4-3)式中的ωi为输入信号的瞬时振荡角频率,θi(t)和θO(t)分别为输入信号和输出信号的瞬时位相,根据相量的关系可得瞬时频率和瞬时位相的关系为:即(8-4-4)则,瞬时相位差θd为(8-4-5)对两边求微分,可得频差的关系式为(8-4-6上式等于零,说明锁相环进入相位锁定的状态,此时输出和输入信号的频率和相位保持恒定不变的状态,u c(t)为恒定值。
(完整版)锁相环工作原理

基本组成和锁相环电路1、频率合成器电路频率合成器组成:频率合成器电路为本机收发电路的频率源,产生接收第一本机信号源和发射电路的发射信号源,发射信号源主要由锁相环和VCO电路直接产生。
如图3-4所示。
在现在的移动通信终端中,用于射频前端上下变频的本振源(LO),在射频电路中起着非常重要的作用。
本振源通常是由锁相环电路(Phase-Locked Loop)来实现。
2.锁相环:它广泛应用于广播通信、频率合成、自动控制及时钟同步等技术领域3.锁相环基本原理:锁相环包含三个主要的部分:⑴鉴相器(或相位比较器,记为PD或PC):是完成相位比较的单元,用来比较输入信号和基准信号的之间的相位.它的输出电压正比于两个输入信号之相位差.⑵低通滤波器(LPF):是个线性电路,其作用是滤除鉴相器输出电压中的高频分量,起平滑滤波的作用.通常由电阻、电容或电感等组成,有时也包含运算放大器。
⑶压控振荡器(VCO):振荡频率受控制电压控制的振荡器,而振荡频率与控制电压之间成线性关系。
在PLL中,压控振荡器实际上是把控制电压转换为相位。
1、压控振荡器的输出经过采集并分频;2、和基准信号同时输入鉴相器;3、鉴相器通过比较上述两个信号的频率差,然后输出一个直流脉冲电压;4、控制VCO,使它的频率改变;5、这样经过一个很短的时间,VCO 的输出就会稳定于某一期望值。
锁相环电路是一种相位负反馈系统。
一个完整的锁相环电路是由晶振、鉴相器、R分频器、N分频器、压控振荡器(VCO)、低通滤波器(LFP)构成,并留有数据控制接口。
锁相环电路的工作原理是:在控制接口对R分频器和N分频器完成参数配置后。
晶振产生的参考频率(Fref)经R分频后输入到鉴相器,同时VCO的输出频率(Fout)也经N分频后输入到鉴相器,鉴相器对这两个信号进行相位比较,将比较的相位差以电压或电流的方式输出,并通过LFP滤波,加到VCO的调制端,从而控制VCO的输出频率,使鉴相器两输入端的输入频率相等。
第1章锁相环路的基本工作原理

《 锁相技术》
图1-13 锁相环路的相位模型
第1章 锁相环路的基本工作原理
第3节 环路的动态方程
按图1-13的环路相位模型,不难导出环路的动态方程
e (t) 1(t) 2(t)
2 (t )
KoUd
F
( p) p
sine
(t
)
将(1-27)式代入(1-26)式得
(1-26) (1-27)
pe (t) p1(t) KoUd F ( p) sine(t) (1-28)
负号对环路的工作没有影响,分析时可以不予考虑。 故传输算子可以近似为
F ( p) 1 p 2 p1
(1-22)
式中τ1=R1C。(1-22)式传输算子的分母中只有一个 p,是一个积分因子,故高增益的有源比例积分滤波器又 称为理想积分滤波器。显然,A越大就越接近理想积分 滤波器。此滤波器的频率响应为
《 锁相技术》
第1章 锁相环路的基本工作原理
第2节 环路组成
锁相环路为什么能够进入相位跟踪,实现输出与输 入信号的同步呢?因为它是一崐个相位的负反馈控制 系统。这个负反馈控制系统是由鉴相器(PD)、环路滤 波器(LF)和电压控制振荡器(VCO)*三个基本部件组成 的,基本构成如图1-4。
《 锁相技术》
F ( p) A1 p 2 1 p1
式中τ1=(R1+AR1+R2)C;τ2=R2C; A是运算放大器无反馈时的电压增益。 若运算放大器的增益A很高,则
《 锁相技术》
第1章 锁相环路的基本工作原理
图1-9 无源比例积分滤波器的组成与对数频率特性
《 锁相技术》
(a)组成;(b)频率特性
第1章 锁相环路的基本工作原理
令环路增益
锁相环的工作原理讲解

锁相环的工作原理讲解锁相环(Phase-locked loop,简称PLL)是一种常用的控制系统,它通过对输入信号进行频率和相位的调整,使其与参考信号同步。
锁相环广泛应用于通信、测量、数据采集等领域,具有高精度、稳定性好等优点。
锁相环的工作原理可以简单地描述为三个主要步骤:相比较、滤波和控制。
首先,输入信号和参考信号经过相比较器进行相位比较,产生一个误差信号。
然后,误差信号经过滤波器进行滤波处理,得到一个稳定的控制信号。
最后,控制信号通过控制器对振荡器进行调整,使得输出信号与参考信号同步。
在锁相环中,相比较器是关键的元件之一。
相比较器将输入信号与参考信号进行相位比较,产生一个差异信号。
这个差异信号代表了输入信号与参考信号之间的相位偏差。
根据这个相位偏差,锁相环可以控制振荡器的频率和相位,使得输入信号与参考信号同步。
滤波器是另一个重要的组成部分。
它的作用是对误差信号进行滤波处理,去除高频噪声和杂散信号,得到一个稳定的控制信号。
滤波器通常采用低通滤波器的形式,只允许通过低频信号,抑制高频信号的干扰。
滤波器的设计要考虑到系统的带宽和稳定性。
控制器根据滤波后的误差信号来调整振荡器的频率和相位。
控制器通常采用比例-积分-微分(PID)控制算法,根据误差信号的大小和变化率来调整振荡器的输出。
PID控制器具有响应快、稳定性好的特点,可以使锁相环快速跟踪参考信号。
除了上述的基本组成部分,锁相环还可以包括频率分频器、倍频器、反相器等附加元件,用于实现更复杂的功能。
例如,频率分频器可以将输入信号的频率降低到锁相环的工作范围内;倍频器可以将振荡器的输出信号进行倍频,得到更高频率的信号。
这些附加元件可以根据具体的应用需求进行选择和配置。
锁相环具有很多应用,其中一个典型的应用是频率合成器。
频率合成器可以通过锁相环的频率调整功能,将多个不同频率的信号合成为一个特定频率的信号。
这在通信系统中非常常见,可以用于频率调制、解调、时钟同步等方面。
第一章 锁相环路的基本工作原理讲义

第一章 锁相环的基本原理讲义
樊孝明
U i sin[0t (i 0 )t i (t )] U i sin[0t 0t i (t )] U i sin[0t 1 (t )] 式中:0 i 0 为输入信号频率与环路自由振荡频率之差,称为环路的固有频差,这也是PLL一个
非常重要的参数。 则输入、输出信号以 0t 为参考的瞬时相位分别为 1 (t ) 与 2 (t ) ,
1 (t ) 0t i (t ) (i 0 )t i (t ) ; 2 (t ) 0 (t )
可得PLL相位框图如图1-1(b)所示。
2、瞬时相差 e (t ) 与瞬时频差 e (t )
注意:输入信号是 sin 型,而输出信号是 cos 型,后面会做相应解释,在此不作解释; PLL是相位控制系统,PLL对输入与输出信号起作用的是它们的瞬时相位 因此必须建立输入、输出信号相位之间的控制关系。 二、PLL相位关系描述
1、输入、输出信号的相位表达式
输入信号的瞬时相位: i t i (t ) ; 输入信号的瞬时频率:
当环路进入同步之后,根据同步状态定义,输出信号的瞬时相位 0 (t ) 和瞬时频偏 0 (t ) 应满足下式:
0 (t ) 2 (t ) 1 (t ) e 0t i e ;
0 (t ) 0
将 0 (t ) 代入输出信号表达式 u0 (t ) U 0 cos[0t 0 (t )] 中可得:
c、环路能够进入锁定状态(简称为环路能够锁定)的条件 | 0 | p 或 0 p i 0 p 四、同步状态即锁定状态
1、同步状态定义:
瞬时频差|e ( t )| 瞬时相差|e ( t ) 2 n | e 这是环路同步的一般条件。
锁相环路的基本工作原理nh

环路滤波器设计与参数选择
环路滤波器作用
环路滤波器用于滤除鉴相器输出中的 高频噪声和干扰,同时提供必要的控 制电压给压控振荡器。它决定了PLL 的带宽、稳定性和跟踪性能。
参数选择
环路滤波器的设计涉及多个参数,如 截止频率、阻尼系数和相位裕度等。 这些参数的选择需要根据具体应用需 求和系统性能要求进行权衡和优化。
数字锁相环路
基本结构
包括数字鉴相器、数字环路滤波器和数控振荡器(NCO)。
工作原理
数字鉴相器检测输入信号与NCO输出信号的相位差,产生数字误差信号。数字环路滤波 器对误差信号进行数字滤波,输出控制字调整NCO的频率或相位。
特点
精度高,稳定性好。受数字器件性能影响小,易于集成和扩展功能。但实现复杂度相对较 高。
Part
03
锁相环路性能指标评价方法
捕获范围与捕获时间
捕获范围
锁相环路能够成功锁定的输入信 号频率范围。捕获范围越宽,锁 相环路对输入信号频率变化的适 应能力越强。
捕获时间
从锁相环路开始工作到成功锁定 输入信号所需的时间。捕获时间 越短,锁相环路的响应速度越快 。
跟踪误差与相位噪声
跟踪误差
锁相环路在锁定状态下,输出信号与输入信号之间的频率或相位差异。跟踪误差越小,锁相环路的精 度越高。
Part
07
总结与展望
当前研究成果回顾
锁相环路理论体系的完善
01
随着对锁相环路工作原理的深入研究,其理论体系不断完善,
为实际应用提供了坚实的理论基础。
高性能锁相环路的实现
02
通过改进锁相环路的结构和算法,实现了高性能的锁相环路,
提高了其在通信、导航等领域的性能。
锁相环路与其他技术的融合
锁相环路基本工作原理

锁相环的组成和工作原理2022-04-24 10:261.锁相环的基本组成许多电子设备要正常工作,通常需要外部的输入信号与内部的振荡信号同步,利用锁相环路就可以实现这个目的。
锁相环路是一种反馈控制电路,简称锁相环( PLL)。
锁相环的特点是:利用外部输入的参考信号控制环路内部振荡信号的频率和相位。
因锁相环可以实现输出信号频率对输入信号频率的自动跟踪,所以锁相环通常用于闭环跟踪电路。
锁相环在工作的过程中,当输出信号的频率与输入信号的频率相等时,输出电压与输入电压保持固定的相位差值,即输出电压与输入电压的相位被锁住,这就是锁相环名称的由来。
锁相环通常由鉴相器(PD)、环路滤波器(LF)和压控振荡器(VCO)三部份组成,锁相环组成的原理框图如图 8-4-1 所示。
锁相环中的鉴相器又称为相位比较器,它的作用是检测输入信号和输出信号的相位差,并将检测出的相位差信号转换成u (t)电压信号输出,该信号经低通滤波器滤波后形成压控D振荡器的控制电压 u (t),对振荡器输出信号的频率实施C控制。
2.锁相环的工作原理锁相环中的鉴相器通常由摹拟乘法器组 成,利用摹拟乘法器组成的鉴相器电路如图 8-4-2 所示。
鉴相器的工作原理是:设外界输入的信号电压和压控振荡器 输出的信号电压分别为:(8-4-1 ) (8-4-2)式中的 ω 为压控振荡器在输入控制电压为零或者为直流电压时的振荡角频率,称为电路的固有振荡角频率。
则摹拟乘法 器的输出电压 u D 为:用低通滤波器 LF 将上式中的和频分量滤掉,剩下的差频分量作为压控振荡器的输入控制电压 u (t)。
即 u (t)为:C C(8-4-3)式中的 ω 为输入信号的瞬时振荡角频率, θ (t) 和 θ (t)i i O分别为输入信号和输出信号的瞬时位相,根据相量的关系可 得瞬时频率和瞬时位相的关系为:即(8-4-4)则,瞬时相位差θ 为d(8-4-5)对两边求微分,可得频差的关系式为(8-4-6)上式等于零,说明锁相环进入相位锁定的状态,此时输出和输入信号的频率和相位保持恒定不变的状态, u (t)为恒定c值。