【小初高学习]2018年秋八年级数学上册 第十三章《轴对称》13.4 课题学习 最短路径问题课时作业
13.4课题学习 最短路径问题 课件(共31张PPT) 初中数学人教版八年级上册
l C
B′
【探究2】如图,A 和 B 两地在一条河的两岸,现要在河上 造一座桥 MN. 桥造在何处可使从 A 到 B 的路径 AMNB 最 短(假定河的两岸是平行的直线,桥要与河垂直)?
如图所示:将河的两岸看成两条平行线 a 和 b,N 为直线 b上的一个动点,MN 垂直于直线 b,交直线 a 于点 M.当 点 N 在什么位置的时候,AM+MN+NB 的值最小?
P 地把河水引向 M、N 两地.下列四种方案中,最节省材料的是( D )
A.
B.
C.
D.
解析:依据垂线段最短,以及两点之间,线段最短, 可得最节省材料的是:
故选:D.
练习 6 如图所示,某条护城河在 CC 处直角转弯,河宽均为 5m,
从 A 处到达 B 处,须经过两座桥(桥宽不计,桥与河垂直),设 护城河以及两座桥都是东西、南北方向的,如何选址造桥可使从 A 处到 B 处的路程最短?请确定两座桥的位置.
∵在△A′N′B中,A′B<A′N′+BN′,
∴A′N+NB<A′N′+BN′.
A
即A′N+NB+MN<A′N′+BN′+M′N′. A′ ∴AM+NB+MN<AM′+BN′+M′N′.
即AM+NB+MN的值最小.
M′
M
N′ N
B
a b
练习 1 如图所示,军官从军营 C 出发先到河边(河流用 AB 表示)饮马,再 去同侧的 D 地开会,应该怎样走才能使路程最短?你能解决这个著名的“将
A
点C,则点C 即为所求的位置, 可以使得 AC+BC 的值最小.
人教版八年级上数学教学设计《第13章轴对称》
人教版八年级上数学教学设计《第13章轴对称》一. 教材分析人教版八年级上数学第13章《轴对称》是初中数学的重要内容,主要让学生理解轴对称的概念,掌握轴对称的性质,并能运用轴对称解决实际问题。
本章内容涉及图形变换,对于培养学生的空间想象能力和逻辑思维能力具有重要意义。
二. 学情分析八年级的学生已经掌握了基本的平面几何知识,具备一定的观察和分析能力。
但学生在学习过程中,可能对轴对称的概念和性质理解不深,因此在教学过程中,需要教师引导学生通过观察、操作、思考、交流等活动,体会轴对称的性质。
三. 教学目标1.知识与技能:理解轴对称的概念,掌握轴对称的性质,能运用轴对称解决实际问题。
2.过程与方法:通过观察、操作、思考、交流等活动,培养学生的空间想象能力和逻辑思维能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的团队合作意识。
四. 教学重难点1.重点:轴对称的概念,轴对称的性质。
2.难点:轴对称的性质在实际问题中的应用。
五. 教学方法1.情境教学法:通过引导学生观察实际问题,激发学生的学习兴趣。
2.探究式教学法:引导学生通过操作、思考、交流等活动,自主探究轴对称的性质。
3.案例教学法:通过典型例题,引导学生运用轴对称解决实际问题。
六. 教学准备1.教学素材:收集相关的实际问题,准备典型例题。
2.教学工具:黑板、粉笔、多媒体设备。
七. 教学过程1.导入(5分钟)教师通过展示一些实际问题,如剪纸、折叠等,引导学生观察并思考:这些实际问题有什么共同特点?学生可能回答出:这些实际问题都涉及到图形的对称性。
教师总结:对称性是这些实际问题的共同特点,今天我们要学习的就是关于对称性的一种重要类型——轴对称。
2.呈现(10分钟)教师通过多媒体展示轴对称的定义和性质,引导学生观察并思考:轴对称的定义是什么?轴对称的性质有哪些?学生可能回答出:轴对称的定义是图形关于某条直线对称;轴对称的性质有对称轴上的点不变,对称轴两侧的点关于对称轴对称。
人教版2018八年级(上册)数学第十三章轴对称整章教案
目录第十三章轴对称 (2)13.1.1 轴对称 (2)13.1.2 线段的垂直平分线的性质和判定 (5)13.2.1 画轴对称图形 (8)13.2.2 用坐标表示位置 (10)13.3.1.1 等腰三角形的性质 (13)13.3.1.2 等腰三角形的判定 (15)13.3.2 等边三角形 (18)13.4课题学习最短路径问题 (20)第十三章轴对称小结与复习 (22)第十三章轴对称13.1.1 轴对称一、教学目标:认知:掌握轴对称图形和关于直线成轴对称等概念。
能力;通过生活中的具体实例认识,培养观察思维、操作、归纳能力。
情感:体验数学与生活的联系,发展审美观。
二、教学重难点:教学重点:准确掌握轴对称图形和关于直线成轴对称的实质。
教学难点:轴对称图形和关于直线成轴对称的区别和联系。
三、教学法:1.教法:五环教学法2.学法:自学与小组合作学习相结合的方法四、教学具准备:教具图片、ppt五、教学过程:(一)导入新课:现实世界中,对称现象是普遍存在的,初步掌握对称的知识,不仅使我们感受到自然界的美与和谐,还可以帮助我们发现一些图形(如等腰三角形)的性质,并能根据自己的设计创造出对称作品,美好生活.你能举出一些对称的图形吗?答:等腰三角形、京剧脸谱、物与水中倒影、蝴蝶、奥迪车标志、地标建筑物(天安门)等.(二)教学活动:知识模块一轴对称图形、轴对称1、自主学习内容,回答下列问题:阅读教材P58中的6幅图片,你能找出它们的共同特征吗?观察课本P58答:这些图形沿某一直线对折以后,直线两旁的部分能够互相重合.归纳:如果一个平面图形沿一条直线折叠,直线两旁的部分能够完全重合,这个图形就叫做轴对称图形,这条直线就是它的对称轴,这时,我们也说这个图形关于这条直线(成轴)对称.第3个思考前的内容,回答下列问题:阅读教材P59教材P第1个思考中三幅图的特点是:每一对图形沿着虚线折叠,左边的图59形能与右边的图形重合.归纳:把一个图形沿某一直线对折后它能与另一个图形重合,那么就说这两个图形关于这一条直线(成轴)对称.这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点.2、合作探究如图所示,下面的图形是轴对称图形,请找出每个图形的对称轴的条数,并在各图上画出其对称轴.解:上面从左起的几个图形的对称轴的条数依次是1、2、3、4条,其各自的对称轴如下图所示:练习:下面四个中文艺术字中,不是轴对称图形的是( C),A) ,B) ,C) ,D)思考1:长方形有几条对称轴?如果把它沿着某一条对称轴切开,分成两个图形,那么这两个图形全等吗?这两个图形对称吗?答:有2条,全等,对称.思考2:教材P59图13.1-3中这三对成轴对称的两个图形全等吗?为什么?如果把它们看成一个整体,它是一个轴对称图形吗?答:全等,学生简单回答合理即可,是轴对称图形.归纳:把成轴对称的两个图形看成一个整体,它就是一个轴对称图形.把一个轴对称图形沿对称轴分成两个图形,这两个图形关于这条轴对称.知识模块二线段的垂直平分线1、自主学习阅读教材P59最后一个思考~P60练习之前的内容,回答下列问题:如图,△ABC和△A1B1C1关于y轴对称,点A的对应点是A1,y轴经过线段AA1的中点吗?y轴垂直线段AA1吗?答:经过,垂直.在图中,y轴是线段CC1和BB1的垂直平分线吗?答:是.2、合作探究归纳:①.经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线.②.轴对称的性质:如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.类似地,轴对称图形的性质:轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线.(三)课堂小结:知识模块一轴对称图形、轴对称知识模块二线段的垂直平分线(四)作业布置:1、必做题2、选做题六、板书设计:七、课后反思:13.1.2 线段的垂直平分线的性质和判定一、教学目标:认知:掌握线段的垂直平分线性质定理,能灵活运用垂直平分线性质定理解题。
【人教版】八年级上:第13章《轴对称》全章教案(22页,含反思)
第十三章轴对称13.1轴对称13.1.1轴对称1.理解轴对称图形和两个图形关于某直线对称的概念.2.了解轴对称图形的对称轴,两个图形关于某直线对称的对称轴、对应点.3.掌握线段垂直平分线的概念.4.理解和掌握轴对称的性质.重点轴对称图形和两个图形关于某直线对称的概念.难点轴对称图形和两个图形关于某直线对称的区别和联系.一、作品展示1.让部分学生展示课前的剪纸作品.2.小组活动:(1)在窗花的制作过程中,你是如何进行剪纸的?为什么要这样?(2)这些窗花(图案)有什么共同的特点?二、概念形成(一)轴对称图形1.在学生充分交流的基础上,教师提出“轴对称图形”的概念,并让学生尝试给它下定义,通过逐步地修正形成“轴对称图形”的定义,同时给出“对称轴”.2.结合教材图13.1-1进一步分析轴对称图形的特点,以及对称轴的位置.3.学生举例,试举几个在现实生活中你所见到的轴对称例子.4.概念应用:(1)教材第60页练习第1题.(2)补充:判断下面的图形是不是轴对称图形?如果是轴对称图形,它们的对称轴是什么?(二)两个图形关于某条直线对称1.观察教材中的图13.1-3,思考:图中的每对图形有什么共同的特点?2.两个图形成轴对称的定义.观察右图:把△A′B′C′沿直线l对折后能与△ABC重合,则称△A′B′C′与△ABC关于直线l对称,简称“轴对称”,点A与点A′对应,点B与B′对应,点C与C′对应,称为对称点,直线l叫做对称轴.3.举例:你能举出一些生活中两个图形成轴对称的例子吗?4.讨论:轴对称图形和两个图形成轴对称的区别.(三)轴对称的性质观察教材中图13.1-4,线段AA′与直线MN有怎样的位置关系?你能说明理由吗?引导学生说出如下关系:PA=PA′,∠MPA=∠MPA′=90°.类似的,点B和点B′,点C和点C′是否有同样的关系?你能用语言归纳上述发现的规律吗?结合学生发表的观点,教师总结并板书.对称轴经过对称点所连线段的中点,并且垂直于这条线段.在这个基础上,教师给出线段的垂直平分线的概念,然而把上述规律概括成图形轴对称的性质.上述性质是对两个成轴对称的图形来说的,如果是一个轴对称图形,那么它的对应点的连线与对称轴之间是否也有同样的关系?从而得出:类似的,轴对称图形的对称轴,是任何一个对应点所连线段的垂直平分线.三、归纳小结主要围绕下列几个问题:(1)概念:轴对称图形,两个图形关于某条直线对称,对称轴,对称点;(2)找轴对称图形的对称轴.四、布置作业教材习题13.1第1,2,3题.数学教学应该选在牵一发而动全身的关键之处进行,轴对称图形的认识的教学就是要抓住“对折”与“完全重合”两个关键之处.不然就是隔靴搔痒. 当“部分重合”与“完全重合”理解了,轴对称图形的概念也会在学生脑海中留下深刻的印象.13.1.2线段的垂直平分线的性质(2课时)第1课时线段的垂直平分线的性质与判定掌握线段的垂直平分线的性质和判定,能灵活运用线段的垂直平分线的性质和判定解题.重点线段的垂直平分线的性质和判定,能灵活运用线段的垂直平分线的性质和判定解题.难点灵活运用线段的垂直平分线的性质和判定解题.一、问题导入我们已经知道线段是轴对称图形,线段的垂直平分线是线段的对称轴.那么,线段的垂直平分线有什么性质呢?这节课我们就来研究它.二、探究新知(一)线段的垂直平分线的性质教师出示教材第61页探究,让学生测量,思考有什么发现?如图,直线l垂直平分线段AB,P1,P2,P3…是l上的点,分别量一量点P1,P2,P3…到点A与点B的距离,你有什么发现?学生回答,教师小结:线段垂直平分线上的点与这条线段两个端点的距离相等.性质的证明:教师讲解题意并在黑板上绘出图形:上述问题用数学语言可以这样表示:如图,设直线MN是线段AB的垂直平分线,点C是垂足,点P是直线MN上任意一点,连接PA,PB,我们要证明的是PA=PB.教师分析证明思路:图中有两个直角三角形,△APC和△BPC,只要证明这两个三角形全等,便可证得PA=PB.教师要求学生自己写已知,求证,自己证明.学生证明完后教师板书证明过程供学生对照.已知:MN⊥AB,垂足为点C,AC=BC,点P是直线MN上任意一点.求证:PA=PB.证明:在△APC和△BPC中,∵PC=PC(公共边),∠PCB=∠PCA(垂直定义),AC=BC(已知),∴△APC≌△BPC(SAS).∴PA=PB(全等三角形的对应边相等).因为点P是线段的垂直平分线上一点,于是就有:线段垂直平分线上的点与这条线段两个端点的距离相等.(二)线段的垂直平分线的判定你能写出上面这个命题的逆命题吗?它是真命题吗?这个命题不是“如果…那么…”的形状,要写出它的逆命题,需分析命题的条件和结论,将原命题写成“如果…那么…”的形式,逆命题就容易写出.鼓励学生找出原命题的条件和结论.原命题的条件是“有一个点是线段垂直平分线上的点”,结论是“这个点与这条线段两个端点的距离相等”.此时,逆命题就很容易写出来.“如果有一个点与线段两个端点的距离相等,那么这个点在这条线段的垂直平分线上.”写出逆命题后,就想到判断它的真假.如果真,则需证明它;如果假,则需用反例说明.请同学们自行在练习册上完成.学生给出了如下的四种证法.已知:线段AB,点P是平面内一点,且PA=PB.求证:P点在AB的垂直平分线上.证法一过点P作已知线段AB的垂线PC,∵PA=PB,PC=PC,∴Rt△PAC≌Rt△PBC(HL).∴AC=BC,即P点在AB的垂直平分线上.证法二取AB的中点C,过P,C作直线.∵PA=PB,PC=PC,AC=CB,∴△APC ≌△BPC(SSS).∴∠PCA=∠PCB(全等三角形的对应角相等).又∵∠PCA+∠PCB=180°,∴∠PCA=∠PCB=90°,即PC⊥AB,∴P点在AB的垂直平分线上.证法三过P点作∠APB的平分线.∵PA=PB,∠1=∠2,PC=PC,△APC≌△BPC(SAS).∴AC=BC,∠PCA=∠PCB(全等三角形的对应边相等,对应角相等).又∵∠PCA+∠PCB=180°,∴∠PCA=∠PCB=90°,∴P点在AB的垂直平分线上.证法四过P作线段AB的垂直平分线PC.∵AC=CB,∠PCA=∠PCB=90°,∴P在AB的垂直平分线上.四种证法由学生表述后,有学生提问:“前三个同学的证明是正确的,而第四个同学的证明我有点弄不懂.”师生共析:如图(1),PD⊥AB,D是垂足,但D不平分AB;如图(2),PD平分AB,但PD不垂直于AB.这说明一般情况下,“过P作AB的垂直平分线”是不可能实现的,所以第四个同学的证法是错误的.从同学们的推理证明过程可知线段的垂直平分线的性质的逆命题是真命题,我们把它称为线段的垂直平分线的判定.要作出线段的垂直平分线,根据垂直平分线的判定:与一条线段两个端点距离相等的点,在这条线段的垂直平分线上,那么我们必须找到两个与线段两个端点距离相等的点,这样才能确定已知线段的垂直平分线.下面我们一同来写出已知、求作、作法,体会作法中每一步的依据.例1 尺规作图:经过已知直线外一点作这条直线的垂线. 已知:直线AB 和AB 外一点C.(如下图) 求作:AB 的垂线,使它经过点C.作法:(1)任意取一点K ,使点K 和点C 在AB 的两旁. (2)以点C 为圆心,CK 长为半径作弧,交AB 于点D 和点E.(3)分别以点D 和点E 为圆心,大于12DE 的长为半径作弧,两弧相交于点F.(4)作直线CF.直线CF 就是所求作的垂线.师:根据上面作法中的步骤,想一想,为什么直线CF 就是所求作的垂线?请与同伴进行交流.生:从作法的第(2)(3)步可知CD =CE ,DF =EF ,∴C ,F 都在AB 的垂直平分线上(线段的垂直平分线的判定).∴CF 就是线段AB 的垂直平分线(两点确定一条直线).师:我们曾用刻度尺找线段的中点,当我们学习了线段的垂直平分线的作法时,一旦垂直平分线作出,线段与线段的垂直平分线的交点就是线段AB 的中点,所以我们也用这种方法找线段的中点.三、课堂练习教材第62页练习第1,2题.四、课堂小结本节课我们学习了线段的垂直平分线的性质和判定,并学会了用尺规作线段的垂直平分线.五、布置作业1.教材习题13.1第6题. 2.补充题:(1)下图是某跨河大桥的斜拉索,图中PA =PB ,PO ⊥AB ,则必有AO =BO ,为什么?(2)如左下图,△ABC 中,AC =16 cm ,DE 为AB 的垂直平分线,△BCE 的周长为26 cm .求BC 的长.(3)有A ,B ,C 三个村庄(如右上图),现准备建一所学校,要求学校到三个村庄的距离相等,请你确定学校的位置.本节证明了线段的中垂线的性质定理及判定定理、用尺规作线段的中垂线.在课堂中,学生证明过程、作图方法原理的理解及掌握都比较好,但要强调作业中不用三角板等工具而要用尺规来作图,解决实际问题时可以直接用定理而不是借助于全等.第2课时 画对称轴会画轴对称图形的对称轴.重点轴对称图形的对称轴的画法. 难点轴对称图形的对称轴的画法.一、提出问题如果两个平面图形成轴对称,你能用什么办法验证?不经过折叠,你能用什么方法画出它的对称轴? 二、探究新知 我们已经学过,如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线,所以我们只要找到两个图形的一对对应点,然后画出以对应点为端点的线段的垂直平分线即可,如何作线段的垂直平分线呢?例1 如图(1),已知点A 和点B 关于某条直线成轴对称,你能作出这条直线吗?分析:我们只要连接点A 和点B ,作出线段AB 的垂直平分线,就可以得到点A 和点B 的对称轴,为此作出到点A ,B 距离相等的两点,即线段AB 的垂直平分线上的两点,从而作出线段AB 的垂直平分线.教师具体分析画法、写出画法,根据画法作出图形. 学生模仿教师的画法,边写画法,边画图.作法:如图(2).(1)分别以点A ,B 为圆心,以大于12AB 的长为半径作弧(想一想,为什么),两弧相交于C ,D 两点;(2)作直线CD.CD 就是所求作的直线.这个作法实际上就是线段的垂直平分线的尺规作图. 教师引导学生思考:(1)在作法中为什么有CA=CB,DA=DB?(2)可以用这种方法找线段的中点吗?四等分点呢?三、举例分析例2如图(1),△ABC和△A′B′C′是两个成轴对称的图形,请画出它的对称轴.教学方法:启发学生把问题转化为已解决问题,只要画出点A、点A′连线的垂直平分线即可,如图(2).例3图(1)是一个五角星,请画出它的对称轴.教学方法:引导学生思考五角星有几条对称轴,点A可以和哪些点成对应点?最后化归到例2,由学生自己完成.四、巩固练习教材第64页练习第1,2,3题.五、课堂小结本节课你有什么收获?还有哪些不懂的地方吗?六、布置作业教材习题13.1第7,8题.通过前两节的学习,这节画对称轴的习题课就可以全部交由学生自己完成.画轴对称图形的对称轴就是利用两个对称点找到对称轴,即画出这对对应点连线的垂直平分线,让学生用尺规作图,独立完成.13.2画轴对称图形(2课时)第1课时作轴对称图形通过实际操作,掌握作轴对称图形的方法.重点能够按要求作出简单平面图形经过一次对称后的图形.难点较复杂图形的轴对称图形的画法.一、问题导入我们前面学习了轴对称图形以及轴对称图形的一些相关的性质.如果有一个图形和一条直线,如何画出这个图形关于这条直线对称的图形呢?这节课我们一起来学习作轴对称图形的方法.二、探究新知[活动]在一张半透明纸的左边部分,画一只左脚印,把这张纸对折后描图,打开对折的纸,就能得到相应的右脚印.这时,右脚印和左脚印成轴对称,折痕所在的直线就是它们的对称轴,并且连接任意一对对应点的线段被对称轴垂直平分.类似地,请你再将一个图形做一做,看看能否得到同样的结论.认真观察,左脚印和右脚印有什么关系?(成轴对称)对称轴是折痕所在的直线,即直线l,它与图中的线段PP′是什么关系?(直线l垂直平分线段PP′)[思考1]如何画一个点的对称图形?例1画出点A关于直线l的对称点A′.画法:(1)过点A作对称轴l的垂线,垂足为B;(2)延长AB到A′,使得BA′=AB.点A′就是点A关于直线l的对称点.[思考2]如何画一条直线的对称图形?例2已知线段AB,画出AB关于直线l的对称线段.画法:(1)画出点A关于直线l的对称点A′.(2)画出点B关于直线l的对称点B′.(3)连接点A′和点B′成线段A′B′.线段A′B′即为所求.[思考3]如果有一个图形和一条直线,如何画出与这个图形关于这条直线对称的图形呢?例3如图,已知△ABC和直线l,画出与△ABC关于直线l对称的图形.画法:(1)过点A画直线l的垂线,垂足为O,在垂线上截取OA′=OA,A′就是点A 关于直线l的对称点.(2)同理,分别画出点B,C关于直线l的对称点B′,C′.(3)连接A′B′,B′C′,C′A′,则△A′B′C′即为所求.三、课堂练习1.教材第68页练习第1,2题2.下列图形中,点P与P′关于直线MN对称的图形是()四、小结与作业1.归纳:几何图形都可以看成由点组成,对于某些图形,只要画出图形中的一些特殊点(如线段的端点),连接这些对称点,就可以得到图形的对称图形.2.作业:教材习题13.2第1题.几何图形都可以看作由点组成,我们只要分别作出这些点关于对称轴的对应点,再连接这些对应点,就可以得到原图形的轴对称图形;对于一些由直线、线段或射线组成的图形,只要作出图形中的一些特殊点(如线段端点)的对称点,连接这些对称点,就可以得到原图形的轴对称图形.第2课时用坐标表示轴对称1.能在直角坐标系中画点关于坐标轴的对称点.2.能表示点关于坐标轴对称的点的坐标,表示关于平行于坐标轴的直线的对称点的坐标.重点用坐标表示点关于坐标轴对称的点的坐标.难点找对称点的坐标之间的关系.一、问题导入教材图13.2-3是一张老北京城的示意图,其中西直门和东直门是关于中轴线对称的,如果以天安门为原点,分别以长安街和中轴线为x轴和y轴建立平面直角坐标系,根据如图所示的东直门的坐标,你能说出西直门的坐标吗?二、探究新知【探究1】(1)在直角坐标系中画出下列已知点A(2,-3),B(-1,2),C(-6,-5),D(3,5),E(4,0),F(0,-3);(2)画出这些点分别关于x轴、y轴对称的点,并填写表格;(3)请你仔细观察点的坐标,你能发现关于坐标轴对称的点的坐标有什么规律吗?(4)请你想办法检验你所发现的规律的正确性,说说你是如何检验的.已知点A(2,-3) B(-1,2) C(-6,-5)D(3,5) E(4,0) F(0,-3)关于x轴的对称点关于y轴的对称点【探究2】在同一平面直角坐标系内描出以上各点关于y轴的对称点并写出坐标,观察关于y轴对称的两个点的坐标有什么规律?【归纳】关于y轴对称的点的坐标规律是:纵坐标相同,横坐标互为相反数.【探究3】按以上规律,说出点P(x,y)关于x轴的对称点P1的坐标,再说出P1关于y轴的对称点P2坐标.观察点P经过两次轴对称所得点P2的坐标有什么规律?【归纳】一个点经历关于x轴、y轴两次轴对称得到的对称点坐标规律是:横坐标互为相反数,纵坐标也互为相反数.在以后学了“中心对称”后,两点被称为关于原点对称.三、举例分析【例1】已知A(2,a),B(-b,4),分别根据下列条件求a,b的值.(1)A,B关于y轴对称;(2)A,B关于x轴对称;(3)A,C关于x轴对称,B,C关于y轴对称.【解析】(1)A,B关于y轴对称,说明纵坐标相同,横坐标相反,a=4,b=2;(2)A,B关于x轴对称,说明横坐标相同,纵坐标相反,a=-4,b=-2;(3)A,C关于x轴对称,B,C关于y轴对称,说明A,B经过x轴、y轴两次对称变换,即关于原点对称,横、纵坐标各互为相反数,a=-4,b=2.【例2】如下图,四边形ABCD的四个顶点的坐标分别为A(-5,1),B(-2,1),C(-2,5),D(-5,4),分别画出与四边形ABCD关于y轴和x轴对称的图形.学生独立完成,教师用多媒体出示出正确答案并讲评.四、课堂巩固1.平面直角坐标系中,点P(4,-5)关于x轴的对称点在()A.第一象限B.第二象限C.第三象限D.第四象限2.已知点P(-2,3)关于y轴对称点为Q(a,b),则a+b的值为()A.1B.-1C.5D.-53.点P(a,b)关于x轴对称的点为P1,点P1关于y轴的对称点为P2,则P2的坐标为() A.(a,b) B.(a,-b)C.(-a,b) D.(-a,-b)4.若点(a,b)与点(m,n)满足a+m=0,b-n=0,则这两点关于()对称.A.x轴B.y轴C.x轴或y轴D.不确定五、拓展思维如图,点A(1,4),B(4,1),l为第一、三象限角∠xOy的平分线.(1)求证:l垂直平分AB;(2)A,B关于l成轴对称吗?(3)如果点A,B的坐标分别为(6,8)和(8,6),它们还关于l对称吗?(4)如果你发现了对称点的坐标规律,写出点P(m,n)关于第一、三象限角平分线的对称点Q的坐标.六、小结与作业小结:(1)点关于某条直线对称的点的坐标可以通过寻找线段之间的关系来求.(2)点(x,y)关于x轴对称的点的坐标为(x,-y),即横坐标相等,纵坐标互为相反数;点(x,y)关于y轴对称的点的坐标为(-x,y)即横坐标互为相反数,纵坐标相等.作业:教材习题13.2第3,4题.本节课通过学生熟悉、向往的北京城内天安门、长安街、东直门等的方位引入新课,能强烈地吸引学生的注意力,较好地激发学生的学习兴趣.其中归纳规律后检验其正确性是科学研究问题的一个必不可少的步骤,并通过一系列的练习培养学生思维的流畅性,也使学生特别是学有困难的学生都能达到基本的学习目标.13.3等腰三角形13.3.1等腰三角形(2课时)第1课时等腰三角形的性质和应用1.理解并掌握等腰三角形的性质.2.运用等腰三角形的性质进行证明和计算.3.观察等腰三角形的对称性、发展形象思维.重点等腰三角形的性质及应用.难点等腰三角形的性质的证明.一、情境导入【活动1】教师预先做出各种几何图形,包括圆、长方形、正方形、等腰梯形、一般三角形、等腰三角形、等边三角形等.让同学们抢答哪些是轴对称图形,提问什么是轴对称图形,什么样的三角形才是轴对称图形.引入今天所要讲的课题——等腰三角形.我们知道,有两条边相等的三角形是等腰三角形,下面我们利用轴对称的知识来研究等腰三角形.二、探究新知如图,把一张长方形的纸按图中虚线对折,并剪去阴影部分,再把它展开,得到的△ABC 有什么特点?学生活动:学生动手操作,从剪出的图形观察△ABC的特点,可以发现AB=AC.教师活动:让学生回顾等腰三角形的概念:有两边相等的三角形叫做等腰三角形,相等的两边叫做腰,另一边叫做底边,两腰的夹角叫做顶角,腰和底边的夹角叫做底角.如下图.在△ABC中,若AB=AC,则△ABC是等腰三角形,AB,AC是腰,BC是底边,∠A 是顶角,∠B和∠C是底角.【活动2】把活动1中剪出的△ABC沿折痕AD对折,找出其中重合的线段,填入下表:重合的线段重合的角学生活动:学生经过观察,独立完成上表,然后小组讨论交流,从表中总结等腰三角形的性质.教师活动:引导学生归纳.性质1 等腰三角形的两个底角相等(简写成“等边对等角”);性质2 等腰三角形顶角平分线、底边上的中线、底边上的高相互重合(简写成“三线合一”).【活动3】你能用所学知识验证上述性质吗?如图,在△ABC 中,AB =AC.求证:∠B =∠C.学生活动:学生在独立思考的基础上进行讨论,寻找解决问题的办法,若证∠B =∠C ,根据全等三角形的知识可以知道,只需要证明这两个角所在的三角形全等即可.于是可以作辅助线构造两个三角形,作BC 边上的中线AD ,证明△ABD 和△ACD 全等即可,根据条件利用“边边边”可以证明.教师活动:让学生充分讨论,根据所学的数学知识利用逻辑推理的方式进行证明,证明过程中注意学生表述的准确性和严谨性.证明:作BC 边上的中线AD ,如图.在△ABD 和△ACD 中,⎩⎨⎧AB =AC ,AD =AD ,BD =CD ,所以△ABD ≌△ACD(SSS ),所以∠B =∠C. 这样,就证明了性质1.类比性质1的证明你能证明性质2吗?由△ABD ≌△ACD ,还可得出∠BAD =∠CAD ,∠ADB =∠ADC =90°. 从而AD ⊥BC ,这也就证明了等腰△ABC 底边上的中线平分顶角∠A 并垂直于底边BC. 添加辅助线的方法多样,让学生再去讨论、交流,即用类似的方法可以证明性质2. 三、应用提高例1 如图,在△ABC 中,AB =AC ,点D 在AC 上,且BD =BC =AD ,求△ABC 各角的度数.学生活动:小组合作,分组讨论、交流.教师活动:引导学生分析图形中关于角的数量关系.(三角形的内角、外角,等腰三角形的底角)发现:(1)∠ABC=∠ACB=∠CDB=∠A+∠ABD;(2)∠A=∠ABD;(3)∠A+2∠C=180°.若设∠A=x,则有x+4x=180°,得到x=36°,进一步得到两个底角的度数.四、小结与作业请同学们回顾本节课所学的内容,有哪些收获?师生活动:学生思考后,用自己的语言归纳,教师适时点评,并关注以下几个问题:小结:(1)等边对等角;(2)等腰三角形的三线合一;(3)等腰三角形常用辅助线作法(作底边上的高、作底边上的中线、作顶角的平分线).作业:教材习题13.3第1,3,7题.本节课重点要让学生通过动手翻折等腰三角形纸片得出等腰三角形“两个底角相等”、“三线合一”的性质.设计理念是让学生通过感官认识、折纸、猜想、验证等腰三角形的性质,然后运用全等三角形的知识加以论证,使学生思维由形象直观过渡到抽象的逻辑演绎,层层展开,步步深入,从而实现教学目的.第2课时等腰三角形的判定1.理解并掌握等腰三角形的判定方法.2.运用等腰三角形的判定进行证明和计算.重点等腰三角形的判定方法.难点等腰三角形的判定方法的证明.一、提出问题出示教材第77页“思考”.学生思考,回答后教师提问:在一般三角形中,如果有两个角相等,那么它们所对的边有什么关系?学生猜想它们所对的边相等.即如果一个三角形有两个角相等,那么这两个角所对的边也相等.如何证明?二、解决问题教师引导提示,学生根据提示画出图形,并写出已知、求证.已知:在△ABC中,∠B=∠C.求证:AB=AC.与学生一起回顾等腰三角形中常添加的辅助线:高、顶角平分线、底边上的中线.让学生逐一尝试,发现可以作AD⊥BC,或AD平分∠BAC,但不能作BC边上的中线.学生口头证明后,选一种方法写出证明过程.如图,在△ABC 中,∠B =∠C ,作△ABC 的角平分线AD.在△BAD 和△CAD 中,⎩⎨⎧∠1=∠2,∠B =∠C ,AD =AD ,∴△BAD ≌△CAD(AAS ),∴AB =AC.归纳等腰三角形的判定方法: 如果一个三角形有两个角相等,那么这两个角所对的边也相等,简称:“等角对等边”. 三、应用举例 1.出示教材例2.引导学生根据命题画出图形,利用角平分线的性质及“等边对等角”来证明. 学生讨论后,自己完成证明过程.例2 求证:如果三角形一个外角的平分线平行于三角形的一边,那么这个三角形是等腰三角形.已知:∠CAE 是△ABC 的外角,∠1=∠2,AD ∥BC.(如图所示)求证:AB =AC.分析:要证明AB =AC.可先证明∠B =∠C.因为∠1=∠2,所以可以设法找出∠B ,∠C 与∠1,∠2的关系.证明:∵AD ∥BC ,∴∠1=∠B(______________________),∠2=∠C(______________________). 而已知∠1=∠2,所以 ∠B =∠C.∴AB =AC(______________). 2.出示教材例3.让学生自学例3.例3 已知等腰三角形底边长为a ,底边上的高的长为h ,求作这个等腰三角形.作法:(1)作线段AB=a.(2)作线段AB的垂直平分线MN,与AB相交于点D.(3)在MN上取一点C,使DC=h.(4)连接AC,BC,则△ABC就是所求作的等腰三角形.四、课堂小结1.等腰三角形的判定方法是什么?2.等腰三角形的性质与判定既有区别又有联系,你能总结一下吗?五、布置作业教材习题13.3第2,8,10题.学生刚刚学过等腰三角形的性质,对等腰三角形已经有了一定的了解和认识.因此在课堂教学中先引出等腰三角形的判定定理及推论,并能够灵活应用它进行有关论证和计算.发展学生的动手、归纳猜想能力;发展学生证明用文字表述的几何命题的能力;使它们进一步掌握归纳思维方法,领会数学分类思想、转化思想.13.3.2等边三角形(2课时)第1课时等边三角形的性质和判定1.掌握等边三角形的定义.2.理解等边三角形的性质与判定.重点等边三角形的性质和判定.难点等边三角形的性质的应用.一、问题引入在等腰三角形中,如果底边与腰相等,会得到什么结论?二、自主探究1.等边三角形的定义底边和腰相等的等腰三角形叫做等边三角形.2.思考:把等腰三角形的性质用于等边三角形,能得到什么结论?一个三角形的三个内角满足什么条件才是等边三角形?边:三条边都相等.角:三个角都相等,并且每一个角都等于60°.3.在△ABC中,∠A=∠B=∠C,你能得到AB=BC=CA吗?为什么?你从中能得到什么结论?。
人教版数学八年级上册 第十三章《轴对称》教案设计
第十三章《轴对称》教学分析一、本章在教材中的意义本章涉及到课标中图形的性质、图形的变化、图形与坐标三个部分的内容。
在图形的性质方面,本章主要学习线段的垂直平分线、等腰三角形和等边三角形的性质与判定,前有全等三角形作为探究、推理的基础,后面还会在平行四边形、圆的学习中讨论图形的对称性.在图形的变化方面,轴对称和平移、旋转都属于合同变换(将一个平面图形变换成与其相等或全等的图形的变换),初中阶段还会学习位似变换,教材在处理这些变换时,也都采取了相似的思路,即从实例中得到概念、从典型例子中总结性质、以性质为依据进行作图、在坐标系中作图探索坐标和变换的关系.在图形与坐标方面,本章的要求仅限于对称轴是坐标轴的情形,但在后续学习函数图象的对称性时,会遇到更复杂的情形.从学习过程的设计来看,本章教材在设计上加强了实验几何的成分。
(实验几何,即通过观察与实验认识几何图形、发现图形的性质、求解图形的关系。
)教材让学生通过画图、折纸、剪纸、度量等活动,探索发现几何结论,在发现结论的基础上,再经过推理证明这些结论。
二、本章教学目标和考试要求1.本章教学目标(1)通过具体实例认识轴对称、轴对称图形,探索轴对称的基本性质,理解对应点连线被对称轴垂直平分的性质.(2)探索简单图形之间的轴对称关系,能够按照要求画出简单平面图形(点、线段、直线、三角形等)关于给定对称轴对称的图形;认识并欣赏自然界和现实生活中的轴对称图形.(3)理解线段垂直平分线的概念,探索并曾敏线段垂直平分线的性质定理:线段垂直平分线上的点到线段两端的距离相等;反之,到线段两端距离相等的点在线段的垂直平分线上.(4)了解等腰三角形的概念,探索并证明等腰三角形的性质定理;探索并掌握等腰三角形的判定定理;探索并掌握等边三角形的性质定理及等边三角形的判定定理.(5)能初步应用本章所学的知识解释生活中的现象及解决简单的实际问题,在观察、操作、想象、论证、交流的过程中,发展空间观念,激发学习兴趣.2.教学重、难点重点:轴对称的性质,等腰三角形的性质和判定.难点:对图形性质的推理证明.3.2018年北京市中考说明对本章的要求考试内容考试要求A B C图形与几何图形的性质线段垂直平分线理解线段垂直平分线的概念尺规作图(基本作图):过一点作已知直线的垂线,作一条线段的垂直平分线;能利用线段垂直平分线的性质与判定解决有关简单问题运用线段垂直平分线的有关内容解决有关问题等腰三角形和等边三角形了解等腰三角形和等边三角形的概念掌握等腰三角形和等边三角形的性质定理与判定定理;尺规作图(利用基本作图作三角形);已知底边及底边上的高线作等腰三角形;能用等腰三角形和等边三角形的性质定理与判定定理解决有关简单问题运用等腰三角形和等边三角形的有关内容解决有关问题图形的变化图形的轴对称了解轴对称的概念;理解轴对称的基本性质;了解轴对称图形的概念能画出简单平面图形关于给定对称轴的对称图形;探索等腰三角形、矩形、菱形、正多边形、圆的轴对称性质;能利用轴对称的性质解决有关简单问题运用轴对称的有关内容解决有关问题图形与坐标坐标与图形运动在平面直角坐标系中,知道已知顶点坐标的多边形经过轴对称(对称轴为坐标轴)后的对应顶点坐标之间的关系在平面直角坐标系中,能写出已知顶点坐标的多边形经过轴对称(对称轴为坐标轴)后的图形的顶点坐标运用坐标与图形运动的有关内容解决有关问题三、本章教学建议1.本章知识结构框图生活中的轴对称轴对称作轴对称图形的对称轴画轴对称图形利用几何变换解决问题轴对称的概念轴对称的性质轴对称的作图线段的垂直平分线的性质坐标系中的轴对称等腰三角形等边三角形2.课时安排本章教学约15课时(含讲评),具体安排如下:13.1轴对称共3课时13.1.1轴对称1课时13.1.2线段的垂直平分线2课时13.2画轴对称图形共2课时13.3等腰三角形共6课时13.3.1等腰三角形4课时13.3.2等边三角形2课时13.4课题学习最短路径问题共2课时小结和单元检测共2课时3.教学中需要斟酌的问题(1)实例在教学中的合理运用。
最新人教版八年级数学上册第十三章轴对称 教案教学设计 共10课时,含教学反思
第十三章轴对称13.1 轴对称 (1)13.1.1 轴对称 (1)13.1.2 线段的垂直平分线的性质 (3)13.2 画轴对称图形 (8)第1课时作轴对称图形 (8)第2课时用坐标表示轴对称 (12)13.3 等腰三角形 (16)13.3.1 等腰三角形 (16)13.3.2 等边三角形 (25)13.4 课题学习最短路径问题 (33)章末复习 (35)13.1 轴对称13.1.1 轴对称【知识与技能】掌握轴对称图形和关于直线成轴对称等概念.【过程与方法】通过生活中的具体实例认识,培养观察、思维、操作、归纳能力.【情感态度】体验数学与生活的联系,发展审美观.【教学重点】准确掌握轴对称图形和关于直线成轴对称的实质.【教学难点】轴对称图形和关于直线成轴对称的区别与联系.一、情境导入,初步认识展示学生按要求收集的图片资料,教师指导并对所有图片进行分类:第一类是轴对称图形,第二类是关于一条直线对称的图形.学生观察,并以小组为单位,讨论下列问题:1.第一类图案有什么共同特征?2.第二类图案有什么共同特征?【教学说明】教师讲课前,先让学生完成“自主预习”.二、思考探究,获取新知1.轴对称图形在学生交流和说出两类图案的特征的基础上,教师提出第一类的图案称为轴对称图形.问题1 学生尝试说出轴对称图形的定义,教师适当纠正与补充.问题2 请学生再举一些日常生活中的轴对称图形的例子.问题3 请观察下列图案,看这些轴对称图形各有几条对称轴.2.两个图形关于某条直线对称教师提出第二类图案称为两个图形关于某条直线对称.问题4 鼓励学生说出两个图形关于某条直线对称的定义.问题5 举出生活中两个图形成轴对称的例子.如:提示:对称轴可能不止1条,也可能是水平的或倾斜的.教师再归纳总结轴对称图形和两个图形成轴对称间的区别与联系.三、运用新知,深化理解1.如图,在由小正方形组成的L形的图形中,用三种不同的方法添画一个小正方形,使它成为轴对称图形.2.角是轴对称图形,它的对称轴是 .【教学说明】问题1中有两种方法比较容易,方法3鼓励学生交流讨论得到;问题2提醒学生不能说成角平分线.【答案】1.2.角平分线所在的直线.四、师生互动,课堂小结本节课你学会了什么?有哪些收获?还有什么疑问?1.布置作业:从教材“习题13.1”中选取.2.如图是一个圆形的纸片,请问:它是轴对称图形吗?如果是, 对称轴有多少条?请你找到它的圆心.3.完成练习册中本课时的练习.本课时教学应重视以下几点:1.努力体现数学与生活的联系,从实际中学习新知,使学生认识这种学习方法.2.形成提炼概念的能力,注重从实物的形象思维向抽象思维转变.3.在对比中发现,认识知识,如“轴对称”与“轴对称图形”的区别与联系.13.1.2 线段的垂直平分线的性质【知识与技能】1.了解两个图形成轴对称的性质,了解轴对称图形的性质.2.探究线段垂直平分线的性质.【过程与方法】经历探索轴对称图形性质的过程,发展空间观察能力.【情感态度】体验数学与现实间的联系,发展审美感,激发兴趣.【教学重点】轴对称的性质,线段垂直平分线的性质.【教学难点】线段垂直平分线的性质.一、情境导入,初步认识问题1 下面图形中哪些是轴对称图形?如果是,请说出它的对称轴.问题2 如果两个图形成轴对称,那么这两个图形有什么关系?(如图2,△ABC和△A′B′C′关于直线MN对称)【教学说明】两个图形成轴对称,那么这两个图形就全等.由此提出线段垂直平分线定义:经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线.如图3,直线l是线段AB的垂直平分线.教师讲课前,先让学生完成“自主预习”.二、思考探究,获取新知1.探究轴对称的性质(1)作两个成轴对称的三角形,如图.(2)将对称点分别用线段连接起来,观察它与对称轴的位置关系及数量关系,你能得到什么结论?是如何得到这个结论的?(3)轴对称图形是否也具备这样的性质呢?举例说明.2.探索线段垂直平分线的性质探究1 教材中的“探究”.学生先思考教科书上的问题,然后让学生以线段代替木条进行画图探究.任意画一条线段AB,画出它的垂直平分线MN,在MN上任取点P1,P2,P3,分别量一量点P1,P2,P3到点A,点B 的距离,你有什么发现?与同伴交流,说明理由.探究2 如图,PA=PB,取线段AB的中点O,连接PO,PO与AB有怎样的位置关系?指导学生运用三角形全等知识判定△PAO≌△PBO,从而推得PO是线段AB的垂直平分线.教师总结线段垂直平分线的性质与判定.例1 如图所示,有一块三角形田地,AB=AC=10m,作AB的垂直平分线ED交AC于D,交AB 于E,量得△BDC的周长为17m,请你替测量人员计算BC的长.解:∵ED是AB的垂直平分线,∴DA=DB.又∵△BDC的周长为17m,AB=AC=10m,∴BD+DC+BC=17(m).∴DA+DC+BC=17, 即AC+BC=17(m). ∴10+BC=17(m),BC=7(m). 3.作简单轴对称图形的对称轴.例2 如图所示,△ABC 与△A ′B ′C ′关于某条直线对称,请你作出这条直线.【分析】△ABC 与△A ′B ′C ′中的点A 与A ′,点B 与B ′,点C 与C ′是对应点,连接一对对应点,如连接BB ′,作线段BB ′的垂直平分线即可.解:(1)如图所示,连接BB ′,分别以点B ,B ′为圆心,以大于21BB ′的长为半径作弧,两弧相交于D 、E 两点;(2)作直线DE ,DE 即为所求的直线. 三、运用新知,深化理解1.如果△ABC 中,∠BAC=110°,P\,Q 在BC 上,若MP\,NQ 分别垂直平分AB\,AC,则∠PAQ 的度数是 .2.如图,正方形ABCD 的边长为4cm,则图中阴影部分的面积为.3.如图所示,直线CD 是线段AB 的垂直平分线,P 为直线CD 上的一点,已知线段PA=5,则线段PB 的长度为( )A.6B.5C.4。
人教版八年级数学上册13.4《课程学习 最短路径问题》教学设计(优质获奖)
《课题学习:最短路径问题》教学设计一、课程标准解读及地位作用(1)课程标准解读:《课题学习:最短路径问题》属于综合与实践这一部分,这节课就是综合运用所学的数学思想、方法、知识、技能解决一些生活和社会中的问题,以实际生活中的问题为载体,以学生自主参与为主的学习活动,是培养学生应用意识、创新意识、过程经验很重要的载体,通过课题学习能够把知识系统化,解决一些实际问题。
针对问题情境,学生借助所学知识和生活经验独立思考或与他人合作,经历发现问题和提出问题、分析问题和解决问题的全过程,感悟数学各部分内容之间、数学与实际生活之间及其他学科的联系,激发学生学习数学的兴趣,加深学生对所学数学内容的理解。
这种类型的课程应该“少而精”的原则,保证每学期至少一次,可以在课堂上完成,也可以将课内外结合.(2)地位及作用:《课题学习:最短路径问题》位于人教版八年级上第十三章《轴对称》,为让学生能灵活的运用两点之间线段最短、合理使用轴对称、平移等解决最短路径问题而设置的一节课。
本节课是在学习轴对称、等腰三角形的基础上,引导学生探究如何利用线段公理解决最短路径问题。
它既是轴对称、平移、等腰三角形知识运用的延续,又能培养学生自主探究,学会思考,在知识与能力转化上起到桥梁作用.二、教学内容和内容解析1、内容:利用轴对称研究某些最短路径问题.2、内容解析:最短路径问题在现实生活中经常遇到,初中阶段,主要以“两点之间,线段最短”“连接直线外一点与直线上各点的所有线段中,垂线段最短”为知识基础,有时还要借助轴对称、平移、旋转等进行变换进行研究.这节课我以数学史中的一个经典问题---将军饮马问题为载体开展对“最短路径问题”的课题研究,让学生经历将实际问题抽象为数学的线段和最小值问题,再利用轴对称将线段和最小值问题转化为“两点之间,线段最短”问题。
基于以上分析,确定本节课的教学重点:利用轴对称将最短路径问题转化为“两点之间,线段最短”问题.三、目标和目标解析1、目标:能利用轴对称能利用轴对称和平移变换解决简单的最短路径问题,体会图形的变化在解决最值问题中的作用,感悟转化思想.2、目标解析:达成目标的标志是:学生能将实际问题中的“地点”“河”抽象为数学中的“点”“线”,经历将实际问题抽象为数学的线段和最小值问题的过程;能利用轴对称将线段和最小问题转化为“两点之间,线段最短”问题;能通过逻辑推理证明所求距离最短;在探索最短路径的过程中,体会轴对称“桥梁“的作用,感悟转化思想.四、教学问题诊断分析最短路径问题从本质上说是最值问题,作为初中生,在此前很少涉及最值问题,解决这方面问题的数学经验尚显不足,特别是面对具有实际背景的最值问题,更会感到陌生,无从下手。
初中数学人教八年级上册(2023年更新)第十三章 轴对称1课题学习 最短路径将军饮马问题
13.4 课题学习最短路径问题(2课时)-----将军饮马绵阳外国语实验学校王婵教学目标:1、利用轴对称解决简单的最短路径问题2、理解最值问题在具体题目中的运用教学重点:利用轴对称解决简单的最短路径问题教学难点: 寻找题目中的最短路径模型教学过程:一.复习引入【师】同学们,以前我们就学过最短路径的理论知识,现在我们先来回顾复习一下涉及到的知识【师】1.如图,连接A、B两点的所有线中,哪条最短?为什么?【生】②最短,因为两点之间,线段最短.【师】2.如图,点P是直线l外一点,点P与该直线l上各点连接的所有线段中,哪条最短?为什么?【生】PC最短,因为垂线段最短.【师】3.在以前学习三角形中,有哪些有关线段大小的结论?【师】三边关系还可以这样理解,当三点共线时,BA’+CA’最短,BA+CA>BA’+CA’【师】如图,如何做点A关于直线l的对称点?二.新课讲解例1.(将军饮马问题)如图,牧马人从A地出发,到一条笔直的河边l饮马,然后到B地,牧马人到河边的什么地方饮马,可使所走的路径最短?(两点一线)BAl实际问题【师】这个题求的A到l再到B最短路径即哪些线段和最短?【生】AP+BP两条线段和最短问题1.【师】假如A、B是直线l异侧两个点,你能得到最短路径P所在位置吗?【生】连接AB,与l的交点即为P点【师】你运用的是什么知识点解决这个问题?【生】两点之间,线段最短问题2.【师】如果点A,B分别是直线l同侧的两个点,又应该如何解决所走路径最短的问题?【生】将B对称到B’,连接AB’,交l于P点问题3.【师】此时A、B’、P三点共线,AB’=AP+BP,你能否证明此时AP+BP为最短?证明除了P点以外任意的点C,AC+BC>AP+BP。
【师】提示:此时任取一个点C,AC+BC=AC+CB’【生】根据三角形两边之和大于第三边,则AC+CB’>AB’【师】即三点共线时,AB’最短【师】方法总结:练1.△ABC为等边三角形,高AH=10,P为AH上一动点,D为AB的中点,则PD+PB的最小值为.【师】请小组讨论,能不能得到答案?[通过交流讨论,让学生学会用用轴对称知识解决问题,对将军饮马问题进行理解,对课堂听课效率进行检测,提高听课效率]【师】这个题用到了什么模型?哪些数学知识?【生】将军饮马模型,轴对称,等边三角形三线合一【师】最短路径的证明用的是什么方法?【生】三角形三边关系,三点共线时取最小值【师】将军饮马问题用到的“最短”知识是什么?【生】两点之间,线段最短变式1.将军带着马从营房出发,先去草地吃草,再去河边喝水,最后回到营房,怎么走路径最短?(两线一点)【师】请同学们先分析出定点、动点、对称轴,做出你的画法【师】再请同学们小组交流谈论【师】请同学们先分析出定点、动点、对称轴,做出你的画法【师】再请同学们小组交流讨论练2.(教材p93)如图,牧马人从A 地出发,先到草地边某一处牧马,再到河边饮马,最后回到B 处,请画出最短路径【师】将军饮马问题中一点两线、两点一线、两点两线用到的“最短”知识是什么?【生】两点之间,线段最短例2.如图,在△ABC 中,∠ABC=30°,AB=6,∠ABC 的平分线交AC 于点D ,点P 、Q 分别是BD 、AB 上的动点,则AP+PQ的最小值为 .【师】这里有两个动点P 、Q ,角平分线即为角的对称轴,因此将直线BD 看成对称轴,Q 关于直线BD 对称后一定在直线BC 上,A 、P 、Q’三点形成AP+PQ’何时最短?【生】三点共线时AP+PQ’最短【师】此时P 、Q’均为动点,且A 、P 、Q’三点共线,A 为定点,Q’在直线BC 上运动,何时AQ’最短?【生】当AQ’⊥BC 时,AQ’最短Q’Q【师】这个题用到了什么模型?哪些数学知识?【生】轴对称,30°所对的直角边为斜边的一半【师】例2用到的“最短”知识是什么?【生】垂线段最短练3.BH为∠ABC的角平分线,点O为线段BH上的动点,点G为线段BC上的动点,BC=4,∠ABC=30°,则OC+OG的最小值是.三.课堂小结1.①动点P所在的直线l为对称轴,将其中一个定点B对称为B’,再连接新的定点B’和另一个定点A,AB’与对称轴l的交点即为所求动点P②两点一线、两线一点、两点两线所用的“最短”知识是“两点之间,线段最短”2.①A为定点,P、Q为动点,A、P、Q三点共线时AP+PQ’最短②角平分线,一定点两动点所用的“最短”知识是“垂线段最短”四.随堂检测1.四边形ABCO为正方形,边长为3,点A、C分别在x轴、y轴的正半轴上,点D在OA上,P为OB上一动点,QA.两点之间,线段最短B.轴对称的性质C.两点之间,线段最短及轴对称的性质D.以上都不正确2.P、Q为△ABC的边AB、AC上的两定点,在BC上求作一点M,使△PQM的周长最短五.板书设计13.4课题学习最短路径问题------将军饮马(两点之间,线段最短)(垂线段最短)两点一线两线一点两点两线六.作业布置。
人教版初中数学八年级上册第十三章:轴对称(全章教案)
第十三章轴对称本章的内容包括:轴对称、画轴对称图形、等腰三角形、最短路径问题.轴对称是一种重要的对称.本章我们将从生活中的对称出发,学习几何图形的轴对称及其基本性质,欣赏、体验轴对称在现实生活中的广泛应用.在此基础上,利用轴对称来研究等腰三角形,进而通过推理论证得到等腰三角形、等边三角形的性质和判定方法,由此体会图形变化在几何研究中的作用.在中考中,本章重点考查轴对称图形的性质、等腰三角形、等边三角形的判定及性质.【本章重点】轴对称图形的性质、等腰三角形的性质及判定.【本章难点】运用轴对称的思路分析认识复杂图形,进行推理论证.【本章思想方法】1.体会和掌握分类讨论思想,如:在解答等腰三角形的问题中,当腰和底、顶角的大小、角的位置不明确时,需要进行分类讨论.2.体会方程思想,如:在解决等腰三角形的问题时,根据边或角之间的关系,先设适当的边或角为未知数,再将其他的边或角用含未知数的代数式表示出来,最后根据等腰三角形的周长或三角形的内角和定理等构造方程解决问题.3.体会数形结合思想,如:运用本章知识解决实际问题时经常根据题意画出符合条件的图形,利用数形结合思想解决问题.13.1轴对称3课时13.2画轴对称图形2课时13.3等腰三角形4课时13.4课题学习最短路径问题1课时13.1轴对称13.1.1轴对称(第1课时)一、基本目标【知识与技能】1.理解轴对称图形和两个图形关于某条直线对称的概念.2.能识别简单的轴对称图形及其对称轴.【过程与方法】通过轴对称图形和两个图形成轴对称的学习以及动手操作,让学生关注生活,学会观察,增强交流.【情感态度与价值观】通过轴对称图形和两个图形成轴对称的学习,激发学生学习欲望,主动参与数学学习活动,体会图形的美,同时感悟数学来源于生活又用于生活.二、重难点目标【教学重点】轴对称图形和两个图形关于某直线对称的概念以及区别和联系.【教学难点】轴对称的性质.环节1自学提纲,生成问题【5 min阅读】阅读教材P58~P60的内容,完成下面练习.【3 min反馈】1.如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线就是它的对称轴.这时,我们也说这个图形关于这条直线(成轴)对称.2.把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线(成轴)对称,这条直线就是对称轴,折叠后重合的点是对应点,叫做对称点.3.经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线.4.图形轴对称的性质:如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.类似地,轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线.5.下列体育运动标志中,不是轴对称图形的有1个.环节2合作探究,解决问题活动1小组讨论(师生互学)【例1】判断下列图形是否为轴对称图形?如果是,说出它有几条对称轴.【互动探索】(引发学生思考)如何判断一个图形是否是轴对称图形?如何找轴对称图形的对称轴?【解答】根据轴对称图形的概念:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.则(1)(3)(5)(6)(9)不是轴对称图形,(2)(4)(7)(8)(10)是轴对称图形.(2)(4)(8)有1条对称轴;(7)有4条对称轴;(10)有2条对称轴.【互动总结】(学生总结,老师点评)轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线.【例2】如图,△ABC和△AED关于直线l对称,若AB=2 cm,∠C=95°,则AE=________,∠D=________.【互动总结】(学生总结,老师点评)根据轴对称的性质,有AE=AB=2 cm,∠D=∠C =95°.【答案】2 cm95°【互动总结】(学生总结,老师点评)根据成轴对称的两个图形全等及全等的性质得到对应线段相等,对应角相等.活动2巩固练习(学生独学)1.下图中的轴对称图形有(B)A.(1)(2)B.(1)(4)C.(2)(3)D.(3)(4)2.如图,一种滑翔伞的形状是左右成轴对称的四边形ABCD,其中∠BAD=150°,∠B =40°,则∠BCD的度数是(A)A.130° B.150° C.40° D.65°3.画图:试画出下列正多边形的所有对称轴,并完成表格,n条对称轴.解:如图.环节3课堂小结,当堂达标(学生总结,老师点评)1.可用折叠法判断是否为轴对称图形.2.多角度、多方法思考对称轴的条数.3.对称轴是一条直线,一条垂直于对应点连线的直线.4.轴对称是指两个图形的位置关系,轴对称图形是指一个具有特殊形状的图形.请完成本课时对应练习!13.1.2线段的垂直平分线的性质第2课时线段垂直平分线的性质和判定一、基本目标【知识与技能】探索并理解线段垂直平分线的性质及判定.【过程与方法】经历探索轴对称图形性质及判定的过程,发展空间观念,培养学生认真探究、积极思考的能力.【情感态度与价值观】通过对轴对称图形性质的探索,促使学生对轴对称有了更进一步的认识,活动与探究的过程可以更大程度地激发学生学习的主动性和积极性,并使学生具有一些初步研究问题的能力.二、重难点目标【教学重点】掌握线段垂直平分线的性质及判定.【教学难点】运用其性质及判定解答相关问题.环节1自学提纲,生成问题【5 min阅读】阅读教材P61~P62的内容,完成下面练习.【3 min反馈】1.如图,△ABC和△A′B′C′关于直线MN对称,点A′、B′、C′分别是点A、B、C的对称点,猜想一下线段AA′、BB′、CC′与直线MN有什么关系?答:直线MN垂直平分线段AA′、BB′、CC′.2.垂直平分线的性质:线段垂直平分线的点与这条线段两个端点的距离相等.3.垂直平分线的判定:与线段两个端点距离相等的点在这条线段的垂直平分线上.4.下列条件中,不能判定直线MN是线段AB的垂直平分线的是(C)A.MA=MB,NA=NBB.MA=MB,MN⊥ABC.MA=NA,MB=NBD.MA=MB,MN平分∠AMB环节2合作探究,解决问题活动1小组讨论(师生互学)【例1】如图,在△ABC中,AB=AC=20 cm,DE垂直平分AB,垂足为E,交AC于点D,若△DBC的周长为35 cm,求BC的长.【互动探索】(引发学生思考)△DBC的周长为35 cm,求BC→需求BC+DC的长,利用AD=BD(垂直平分线的性质)→BC+DC=AC.【解答】∵△DBC的周长=BC+BD+CD=35 cm,DE垂直平分AB,∴AD=BD,故BC+AD+CD=35 cm.∵AC=AD+DC=20 cm,∴BC=35-20=15(cm).【互动总结】(学生总结,老师点评)利用线段垂直平分线的性质,可以实现线段之间的相互转化,从而求出未知线段的长.【例2】如图所示,在△ABC中,AD平分∠BAC,DE⊥AB于点E,DF⊥AC于点F,试说明AD与EF的关系.【互动探索】(引发学生思考)先利用角平分线的性质得出DE =DF ,再证△AED ≌△AFD ,从而找出AD 与EF 的关系.【解答】AD 垂直平分EF .∵AD 平分∠BAC ,DE ⊥AB ,DF ⊥AC , ∴DE =DF .在Rt △ADE 和Rt △ADF 中,∵⎩⎪⎨⎪⎧AD =AD ,DE =DF ,∴Rt △ADE ≌Rt △ADF , ∴AE =AF ,∴A 、D 均在线段EF 的垂直平分线上,即直线AD 垂直平分线段EF .【互动总结】(学生总结,老师点评)证线段垂直平分线的方法1即定义,证垂直平分,方法2即线段垂直平分线的判定定理.活动2 巩固练习(学生独学)1.如图,直线CD 是线段AB 的垂直平分线,P 为直线CD 上的一点,已知线段P A =5,则线段PB 的长度为( B )A.6 B.5C.4 D.32.到平面内不在同一直线上的三个点A、B、C的距离相等的点有1个.3.如图,在△ABC中,D是AB的中点,点F是BC延长线上一点,连结DF,交AC 于点E,连结BE,∠A=∠ABE.(1)求证:DF是线段AB的垂直平分线;(2)当AB=AC,∠A=46°时,求∠EBC及∠F的度数.(1)证明:∵∠A=∠ABE,∴EA=EB.∵AD=DB,∴DF是线段AB的垂直平分线.(2)解:∵∠A=46°,∴∠ABE=∠A=46°.∵AB=AC,∴∠ABC=∠ACB=67°,∴∠EBC=∠ABC-∠ABE=21°,∠F=90°-∠ABC=23°.活动3拓展延伸(学生对学)【例3】如图,在四边形ABCD中,AD∥BC,E为CD的中点,连结AE、BE,BE⊥AE,延长AE交BC的延长线于点F.求证:(1)FC=AD;(2)AB=BC+AD.【互动探索】(1)根据AD∥BC可知∠ADC=∠ECF,再根据E是CD的中点可证△ADE ≌△FCE,根据全等三角形的性质即可解答;(2)根据线段垂直平分线的性质判断出AB=BF 即可.【解答】(1)∵AD∥BC,∴∠ADC=∠ECF.∵E是CD的中点,∴DE=EC.又∵∠AED=∠CEF,∴△ADE≌△FCE,∴FC=AD.(2)∵△ADE≌△FCE,∴AE=EF.∵BE⊥AE,∴BE是线段AF的垂直平分线,∴AB=BF=BC+CF.∵AD =CF , ∴AB =BC +AD .【互动总结】(学生总结,老师点评)此题主要考查线段的垂直平分线的性质等几何知识.线段垂直平分线上的点到线段两个端点的距离相等,利用它可以证明线段相等.环节3 课堂小结,当堂达标 (学生总结,老师点评)线段垂直平分线⎩⎪⎨⎪⎧性质:线段垂直平分线的点与这条线段两个端点的距离相等判断:与线段两个端点距离相等的点在这 条线段的垂直平分线请完成本课时对应练习!第3课时线段垂直平分线的有关作图一、基本目标【知识与技能】理解并掌握线段垂直平分线的有关作图.【过程与方法】经历探索线段垂直平分线的有关作图的过程,发展空间观念,培养学生认真探究、积极思考的能力.【情感态度与价值观】通过作轴对称图形的对称轴,促使学生对轴对称有了更进一步的认识,活动与操作的过程可以更大程度地激发学生学习的主动性和积极性,并使学生具有一些初步研究问题的能力,同时培养学生动手操作的意识及能力.二、重难点目标【教学重点】理解作轴对称图形的对称轴的方法.【教学难点】能解决有关线段垂直平分线的作图题.环节1自学提纲,生成问题【5 min阅读】阅读教材P62~P63的内容,完成下面练习.【3 min反馈】1.如果两个图形成轴对称,其对称轴就是任何一对对应点所连线段的垂直平分线.因此,我们只要找到一对对应点,作出连结它们的线段的垂直平分线,就可以得到这两个图形的对称轴.2.同样,对于轴对称图形,只要找到任意一组对应点,作出对应点所连线段的垂直平分线,就得到此图形的对称轴.3.下面的图形是轴对称图形吗?如果是,请说出它的对称轴.解:它们都是轴对称图形,第一幅图的对称轴是中间的水平直线,第二、三幅图的对称轴是中间的竖着直线.4.作线段AB 的垂直平分线.解:作法:(1)分别以点A 、B 为圆心,以大于12AB 的长为半径作弧,两弧相交于E 、F两点;(2)作直线EF ,EF 即为所求的直线.环节2 合作探究,解决问题 活动1 小组讨论(师生互学)【例题】找出下列图形的所有的对称轴,并一一画出来.【互动探索】(引发学生思考)如何作轴对称图形的对称轴?【解答】所画对称轴如下所示:【互动总结】(学生总结,老师点评)对于轴对称图形,只要找到任意一组对应点,作出对应点所连线段的垂直平分线,就得到此图形的对称轴.活动2巩固练习(学生独学)1.图中有阴影的三角形与哪些三角形成轴对称?整个图形是轴对称图形吗?它共有几条对称轴?解:图中有阴影的三角形与三角形1、3成轴对称,整个图形是轴对称图形,它共有2条对称轴.2.观察图中的图形,是轴对称图形的画出所有的对称轴.略环节3课堂小结,当堂达标(学生总结,老师点评)作对称轴的步骤:先找出任意一对对应点,再作出对应点所连线段的垂直平分线.请完成本课时对应练习!13.2画轴对称图形第1课时画轴对称图形一、基本目标【知识与技能】掌握作已知图形关于直线的轴对称图形的方法.【过程与方法】在探索问题的过程中体会知识间的关系,并从实践中体会轴对称变换在实际生活中的应用,感受数学与生活的联系.【情感态度与价值观】经历实际操作、认真体验的过程,发展学生的思维空间,培养学生的应用意识和探究精神.二、重难点目标【教学重点】作出简单平面图形关于直线的轴对称图形.【教学难点】利用轴对称进行一些图案设计环节1自学提纲,生成问题【5 min阅读】阅读教材P67~P68的内容,完成下面练习.【3 min反馈】1.画出下列轴对称图形的所有对称轴.略2.由一个平面图形可以得到它关于一条直线l成轴对称的图形,这个图形与原图形的形状、大小完全一样;新图形上一个点,都是原图形上的某一点关于直线l的对称点;连结任意一对对应点的线段被对称轴垂直平分.3.几何图形都可以看作由点组成,只要分别作出这些点关于对称轴的对应点,再连结这些对应点,就可以得到原图形的轴对称图形.环节2合作探究,解决问题活动1小组讨论(师生互学)【例1】画出△ABC关于直线l的对称图形.【互动探索】(引发学生思考)画已知图形关于直线对称的图形的关键是什么?【解答】如图所示:【互动总结】(学生总结,老师点评)我们在画一个图形关于某条直线对称的图形时,先确定一些特殊的点,然后作这些特殊点的对称点,顺次连结即可得到.活动2巩固练习(学生独学)1.将一张正方形纸片按如图1,图2所示的方向对折,然后沿图3中的虚线剪裁得到图4,将图4的纸片展开铺平,再得到的图案是(B)2.在3×3的正方形格点图中,有格点△ABC和△DEF,且△ABC和△DEF关于某直线成轴对称,请在下面给出的图中画出4个这样的△DEF.略活动3拓展延伸(学生对学)【例2】如图,将矩形ABCD沿DE折叠,使A点落在BC上的F处,若∠EFB=60°,则∠CFD=()A.20° B.30°C.40° D.50°【互动探索】根据图形翻折变换后全等可得△ADE≌△FDE,∴∠EAD=∠EFD=90°.∵∠EFB=60°,∴∠CFD=30°,故选B.【答案】B【互动总结】(学生总结,老师点评)折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,对应边和对应角相等.环节3课堂小结,当堂达标(学生总结,老师点评)作与图形成轴对称的图形,关键在于将图形抽象出各点,然后作点的对称点,再连线即可.请完成本课时对应练习!第2课时坐标中的轴对称一、基本目标【知识与技能】理解并掌握关于x轴、y轴对称的点的坐标的规律.【过程与方法】1.在探索关于x轴、y轴对称的点的坐标的规律时,发展学生形象思维能力和数形结合的思维意识.2.在同一坐标系中,感受图形上点的坐标的变化与图形的轴对称变换之间的关系.【情感态度与价值观】在探索规律的过程中,培养学生的应用意识和探究精神,提高学生的求知欲和好奇心.二、重难点目标【教学重点】直角坐标系中关于x轴、y轴对称的点的特征.【教学难点】能解决有关坐标中的轴对称问题.环节1自学提纲,生成问题【5 min阅读】阅读教材P68~P70的内容,完成下面练习.【3 min反馈】1.(1)点(x,y)关于x轴对称的点的坐标为(x,-y);(2)关于x轴对称的点的坐标的特点:横坐标不变,纵坐标互为相反数.2.(1)点(x,y)关于y轴对称的点的坐标为(-x,y);(2)关于x轴对称的点的坐标的特点:横坐标互为相反数,纵坐标不变.3.点P(-4,3)关于x轴的对称点为Q,则点Q的坐标为(-4,-3).4.点P(-3,4)关于y轴的对称点为M,则点M的坐标为(3,4).环节2合作探究,解决问题活动1小组讨论(师生互学)【例1】在平面直角坐标系中,已知点A(-3,1)、B(-1,0)、C(-2,-1),请在图中画出△ABC,并画出与△ABC关于y轴对称的图形.【互动探索】(引发学生思考)作已知图形关于坐标轴的对称图形的关键是什么?【解答】如图,△DEF是△ABC关于y轴对称的图形.【互动总结】(学生总结,老师点评)在坐标系中作出关于坐标轴的对称点,然后顺次连结,即可作出已知图形关于坐标轴的对称图形.活动2巩固练习(学生独学)1.点A(2,-3)向上平移6个单位后的点关于x轴对称的点的坐标是(2,-3).2.点P(3,4)关于y轴对称的点的坐标是P′(a,b),则a-b=-7.3.已知点A(2a-b,5+a),B(2b-1,-a+b).(1)若点A、B关于x轴对称,求a、b的值;(2)若A、B关于y轴对称,求(4a+b)2018的值.解:(1)∵点A、B关于x轴对称,∴2a-b=2b-1,5+a-a+b=0,解得a=-8,b=-5.(2)∵A、B关于y轴对称,∴2a-b+2b-1=0,5+a=-a+b,解得a=-1,b=3,∴(4a+b)2018=1.3.画出△ABC关于x轴对称的图形△A1B1C1,并指出△A1B1C1的顶点坐标.解:画图略.其中A1(3,-4)、B1(1,-2)、C1(5,-1).活动3拓展延伸(学生对学)【例3】如图,在10×10的正方形网格中,每个小方格的边长都是1,四边形ABCD 的四个顶点在格点上.(1)若以点B为原点,线段BC所在直线为x轴建立平面直角坐标系,画出四边形ABCD 关于y轴对称的四边形A1B1C1D1;(2)点D1的坐标是________;(3)求四边形ABCD的面积.【互动探索】(1)以点B 为原点,线段BC 所在直线为x 轴建立平面直角坐标系,然后作出各点关于y 轴对称的点,顺次连结即可;(2)根据直角坐标系的特点,写出点D 1的坐标;(3)把四边形ABCD 分解为两个直角三角形,求出面积.【解答】(1)画图略. (2)点D 1的坐标为(-1,1).(3)四边形ABCD 的面积为12×1×3+12×1×2=52.【互动总结】(学生总结,老师点评)轴对称变换作图,基本作法是:(1)先确定图形的关键点;(2)利用轴对称性质作出关键点的对称点;(3)按原图形中的方式顺次连结对称点.求多边形的面积可将多边形转化为规则图形的面积的和或差求解.环节3 课堂小结,当堂达标 (学生总结,老师点评)坐标中的轴对称⎩⎪⎨⎪⎧关于x 轴、y 轴对称的点的坐标变化规律作已知图形关于x 轴、y 轴对称的图形请完成本课时对应练习!13.3等腰三角形13.3.1等腰三角形第1课时等腰三角形的性质一、基本目标【知识与技能】1.了解等腰三角形的概念,掌握等腰三角形的性质.2.利用等腰三角形的性质解决相关问题.【过程与方法】经历等腰三角形性质的探究过程,通过实践、操作、观察、猜想、论证,发展了合情推理的能力和演绎推理的能力,同时增强了语言表达能力.【情感态度与价值观】在活动中,培养学生自主探究、合作交流、应用数学的意识,提高学习的兴趣.二、重难点目标【教学重点】理解并掌握等腰三角形的性质.【教学难点】运用等腰三角形的性质解决有关问题.环节1自学提纲,生成问题【5 min阅读】阅读教材P75~P77的内容,完成下面练习.【3 min反馈】1.有两边相等的三角形是等腰三角形.相等的两边叫做腰,另一边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫底角.2.教材P75【探究】:(1)如图,把一张长方形的纸片按图中虚线对折,并剪去阴影部分,再把它展开,得到△ABC.从上述过程中可知,在△ABC中,AB=AC,所以△ABC是等腰三角形.(2)把剪出的等腰三角形ABC沿折痕AD对折,找出其中重合的线段和角:①重合的线段:AB与AC、BD与CD、AD与AD;②重合的角:∠B与∠C、∠BAD与∠CAD、∠ADB与∠ADC.3.等腰三角形的性质:(1)等腰三角形的两个底角相等(简写成“等边对等角”).(2)等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合(简写成“三线合一”).(3)等腰三角形是轴对称图形,底边上的中线(顶角平分线、底边上的高)所在直线就是它的对称轴.4.在△ABC中,若AC=AB,则∠B=∠C.环节2合作探究,解决问题活动1小组讨论(师生互学)【例1】如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,求△ABC各角的度数.【互动探索】(引发学生思考)设∠A=x,利用等腰三角形的性质和三角形内角和定理即可求得各角的度数.【解答】∵AB=AC,BD=BC=AD,∴∠ABC=∠C=∠BDC,∠A=∠ABD.设∠A=x,则∠BDC=∠ABD+∠A=2x.从而∠ABC=∠C=∠BDC=2x.在△ABC中,∠A+∠ABC+∠ACB=1=x+2x+2x=180°.解得x=36.∴在△ABC中,∠A=36°,∠ABC=∠C=72°.【互动总结】(学生总结,老师点评)利用等腰三角形的性质和三角形外角的性质可以得到角与角之间的关系,当这种等量关系或和差关系较多时,可考虑列方程解答,设未知数时,一般设较小的角的度数为x.【例2】如图,已知AB=AC,BD⊥AC于点D.求证:∠BAD=2∠DBC.【互动探索】(引发学生思考)要证∠BAD=2∠DBC,考虑作∠BAD的角平分线,即作等腰三角形的高,再根据等角的余角相等求解.【证明】过点A作AE⊥BC于点E.∵AB=AC,∴∠BAD=2∠2.∵BD⊥AC于点D,∴∠BDC=90°.∴∠2+∠C=∠C+∠DBC=90°.∴∠DBC=∠2.∴∠BAD=2∠DBC.【互动总结】(学生总结,老师点评)解决本题的关键:(1)从要证等式中,角之间的数量关系,利用等腰三角形“三线合一”作辅助线;(2)在有直角的平面几何图形中,可用等角的余角相等证明角相等.活动2巩固练习(学生独学)1.已知等腰三角形的一个角为80°,则其顶角为(D)A.20°B.50°或80°C.10°D.20°或80°2.如图,在△ABC,AB=AC,BC=6 cm,AD平分∠BAC,则BD=3 cm.3.在△ABC中,AB=AC,过点C作CN∥AB且CN=AC,连结AN交BC于点M.求证:BM=CM.证明:∵AB=AC,CN=AC,∴AB=CN,∠N=∠CAN.又∵AB∥CN,∴∠BAM=∠N,∴∠BAM=∠CAM,∴AM为∠BAC的平分线.又∵AB=AC,∴AM为三角形ABC的边BC上的中线,∴BM=CM.活动3拓展延伸(学生对学)【例3】已知△ABC 是等腰三角形,且∠A +∠B =130°,求∠A 的度数.【互动探索】要求∠A ,需先讨论∠A 是等腰△ABC 的顶角还是底角,再结合三角形的内角和求解.【解答】①当∠A 为顶角时,则∠B =∠C . ∵∠A +∠B +∠C =180°,∠A +∠B =130°, ∴∠B =∠C =50°. ∴∠A =80°.②当∠C 为顶角时,则∠A =∠B , ∵∠A +∠B =130°, ∴∠A =65°.③当∠B 为顶角时,则∠A =∠C , ∵∠A +∠B =130°, ∴∠A =∠C =50°.【互动总结】(学生总结,老师点评)本题体现了分类讨论思想.等腰三角形的两个底角相等,已知一个内角,则这个角可能是底角也可能是顶角.环节3 课堂小结,当堂达标 (学生总结,老师点评) 等腰三角形的性质⎩⎪⎨⎪⎧等边对等角三线合一轴对称性请完成本课时对应练习!第2课时等腰三角形的判定一、基本目标【知识与技能】1.探索等腰三角形的判定方法.2.掌握等腰三角形性质与判定的综合应用.【过程与方法】经历判定等腰三角形的探究过程,通过实践、操作、观察、猜想、论证,发展了合情推理的能力和演绎推理的能力,同时增强数学语言表达能力.【情感态度与价值观】在活动中,培养学生自主探究、合作交流、应用数学的意识,感受数学学习的乐趣,激发学习数学的兴趣.二、重难点目标【教学重点】掌握等腰三角形的判定方法.【教学难点】会运用等腰三角形的判定方法解决问题.环节1自学提纲,生成问题【5 min阅读】阅读教材P77~P78的内容,完成下面练习.【3 min反馈】1.等腰三角形的定义:如果一个三角形有两边相等,这个三角形为等腰三角形.2.如图,在△ABC中,∠B=∠C,求证:AB=AC.证明过程略.(提示:作△ABC的角平分线AD)3.等腰三角形的判定方法:如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成等角对等边).环节2合作探究,解决问题活动1小组讨论(师生互学)【例1】如图,DB=DC,∠ABD=∠ACD,求证:AB=AC.【互动探索】(引发学生思考)要证AB=AC,本题不能直接连结AD,由全等得到,可以考虑连结BC利用等腰三角形的性质与判定方法求证.【证明】连结BC.∵DB=DC,∴∠DBC=∠DCB.∵∠ABD=∠ACD,∴∠ABD+∠DBC=∠ACD+∠DCB.∴∠ABC=∠ACB,∴AB=AC.【互动总结】(学生总结,老师点评)本题主要是通过连结BC,使AB、AC在同一个三角形中,最后通过证明它们所对的角相等,而证得这两条线段相等.【例2】如图,在△ABC中,∠ACB=90°,CD是AB边上的高,AE是∠BAC的平分线,AE与CD交于点F,求证:△CEF是等腰三角形.【互动探索】(引发学生思考)要证△CEF是等腰三角形,需证CE=CF.由等角的余角相等可得∠B=∠ACD,由AE是∠BAC的平分线和三角形外角的性质可得CE=CF.【解答】∵在△ABC中,∠ACB=90°,∴∠B+∠BAC=90°.∵CD是AB边上的高,∴∠ACD+∠BAC=90°,∴∠B=∠ACD.∵AE是∠BAC的角平分线,∴∠BAE=∠EAC,∴∠B+∠BAE=∠ACD+∠EAC,即∠CEF=∠CFE,∴CE=CF,∴△CEF是等腰三角形.【互动总结】(学生总结,老师点评)“等角对等边”是判定等腰三角形的重要依据,是先有角相等再有边相等,只限于在同一个三角形中,若在两个不同的三角形中,此结论不一定成立.活动2巩固练习(学生独学)1.如图,已知OC平分∠AOB,CD∥OB,若OD=3 cm,则CD=3 cm.2.如图,AB=AC,FD⊥BC于点D,DE⊥AB于点E,若∠AFD=145°,则∠EDF=55°.3.如图,AD平分∠BAC,AD⊥BD,垂足为点D,DE∥AC.求证:△BDE是等腰三角形.证明:∵DE∥AC,∴∠CAD=∠ADE.∵AD平分∠BAC,∴∠CAD=∠DAE,∴∠DAE=∠ADE.∵AD⊥BD,∴∠DAE+∠B=90°,∠ADE+∠BDE=90°,∴∠B=∠BDE,∴△BDE是等腰三角形.活动3拓展延伸(学生对学)【例3】已知平面直角坐标系中,点A的坐标为(-2,3),在y轴上确定点P,使△AOP 为等腰三角形,则符合条件的点P共有()A.3个B.4个C.5个D.6【互动探索】∵△AOP为等腰三角形,所以可分三类讨论:(1)AO=AP(有一个).此时只要以A为圆心,AO长为半径画圆,可知圆与y轴交于O点和另一个点,另一个点就是点P1;(2)AO=OP(有两个).此时只要以O为圆心AO长为半径画圆,可知圆与y轴交于两个点,这两个点就是P2、P4;(3)AP=OP(一个).作AO的中垂线与y轴有一个交点,该交点就是点P3.综上所述,共有4个.故选B.。
人教版八年级数学上册第13章《轴对称》教学设计
人教版八年级数学上册第13章《轴对称》教学设计一. 教材分析人教版八年级数学上册第13章《轴对称》是学生学习几何知识的重要章节,主要内容包括轴对称的定义、性质、判定及其在实际问题中的应用。
本章教材通过丰富的实例,引导学生探究轴对称的规律,培养学生的空间想象能力和抽象思维能力。
二. 学情分析八年级的学生已具备一定的几何基础,对图形的变换有一定的了解。
但轴对称的概念较为抽象,学生对其理解可能存在一定的困难。
因此,在教学过程中,教师需要关注学生的认知水平,通过生动的实例和丰富的活动,帮助学生建立轴对称的概念。
三. 教学目标1.理解轴对称的定义及其性质。
2.学会判断一个图形是否为轴对称图形。
3.能够运用轴对称的知识解决实际问题。
4.培养学生的空间想象能力和抽象思维能力。
四. 教学重难点1.轴对称的定义和性质。
2.判断一个图形是否为轴对称图形。
3.轴对称在实际问题中的应用。
五. 教学方法1.情境教学法:通过生动的实例,引导学生感受轴对称的现象。
2.合作学习法:鼓励学生分组讨论,共同探究轴对称的性质。
3.引导发现法:教师引导学生发现问题,总结规律。
4.练习法:通过适量练习,巩固所学知识。
六. 教学准备1.教学课件:制作课件,展示轴对称的实例和性质。
2.练习题:准备适量练习题,巩固学生对轴对称的理解。
3.教学道具:准备一些实际物品,如卡片、纸张等,用于展示轴对称的现象。
七. 教学过程1.导入(5分钟)利用生活中的实例,如剪纸、折叠等,引导学生发现轴对称的现象,激发学生的兴趣。
2.呈现(10分钟)展示教材中的实例,引导学生总结轴对称的定义和性质。
如:一个图形沿一条直线对折,对折后的两部分能够完全重合,则这个图形关于这条直线对称。
3.操练(10分钟)学生分组讨论,判断教材中的图形是否为轴对称图形。
教师巡回指导,解答学生的问题。
4.巩固(10分钟)学生独立完成练习题,巩固对轴对称的理解。
教师及时批改,给予反馈。
5.拓展(10分钟)引导学生思考轴对称在实际问题中的应用,如设计图案、解决几何问题等。
人教版八年级上数学说课稿《第13章轴对称》
人教版八年级上数学说课稿《第13章轴对称》一. 教材分析《人教版八年级上数学》第13章是关于“轴对称”的内容。
这部分内容主要让学生了解轴对称的概念,理解轴对称的性质,以及掌握如何寻找对称轴和判断两个图形是否关于某条直线对称。
这一章的内容是学生进一步学习几何图形的重要基础,也是培养学生空间想象能力和逻辑思维能力的关键。
二. 学情分析八年级的学生已经初步掌握了平面几何的基本知识,对图形的认识有一定的基础。
但他们在学习过程中,可能对轴对称的概念和性质理解不够深入,对如何寻找对称轴和判断两个图形是否关于某条直线对称的方法还不够熟练。
因此,在教学过程中,我需要关注学生的实际情况,有针对性地进行教学。
三. 说教学目标1.知识与技能:让学生理解轴对称的概念,掌握轴对称的性质,学会寻找对称轴,判断两个图形是否关于某条直线对称。
2.过程与方法:通过观察、操作、思考、交流等活动,培养学生空间想象能力和逻辑思维能力。
3.情感态度与价值观:激发学生学习几何的兴趣,培养他们勇于探索、积极思考的精神。
四. 说教学重难点1.重点:轴对称的概念、性质,寻找对称轴,判断两个图形是否关于某条直线对称。
2.难点:如何引导学生理解和运用轴对称的性质,以及如何寻找对称轴和判断两个图形是否关于某条直线对称。
五. 说教学方法与手段1.教学方法:采用问题驱动法、案例教学法、合作学习法等,引导学生主动探究、积极参与。
2.教学手段:利用多媒体课件、几何模型等辅助教学,提高教学效果。
六. 说教学过程1.导入新课:通过展示一些生活中的轴对称现象,如剪纸、折叠等,引导学生关注轴对称,激发学习兴趣。
2.探究新知:讲解轴对称的概念和性质,让学生通过观察、操作、思考,理解并掌握轴对称的基本知识。
3.应用拓展:让学生尝试寻找生活中的对称轴,判断两个图形是否关于某条直线对称,巩固所学知识。
4.总结提升:对本节课的主要内容进行总结,强调轴对称的重要性和应用价值。
5.布置作业:设计一些有关轴对称的练习题,让学生进一步巩固所学知识。
人教版八年级数学上册第十三章《轴对称13.2画轴对称图形第1课时》说课稿
人教版八年级数学上册第十三章《轴对称13.2画轴对称图形第1课时》说课稿一. 教材分析《轴对称》是人教版八年级数学上册第十三章的一部分,主要让学生了解轴对称图形的概念,学会如何画出轴对称图形。
本节课的内容是第十三章的第二节,主要让学生通过实际操作,掌握画轴对称图形的方法。
二. 学情分析学生在学习本节课之前,已经学习了平面几何的基本概念,对图形的变换有一定的了解。
但是,对于轴对称图形的概念和画法还比较陌生,需要通过实际的操作来理解和掌握。
三. 说教学目标1.知识与技能目标:让学生了解轴对称图形的概念,学会如何画出轴对称图形。
2.过程与方法目标:通过学生的实际操作,培养学生的动手能力和观察能力。
3.情感态度与价值观目标:让学生在学习的过程中,体验到数学的乐趣,增强对数学的学习兴趣。
四. 说教学重难点1.教学重点:让学生掌握轴对称图形的概念,学会如何画出轴对称图形。
2.教学难点:如何让学生理解轴对称图形的概念,并能够运用到实际的操作中。
五. 说教学方法与手段本节课采用讲授法和实践法相结合的教学方法。
在讲解轴对称图形的概念时,采用讲授法,通过语言的描述,让学生理解和掌握。
在实际操作画轴对称图形时,采用实践法,让学生亲自动手,培养学生的动手能力。
六. 说教学过程1.导入:通过一些生活中的实例,如衣服的折叠,让学生初步了解轴对称图形的概念。
2.讲解:详细讲解轴对称图形的概念,并通过图形的实际操作,让学生进一步理解和掌握。
3.练习:让学生动手画出一些简单的轴对称图形,加深对概念的理解。
4.总结:对本节课的内容进行总结,强调轴对称图形的概念和画法。
七. 说板书设计板书设计主要包括轴对称图形的定义和画法两个部分。
定义部分包括轴对称图形的定义和特点,画法部分包括画轴对称图形的方法和步骤。
八. 说教学评价教学评价主要通过学生的课堂表现和作业完成情况进行评价。
对于能够正确理解和掌握轴对称图形概念的学生,给予表扬和鼓励。
人教版数学八年级上册 第十三章《轴对称》教案设计
第十三章《轴对称》教学分析一、本章在教材中的意义本章涉及到课标中图形的性质、图形的变化、图形与坐标三个部分的内容。
在图形的性质方面,本章主要学习线段的垂直平分线、等腰三角形和等边三角形的性质与判定,前有全等三角形作为探究、推理的基础,后面还会在平行四边形、圆的学习中讨论图形的对称性.在图形的变化方面,轴对称和平移、旋转都属于合同变换(将一个平面图形变换成与其相等或全等的图形的变换),初中阶段还会学习位似变换,教材在处理这些变换时,也都采取了相似的思路,即从实例中得到概念、从典型例子中总结性质、以性质为依据进行作图、在坐标系中作图探索坐标和变换的关系.在图形与坐标方面,本章的要求仅限于对称轴是坐标轴的情形,但在后续学习函数图象的对称性时,会遇到更复杂的情形.从学习过程的设计来看,本章教材在设计上加强了实验几何的成分。
(实验几何,即通过观察与实验认识几何图形、发现图形的性质、求解图形的关系。
)教材让学生通过画图、折纸、剪纸、度量等活动,探索发现几何结论,在发现结论的基础上,再经过推理证明这些结论。
二、本章教学目标和考试要求1.本章教学目标(1)通过具体实例认识轴对称、轴对称图形,探索轴对称的基本性质,理解对应点连线被对称轴垂直平分的性质.(2)探索简单图形之间的轴对称关系,能够按照要求画出简单平面图形(点、线段、直线、三角形等)关于给定对称轴对称的图形;认识并欣赏自然界和现实生活中的轴对称图形.(3)理解线段垂直平分线的概念,探索并曾敏线段垂直平分线的性质定理:线段垂直平分线上的点到线段两端的距离相等;反之,到线段两端距离相等的点在线段的垂直平分线上.(4)了解等腰三角形的概念,探索并证明等腰三角形的性质定理;探索并掌握等腰三角形的判定定理;探索并掌握等边三角形的性质定理及等边三角形的判定定理.(5)能初步应用本章所学的知识解释生活中的现象及解决简单的实际问题,在观察、操作、想象、论证、交流的过程中,发展空间观念,激发学习兴趣.2.教学重、难点重点:轴对称的性质,等腰三角形的性质和判定.难点:对图形性质的推理证明.3.2018年北京市中考说明对本章的要求考试内容考试要求A B C图形与几何图形的性质线段垂直平分线理解线段垂直平分线的概念尺规作图(基本作图):过一点作已知直线的垂线,作一条线段的垂直平分线;能利用线段垂直平分线的性质与判定解决有关简单问题运用线段垂直平分线的有关内容解决有关问题等腰三角形和等边三角形了解等腰三角形和等边三角形的概念掌握等腰三角形和等边三角形的性质定理与判定定理;尺规作图(利用基本作图作三角形);已知底边及底边上的高线作等腰三角形;能用等腰三角形和等边三角形的性质定理与判定定理解决有关简单问题运用等腰三角形和等边三角形的有关内容解决有关问题图形的变化图形的轴对称了解轴对称的概念;理解轴对称的基本性质;了解轴对称图形的概念能画出简单平面图形关于给定对称轴的对称图形;探索等腰三角形、矩形、菱形、正多边形、圆的轴对称性质;能利用轴对称的性质解决有关简单问题运用轴对称的有关内容解决有关问题图形与坐标坐标与图形运动在平面直角坐标系中,知道已知顶点坐标的多边形经过轴对称(对称轴为坐标轴)后的对应顶点坐标之间的关系在平面直角坐标系中,能写出已知顶点坐标的多边形经过轴对称(对称轴为坐标轴)后的图形的顶点坐标运用坐标与图形运动的有关内容解决有关问题三、本章教学建议1.本章知识结构框图生活中的轴对称轴对称作轴对称图形的对称轴画轴对称图形利用几何变换解决问题轴对称的概念轴对称的性质轴对称的作图线段的垂直平分线的性质坐标系中的轴对称等腰三角形等边三角形2.课时安排本章教学约15课时(含讲评),具体安排如下:13.1轴对称共3课时13.1.1轴对称1课时13.1.2线段的垂直平分线2课时13.2画轴对称图形共2课时13.3等腰三角形共6课时13.3.1等腰三角形4课时13.3.2等边三角形2课时13.4课题学习最短路径问题共2课时小结和单元检测共2课时3.教学中需要斟酌的问题(1)实例在教学中的合理运用。
八年级数学上册第十三章《轴对称》13.1轴对称13.1.2.1线段的垂直平分线的性质和判定教案新人
2018年秋八年级数学上册第十三章《轴对称》13.1 轴对称13.1.2.1 线段的垂直平分线的性质和判定教案(新版)新人教版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018年秋八年级数学上册第十三章《轴对称》13.1 轴对称13.1.2.1 线段的垂直平分线的性质和判定教案(新版)新人教版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018年秋八年级数学上册第十三章《轴对称》13.1 轴对称13.1.2.1 线段的垂直平分线的性质和判定教案(新版)新人教版的全部内容。
13.1。
2线段的垂直平分线的性质第1课时线段的垂直平分线的性质和判定◇教学目标◇【知识与技能】1.能够证明线段垂直平分线的性质定理、判定定理及进行应用;2.能够利用尺规过直线外一点作该直线的垂线.【过程与方法】经历探索、猜测、证明的过程,进一步发展学生的推理证明意识和能力。
【情感、态度与价值观】在数学活动中体会获得成功的体验,锻炼克服困难的意志,建立学习的自信心。
◇教学重难点◇【教学重点】线段的垂直平分线性质定理和判定定理证明及其应用。
【教学难点】线段的垂直平分线判定定理的证明.◇教学过程◇一、情境导入甲乙两位同学在玩一个游戏,甲在点A处,乙在点B处,把宝物放在什么地方对两人是公平的,除线段AB的中点外还有别的地方吗?二、合作探究探究点1线段垂直平分线的性质典例1如图所示,△ABC中,AC=5,AB=6,BC=9,AB的垂直平分线交BC于点D,则△ACD 的周长是()A。
11 B.14C.15 D。
20[解析]∵MN是AB的垂直平分线,∴DA=DB,∴△ACD的周长=AD+CD+AC=BD+CD+AC=BC+AC=14.[答案]B探究点2过一点作已知直线的垂线典例2已知直线上一点P,过点P作直线的垂线.[解析]如图,以点P为圆心,合适长为半径,画弧与直线交于两点,分别以这两点为圆心,同样长度为半径,画弧,交于点C,过点C,P做直线即可.探究点3垂直平分线的应用典例3如图,兔子的三个洞口A,B,C构成△ABC,猎狗想捕捉兔子,必须到三个洞口的距离都相等,则猎狗应蹲守在()A。
八年级数学上册第十三章《轴对称》13.1轴对称13.1.1轴对称教案新人教版(2021年整理)
2018年秋八年级数学上册第十三章《轴对称》13.1 轴对称13.1.1 轴对称教案(新版)新人教版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018年秋八年级数学上册第十三章《轴对称》13.1 轴对称13.1.1 轴对称教案(新版)新人教版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018年秋八年级数学上册第十三章《轴对称》13.1 轴对称13.1.1 轴对称教案(新版)新人教版的全部内容。
第十三章轴对称13。
1轴对称13.1.1轴对称◇教学目标◇【知识与技能】1。
通过丰富的生活实例能够识别简单的轴对称图形、认识轴对称及其对称轴,并能作出轴对称图形和成轴对称的图形的对称轴;2.说出轴对称图形与两个图形关于某条直线对称的区别与联系。
【过程与方法】在丰富的现实情境中,经历观察生活中的轴对称现象,探索轴对称现象共同特征等活动,进一步发展空间观念.【情感、态度与价值观】欣赏现实生活中的轴对称图形,体会轴对称在现实生活中的广泛运用和它的丰富文化价值。
◇教学重难点◇【教学重点】轴对称图形以及轴对称的概念.【教学难点】能够识别轴对称图形并找出它的对称轴。
◇教学过程◇一、情境导入我们生活在一个充满对称的世界中,许多建筑物都设计成对称形,艺术作品的创作往往也从对称角度考虑,自然界的许多动植物也按对称形生长,中国的方块字中有些也具有对称性,对称给我们带来多少美的感受!观察下列图形有何特点?二、合作探究探究点1轴对称图形典例1下列电脑桌面快捷方式的图片中,是轴对称图形的是()[解析]根据轴对称图形的概念解答.A,B,C不是轴对称图形;D是轴对称图形.[答案]D变式训练以下图形中,不是轴对称图形的是()[答案]D探究点2轴对称典例2将一张长方形的纸片对折,然后用笔尖在上面扎出字母“B”,再把它展开铺平后,你可以看到的图形是()[解析]根据生活中的轴对称现象,结合题意,沿折线折叠后两部分能够重合的即可,主要考查学生的想象力,也可折叠一下做出选择.[答案]C探究点3轴对称的性质典例3如图,△ABC和△A'B’C’关于直线l对称,下列结论中正确的有()①△ABC≌△A'B'C’;②∠BAC=∠B'A’C’;③直线l垂直平分CC’;④直线BC和B’C’的交点不一定在直线l上.A.4个B。
八年级数学上册第十三章《轴对称》13.2画轴对称图形13.2.2坐标平面中的轴对称教案新人教版(2
2018年秋八年级数学上册第十三章《轴对称》13.2 画轴对称图形13.2.2 坐标平面中的轴对称教案(新版)新人教版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018年秋八年级数学上册第十三章《轴对称》13.2 画轴对称图形13.2.2 坐标平面中的轴对称教案(新版)新人教版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018年秋八年级数学上册第十三章《轴对称》13.2 画轴对称图形13.2.2 坐标平面中的轴对称教案(新版)新人教版的全部内容。
第2课时坐标平面中的轴对称◇教学目标◇【知识与技能】1.探索平面直角坐标系中的点关于x轴、y轴对称点的坐标的规律,并能运用这一规律写出平面直角坐标系中的点关于x轴、y轴对称的点的坐标;2.能利用坐标的变换规律在平面直角坐标系中作出一个图形的轴对称图形.【过程与方法】1。
经历轴对称变换的画图、观察、交流等活动理解其基本性质的定义;2.结合实例总结出点与其对称点的坐标之间的规律.【情感、态度与价值观】用轴对称变换的方式去认识和构建几个图形,发展形象思维,并尝试用轴对称变换去从事推理活动.◇教学重难点◇【教学重点】用坐标表示轴对称。
【教学难点】利用转化的思想,确定能代表轴对称图形的关键点.◇教学过程◇一、情境导入(1)观察上图中两个圆脸有什么关系?(2)已知右边图脸右眼的坐标为(4,3),左眼的坐标为(2,3),嘴角两个端点,右端点的坐标为(4,1),左端点的坐标为(2,1).你能根据轴对称的性质写出左边圆脸上左眼,右眼及嘴角两端点的坐标吗?二、合作探究探究点1关于坐标轴对称的点的坐标特点典例1点A(3,—2)关于x轴对称的点的坐标是.[解析]平面直角坐标系中,两点关于横轴对称时,横坐标相同,纵坐标互为相反数.[答案](3,2)需要记忆几个关于特殊直线对称的规律:对关于原点(-a,称 性 对称 -b )关于x 轴对称的坐标 (a ,-b )关于y 轴对称的坐标 (—a ,b )关于x=a 对称 (2a-x ,y )关于y=b 对称(x ,2b-y)变式训练 已知点P (a ,3)和点Q (4,b )关于y 轴对称,则(a+b )2018的值() A.1 B 。
2018年秋八年级数学上册第十三章轴对称13.1轴对称13.1.1轴对称备课资料教案
第十三章 13.1.1轴对称知识点1:轴对称图形的概念如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线就是它的一条对称轴.注意:(1)轴对称图形的对称轴不一定有一条,对称轴可以有2条,3条,4条……甚至无数条.如圆是轴对称图形,对称轴有无数条;(2)轴对称图形的对称轴是一条直线,而不是线段;(3)轴对称图形是一个图形本身的特殊性质,沿对称轴折叠后,两个部分互相重合.知识点2:轴对称的概念把一个图形沿某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线成轴对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点.归纳整理:轴对称图形和轴对称的区别与联系.区别:(1)轴对称涉及两个图形,而轴对称图形是对一个图形而言的;(2)轴对称是描述的两个图形的位置关系,而轴对称图形则是一个具有特殊形状的图形.联系:(1)两个定义中都有沿某条直线折叠后重合这一条件;(2)一个轴对称图形被对称轴分成轴对称的两个图形;反之,把成轴对称的两个图形看做一个整体时,则该图形就是轴对称图形.知识点3:轴对称及轴对称图形的性质(1)如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.(2)轴对称图形的对称轴是任何一对对应点所连线段的垂直平分线.注意:(1)成轴对称的两个图形的对应线段相等,对应角相等.(2)成轴对称的两个图形是全等形;轴对称图形被对称轴分成的两部分也全等,但全等的两个图形不一定是轴对称图形.如图所示:△ABC与△A'B'C'关于直线MN对称,此时A与A',B与B',C与C'是对称点.沿直线MN折叠,在由小正方形组成的使它成为轴对称图形利用轴对称的知识可以得到如图13.1-14本题不同于直接作出一个图形的轴对称图形,而是需要先找准对称轴点拨:轴对称图形的特征是将该图形沿某一条直线折叠,直线两旁的部分能够互相重合.因此,判定一个图形是不是轴对称图形的关键是看能否找到一条直线,使得沿此直线折叠时,直线两侧的部分能够重合.解:(1)是轴对称图形,有3条对称轴;(2)是轴对称图形,有5条对称轴;(3)是轴对称图形,有4条对称轴;(4)是轴对称图形,有1条对称轴;(5)是轴对称图形,有2条对称轴;(6)不是轴对称图形;(7)是轴对称图形,有1条对称轴;(8)是轴对称图形,有1条对称轴;(9)、(10)都不是轴对称图形.考点3:有关轴对称图形及轴对称的性质应用【例3】如图,△ABC与△A'B'C' 关于直线l对称,则∠B的度数为( )A.30°B.50°C.90°D.100°答案:D点拨:根据轴对称的定义可知,两个图形成轴对称,则它们是全等图形,从而对应元素相等.。
2018年秋八年级数学上册 第十三章 轴对称 13.1 轴对称 13.1.3 作对称轴备课资料教案
第十三章 13.1.3作对称轴
知识点:轴对称图形以及轴对称的对称轴的画法
根据轴对称和轴对称图形的性质,对称轴是任何一对对应点所连线段的垂直平分线.因此,只要找到一对对应点,作出所连线段的垂直平分线,就可以得到它们的对称轴.
反思:对于轴对称图形,由于对称轴可能不唯一,所以要注意选取不同类型的对应点,作出所有的对称轴.
考点1:作图形的对称轴
【例1】如图,已知线段AB和线段A'B'关于某条直线对称,请你画出这条对称轴.
解:如图所示:
点拨:连接AA'或BB'作它们的线段垂直平分线,就是对称轴所在直线.
考点2:利用作对称轴解决实际问题
【例2】如图,校园内有两条路OA、OB,在交叉口附近有两块宣传牌C、D,学校准备在这里安装一盏路灯,要求灯柱的位置P离两块宣传牌一样远,并且到两条路的距离也一样远,请你帮忙画出灯柱的位置P,并说明理由.
2
解:到∠AOB 两边距离相等的点在这个角的平分线上,而到宣传牌C 、D 的距离相等的点则在线段CD 的垂直平分线上,于是如图,交点P 即为所求.
点拨:本题根据角的平分线和线段的垂直平分线的性质作图即可.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
13.4课题学习最短路径问题
知识要点基础练
知识点最短路径问题
1.如图,直线l是一条河,A,B两地相距10 km,A,B两地到l的距离分别为8 km,14 km,欲在l上的某点M处修建一个水泵站,向A,B两地供水,现有如下四种铺设方案,图中实线表示铺设的管道,则铺设的管道最短的是(B)
2.暑假里某天,小龙、小虎兄弟俩和妈妈一起去姥姥家玩,并且还要去河边游泳,如图要求所走的路程最近.
(1)如果先游泳,后到姥姥家,如何走?
(2)如果先去姥姥家,再游泳,如何走?
解:如图所示,(1)路线AP→BP.(2)路线AB→BC.
综合能力提升练
3.在直角坐标系中有A,B两点,要在y轴上找一点C,使得它到A,B的距离之和最小,现有如下四种方案,其中正确的是(C)
4.如图,MN是等边三角形ABC的一条对称轴,D为AC的中点,点P是直线MN上的一个动点,当PC+PD最小时,∠PCD的度数是30°.
5.如图,在四边形ABCD中,∠BAD=120°,∠B=∠D=90°,在BC,CD上分别找一点M,N,使△AMN 周长最小,则此时∠AMN+∠ANM的度数为120°.
6.如图,小河边有两个村庄A,B,要在河边EF建一自来水厂向A村与B村供水.
(1)若要使自来水厂到A,B两村的距离相等,则应选择在哪儿建厂?
请在图中画出,并用点P1表示.
(2)若要使厂到A,B两村的水管最短,应建在什么地方?请在图中画出,并用点P2表示.
解:(1)连接AB,作AB的垂直平分线交EF于点P1,如图所示.
(2)作点A关于EF的对称点A',连接A'B,交EF于点P2,如图所示.
7.某班举行文艺晚会,桌子摆成如图所示的两直排(图中的AO,BO),AO桌面上摆满了
橘子,OB桌面上摆满了糖果,站在C处的学生小明先拿橘子再拿糖果,然后到D处座位上,请你帮助他设计一条行走路线,使其所走的总路程最短.
解:作C点关于OA的对称点C1,作D点关于OB的对称点D1,连接C1D1,分别交OA,OB于点P,Q,那么小明沿C→P→Q→D的路线行走,所走的总路程最短.
拓展探究突破练
8.如图,安徽省某大学建立分校,校本部与分校隔着两条平行的小河,l1∥l2表示
小河甲,l3∥l4表示小河乙,A为校本部大门,B为分校大门,为方便人员来往,要在两条小河上各建一座桥,桥面垂直于河岸.请你设计一条路线,使A,B两点间来往的路程最短.
解:把点A向下平移河甲的宽度后得到A',把点B向上平移河乙的宽度后得到B',连接A'B'交l2于点D,交l3于点E,作CD⊥l1于点C,EF⊥l4于点F,连接AC,BF.则在CD,EF处建桥就是
使得A点到B点总路程最短的桥的位置.。