Synthesis and bioactivity of novel (Z,E)-1-(substituted phenyl)-3-[α-(alkyloxyimino)benzylidene]

合集下载

一种水溶性1,8-萘酰亚胺荧光化合物的合成及性能研究

一种水溶性1,8-萘酰亚胺荧光化合物的合成及性能研究

一种水溶性1,8-萘酰亚胺荧光化合物的合成及性能研究戚林军;陈军;陈婉容;董灵茜;王幸逸;金正能【摘要】以N,N-二甲氨基丙胺和4-溴-1,8-萘酸酐为原料,吡啶为溶剂,一步法合成了一种水溶性的1,8-萘酰亚胺荧光分子,4-(N,N-二甲氨基丙氨基)-N-(N,N-二甲氨基丙基)-1,8-萘酰亚胺,以1H NMR和质谱对产物的结构进行表征,考察了浓度、pH和溶剂对该化合物荧光性能的影响。

%A novel water-soluble compound,2-(3-(dimethyl amino)propyl)-6-(3-(dimethylamino)propylamino)-1H-benzo isoquinoline-1,3(2H)-dione,was synthesized by one step reaction of 4-bromo-1,8-naphthalimide with 3-(dimethylamino)-1-propylamine.The compound was characterized by 1H-NMR and MS.The concentration,pH and solvent effects on the fluorescent property were investigated.【期刊名称】《广州化工》【年(卷),期】2012(040)024【总页数】3页(P91-93)【关键词】1;8-萘酰亚胺;荧光;水溶性【作者】戚林军;陈军;陈婉容;董灵茜;王幸逸;金正能【作者单位】台州学院医药化学化工学院,浙江台州318000;台州学院医药化学化工学院,浙江台州318000;台州学院医药化学化工学院,浙江台州318000;台州学院医药化学化工学院,浙江台州318000;台州学院医药化学化工学院,浙江台州318000;台州学院医药化学化工学院,浙江台州318000【正文语种】中文【中图分类】O69作为一种传统染料,1,8-萘酰亚胺衍生物因具有良好的荧光性能而备受关注,其在荧光探针、DNA嵌入剂和有机电致发光等领域都有很好的应用前景[1-5]。

Synthesis and characterization of novel systems fo

Synthesis and characterization of novel systems fo
申请人:Pascal Dumy,Marie-Christine Favrot,Didier Boturyn,Jean-Luc Coll 地址:Allevard FR,Corenc FR,Grenoble FR,Claix FR 国籍:FR,FR,FR,FR 代理机构:DLA Piper LLP (US) 更多信息请下载全文后查看
专利内容由知识产权出版社提供
专利名称:Synthesis and characterization of novel systems for guidance and vectorization of molecules of therapeutic interest towards target cells
发明人:Pascal Dumy,Marie-Christine Favrot,Didier Boturyn,Jean-Luc Coll
申请号:US10528320 申请日:20030919 公开号:US07531622B2 公开日:20090512
摘要:A method for preparing a grafted homodetic cyclopeptide forming a framework that defines a grafted upper face and grafted lower face, including synthesizing a linear peptide from modified or unmodified amino acids, some of which carry orthogonal protective groups; intramolecular cyclizing the resulting protetuting some or all of orthogonal protective groups with a protected precursor; and grafting at least one molecule of interest onto one and/or the other face of the framework via an oxime bond.

毛蕊花糖苷生物合成途径及其合成酶相关基因[发明专利]

毛蕊花糖苷生物合成途径及其合成酶相关基因[发明专利]

(19)中华人民共和国国家知识产权局(12)发明专利申请(10)申请公布号 (43)申请公布日 (21)申请号 201610849755.8(22)申请日 2016.09.26(71)申请人 河南师范大学地址 453007 河南省新乡市建设东路46号(72)发明人 周延清 王向楠 段红英 张亮 张丹丹 杨柯 (74)专利代理机构 新乡市平原专利有限责任公司 41107代理人 路宽(51)Int.Cl.C12P 19/44(2006.01)C12N 15/60(2006.01)C12N 15/54(2006.01)C12N 15/53(2006.01)C12N 15/52(2006.01)(54)发明名称毛蕊花糖苷生物合成途径及其合成酶相关基因(57)摘要本发明公开了毛蕊花糖苷生物合成途径及其合成酶相关基因,以地黄6个不同发育阶段的块根为材料,提取和检测其总RNA,用IlluminaHiSeq2500平台对其组合转录组测序,获得149.8百万reads,从头组装获得96961个Unigenes序列;将Unigenes序列与KEGG数据库比对进行代谢通路分析,获得280个KEGG途径,将代谢通路与推测的毛蕊花糖苷合成途径比对,筛选出5个候选KEGG途径;比较推测的毛蕊花糖苷合成途径和筛选出5个候选KEGG途径,建立有19个基因编码酶催化的毛蕊花糖苷生物合成途径,将Unigenes序列与数据库进行BlastX比对,再附加ESTscan软件功能,得到13个候选的毛蕊花糖苷生物合成酶相关基因。

本发明为阐明地黄完整的毛蕊花糖苷生物合成途径和利用次生代谢工程或者合成生物学生产毛蕊花糖苷奠定基础。

权利要求书1页 说明书6页序列表6页 附图9页CN 106498009 A 2017.03.15C N 106498009A1.毛蕊花糖苷生物合成途径,其特征在于具体过程为:以地黄6个不同发育阶段的块根为材料,提取和检测其总RNA,用Illumina HiSeq2500平台对其组合转录组测序,获得149.8百万reads,从头组装获得96961个Unigenes序列;将上述Unigenes序列与KEGG数据库比对进行代谢通路分析,获得280个KEGG途径,进而将代谢通路与基于稳定同位素标记前体物喂养试验推测的毛蕊花糖苷合成途径比对,筛选出5个候选KEGG途径;比较推测的毛蕊花糖苷合成途径和筛选出5个候选KEGG途径,建立有19个基因编码酶催化的毛蕊花糖苷生物合成途径。

订书肽的合成与应用_高帅_郭叶_李海燕_方葛敏

订书肽的合成与应用_高帅_郭叶_李海燕_方葛敏

PROGRESSINCHEMISTRYDOI:10 7536/PC130771http://www.progchem.ac.cn㊀㊀ProgressinChemistry,2014,26(1):100 109订书肽的合成与应用高㊀帅1,2㊀郭㊀叶2㊀李海燕2㊀方葛敏1,2∗(1.中国科学院合肥物质研究院强磁场科学中心合肥230031;2.清华大学化学系㊀北京100084)摘㊀要㊀许多重要的生物过程的调节都通过蛋白⁃蛋白相互作用来实现的㊂一般,蛋白⁃蛋白作用的界面太大而不能被小分子药物选择性靶向,因此小分子药物很难高效特异性地阻断该类型的相互作用㊂此外,由于蛋白质药物很难透过细胞膜,它们也不能直接靶向细胞内的相互作用㊂由于当前药物分子的限制,发展下一代既能进入细胞膜又能特异性靶向蛋白⁃蛋白相互作用的分子成为新的研究热点㊂为了克服上述药物分子的缺点,Verdine等发展了一种全碳支架的具有α⁃螺旋结构的新型多肽,这种多肽被称作订书肽(stapledpeptides)㊂相比于天然多肽,订书肽有更高的酶解稳定性并且可以进入细胞膜,从而提高了它的药理性能㊂本文将从订书肽的化学合成㊁生物物理性能的表征和其在癌症和HIV治疗㊁信号通路的调节和肿瘤激活蛋白的抑制方面的生物应用详细介绍订书肽的最新进展㊂关键词㊀订书肽㊀蛋白⁃蛋白相互作用㊀多肽药物中图分类号:O629 7㊀文献标识码:A㊀文章编号:1005⁃281X(2014)01⁃0100⁃10收稿:2013年7月,收修改稿:2013年9月,网络出版:2013年12月25日㊀∗∗Correspondingauthor㊀e⁃mail:fgmsxy@gmail.comChemicalSynthesisandApplicationsofStapledPeptidesGaoShuai1,2㊀GuoYe2㊀LiHaiyan2㊀FangGemin1,2∗(1.HighMagneticFieldLaboratory,ChineseAcademyofSciences,Hefei230031,China;2.DepartmentofChemistry,TsinghuaUniversity,Beijing100084,China)Abstract㊀Regulationofavarietyofbiologicalprocessesdependsontheprotein⁃proteininteractions.Generally,theprotein⁃proteininteractionsurfaceistoolargetobeselectivelytargetedbysmallmoleculedrugs.Besides,proteindrugcandidatescannotbeuseddirectlyforthispurposebecauseoftheirlowcellularmembranepermeability.Duetotheseproblems,itisimperativetodevelopthenext⁃generationtherapeuticarsenalsthatcombinethemembranepermeabilityofsmallorganicmoleculeswiththebroadtargetabilityofprotein⁃baseddrugs.Toovercomethischallenge,etal.designedanovelkindofpeptidesthatweredesignatedashydrocarbon⁃stapledα⁃helicalpeptides.Thesyntheticmini⁃proteincanstronglyconfineitsconformationintoα⁃helixbyintroducinganall⁃hydrocarbonchemicalbrace.Thepharmacologyofthestapledpeptides,comparedwiththeirunstapledcounterpart,isgreatlyimproved,includingenhancingproteolyticresistanceandcellularpermeability.Inthispaper,wewillreviewtherecentadvancesofthestapledpeptidesinrespectoftheirchemicalsynthesis,biophysicalpropertiesandpharmaceuticalapplicationsoftheminthecancer⁃,andHIV⁃associatedtreatment,theregulationofsignalpathwayandtherepressionoftumor⁃activatedproteins.Keywords㊀tapledpeptides;protein⁃proteininteractions;peptidedrugsContents1㊀Introduction2㊀Synthesisandmodificationofstapledpeptides2 1㊀Selectionofinsertionsitesofα⁃methyl,α⁃alkenylglycine2 2㊀Chemicalsynthesisofstapledpeptides网络出版时间:2014-01-02 16:28网络出版地址:/kcms/doi/10.7536/PC130771.html化学进展,2014,26(1):100 109㊃101㊀㊃2 3㊀Modificationonstapledpeptides2 4㊀Synthesisoflong⁃chainstapledpeptides3㊀Biophysicalpropertiesofstapledpeptides3 1㊀Conformationofstapledpeptides3 2㊀Highbindingaffinitytotargetproteins3 3㊀Resistancetoproteolyticenzymes3 4㊀Highcellularpermeability3 5㊀Characterizationofitsbioactivity4㊀Functionandapplicationofstapledpeptides4 1㊀Applicationincancer⁃associatedtreatment4 2㊀ApplicationinHIV⁃associatedtreatment4 3㊀Applicationinregulationofsignalpathway4 4㊀Applicationinhepatitis⁃associatedtreatment5㊀Conclusionandoutlook1㊀引言蛋白⁃蛋白相互作用(PPI)在许多生物过程中扮演着重要的角色,例如病毒的自组装,细胞的增殖㊁生长㊁分化及程序性死亡㊂人类疾病中许多潜在的治疗靶标主要是蛋白⁃蛋白相互作用㊂由于大部分PPI面比较大而且是不连续的平面,小分子试剂很难与其特异性紧密结合㊂目前,大约有10%的胞外疾病可以利用蛋白类药物来治疗㊂蛋白药物最大的缺点是不能透过细胞膜,因而无法靶向于胞内靶标㊂基于小分子和蛋白类药物的局限,发展能穿过细胞膜的多肽㊁蛋白质和核酸逐渐成为药物研究的前沿问题㊂最近生物大分子化学合成方面取得了一些新的进展,为研发这类药物提供了有力的技术工具[1 21]㊂最近研究表明,具有α螺旋结构和富含正电荷的多肽[22 24]可以穿过细胞膜㊂因此,越来越多的研究开始关注含有α螺旋结构的多肽的合成与应用㊂然而,多肽一旦从母体上分离就不能保持原有的二级结构,由于构象的不稳定,多肽与作用蛋白的结合能力非常弱,而普通的线性多肽不能透过细胞膜,且易被蛋白酶水解[25]㊂基于此,人们不断尝试发展稳定α螺旋结构的方法,例如,利用二硫键或分子内酰胺键作为支架㊂然而,这些支架在生理环境下均不能稳定存在㊂2000年,Verdine等发展了一种用碳碳键作为支架来稳定多肽α螺旋结构的方法[26]㊂由该方法得到的多肽称为订书肽(stapledpeptides)㊂订书肽有着更高的α螺旋程度,与靶标的结合能力增加5 5000倍㊂此外,订书肽能透过细胞膜,难被蛋白酶水解,在生物体内的半衰期较长㊂本文将主要从合成方法㊁理化性质和生物学功能及前景展望来4个方面介绍订书肽㊂表1为三种药物分子优缺点比较㊂表1㊀三大类型药物分子的比较Table1㊀Threekindsofpharmaceuticsmoleculesresearchobjectmolecularweight(Da)advantagesdisadvantagessmallorganicmolecules<1000Highstability,highcellularpermeabilityandlowcostofproductionseveresideeffects,inabilitytodisruptprotein⁃proteininteraction,anddemandforstructuraloptimizationproteins>10000lowtoxicity,abilitytoselectivelytargetproteininterfaceshavinglargeshallowsurfacespoorinvivostability,unabletotraversecellmembranes,highcostofproductionstapledpeptides1000 5000lowtoxicity,highstabilityinvivo,accessibletotargetintracellularproteinswithspecificityfewstudiesontheirsafetyandefficacyinhuman2㊀订书肽的合成与修饰订书肽的合成策略如下,首先在固相合成多肽链过程中引入两个α⁃甲基,α⁃烯基非天然氨基酸,然后通过烯烃复分解反应(RCM)环化,得到订书肽[27]㊂α⁃甲基,α⁃烯基非天然氨基酸因含有手性中心,需采用手性基团诱导来合成㊂以S⁃型α⁃甲基,α⁃烯基非天然氨基酸的合成为例,我们简单介绍合成该类物质的一般方法,见图1㊂首先,在三乙胺催化下,手性辅基试剂(1R,2S)⁃2⁃胺基⁃1,2⁃二苯乙醇与2⁃溴丙酸乙酯发生亲核取代反应,并采用(Boc)2O保护自由胺基;接下来,在对甲基苯磺酸的催化下,环状的含有手性辅基的丙氨酸前体得以高效生成,在碱性催化剂和低温下,烯基基团高效立体选择性地连接到氨基酸的α⁃位㊂最后,在氨基锂条件下脱去手性辅基,并采用Fmoc基团保护α⁃胺基㊂2 1㊀非天然氨基酸插入位点的选择为了使订书肽与靶点蛋白质的相互作用不受外加非天然结构的影响,选择非天然氨基酸的插入位点至关重要㊂通过对蛋白质的核磁或晶体数据的分析,可以选择与靶向蛋白相互用的α螺旋多肽片段㊃102㊀㊃ProgressinChemistry,2014,26(1):100 109图1㊀非天然氨基酸插入位点及合成[27,29,30]Fig.1㊀Insertionsitesandsyntheticrouteofα⁃methyl,α⁃alkenylglycine[27,29,30]为研究对象,同时选择不参与靶向蛋白作用的氨基酸残基作为非天然氨基酸插入的潜在位点㊂如果缺乏上述数据,也可以首先合成一系列锁定多肽,然后通过活性筛选的方法选出最优结构的订书肽㊂通常,一对用于RCM反应的非天然氨基酸的合成流程[28,29]及插入在多肽序列的i,i+3位,i,i+4位或者i,i+7位的位点,如图1㊂一般而言,选择合成的构象锁定α螺旋多肽的长度不超过20个氨基酸[30]㊂在设计多肽过程中,电荷也是影响订书肽功能的重要因素,正电荷有利于多肽跨膜,而负电荷不利于跨膜㊂研究发现,将正负电荷分别放在肽链的碳末端和氮末端可以产生额外的氢键结合,该结构能中和订书肽产生的大的偶极作用㊂2 2㊀订书肽的合成通常采用Fmoc⁃固相多肽合成方法制备订书肽㊂普通氨基酸的侧链由对酸不稳定的保护基保护,α⁃氨基由被对碱不稳定的Fmoc保护基保护㊂两个用于构象锁定的氨基酸均为α⁃甲基,α⁃烯基非天然氨基酸㊂这两个非天然氨基酸间隔一般为两个㊁三个或者六个氨基酸,其中i,i+3⁃位和i,i+4⁃位稳定一个α⁃螺旋,i,i+7⁃位稳定两个α⁃螺旋,如图1㊂可以根据碳端官能团来选择树脂,如需碳端保留羧基,可以选择2⁃cl⁃trt树脂或Wang树脂;如需碳端为酰胺,可以选择RinkAmide⁃AM树脂㊂多肽合成完成后,采用钌作为催化剂进行烯烃复分解反应关环,形成碳碳键支架㊂根据后续实验需要,订书肽可以在固相上进行进一步的修饰㊂最后,将目标多肽从树脂上切割下来进行纯化,图2为i,i+4⁃位订书肽合成的流程示意图㊂图2㊀固相合成订书肽[25]Fig.2㊀Solid⁃phasepeptidesynthesisofstapledpeptides[25]2 3㊀订书肽的修饰在从树脂上切割下订书肽之前,将多肽氮端去化学进展,2014,26(1):100 109㊃103㊀㊃保护,裸露出α⁃氨基,继而可以在该位置进行不同的修饰㊂如果不需要氨基的电荷,可以进行乙酰化修饰;如果需要其他修饰,可以进一步进行修饰㊂订书肽的修饰大致可以分为两类:荧光素类标签(主要是荧光素)和亲和类标签(主要是生物素)㊂图3为主要的订书肽的修饰过程㊂订书肽氮端修饰荧光素可以用来研究多肽的细胞吸收和生物物理性质;氮端修饰生物素可用来研究多肽的生物物理性质和评价生物体内的靶向反应㊂当修饰氮端的时候,必须考虑修饰的位置是否会影响订书肽与靶向蛋白的结合能力㊂图3㊀订书肽修饰基团[41]Fig.3㊀Modificationsonstapledpeptides[41]此外,也可以对订书肽的碳端进行修饰㊂2011年,Muppidi等发展了在订书肽的碳端修饰精氨酸的方法[31]㊂实验结果表明,碳端精氨酸修饰不仅增加了订书肽的α螺旋程度,而且增强了订书肽的细胞入膜性,并且无明显的细胞毒性㊂2 4㊀长链订书肽的合成一般认为,由30个以上氨基酸残基组成的订书肽的合成不能通过固相合成一次高效合成,而需要多肽片段连接反应实现㊂2013年,Pentelute课题组,用 自然化学连接反应 (nativechemicalligation,NCL)的方法合成了长链非经典的订书肽(其侧链为半胱氨酸与六氟化苯或十氟联苯反应关环,而非Verdine型订书肽)从而使订书肽的得到更广泛的应用[19]㊂他们采用的连接方法为Kent发明的NCL[1],它涉及氮端半胱氨酸肽段与碳端硫酯肽段㊂NCL在蛋白质合成与半合成中取得了广泛的应用,但是碳端硫酯的Fmoc化学合成还存在挑战㊂近期的一个改进方法是我们发展的利用碳端酰肼代替硫酯进行多肽酰肼连接技术[6],该方法基本原理是在弱酸条件下多肽酰肼被亚硝酸氧化为酰基叠氮,并在芳基硫醇存在下原位转化为硫酯后与N端Cys肽实现化学选择性连接反应㊂与硫酯相比,碳端酰肼肽可以直接采用Fmoc法固相合成高效得到,且易于自动化㊂此外,酰肼肽可以实现生物表达,使酰肼法应用范围更加广泛㊂3㊀订书肽生物物理性质的表征订书肽的结构和生物活性可以通过多种生物物理的实验进行表征,例如,圆二色光谱[32]㊁二维核磁共振谱㊁X射线单晶衍射㊁荧光偏振和表面等离子体共振等㊂我们从以下5个方面来阐述该方面的进展㊂3 1㊀订书肽结构的表征圆二色光谱㊁核磁共振谱和X射线单晶衍射均可以用来表征订书肽的二级结构㊂圆二色光谱可用来表征订书肽的α螺旋的稳定程度㊂在多肽中主要的光活性基团是肽链骨架中的肽键㊁氨基酸的芳香残基和二硫键㊂如果多肽含有不规则的二级结构,那么其圆二色光谱在195nm处将有一个强的吸收峰;如果多肽含有α螺旋结构,那么其圆二色光谱在208nm和222nm处均有吸收峰㊂已知多肽的浓度,可以根据圆二色光谱在222nm的吸收信号来定量订书肽的α螺旋程度㊂通过对订书肽在不同温度下的圆二色光谱的测试,可以直观研究多肽构象的热稳定性㊂Baek等用圆二色谱表征了SAH⁃p53⁃8的结构,发现了支架结构能稳定多肽的α螺旋[33]㊂核磁共振谱和X射线单晶衍射可以直接模拟出订书肽的实际结构,并可以确定订书肽与靶蛋白的结合位点,为进一步的订书肽的设计提供了结构基础㊂Phillips等设计了靶向雌激素受体的订书肽[34]㊂通过对一系列锁定多肽的核磁与单晶衍射结构的表征,他们发现订书肽的碳碳支架会影响其与疏水蛋白表面的相互作用㊂3 2㊀订书肽与靶蛋白结合能力表征荧光偏振与表面等离子共振技术可以用于多肽与靶向蛋白结合能力的测定,并且能定量测量订书肽结合常数[35 38]㊂偏振荧光的强弱程度与荧光分子的大小呈正相关,与其受激发时转动速度呈反相关㊂在固相多肽合成的过程中将一个荧光基团引入订书肽,如异硫㊃104㊀㊃ProgressinChemistry,2014,26(1):100 109氰酸荧光素㊂在溶液中,靶向蛋白与订书肽结合,可以产生荧光偏振,荧光偏振程度与多肽绑定在靶向蛋白的数量有关㊂通过测量偏振荧光,可以定量测定多肽与靶向蛋白的结合常数㊂另一种改进的荧光偏振方法可以测定不含荧光基团的订书肽阻断蛋白⁃蛋白相互作用的能力㊂在这种改进的荧光偏振中,含有荧光修饰的线性天然多肽与不含荧光修饰的订书肽混合在一起㊂通过对含有荧光标记的天然多肽荧光偏振降低程度的测量,来测量订书肽阻断天然多肽与蛋白靶向的结合能力㊂2009年,Bautista等[39]用荧光偏振的方法,分析了构象锁定的β多肽与hDM2之间的结合能力㊂他们发现构象锁定的β多肽与靶蛋白的结合能力与引入构象锁定支架的位置相关,有些位置可以明显增强结合能力,有些位置却会明显降低结合能力㊂在表面等离子体共振实验中,首先将生物素修饰的订书肽固定在生物传感芯片上,然后将其暴露于靶向蛋白中㊂这样订书肽与靶向蛋白之间的相互作用可以被直接测定,并且可以得到结合的动力学过程㊂表面等离子体实验也可以用于测定订书肽抑制蛋白复合物形成的程度㊂将蛋白复合物固定在生物传感芯片上,然后将其暴露在订书肽中,这样可以测定订书肽对多蛋白复合物的结合与解离动力学影响㊂3 3㊀订书肽酶解稳定性的表征从人工合成多肽到药物,多肽的酶解稳定性成为一个重要的指标,也是一个主要的障碍㊂由于蛋白水解酶水解酰胺键需要多肽有一个舒展的构象,因此用支架来锁定多肽的α螺旋结构可以有效地抑制多肽被蛋白水解酶水解㊂为了评估多肽的体外酶解稳定性,需要基于订书肽的序列选择蛋白水解酶㊂胰蛋白酶可以识别精氨酸(Arg)和赖氨酸(Lys),糜蛋白酶主要识别苯丙氨酸(Phe)㊁酪氨酸(Tyr)㊁亮氨酸(Leu)和甲硫氨酸(Met)㊂Bird等[40]表征了Bcl⁃2域的订书肽,并进行了酶解稳定性的测定㊂他们通过对比荧光素标记的订书肽与荧光素标记的线性肽在胰蛋白酶存在下不同时间段的荧光强度变化来确定订书肽的酶解稳定性㊂对订书肽进行体内或体外的血清稳定性测定可以更加明确地表明多肽的酶解稳定性㊂3 4㊀订书肽入膜性的表征流式细胞计和共聚焦荧光显微镜这两种方法可以利用荧光标记订书肽来研究多肽的细胞通透性[41]㊂单个含有荧光分子的细胞可以便捷地被流式细胞计筛选出,这样可以精确了解订书肽的入膜效果㊂但是,流式细胞计数不能观察订书肽在细胞中的具体位置㊂由于黏附在细胞表面的订书肽会产生入膜的错误信息,在分析订书肽入膜性时,必须用胰蛋白酶除去吸附细胞表面的订书肽㊂共聚焦荧光显微镜法研究的细胞数量明显要少于流式细胞计所研究的数目㊂需要指出的是,共聚焦荧光显微镜法可以研究订书肽的入膜的更多细节,如订书肽在细胞内的具体位置,但是共聚焦显微镜法只能定性的判断多肽是否能进入细胞㊂最近发展了一种可以定量测定多肽入膜性的荧光显微镜法,也可以直接定量比较多肽的入膜性差异,但不能提供可视化信息㊂Muppidi等[31]采用流式细胞计和共聚焦荧光显微镜研究了精氨酸修饰的订书肽的入膜过程㊂通过流式细胞计的方法,他们发现精氨酸修饰的订书肽可以明显提高多肽的入膜性;利用共聚焦显微镜法,他们进一步的确认了该结果,并提出精氨酸修饰的订书肽的入膜可能是通过内吞机理实现的㊂3 5㊀订书肽生物活性的表征理论计算结构表明订书肽中支架的局部稳定作用比α螺旋程度对生物活性的影响可能更大,测定订书肽的生物活性也成为必不可少的一步㊂体外免疫共沉淀可以测定订书肽在细胞环境下与靶蛋白的结合能力[42 45]㊂订书肽的免疫共沉淀过程可以简述为用抗体将目标蛋白特异性沉淀下来,同时与目标蛋白结合的订书肽也一起被沉淀㊂常用两种订书肽进行该实验,一种是利用荧光素标记的订书肽,另一种是利用生物素标记的订书肽㊂具体步骤主要为,在细胞裂解液中加入靶蛋白的特异性抗体,孵育一段时间后,加入与抗体特异性结合的琼脂糖上的蛋白A或蛋白G㊂当订书肽与靶蛋白结合时,订书肽也同时被沉降;沉淀复合物通过变性聚丙烯酰胺凝胶电泳又被分开;最后采用免疫印迹实验进一步证实构象锁定肽与靶蛋白结合㊂订书肽是否具有潜在的医学应用是通过活体内其功能的测量来评估的㊂将订书肽注入到活的患病动物体内,观察和测定动物体内各项生理指标以确定订书肽的生物活性㊂4 订书肽的生物医学功能与应用到目前为止,国际上有许多课题组都在从事与订书肽相关的研究,并取得了一定的成果㊂订书肽在治疗癌症㊁抑制艾滋病和丙型肝炎以及调节信号通路等方面的应用均有报道㊂下面主要将从这几个化学进展,2014,26(1):100 109㊃105㊀㊃方面简单介绍一下订书肽的医学应用㊂4 1㊀订书肽在癌病防治中的应用4 1 1㊀调控p53基因p53基因是一种抑癌基因,是细胞生长周期中的负调节因子,与DNA的修复㊁细胞分化㊁细胞周期的调控等生命过程有关㊂p53的缺失和突变及相关蛋白酶体的降解会导致肿瘤细胞的产生㊂修复p53的活性可以更加有效地治疗癌症㊂E3泛素连接酶hDM2直接结合在p53蛋白的反式激活域,靶向p53蛋白进行酶解如图4a所示㊂hDM4/hDMx可以抑制p53的活性㊂治疗癌症的一个有效的方法是寻找一种可以抑制hDM2/hDMx与p53结合的活性分子㊂基于p53序列而设计的多肽类抑制剂可以高效地结合hDM2;但线性的多肽不能进入细胞膜,且酶稳定性差㊂基于此,Bernal等[35]利用碳碳支架设计合成构象锁定肽,明显提高了多肽的入膜性和酶解稳定性,订书肽的结构如图4b与4c所示㊂含有15个氨基酸的构象锁定可以抑制p53蛋白与hDM2蛋白之间的相互作用㊂订书肽的α螺旋结构会插入到hDM2表面的疏水凹槽中从而抑制p53与之结合㊂该订书肽中的三个氨基酸对于结合hDM2是必不可少的,分别是19位苯丙氨酸㊁23位色氨酸和26位亮氨酸㊂SAH⁃p53疗法通过构象锁定肽SAH靶向转录过程激活p53达到抑制肿瘤㊂该策略的设计思路如下,首先,设计与hDM2相互作用的订书肽,碳碳支架的位置尽量避开与hDM2结合的重要部位;其次,利用烯烃复分解反应合成了4条i,i+7位订书肽(SAH⁃p53s1 4);最后,对订书肽SAH⁃p53s1 4进行生物物理实验表征㊂圆二色谱表明多肽的α螺旋程度都有所增加;荧光偏振实验发现订书肽的亲和力与天然多肽相近㊂细胞实验发现SAH⁃p53s1 4均难以跨过细胞膜㊂在生理pH条件下,订书肽SAH⁃p53s1 4由于带两个负电荷而难以通过细胞膜㊂他们将天冬氨酸与谷氨酸分别替换为天冬酰胺与谷氨酰胺,发展了第二代多肽化合物SAH⁃p53s5 8㊂细胞实验表明SAH⁃p538与hDM2有着高的亲和性并可以跨过细胞膜㊂Western印迹实验进一步证实SAM⁃p538能恢复p53的正常水平㊂该研究表明订书肽可以用于阻断蛋白⁃蛋白相互作用,在癌症的治疗方面有着广阔的前景㊂2010年,Bernal等[46]对SAH⁃p538调控p53进行了进一步的研究㊂hDMx的结构分析发现hDMx抑制p53的反式激活的α螺旋与hDM2的模式极为相似㊂因而,他们测试SAH⁃p538对hDMx的靶向抑制作用,并且研究了hDMx被抑制后的体内p53功能变化,实验结果表明,SAH⁃p538可以有效地抑制hDMx㊂SAH⁃p538既可以靶向hDM2也可以靶向hDMx,并且SAH⁃p538对于hDMx靶向能力比对hDM2的靶向能力高25倍㊂SAH⁃p538靶向细胞里的hDMx,阻断p53⁃hDMX复合物的形成,从而激活p53的肿瘤抑制通路㊂因此,对hDM2和hDMx双靶向的抑制剂可以更好地用于治疗癌症㊂compoundsequenceKd(nM)permeabilityWTAc⁃LSQETFSDLWKLLPEN⁃NH2410ʃ19 SAH⁃p53⁃1Ac⁃LSQETFSD∗WKLLPE∗⁃HN2100ʃ8 SAH⁃p53⁃2Ac⁃SQE∗FSDLWK∗LPEN⁃NH2400ʃ50SAH⁃p53⁃3Ac⁃LSQ∗TFSDLW∗LLPEN⁃NH21200ʃ89 SAH⁃p53⁃4Ac⁃LSQETF∗DLWKLL∗EN⁃NH20.92ʃ0.11 SAH⁃p53⁃5Ac⁃LSQETF∗NLWKLL∗QN⁃NH20.80ʃ0.05+SAH⁃p53⁃6Ac⁃LSQQTF∗NLWRLL∗QN⁃NH256ʃ11+SAH⁃p53⁃7Ac⁃QSQQTF∗NLWKLL∗QN⁃NH250ʃ10+SAH⁃p53⁃8Ac⁃QSQQTF∗NLWRLL∗QN⁃NH255ʃ11+图4㊀SAH⁃p53s的序列[35]Fig.4㊀SequencesofstapledpeptidesSAH⁃p53s[35]4 1 2㊀对于Bcl⁃2蛋白家族的调控B淋巴细胞瘤⁃2基因(B⁃celllymphoma⁃2)简称Bcl⁃2,是调控细胞凋亡的重要基因之一㊂Bcl⁃2基因是一种原癌基因,在抑制细胞凋亡过程中发挥重要的作用㊂Bcl⁃2家族蛋白是由4个保守的Bcl⁃2同源的区域组成,且每个同源域都包含一个α螺旋结构㊂根据在细胞凋亡过程中所起的功能不同,Bcl⁃2蛋白家族可以分为两大类,一类具有抑制细胞调亡作用,如Bcl⁃2㊁Bcl⁃XL㊁Bcl⁃1㊁Mcl⁃1等;另一类具有促进细胞凋亡作用,如Bax㊁Bcl⁃Xs㊁Bak㊁Bid等㊂Bcl⁃2家族蛋白构成了一个调节细胞凋亡的关键点㊂最近研究发现Bcl⁃2家族蛋白除了调控线粒体中凋亡因子的释放外,还在生命活动中扮演者许多新的角色,例如,调节新陈代谢[47,48]㊁体内Ca2+浓度[49]和线粒体形态[50]㊂Bcl⁃2蛋白通过包含其中的α螺旋结构的BH3片段来调节细胞内的蛋白⁃蛋白相互作用,最终调节许多生物过程㊂㊃106㊀㊃ProgressinChemistry,2014,26(1):100 109天然线性的短肽不能保持原有二级结构,难以进入细胞膜,且对蛋白水解酶不稳定㊂2004年,Walensky等[37]用碳碳支架来稳定的短肽的构象㊂通过模拟Bid的BH3区域,设计了一组具有稳定α螺旋结构的订书肽SAHBs,如表2所示㊂通过对天然BH3与SAHBs的圆二色谱比较,他们发现天然多肽主要以不规则卷曲的形式存在,只有16%的α螺旋程度;而SAHBs的α螺旋程度则提高到35%到87%㊂酶解稳定性的实验证实,与天然BH3相比,SAHBs具有更高的酶解稳定性以及血浆稳定性㊂此外,他们还通过核磁实验分别研究BH3和SAHBA与Bcl⁃XL的相互作用㊂外加天然多肽BidBH3或者SAHBA于15N标记的BCL⁃XL溶液后,采集Bcl⁃XL的二维15N⁃1H异核单量子相关核磁共振谱(HSQC)㊂两种HSQC谱图极为相似,这说明SAHBA和天然多肽BidBH3与靶向蛋白Bcl⁃XL的相互作用模式相同㊂荧光偏振实验发现SAHBA结合Bcl⁃XL的能力比天然多肽BidBH3高6倍㊂研究发现在小鼠的肝脏细胞中,SAHBA会使细胞色素c释放增加,而天然多肽BidBH3对细胞色素c释放量几乎没有影响㊂这也进一步证实了SAHBA能够激活细胞凋亡信号通路㊂随后的细胞入膜实验证明SAHBA可以进入细胞膜㊂上述研究结果预示订书肽SAHBs有潜力成为治疗癌症或者其他疾病的药物㊂表2㊀订书肽SAHBs序列[37]Table2㊀SequencesofstapledpeptidesSAHBs[37]compoundsequenceα⁃helicity(%)BIDBH3EDIIRNIARHLAQVGDSNLDRSIW15.7SAHBAEDIIRNIARHLAS5VGDS5NLDRSIW87.5SAHBA(GtoE)EDIIRNIARHLAS5VEDS5NLDRSIW77.8SAHBBEDIIRNIS5RHLS5QVGDSNLDRSIW85.5SAHBCEDIIRNIAS5HLAS5VGDSNLDRSIW59.7SAHBDEDIIRNIARR5LAQVGDS8NLDRSIW35.6㊀㊀Bax是Bcl⁃2家族蛋白中一个促凋亡因子㊂它位于细胞基质中,其被激活后会诱导细胞的死亡㊂Bcl⁃2等抗凋亡蛋白可以与Bax相互作用,抑制细胞的死亡㊂目前,科学家一致认为细胞的凋亡是通过细胞凋亡蛋白与抗凋亡蛋白相互作用来调节的,然而在凋亡应激反应中激活Bax和Bak的机理仍然存在争论㊂Gavathiotis等发现订书肽SAHBs可以直接激活Bax调节的线粒体凋亡[42]㊂通过BimSAHB与Bax复合物的二维15N⁃1H异核单量子相关核磁共振谱与顺磁弛豫增强核磁共振实验,他们确定Bax的激活位点与抗凋亡蛋白的典型模式完全不同㊂Bax激活反应引起了一系列动态连续变化,包括构象的改变与齐聚反应㊂通过一系列订书肽与BAax结合实验发现,只要碳链支架不是位于结合位点,BimSAHB均能有效地与Bax作用㊂该工作为癌症的治疗提供了一条新的思路,即建立细胞凋亡调节的一个新的靶标,寻找订书肽来激活癌细胞中的细胞凋亡通路㊂4 2㊀订书肽在艾滋病治疗中的应用人类免疫缺陷病毒(HIV)属于反转录病毒的一种㊂HIV通过破坏人体的免疫能力,导致免疫系统对抗原失去抵抗力,从而引发各种疾病包括癌症㊂HIV⁃1衣壳蛋白在病毒组装中扮演着重要的角色,成为新型艾滋病疗法的一个重要的靶标㊂研究者曾报道一个含12个氨基酸的带有α螺旋结构的多肽(CAI)可以在体外靶向衣壳的碳端区域(C⁃CA)阻断病毒衣壳的组装[51]㊂但是,该多肽因不能进入细胞膜而在生物体内不能发生作用,不适合作为抗病毒的药物㊂CAI在复合物CAI⁃C⁃CA结合的结构已经通过高分辨X射线晶体衍射法被解析[52]㊂Zhang等[38]通过结构优化将CAI转变成可以进入细胞膜的订书肽(NYAD⁃1)㊂首先,他们利用圆二色谱测试溶液中NYAD⁃1与CAI的二级结构,发现CAI主要以无规则卷曲的形式存在,并无典型的α螺旋结构㊂这一结果间接支持了结合诱导CAI的构象发生变化导致CAI与C⁃CA复合物的形成㊂不同的是,NYAD⁃1有着明显的α螺旋结构,其螺旋程度大约为80%㊂通过核磁谱图映射,他们发现NYAD⁃1和CAI分别与C⁃CA结合的化学位移非常相似,从而证明其结合方式也非常相似㊂通过共聚焦显微镜实验,证实订书肽可以进入细胞膜;通过体外细胞实验,他们证实了NYAD⁃1可以抑制病毒的组装㊂在病毒侵染细胞实验中,NYAD⁃1没有任何活性,表明订书肽对病毒进入细胞膜的过程没有抑制作用㊂这也进一步确定NYAD⁃1通过直接结合在CA上影响二聚界面的形成,阻碍成熟的和未成熟的病毒衣壳的形成,减少病毒感染人体内细胞㊂NYAD⁃1是对于抗HIV⁃1有着广谱的抗病毒活性,有着被优化成为一种新的治疗艾滋病药物的潜力㊂许多链段长的多肽由于结构的丧失和酶解稳定性差而致使其生物利用性低㊂恩弗韦肽是由36个氨基酸组成的多肽,是第一个可以阻断HIV⁃1进入人体的膜融合抑制剂㊂它通过靶向病毒的融合片段来抑制HIV⁃1病毒的感染㊂但是,由于生物稳定性差,不能口服,恩弗韦肽一直被限制成为补救型的医。

天然药物化学英语

天然药物化学英语

天然药物化学英语Natural Medicinal Chemistry: Exploring the Phytochemicals and Their Therapeutic PotentialThe field of natural medicinal chemistry is a dynamic intersection of chemistry, biology, and pharmacology, focusing on the discovery, isolation, and characterization of bioactive compounds derived from the vast biodiversity of the natural world. These compounds, often referred to as secondary metabolites, have evolved in plants, fungi, and other organisms for various ecological purposes, such as defense against herbivores or pathogens. However, many of these phytochemicals have been found to possess significant medicinal properties, making them invaluable resources for the development of new drugs and therapies.One of the most well-known examples of natural medicinal chemistry is the discovery of the anticancer compound paclitaxel, originally isolated from the bark of the Pacific yew tree, Taxus brevifolia. Paclitaxel, marketed as Taxol, has become a cornerstone in the treatment of various cancers, including ovarian, breast, and lung cancer. The success of paclitaxel has spurred a renewed interest in the exploration of natural products for novel therapeutic agents.The process of natural medicinal chemistry typically involves several stages:1. Bioprospecting: This is the initial step where researchers explore various natural sources, such as rainforests, oceans, and even deserts, to find organisms with potential medicinal properties.2. Extraction: Once a source is identified, the bioactive compounds are extracted using various solvents and techniques, such as maceration, Soxhlet extraction, or ultrasound-assisted extraction.3. Fractionation: The crude extract is then subjected to fractionation to isolate different components based on their chemical properties, such as polarity or molecular weight.4. Bioassay-Guided Isolation: Bioassays are used to test the biological activity of the fractions obtained. The most active fractions are further purified to identify thespecific compounds responsible for the observed effects.5. Structural Elucidation: Advanced analytical techniques, including nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry (MS), are employed to determine thechemical structure of the isolated compounds.6. Synthesis and Optimization: Once the structure of a bioactive compound is known, chemists may synthesize it inthe laboratory and modify its structure to improve its pharmacological properties, such as potency, selectivity, and bioavailability.7. Preclinical and Clinical Trials: Before a compound canbe used in humans, it must undergo rigorous preclinical testing to evaluate its safety and efficacy. If successful, the compound moves on to clinical trials, which are conducted in multiple phases to assess its therapeutic potential in humans.The field of natural medicinal chemistry is not without its challenges. The complexity of natural products, the difficulty in obtaining sufficient quantities for study, and the potential for bioactivity to be species-specific are all factors that researchers must contend with. Additionally, the ethical and sustainable sourcing of biological materials is a critical consideration.Despite these challenges, the potential rewards are immense. Natural products have proven to be a rich source of diverse chemical structures that can serve as leads for drug development. As our understanding of these complex molecules grows, so too does our ability to harness their therapeutic potential, offering hope for the treatment of a wide range of diseases and conditions.。

花生黑腐病研究进展

花生黑腐病研究进展

※种植科学农业与技术2021,VU41,No.0381花生黑腐病研究进展罗梅陈欣瑜尤立谦2袁汇涛2董章勇(1.仲恺农业工程学院植物健康创新研究院,广东广州510225;2.仲恺农业工程学院农业与生物学院,广东广州510225)摘要:花生黑腐病(Cylindrocladium black rot of peanut,简称CBR)是一种由冬青丽赤壳菌(Calonectria ilicico-la)侵染引起的花生病害,是典型的土传和种传病害。

该病原菌可侵染危害花生植株地下部的果针、根系、果荚以及茎基部等。

侵染部位感病后变黑甚至腐烂,发病严重时地上部的叶片表现出萎焉甚至枯萎的症状,最后整个植株枯萎,严重的整个植株死亡。

目前还没有一种理想的防治花生黑腐病的化学药剂与玉米等非寄主植物轮作是控制病害的最有效途径。

本文综述了花生黑腐病的研究进展,包括病害症状与病原菌的形态特征、分布与寄主范围、病原菌生物学特性与发生规律、病害的防治和检疫控制等。

对该病害的分子致病机理研究是未来工作的重点之一。

关键词:花生黑腐病;冬青丽赤壳菌;寄生柱帚霉;防治;花生抗病性中图分类号:S435.652文献标识码:A DOI:10.19754/j.nyyjs.20210215025花生(Arachis hypogaea L.)是我国重要的油料作物和经济作物。

随着花生种植效益的不断增加,我国花生播种面积也在逐年增加[1],花生品种资源也不断在丰富。

一直以来,花生病害都是影响花生产业产量和质量的重要因素。

花生黑腐病(Cylindrocladium black rot of peanut,简称CBR)是一种由冬青丽赤壳菌(Calonectria ilici-cola)(无性态为寄生柱帚霉,Cylindrocladium parasiti-cum)侵染引起的花生病害[2]。

自2009年我国报道以来,目前已经在广东、福建、云南、浙江等多个省份发生,广东省大部分花生产区均发现了该病害。

氨基酸衍生物——一类安全性能好的抗菌剂

氨基酸衍生物——一类安全性能好的抗菌剂

氨基酸衍生物——一类安全性能好的抗菌剂金学平; 唐启明; 余磊; 李健雄【期刊名称】《《化学与生物工程》》【年(卷),期】2019(036)011【总页数】4页(P8-11)【关键词】氨基酸; 氨基酸衍生物; 抗菌剂; 应用【作者】金学平; 唐启明; 余磊; 李健雄【作者单位】武汉软件工程职业学院环境与生化工程学院湖北武汉 430205; 武汉桀升生物科技有限公司湖北武汉 430074; 武汉市药物增溶工程技术研究中心湖北武汉 430205【正文语种】中文【中图分类】TQ226.36氨基酸及其衍生物是一类安全性能非常好的抗菌剂。

由于这类抗菌剂抗菌谱广,抑菌活性强,不易耐药,来源广,价格低,广泛应用于食品工业、日用化妆品以及农业等领域。

作者介绍了氨基酸类抗菌剂的种类及应用,分析了实际使用中存在的问题,预测其发展趋势并提出研发建议。

1 氨基酸类抗菌剂的种类及应用1.1 自由氨基酸甘氨酸是抗菌活性较强的自由氨基酸,能抑制枯草芽孢杆菌、大肠杆菌、乳杆菌、微球菌等的生长繁殖。

在鱼肉、火腿、腊肠、海鲜、花生酱等食品中,加入1%~2%甘氨酸,可以防止食品腐败。

将甘氨酸与低级脂肪酸甘油酯如月桂酸甘油酯合用,对豆腐致病微生物有显著的抑制作用。

其它自由氨基酸如赖氨酸、蛋氨酸、丝氨酸、苯丙氨酸等也有较好的抗菌效果。

收割前,将稀赖氨酸溶液喷洒在莴笋叶上,可延长莴笋保鲜时间。

在加0.2%赖氨酸和0.1%维生素C的水溶液中贮存鲜梨,15 ℃放置48 h无任何变化。

另外,稀蛋氨酸水溶液可防治水稻根腐病。

1.2 氨基酸金属盐配合物大多数氨基酸及其衍生物具有抑菌活性,常见的金属元素也有一定的抑菌活性,因而制备氨基酸金属盐配合物是一种趋势。

目前常用的氨基酸金属盐配合物抗菌剂所用氨基酸包括甘氨酸、谷氨酸、苯丙氨酸、缬氨酸、牛磺酸等氨基酸及其酯类,还包括氨基酸席夫碱,金属包括银、锌、铜、钴、镍等,也有稀土金属离子[1]。

氨基酸金属盐配合物的抑菌活性与配合物的稳定性有关,配合物越稳定抑菌活性越强。

查耳酮类化合物的合成及其生物活性研究进展

查耳酮类化合物的合成及其生物活性研究进展

查耳酮类化合物的合成及其生物活性研究进展夏雅平;崔冬梅【摘要】近年来,随着查耳酮类化合物的生物活性的发现,对它的研究越来越多。

本文以不同的底物出发概述了查耳酮类化合物的合成方法,并对其的生物活性做了一下总结。

%Chalcones have important biological effects,so they get more attentions. In this paper, we summarize some synthetic methods of the chalcones derivatives from different starting substrates, and give a introduction about it's bioactivity.【期刊名称】《浙江化工》【年(卷),期】2011(042)009【总页数】4页(P11-13,16)【关键词】查耳酮;合成;活性【作者】夏雅平;崔冬梅【作者单位】浙江工业大学药学院,浙江杭州310014;浙江工业大学药学院,浙江杭州310014【正文语种】中文【中图分类】X830.70 前言查耳酮类化合物是合成黄酮类化合物的重要中间体,在有机合成中也有着特殊的用途,因此其制备方法受到普遍关注。

随着查耳酮类化合物的生物活性的逐渐发现,对它的研究也越来越深入。

以下介绍查耳酮类化合物主要的合成方法及其生物活性。

1 查耳酮类化合物主要的合成方法1.1 以一氧化碳,苯乙烯,碘苯为原料[1]该反应由苯乙烯出发,与一氧化碳和卤代苯在100℃,5atm和钯催化剂的条件下,在苯乙烯和卤代苯之间插入一个羰基从而得到α,β-不饱和酮。

这个反应的适用性比较广,收率也比较高,但是钯配体的结构比较复杂,且反应时间要20h,不适合工业化的大规模生产。

1.2 以肉桂酰氯和三苯基铋为原料[2]该反应是3mol的肉桂酰氯和1mol三苯基铋在钯催化剂的作用下,通过交叉偶联反应,生成α,β-不饱和酮类化合物,虽然在适当的溶剂和碱的条件下收率可以达到60%以上,但是三苯基铋的价格比较昂贵,限制了该方法的使用。

覆盘子酮技术参数及合成方法

覆盘子酮技术参数及合成方法

覆盘子酮Registry Number: 104-20-1Formula: C11 H14 O2CA Index Name: 2-Butanone, 4-(4-methoxyphenyl)-Other Names: 2-Butanone, 4-(p-methoxyphenyl)- (6CI,7CI,8CI);1-(4-Methoxyphenyl)-3-butanone;1-(p-Methoxyphenyl)-3-butanone;4-(4-Methoxyphenyl)-2-butanone;4-(p-Methoxyphenyl)-2-butanone;4-Methoxybenzylacetone;Anisylacetone;ENT 20279;NSC 405366;Raspberry ketone methyl ether;p-AnisylacetoneBoiling Point285 ℃(1) CAS Boiling Point277 ℃(2) CAS Boiling Point177 ℃Press: 25 Torr (3) CAS Boiling Point166-167 ℃Press: 17 Torr (4) CAS Boiling Point154 ℃(1) CAS Boiling Point138 ℃Press: 0.200 (5) CASTorrBoiling Point120-122 ℃Press: 3 Torr (6) IC Boiling Point110 ℃Press: 1 Torr (7) CAS Boiling Point105 ℃Press: 0.5 Torr (7) CAS Boiling Point100-103 ℃Press: 0.23 Torr (8) IC Boiling Point95 ℃Press: 0.5 Torr (9) IC Boiling Point72 ℃Press: 0.075 Torr (10) ICRegistry Number: 250039-10-2Component Registry Number: 123-11-5Formula: C8 H8 O2MeOFormula: (C8 H8 O2)2CA Index Name: Benzaldehyde, 4-methoxy-, dimer (9CI)Preparation of aromatic carbinols from aldehydes.Kido, Yoichi; Hamazaki, Takashi; Yoneda, Koichi; Ohnishi, Takashi. (Kuraray Co., Ltd., Japan). Jpn. Kokai Tokkyo Koho (2000), 7 pp. CODEN: JKXXAF JP 2000103754 A 20000411 Patent written in Japanese. Application: JP 98-291502 19980929. Priority: . CAN 132:264958 AN 2000:232587 CAPLUSAbstractArCH2CH2CRMeOH [I; Ar = [(fluoro)alkyl-, alkoxy-, OWO-substituted] Ph, naphthyl, furyl; W = alkylene; R = hydrocarbyl], useful as fragrances (no data), are prepd. by reaction of ArCHO (Ar = same as I) with H and Me2CO in the presence of bases and hydrogenation catalysts and reaction of ArCH2CH2COMe (Ar = same as I) with RMgX (R = same as I; X = halo). Reaction of PhCHO with Me2CO under H in the presence of Pd/C and NaOH at 80︒ under 7.0 kg/cm2 gave 81.4% PhCH2CH2COMe, which was treated with MeMgCl in THF at 5︒ to room temp. to give 76.1% PhCH2CH2CMe2OH.Me2CO+M e O80%N O T E:5%P d/C;p r e s s u r e7.0k g/c m2a n d80°i n a n a u t o c l a v e f o r7.5h, R e a c t a n t s:2,R e a g e n t s:2,C a t a l y s t s:1,S o l v e n t s:1,S t e p s:1,S t a g e s:1Methyl(aroxymethyl)difluorosilanes and their n- and π -donor properties. Golovanova, N. I.; Shergina, N. I.; Chernov, N. F.; Trofimova, O. M.; Voronkov, M. G. Inst. Org. Khim., Irkutsk, USSR.Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya (1985), (9), 2132-4. CODEN: IASKA6 ISSN: 0002-3353. Journal written in Russian. CAN 105:133951 AN 1986:533951 CAPLUSAbstract4-XC6H4OCH2SiMe(OMe)2 (X = H, Me, F, Cl, Br) reacted with Et2O.BF3 to give 75-80%4-XC6H4OCH2SiF2Me (I). The IR spectra of PhOH-I complexes gave a Taft σ* value of 1.72 for the SiF2Me group. UV spectra of charge-transfer complexes of 4-XC6H4OCH2R [II; R = SiF2Me, H, Si(OEt)3, SiEt3] with C2(CN)4 were also given. The donor properties of II increased in the stated order of R.Synthesis and bioactivity of novel caffeic acid esters from Zuccagnia punctata. Ramachandra, M. S.; Subbaraju, G. V. Laila Impex Research Centre, Vijayawada, India.Journal of Asian Natural Products Research (2006), 8(8), 683-688. Publisher: Taylor & Francis Ltd., CODEN: JANRFI ISSN: 1028-6020. Journal written in English. CAN 148:238897 AN 2007:187333 CAPLUSAbstractSynthesis of two novel caffeic acid esters was accomplished starting from appropriately substituted benzaldehydes. While compd. 1'-methyl-3'-(3,4-dihydroxyphenyl)propyl caffeate exhibited potent anti-oxidative activity in both the nitroblue tetrazolium and1,1-diphenyl-2-picrylhydrazyl radical-scavenging models, 1'-methyl-3'-(4-hydroxyphenyl)propyl caffeate showed moderate 5-lipoxygenase inhibitory activity.N O T E:R e a c t a n t s:1,R e a g e n t s:1,C a t a l y s t s:1,S o l v e n t s:1,S t e p s:1,S t a g e s:1A chemoselective hydrogenation of the olefinic bond of α ,β -unsaturated carbonyl compounds in aqueous medium under microwave irradiation.Sharma, Anuj; Kumar, Vinod; Sinha, Arun K. Natural Plant Products Division, Institute of Himalayan Bioresource Technology, Palampur, India.Advanced Synthesis & Catalysis (2006), 348(3), 354-360. Publisher: Wiley-VCH Verlag GmbH & Co. KGaA, CODEN: ASCAF7 ISSN: 1615-4150. Journal written in English. CAN 144:467864 AN 2006:213969 CAPLUSAbstractA microwave-assisted mild and eco-friendly catalytic transfer hydrogenation process was developed to reduce various α,β-unsatd. carbonyl compds. into the corresponding satd. carbonyl compds. in the presence of SiO2-supported Pd chloride as catalyst and a combination of MeOH/HCOOH/H2O (1:2:3) as H source within 22-55 min in moderate to excellent yields with 100% chemoselectivity.HON O T E:c h e m o s e l e c t i v e,g r e e n c h e m.,m i c r o w a v e i r r a d n.,s u p p o r t e d c a t a l y s t, R e a c t a n t s:1,R e a g e n t s:1,C a t a l y s t s:2,S o l v e n t s:2,S t e p s:1,S t a g e s:1Process for the preparation of 4-(4-hydroxyphenyl)-2-butanone (raspberry ketone) from 4-methoxybenzaldehyde.(见电子版)Liu, Xiaomin; Cheng, Cunzhao. (Peop. Rep. China). Faming Zhuanli Shenqing Gongkai Shuomingshu (2004), 7 pp. CODEN: CNXXEV CN 1478768 A 20040303 Patent written in Chinese. Application: CN 2003-132154 20030630. Priority: .CAN 142:373555 AN 2005:5461 CAPLUSAbstractA process for the prepn. of 4-(4-hydroxyphenyl)-2-butanone (raspberry ketone) with up to 85% yield from 4-methoxybenzaldehyde, which comprises (1) reacting anisic aldehyde with an aliph. amine in an org. solvent at 120-130︒C for 7-8 h followed by treatment with a Lewis acid in org. solvent-water at 100-120︒C for 7-9 h to obtain 4-hydroxybenzaldehyde, (2) condensing this aldehyde with acetone in water at 30-40︒C and pH 2-3 for 5-7 to4-(4-Hydroxyphenyl)-3-buten-2-one, and (3) hydrogenating this alkene in ethanol in the presence of Ni-Al alloy and Na2CO3 at 20-30︒C, is reported. For instance, a soln. of anisicaldehyde (66.7 kg) and n-butanamine (43.4 kg) in toluene (65.6 kg) was heated slowly to120︒C under stirring, and the reaction was continued for 8 h before the temp. was allowed to cool down to 60︒C. The product (48.6 kg) after filtration was stirred with anhyd. AlCl3 (45.9 kg), toluene (70.2 kg), H2O (130 kg) and ice (100 kg, added in portions) at about 110︒C for 8 h to obtain 4-hydroxybenzaldehyde. A mixt. of H2O (126 kg), NaOH (14 kg), acetone (17.4 kg), 4-hydroxybenzaldehyde (12.4 kg), HCl (35%, 42 kg) and addnl. H2O (42 kg) was stirred at34︒C and PH 2-3 for 7 h to give 4-(4-Hydroxyphenyl)-3-buten-2-one. This alkene (144.2 kg), ethanol (244 kg), Ni-Al (1:1, 14.4 kg) and Na2CO3 (1.4 kg) was mixed and hydrogenated with H2 at 24︒C for 22 h to afford raspberry ketone.HO+N i·A lRe age ntN O T E:i n d u s t r i a l,s c a l a b l e,R e a c t a n t s:1,R e a g e n t s:3,S o l v e n t s:1,S t e p s:1,S t a g e s:1Ionic hydrogenation of α ,β -unsaturated ketones with cyclohexane in the presence of aluminum halides.Koltunov, K. Yu.; Repinskaya, I. B.; Borodkin, G. I. Novosibirsk State University, Novosibirsk, Russia.Russian Journal of Organic Chemistry (Translation of Zhurnal Organicheskoi Khimii) (2001), 37(11), 1534-1541.Publisher: MAIK Nauka/Interperiodica Publishing, CODEN: RJOCEQ ISSN: 1070-4280. Journal written in English. CAN 137:20055 AN 2002:200708 CAPLUSAbstract4-Methyl-3-penten-2-one, 3-hepten-2-one, 3-methyl-1-phenyl-2-buten-1-one,4-(2,4-dichlorophenyl)-3-buten-2-one, 4-(4-hydroxyphenyl)-3-buten-2-one,4-(4-methoxyphenyl)-3-buten-2-one, 4-(2-hydroxyphenyl)-3-buten-2-one, and4-[4-(dimethylamino)phenyl]-3-buten-2-one, and 3-(4-methoxyphenyl)-1-phenyl-2-propenone react with cyclohexane in the presence of excess aluminum chloride or aluminum bromide in CH2Cl2 or CH2Br2, resp., at room temp. to form the corresponding satd. ketones in high yields. Using 4-phenyl-3-buten-2-one and 4-(4-methoxyphenyl)-3-buten-2-one as examples,it was shown that the reaction pattern does not change in going from the Lewis acids AlCl3 and AlBr3 to proton-donor acid system CF3SO3H-SbF5. The reactive intermediates are likely to be C-protonated complexes of α,β-unsatd. ketones with aluminum halides or their O,C-diprotonated analogs.N O T E : R e a c t a n t s : 1, R e a g e n t s : 2, S o l v e n t s :1, S t e p s : 1, S t a g e s : 1Synthesis of p-hydroxyphenylbutanone. (见电子版)Yong, Jixin; Guo, Maodao. (Gushan Perfumery, Jiangyin City, Peop. Rep. China). Faming Zhuanli Shenqing Gongkai Shuomingshu (1995), 8 pp. CODEN: CNXXEV CN 1097729A 19950125 Patent written in Chinese. Application: CN 93-120105 19931218. Priority: . CAN 124:55564 AN 1995:994274 CAPLUSAbstractThe title compd. (I) was prepd. by condensation of p-hydroxybenzaldehyde with acetone followed by catalytic hydrogenation. Thus, condensation of p-hydroxybenzaldehyde with acetone in the presence of aq. NaOH gave 96.1% p-hydroxybutenone, hydrogenation of which in EtOH in the presence of Ni gave 100% I.CHOHO+Me 2COHO96%NOT E: Re ac tan ts : 2, Re age nt s: 1, C ata ly st s: 1, So lv en ts: 1, St ep s: 1, S tag es : 2N O T E:R e a c t a n t s:1,R e a g e n t s:1,C a t a l y s t s:1,S o l v e n t s:1,S t e p s:1,S t a g e s:1Isolation of a natural antioxidant, dehydrozingerone from Zingiber officinale and synthesis of its analogues for recognition of effective antioxidant and antityrosinase agents.Kuo, Ping-Chung; Damu, Amooru G.; Cherng, Ching-Yuh; Jeng, Jye-Fu; Teng, Che-Ming; Lee, E-Jian; Wu, Tian-Shung. Department of Biotechnology, National Formosa University, Yunlin, Taiwan.Archives of Pharmacal Research (2005), 28(5), 518-528. Publisher: Pharmaceutical Society of Korea, CODEN: APHRDQ ISSN: 0253-6269. Journal written in English.CAN 143:205759 AN 2005:502558 CAPLUSAbstractIn the present study, the antioxidative and inhibitory activity of Zingiber officinale Rosc. rhizomes-derived materials (on mushroom tyrosinase) were evaluated. The bioactive components of Z. officinale rhizomes were characterized by spectroscopic anal. as zingerone and dehydrozingerone, which exhibited potent antioxidant and tyrosinase inhibition activities.A series of substituted dehydrozingerones [(E)-4-phenyl-3-buten-2-ones] were prepd. in admirable yields by the reaction of appropriate benzaldehydes with acetone and the products were evaluated in terms of variation in the dehydrozingerone structure. The synthetic analogs were examd. for their antioxidant and antityrosinase activities to probe the most potent analog. Compd. (I) inhibited Fe2+-induced lipid peroxidn. in rat brain homogenate with an IC50 = 6.3±0.4 μM. In the 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical quencher assay, six compds. showed radical scavenging activity equal to or higher than those of the std. antioxidants, like α-tocopherol and ascorbic acid. Compd. (II) displayed superior inhibition of tyrosinase activity relative to other examd. analogs. Three compds. exhibited noncompetitive inhibition against oxidn. of 3,4-dihydroxyphenylalanine (L-DOPA). From the present study, it was obsd. that both no. and position of hydroxyl groups on arom. ring and a double bond between C-3 and C-4 played a crit. role in exerting the antioxidant and antityrosinase activity.33HOIIICHOHO+Me 2CONOT E: st er eos el ec tiv e,Re ac tan ts : 2, Re age nt s: 2, S olv en ts : 2, St ep s: 1, S tag es : 2The Synthesis of Phycopsisenone, A New Phenolic Secondary Metabolite from the Sponge Phycopsis sp.Kad, G. L.; Singh, Vasundhara; Khurana, Anupam; Singh, Jasvinder. Department of Chemistry, Panjab University, Chandigarh, India.Journal of Natural Products (1998), 61(2), 297-298. Publisher: American Chemical Society, CODEN: JNPRDF ISSN: 0163-3864. Journal written in English. CAN 128:140554 AN 1998:88123 CAPLUSAbstractA short first total synthesis of phycopsisenone I [R = H, R1 = COCH2C(Me)2OH] was described. The synthesis was achieved via microwave irradn (微波辐射). induced aldol condensation of 4-hydroxybenzaldehyde and acetone to form ketone I (R = H, R1 = COMe), subsequent silylation with Me3SiCl to form silyl ether I [R =Me3Si, R1 = C(OSiMe3):CH2], and TiCl4 catalyzed condensation with acetone to give phycopsisenone in 29.4% overall yield.OR IMe2CO+HOMeHO65%NOT E: ph ot och em., mi cr owa ve i rra dn. a t 150 W f or 15 m in., Re ac tan ts: 2, Re age nt s: 1, S olv en ts: 1,St ep s: 1, S tag es: 1。

不同药剂对水稻纹枯病田间防效研究

不同药剂对水稻纹枯病田间防效研究

不同药剂对水稻纹枯病田间防效研究刘素玲汤玉煊楚宗艳占亚楠常明娟杜玉倍吴超(开封市农林科学研究院,河南开封475004)摘要为寻找防治水稻纹枯病的高效农药,指导水稻生产,本研究借助于开封市科技发展计划项目的支持,以10%己唑醇乳油、19%啶氧·丙环唑悬浮剂、24%噻呋酰胺悬浮剂、30%肟菌·戊唑醇悬浮剂、30%苯醚甲环唑·丙环唑乳油为供试药剂,以汴稻1号为试验对象,开展了水稻纹枯病的田间药效防治试验。

结果表明,10%己唑醇乳油和24%噻呋酰胺悬浮剂对水稻纹枯病的防治效果较好,分别达到87.99%和87.67%,极显著高于其他几个处理;且对水稻安全,可分别使水稻较不施药对照增产8.9%和8.5%。

因此,上述两种药剂可以作为今后防治水稻纹枯病的替代药剂,建议在生产上重点推广使用,也可以用10%己唑醇乳油、19%啶氧·丙环唑悬浮剂、24%噻呋酰胺悬浮剂、30%肟菌·戊唑醇悬浮剂4种药剂交替使用或按比例混合使用。

关键词水稻纹枯病;防效;产量;安全性中图分类号S435.111.4+2文献标识码A文章编号1007-5739(2023)22-0065-02DOI:10.3969/j.issn.1007-5739.2023.22.018开放科学(资源服务)标识码(OSID):开封市地处我国黄淮海地区的中间地带,冷暖气候交流比较频繁,易出现旱、涝、干热风、大风、冰雹等多种自然灾害,同时易造成水稻各种病虫害的高发。

水稻纹枯病是水稻最常见的病害之一,危害轻时一般导致水稻减产10%~20%,严重时可导致水稻减产40%~50%,对水稻产量造成严重损失[1-2]。

该病在开封地区常年发生,危害严重,且近年来有逐渐加重的趋势。

多年来,多采用井冈霉素进行水稻纹枯病防治,由于长期单一用药,水稻纹枯病菌对其产生了抗性,防治效果明显下降。

为寻找防治水稻纹枯病的高效农药,指导水稻生产,借助于开封市科技发展计划项目的支持,我们以10%己唑醇乳油、19%啶氧·丙环唑悬浮剂、24%噻呋酰胺悬浮剂、30%肟菌·戊唑醇悬浮剂、30%苯醚甲环唑·丙环唑乳油为试验材料,以汴稻1号为试验对象,开展了水稻纹枯病的田间药效防治试验。

羟基磷灰石纳米颗粒的合成方法

羟基磷灰石纳米颗粒的合成方法

羟基磷灰石纳米颗粒的合成方法The synthesis of hydroxyapatite nanoparticles, known as a biocompatible material with excellent bioactivity, is a topic of significant interest in the field of biomedical engineering. Hydroxyapatite is a naturally occurring mineral that is the main inorganic component of human bones and teeth. Its biocompatibility and bioactivity make it an ideal material for applications in bone tissue engineering, drug delivery, and bioimaging.羟基磷灰石纳米颗粒的合成方法一直备受关注,这种生物相容性材料具有优秀的生物活性,在生物医学工程领域具有重要意义。

羟基磷灰石是一种天然矿物,是人类骨骼和牙齿的主要无机成分。

其生物相容性和生物活性使得它成为骨组织工程、药物传递和生物成像等领域理想的材料。

There are various methods for synthesizing hydroxyapatite nanoparticles, including precipitation, sol-gel, hydrothermal, and sonochemical methods. Among these, the precipitation method is commonly used due to its simplicity and cost-effectiveness. In this method, calcium and phosphate precursors are mixed in a solutionunder controlled conditions, leading to the formation of hydroxyapatite nanoparticles.合成羟基磷灰石纳米颗粒的方法有很多种,包括沉淀法、溶胶-凝胶法、水热法和声化学法等。

氰基硼氢化钠还原胺化京尼平合成拟生物碱与活性

氰基硼氢化钠还原胺化京尼平合成拟生物碱与活性

氰基硼氢化钠还原胺化京尼平合成拟生物碱与活性秦杰琛 1),曾小娟 1),张韶湘 1),张晓梅 2),刘鑫洋 1),邹 澄 1),赵 庆 2)(1)昆明医科大学药学院暨云南省天然药物药理重点实验室,云南 昆明 650500;2)云南中医药大学中药学院,云南 昆明 650500)[ 摘要 ] 目的 以京尼平苷为原料通过还原胺化反应合成拟生物碱的方法。

方法 京尼平与胺类化合物在氰基硼氢化钠存在下进行还原反应:京尼平与芳基乙胺的甲醇溶液混合后,加入过量氰基硼氢化钠,放置室温下反应3d,产物经石油醚-异丙醇-二乙胺,石油醚-乙酸乙酯等洗脱分离。

结果 合成共得到9个拟生物碱并对部分拟生物碱进行活性筛选,找到治疗Ⅱ型糖尿病的PTP1B 抑制剂。

结论 部分受试化合物对PTP1B 有抑制作用。

一系列活性衍生物的获得为化合物结构及其生物活性间的构效关系研究打下了基础,有利于寻找具有更高活性的PTP1B 抑制剂。

[ 关键词 ] 京尼平; 拟生物碱; 还原胺化; 抗PTP1B 活性[ 中图分类号 ] R284.1 [ 文献标志码 ] A [ 文章编号 ] 2095 − 610X (2021)02 − 0018 − 05Reductive Amination of Genipin with NaBH 3CN toSynthesize Alkaloid-likes and BioactivityQIN Jie-chen 1),ZENG Xiao-juan 1),ZHANG Shao-xiang 1),ZHANG Xiao-mei 2),LIU Xin-yang 1),ZOU Cheng 1),ZHAO Qing 2)(1) School of Pharmaceutical Science & Yunnan Key Laboratory of Pharmacology for Natural Products ,Kunming Medical University ,Kunming Yunnan 650500; 2) Faculty of Pharmacy ,Yunnan University of Chinese Medicine ,Kunming Yunnan 650500,China )[Abstract ] Objective To explore a method for the synthesis of alkaloid-likes from Genipin by reductive amination is reported. Methods The reduction of Genipin and amines in the presence of sodium cyanoborohydride:after the methanol solution of Genipin and arylethylamine was mixed,excessive sodium cyanoborohydride was added and the reaction was kept at room temperature for 3 days. The product was eluted and separated on silica gel by petroleum ether-isopropyl alcohol-diethylamine and petroleum ether-ethyl acetate. Results Nine alkaloid-likes were synthesized. Some alkaloid-likes were screened for inhibition activity of PTP1B enzyme for Ⅱ diabetes treatment. Conclusions All of the tested compounds have a certain inhibitory effect on PTP1B. The acquisition of a series of active derivatives has laid a foundation for the study of the structure-activity relationship between the compounds and their bioactivities,so as to facilitate the search for more active PTP1B inhibitors.[Key words ] Genipin;Alkaloid-likes;Reductive amination;Inhibition activity against PTP1B目前,通过发现先导化合物是现代新药研发的重要出发点,研究者对具有特定生物活性的先导化合物,利用生物、化学方法进行结构修饰,从而减少化合物毒副作用,提高化合物的活性,增强其生物利用度,最终找到一些作用效果明显,副作用少的新药应用于临床治疗。

新型异噁唑胺类除草活性分子的设计、合成及活性研究

新型异噁唑胺类除草活性分子的设计、合成及活性研究

第44卷第1期2021年1月河北农业大学学报JOURNAL OF HEBEI AGRICULTURAL UNIVERSITYVol.44 No.1Jan.2021新型异噁唑胺类除草活性分子的设计、合成及活性研究王彦恩1,刘晓凤1,王红雨1,高玉洁1,张金林2(1. 河北农业大学 理学院,河北 保定 071001;2. 河北农业大学 植物保护学院,河北 保定 071001)摘要:基于除草剂新靶标转酮醇酶,采用农药分子合理设计的方法,对化合物α-三联噻吩进行结构改造,以异噁唑胺为核心杂环,引入噻吩、呋喃、苯并咪唑等杂环结构,设计合成9个异噁唑胺类化合物5(a-i)。

所有化合物均经1H NMR和元素分析验证,除草活性筛选发现,含有苯并咪唑基团的5c和5f表现出较高的除草活性,在200 mg/L浓度下,对马唐和反枝苋的根茎抑制率达到90%~96%,其优于阳性对照药剂丙炔氟草胺(80%~88%),表明以异噁唑胺为先导,引入苯并咪唑基团有利于提高化合物的除草活性,且5c和5f有潜力作为除草剂候选化合物,值得进一步结构优化。

关 键 词:杂草抗性;转酮醇酶;分子设计;异噁唑胺类中图分类号:S482.1开放科学(知识服务)OSID码: 文献标志码:ADesign, synthesis and study on activity of novel isoxazolaminesherbicidal moleculeWANG Yan’en1, LIU Xiaofeng1, WANG Hongyu1, GAO Yujie1, ZHANG Jinlin2(1. College of Science, Hebei Agricultural University, Baoding 071001, China; 2. College of Plant Protection, HebeiAgricultural University, Baoding 071001, China )Abstract: Isoxazolamines 5(a-i) were designed and synthesized based on the target of transketolase. α-Terthiophenewas chosen as the lead, and isoxazole was used as the core heterocyclic structure in the design, introduced by otherheterocyclic structures such as thiophene, furan,and benzimidazole . Their structures were verified by 1H NMRand elemental analysis, and their herbicidal activities were screened, and showed that compounds 5c and 5f withbenzimidazole groups as substructure displayed the highest herbicidal activity among them, and the inhibition ratewere more than 90% against the tested weed root and stem, which was higher than the positive control Flumioxazin(88%). The results showed that benzimidazole group based on isoxazole as the core heterocyclic structure wasbeneficial to improve the herbicidal activity of the compounds, and 5c and 5f had the potential to be herbicidecandidate compounds, which deserved for further optimization.Keywords: weed resistance; transketolase; molecular design; isoxazolamines收稿日期:2020-09-10基金项目:河北农业大学理工基金项目(LG201802);河北省大学生创新创业训练计划资助项目(s202010086035);国家自然科学基金资助项目(31871981);河北省博士后科研项目择优资助(B2019005008).第一作者:王彦恩(1981-),男,河北柏乡人,博士,高级实验师,主要从事新农药的创制研究工作.E-mail:*****************通信作者:张金林(1968-),男,河北香河人,博士,教授,主要从事农药学的教学和科研工作.E-mail:zhangjinlin@hebau.本刊网址:http: // hauxb. hebau. edu. cn: 8080 /CN/ volumn / home. shtml文章编号:1000-1573(2021)01-00102-05DOI:10.13320/ki.jauh.2021.0014103第1期近年来,由于相同作用机理除草剂的长期大量使用,导致杂草抗药性迅速发展[1],据统计至少256种杂草对不同作用靶标的除草剂产生了抗性[2],杂草抗性导致除草剂药效降低和使用量增大,造成恶性循环,已经成为现代农业面临的主要问题之一[3-4],有效解决杂草抗性问题是新除草剂创制亟待解决的难题之一。

酰基吡唑啉酮缩氨基酸希夫碱的合成和形成机理及结构特点

酰基吡唑啉酮缩氨基酸希夫碱的合成和形成机理及结构特点

酰基吡唑啉酮缩氨基酸希夫碱的合成和形成机理及结构特点牛风林;朱华玲【摘要】酰基吡唑啉酮类化合物因具有显著的生物活性而被广泛关注,氨基酸在生物体内参与多种生物化学过程,是重要的生理活性物质,其衍生物既易被吸收,又易被环境微生物降解.该文综述了酰基吡唑啉酮缩氨基酸希夫碱的合成方法、形成机理和结构特点,展望了该类化合物的发展趋势.【期刊名称】《科技创新导报》【年(卷),期】2016(000)017【总页数】3页(P29-31)【关键词】酰基吡唑啉酮;氨基酸;希夫碱;合成;结构【作者】牛风林;朱华玲【作者单位】山东省青州市旗城学校山东青州262500;天津农学院基础科学学院天津300384【正文语种】中文【中图分类】O641.1酰基吡唑酮类化合物对生命过程中的ATP酶和线粒体酶有很强的抑制作用[1],并表现出广谱抗菌、抗肿瘤、抗病毒等多种活性,其中母体N上含苯基的吡唑啉酮可表现较强的抗菌活性,并具有解热镇痛作用[2-3]。

作为生物体内合成蛋白质、激素、酶及抗体的原料,氨基酸在生物体内参与多种生物化学过程[4-5],是重要的生理活性物质。

氨基酸酯类化合物及其衍生物可作为食品的保鲜剂和添加剂、化妆品的乳化剂[5]和矿物浮选剂等。

利用氨基酸对生物体的特殊渗透性和酶催化的专一性,用氨基酸作载体,将具有生物活性的分子或者基团引入机体,既可增加药物在体内的溶解和吸收,又可降低药物的毒副作用[6]。

更重要的是这类物质还具有滋润皮肤、防锈、杀虫灭菌、抑制植物体内乙烯含量[7],抗微生物、抗氧化性,软化纤维素等优良特性,用这类化合物合成的农药,对昆虫、杂草和菌类等有强烈的生理作用,它们很容易被日光和自然界中的微生物降解,在土壤、动植物体内和果实中不留残毒,其降解物质还可作为农作物的营养物质,提高农作物的质量和产量[8-9]。

该文综述了酰基吡唑啉酮缩氨基酸希夫碱的合成方法、形成机理和结构特点,以期为这类化合物的进一步研究提供帮助。

社区获得性呼吸窘迫综合征毒素的研究进展

社区获得性呼吸窘迫综合征毒素的研究进展
临床 儿科杂 志 第 36卷第 2期 2018年 2月 JClin Pediatr Vo1.36No.2Feb.2018
· 145 ·
· 文 献 综述 ·
社 区获得性 呼吸窘迫综合征毒素 的研究进展
宋晓丹综述 欧维琳 审校 桂林 医学 院附属 医院儿科 (广西桂林 541001)
摘 要 : 社 区获 得性 呼 吸窘 迫综 合 征毒 素 (CARDS TX)是肺 炎支 原体 合成 的重 要毒 素 ,该毒 素 的合成 、分 布 、生物 活 性 已逐 渐 明确 。研 究 发现 ,CARDS TX对肺 炎 支原 体感 染 后 的炎症 反 应 、哮喘 控制 不力 有 一定 的影 响 。文 章综 述 CARDS TX的发现 、结 构 、基本 生物 学活 性 ,以及 在 MP肺 炎 、哮 喘发病 机制 的研 究进 展 。
1 CARDS TX的发现
20世纪 30年代 ,临床发现一种 由未知病原感染引 起 的 “轻症肺炎 ”(walking pneumonia),称之 为 “非典 型肺炎 ”(atypical pneumonia)。1944年 首次在 患者的 痰液 中分离 出MP。自此 ,非典型肺炎 的病原体被找到 , 并 于 60年代经实 验室成功培养 ,命名为 “MP”。MP是 一 类无 细胞壁 的原核 微生 物 ,能够通 过细菌 滤器 ,并 能在无细胞的人工培养基 中生长繁殖 。
K ey words: M ycoplasm a pneumoniae; comm unity—acquired respirator y distress syndrom e toxin; asthm a
肺 炎支 原体 (Mycoplasma pneumoniae,MP)是 儿 童社 区获得性肺 炎 的常见病原 。2l世纪初 发现 ,社 区获得性 呼 吸窘 迫综合 征毒 素 (community.acquired respiratory distress syndrome toxin,CARDS TX)是 MP 产 生 的重要毒 素 ,在 MP致 病机 制 中起 重要 作用 。本 文 就 CARDS TX的发现 、结构 、基 本生 物学活性 ,以 及在 MP肺炎 、哮喘发病 机制的研究进展进行综述 。

4,4′,5,5′-四硝基-2,2′-联咪唑N-氨基衍生物的合成及性能

4,4′,5,5′-四硝基-2,2′-联咪唑N-氨基衍生物的合成及性能

2021 年 4 月 Journal of Chemical Engineering of Chinese Universities Apr. 2021文章编号:1003-9015(2021)02-0331-054,4′,5,5′-四硝基-2,2′-联咪唑N-氨基衍生物的合成及性能李亚南, 陈涛, 胡建建, 常佩, 王彬, 张红武, 王伯周(西安近代化学研究所, 氟氮化工资源高效开发与利用国家重点实验室, 陕西西安 710065)摘要:以4,4′,5,5′-四硝基-2,2′-联咪唑二水合物(TNBI·2H2O)为原料,经N-胺化反应合成2种N-氨基含能化合物—1-氨基-4,4′,5,5′-四硝基-2,2′-联咪唑(ATNBI)和1,1′-二氨基-4,4′,5,5′-四硝基-2,2′-联咪唑(DATNBI),采用红外光谱、1H NMR、13C NMR、元素分析等方法表征了目标物结构;获得DATNBI单晶并进行结构解析;采用差示扫描量热(DSC)方法对DATNBI的热稳定性进行研究,DATNBI热分解峰温度分别为255.8和268.8 ℃;采用Gaussian 09程序CBS-4M方法计算DATNBI的固相生成热,基于晶体密度和固相生成热,利用Kamlet-Jacobs方程预估DATNBI的爆轰性能,DATNBI质量密度为1.933 g⋅cm-3,理论爆速为8.860 km⋅s-1,爆压为37.0 GPa,生成热为374.0 kJ⋅mol-1。

结果表明,DATNBI是一种爆轰性能优良的新型高能量密度材料。

关键词:含能材料;4,4′,5,5′-四硝基-2,2′-联咪唑;1,1′-二氨基-4,4′,5,5′-四硝基-2,2′-联咪唑;合成;性能中图分类号:O 626.4 文献标志码:A DOI:10.3969/j.issn.1003-9015.2021.02.018 Synthesis and properties of N-amino derivatives based on4,4′,5,5′-tetranitro-2,2′-biimidazoleLI Ya-nan, CHEN Tao, HU Jian-jian, CHANG Pei, WANG Bin, ZHANG Hong-wu, WANG Bo-zhou (State Key Laboratory of Fluorine & Nitrogen Chemicals, Xi'an Modern Chemistry Research Institute,Xi'an 710065, China)Abstract: Two N-amino energetic compounds—1-amino-4,4′,5,5′-tetranitro-2,2′-biimidazole(ATNBI) and 1,1′-diamino-4,4′,5,5′-tetranitro-2,2′-biimidazole(DATNBI) were synthesized via N-amination using 4,4′,5,5′-tetranitro-2,2′-biimidazole dehydrate (TNBI·2H2O) as the raw material. The structures of the target compounds were confirmed by IR spectra, 1H NMR, 13C NMR and elemental analysis. The single crystal of DATNBI was obtained, and its structure was analyzed. Furthermore, the thermal stability of DATNBI was tested by differential scanning calorimetry (DSC), and the two thermal decomposition peak temperatures of DATNBI were 255.8 ℃ and 268.8 ℃, respectively. Based on the crystal density and calculated (CBS-4M) solid-phase heat of DATNBI formation, the detonation parameters such as detonation velocity and pressure were calculated using Kamlet-Jacobs equations. The results are the crystal density = 1.933 g⋅cm-3, detonation velocity = 8.860 km⋅s-1, detonation pressure = 37.0 GPa and the heat of formation = 374.0 kJ⋅mol-1, which esults indicate that DATNBI is a high energy density material with preferable detonation properties.Key words: energetic materials; 4,4′,5,5′-tetranitro-2,2′-biimidazole; 1,1′-diamino-4,4′,5,5′-tetranitro- 2,2′-biimidazole; synthesis; properties1引言含能材料是武器系统的动力源和威力源,未来战争模式和作战环境的多样性、复杂性、不确定性等特点,对新型武器系统的战场适应性提出更加严苛和特殊的要求,因此,弹药装药对新型含能材料的爆收稿日期:2020-02-29;修订日期:2020-09-06。

毛细管电泳法测定硫酸多黏菌素B中的有关物质

毛细管电泳法测定硫酸多黏菌素B中的有关物质

毛细管电泳法测定硫酸多黏菌素B中的有关物质张含智;秦峰;徐晓曦;刘浩【摘要】目的建立一种用毛细管电泳测定硫酸多黏菌素B中有关物质的分析方法.方法以含30mmol/L羟丙基-β-环糊精、5%异丙醇的130mmol/L三乙醇胺溶液(用磷酸调节pH至2.5)为运行缓冲液,熔融石英毛细管总长60cm,有效长度51.5cm,内径50μm,分离电压24kV,柱温25℃,进行了线性、检测限、精密度等方法学考察试验,并将该方法应用于硫酸多黏菌素B原料药及制剂的检测中.结果实现了多黏菌素B中主要组分B1、B2、B3、B1-I与相邻杂质的分离,对比了不同来源硫酸多黏菌素B有关物质的差异.结论本方法灵敏度较高、重复性较好,为硫酸多黏菌素B的质量控制提供了一种可行的分析方法.【期刊名称】《中国抗生素杂志》【年(卷),期】2019(044)004【总页数】5页(P450-454)【关键词】硫酸多黏菌素B;有关物质;毛细管电泳;羟丙基-β-环糊精【作者】张含智;秦峰;徐晓曦;刘浩【作者单位】上海市食品药品检验所,上海201203;上海市食品药品检验所,上海201203;上海市食品药品检验所,上海201203;上海市食品药品检验所,上海201203【正文语种】中文【中图分类】R978.1多黏菌素B(polymyxin B sulfate,PMB,结构通式如图1所示)是一类由多黏芽孢杆菌发酵产生的多肽类抗生素混合物,其硫酸盐主要用于治疗多重耐药革兰阴性菌,被称为“抗击超级细菌的最后一道防线”[1-4]。

PMB组分之间较为相似,其主要结构为N-端脂肪链(FA)、α,γ-二氨基丁酸及氨基酸(亮氨酸、异亮氨酸、苯丙氨酸、苏氨酸等)经酰胺键连接而成,4位及5位α,γ-二氨基丁酸结合形成环七肽,边链包括FA及三肽。

已知的主要成分为PMB1、PMB2、PMB3及PMB1-I,差别在于FA取代基或氨基酸不同,具体区别见表1。

图1 多黏菌素B结构通式Fig.1 Structure of polymyxin B表1 多黏菌素B组分信息表Tab.1 The characteristics of known componentsin Polymyxin BPolymyxin R1 R2 R3 R4 B1 CH3 CH3 D-Phe L-Leu B2 CH3 HD-Phe L-Leu B3 H CH3 D-Phe L-Leu B1-I CH3 CH3 D-Phe L-Ile目前,中国药典(ChP)2015年版[5]、美国药典(USP)40版[6]、欧洲药典(EP)9.0版[7]均采用液相色谱法分析PMB中的组分及有关物质,通过相对保留时间对主要组分进行定性分析。

3,6-二氨基-N-异丁基邻苯二甲酰亚胺的合成

3,6-二氨基-N-异丁基邻苯二甲酰亚胺的合成

3,6-二氨基-N-异丁基邻苯二甲酰亚胺的合成陈碧琼;杨心师;袁立华;冯文【摘要】以3-硝基邻苯二甲酸为原料,经脱水成酐、氨解、还原酰化、硝化、水解、还原等六步反应合成了一种新型的环芳酰胺的构筑单元对苯二胺衍生物——3,6-二氨基-N-异丁基邻苯二甲酰亚胺,总收率16.4%,其结构经1H NMR,13C NMR和ESI-MS表征.%A novel derivative of phenylene diamine, 3,6-diamino-N-isobutyl phthalimide, was designed and synthesized by a six-step reaction of dehydration, ammonolysis, reduction and acylation, nitration, hydrolysis and hydrogenation from 3-nitrophthalic acid. The total yield was 16.4%and the structures were characterized by 1H NMR, 13C NMR and ESI-MS.【期刊名称】《合成化学》【年(卷),期】2011(019)006【总页数】3页(P744-746)【关键词】3,6-二氨基-N-异丁基邻苯二甲酰亚胺;3-硝基邻苯二甲酸;对苯二胺衍生物;合成【作者】陈碧琼;杨心师;袁立华;冯文【作者单位】四川大学化学学院教育部辐射物理与技术重点实验室原子核科学技术研究所,四川成都610064;四川大学化学学院教育部辐射物理与技术重点实验室原子核科学技术研究所,四川成都610064;四川大学化学学院教育部辐射物理与技术重点实验室原子核科学技术研究所,四川成都610064;四川大学化学学院教育部辐射物理与技术重点实验室原子核科学技术研究所,四川成都610064【正文语种】中文【中图分类】O625.52结构稳定、孔径可调控及功能多样化的刚性大环是近年来超分子研究领域所关注的焦点[1,2]。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Heterocycl. Commun., Vol. 17(1-2), pp. 73–78, 2011 • Copyright © by Walter de Gruyter • Berlin • Boston. DOI 10.1515/HC.2011.005 S ynthesis and bioactivity of novel ( Z,E)-1-(substituted phenyl)-3-[ α-(alkyloxyimino)benzylidene]pyrrolidine-2,4-dione derivativesX iao-Qian Z heng 1,B ao-Feng H an 1,2,X ian-FengW ang 1,2,S heng Q iang 3and C hun-Long Y ang 1,2,*1K ey Laboratory of Monitoring and Management ofCrop Diseases and Pest Insects ,M inistry of Agriculture, Nanjing Agricultural University, Nanjing 210095 ,P.R. China2J iangsu Key Laboratory of Pesticide Science ,N anjing Agricultural University, Nanjing 210095 ,P.R. China3C ollege of Life Science ,N anjing Agricultural University, Nanjing 210095 ,P.R. China*C orresponding authore-mail: c hunlongyang@A bstractA series of 1-(substituted phenyl)-3-[ α-(alkyloxyimino)-benzylidene]pyrrolidine-2,4-dione derivatives as a mixture of two geometrical isomers of Z-confi guration and E-confi gu-ration were synthesized by the reaction of the corresponding α-hydroxybenzylidene analogs with alkyloxyamine hydro-chlorides. The target compounds were confirmed by IR, 1H NMR, MS and elemental analysis. The title compounds exhibit inhibitory activity against E chinochloa c rusgalli andB rassica c ampestris.K eywords: h erbicidal activity; o xime ether; s ynthesis;t etramic acid.I ntroductionA s a metabolic toxin firstly isolated from the culture fi l-trates of A lternaria tenuis, tenuazonic acid [5- s ec-butyl-3 -(1-hydroxyethylidene)pyrrolidine-2,4-dione, A in Figure 1] belongs to a class of natural tetramic acids containing a heterocyclic core of pyrrolidine-2,4-dione (Rosett et al. , 1957 ). It exhibits a broad spectrum of bioactivities includ-ing antitumor, antibiotic, insecticidal, antiviral and herbicidal properties (Gitterman et al., 1964; Gitterman , 1965 ; Suzuki et al. , 1967 ; La Croix et al. , 1975 ; Janardhanan and Husain , 1984 ; Gallardo et al. , 2004 ). It has attracted attention of many agrochemists because it is easily degraded (Zhou and Qiang , 2007 ). A number of other substituted pyrrolidine-2,4-diones have been designed and synthesized, and some compounds such asB in Figure 1(Zhu et al. , 2005a,b,c, 2007 ) andC in Figure 1(Zhu et al. , 2009, 2010 ) have been found to show noticeable bioactivities.O xime ether moieties have often been used in the molecular design of new pesticides. In fact, there are many compounds containing an oxime moiety that show signifi cant insecticidal, herbicidal and fungicidal activities (Liu and Yao , 2004 ; Dai et al. , 2008 ; Fan et al. , 2008 ). Many commercial herbicides, such as clethodim, cycloxydim, propaquizafop and tepral-oxydim have been applied in plant protection. In this article, alkyl o xyamino groups were introduced at the 3-position of 3-( α-hydroxybenzylidene)pyrrolidine-2,4-diones to synthe-size a series of novel tetramic acid derivatives containing an oxime ether moiety. The herbicidal activities of the synthe-sized compounds were also evaluated.R esults and discussionS ynthesisT he title compounds 5a –t were synthesized by the reaction of 1-(substituted phenyl)-3-( α-hydroxybenzylidene)pyrro-lidine-2,4-diones 3with alkyloxyamine hydrochlorides 4in the presence of sodium hydroxide. The synthetic route to the products 5is shown in Scheme 1.C ompounds 3were synthesized from aniline or substituted anilines, ethyl chloroacetate and ethyl benzoylacetate via a three-step procedure including substitution, condensation and cyclization (Fujinami et al. , 1976 ; Zhu et al. , 2005b ). The alkyloxyamine hydrochlorides 4were synthesized according to the reported methods (Du et al. , 2004 ; H an et al. , 2005 ; Lu ,2006 ).S tructureT he structure of the fi nal compounds was confi rmed by IR, 1H NMR, MS and elemental analysis. The IR spectra showed peaks at 2916 –2984 cm -1due to C-H stretching vibration and peaks at 1676 –1701 c m -1for the carbonyl groups. The 1H NMR spectra exhibited a singlet at δ3.88 –4.61 assigned to the protons of the NCH2group, and multiple signals at δ6.88 –8.02 assigned to aromatic protons. A molecular ion peak was observed in the mass spectra of all products. Moreover, the elemental analysis data matched the molecular formulas of title compounds.I t is worthy to point out that protons at the 5-position of the pyrrolidine-2,4-dione moiety and protons of the group R 4each show two groups of signals with a similar74 X.-Q. Zheng et al.ratio of integration area in 1 H NMR spectra. This resultis consistent with the presence of two isomers for each fi nal product 5 . Tetramic acid derivations can exist in four tautomeric forms (Athanasellis et al. , 2001 ; Siegel et al. , 2009 ), which for the corresponding structuresof the products 5 is shown in Scheme 2 . By using15N NMR spectroscopy, it has been shown that a related com-pound, 3-(1-anilinoethylidene)pyrrolidine-2,4-dione, exists primarily in two isomers, namely in Z -confi guration and E -confi guration of a ketoamine form (Yamaguchi et al. , 1976 ). The X-ray diffraction crystallography studies have also shown that 3-(1-(propyloxyamino)ethylidene)-1-cyclo-hexylpyrrolidine-2,4-dione and 5- s ec -butyl-3-(2,6-dimeth-ylphenylamino)ethylidene-1 H -pyrrolidine-2,4-dione exist in a ketoamine form (Wang et al. , 2010 ; Zhu et al. , 2010 ). It can be speculated that the target compounds exist in ketoamine form with two isomers of 5 α and 5 γ (Scheme 2). With target com-pound 5a as a representative, its four isomers 5a α ,5a β ,5a γ , and 5a δ were calculated at the B3LYP/6-31 + G * level and the respectively relative energies of 1.38, 12.73, 0.00 and 30.48 kJ/mol were obtained (Skylaris et al. , 2003 ). This result sug-gests that 5a γ (Z -confi guration) and 5a α (E -confi guration) are the most stable isomers. Moreover, it can be suggested that the Z-isomer 5a γ is the major product in the mixture.For all products 5 the intensities of the corresponding1H NMR signals tentatively assigned to the Z and E isomers are 60%–69%and 31%–40%,respectively.B3H 3AO OR 2NOHR1OR 1NH N CH 3OR 2CR 3H Figure 1 Structures of some bioactive tetramic acids.A is a naturally occurring tetramic acid (tenuazonic acid),B and Care synthetic tetramic acids.R 435Z5E5a-e : R 1=R 2=R 3=H; 5f-j: R 1=CH 3, R 2=H, R 3=C 2H 5; 5k-o : R 1=OC 2H 5, R 2=R 3=H;5p-s : R 1=R 3=CH 3, R 2=H; 5t: R 1=R 3=H, R 2=CH 3.5a, 5f, 5k, 5p, 5t : R 4=n -C 3H 7; 5b, 5g, 5l, 5q : R 4=i -C 3H 7; 5c, 5h, 5m, 5r : R 4=CH 2CH=CH 2;5d, 5i, 5n, 5s : R 4=n -C 4H 9; 5e, 5j, 5o : R 4=CH 2C 6H 5.Scheme 1 Synthetic route to compounds 5 (a mixture of geometrical isomers).NO OO NH R 4R3R 1R 2NO OO R 4NH R 1R 3R 2N O O O NHR 4R1R3R 2NOO OR 4NH R 1R 2R 35α5γ5β5δIsomer 5α: E -configuration Iso m er 5γ: Z -configuration Isomer 5β: s-trans conformationIsomer 5δ: s-syn conformationS cheme 2 S tructures of four possible isomers of compounds 5 .B iological evaluation T he fi nal products 5 were evaluated for herbicidal activities against B . campestris and E . crusgalli i n vitro at the concentration of 100 m g/l (Luo and Yang , 2007 ). The results are summarized in Table 1 . The data indicate that almost all compounds display certain inhibitory activities against the root of two tested plants, but no obvious bioactivity against the stem was found. SevenSynthesis and bioactivity of novel pyrrolidine-2,4-diones 75compounds 5a , 5e , 5f , 5h , 5p , 5q and 5s show moderate herbicidal activities against the root of B . campestris , with their inhibitory rates exceeding 50 % . Nine compounds 5c ,5d ,5f ,5h ,5i ,5p ,5q , 5r and 5t exhibit inhibitory rates of over 50 % against the root of E. crusgalli .C onclusions Aseries of novel 3-benzylidene-substituted tetramic acid derivatives containing a substituted phenyl group at the 1-position and oxime ether group at the 3-position were synthesized. These compounds exist as a mixture of two geometrical E/Z isomers. The bioassay indicated that these compounds exhibit herbicidal activities against the root of B . campestris and E . crusgalli at the concentration of 100 µg/mli n vitro .E xperimental section Melting points were determined on a WRS-1B digital melting-point apparatus and are not corrected. The IR spectra were recorded on a Bruker Tensor 27 FT-IR spectrometer in KBr disks. Elemental analyses were performed on a Varian CHN analyzer. Mass spectra (electron impact) were recorded on a GC/MS-QP2010 spectrometerusing direct injection technique. The1 H NMR spectra were taken on a Mercury plus Varian-300 spectrometer at 300 MHz in CDCl 3with TMS as the internal reference.T able 1H erbicidal activities of compounds 5a –t against B . campe-stris and E . crusgalli (100 µ g /ml, inhibitory rate percent). Compounds B . campestrisroot E . crusgalliroot E . crusgalli stem 5a 50.0 ±3.26.8 ± 1.6 -5.3 ±0.85b 21.8 ±1.432.2 ± 3.2 7.5 ±1.25c 30.9 ±3.862.3 ± 1.8 12.3 ±2.45d 41.6 ±0.952.6 ± 1.6 -4.8 ±1.35e 51.5 ± 3.5 5.5± 0.9 2.2 ±1.55f 53.4 ±1.8 68.2± 3.3 -15.1 ±2.75g 43.2 ±3.4 47.2 ±3.7-10.2 ±3.85h 67.3±2.162.0± 1.9 -8.9 ±1.45i 45.9± 3.3 72.3± 0.9-26.6 ±2.85j 6.5± 2.7 25.7 ±3.0-20.9 ±3.25k 28.0 ± 0.6 18.6 ±2.5-13.6±4.25l 38.0 ±3.4 32.1 ± 1.7 6.0 ±1.25m 7.3± 1.922.4± 1.3 7.3 ±3.75n 15.4 ± 1.2 33.1± 2.8 -1.7 ±2.45o 17.8 ± 3.0 41.6± 2.4 -10.2 ±1.75p 51.6 ± 2.5 71.7 ± 4.2 3.1 ±1.25q 54.6± 3.2 59.8 ± 4.1 -3.0 ±1.85r 27.6 ±2.776.5± 1.3 17.8 ±2.25s 58.6 ±2.3-9.2± 1.5 6.3 ±2.65t 34.5 ±1.651.5 ± 3.5 -3.8 ±1.0T eA92.6 ±1.097.8 ± 0.443.1 ±2.9T he values are expressed as means ± S D of the replicates; n = 3 for allgroups. TeA, tenuazonic acid.G eneral procedure for the preparation of the title compounds 5a – tA solution of aniline or substituted aniline 1 (0.05 m ol), ethyl chloro-acetate (0.06 m ol) and sodium acetate (0.06 m ol) in ethanol (100 m l) was heated under refl ux for 8 h . After cooling, the mixture was treated with water (80 m l) and extracted with ether (3 × 25 m l). The combined organic layers were dried with anhydrous MgSO 4 and the solvent was removed under reduced pressure to give the presumed liquid product 2 (see Scheme 1). Then, a solution of the crude intermediate product 2 and ethyl benzoylacetate (0.06 m ol) in dry xylenes (50 m l) was stirred for 24 h at 125 – 130 ° C . Then, a solution of sodium meth-oxide (0.12 m ol) in methanol (40 m l) was added and the mixture was heated under refl ux for 24 h . After cooling to room temperature, water was added (100 m l), and the aqueous layer was acidifi ed to pH = 2 – 3 with 20 % hydrochloric acid. The mixture was extracted with chloroform (3 × 25 m l), and the combined organic layers were dried with anhydrous MgSO 4, and concentrated under reduced pressure to obtain crude 1-(substituted phenyl)-3-( α-hydroxybenzylidene)-pyrrolidine-2,4-dione 3 , which was purifi ed by crystallization from ethanol/chloroform, 4:1. To the solution of compound 3(3 m mol) and O -substituted hydroxylamine hydrochloride 4 (3 m mol) in etha-nol (25 m l) or chloroform (25 m l), a 1 % solution of NaOH (4.4 m l) was added. The mixture was heated under refl ux, and the progress of the reaction was monitored by TLC. Then the mixture was extracted with chloroform (3 × 25 m l), and the extract was dried over anhydrous MgSO 4. The solvent was removed under reduced pressure and the residue was crystallizated from ethanol/chloroform, 3:1 to afford the desired compound 5a –t . ( Z ,E )-1-Phenyl-3-[ α -(propoxyamino)benzylidene]pyrrolidine-2,4-dione ( 5a) : White powder; yield 30% ; mp 160.0 – 160.2 °C ; 1H NMR: δ for Z -isomer (65 % ) 0.78 (t, J =7.8 H z, 3H , CH 3), 1.51 –1.64 (m, 2H, C H 2C H 3 ), 3.86 (t, J =6.3 H z, 2H , OCH 2 ), 4.23 (s, 2H, NCH 2), 7.10 – 7.64 (m, 10H, PhH); δ for E -isomer (35 % ) 1.03 (t, J =7.5 H z, 3H , CH 3 ), 1.81 – 1.92 (m, 2H , C H 2C H 3 ), 4.36 (t, J =6.6 H z, 2H , OCH 2), 4.45 (s, 2H , NCH 2 ), 7.10 – 7.64 (m, 10H , PhH ); IR: 3065, 2965, 1696, 1580, 1500, 1477, 1307, 1225, 916 c m -1 ; MS (EI) m/z:336 (M +), 278, 145, 105 (100), 77, 57, 45. Analysis: calculated for C 20H 20N 2O 3 : C, 71.41; H, 5.99; N, 8.33. Found: C, 71.37; H, 5.84; N, 8.24.(Z,E )- 3-[ α -(Isopropoxyamino)benzylidene)-1-phenylpyrro-lidine-2,4-dione (5b) : White powder; yield 36 % ; mp 167.1 –169.3 °C ; 1 H NMR: δ for Z -isomer (69 % ) 1.16 [d, J =6.0 H z, 6H , CH(C H 3)2], 3.93 – 4.11 (m, 1H , OCH ), 4.23 (s, 2H , NCH 2), 7.10 – 7.66 (m, 10H, PhH); δ for E -isomer (31 % ) 1.42 [d, J =6.0 H z, 6H , CH(C H 3)2 ], 4.62 – 4.75 (m, 1H, OCH), 4.45 (s, 2H, NCH 2), 7.10 –7.66 (m, 10H, PhH); IR: 3455, 3061, 2972, 1698, 1585, 1500, 1433, 1378,1229, 1177, 964 c m -1 ; MS (EI) m/z: 336 (M + ), 276, 145, 105 (100),77, 51, 45. Analysis: calculated for C 20H 20N 2O 3 : C, 71.41; H, 5.99; N, 8.33. Found: C, 71.26; H, 5.87; N, 8.11.(Z,E )- 3-[ α -(Allyloxyamino)benzylidene]-1-phenylpyrrolidine-2,4-dione (5c) : White powder; yield 30% ; mp 144.5 – 144.9 °C ; 1H NMR: δ for Z -isomer (66 % ) 4.25 (s, 2H, NCH 2), 4.38 (d, J =6.0 H z, 2H , OCH 2), 5.24 –5.50 (m, 2H, CH =C H 2), 5.78 –5.91 (m, 1H , C H =C H 2 ), 7.05 – 7.64 (m, 10H , PhH ); δ for E -isomer (34 %)4.40(s, 2H, NCH 2), 4.85 (d, J =6.0 H z, 2H , OCH 2), 5.24 –5.50 (m, 2H , CH =C H 2), 6.09 –6.18 (m, 1H, C H =C H 2), 7.05 –7.64 (m, 10H , PhH ); IR: 3451, 3053, 2916, 1698, 1573, 1501, 1439, 1377, 1227, 1158,924 c m -1; MS (EI) m/z: 334 (M + ), 276, 145, 105 (100), 77, 57, 45.76 X.-Q. Zheng et al.Analysis: calculated for C 20H 18N 2O 3 : C, 71.84; H , 5.43; N, 8.38. Found: C, 70.97; H, 5.86; N, 8.52.( Z ,E )-3-[ α -(Butoxyamino)benzylidene]-1-phenylpyrrolidine-2,4-dione (5d) : White powder; yield 30 % ; mp 144.5 – 144.9 °C ; 1H NMR: δ for Z -isomer (67 % ) 0.81 (t, J =7.2 H z, 3H , CH 3), 1.15 –1.22 (m, 2H , C H 2C H 3 ), 1.47 – 1.58 (m, 2H , OCH 2C H 2 ), 3.88 (t, J =5.4 Hz, 2H, OCH 2 ), 4.20 (s, 2H, NCH 2), 7.09 – 7.65 (m, 10H, PhH); δ for E -isomer (33 % ) 0.99 (t, J =7.2 H z, 3H , CH 3), 1.36 –1.41 (m, 2H, C H 2C H 3 ), 1.77 – 1.95 (m, 2H , OCH 2C H 2), 4.39 (t, J =6.9 H z, 2H , OCH 2 ), 4.43 (s, 2H , NCH 2), 7.09 – 7.65 (m, 10H , PhH ); IR: 3457, 3039, 2933, 1701, 1583, 1500, 1439, 1303, 1223, 1177, 960 c m-1;MS (EI) m/z: 350 (M + ), 276, 145, 105 (100), 77, 56, 45. Analysis:calculated for C 21H 22N 2O 3 : C, 71.89; H , 6.33; N, 7.99. Found: C, 71.97; H, 6.26; N, 7.72.(Z,E )-3-[ α -(Benzyloxyamino)benzylidene]-1-phenylpyrro-lidine-2,4-dione (5e) : White powder; yield 40% ; mp 177.0 – 177.8 °C ; 1 H NMR: δ for Z -isomer (60 % ) 4.21 (s, 2H, NCH 2), 4.89(s, 2H, OCH 2), 7.04 – 7.76 (m, 15H, PhH); δ for E -isomer (40 %)4.39 (s, 2H, NCH 2 ), 5.39 (s, 2H, OCH 2), 7.04 – 7.76 (m, 15H, PhH); IR: 3063, 2926, 1701, 1585, 1501, 1442, 1379, 1230, 1178, 954 c m-1;MS (EI) m/z: 384 (M+ ), 276, 145, 105 (100), 77, 52. Analysis: calcu-lated for C 24H 20N 2O 3 : C, 74.98; H, 5.24; N, 7.29. Found: C, 74.97; H, 5.26; N, 7.63.(Z,E ) - 1-(2-Ethyl-6-methylphenyl)-3-[ α -(propoxyamino)ben-zylidene]pyrrolidine-2,4-dione (5f) : Pink powder; yield 23 % ; mp155.9 –157.5 °C ; 1H NMR: δ for Z -isomer (61 % ) 0.77 (t, J =7.8 H z, 3H , CH 2C H 3 ), 1.22 (t, J =6.0 H z, 3H , PhCH 2C H 3), 1.51 –1.62 (m, 2H, C H 2C H 3 ), 2.20 (s, 3H, PhCH 3 ), 2.49 – 2.60 (m, 2H, PhCH 2), 3.85(t, J =6.3 H z, 2H , OCH 2 ), 3.99 (s, 2H , NCH 2), 7.11 –7.73 (m, 8H , PhH); δ for E -isomer (39 % ) 0.93 (t, J =7.5 H z, 3H , CH 2C H 3), 1.22(t, J =6.0 H z, 3H , PhCH 2C H 3 ), 1.85 – 1.94 (m, 2H, C H 2C H 3), 2.20 (s, 3H, PhCH 3 ), 2.49 – 2.60 (m, 2H, PhCH 2 ), 4.19 (s, 2H, NCH 2), 4.36 (t, J =6.3 H z, 2H , OCH 2), 7.11 – 7.73 (m, 8H, PhH); IR: 3450, 3023, 1681, 1582, 1500, 1475, 1372, 1227, 1157, 960 c m-1 ; MS (EI) m/z: 378 (M +, 100), 319, 146, 132, 77, 58, 45. Analysis: calculated for C 23H 26N 2O 3 : C, 72.99; H, 6.92; N, 7.40. Found: C, 72.87; H, 6.88; N, 7.51.(Z,E ) -1-(2-Ethyl-6-methylphenyl)-3-[ α -(isopropoxyamino)ben-zylidene]pyrrolidine-2,4-dione (5g) : White powder; yield 22% ; mp 159.4 –163 °C ; 1 H NMR: δfor Z -isomer (64 % ) 1.14 [d, J =6.0 H z,6H , CH (C H 3)2 ], 1.22 (t, J =5.1 H z, 3H , PhCH 2C H 3), 2.20 (s, 3H , PhCH 3), 2.49 –2.61 (m, PhCH 2 ), 3.99 (s, 2H, NCH 2), 4.68 –4.77 (m,1H, OCH), 7.08 – 7.77 (m, 8H, PhH); δ for E -isomer (36 %)1.22 (t, J =7.5 H z, 3H , PhCH 2C H 3 ), 1.43 [d, J =6.3 H z, 6H , CH (C H 3)2], 2.20 (s, 3H , PhCH 3 ), 2.49 – 2.61 (m, 2H , PhCH 2 ), 4.19 (s, 2H , NCH 2),4.49 – 4.55 (m, 1H, OCH), 7.08 – 7.77 (m, 8H, PhH); IR: 3451, 3030,2978, 1686, 1580, 1500, 1389, 1221, 1178, 981 c m -1 ; MS (EI)m/z: 378 (M + , 100), 319, 146, 132, 77, 45. Analysis: calculated forC 23H 26N 2O 3 : C, 72.99; H, 6.92; N, 7.40. Found: C, 72.92; H, 6.76; N, 7.62.(Z,E ) - 3-[ α -(Allyloxyamino)benzylidene]-1-(2-ethyl-6-methyl-ph enyl)pyrrolidine-2,4-dione (5h ) : White powder; yield 19% ; mp 168.5 –169.1 °C ; 1 H NMR: δ for Z -isomer (68 % ) 1.20 (t, J =7.5 H z,3H, PhCH 2C H 3 ), 2.20 (s, 3H, PhCH 3 ), 2.49 – 2.62 (m, 2H, PhCH 2),4.05 (s, 2H, NCH 2 ), 4.76 (d, J =7.5 H z, 2H , OCH 2), 5.25 –5.51 (m, 2H , CH =C H 2 ), 5.79 – 5.91 (m, 1H, C H =C H 2), 7.12 – 7.75 (m, 8H, PhH); δ for E -isomer (32 % ) 1.20 (t, J =7.5 H z, 3H , PhCH 2C H 3 ), 2.20 (s, 3H, PhCH 3 ), 2.49 – 2.62 (m, 2H, PhCH 2 ), 4.39 (s, 2H, NCH 2), 4.88 (d, J =6.3 H z, 2H , OCH 2), 5.25 –5.51 (m, 2H , CH =C H 2), 5.95 –6.19 (m, 1H, C H =C H 2 ), 7.12 – 7.75 (m, 8H, PhH); IR: 3023, 2971, 1686, 1581,1470, 1418, 1216, 1185, 987 c m-1 ; MS (EI) m/z: 376 (M + ), 318, 146, 132, 105, 69, 57 (100), 45. Analysis: calculated for C 23H 24N 2O 3:C, 73.38; H, 6.43; N, 7.44. Found: C, 72.96; H, 6.88; N, 7.57. ( Z ,E ) -3-[ α -(Butoxyamino)benzylidene]-1-(2-ethyl-6-methyl-ph enyl)pyrrolidine-2,4-dione (5i) : Pink powder; yield 33 % ; mp142.8 –145.2 °C ; 1H NMR: δ for Z -isomer (64 % ) 0.82 (t, J =7.2 H z, 3H , CH 2C H 3 ), 1.23 (t, J =6.6 H z, 3H , PhCH 2C H 3), 1.33 –1.60 (m, 4H, C H 2C H 2 ), 2.21 (s, 3H, PhCH 3 ), 2.56 (q, J =6.6 H z, 2H , PhCH 2), 3.88 (s, 2H, NCH 2 ), 4.21 (t, J =6.0 H z, 2H , OCH 2), 7.12 –7.73 (m, 8H , PhH); δ for E -isomer (36 % ) 0.99 (t, J =6.6 H z, 3H , CH 2C H 3), 1.23 (t, J =7.5 H z, 3H , PhCH 2C H 3 ), 1.68 – 1.93 (m, 4H, C H 2C H 2), 2.21 (s, 3H, PhCH 3 ), 2.56 (q, J =7.5 H z, 2H , PhCH 2 ), 4.00 (s, 2H, NCH 2 ), 4.41 (t, J =6.3 H z, 2H , OCH 2), 7.12 – 7.73 (m, 8H, PhH); IR: 3023, 2963, 1691, 1582, 1471, 1417, 1216, 1183, 976 c m -1 ; MS (EI) m/z: 392 (M+), 319, 174, 146 (100), 104, 77, 56. Analysis: calculated for C 24H 28N 2O 3:C, 73.44; H, 7.19; N, 7.14. Found: C, 73.23; H, 7.09; N, 7.32.( Z ,E ) - 3-[ α -(Benzyloxyamino)benzylidene]-1-(2-ethyl-6-methyl-phenyl)pyrrolidine-2,4-dione (5j) : White powder; yield 36% ; mp 171.3 –177.0 °C ; 1 H NMR: δ for Z -isomer (63 % ) 1.22 (t, J =6.9 H z,3H, PhCH 2C H 3 ), 2.19 (s, 3H, PhCH 3 ), 2.48 – 2.59 (m, 2H, PhCH 2),4.02 (s, 2H, NCH 2 ), 4.88 (s, 2H, OCH 2), 7.12 – 7.76 (m, 13H, PhH); δ for E -isomer (37 % ) 1.22 (t, J =7.5 H z, 3H , PhCH 2C H 3 ), 2.19 (s, 3H, PhCH 3 ), 2.48 – 2.59 (m, 2H, PhCH 2 ), 4.15 (s, 2H, NCH 2), 5.41 (s, 2H, OCH 2), 7.12 – 7.76 (m, 13H, PhH); IR: 3032, 2971, 1695, 1581, 1469, 1391, 1213, 1178, 971 c m -1 ; MS (EI) m/z: 426 (M + ), 320, 146, 132, 108, 91 (100), 51. Analysis: calculated for C 27H 26N 2O 3 : C, 76.03; H, 6.14; N, 6.57. Found: C, 76.14; H, 6.16; N, 6.44.( Z ,E ) - 1-(2-Ethoxyphenyl)-3-[ α -(propoxyamino)benzylidene]-pyrrolidine-2,4-dione (5k) : White powder; yield 36 % ; mp152.4 –153.5 o C ; 1H NMR: δ for Z -isomer (68 % ) 0.77 (t, J =7.2 H z, 3H , CH 2C H 3 ), 1.40 (t, J =7.5 H z, 3H , OCH 2C H 3), 1.52 –1.60 (m, 2H, C H 2C H 3 ), 3.83 (t, J =6.3H z,2H ,OCH 2), 4.06 (q, J =6.9H z,2H ,OC H 2C H 3 ), 4.45 (s, 2H, NCH 2), 6.91 – 7.70 (m, 9H, PhH); δ for E -isomer (32 % ) 0.93 (t, J =7.5 H z, 3H , CH 2C H 3 ), 1.40 (t, J =6.9 H z, 3H , OCH 2C H 3 ), 1.67 – 1.75 (m, 2H , C H 2C H 3), 4.06 (q, J =7.5 H z, 2H, OC H 2C H 3 ), 4.19 (t, J =6.3 H z, 2H , OCH 2 ), 4.58 (s, 2H, NCH 2),6.91 –7.70 (m, 9H, PhH); IR: 3045, 2953, 1680, 1608, 1502, 1391,1229, 1167, 914 c m-1 ; MS (EI) m/z: 380 (M + ), 320, 120 (100), 103, 77, 65, 45. Analysis: calculated for C 22H 24N 2O 4 : C, 69.46; H, 6.36; N, 7.36. Found: C, 69.32; H, 6.53; N, 7.28.( Z ,E ) -1-(2-Ethoxyphenyl)-3-[ α -(isopropoxyamino)benzylidene]-pyrrolidine-2,4-dione (5l) : White powder; yield 34% ; mp 153.0 –153.9 °C ; 1H NMR: δ for Z -isomer (64 % ) 1.17 [d, J =6.0 H z, 6H , CH(C H 3)2 ], 1.45 (t, J =6.3 H z, 3H , OCH 2C H 3 ), 4.06 (q, J =6.9 H z, 2H , OC H 2C H 3 ), 4.25 (s, 2H , NCH 2), 4.68 (m, 1H , OCH ), 6.92 – 7.73 (m, 9H , PhH ); δfor E -isomer (36 % ) 1.29 [d, J =6.3 H z, 6H , CH(C H 3)2 ], 1.45 (t, J =6.9 H z, 3H , OCH 2C H 3 ), 4.06 (q, J =6.3 H z, 2H, OC H 2C H 3 ), 4.47 (s, 2H, NCH 2), 4.74 (m, 1H, OCH), 6.92 – 7.73 (m, 9H, PhH); IR: 3450, 3033, 2976, 1677, 1610, 1500, 1389, 1229,1173, 925 c m -1 ; MS (EI) m/z: 380 (M + ), 320, 120 (100), 103, 77, 45. Analysis: calculated for C 22H 24N 2O 4 : C, 69.46; H, 6.36; N, 7.36. Found: C, 69.35; H, 6.50; N, 7.21.( Z ,E ) -3-[ α -(Allyloxyamino)benzylidene]-1-(2-ethoxyphenyl)-pyrrolidine-2,4-dione (5m) : White powder; yield 33% ; mpSynthesis and bioactivity of novel pyrrolidine-2,4-diones 77 136.0 –137.7 °C; 1H NMR: δfor Z-isomer (65 %) 1.39 (t, J=6.9 H z,3H, OCH2C H3), 4.05 (q, J=6.9 H z, 2H, OC H2C H3), 4.45 (s, 2H,NCH2), 4.75 (d, J=6.3 H z, 2H, OCH2), 5.20 –5.33 (m, 2H, CH=C H2),5.75 –5.99 (m, 1H, C H=C H2), 6.92 –8.02 (m, 9H, PhH); δfor E-isomer (35 %) 1.47 (t, J=6.9 H z, 3H, OCH2C H3), 4.14 (q, J=6.9 H z,2H, OC H2C H3), 4.59 (s, 2H, NCH2), 4.89 (d, J=6.0 H z, 2H, OCH2),5.35 –5.51 (m, 2H, CH=C H2), 6.07 –6.20 (m, 1H, C H=C H2), 6.92 –8.02 (m, 9H, PhH); IR: 3452, 3025, 2982, 1676, 1606, 1501, 1391, 1229, 1102, 924 cm -1; MS (EI) m/z: 378 (M +), 320, 120, 103 (100),77, 57. Analysis: calculated for C22H22N2O4: C, 69.83; H, 5.86; N,7.40. Found: C, 69.81; H, 5.67; N, 7.25.(Z,E)-3-[ α-(Butoxyamino)benzylidene]-1-(2-ethoxyphenyl)-pyrrolidine-2,4-dione (5n) :White powder; yield 43 %; mp 157.6 –158.1 °C; 1H NMR: δfor Z-isomer (64 %) 0.82 (t, J=7.2 H z,3H, CH2C H3), 1.22 –1.50 (m, 4H, C H2C H2), 1.42 (t, J=7.5 H z, 3H,OCH2C H3), 3.88 (t, J=6.3 H z, 2H, OCH2), 4.15 (q, J=6.9 H z, 2H,OC H2C H3), 4.26 (s, 2H, NCH2), 6.92 –7.70 (m, 9H, PhH); δfor E-isomer (36 %) 0.93 (t, J=7.2 H z, 3H, CH2C H3), 1.44 (t, J=7.5 H z,3H, OCH2C H3), 1.53 –1.84 (m, 4H, C H2C H2), 4.03 (t, J=6.3 H z,2H, OCH2), 4.46 (q, J=7.5 H z, 2H, OC H2C H3), 4.61 (s, 2H, NCH2),6.92 –7.70 (m, 9H, PhH); IR: 3441, 3023, 2955, 1683, 1610, 1502, 1391, 1230, 1121, 924 c m -1; MS (EI) m/z: 394 (M +), 279, 167, 149,81, 69 (100), 53. Analysis: calculated for C23H26N2O4: C, 70.03; H,6.64; N,7.10. Found: C, 69.92; H, 6.67; N, 7.23.(Z,E)-3-[ α-(Benzyloxyamino)benzylidene]-1-(2-ethoxyphenyl)-pyrrolidine-2,4-dione (5o) :White powder; yield 47 %; mp 162.8 –162.9 °C; 1H NMR: δfor Z-isomer (69 %) 1.34 (t, J=7.5 H z, 3H,OCH2C H3), 4.03 (q, J=7.5 H z, 2H, OC H2C H3), 4.28 (s, 2H, NCH2),4.87 (s, 2H, OCH2), 6.89 –7.72 (m, 14H, PhH); δfor E-isomer (31 %)1.42 (t, J=7.5 H z, 3H, OCH2C H3), 4.05 (q, J=7.5 H z, 2H, OC H2C H3),4.40 (s, 2H, NCH2), 5.38 (s, 2H, OCH2), 6.89 –7.72 (m, 14H, PhH);IR: 3026, 2984, 1682, 1609, 1501, 1391, 1229, 1125, 949 c m -1;MS (EI) m/z: 428 (M +), 322, 120, 105, 77 (100), 65. Analysis: calculatedfor C26H24N2O4: C, 72.88; H, 5.65; N, 6.54. Found: C, 72.75; H,5.47; N,6.39.(Z,E)-1-(2,6-Dimethylphenyl)-3-[ α-(propoxyamino)ben-zylidene]pyrrolidine-2,4-dione (5p) :White powder; yield 29 %; mp 159.0 –160.2 o C; 1H NMR: δfor Z-isomer (61 %) 0.84 (t, J=7.2 H z,3H, CH2C H3), 1.45 –1.53 (m, 2H, C H2C H3), 2.17 (s, 6H, 2PhCH3),3.74 (t, J=7.5 H z, 2H, OCH2), 3.89 (s, 2H, NCH2), 7.05 –7.53 (m, 8H,PhH); δfor E-isomer (39 %) 1.04 (t, J=7.2 H z, 3H, CH2C H3), 1.60 –1.69 (m, 2H, C H2C H3), 2.17 (s, 6H, 2PhCH3), 4.37 (t, J=7.5 H z,2H, OCH2), 4.09 (s, 2H, NCH2), 7.05 –7.53 (m, 8H, PhH); IR: 3444,3022, 2966, 1700, 1585, 1474, 1391, 1220, 1184, 961 c m -1; MS (EI) m/z: 364 (M +), 305, 174, 132 (100), 117, 104, 77, 57. Analysis: cal-culated for C22H24N2O3: C, 72.51; H, 6.64; N, 7.69. Found: C, 72.66;H, 6.52; N, 7.80.(Z,E)-1-(2,6-Dimethylphenyl)-3-[ α-(isopropoxyamino)ben-zylidene]pyrrolidine-2,4-dione (5q ):White powder; yield 25 %; mp 162.8 –164.0 o C; 1H NMR: δfor Z-isomer (66 %) 1.16 [d, J=6.0 H z,6H, CH(C H3)2], 2.24 (s, 6H, 2PhCH3), 3.99 (s, 2H, NCH2), 4.70 –4.80 (m, 1H, OCH), 7.10 –7.78 (m, 8H, PhH); δfor E-isomer (34 %):1.45 [d, J=6.3 H z, 6H, CH(C H3)2], 2.24 (s, 6H, 2PhCH3), 4.19 (s,2H, NCH2), 4.52 –4.61 (m, 1H, OCH), 7.10 –7.78 (m, 8H, PhH); IR:3443, 3023, 2975, 1701, 1583, 1476, 1323, 1215, 1176, 978 c m -1; MS (EI) m/z: 364 (M +), 305, 174, 132 (100), 105, 77, 45. Analysis:calculated for C22H24N2O3: C, 72.51; H, 6.64; N, 7.69. Found: C,72.58; H, 6.49; N, 7.67. (Z,E)-3-[ α-(Allyloxyamino)benzylidene]-1-(2,6-dimethylphe-nyl)pyrrolidine-2,4-dione (5r) :White powder; yield 20 %; mp 160.7 –161.2 o C; 1H NMR: δfor Z-isomer (68 %) 2.20 (s, 6H, 2PhCH3),4.03 (s, 2H, NCH2), 4.75 (d, J=6.0 H z, 2H, OCH2), 5.33 –5.38 (m, 2H,CH=C H2), 5.79 –5.96 (m, 1H, C H=C H2), 7.09 –7.72 (m, 8H, PhH); δfor E-isomer (32 %) 2.20 (s, 6H, 2PhCH3), 4.39 (s, 2H, NCH2), 4.86(d, J=6.9 H z, 2H, OCH2), 5.43 –5.49 (m, 2H, CH=C H2), 6.04 –6.22(m, 1H, C H=C H2), 7.09 –7.72 (m, 8H, PhH); IR (KBr) ν/cm -1:3024, 2972, 1677, 1585, 1477, 1414, 1211, 1178, 910 c m -1; MS (EI) m/z: 362 (M +), 306, 174, 144, 132 (100), 102, 77, 57. Analysis: calculatedfor C22H22N2O3: C, 72.91; H, 6.12; N, 7.73. Found: C, 72.79; H, 6.33; N, 7.70.(Z,E)-3-[ α-(Butoxyamino)benzylidene]-1-(2,6-dimethylphenyl)-pyrrolidine-2,4-dione (5s) :White powder; yield 27 %; mp 152.8 –155.9 o C; 1H NMR: δfor Z-isomer (62 %) 0.81 (t, J=7.2 H z, 3H,CH2C H3), 1.18 –1.48 (m, 4H, OC H2C H2), 2.21 (s, 6H, 2PhCH3), 3.89(t, J=6.6 H z, 2H, OCH2), 3.99 (s, 2H, NCH2), 7.09 –7.72 (m, 8H, PhH);δfor E-isomer (38 %) 0.97 (t, J=6.9 H z, 3H, CH2C H3), 1.49 –1.86 (m,4H, OC H2C H2), 2.28 (s, 6H, 2PhCH3), 4.23 (s, 2H, NCH2), 4.37 (t,J=6.6 H z, 2H, OCH2), 7.09 –7.72 (m, 8H, PhH); IR: 3450, 3068, 2955, 1682, 1610, 1501, 1390, 1229, 1182, 924 cm -1; MS (EI) m/z: 378 (M +),306 (100), 132, 103, 77, 55. Analysis: calculated for C23H26N2O3:C, 72.99; H, 6.92; N, 7.40. Found: C, 72.66; H, 6.97; N, 7.68.(Z,E)-3-[ α-(Propoxyamino)benzylidene]-1-(p-tolyl)pyrrolidine-2,4-dione (5t) :White powder; yield 33 %; mp 158.8 –159.8 o C; 1H NMR: δfor Z-isomer (64 %) 0.79 (t, J=7.2 H z, 3H, CH2C H3),1.54 –1.61 (m, 2H, C H2C H3), 2.33 (s, 3H, PhCH3), 3.85 (t, J=6.3 H z,2H, OCH2), 4.19 (s, 2H, NCH2), 7.14 –7.71 (m, 9H, PhH); δfor E-isomer (36 %) 1.04 (t, J=7.2 H z, 3H, CH2C H3), 1.83 –1.90 (m, 2H,C H2C H3), 2.39 (s, 3H, PhCH3), 4.35 (t, J=6.3 H z, 2H, OCH2), 4.40(s, 2H, NCH2), 7.14 –7.71 (m, 9H, PhH); IR: 3025, 2966, 1699, 1581, 1515, 1442, 1379, 1226, 1175, 971 cm -1; MS (EI) m/z: 350 (M +), 290(100), 119, 91, 77, 57, 45. Analysis: calculated for C21H22N2O3:C, 71.98; H, 6.33; N, 7.99. Found: C, 72.04; H, 6.25; N, 7.82.A cknowledgmentsT his work was supported by the National High Technology Research and Development Program of China (2006AA10A214), and the Fundamental Research Funds for the Central Universities of China (KYZ200918). We are grateful to Lu, A.M. for MS analysis.R eferencesA thanasellis, G.; Gavrielatos, E.; Igglessi-Markopoulou, O. Synthesisand spectroscopic studies of 5-arylidene-3-substituted tetramic acids as possible substrates for catalytic asymmetric hydrogena-tion. J.H eterocycl.C hem.2001,38,1203 –1208.D ai, H.; Li, Y. Q.; Du, D.; Qin, X.; Zhang, X.; Yu, H. B.; Fang, J.X. Synthesis and biological activities of novel pyrazole oxime derivatives containing a 2-chloro-5-thiazolyl moiety. J. Agric.Food Chem.2008, 56,10805 –10810.D u, Z. T.; Yue, G. R.; Ma, J. Y.; Wu, T. X.; Pan, X. F. A facilc syn-thetic approach to O-benzylhydroxylamine. H uaxue Shiji2004, 26,117.F an, L.; Cui, J. G.; Wei, Y. L.; Huang, Y. M. Recent advance of oxi-me-ethers and biological activity. M odern Agrochem.2008,7,6 –11.。

相关文档
最新文档