人教版 小学7年级 数学上册期综合能力测试题(含答案)

合集下载

【6套精选】七年级上册数学期中考试单元综合练习题(含答案解析)(1)

【6套精选】七年级上册数学期中考试单元综合练习题(含答案解析)(1)

人教版七年级(上)期中模拟数学试卷(答案)一、选择题(本大题共10小题,每小题3分,共30分)1.气温由-5 ℃上升2 ℃后是( C ) A .1 ℃B .3 ℃C .-3 ℃D .-7 ℃2.-⎪⎪⎪⎪⎪⎪-23的相反数是( C )A .-32B.32C.23D .-233.中共十九大召开期间,十九大代表纷纷利用休息时间来到北京展览馆,参观“砥砺奋进的五年”大型成就展.据统计,9月下旬开幕至10月22日,展览累计参观人数已经超过78万.请将780 000用科学记数法表示为( B )A .78×104B .7.8×105C .7.8×106D .0.78×106 4.在3.14,25,3.333 3…,0,0.41· 2·,-π,0.101 101 110 111 10…(每相邻两个0之间1的个数逐次加1)中,是无理数的有( A )A .2个B .3个C .4个D .5个5.某种书每本定价8元,若购书不超过10本,按原价付款;若一次购书10本以上,超过10本部分按八折付款.设一次购书数量为x 本(x >10),则付款金额为( C )A .6.4x 元B .(6.4x +80)元C .(6.4x +16)元D .(144-6.4x)元6.下列说法错误的有( C )①单项式-2πab 的次数是3;②-m 表示负数;③54是单项式;④m +1m +3是多项式.A .1个B .2个C .3个D .4个7.下列结果是负数的是( B ) A .-[-(-6)]+6B .-|-5|-(+9)C .-32+(-3)2-(-5)D .[(-1)3+(-3)2]×(-1)48.已知2a 6b 2和13a 3m b n 是同类项,则式子9m 2-mn -36的值为( D )A .-1B .-2C .-3D .-49.如果用a ,b 分别表示一个两位数的十位数字和个位数字,交换这个两位数的十位数字和个位数字,得到一个新的两位数,则这两个两位数的和一定能被( C )A .9整除B .10整除C .11整除D .12整除10.(易错题)如图①,是长为a ,宽为b 的长方形卡片,把六张这样的小长方形卡片不重叠地放在一个底面为长方形(长为4,宽为3)的盒子底部(如图②),盒子底部未被卡片覆盖的部分用阴影表示,则图②中两块阴影部分的周长之和为( C )A .8B .10C .12D .14二、填空题(本大题共8小题,每小题3分,共24分)11.近似数4.03×104精确到__百__位,895 000精确到万位的结果为__9.0×105__.12.规定a △b =a +b -3,则(-4)△6=-1. 13.比较大小:-(-5)2>-|-62|.14.如图所示是一个简单的数值计算程序,当输入的数据为5,则输出的结果为 32.15.如果代数式-2a 2+3b +8的值为1,那么代数式-4a 2+6b +2的值等于__-12__.16.如图所示,一只蚂蚁从点A 沿着数轴向右爬了2个单位到达点B ,点A 表示的数为-112,设点B 表示的数为m ,则代数式|m -1|+(m +6)的值为 7 .17.若多项式2x 3-8x 2-1与多项式x 3+2mx 2-5x +2的和不含二次项,则m 的值为 4 .18.小明背对小亮,让小亮按下列四个步骤操作:第一步:分发左、中、右三堆牌,每堆牌不少于3张,且各堆牌的张数相同;第二步:从左边一堆拿出3张,放入中间一堆; 第三步:从右边一堆拿出2张,放入中间一堆;第四步:左边一堆有几张牌,就从中间一堆拿几张牌放入左边一堆.这时,小明准确说出了中间一堆牌现有的张数. 你认为中间一堆牌现有的张数是 8 . 三、解答题(本大题共7小题,共66分) 19.(8分)计算: (1)215×⎝ ⎛⎭⎪⎫12-13÷114×311;解:原式=115×16×45×311=225.(2)⎝ ⎛⎭⎪⎫-3122+612×413-(-2)4÷(-12). 解:原式=494+132×413+16÷12=494+2+43 =15712.20.(8分)化简下列各式: (1)-2(2x 2-x -7)+32(4x 2-8x -2);解:原式=-4x 2+2x +14+6x 2-12x -3 =2x 2-10x +11.(2)-3a 2-⎣⎢⎡⎦⎥⎤5a -⎝ ⎛⎭⎪⎫12a -3+2a 2-1. 解:原式=-3a 2-⎣⎢⎡⎦⎥⎤5a -12a +3+2a 2-1=-3a 2-92a -3-2a 2-1=-5a 2-92a -4.21.(8分)已知|x |=4,|y |=12,且xy >0.求x -y 的值. 解:因为|x|=4,|y|=12,所以x =±4,y =±12.又因为xy >0,所以x ,y 同号.当x ,y 同为正时,x -y =312;当x ,y 同为负时,x -y =-312.22.(8分)先化简,再求值: 3x 2y -⎣⎢⎡⎦⎥⎤2xy 2-2⎝ ⎛⎭⎪⎫xy -32x 2y +xy 七年级上册数学期中考试题【含答案】一、选择题(每小题3分,共30分) 1.下列各组数中,互为相反数的是 ( )A .2和-2B .-2和C .-2和-D .和22.如图QZ 2-1,点M 表示的数可能是 ( )图QZ 2-1A .1.5B .-1.5C .2.5D .-2.53.一个圆的面积是 πa 2b m ,如果这个单项式是一个六次单项式,那么指数m 等于 ( ) A .1 B .2 C .3 D .44.化简m+n-(m-n )的结果为 ( ) A .2mB .-2mC .2nD .-2n5.下列计算结果中,正确的是 ( )A .(-9)÷(-3)2=1B .(-9)2÷(-32)=-9C .-(-2)3×(-3)2=1D .-(-2)6×(-3)2=-86.2017年某市生产总值约2450亿元,将2450....亿.用科学记数法表示为 ( ) A .0.245×104 B .2.45×103C.24.5×1010D.2.45×10117.下列判断正确的是()A.3a2b与ba2不是同类项B.不是整式C.单项式-x3y2的系数是-1D.3x2-y+5xy2是二次三项式8.某种商品原价是m元,第一次降价打八折,第二次降价每件又减15元,第二次降价后的售价是()A.0.8m元B.0.2m元C.(0.8m-15)元D.(0.2m-15)元9.若整式2x2+3x+7的值是8,则整式4x2+6x+15的值是()A.2B.17C.3D.1610.若a<-1,下面4个结论:①|a|>a;②a>-a;③<a;④>a,其中不正确的有()A.0个B.1个C.2个D.3个请将选择题答案填入下表:第Ⅱ卷(非选择题共70分)二、填空题(每小题3分,共18分)11.-的绝对值的相反数是.12.比较大小:--(填“>”“=”或“<”).13.点A在数轴上距原点5个单位长度,且位于原点左侧,若将点A向右移动4个单位长度,再向左移动1个单位长度,此时点A表示的数是.14.按照如图QZ2-2所示的操作步骤,若输入的x的值为2.5,则输出的值为.图QZ2-215.若一个长方形的周长为2a-4b+6,长比宽多a-3,则这个长方形的宽是.16.图形表示运算a-b+c,图形x my n表示运算x+n-y-m,则×4 567=.三、解答题(共52分)17.(6分)计算:(1)(-24)÷-2+×--0.25;(2)--×|-24|-×-×(-8).18.(6分)化简:(7x2-4xy+2y2)-2-,并求当x=1,y=-1时,其值为多少.19.(6分)电力工人开车沿着一条南北方向的公路来回行驶,某天早晨从A地出发,晚上到达了B地,约定向北为正,向南为负,当天行驶的各段路程记录如下(单位:千米):-17,+8,+6,-14,-8,+17,+5,-6.(1)问B地在A地何处,相距多少千米?(2)若汽车每千米耗油0.2升,那么这一天共耗油多少升?20.(6分)某食品厂从生产的袋装食品中抽出样品8袋,检测每袋的质量是否符合标准,超过或不足的部分分别用正、负数来表示,记录如下表:(1)这8袋样品的总质量比标准质量多还是少?多或少几克?(2)若标准质量为500克,则抽样检测这8袋的总质量是多少?21.(6分)邮购一种图书,每本定价为m元,不足100本时,另加总书价的5%作为邮费.(1)当邮购x(x<100且为正整数)本书时,总计金额是多少元?(2)当一次邮购超过100本时,本店除免付邮费外,同时还给予优惠10%,计算当m=3.2,x=120时的总计金额是多少元.22.(6分)已知两个关于x,y的单项式mx a y3与-2nx3y3b-6是同类项(其中xy≠0).(1)求a,b的值;(2)如果它们的和为零,求(m-2n-1)2017的值.23.(8分)明明在计算机中设计了一个有理数运算的程序:a*b=a2-b2-2(a3-1)-÷(a-b).当输入a,b的数据时,屏幕会根据运算程序显示出结果.(1)求(-2)*的值;(2)芳芳在运用这个程序计算时,输入a,b的数据后屏幕显示“操作无法进行”,请你猜想芳芳输入数据时可能出现了什么情况,为什么?24.(8分)将连续的奇数1,3,5,7,9,…,排列成如图QZ2-3所示的数表:图QZ2-3(1)十字框中的五个数的和与中间数23有什么关系?(2)设中间数为a,用式子表示十字框中五个数之和.(3)将十字框上、下、左、右平移,可框住另外五个数,这五个数还有这种规律吗?(4)十字框中的五个数之和能等于2015吗?若能,请写出这五个数;若不能,请说明理由.阶段综合测试二(期中)1.A2.D3.D4.C5.B6.D7.C8. C9.B10.C11.-12.<13.-214.2015. -b+316.017.解:(1)原式=-16×-×-=---=-.(2)原式=-×24-×24+×24-××8=-6-12+16-25=-43+16=-27.18.解:原式=5x2-4xy+5y2.当x=1,y=-1时,原式=5×12-4×1×(-1)+5×(-1)2=14.19.解:(1)∵(-17)+(+8)+(+6)+(-14)+(-8)+(+17)+(+5)+(-6)=-9,∴B地在A地南边9千米处.(2)|-17|+|+8|+|+6|+|-14|+|-8|+|+17|+|+5|+|-6|=81(千米),81×0.2=16.2(升).答:这一天共耗油16.2升.20.解:(1)由题意,得-3×1+(-1)×2+0×3+2×2=-1(克).答:这8袋样品的总质量比标准质量少,少1克.(2)500×8+(-1)=4000-1=3999(克).答:抽样检测这8袋的总质量是3999克.21.解:(1)邮购的本数不足100本时,总计金额为(1+5%)mx=1.05mx(元).(2)邮购的本数超过100本时,总计金额为(1-10%)mx=0.9mx(元).当m=3.2,x=120时,0.9mx=0.9×3.2×120=345.6(元).答:当m=3.2,x=120时的总计金额为345.6元.22.解:(1)依题意,得a=3,3b-6=3,解得a=3,b=3.(2)∵mx3y3+(-2nx3y3)=0,∴m-2n=0,∴(m-2n-1)2017=(-1)2017=-1.23.解:(七年级上册数学期中考试题【含答案】一、选择题(每小题3分,共30分)1.下列各组数中,互为相反数的是()A.2和-2B.-2和C.-2和-D.和22.如图QZ2-1,点M表示的数可能是()图QZ2-1A.1.5B.-1.5C.2.5D.-2.53.一个圆的面积是πa2b m,如果这个单项式是一个六次单项式,那么指数m等于()A.1B.2C.3D.44.化简m+n-(m-n)的结果为()A.2mB.-2mC.2nD.-2n5.下列计算结果中,正确的是()A.(-9)÷(-3)2=1B.(-9)2÷(-32)=-9C.-(-2)3×(-3)2=1D.-(-2)6×(-3)2=-86.2017年某市生产总值约2450亿元,将2450....亿.用科学记数法表示为()A.0.245×104B.2.45×103C.24.5×1010D.2.45×10117.下列判断正确的是()A.3a2b与ba2不是同类项B.不是整式C.单项式-x3y2的系数是-1D.3x2-y+5xy2是二次三项式8.某种商品原价是m元,第一次降价打八折,第二次降价每件又减15元,第二次降价后的售价是()A.0.8m元B.0.2m元C.(0.8m-15)元D.(0.2m-15)元9.若整式2x2+3x+7的值是8,则整式4x2+6x+15的值是()A.2B.17C.3D.1610.若a<-1,下面4个结论:①|a|>a;②a>-a;③<a;④>a,其中不正确的有()A.0个B.1个C.2个D.3个请将选择题答案填入下表:第Ⅱ卷(非选择题共70分)二、填空题(每小题3分,共18分)11.-的绝对值的相反数是.12.比较大小:--(填“>”“=”或“<”).13.点A在数轴上距原点5个单位长度,且位于原点左侧,若将点A向右移动4个单位长度,再向左移动1个单位长度,此时点A表示的数是.14.按照如图QZ2-2所示的操作步骤,若输入的x的值为2.5,则输出的值为.图QZ2-215.若一个长方形的周长为2a-4b+6,长比宽多a-3,则这个长方形的宽是.16.图形表示运算a-b+c,图形x my n表示运算x+n-y-m,则×4 567=.三、解答题(共52分)17.(6分)计算:(1)(-24)÷-2+×--0.25;(2)--×|-24|-×-×(-8).18.(6分)化简:(7x2-4xy+2y2)-2-,并求当x=1,y=-1时,其值为多少.19.(6分)电力工人开车沿着一条南北方向的公路来回行驶,某天早晨从A地出发,晚上到达了B地,约定向北为正,向南为负,当天行驶的各段路程记录如下(单位:千米):-17,+8,+6,-14,-8,+17,+5,-6.(1)问B地在A地何处,相距多少千米?(2)若汽车每千米耗油0.2升,那么这一天共耗油多少升?20.(6分)某食品厂从生产的袋装食品中抽出样品8袋,检测每袋的质量是否符合标准,超过或不足的部分分别用正、负数来表示,记录如下表:(1)这8袋样品的总质量比标准质量多还是少?多或少几克?(2)若标准质量为500克,则抽样检测这8袋的总质量是多少?21.(6分)邮购一种图书,每本定价为m元,不足100本时,另加总书价的5%作为邮费.(1)当邮购x(x<100且为正整数)本书时,总计金额是多少元?(2)当一次邮购超过100本时,本店除免付邮费外,同时还给予优惠10%,计算当m=3.2,x=120时的总计金额是多少元.22.(6分)已知两个关于x,y的单项式mx a y3与-2nx3y3b-6是同类项(其中xy≠0).(1)求a,b的值;(2)如果它们的和为零,求(m-2n-1)2017的值.23.(8分)明明在计算机中设计了一个有理数运算的程序:a*b=a2-b2-2(a3-1)-÷(a-b).当输入a,b的数据时,屏幕会根据运算程序显示出结果.(1)求(-2)*的值;(2)芳芳在运用这个程序计算时,输入a,b的数据后屏幕显示“操作无法进行”,请你猜想芳芳输入数据时可能出现了什么情况,为什么?24.(8分)将连续的奇数1,3,5,7,9,…,排列成如图QZ2-3所示的数表:图QZ2-3(1)十字框中的五个数的和与中间数23有什么关系?(2)设中间数为a,用式子表示十字框中五个数之和.(3)将十字框上、下、左、右平移,可框住另外五个数,这五个数还有这种规律吗?(4)十字框中的五个数之和能等于2015吗?若能,请写出这五个数;若不能,请说明理由.阶段综合测试二(期中)1.A2.D3.D4.C5.B6.D7.C8. C9.B10.C11.-12.<13.-214.2015. -b+316.017.解:(1)原式=-16×-×-=---=-.(2)原式=-×24-×24+×24-××8=-6-12+16-25=-43+16=-27.18.解:原式=5x2-4xy+5y2.当x=1,y=-1时,原式=5×12-4×1×(-1)+5×(-1)2=14.19.解:(1)∵(-17)+(+8)+(+6)+(-14)+(-8)+(+17)+(+5)+(-6)=-9,∴B地在A地南边9千米处.(2)|-17|+|+8|+|+6|+|-14|+|-8|+|+17|+|+5|+|-6|=81(千米),81×0.2=16.2(升).答:这一天共耗油16.2升.20.解:(1)由题意,得-3×1+(-1)×2+0×3+2×2=-1(克).答:这8袋样品的总质量比标准质量少,少1克.(2)500×8+(-1)=4000-1=3999(克).答:抽样检测这8袋的总质量是3999克.21.解:(1)邮购的本数不足100本时,总计金额为(1+5%)mx=1.05mx(元).(2)邮购的本数超过100本时,总计金额为(1-10%)mx=0.9mx(元).当m=3.2,x=120时,0.9mx=0.9×3.2×120=345.6(元).答:当m=3.2,x=120时的总计金额为345.6元.22.解:(1)依题意,得a=3,3b-6=3,解得a=3,b=3.(2)∵mx3y3+(-2nx3y3)=0,∴m-2n=0,∴(m-2n-1)2017=(-1)2017=-1.23.解:(。

人教版 七年级数学上册 第1_3章 期中综合复习(3份)及答案

人教版 七年级数学上册 第1_3章 期中综合复习(3份)及答案

人教版 七年级数学上册 第1~3章 期中综合复习(一)一、选择题(本大题共10道小题)1. 计算2a -3a ,结果正确的是( )A .-1B .1C .-aD .a 2. 下列各数:53,+4,-7,0,-0.5,3.456,-516中,负数有( )A .2个B .3个C .4个D .5个3. 计算4+(-3)+(-2)+(-1)+2的结果是( )A .0B .1C .2D .34. 解方程x +12-2x -36=1时,去分母正确的是( )A .3(x +1)-2x -3=6B .3(x +1)-2x -3=1C .3(x +1)-(2x -3)=12D .3(x +1)-(2x -3)=65. 下列各式的计算结果是负数的是( )A .-2×3×(-2)×5B .3÷(-3)×2.6÷(-1.5)C .|-3|×4×(-2)÷(-12) D .(-7)×52÷|-10|6. 下列计算运用运算律恰当的有( )①28+(-19)+6+(-21)=[(-19)+(-21)]+28+6;②14+1+⎝ ⎛⎭⎪⎫-14+13=⎣⎢⎡⎦⎥⎤14+⎝ ⎛⎭⎪⎫-14+1+13;③3.25+⎝ ⎛⎭⎪⎫-235+534+(-8.4)=⎝ ⎛⎭⎪⎫3.25+534+⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫-235+(-8.4).A .0个B .1个C .2个D .3个7. 有理数m ,n 在数轴上的位置如图所示,则下列各式正确的是 ()A .m>n B.-n>|m|C .-m>|n|D .|m|<|n|8. 已知M =4x 2-3x -2,N =6x 2-3x +6,则M 与N 的大小关系是() A .M <N B .M >NC .M =ND .以上都有可能9. 下列说法错误的是 ( )A .若|a |=|b |,则a =b 或a =-bB .若a ≠b ,则|a |≠|b |C .若|a |+|b |=0,则|a |=0且|b |=0D .若|a |=a ,则a ≥0;若|b |=-b ,则b ≤010. 若三个连续偶数的和是24,则它们的积是( )A .48B .480C .240D .120 二、填空题(本大题共10道小题)11. 计算:(14+16-12)×12=________. 12. 计算:(-14)×23-23=________. 13. 5G 信号的传播速度为300000000 m/s ,将300000000用科学记数法表示为 .14. 用“>”“<”或“=”填空:(1)-31×(-58)×(-4)×(-7)________0;(2)(-32.75)×(-1)×101×⎝ ⎛⎭⎪⎫-9918×0________0; (3)-|-3|×(-5)×(-11)×51________0.15. 已知关于x 的方程2x +a -5=0的解是x =2,则a 的值为________. 16. 若m +1与-2互为相反数,则m 的值为________.17. 李勇同学假期打工收入了一笔钱,他立即存入银行,存期为一年,整存整取,若年利率为 2.16%,一年后李勇同学共得到本息和510.8元,则李勇同学存入________元.18. 若定义一种运算*,其规则是:a *b =-1b ÷1a ,则(-3) * (-2)=________. 19. 一项工作,甲单独做4天完成,乙单独做8天完成.现甲先做1天,然后和乙共同完成余下的工作,则甲一共做了________天.20. 某班学生在实践基地进行拓展活动,因为器材的原因,教练要求分成固定的a 组,若每组5人,则多出9名同学;若每组6人,最后一组的人数将不满,则最后一组的人数用含a 的式子可表示为 .三、解答题(本大题共5道小题)21. 水葫芦是一种水生漂浮植物,有着惊人的繁殖能力.据研究表明:适量的水葫芦生长对水质的净化是有利的,关键是对水葫芦的科学管理和转化利用.若在适宜的条件下,1株水葫芦每5天就能繁殖1株(不考虑死亡、被打捞等其他因素).(1)假设湖面上现有1株水葫芦,填写下表(其中n 为正整数):天数5 10 15 … 50 … 5n 总株数 2 4 … …(2)假定某个流域的水葫芦维持在1280株以内对水质净化有益,若现有10株水葫芦,请你计算,按照上述生长速度,多少天后该流域内有1280株水葫芦?22. 求关于x 的一元一次方程21(1)(1)80k k x k x --+--=的解.23. 解方程:0.10.020.10.10.30.0020.05x x -+-=24. 解方程:0.10.90.210.030.7x x --=25. 已知1abc =,求关于x 的方程2004111x x x a ab b bc c ca++=++++++的解.人教版 七年级数学上册 第1~3章 期中综合复习(一)-答案一、选择题(本大题共10道小题)1. 【答案】C2. 【答案】B3. 【答案】A4. 【答案】D [解析] 由此方程的分母2,6可知,其最小公倍数为6,故去分母得3(x +1)-(2x -3)=6.故选D.5. 【答案】D6. 【答案】D7. 【答案】C8. 【答案】A [解析] 因为M -N =(4x 2-3x -2)-(6x 2-3x +6)=4x 2-3x -2-6x 2+3x -6=-2x 2-8<0,所以M <N.9. 【答案】B10. 【答案】B [解析] 两个连续偶数相差2,所以可设中间一个偶数为x ,则第一个偶数为x -2,第三个偶数为x +2,则有x -2+x +x +2=24,解得x =8,故这三个偶数为6,8,10,所以它们的积为6×8×10=480.二、填空题(本大题共10道小题)11. 【答案】-112. 【答案】-10 [解析] (-14)×23-23=-14×23-1×23=23×(-14-1)=-10. 13. 【答案】3×108[解析] 将300000000用科学记数法表示为3×108. 14. 【答案】(1)>(2)= (3)< 15. 【答案】1 [解析] 把x =2代入原方程,得2×2+a -5=0,解得a =1,故答案为1.16. 【答案】117. 【答案】500 [解析] 本题中要求的未知数是本金.设存入的本金为x 元,由于年利率为2.16%,期数为一年,则利息为2.16%x 元.根据题意,得x +2.16%x =510.8,解得x =500.18. 【答案】-32 [解析] (-3) * (-2)=12÷(-13)=12×(-3)=-32. 19. 【答案】3 [解析] 设乙做了x 天,则甲做了(x +1)天,根据题意,得x +14+x 8=1,解得x =2,x +1=3.故甲一共做了3天.20. 【答案】15-a [解析] 最后一组的人数可表示为5a +9-6(a -1)=15-a .三、解答题(本大题共5道小题)21. 【答案】解:(1)表中依次填入23,210,2n .(2)根据题意,得10×2n =1280,解得n=7,7×5=35(天).答:按照上述生长速度,35天后该流域内有1280株水葫芦.22. 【答案】2x =或者4x =-【解析】由一元一次方程的概念可知,原方程是一元一次方程,有两种情况:(1)当11k -=,即2k =时,原方程可化为:380x x +-=,解得2x =; (2)当210k -=且10k -≠时,即1k =-时,原方程可化为280x --=,解得4x =-.综上所得2x =或者4x =-.23. 【答案】 4116024. 【答案】121925. 【答案】2004 【解析】原方程可化为:111()2004111x a ab b bc c ca++=++++++, 因为1abc =,所以11111111(1)a abc a ab b bc c ca a ab a b bc abc c ca++=++++++++++++++ 1111111a ab a ab a ab a ab a ab a ab++=++==++++++++,故2004x =.人教版 七年级数学上册 第1~3章 期中综合复习(二)一、选择题(本大题共10道小题)1. 据市统计局调查数据显示,我市目前常住人口约为4470000人.数据“4470000”用科学记数法可表示为( )A. 4.47×106B. 4.47×107C. 0.447×107D. 447×1042. 若海平面以上1045米,记作+1045米,则海平面以下155米,记作() A .-1200米 B .-155米C .155米D .1200米3. 下列方程中是一元一次方程的是( )A .x +2y =9B .x 2-3x =1C .2x +4=1x D.12x -1=3x4. 计算-2(x -y )-2y 的结果是( )A .-2x -4yB .-2xC .2x -4yD .-4x +2y5. 给出一个数-0.1010010001,下列说法正确的是 ( )A .这个数不是分数,但是有理数B .这个数是负数,也是分数C .这个数与π一样,不是有理数D .这个数是一个负小数,不是有理数6. 下列各组数中,互为相反数的一组是( )A .|-3|与-13B .|-3|与-(-3)C .|-3|与-|-3|D .|-3|与|-13|7. 计算(-2)2020÷(-2)2019所得的结果是 ( )A.22019B.-22019C.-2D.18. 二模若a >0,b <0,则a -b 的值( )A .大于零B .小于零C .等于零D .不能确定9. 某企业今年第一季度盈利22000元,第二季度亏损5000元,若盈利记为正,亏损记为负,则该企业今年上半年盈利(或亏损)的金额(单位:元)可用算式表示为( )A .(+22000)+(+5000)B .(-22000)+(+5000)C .(-22000)+(-5000)D .(+22000)+(-5000) 10. 计算0-(-5)-(+1.71)+(+4.71)的结果是( )A .7B .-8C .8D .-7 二、填空题(本大题共10道小题)11. 化简:-54-8=________,-6-0.3=________. 12. 对于算式(-3)÷13×(-3),下面有几种算法: ①原式=(-3)×3×(-3);②原式=(-3)×(-3)÷13;③原式=(-3)÷⎣⎢⎡⎦⎥⎤13×(-3); ④原式=(-3)÷⎣⎢⎡⎦⎥⎤13÷(-3). 其中正确的算法有________.(填序号)13. 当x =________时,式子5x -3的值为7.14. 化简下列各数:(1)-(+3)=________;(2)-(-3)=________;(3)+(+3)=________;(4)+(-3)=________;(5)-[-(+3)]=________;(6)-[-(-3)]=________. 15. 合并同类项:4a 2+6a 2-a 2=________.16. 一只蜗牛从地面开始爬高为6米的墙,先向上爬3米,然后向下滑1米,接着又向上爬3米,然后又向下滑1米,则此时蜗牛离地面的距离为________米. 17. 我国古代数学著作《九章算术》中有一道阐述“盈不足术”的问题,译文为:“现有几个人共同购买一个物品,每人出8元,则多3元;每人出7元,则差4元.问这个物品的价格是多少元.”该物品的价格是________元.18. 把a -b 看作一个整体,合并同类项:3(a -b )+4(a -b )2-2(a -b )-3(a -b )2-(a -b )2= .19. 观察下列砌钢管的横截面(如图),则第n (n 是正整数)个图中的钢管数是__________.(用含n 的式子表示)20. 《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有善行者行一百步,不善行者行六十步.今不善行者先行一百步,善行者追之,问几何步及之.”其意思为:速度快的人走100步,速度慢的人只走60步,现速度慢的人先走100步,速度快的人去追赶,则速度快的人要走________步才能追到速度慢的人.三、解答题(本大题共5道小题)21. 先化简,再求值:12(8x 2-3xy )-3(x 2-12xy +13y ),其中x =-2,y =1.22. 去掉下列各式中的括号:(1)8m -(3n +5); (2)n -4(3-2m ); (3)2(a -2b )-3(2m -n ).23. 据美国詹姆斯·马丁的测算,在近十年,人类知识总量已达到每3年翻一番,到2020年甚至要达到每73天翻一番的空前速度,因此,基础教育的任务已不是“教会一切人一切知识,而是让一切人会学习”.已知2000年底,人类知识总量为a,假如从2000年底到2009年底是每3年翻一番;从2009年底到2019年底是每1年翻一番;从2020年是每73天翻一番.(1)2009年底人类知识总量是多少?(2)2019年底人类知识总量是多少?(3)2020年按365天计算,2020年底人类知识总量是多少?24. 暑假期间,学校组织学生去某景点游玩,甲旅行社说:“如果带队的一名老师购买全票,则学生享受半价优惠.” 乙旅行社说:“所有人按全票价的六折优惠.”已知全票价为a元,学生有x人,带队老师有1人.(1)试用含a和x的式子分别表示甲、乙旅行社的收费情况;(2)若有30名学生参加本次活动,请你为他们选择一家更优惠的旅行社.25. 解方程:4213 2[()] 3324x x x--=人教版七年级数学上册第1~3章期中综合复习(二)-答案一、选择题(本大题共10道小题)1. 【答案】A【解析】把一个大数用科学记数法表示为a×10n的形式,其中1≤a <10,故a=4.47,n等于原数的整数位数减1,即n=7-1=6,∴4470000=4.47×106.2. 【答案】B3. 【答案】D4. 【答案】B5. 【答案】B6. 【答案】C7. 【答案】C8. 【答案】A9. 【答案】D10. 【答案】C二、填空题(本大题共10道小题)11. 【答案】27 42012. 【答案】①②④13. 【答案】2[解析] 由题意,得5x-3=7.两边同时加上3,得5x=10.两边同时除以5,得x=2.14. 【答案】(1)-3(2)3(3)3(4)-3(5)3 (6)-3[解析] “-”号不仅是运算符号、性质符号,还可理解为“相反”的意义,如-(+3)表示+3的相反数.15. 【答案】9a216. 【答案】417. 【答案】53[解析] 设有x个人共同购买该物品,依题意,得8x-3=7x+4,解得x=7.8x-3=8×7-3=53.故答案为53.18. 【答案】a -b[解析] 3(a -b )+4(a -b )2-2(a -b )-3(a -b )2-(a -b )2=(3-2)·(a -b )+(4-3-1)·(a -b )2=a -b .19. 【答案】32n (n +1) [解析] 第1个图中钢管数为1+2=3,第2个图中钢管数为2+3+4=12×(2+4)×3=9,第3个图中钢管数为3+4+5+6=12×(3+6)×4=18,第4个图中钢管数为4+5+6+7+8=12×(4+8)×5=30,…依此类推,第n 个图中钢管数为n +(n +1)+(n +2)+(n +3)+(n +4)+2n =12(n +2n )(n +1)=32n (n +1).20. 【答案】250[解析] 设速度快的人追上速度慢的人所用时间为t ,根据题意,得(100-60)t =100,解得t =2.5.所以100t =100×2.5=250,即速度快的人要走250步才能追上速度慢的人.三、解答题(本大题共5道小题)21. 【答案】解:原式=4x 2-32xy -3x 2+32xy -y =x 2-y . 当x =-2,y =1时,原式=(-2)2-1=3.22. 【答案】解:(1)8m -(3n +5)=8m -3n -5.(2)n -4(3-2m )=n -(12-8m )=n -12+8m .(3)2(a -2b )-3(2m -n )=2a -4b -(6m -3n )=2a -4b -6m +3n .23. 【答案】解:(1)23×a .(2)213×a .(3)218×a .24. 【答案】解:(1)甲旅行社收取的费用为a+50%ax=a+ax元,乙旅行社收取的费用为(x+1)×60%a=ax+a元.(2)当x=30时,甲旅行社收取的费用为=a+15a=16a(元),乙旅行社收取的费用为a·31=a(元).因为a>0,所以16a<a.所以选择甲旅行社更优惠.25. 【答案】127人教版七年级数学上册第1~3章期中综合复习(三)一、选择题(本大题共10道小题)1. 下列各组数中,不相等的是()A.-(+8)和+(-8) B.-5和-(+5)C.+(-7)和-7 D.+(-23)和+232. 计算-2×3×(-4)的结果是()A.24 B.12 C.-12 D.-24 3. 下列关于“0”的说法正确的是()A.0既是正数,也是负数B.0是偶数,但不是自然数C.0既不是正数,也不是负数D.0 ℃表示没有温度4. 小磊解题时,将式子(-12)+(-7)+(+7)先变成(-12)+[(-7)+(+7)],再计算结果,则小磊运用了()A.加法交换律B.加法交换律和加法结合律C.加法结合律D.无法判断5. 如果x=y,那么根据等式的性质,下列变形不正确的是()A.x+2=y+2 B.3x=3yC.5-x=y-5 D.-x3=-y36. 下列交换加数位置的变形中,正确的是()A.1-4+5-4=1-4+4-5B.1-2+3-4=2-1-4-3C.5.5-4.2-2.5+1.2=5.5-2.5+1.2-4.2D.13+2.3-5-4.3=13+5-2.3-4.37. 下列各式中,不相等的是()A.(-3)2和-32B.(-3)2和32C.(-2)3和-23D.|-2|3和|-23|8. 若a,b互为倒数,则-4ab的值为()A.-4 B.-1 C.1 D.09. 如图所示,下列判断正确的是()A.ab<0B.ab=0C.ab>0D.-ab<010. 已知七年级某班30位学生种树72棵,男生每人种3棵树,女生每人种2棵树,设男生有x人,则()A.2x+3(72-x)=30 B.3x+2(30-x)=72C.2x+3(30-x)=72 D.3x+2(72-x)=30二、填空题(本大题共10道小题)11. 若|x|=2,则x的倒数是________.12. 计算:(-12)÷(-4)÷(-115)=________.13. 如图,数轴上点A,B分别表示数a,b,则a+b________0.(填“>”或“<”).14. 原价为a元的书包,现按8折出售,则售价为________元.15. a的相反数是-9,则a=________.16. 若关于x,y的多项式4xy3-2ax2-3xy+2x2-1不含x2项,则a=.17. 用算式表示(写成省略加号和括号的和的形式):(1)负20、正15、负40、负15、正14的和:________________________;(2)40减35加12减16减4:________________.18. 甲、乙两列火车分别从相距660千米的A,B两地同时出发,相向而行,2小时后相遇,其中甲车的速度是乙车速度的1.2倍,则甲车的速度是________千米/时.19. 某种商品每件的进价为80元,标价为120元,后来由于该商品积压,将此商品打七折销售,则该商品每件的销售利润为________元.20. 一只蜘蛛有8条腿,一只蜻蜓有6条腿,现有蜘蛛、蜻蜓若干只,它们共有120条腿,且蜻蜓的只数是蜘蛛的2倍,那么蜘蛛有________只.三、解答题(本大题共5道小题)21. 解方程:4x-3=2(x-1).22. 一张铁皮可生产10个盒底或6个盒身,两个盒底与一个盒身配套.现有110张铁皮,怎样安排生产盒身和盒底的铁皮张数,才能使生产出来的盒底和盒身恰好配套?(注:一张铁皮只能生产一种产品)23. 甲、乙两件服装的成本共500元,商店老板为获取利润,决定将甲服装按50%的利润率定价,乙服装按40%的利润率定价.在实际出售时,应顾客要求,两件服装均按九折出售,这样商店共获利157元.求甲、乙两件服装的成本各是多少元.24. 小李读一本名著,第一天读了36页,第二天读了剩余部分的14,这两天共读了整本书的38,这本名著共有多少页?25. 若1abc =,解关于x 的方程:2221111ax bx cxab a bc b ca c ++=++++++人教版 七年级数学上册 第1~3章 期中综合复习(三)-答案一、选择题(本大题共10道小题)1. 【答案】D2. 【答案】A3. 【答案】C4. 【答案】C5. 【答案】C6. 【答案】C7. 【答案】A 8. 【答案】A 9. 【答案】A 10. 【答案】B二、填空题(本大题共10道小题) 11. 【答案】±12 12. 【答案】-5213. 【答案】< 14. 【答案】45a15. 【答案】916. 【答案】1[解析] 因为关于x ,y 的多项式4xy 3-2ax 2-3xy +2x 2-1不含x 2项,所以2-2a =0,解得a=1.17. 【答案】(1)-20+15-40-15+14(2)40-35+12-16-418. 【答案】180[解析] 根据相等关系:甲车的路程+乙车的路程=总路程列方程.设乙车的速度为x千米/时,则甲车的速度为1.2x千米/时.根据题意,得2·1.2x +2x=660,解方程,得x=150.150×1.2=180(千米/时).19. 【答案】4[解析] 设该商品每件的销售利润为x元,根据题意,得80+x=120×0.7,解得x=4.故该商品每件的销售利润为4元.故答案为4.20. 【答案】6[解析] 设蜘蛛有x只,则蜻蜓有2x只,由题意,得8x+2x·6=120,解得x=6.三、解答题(本大题共5道小题)21. 【答案】[解析] 去括号、移项、合并同类项、系数化为1,即可得到方程的解.解:4x-3=2(x-1),4x-3=2x-2,4x-2x=-2+3,2x=1,x=1 2.22. 【答案】解:设用x张铁皮生产盒底,则用(110-x)张铁皮生产盒身,依题意可列方程10x=6(110-x)×2.解得x=60.于是110-x=50.答:用60张铁皮生产盒底,用50张铁皮生产盒身,才能使生产出来的盒底和盒身恰好配套.23. 【答案】解:设甲服装的成本是x元,则乙服装的成本是(500-x)元,依题意可列方程0.9[(1+50%)x+(1+40%)(500-x)]=500+157.解得x=300,于是500-x=200.答:甲、乙两件服装的成本分别是300元和200元.24. 【答案】[解析] 根据相等关系“这两天共读了整本书的38”列一元一次方程求解.解:设这本名著共有x页.根据题意,得36+14(x -36)=38x .解得x =216. 答:这本名著共有216页.25. 【答案】12【解析】由2221111ax bx cxab a bc b ca c ++=++++++得2111a b c x ab a abc bc b ca c ⎛⎫⨯++= ⎪++++++⎝⎭,1211b c x bc b abc ca c +⎛⎫⨯+= ⎪++++⎝⎭,()()12111b bcx b ca c b ca c ⎛⎫+⨯+= ⎪ ⎪++++⎝⎭,()211abc b bcx b ca c ++⨯=++故12x =.。

人教版七年级上册综合测试卷(含答案)

人教版七年级上册综合测试卷(含答案)

七年级上册数学综合测试卷一、单选题(共10题;共30分)1。

2017年天猫双11落下帷幕,总成交额最终定格在1207亿元,是8年来成交额首次突破1000亿大关,数据1207亿元用科学记数法表示为( )A。

12.07×1010 B. 1.207×1011 C。

1。

207×1012 D。

1。

207×1012【答案】B【考点】科学记数法—表示绝对值较大的数【解析】【解答】∵1207亿=1。

207×1011.故答案为:B.【分析】科学记数法:将一个数字表示成a×10的n次幂的形式,其中1≤|a|<10,n为整数。

由此即可得出答案.2。

在数,0,4.5, |﹣9|, ﹣6。

79中,属于正数的个数是( )A。

2个 B。

3 个 C。

4个 D。

5个【答案】A【考点】正数和负数【解析】【解答】∵|﹣9|=9,∴正数有:4.5,|﹣9|,共2个,故答案为:A.【分析】根据正数的定义来分析.3。

下列算式中,正确的是()A. 2x+3y=5xyB. 3x2+2x3=5x5C. 4x﹣3x=1D. x2﹣3x2=﹣2x2【答案】D【考点】整式的加减【解析】【解答】解:选项A,2x+3y不能合并; 选项B,3x2+2x3不能合并;选项C,4x ﹣3x不能合并;选项D,x2﹣3x2=﹣2x2,正确。

故选D.【分析】利用同类项的判断,以及合并同类项法则进行判断即可。

4。

如图,两个直角∠AOB,∠COD有相同的顶点O,下列结论:①∠AOC=∠BOD;②∠AOC+∠BOD=90°;③若OC平分∠AOB,则OB平分∠COD;④∠AOD的平分线与∠COB的平分线是同一条射线.其中正确的个数有( )A. 1个 B。

2个 C。

3个 D。

4个【答案】C【考点】角平分线的定义【解析】【解答】解:①∵∠AOB=∠COD=90°, ∴∠AOC=90°﹣∠BOC,∠BOD=90°﹣∠BOC,∴∠AOC=∠BOD,∴①正确;②∵只有当OC,OB分别为∠AOB和∠COD的平分线时,∠AOC+∠BOD=90°,∴②错误;③∵∠AOB=∠COD=90°,OC平分∠AOB,∴∠AOC=∠COB=45°,则∠BOD=90°﹣45°=45°∴OB平分∠COD,∴③正确;④∵∠AOB=∠COD=90°,∠AOC=∠BOD(已证);∴∠AOD的平分线与∠COB的平分线是同一条射线,∴④正确;故选C.【分析】根据角的计算和角平分线性质,对四个结论逐一进行计算即可.5.如图,若A是实数a在数轴上对应的点,则关于a,﹣a,1的大小关系表示正确的是( )A。

人教版数学七年级上册第二章《整式的加减》综合测试卷(含答案)

人教版数学七年级上册第二章《整式的加减》综合测试卷(含答案)

人教版数学七年级上册第二章《整式的加减》综合测试卷(含答案)一、单选题1.代数式22a b +的意义是( ).A .a 的平方与b 的和B .a 与b 的平方的和C .a 与b 两数的平方和D .a 与b 的和的平方 2.用a 表示的数一定是( )A .正数B .正数或负数C .正整数D .以上全不对 3.若2x y +=,3z y -=-,则x z +的值等于( )A .5B .1C .-1D .-54.已知3,2a b c d +=-=,则()()a c b d +--+的值是( )A .5B .-5C .1D .-15.若a ,b 互为相反数,c 的倒数是4,则334a b c +-的值为( )A .8-B .5-C .1-D .166.不改变代数式22a a b c +-+的值,下列添括号错误的是( )A .2(2)a a b c +-+B .2(2)a a b c --+-C .2(2)a a b c --+D .22()a a b c ++-+ 7.用正方形按如图所示的规律拼图案,其中第①个图案中有5个正方形,第①个图案中有9个正方形,第①个图案中有13个正方形,第①个图案中有17个正方形,此规律排列下去,则第①个图案中正方形的个数为( )A .32B .34C .37D .418.化简(2a ﹣b )﹣(2a +b )的结果为( )A .2bB .﹣2bC .4aD .4a9.按如图所示的运算程序,能使输出的结果为12的是( )A .3,3x y ==B .4,2x y =-=-C .2,4x y ==D .4,2x y ==10.某地居民生活用水收费标准:每月用水量不超过17立方米,每立方米a 元;超过部分每立方米()1.2a +元.该地区某用户上月用水量为20立方米,则应缴水费为( ) A .20a 元 B .()2024a +元 C .()17 3.6a +元 D .()20 3.6a +元 11.如图,将图1中的长方形纸片前成①号、①号、①号、①号正方形和①号长方形,并将它们按图2的方式无重叠地放入另一个大长方形中,若需求出没有覆盖的阴影部分的周长,则下列说法中错误的是( )A .只需知道图1中大长方形的周长即可B .只需知道图2中大长方形的周长即可C .只需知道①号正方形的周长即可D .只需知道①号长方形的周长即可12.将全体正偶数排成一个三角形数阵:按照以上排列的规律,第10行第5个数是( )A .98B .100C .102D .10413.化简1(93)2(1)3x x --+的结果是( ) A .21x - B .1x + C .53x + D .3x -14.把图1中周长为16cm 的长方形纸片分割成四张大小不等的正方形纸片A 、B 、C 、D 和一张长方形纸片E ,并将它们按图2的方式放入周长为24cm 的的长方形中.设正方形C 的边长为cm x ,正方形D 的边长为cm y .则下结论中正确的是( )A .正方形C 的边长为1cmB .正方形A 的边长为3cmC .正方形B 的边长为4cmD .阴影部分的周长为20cm15.某超市出售一商品,有如下四种在原标价基础上调价的方案,其中调价后售价最低的是( )A .先打九五折,再打九五折B .先提价50%,再打六折C .先提价30%,再降价30%D .先提价25%,再降价25%16.多项式2835x x -+与多项式323257x mx x +-+相加后,不含二次项,则常数m 的值是( )A .2B .4-C .2-D .8-17.代数式4x 3–3x 3y +8x 2y +3x 3+3x 3y –8x 2y –7x 3的值A .与x ,y 有关B .与x 有关C .与y 有关D .与x ,y 无关18.有n 个依次排列的整式:第一项是a 2,第二项是a 2+2a +1,用第二项减去第一项,所得之差记为b 1,将b 1加2记为b 2,将第二项与b 2相加作为第三项,将b 2加2记为b 3,将第三项与b 3相加作为第四项,以此类推;某数学兴趣小组对此展开研究,得到4个结论: ①b 3=2a +5;①当a =2时,第3项为16;①若第4项与第5项之和为25,则a =7;①第2022项为(a +2022)2;①当n =k 时,b 1+b 2+…+bk =2ak +k 2;以上结论正确的是( )A .①①①B .①①①C .①①①D .①①①19.将正整数按如图所示的规律排列下去,若有序数对(n ,m )表示第n 排,从左到右第m 个数,如(4,3)表示8,已知1+2+3+…+n=()12n n +,则表示2020的有序数对是( ).A .(64,4)B .(65,4)C .(64,61)D .(65,61) 20.当1x =-时,3238ax bx -+的值为18,则1282b a -+的值为( )A .40B .42C .46D .56二、填空题21.化简()x y x y +--=___________.22.在代数式23xy ,m ,263a a -+,12,22145x yzx xy -,23ab 中,单项式有___________个.23.如图,在数轴上,点A 表示1,现将点A 沿x 轴做如下移动:第一次将点A 向左移动3个单位长度到达点1A ,第二次将点1A 向右移动6个单位长度到达点2A ,第三次将点2A 向左移动9个单位长度到达点3A ,按照这种移动规律移动下去,第n 次移动到点n A ,如果点n A 与原点的距离不小于20,那么n 的最小值是_________.24.22213x x ⎛⎫-+ ⎪⎝⎭-_________________=2325x x -+. 25.a 是不为1的有理数,我们把11a-称为a 的差倒数.如:2的差倒数是1112=--,1-的差倒数是111(1)2=--.已知112a =-,2a 是1a 的差倒数,3a 是2a 的差倒数,4a 是3a 的差倒数,…,依此类推,则2020a =________.三、解答题26.有这样一道题:“求(2x 3﹣3x 2y ﹣2xy 2)﹣(x 3﹣2xy 2+y 3)+(﹣x 3+3x 2y ﹣y 3)的值,其中x =2020,y =﹣1”.小明同学把“x =2a ab --”错抄成了“x =﹣3m n -”,但他的计算结果竟然正确,请你说明原因,并计算出正确结果.27.如图,用字母表示图中阴影部分的面积.28.小刘、小张两位同学玩数学游戏,小刘说“任意选定一个数,然后按下列步骤进行计算:加上20,乘2,减去4,除以2,再减去你所选定的数”,小张说“不用算了,无论我选什么数,结果总是18”,小张说得对吗?说明理由.29.(1)若(a﹣2)2+|b+3|=0,则(a+b)2019=.(2)已知多项式(6x2+2ax﹣y+6)﹣(3bx2+2x+5y﹣1),若它的值与字母x的取值无关,求a、b的值;(3)已知(a+b)2+|b﹣1|=b﹣1,且|a+3b﹣3|=5,求a﹣b的值.30.已知:a是单项式-xy2的系数,b是最小的正整数,c是多项式2m2n-m3n2-m-2的次数.请回答下列问题:(1)请直接写出a、b、c的值.a=,b=,c=.(2)数轴上,a、b、c三个数所对应的点分别为A、B、C,点A、B、C同时开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒1个单位长度和3个单位长度的速度向右运动,假设t秒钟过后,若点B与点C之间的距离表示为BC,点A与点B之间的距离表示为AB,点A与点C之间的距离表示为AC.①t秒钟过后,AC的长度为(用含t的关系式表示);①请问:BC-AB的值是否会随着时间t的变化而改变?若变化,请说明理由;若不变,请求出其值.参考答案1--10CDCAC CCBCD 11--20BBDDB BDACB21.2y22.323.1324.2443x x -+- 25.12- 26.解:原式=2x 3﹣3x 2y ﹣2xy 2﹣x 3+2xy 2﹣y 3﹣x 3+3x 2y ﹣y 3=﹣2y 3,①此题的结果与x 的取值无关,y =﹣1时,原式=﹣2×(﹣1)3=2.27.解:由题意得:==S S S mn pq --阴影大长方形空白长方形,①阴影部分的面积为mn pq -.28.正确,理由如下:设此整数是a ,由题意得()a 20242+⨯--a =a+20-2=18,所以说小张说的对.29.解:(1)①(a ﹣2)2+|b +3|=0,且(a ﹣2)2≥0,|b +3|≥0,①a ﹣2=0,b +3=0,解得a =2,b =﹣3,①(a +b )2019=(2﹣3)2019=﹣1.故答案为:﹣1;(2)原式=6x 2+2ax ﹣y +6﹣3bx 2﹣2x ﹣5y +1,=(6﹣3b )x 2+(2a ﹣2)x ﹣6y +7,由结果与x 取值无关,得到6﹣3b =0,2a ﹣2=0,解得:a =1,b =2;(3)①(a +b )2+|b ﹣1|=b ﹣1,①(a +b )2+|b ﹣1|-(b ﹣1)=0,①|b ﹣1|≥(b ﹣1),①|b ﹣1|-(b ﹣1)≥0,(a +b )2≥0,①a +b =0且|b ﹣1|=b ﹣1,①010a b b +=⎧⎨-≥⎩, 解得,1a b b =-⎧⎨≥⎩, ①|a +3b ﹣3|=5,①a +3b ﹣3=5或a +3b ﹣3=-5,①a +3b =8或a +3b =﹣2,把a =﹣b 代入上式得:b =4或﹣1(舍去),①a ﹣b =﹣4﹣4=﹣8.30.(1)解:由题意得,单项式-xy 2的系数a =-1,最小的正整数b =1,多项式2m 2n -m 3n 2-m -2的次数c =5; 故答案为:-1,1,5(2)①t 秒后点A 对应的数为a -t ,点B 对应的数为b +t ,点C 对应的数为c +3t ,故AC =|c +3t -a +t |=|5+4t +1|=6+4t ; 故答案为:6+4t ①①BC =5+3t -(1+t )=4+2t ,AB =1+t -(-1-t )=2+2t ;①BC -AB =4+2t -2-2t =2, 故BC -AB 的值不会随时间t 的变化而改变.其值为2.。

人教版数学七年级上册第二章整式的加减单元综合测试题(含答案)

人教版数学七年级上册第二章整式的加减单元综合测试题(含答案)

人教版数学七年级上学期第二章整式的加减测试一.选择题(共10小题)1.下列各式﹣12mn,m,8,1a,x2+2x+6,25x y-,24x yπ+,1y中,整式有()A. 3 个B. 4 个C. 6 个D. 7 个2.单项式﹣12πx2y的系数与次数分别是( )A. -12,3 B. -12,4 C. -12π,3 D. -12π,43.如果一个多项式的次数都相等,则称该多项式为齐次多项式,例如:x3+2x2y+y3是三次齐次多项式,若x m y+3x3y2+5x2y n+y5是齐次多项式,则m n等于( )A. 32B. 64C. 81D. 1254.下列各组单项式中,同类项一组的是( )A. x3y与xy3B. 2a2b与﹣3a2bC. a2与b2D. ﹣2xy与3y5.若把x﹣y看成一项,合并2(x﹣y)2+3(x﹣y)+5(y﹣x)2+3(y﹣x)得( )A. 7(x﹣y)2B. ﹣3(x﹣y)2C. ﹣3(x+y)2+6(x﹣y)D. (y﹣x)26.与a﹣b﹣c的值不相等的是( )A. a﹣(b﹣c)B. a﹣(b+c)C. (a﹣b)+(﹣c)D. (﹣b)+(a﹣c)7.一个多项式与5a2+2a﹣1的和是6a2﹣5a+3,则这个多项式是( )A. a2﹣7a+4B. a2﹣3a+2C. a2﹣7a+2D. a2﹣3a+48.下列运算正确的是().A. 2a2-3a2=-a2B. 4m-m=3C. a2b-ab2=0D. x-(y-x)=-y9.规定一种新运算,a*b=a+b,a#b=a﹣b,其中a、b为有理数,化简a2b*3ab+5a2b#4ab的结果为( )A 6a2b+ab B. ﹣4a2b+7ab C. 4a2b﹣7ab D. 6a2b﹣ab10.x2+ax﹣2y+7﹣(bx2﹣2x+9y﹣1)值与x的取值无关,则﹣a+b的值为( )A. 3B. 1C. ﹣2D. 2二.填空题(共8小题)11.单项式12πx 2yz 的系数是_____. 12.下面是按一定规律排列的代数式:a 2,3a 4,5a 6,7a 8,则第8个代数式是__.13.若(k ﹣5)x |k ﹣2|y 是关于x ,y 的六次单项式,则k =_____.14.多项式﹣xy 2+2x -2x 3y 次数是_____. 15.若关于x 的多项式(a ﹣4)x 3﹣x 2+x ﹣2是二次三项式,则a =_____.16.化简﹣5ab +4ab 结果是_____.17.如果3x 2m ﹣2y n 与﹣5x m y 3是同类项,则m n 的值为_____.18.若关于a 、b 的多项式(a 2+2a 2b ﹣b )﹣(ma 2b ﹣2a 2﹣b )中不含a 2b 项,则m =_____三.解答题(共7小题)19.化简:(1)a 2﹣3a +8﹣3a 2+4a ﹣6;(2)a +(2a ﹣5b )﹣2(a ﹣2b ).20.先化简,再求值:3a 2+b 3﹣2(21﹣5b 3)﹣(3﹣a 2﹣2b 3),其中a =﹣3,b =﹣2.21.某同学在一次测验中计算A +B 时,不小心看成A ﹣B ,结果为2xy +6yz ﹣4xz .已知A =5xy ﹣3yz +2xz ,试求出原题目的正确答案.22.如果关于字母x 的二次多项式﹣3x 2+mx +nx 2﹣x +3的值与x 的取值无关,求2m ﹣3n 的值.23.若多项式(a +2)x 6+x b y +8是四次二项式,求a 2+b 2的值.24.已知A =2x 2﹣1,B =3﹣2x 2,求A ﹣2B 的值.25.(1)一个两位正整数,a 表示十位上的数字,b 表示个位上的数字(a ≠b ,ab ≠0),则这个两位数用多项式表示为 (含a 、b 的式子);若把十位、个位上的数字互换位置得到一个新两位数,则这两个两位数的和一定能被 整除,这两个两位数的差一定能被 整除.(2)一个三位正整数F ,各个数位上的数字互不相同且都不为0.若从它的百位、十位、个位上的数字中任意选择两个数字组成6个不同的两位数.若这6个两位数的和等于这个三位数本身,则称这样的三位数F 为“友好数”,例如:132是“友好数”.一个三位正整数P ,各个数位上数字互不相同且都不为0,若它的十位数字等于百位数字与个位数字的和,则称这样的三位数P 为“和平数”;①直接判断123是不是“友好数”?②直接写出共有 个“和平数”;③通过列方程的方法求出既是“和平数”又是“友好数”的数.答案与解析一.选择题(共10小题)1.下列各式﹣12mn,m,8,1a,x2+2x+6,25x y-,24x yπ+,1y中,整式有()A. 3 个B. 4 个C. 6 个D. 7 个【答案】C【解析】分析】根据整式的定义,结合题意即可得出答案【详解】整式有﹣12mn,m,8,x2+2x+6,25x y-,24x yπ+故选C【点睛】本题主要考查了整式的定义,注意分式与整式的区别在于分母中是否含有未知数.2.单项式﹣12πx2y的系数与次数分别是( )A. -12,3 B. -12,4 C. -12π,3 D. -12π,4【答案】C【解析】【分析】根据单项式的概念即可求出答案【详解】系数为:-1 2π次数为:3故选C【点睛】本题考查单项式的概念,解题的关键是正确理解单项式的概念3.如果一个多项式的次数都相等,则称该多项式为齐次多项式,例如:x3+2x2y+y3是三次齐次多项式,若x m y+3x3y2+5x2y n+y5是齐次多项式,则m n等于( )A. 32B. 64C. 81D. 125【答案】B【解析】【分析】根据多项式是齐次多项式,先判断该多项式的次数,再求出m、n的值,代入计算即可【详解】∵x m y+3x3y2+5x2y n+y5是齐次多项式,∴它是齐五次多项式,所以m+1=5,2+n=5,解得m=4,n=3.所以m n=43=64.故选B【点睛】本题考查了多项式的次数、乘方运算,解决本题的关键是理解齐次多项式的定义.4.下列各组单项式中,同类项一组的是( )A. x3y与xy3B. 2a2b与﹣3a2bC. a2与b2D. ﹣2xy与3y【答案】B【解析】【分析】根据同类项定义即可求出答案【详解】如果两个单项式,它们所含的字母相同,并且相同字母的指数也分别相同,那么就称这两个单项式为同类项.故选B【点睛】本题考查同类项的定义,解题的关键是正确理解同类项的定义5.若把x﹣y看成一项,合并2(x﹣y)2+3(x﹣y)+5(y﹣x)2+3(y﹣x)得( )A. 7(x﹣y)2B. ﹣3(x﹣y)2C. ﹣3(x+y)2+6(x﹣y)D. (y﹣x)2【答案】A【解析】【分析】把x-y看作整体,根据合并同类项的法则,系数相加字母和字母的指数不变,进行选择.【详解】解:2(x-y)2+3(x-y)+5(y-x)2+3(y-x),=[2(x-y)2+5(y-x)2]+[3(y-x)+3(x-y)],=7(x-y)2.故选A.【点睛】本题考查合并同类项的法则,是基础知识比较简单.6.与a﹣b﹣c的值不相等的是( )A. a﹣(b﹣c)B. a﹣(b+c)C. (a﹣b)+(﹣c)D. (﹣b)+(a﹣c)【答案】A【解析】【分析】根据去括号方法逐一计算即可【详解】A、a﹣(b﹣c)=a﹣b+c.故本选项正确;B、a﹣(b+c)=a﹣b﹣c,故本选项错误;C、(a﹣b)+(﹣c)=a﹣b﹣c,故本选项错误;D、(﹣b)+(a﹣c)=﹣c﹣b+a,故本选项错误.故选A【点睛】本题考查去括号的方法:去括号时,运用乘法的分配律,先把括号前的数字与括号里各项相乘,再运用括号前是”+“,去括号后,括号里的各项都不改变符号;括号前是”﹣“,去括号后,括号里的各项都改变符号7.一个多项式与5a2+2a﹣1的和是6a2﹣5a+3,则这个多项式是( )A. a2﹣7a+4B. a2﹣3a+2C. a2﹣7a+2D. a2﹣3a+4【答案】A【解析】【分析】根据题意列出关系式,去括号合并即可得到结果.【详解】解:根据题意得:(6a2﹣5a+3)﹣(5a2+2a﹣1)=6a2﹣5a+3﹣5a2﹣2a+1=a2﹣7a+4,故选A.【点睛】此题考查整式的加减,解题关键是熟练掌握运算法则.8.下列运算正确的是().A. 2a2-3a2=-a2B. 4m-m=3C. a2b-ab2=0D. x-(y-x)=-y【答案】A【解析】【分析】根据整式加减法的运算方法,逐一判断即可.【详解】解:∵2a2-3a2=-a2,∴选项A 正确;∵4m-m=3m,∴选项B 不正确;∵a 2b-ab 2≠0,∴选项C 不正确;∵x-(y-x)=2x-y,∴选项D 不正确.故选A .【点睛】此题主要考查了整式的加减法,要熟练掌握,解答此题的关键是要明确:整式的加减的实质就是去括号、合并同类项.一般步骤是:先去括号,然后合并同类项.9.规定一种新运算,a *b =a +b ,a #b =a ﹣b ,其中a 、b 为有理数,化简a 2b *3ab +5a 2b #4ab 的结果为( )A. 6a 2b +abB. ﹣4a 2b +7abC. 4a 2b ﹣7abD. 6a 2b ﹣ab【答案】D【解析】【分析】原式利用题中的新定义计算即可求出值【详解】根据题中的新定义得:原式=a 2b +3ab +5a 2b ﹣4ab =6a 2b ﹣ab ,故选D .【点睛】此题考查了整式的加减,以及有理数的混合运算,熟练掌握运算法则是解本题的关键10.x 2+ax ﹣2y +7﹣(bx 2﹣2x +9y ﹣1)的值与x 的取值无关,则﹣a +b 的值为( )A. 3B. 1C. ﹣2D. 2 【答案】A【解析】【详解】试题分析:先把代数式化简合并同类项,值与x 的取值无关所以含x 项的系数为0.x 2 +ax -2y+7- (bx 2 -2x+9y -1)=22227291(1)(2)118+-+-+-+-++-+x ax y bx x y b x a x y 所以20a +=,10b -=解得2,1a b =-=,所以3-+=a b ,所以选A.考点:整式化简求值. 二.填空题(共8小题)11.单项式12πx 2yz 的系数是_____.【答案】12π 【解析】【分析】 根据单项式系数的概念即可求出答案 【详解】该单项式为12π 故答案为12π 【点睛】本题考查单项式的系数,解题的关键是正确理解单项式的系数12.下面是按一定规律排列的代数式:a 2,3a 4,5a 6,7a 8,则第8个代数式是__.【答案】15a 16【解析】【分析】根据单项式的系数与次数的规律即可求出答案【详解】系数的规律为:1、3、5、7……、2n ﹣1,次数的规律为:2、4、6、8……、2n ,∴第8个代数式为:15a 16,故答案为15a 16【点睛】考查数字规律,解题的关键是找出题意给出的规律13.若(k ﹣5)x |k ﹣2|y 是关于x ,y 的六次单项式,则k =_____.【答案】﹣3或7【解析】【分析】利用一个单项式中所有字母的指数的和叫做单项式的次数求解即可【详解】∵(k ﹣5)x |k ﹣2|y 是关于x ,y 的六次单项式∴|k ﹣2|=5,k ﹣5≠0解得k =﹣3,k =7∴k =﹣3或7故答案为﹣3或7【点睛】本题主要考查了单项式,解题的关键是熟记单项式的次数定义14.多项式﹣xy 2+2x -2x 3y 的次数是_____.【解析】【分析】多项式中,次数最高的单项式的次数即为多项式的次数.【详解】解:该多项式中,次数最高的单项式的次数为3+1=4,故该多项式的次数为:4.【点睛】本题考查了多项式的定义.15.若关于x多项式(a﹣4)x3﹣x2+x﹣2是二次三项式,则a=_____.【答案】4【解析】【分析】根据多项式的项和次数的定义来解题.要先找到题中的等量关系,然后列出方程.【详解】因为关于x的多项式(a﹣4)x3﹣x2+x﹣2是二次三项式可得:a﹣4=0解得:a=4故答案为4【点睛】本题考查了多项式.解此类题目时要明确以下概念:(1)组成多项式的每个单项式叫做多项式的项;(2)多项式中次数最高项的次数叫做多项式的次数;(3)多项式中不含字母的项叫常数项.16.化简﹣5ab+4ab的结果是_____.【答案】﹣ab【解析】【分析】根据合并同类项的法则把系数相加即可【详解】原式=(﹣5+4)ab=﹣ab故答案是:﹣ab【点睛】本题考查了合并同类项法则的应用,注意:合并同类项时,把同类项的系数相加作为结果的系数,字母和字母的指数不变17.如果3x2m﹣2y n与﹣5x m y3是同类项,则m n的值为_____.【答案】8【解析】根据同类项的定义即可求出答案【详解】由题意可知:2m﹣2=m,n=3∴m=2,n=3∴原式=23=8故答案为8【点睛】本题考查同类项的定义,解题的关键是熟练运用同类项的定义18.若关于a、b的多项式(a2+2a2b﹣b)﹣(ma2b﹣2a2﹣b)中不含a2b项,则m=_____【答案】2【解析】【分析】原式去括号合并得到最简结果,根据结果不含a2b项,求出m的值即可【详解】原式=a2+2a2b﹣b﹣ma2b+2a2+b=3a2+(2﹣m)a2b,由结果不含a2b项,得到2﹣m=0解得:m=2故答案为2【点睛】此题考查了整式的加减,熟练掌握运算法则是解本题的关键三.解答题(共7小题)19.化简:(1)a2﹣3a+8﹣3a2+4a﹣6;(2)a+(2a﹣5b)﹣2(a﹣2b).【答案】(1)﹣2a2+a+2;(2) a﹣b.【解析】【分析】(1)原式合并同类项即可得到结果;(2)原式去括号合并即可得到结果【详解】(1)原式=﹣2a2+a+2;(2)原式=a+2a﹣5b﹣2a+4b=a﹣b.【点睛】此题考查了整式的加减,熟练掌握运算法则是解本题的关键20.先化简,再求值:3a2+b3﹣2(21﹣5b3)﹣(3﹣a2﹣2b3),其中a=﹣3,b=﹣2.【答案】﹣113.【分析】原式去括号合并得到最简结果,把a与b的值代入计算即可求出值.【详解】原式=3a2+b3﹣42+10b3﹣3+a2+2b3=4a2+13b3﹣45,当a=﹣3,b=﹣2时,原式=36﹣104﹣45=﹣113.【点睛】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.21.某同学在一次测验中计算A+B时,不小心看成A﹣B,结果为2xy+6yz﹣4xz.已知A=5xy﹣3yz+2xz,试求出原题目的正确答案.【答案】8xy﹣12yz+8xz.【解析】【分析】根据题意列出关系式,去括号合并即可得到结果【详解】解:根据题意得:A+B=2(5xy﹣3yz+2xz)﹣(2xy+6yz﹣4xz)=10xy﹣6yz+4xz﹣2xy﹣6yz+4xz=8xy﹣12yz+8xz.【点睛】此题考查了整式的加减,熟练掌握运算法则是解本题的关键22.如果关于字母x的二次多项式﹣3x2+mx+nx2﹣x+3的值与x的取值无关,求2m﹣3n的值.【答案】-7.【解析】【分析】先把多项式进行合并同类项得(n-3)x2+(m-1)x+3,由于关于字母x的二次多项式-3x2+mx+nx2-x+3的值与x无关,即不含x的项,所以n-3=0,m-1=0,然后解出m、n计算它们的和即可.【详解】合并同类项得(n−3)x2+(m−1)x+3,根据题意得n−3=0,m−1=0,解得m=1,n=3,所以2m−3n=2−9=−7.【点睛】本题考查了多项式,解题的关键是先合并同类项化简再代值进行计算.23.若多项式(a+2)x6+x b y+8是四次二项式,求a2+b2的值.【答案】13.【解析】【分析】由(a+2)x6+x b y+8是四次二项式,得出a+2=0,b=3进一步代入求得答案即可【详解】依题意得:a+2=0,b=3解得a=﹣2,b=3,所以a2+b2=(﹣2)2+32=13.【点睛】此题考查多项式,代数式求值,掌握多项式的意义是解决问题的关键24.已知A=2x2﹣1,B=3﹣2x2,求A﹣2B的值.【答案】6x2-7【解析】【分析】根据整体思想,利用合并同类项法则进行整式的化简即可.【详解】因为A=2x2-1,B=3-2x2所以A-2B=2x2-1-2(3-2x2)=2x2-1-6+4x2=6x2-7【点睛】此题主要考查了整式的加减,关键是利用去括号法则和合并同类项法则进行化简.25.(1)一个两位正整数,a表示十位上数字,b表示个位上的数字(a≠b,ab≠0),则这个两位数用多项式表示为(含a、b的式子);若把十位、个位上的数字互换位置得到一个新两位数,则这两个两位数的和一定能被整除,这两个两位数的差一定能被整除.(2)一个三位正整数F,各个数位上的数字互不相同且都不为0.若从它的百位、十位、个位上的数字中任意选择两个数字组成6个不同的两位数.若这6个两位数的和等于这个三位数本身,则称这样的三位数F为“友好数”,例如:132是“友好数”.一个三位正整数P,各个数位上的数字互不相同且都不为0,若它的十位数字等于百位数字与个位数字的和,则称这样的三位数P为“和平数”;①直接判断123是不是“友好数”?②直接写出共有个“和平数”;③通过列方程的方法求出既是“和平数”又是“友好数”的数.【答案】(1) 10a+b,11,9;(2) ①123不是“友好数”,理由见解析;②32;③既是“和平数”又是“友好数”的数是396,264,132.【解析】【分析】(1)分别求出两数的和与两数的差即可得到结论;(2)①根据“友好数”的定义判断即可;②根据“和平数”的定义列举出所有的“和平数”即可;③设三位数xyz既是“和平数”又是“友好数”,根据“和平数”的定义,得出y=x+z.再由“友好数”的定义,得出10x+y+10y+x+10x+z+10z+x+10y+z+10z+y=100x+10y+z,化简即为12y=78x﹣21z.把y=x+z代入,整理得出z=2x,然后从②的数字中挑选出符合要求的数即可.【详解】(1)这个两位数用多项式表示为10a+b,(10a+b)+(10b+a)=10a+b+10b+a=11a+11b=11(a+b),∵11(a+b)÷11=a+b(整数),∴这个两位数的和一定能被数11整除;(10a+b)﹣(10b+a)=10a+b﹣10b﹣a=9a﹣9b=9(a﹣b),∵9(a﹣b)÷9=a﹣b(整数),∴这两个两位数的差一定能被数9整除,故答案为11,9;(2)①123不是“友好数”.理由如下:∵12+21+13+31+23+32=132≠123,∴123不是“友好数”;②十位数字是9的“和平数”有198,297,396,495,594,693,792,891,一个8个;十位数字是8的“和平数”有187,286,385,584,682,781,一个6个;十位数字是7的“和平数”有176,275,374,473,572,671,一个6个;十位数字是6的“和平数”有165,264,462,561,一个4个;十位数字是5的“和平数”有154,253,352,451,一个4个;十位数字是4的“和平数”有143,341,一个2个;十位数字是3的“和平数”有132,231,一个2个;所以,“和平数”一共有8+(6+4+2)×2=32个.故答案为32;③设三位数xyz既是“和平数”又是“友好数”,∵三位数xyz是“和平数”,∴y=x+z.∵xyz是“友好数”,∴10x+y+10y+x+10x+z+10z+x+10y+z+10z+y=100x+10y+z,∴22x+22y+22z=100x+10y+z,∴12y=78x﹣21z.把y=x+z代入,得12x+12z=78x﹣21z,∴33z=66x,∴z=2x,由②可知,既是“和平数”又是“友好数”的数是396,264,132.【点睛】本题考查了整式的加减的实际运用,阅读理解能力以及知识的迁移能力,解题的关键是理解“友好数”与“和平数”的定义.。

人教版七年级上册数学期中测试卷(含答案)

人教版七年级上册数学期中测试卷(含答案)

初一年级第一学期期中测试题七年级数学注意事项:本试卷共三大题25小题,共5页,满分150分.考试时间120分钟. 1.答卷前,考生务必在答题卡第1、3面上用黑色字迹的钢笔或签字笔填写自己的考号、姓名;再用2B 铅笔把对应考号的标号涂黑.2.选择题和判断题的每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号;不能答在试卷上.3.填空题和解答题都不要抄题,必须用黑色字迹的钢笔或签字笔作答,涉及作图的题目,用2B 铅笔画图.答案必须写在答题卡各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;改动的答案也不能超出指定的区域.不准使用铅笔、圆珠笔和涂改液.不按以上要求作答的答案无效.4.考生不可以...使用计算器.必须保持答题卡的整洁,考试结束后,将答题卡交回.第Ⅰ卷(100分)一、 细心选一选(本题有10个小题,每小题3分,满分30分,下面每小题给出的四个选项中,只有一个是正确的. )1. 下列各数中,是负数的是 ( ) A.-(-5) B. |-5| C. (5) D. -522. 如果0)2(32=-++b a ,那么代数式2015)(b a +的值是( )A. -2 015B. 2 015C. -1D. 13.人类的遗传物质是DNA ,DNA 是一个很长的链,最短的染色体也长达30 000 000个核苷酸。

30 000 000用科学记数法表示为( )A.7103⨯B.61030⨯C.7103.0⨯D.8103.0⨯ 4.把(+5)-(+3)-(-1)+(-5)写成省略括号的和的形式是( ) A .—5-3+1-5 B.5-3+1-5 C.5+3+1-5 D.5-3-1-55.已知a 、b 为有理数,且a<0,b>0,|b|<|a|,则a ,b ,-a ,-b 的大小关系是( ) A.-b<a<b<-a B.-b<b<-a<a C.a<-b<b<-a D.-a<b<-b<a6. 当1<a<2时,│a-2│+│1-a │的值是 ( ) A. -1B. 1C. 3D. -37. 已知a ,b 互为相反数,e 的绝对值为2,m 与n 互为倒数,mn e b a 432-++的值为( )A .0或-8B .-8C .0D .无法确定8. 小刚做了一道数学题:“已知两个多项式为A ,B ,,求的值.”他误将“”看成了“”,结果求出的答案是,那么原来的的值应该是( ) A .B .C .D .9.下列说法正确的个数有( )(1)倒数等于本身的数只有1;(2)相反数等于本身的数只有0;(3)平方等于本身的数只有0、1、-1;(4)有理数不是整数就是分数;(5)有理数不是正数就是负数。

第一章 有理数 综合素质评价(单元测试)(含答案)人教版(2024)数学七年级上册

第一章 有理数 综合素质评价(单元测试)(含答案)人教版(2024)数学七年级上册

第一章综合素质评价七年级数学上(R版) 时间:90分钟 满分:120分一、选择题(每题3分,共30分)1.[新考向数学文化2024长春一模]《九章算术》是中国古代第一部数学专著,成书于公元一世纪左右.书中注有“今两算得失相反,要令正负以名之”,意思是:在计算过程中遇到具有相反意义的量,要用正数与负数来区分它们.如果盈利50元记作“+50元”,那么亏损30元记作( )A.+30元B.-50元 C.-30元D.+50元2.-12的相反数是( )A.-2B.-12C.2D.123.在-(-10),0,-|-0.3|,-15中,负数的个数为( )A.2B.3C.4D.14.[新趋势跨学科2024威海环翠区期末]下表是几种液体在标准大气压下的沸点:液体名称液态氧液态氢液态氮液态氦沸点/℃-183-252.78-196-268.9则沸点最低的液体是( )A.液态氧B.液态氢 C.液态氮D.液态氦5.在数轴上表示-2的点与表示3的点之间的距离是( )A.5B.-5C.1D.-16.为响应“双减”政策,开展丰富多彩的课余活动,某中学购买了一批足球,如图,张老师检测了4个足球,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数,从轻重的角度看,最接近标准质量的是( )A B C D7.下列说法中,错误的是( )A.数轴上的每一个点都表示一个有理数B.任意一个有理数都可以用数轴上的点表示C.在数轴上,确定单位长度时可根据需要恰当选取D.在数轴上,与原点的距离是36.8的点有两个8.如图,数轴上的点M表示有理数2,则表示有理数6的点是( )A.A B.B C.C D.D9.下列说法中,错误的有( )①-247是负分数;②1.5不是整数;③非负有理数不包括0;④正整数、负整数统称为有理数;⑤0是最小的有理数;⑥3.14不是有理数.A .1个B .2个C .3个D .4个10.[2024徐州二模]有理数a ,b 在数轴上的对应点的位置如图所示,则下列结论正确的是( )A . a >bB .-a >-bC .|a |>|b |D .|-a |>|-b |二、填空题(每题4分,共24分)11.[真实情境题 航空航天]2024年4月25日,神舟十八号载人飞船发射取得成功,神舟十八号载人飞船与长征二号F 遥十八运载火箭组合体,总重量为400多吨,总高度近60米,数据60的相反数是 ,绝对值是 .12.小明在写作业时不慎将墨水滴在数轴上(如图),根据图中的数据,判断墨迹盖住的整数有 个.13.[2024杭州西湖区月考]比较大小(填“>”“<”或“=”):(1)-715 -|13|;(2)-|-213| -(-213).14.当x = 时,|x -6|+3的值最小.15.[新考法 分类讨论法]如果点M ,N 在数轴上表示的数分别是a ,b ,且|a |=2,|b |=3,那么M ,N 两点之间的距离为 .16.[新考法 分类讨论法 2024 烟台栖霞市月考]点A 为数轴上表示-2的点,当点A 沿数轴以每秒3个单位长度的速度移动4秒到达点B 时,点B 所表示的有理数为 .三、解答题(共66分)17.(6分)把下列各数填在相应的大括号内:15,-12,0.81,-3,14,-3.1,-4,171,0,3.14.正数集合:{ …};负数集合:{ …};正整数集合:{ …};负整数集合:{ …};负分数集合:{ …};有理数集合:{ …}.18.(6分)化简下列各数:(1)-(-68); (2)-(+0.75); (3)-[-(-23)].19.(8分)在数轴上表示下列各数,并用“<”将它们连接起来.,-(-1),0.-4,|-2.5|,-|3|,-11220.(10分)如图,已知数轴的单位长度为1,DE的长度为1个单位长度.(1)如果点A,B表示的数互为相反数,求点C表示的数.(2)如果点B,D表示的数的绝对值相等,求点A表示的数.(3)若点A为原点,在数轴上有一点F,当EF=3时,求点F表示的数.21.(10分)[2024杭州滨江区期末]某班抽查了10名同学的跑步成绩,以30秒为达标线,超出的部分记为正数,不足的部分记为负数,记录的结果如下(单位:秒):+8,-3,+12,-7,-10,-4,-8,+1,0,+10.(1)这10名同学的达标率是多少?(2)这10名同学的平均成绩是多少?22.(12分)如图,一只甲虫在5×5的方格(每小格边长为1)上沿着网格线运动.它从A处出发去看望B,C,D处的其他甲虫,规定:向上向右走为正,向下向左走为负.如果从A 到B记为A→B(+1,+4),从B到A记为B→A(-1,-4),其中第一个数表示左右方向,第二个数表示上下方向,请回答下列问题:(1)A→C( , ),B→C( , ),C→D ( , );(2)若这只甲虫的行走路线为A→B→C→D,请计算该甲虫走过的最短路程;(3)若这只甲虫从A处去甲虫P处的行走路线依次为(+2,+2),(+2,-1),(-2,+3),(-1,-2),请在图中标出点P的位置.23.(14分)已知在纸面上有一数轴,如图,根据给出的数轴,解答下面的问题:(1)请你根据图中A,B两点的位置,分别写出它们所表示的有理数.(2)在数轴上标出与点A的距离为2的点(用不同于A,B的其他字母表示).(3)折叠纸面.若在数轴上表示-1的点与表示5的点重合,回答以下问题:①数轴上表示10的点与表示 的点重合.②若数轴上M,N两点之间的距离为2 024(点M在点N的左侧),且M,N两点经折叠后重合,求M,N两点表示的数分别是多少.参考答案一、1. C 2. D 3. A 4. D 5. A 6. A 7. A 8. D 9. D 10. B二、11.-60;60 12.10 13.(1)< (2)<14.6 15.1或5 16.-14或10三、17.解:正数集合:{15,0.81,14,171,3.14,…};负数集合:{-12,-3,-3.1,-4,…};正整数集合:{15,171,…};负整数集合:{-3,-4,…};负分数集合:{-12,-3.1,…};有理数集合:{15,-12,0.81,-3,14,-3.1,-4,171,0,3.14,…}.18.解:(1)-(-68)=68. (2)-(+0.75)=-0.75. (3)-[-(-23)]=-23.19.解:在数轴上表示各数如图所示:-4<-|3|<-112<0<-(-1)<|-2.5|.20.解:(1)由点A ,B 表示的数互为相反数,可确定数轴原点O 如下图:所以点C 表示的数为5.(2)由点B ,D 表示的数的绝对值相等,可知点B ,D 表示的数互为相反数,从而可确定数轴原点O 如下图:所以点A 表示的数为12.(3)由题意可知点F 在点E 的左边或右边.当点F 在点E 的左边时,如图:所以点F 表示的数为-5;当点F 在点E 的右边时,如图:所以点F 表示的数为1.故当EF =3时,点F 表示的数为-5或1.21.解:(1)因为30秒为达标线,超出的部分记为正数,不足的部分记为负数,10名同学中成绩为非正数的个数为6,所以这10名同学的达标率=6×100%=60%.10(2)这10名同学的平均成绩=[(30+8)+(30-3)+(30+12)+(30-7)+(30-10)+(30-4)+(30-8)+(30+1)+30+(30+10)]÷10=299÷10=29.9(秒).22.解:(1)+3;+4;+2;0;+1;-2(2)1+4+2+1+2=10.所以该甲虫走过的最短路程为10.(3)点P如图所示.23.解:(1)A点表示的数为1,B点表示的数为-3.(2)在数轴上与点A的距离为2的点分别表示3和-1,即数轴上的点C和点D,如图.(3)①-6②易知折痕与数轴的交点表示的数为2.因为M,N两点之间的距离为2 024,且M,N两点经折叠后重合,所以M,N两点与折痕与数轴的交点之间的距离为1×2 024=1 012.2又因为点M在点N的左侧,所以点M表示的数为-1 010,点N表示的数为1 014.。

人教版2023-2024学年数学七年级上册期末综合训练试题(含答案)

人教版2023-2024学年数学七年级上册期末综合训练试题(含答案)

2023-2024学年人教版数学七上期末综合训练1一、选择题1.在下列选项中,具有相反意义的量是()A.向东行30米和向北行30米B.2个老师和2个学生C.走了100米和跑了100米D.收入20元和支出30元2.将下面的正方体展开能得到的图形是()A.B.C.D.3.如果,那么根据等式的性质,下列变形正确的是()A.B.C.D.4.下列计算正确的是()A.B.C.D.5.下列生活、生产现象:①用两颗钉子就可以把木条固定在墙上;②从甲地到乙地架设电线,总是沿线段架设;③把弯曲的公路改直就能缩短路程;④植树时只要确定两棵树的位置,就能确定同一行树所在的直线.其中能用“两点之间线段最短”来解释的现象是()A.①②B.②③C.①④D.③④6.如图:已知线段AB=15cm,C点在AB上,BC=AC,D为BC的中点,则线段AD的长是()cm.A.10B.13C.9D.127.已知代数式值为10,则代数式的值为( )A.B.35C.D.258.将填入九宫格内,使每行、每列、每条斜对角线上的3个数和都相等,如图所示的x处应填()A.B.C.D.9.《九章算术》是中国传统数学最重要的著作之一.书中记载:“今有人共买鸡,人出九,盈十一;人出六,不足十六.问人数几何?”意思是:“有若干人共同出钱买鸡,如果每人出九钱,那么多了十一钱;如果每人出六钱,那么少了十六钱.问:共有几个人?”设共有个人共同出钱买鸡,则下面所列方程正确的是().A.B.C.D.10.p、q、r、s在数轴上的位置如图所示,若|r﹣p|=7,|p﹣s|=12,|q﹣s|=9,则|q﹣r|等于( )A.3B.4C.5D.6..一个角的补角的余角等于.若多项式中不含项,则.如果,则.如图,按下列程序进行计算,经过三次输入,最后输出的数是))(用简便方法计算).化简并求值:,其中(1);(2)..嘉嘉同学在做“计算”时,误将“”看成了“”,求得的结果是,已知.则 ;求的正确结果;若,则 .此外,每一种上网方式都得加收通讯费元某用户某月的上网时间为小时,请写出两种收费方式下该用户应该支付的费用;点,在数轴上分别表示有理数,,,两点之间的距离表示为,在数轴上,两点之间的距离,例如:数轴上表示与的两点间的距离;而平所以表示与两点间的距离.利用数形结合思想回答下列问题:(1)数轴上表示和两点之间的距离 ;若数轴上表示点的数满足,那么 若数轴上表示点的数满足,求的值;(4)的最小值是 .。

2022-2023学年人教版七年级数学上册阶段性(1-1-3-4)综合测试题(附答案)

2022-2023学年人教版七年级数学上册阶段性(1-1-3-4)综合测试题(附答案)

2022-2023学年人教版七年级数学上册阶段性(1.1-3.4)综合测试题(附答案)一.选择题(共10小题,满分30分)1.珠穆朗玛峰海拔高8848米,塔里木盆地海拔高﹣153米,求珠穆朗玛峰比塔里木盆地高多少米,列式正确的是()A.8848+153B.8848+(﹣153)C.8848﹣153D.8848﹣(+153)2.数轴上一动点A向左移动3个单位长度到达点B,再向右移动5个单位长度到达点C.若点C表示的数为1,则点A表示的数为()A.﹣1B.﹣2C.﹣3D.33.下列各式:①﹣(﹣2);②﹣|﹣2|;③﹣22;④﹣(﹣2)2,计算结果为负数的个数为()A.4个B.3个C.2个D.1个4.下列四舍五入法得到的近似数,说法不正确的是()A.2.40万精确到百分位B.0.03086精确到十万分位C.48.3精确到十分位D.6.5×104精确到千位5.下列各式:﹣a2b2,x﹣1,﹣25,,,a2﹣2ab+b2中单项式的个数有()A.4个B.3个C.2个D.1个6.按照如图所示的计算机程序计算,若开始输入的x值为2,第一次得到的结果为1,第二次得到的结果为4,…第2018次得到的结果为()A.1B.2C.3D.47.已知mx2y n﹣1+4x2y9=0,(其中x≠0,y≠0)则m+n=()A.﹣6B.6C.5D.148.某商场一件商品的标价是2000元,若按标价的六折销售,仍可获利25%,则这件商品的进价为()元.A.900B.850C.960D.10609.下列利用等式的性质,错误的是()A.由a=b,得到1﹣2a=1﹣2b B.由ac=bc,得到a=bC.由,得到a=b D.由a=b,得到10.若方程(m2﹣1)x2﹣mx﹣x+2=0是关于x的一元一次方程,则代数式|m﹣1|的值为()A.0B.2C.0或2D.﹣2二.填空题(共10小题,满分30分)11.在全国上下众志成城抗疫情、保生产、促发展的关键时刻,三峡集团2月24日宣布:在广东、江苏等地投资580亿元,开工建设25个新能源项目,预计提供17万个就业岗位,将“580亿元”用科学记数法表示为元.12.已知a,b,c在数轴上的位置如图所示,化简:|a﹣b|+|b+c|+|c﹣a|=.13.若|m|=3,|n|=2,且<0,则m+n的值是.14.飞机无风时的航速为a千米/时,风速为20千米/时,若飞机顺风飞行3小时,再逆风飞行4小时,则两次行程总共飞行千米(用含a的式子表示).15.单项式﹣的系数是,次数是.16.多项式3x3y+xy2﹣2y3﹣3x2按y的降幂排列是.17.下列各式:ab•2,m÷2n,,,其中符合代数式书写规范的有个.18.若关于x的多项式x3﹣(2m﹣1)x2+(m+n)x﹣1不含二次项和一次项,则m=,n=.19.三个连续奇数的和是15,这三个奇数的最小公倍数是.20.已知x=是关于x的一元一次方程(m﹣1)x2m﹣3+2a﹣5=0的解,则a的值为.三.解答题(共10小题,满分60分)21.计算:(1)(﹣1)3﹣1×÷[1+2×(﹣3)];(2)(﹣+﹣)×(﹣36).22.已知多项式(x2+mx﹣y+3)﹣(3x﹣2y+1﹣nx2).(1)若多项式的值与字母x的取值无关,求m、n的值;(2)在(1)的条件下,先化简多项式(3m2+mn+n2)﹣3(m2﹣mn﹣n2),再求它的值.23.解方程:(1)4x﹣3=7﹣x;(2)4x﹣2(3x﹣2)=2(x﹣1);(3);(4).24.定义“*”运算:当a,b同号时,a*b=+(a2+b2);当a,b异号时,a*b=﹣(a2﹣b2).(1)求4*1的值.(2)求*[(﹣2)*3]的值.25.规定符号(a,b)表示a,b两个数中较小的一个,规定符号[a,b]表示两个数中较大的一个.例如(2,1)=1,[2,1]=2.(1)计算:(﹣2,3)+[﹣,﹣].(2)若(p,p+2)﹣[﹣2q﹣1,﹣2q+1]=1,试求代数式(p+2q)3﹣3p﹣6q的值.(3)若(m,m﹣2)+3[﹣m,﹣m﹣1]=﹣5,求m的值.26.某果蔬基地现有草莓18吨,若在市场上直接销售鲜草莓,每吨可获利润500元;若对草莓进行粗加工,每吨可获利润1200元;若对草莓进行精加工,每吨可获利润2000元.该工厂的生产能力是如果对草莓进行粗加工,每天可加工3吨;精加工,每天可加工1吨,受人员限制,两种加工方式不能同时进行;受气候限制,这批草莓必须在8天内全部销售或加工完毕,为此,该厂设计了两种方案.方案一,尽可能多的精加工,其余的草莓直接销售;方案二:将一部分草莓精加工,其余的粗加工销售,并恰好在8天完成,你认为哪种方案获利较多?为什么?27.数形结合是数学解题中的一种重要思想,利用数轴可以将数与形完美结合.一般地,数轴上越往右边的点表示的数越大,例如:若数轴上点M表示数m,则点M向右移动n 个单位到达的点N表示的数为m+n,若点M向左移动n个单位到达的点表示的数为m﹣n.如图,已知数轴上点A表示的数为10,点B与点A距离16个单位,且在点A的左边,动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t (t>0)秒.(1)数轴上点B表示的数为,点P表示的数为.(用含t的式子表示);(2)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P,Q 同时出发.①求点P运动多少秒追上点Q?②求点P运动多少秒时与点Q相距6个单位?并求出此时点P表示的数.28.为增强公民的节约意识,合理利用天然气资源,我市将居民用天然气用气量及价格分为三档,其中:档次年用气量单价(元/m3)第一档气量不超出300m3的部分 2.7第二档气量超出300m3不超出600m3的部分a第三档气量超出600m3的部分a+0.5(说明:户籍人口超过4人的家庭,每增加1人,各档年用气量基数按每人增加60立方米依次调整.)(1)若甲用户户籍人口登记有4人,今年前三个月已使用天然气200m3,则应缴费元.(2)若乙用户户籍人口登记有5人,今年已使用天然气560m3,共缴费用1632元,则a 的值为.(3)在(2)的条件下,若乙用户年用气量为x(m3),请用含x的代数式表示每年支出的燃气费.29.临近春节,上海到扬州的单程汽车票价为80元/人,为了给春节回家的旅客提供优惠,汽车客运站给出了如下优惠方案:乘客优惠方案学生凭学生证票价一律打6折非学生10人以下(含10人)没有优惠;团购:超过10人,其中10人按原价售票,超出部分每张票打8折.(1)若有15名非学生乘客团购买票,则共需购票款多少元?(2)已知一辆汽车共有乘客60名,非学生乘客若达到团购人数则按团购方式缴款,这一车总购票款为3680元,则车上有学生和非学生乘客各多少名?30.观察:=,=,=,….=,=,=,….根据上述式子,完成下列问题:(1)=﹣,=+.(2)计算:﹣﹣.(3)计算:.(4)解方程:x=1.参考答案一.选择题(共10小题,满分30分)1.解:8848﹣(﹣153)=8848+153,故选:A.2.解:将点C向左移动5个单位得到点B表示的数为﹣4,将点B向右移动3个单位得到点A表示的数是﹣1.故选:A.3.解:①﹣(﹣2)=2,是正数;②﹣|﹣2|=﹣2是负数;③﹣22=﹣4,是负数;④﹣(﹣2)2=﹣4,是负数;综上所述,负数有3个.故选:B.4.解:A、2.40万精确到百位,所以A选项的说法不正确;B、0.03086精确到十万分位,所以B选项的说法正确;C、48.3精确到十分位,所以C选项的说法正确;D、6.5×104精确到千位,所以D选项的说法正确.故选:A.5.解:根据单项式的定义知,单项式有:﹣25,a2b2.故选:C.6.解:当x=2时,第一次输出结果=×2=1;第二次输出结果=1+3=4;第三次输出结果=4×=2,;第四次输出结果=×2=1,…2018÷3=672…2.所以第2018次得到的结果为4.故选:D.7.解:∵mx2y n﹣1+4x2y9=0,∴m=﹣4,n﹣1=9,解得:m=﹣4,n=10,则m+n=6.故选:B.8.解:设这件商品的进价为x元,根据题意得:2000×0.6﹣x=25%x,解得:x=960.答:这件商品的进价为960元.故选:C.9.解:A、在等式a=b的两边同时乘以﹣2再加上1,等式仍成立,即1﹣2a=1﹣2b,故本选项不符合题意;B、当c=0时,ac=bc=0,但a不一定等于b,故本选项符合题意;C、在等式的两边同时乘以c,等式仍成立,即a=b,故本选项不符合题意;D、在等式a=b的两边同时除以不为0的式子(c2+1),等式仍成立,即,故本选项不符合题意;故选:B.10.解:由已知方程,得(m2﹣1)x2﹣(m+1)x+2=0.∵方程(m2﹣1)x2﹣mx﹣x+2=0是关于x的一元一次方程,∴m2﹣1=0,且﹣m﹣1≠0,解得,m=1,则|m﹣1|=0.故选:A.二.填空题(共10小题,满分30分)11.解:580亿=58000000000=5.8×1010.故答案为:5.8×1010.12.解:根据图形,a﹣b<0,b+c>0,c﹣a>0,所以|a﹣b|+|b+c|+|c﹣a|=b﹣a+b+c+c﹣a=2b+2c﹣2a.故答案是:2b+2c﹣2a.13.解:∵|m|=3,|n|=2,∴m=±3,n=±2,又∵<0,∴当m=3时,n=﹣2,m+n=1,当m=﹣3时,n=2,m+n=﹣1,故答案为:﹣1或1.14.解:顺风飞行3小时的行程=(a+20)×3(千米),逆风飞行4小时的行程=(a﹣20)×4(千米),两次行程总和为:(a+20)×3+(a﹣20)×4=3a+60+4a﹣80=7a﹣20(千米).故答案为(7a﹣20).15.解:单项式﹣的系数是:﹣π2,次数是:5.故答案为:﹣π2,5.16.解:多项式3x3y+xy2﹣2y3﹣3x2按y的降幂排列是﹣2y3+xy2+3x3y﹣3x2.故答案为:﹣2y3+xy2+3x3y﹣3x2.17.解:ab•2应该写成2ab,m÷2n应该写成,,书写规范,综上所述,符合代数式书写规范的有2个,故答案为:2.18.解:∵关于x的多项式x3﹣(2m﹣1)x2+(m+n)x﹣1不含二次项和一次项,∴2m﹣1=0,m+n=0,解得m=,n=,故答案为:,.19.解:15÷2=5,5﹣2=3,5+2=7,∴3×5×7=105.故答案为:105.20.解:由题意得:m﹣1≠0且2m﹣3=1.∴m=2.∴这个方程为x+2a﹣5=0.∴当x=时,.∴a=.故答案为:.三.解答题(共10小题,满分60分)21.解:(1)原式=﹣1﹣×÷(1﹣6)=﹣1﹣÷(﹣5)=﹣1+×=﹣1+=﹣;(2)原式=﹣×(﹣36)+×(﹣36)﹣×(﹣36)=27﹣21+30=36.22.解:(1)原式=x2+mx﹣y+3﹣3x+2y﹣1+nx2=(n+1)x2+(m﹣3)x+y+2,由多项式的值与字母x的取值无关,得到n+1=0,m﹣3=0,解得:m=3,n=﹣1;(2)原式=3m2+mn+n2﹣3m2+3mn+3n2=4mn+4n2,当m=3,n=﹣1时,原式=﹣12+4=﹣8.23.解:(1)∵4x﹣3=7﹣x,∴4x+x=7+3.∴5x=10.∴x=2.(2)∵4x﹣2(3x﹣2)=2(x﹣1),∴4x﹣6x+4=2x﹣2.∴4x﹣6x﹣2x=﹣2﹣4.∴﹣4x=﹣6.∴x=.(3)∵,∴6x﹣3(3x+2)=18﹣2(5x﹣2).∴6x﹣9x﹣6=18﹣10x+4.∴6x﹣9x+10x=18+4+6.∴7x=28.∴x=4.(4)∵,∴30(0.6x+0.5)﹣100(0.03x+0.2)=2(x﹣9).∴18x+15﹣3x﹣20=2x﹣18.∴18x﹣3x﹣2x=﹣18+20﹣15.∴13x=﹣13.∴x=﹣1.24.解:(1)原式=+(42+12)=16+1=17;(2)原式=*﹣[(﹣2)2﹣32]=*﹣(4﹣9)=*5=+[()2+52]=+25=31.25.解:(1)由题意可知:(﹣2,3)+[﹣,﹣].=﹣2+(﹣)=﹣;(2)∵(p,p+2)﹣[﹣2q﹣1,﹣2q+1]=1,∴p﹣(﹣2q+1)=1,p+2q﹣1=1,p+2q=2,∴(p+2q)3﹣3p﹣6q=(p+2q)3﹣3(p+2q)=23﹣3×2=2;(3)根据题意得:m﹣2+3×(﹣m)=﹣5,解得m=.26.解:方案二获利较多.理由:方案一:获利:8×1×2000+(18﹣8)×500=21000(元);方案二:设x天精加工,则(8﹣x)天粗加工,由题意得x+3(8﹣x)=18,解得x=3,8﹣x=5(天),获利:3×2000+5×3×1200=24000(元),∵24000>21000,∴方案二获利较多.27.解:(1)点A表示的数为10,点B与点A距离16个单位,且在点A的左边,∴点B表示的数为﹣6,点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,∴P点运动的长度为5t,∴点P所表示的数为10﹣5t,故答案为:﹣6;10﹣5t.(2)①设点P运动t秒追上点Q,由题意可列方程为:5t=3t+16,解得t=8,∴点P运动8秒追上点Q.②当点P在追上Q之前相距6个单位时,设此时时间为t1,∴16+3t1=6+5t1,解得t1=5.此时点P所表示的数为10﹣5t=﹣15,当点P超过点Q6个单位长度时,设设此时时间为t2,∴5t2=3t2+6+16,∴t2=11,此时点P所表示的数为10﹣5t=﹣45,综上所述,点P运动5秒或11秒时与点Q相距6个单位,点P表示的数分别为﹣15和﹣45.28.解:(1)由题意得:2.7×200=540(元),故答案为:540;(2)由题意得:2.7×(300+60)+[560﹣(300+60)]a=1632,解得:a=3.3,故答案为:3.3;(3)当年用气量不超过360m3时,每年支出的燃气费为:2.7x;当年用气量超过360m3不超过660m3时,每年支出的燃气费为:2.7×360+3.3(x﹣360)=3.3x﹣216;当年用气量超过660m3时,每年支出的燃气费为:2.7×360+3.3×(660﹣360)+(x﹣660)×(3.3+0.5)=3.8x﹣546.29.解:(1)10×80+(15﹣10)×80×80%=1120(元),故购票款为1120元;(2)设车上有非学生x名,则学生(60﹣x)名,①当x不超过10时,根据题意得80x+80×0.6(60﹣x)=3680,解得:x=25>10 (舍去),②当x超过10时,根据题意得80×10+80×0.8(x﹣10)+80×0.6(60﹣x)=3680,解得:x=40>10,60﹣x=20(名),答:车上有非学生40名,学生20名.30.解:(1)=,=;(2)﹣﹣=()﹣()+()﹣()+()﹣()+()﹣()+()=+=;(3)=1++2++3++4++5++6++7++8+=(1+2+3+⋯+8)+(1﹣+﹣+﹣+⋯+﹣)=36+1﹣=36;(4)∵x=1,∴x=﹣+++++++++,∴x=﹣+﹣+﹣+⋯+﹣,∴x=,解得x=.。

人教版七年级数学上册 第1章 有理数 综合测试卷(含答案)

人教版七年级数学上册   第1章   有理数    综合测试卷(含答案)

人教版数学七年级上册第一章 有理数 综合测试卷(时间90分钟,满分120分)题号 一二三总分得分第Ⅰ卷(选择题)一.选择题(本大题共10小题,每小题3分,共30分) 1. 在-3,-1,0,1这四个数中,最小的数是( ) A .-3 B .-1 C .0 D .12.-12019的相反数是( )A .2016B .-2016 C.12019 D .-120193.将161000用科学记数法表示为( )A .0.161×106B .1.61×105C .16.1×104D .161×1034.有理数a ,b 在数轴上的对应点如图所示,则下列式子中正确的是( ) ①b <0<a ;②|b|<|a|;③ab >0;④a -b >a +b. A .①② B .①④ C .②③ D .③④5.小明做了以下4道计算题:①(-1)2018=2018;②0-(-1)=1;③-12+13=-16;④12÷(-12)=-1.请你帮他检查一下,他一共做对了( ) A .1题 B .2题 C .3题 D. 4题6.如图,数轴上有M ,N ,P ,Q 四个点,其中点P 所表示的数为a ,则数-3a 所对应的点可能是( ) A .M B .N C .P D .Q7.已知a ,b 是异号的两个有理数,且|a +b|=|a|-b ,用数轴上的点来表示a ,b ,下列正确的是( )8.定义新运算:对任意有理数a ,b ,都有a ⊕b =1a +1b ,例如:2⊕3=12+13=56,那么4⊕(-3)的值是( )A .-712B .-112C.112D.7129.已知ab >0,则|a|a +|b|b +|ab|ab 的值是( )A .-1或3B .1或3C .1或-3D .-1或-310.计算-1+(-1)2+(-1)3+(-1)4+…+(-1)2 019的值,结果正确的是( ) A .1 B .-1 C .0 D .-1或0第Ⅱ卷(非选择题)二.填空题(共8小题,3*8=24)11.在有理数中,最小的正整数是_____ __,最大的负整数是______,绝对值最小的数是__ __. 12.在0,-2,1,12这四个数中,最大数与最小数的和是__ __.13.已知(a -2)2+(b +3)2+|c -5|=0,则a -2b +c 2=____________.14.有理数a ,b 在数轴上的位置如图所示.比较a ,-a ,0,b ,-b 的大小是____________.15.设a 为最小的正整数,b 是最大的负整数,c 是绝对值最小的值,则a +b +c =__ __.16.一个质点P 从距原点1个单位长度的点A 处向原点方向跳动,第一次跳动到OA 的中点A 1处,第二次从点A 1跳动到OA 1的中点A 2处,第三次从点A 2跳动到OA 2的中点A 3处, …如此不断跳动下去,则第五次跳动后,该质点到原点O 的距离为__ __.17.若x ,y 互为相反数,a ,b 互为倒数,且m 的绝对值是1,则x +y +3ab -m 的值是_________.18.在一次综合与实践课上,小明和小颖正在设计一种新的运算程序,规定两种新的运算“·”和“○”:a·b =a 2+b 2;a○b =2ab ,如(2·3)(2○3)=(22+32)(2×2×3)=156,则[2·(-1)][2○(-1)]=__ __.三.解答题(共9小题,66分)19. (6分)已知|a|=1,|b|=4,且a+b<0,求a+b的值.20. (6分) 某一出租车一天下午以鼓楼为出发点,在东西方向上营运,向东为正,向西为负,行车路程依先后次序记录如下(单位:km):+9,-3,-5,+4,-8,+6,-3,-6,-4,+7.(1)将最后一名乘客送到目的地,出租车离鼓楼出发点多远?在鼓楼什么方向?(2)若每千米的价格为2.4元,司机一下午的营运额是多少元?21. (6分)小明在网上销售苹果,原计划每天卖100斤,但实际每天的销量与计划销量相比有出入,如表是某周的销售情况(超额记为正,不足记为负.单位:斤):星期一二三四五六日与计划量的差值+4 -3 -5 +14 -8 +21 -6(1)根据表中的数据可知前三天共卖出__ __斤;(2)根据记录的数据可知销售量最多的一天比销售量最少的一天多销售__ __斤;(3)本周实际销售总量达到了计划销量没有?(4)若每斤按5元出售,每斤苹果的运费为1元,那么小明本周一共收入多少元?22. (6分)仔细观察下列三组数第一组:1,4,9,16,25,…第二组:1,8,27,64,125,…第三组:-2,-8,-18,-32,-50,… (1)这组数各是按什么规律排列的?(2)第二组数的第100个数是第一组数的第100个数的多少倍? (3)取每组数的第20个数计算这三个数的和.23. (6分)请你先认真阅读材料: 计算(-130)÷(23-110+16-25).解:原式的倒数是(23-110+16-25)÷(-130)=(23-110+16-25)×(-30) =23×(-30)-110×(-30)+16×(-30)-25×(-30) =-20-(-3)+(-5)-(-12) =-20+3-5+12 =-10. 故原式等于-110.再根据你对所提供材料的理解,选择合适的方法计算:(-142)÷(16-314+23-27).24. (8分)计算:(1)-4×8×(-2.5)×0.1×(-1.25)×10;(2)(12+56-712)×(-36);(3)(-3)2-(112)3×29-6÷|-23|3;25. (8分)已知点A 在数轴上对应的数是a ,点B 在数轴上对应的数是b ,且|a +4|+(b -1)2=0.现将点A ,B 之间的距离记作|AB|,定义|AB|=|a -b|. (1)|AB|=__ __;(2)设点P 在数轴上对应的数是x ,当|PA|-|PB|=2时,求x 的值.26. (10分)计算(1)(-2)2×(-1)3-3×[-1-(-2)];(2)-32×(-13)2+(34-16+38)×(-24);(3)(-32+3)×[(-1)2020-(1-0.5×13)].27. (10分)阅读下面的材料,再解决后面的问题: 因为:11×3=12(1-13),13×5=12(13-15),15×7=12(15-17)…… 所以:11×3+13×5+15×7+…+199×101=12(1-13+13-15+15-17+…+199-1101)=12(1-1101)=50101. 求:11×3+13×5+15×7+…+12017×2019.参考答案:1-5ACBBC 6-10ACBAB11. 1,-1,012. -113. 3314. b<a<0<-a<b15. 016. 1 2514. 4或218. -2019. 解:因为|a|=1,|b|=4,所以a=±1,b=±4,因为a+b<0,所以a=1,b=-4,或a=-1,b=-4,所以a+b=-3或-520. 解:(1)9-3-5+4-8+6-3-6-4+7=-3,将最后一名乘客送到目的地,出租车离鼓楼出发点3千米,在鼓楼西边(2)(9+3+5+4+8+6+3+6+4+7)×2.4=132(元),故司机一下午的营运额是132元21. 解:(1)根据题意,得300+4-3-5=296(2)根据题意,得121-92=29(3)+4-3-5+14-8+21-6=17>0,故本周实际销量达到了计划销量(4)(17+100×7)×(5-1)=717×4=2 868(元).答:小明本周一共收入2 868元22. 解:(1)第一组按12,22,32,42,排列,第二组按13,23,33,43,排列,第三组按12×(-2),22×(-2),32×(-2)排列(2)1003÷1002=100(3)202+203+202×(-2)=400+8 000+(-800)=7 60023. 解:原式的倒数是:(16-314+23-27)÷(-142) =(16-314+23-27)×(-42) =-(16×42-314×42+23×42-27×42)=-(7-9+28-12) =-14. 故原式=-11424. 解:(1)原式=-(4×2.5)×(8×1.25)×(0.1×10) =-100(1)原式=12×(-36)+56×(-36)-712×(-36)=-18-30+21 =-27(4)(-2)3+(-3)×[(-4)2+2]-(-3)2÷(-2). (3)原式=9-278×29-6×278=9-34-814=9-21 =-12(4)原式=-8+(-3)×[16+2]-9÷(-2) =-8-54+92=-571225. 解:(1)5(2)当点P 在点A 左侧时,|PA|-|PB|=-(|PB|-|PA|)=-|AB|=-5≠2; 当点P 在点B 右侧时,|PA|-|PB|=|AB|=5≠2;当点P 在A ,B 之间时,|PA|=|x -(-4)|=x +4,|PB|=|x -1|=1-x , 因为|PA|-|PB|=2,所以x +4-(1-x)=2,解得x =-12,即x 的值为-1226. 解:(1)原式=4×(-1)-3×(-1+2)=-4-3×1 =-4-3 =-7(2)原式=-9×19-34×24+16×24-38×24=-1-18+4-9 =-24(3)原式=(-9+3)×[1-(1-16)]=-6×16=-127. 解:11×3+13×5+15×7+…+12017×2019.=12(1-13+13-15+15-17+…+12017-12019) =12(1-12019) =10092019。

人教版七年级数学上册第一章有理数综合测试题(含答案)

人教版七年级数学上册第一章有理数综合测试题(含答案)

第一章有理数综合测试卷第Ⅰ卷 (选择题 共30分)一、选择题(每题3分,共30分) 1.6.0009精确到千分位是( ) A .6.0 B .6.00 C .6.000 D .6.0012.某商场购进某品牌上衣30件,下列与购进某品牌上衣30件具有相反意义的量是( )A .发给员工这种上衣10件B .售出这种上衣10件C .这种上衣剩余10件D .穿着这种上衣10件3.在-0.4217中用数字3替换其中的一个非零数字后,使所得的数最小,则被替换的数字是( )A .4B .2C .1D .74.对下列各式计算结果的符号判断正确的是( ) A .(-2)×(-213)×(-3)<0 B .(-5)-5+1>0C .(-1)+(-13)+12>0 D .(-1)×(-2)<05.两数相减,如果差等于减数的相反数,那么下列结论中正确的是( ) A .减数一定是零 B .被减数一定是零C .原来两数互为相反数D .原来两数的和等于1 6.下面是小卢做的数学作业,其中正确的是( )①0-(+47)=47;②0-(-714)=714;③(+15)-0=-15;④(-15)+0=-15.A .①②B .①③C .①④D .②④7.某工厂为了完成一项任务,第一天工作15分钟,以后的五天中,后一天的工作时间都是前一天的2倍,则第六天的工作时间是( )A .1.5小时B .3小时C .4.8小时D .8小时8.计算12÷(-3)-2×(-3)的结果是( )A.-18 B.-10 C.2 D.189.如图1,数轴上的点P,O,Q,R,S表示某城市一条大街上的五个公交车站点,有一辆公交车距P站点3 km,距Q站点0.7 km,则这辆公交车的位置在( )图1A.R站点与S站点之间 B.P站点与O站点之间C.O站点与Q站点之间 D.Q站点与R站点之间10.计算机中常用的十六进制是逢16进1的记数制,采用数字0~9和字母A~F共16个记数符号,这些符号与十进制的数的对应关系如下表:例如,用十六进制表示5+A=F,3+F=12,E+D=1B,那么A+C=( )A.16 B.1C C.1A D.22请将选择题答案填入下表:第Ⅱ卷(非选择题共70分)二、填空题(每题3分,共18分)11.倒数为3的数是________.12.已知a-3与b+4互为相反数,则a+b=________.13.每袋大米以50 kg 为标准,其中超过标准的千克数记为正数,不足标准的千克数记为负数,则图2中自左向右数第3袋大米的实际重量是________kg .图214.若|x +2|+|y -3|=0,则x -y 的值为________.15.2016年春节期间,在网络上搜索“开放二孩”,能搜索到与之相关的结果个数约为45100000,这个数用科学记数法表示为__________.16.为了缓解城市拥堵,某市对非居民区的公共停车场制定了不同的收费标准(见下表).如果小王某次停车3小时,缴费24元,请你判断小王该次停车所在地区的类别是________(填“一类、二类、三类”中的一个).三、解答题(共52分)17.(本小题满分6分)把下列各数分别填在相应的括号里: -7,3.01,2018,-0.142,0.1,0,99,-75.整数集合:{ …}; 分数集合:{ …}; 负有理数集合:{ …}.18.(本小题满分6分)一辆货车从百货大楼出发负责送货,向东走了4千米到达小明家,继续向东走了1千米到达小红家,又向西走了10千米到达小刚家,最后回到百货大楼.(1)以百货大楼为原点,以向东的方向为正方向,用1个单位长度表示1千米,请你在数轴上表示出小明、小红、小刚家的位置;(2)小明家与小刚家相距多远?图319.(本小题满分6分)规定“*”是一种新的运算法则:a*b=a2-b2,其中a,b为有理数.(1)求2*6的值;(2)求3*[(-2)*3]的值.20.(本小题满分6分)计算: (1)-14-(1-0.5)÷3×[2-(-3)2];(2)0.7×1949+234×(-14)+0.7×59+14×(-14).21.(本小题满分6分)小宇在做分数的乘除法练习时,把一个数乘-213错写成除以-213,得到的结果是1835,这道题的正确结果应该是多少?22.(本小题满分7分)小明有5张写着不同数的卡片,请你分别按要求抽出卡片,写出符合要求的算式:-3 -5 0 +3 +4(1)从中取出2张卡片,使这2张卡片上的数的乘积最大; (2)从中取出2张卡片,使这2张卡片上的数相除的商最小;(3)从中取出2张卡片,使这2张卡片上的数通过有理数的运算后得到的结果最大;(4)从中取出4张卡片,使这4张卡片通过有理数的运算后得到的结果为24.(写出一种即可)23.(本小题满分7分)某检修小组乘车从A地出发,在东西方向的马路上检修线路,如果规定向东行驶为正,向西行驶为负,一天中七次行驶路程记录如下(单位:千米):(1)在第________次记录时距A地最远;(2)求收工时距A地多远;(3)若每千米耗油0.1升,每升汽油需7.2元,则检修小组工作一天需汽油费多少元?24.(本小题满分8分)股民吉姆上星期买进某公司股票1000股,每股27元,下表为本周内每日该股票的涨跌情况(上涨记为正,下跌记为负,星期六、星期日股市休市)(单位:元):(1)星期三收盘时,每股是多少元?(2)本周内每股最高价是多少元?最低价是多少元?(3)已知吉姆买进股票时付了1.5‰的手续费,卖出时还需付成交额的1.5‰的手续费和1‰的交易税,如果吉姆在星期五收盘前将股票全部卖出,他的收益情况如何?1.D 2.B 3.B 4.A 5.B 6.D 7.D 8.C 9.D 10.A 11.1312.-1 13.49.3 14.-5 15.4.51×10716.二类 17.解:整数集合:{-7,2018,0,99,…};分数集合:⎩⎨⎧⎭⎬⎫3.01,-0.142,0.1,-75,…;负有理数集合:⎩⎨⎧⎭⎬⎫-7,-0.142,-75,….18.解:(1)如图:(2)根据(1)可得小明家与小刚家相距4-(-5)=9(千米). 19.解:(1)根据题意,得2*6=22-62=4-36=-32. (2)根据题意,得(-2)*3=4-9=-5, 则3*[(-2)*3]=3*(-5)=9-25=-16.20.解:(1)原式=-1-0.5×13×(2-9)=-1-16×(-7)=-1+76=16.(2)原式=0.7×(1949+59)+(-14)×(234+14)=0.7×20-14×3=14-14×3=14×(1-3)=14×(-2)=-28.21.解:根据题意,得1835×(-73)×(-73)=145.22.解:(1)(-3)×(-5)=15. (2)-5÷(+3)=-53.(3)(-5)4=625.(4)答案不唯一,如[(-3)-(-5)]×(+3)×(+4)=2×12=24. 23.解:(1)由题意,得第一次距A 地|-3|=3(千米);第二次距A地|-3+8|=5(千米);第三次距A地|-3+8-9|=4(千米);第四次距A地|-3+8-9+10|=6(千米);第五次距A地|-3+8-9+10+4|=10(千米);而第六次、第七次是向相反的方向又行驶了8千米,所以在第五次记录时距A地最远.故答案为五.(2)根据题意,得-3+8-9+10+4-6-2=2(千米).答:收工时距A地2千米.(3)根据题意,得检修小组工作一天行驶的路程为|-3|+|+8|+|-9|+|+10|+|+4|+|-6|+|-2|=42(千米),42×0.1×7.2=30.24(元).答:检修小组工作一天需汽油费30.24元.24.解:(1)星期三收盘时,每股是27+4+4.5-1=34.5(元).(2)本周内每股最高价为27+4+4.5=35.5(元),最低价为27+4+4.5-1-2.5-6=26(元).(3)买入成本:1000×27×(1+1.5‰)=27040.5(元),卖出所得:1000×26×(1-1.5‰-1‰)=25935(元).收益:25935-27040.5=-1105.5(元).答:如果吉姆在星期五收盘前将股票全部卖出,他将亏损1105.5元.。

人教版数学七年级上册第一章有理数综合检测卷(含答案)

人教版数学七年级上册第一章有理数综合检测卷(含答案)

人教版数学七年级上学期第一章有理数测试一.选择题(共12小题)1.如果收入150元记作+150元,那么支出100元记作( )A. +100元B. +50元C. ﹣50元D. ﹣100元2.某种大米包装袋上的质量标识为“25±0.5kg ”,现从超市随机检测到四袋大米中不合格的是( ) A. 24.5kg B. 24.8kg C. 25.5kg D. 26.1kg 3.若a 的相反数为1,则a 2019是( )A. 2019B. ﹣2019C. 1D. ﹣14.武汉轨道交通7号线一期工程,线路全长31公里,全部地下线,总投资达321亿元,将321亿元用科学记数法可以表示( )A. 0.321×1010元B. 3.21×108元C. 3.21×109元D. 3.21×1010元5.某种细菌在培养过程中,每半小时分裂一次(由一个分裂成两个),若这种细菌由1个分裂64个,则这个过程要经过( )A. 1小时B. 2小时C. 3小时D. 4小时 6.下列各组数中:①﹣22与22;②(﹣3)2与32;③|﹣2|与﹣|﹣2|;④(﹣3)3与﹣33;⑤﹣3与﹣(+3),其中相等的共有( )A. 4对B. 3对C. 2对D. 1对 7.在﹣(﹣8),﹣|﹣7|,0,(﹣2)2,﹣32这五个数中,负数共有( )A. 4个B. 3个C. 2个D. 1个8.计算12﹣7×(﹣4)+8÷(﹣2)的结果是( ) A. 36 B. ﹣20C. 6D. ﹣24 9.若与互为倒数,则()20072008a b ⋅-的值是( ) A. B. a -C. D. b - 10.点A 、B 在数轴上的位置如图所示,其对应的数分别是a 和b ,则以下结论:①0b a ->;②b a ->;③a b ->-;④0b a >,正确的是( ) A. ①② B. ②③ C. ②④ D. ③④11. 下列说法中正确的有( )①同号两数相乘,符号不变;②异号两数相乘,积取负号;③互为相反数的两数相乘,积一定为负;④两个有理数的积的绝对值,等于这两个有理数的绝对值的积.A. 1个B. 2个C. 3个D. 4个12.能使式子|5+x|=|5|+|x|成立的数x 是( )A. 任意一个非正数B. 任意一个正数C. 任意一个非负数D. 任意一个负数二.填空题(共6小题)13.若a 、b 互为倒数,则2ab ﹣6=_____.14.甲、乙两同学进行数字猜谜游戏:甲说一个数a 的相反数就是它本身,乙说一个数b 的倒数也等于本身,请你猜一猜|a ﹣b|=_____.15.如果A 表示最小的正整数,B 表示最大的负整数,C 表示绝对值最小的有理数,那么计算(A ﹣B)×C=_____. 16.已知|a|=1,|b|=2,且ab <0.则a ﹣b 的值为_____.17.下列说法正确的是_____(填写符合要求的序号)(1)两个有理数的和为负数时,这两个数都是负数;(2)如果两个数的差是正数,那么这两个数都是正数;(3)几个有理数相乘,当负因数个数为奇数时,乘积一定为负;(4)数轴上到原点的距离为3的点表示的数是3或﹣3;(5)0乘以任何数都是0.18.如图,是一个简单的数值运算程序,当输入x 的值为﹣3时,则输出的数值为_____.三.解答题(共8小题)19.计算(1)5.6+(﹣0.9)+4.4+(﹣8.1)+(﹣0.1)(2)5+(﹣34 )﹣7﹣(﹣2.5) (3)(﹣145)×(﹣27)+(﹣145)×(+177) (4)2213133()()(24)3468-⨯-+-+⨯- (5)8﹣23÷(﹣4)3+18 (6)(﹣1)2018+(﹣5)×[(﹣2)3+2]﹣(﹣4)2÷(﹣12 ) 20.将有理数﹣12,0,20,﹣1.25,134,﹣|﹣12|,﹣(﹣5)放入恰当集合中.21.列式计算:(1)4119-减去163与499-的和,所得的差是多少? (2)求142与132的相反数的商. 22.已知a =﹣312,b =﹣6.25,c =﹣2.5,求|b|﹣(a ﹣c )的值. 23.今抽查10袋盐,每袋盐标准质量是100克,超出部分记为正,统计成表:盐的袋数2 3 3 1 1每袋超出标准的克数+1﹣0.5 0 +2.5 ﹣2问:①这10袋盐以100克为标准质量,总计超过多少克或不足多少克?②这10袋盐一共多少克?24.检修组乘汽车,沿公路检修线路,约定向东为正,向西为负,某天自A 地出发,到收工时,行走记录为(单位:千米):+8、﹣9、+4、﹣7、﹣2、﹣10、+11、﹣12.回答下列问题:(1)收工时在A地的哪边?距A地多少千米?(2)若每千米耗油02升,问从A地出发到收工时,共耗油多少升?25.已知不相等的两数a,b互为相反数,c,d互为倒数,x的绝对值和倒数都是它本身,求:2016a+2018cd﹣2017x+2016b﹣2017的结果.26.某仓库本周运进货物件数和运出货物件数如下表:(1)如果用正数表示运进货物件数,负数表示运出货物件数,请你分别表示出周二、周五当天进出货物后变化的量;(2)若经过一周的时间,仓库货物总量相比上周末库存量减少了5件,求a的值;(3)若本周运进货物总件数比运出货物件数一半多15件,本周运进货物总件数比上周减少16,而本周运出货物总件数比上周多23,这两周内,该仓库货物共增加了3件,求a、b的值.答案与解析一.选择题(共12小题)1.如果收入150元记作+150元,那么支出100元记作( )A. +100元B. +50元C. ﹣50元D. ﹣100元【答案】D【解析】【分析】利用相反意义量的定义判断即可.【详解】解:如果收入150元记作+150元,那么支出100元记作﹣100元.故选D.【点睛】考查具有相反意义的量,解决本题的关键突破口是理解用正数和负数表示具有相反意义的量.2.某种大米包装袋上的质量标识为“25±0.5kg”,现从超市随机检测到四袋大米中不合格的是( )A. 24.5kgB. 24.8kgC. 25.5kgD. 26.1kg【答案】D【解析】【分析】先求出面粉的合格重量的范围,再据此对四个选项逐一判断.【详解】解:质量标识为“25±0.5kg”表示25上下0.5,即24.5到25.5之间为合格;分析答案可得26.1kg不在此范围内,不合格.故选:D.【点睛】考查正数和负数的实际应用,根据面粉包装袋上的质量标识为“25±0.5kg”,求出面粉的合格重量的范围是解题的关键.3.若a的相反数为1,则a2019是( )A. 2019B. ﹣2019C. 1D. ﹣1【答案】D【解析】【分析】先根据相反数的定义求出a,再代入计算即可求解.【详解】∵a的相反数为1,∴a=−1,∴a 2019=(−1)2019=−1.故答案选:D.【点睛】本题考查了相反数的定义,解题的关键是根据相反数的定义求出a 的值.4.武汉轨道交通7号线一期工程,线路全长31公里,全部地下线,总投资达321亿元,将321亿元用科学记数法可以表示( )A. 0.321×1010元B. 3.21×108元C. 3.21×109元D. 3.21×1010元【答案】D【解析】【分析】科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,为整数.确定的值时,要看把原数变成时,小数点移动了多少位,的绝对值与小数点移动的位数相同.当原数绝对值>1时,是正数;当原数的绝对值<1时,是负数.【详解】解:321亿元=32100000000元,32100000000元这个数用科学记数法可以表示为3.21×1010元.故选D .【点睛】考查科学记数法,掌握绝对值大于1的数的表示方法是解题的关键.5.某种细菌在培养过程中,每半小时分裂一次(由一个分裂成两个),若这种细菌由1个分裂为64个,则这个过程要经过( )A. 1小时B. 2小时C. 3小时D. 4小时 【答案】C【解析】【分析】根据已知可知1个细胞从第1次到第3次所分裂的细胞个数分别为21个,22个,23个,从而得出第n 次细胞分裂后的细胞个数.【详解】解:根据已知可知:一个细胞第一次分裂成21个,第二次分裂成22个,第三次分裂成23个,由上述规律可知,第n次时细胞分裂的个数为2n个,设第x次分裂成64个,由题意得2x=64,解得x=6,即第6次分裂细菌分裂成64个,答:由每半小时分裂一次,此细菌由1个分裂成64个,共花费了3个小时.故答案选C.【点睛】本题考查了有理数的乘方,解题的关键是熟练的掌握有理数的乘方的相关知识点.6.下列各组数中:①﹣22与22;②(﹣3)2与32;③|﹣2|与﹣|﹣2|;④(﹣3)3与﹣33;⑤﹣3与﹣(+3),其中相等的共有( )A. 4对B. 3对C. 2对D. 1对【答案】B【解析】【分析】各式计算得到结果,比较即可.详解】解:①−22=−4,22=4,不相等;②(−3)2=32=9,相等;③|−2|=2,−|−2|=−2,不相等;④(−3)3=−33=−27,相等;⑤−(+3)= −3,相等.故答案选B.【点睛】本题考查了相反数、绝对值与有理数的乘方,解题的关键是熟练度掌握相反数、绝对值与有理数的乘方的性质.7.在﹣(﹣8),﹣|﹣7|,0,(﹣2)2,﹣32这五个数中,负数共有( )A. 4个B. 3个C. 2个D. 1个【答案】C【解析】【分析】根据负数的定义可以判断题目中的哪些数据是负数,从而可以解答本题.【详解】解:在()()228,702,3------,,中, 负数有:27,3---,共2个,故选:C.【点睛】考查有理数的分类,掌握负数的定义是解题的关键.8.计算12﹣7×(﹣4)+8÷(﹣2)的结果是( ) A. 36B. ﹣20C. 6D. ﹣24 【答案】A【解析】【分析】根据运算顺序先计算乘除运算,最后算加减运算,即可得到结果.【详解】原式()()122841228436.=--+-=+-=故选A.【点睛】考查有理数的混合运算,掌握运算法则是解题的关键.9.若与互为倒数,则()20072008a b ⋅-的值是( ) A.B. a -C.D. b - 【答案】B【解析】【分析】由a 与b 互为倒数,得ab=1,然后逆用积的乘方公式即可求解.【详解】解:∵a 与b 互为倒数,∴ab=1,则原式=()20072007a a b ⋅⋅-=()2007ab a -⋅=()20071-•=a -.故选B .【点睛】本题考查倒数的定义以及积的乘方公式,正确对所求的式子进行变形是关键.10.点A 、B 在数轴上的位置如图所示,其对应的数分别是a 和b ,则以下结论:①0b a ->;②b a ->;③a b ->-;④0ba >,正确的是( )A. ①②B. ②③C. ②④D. ③④ 【答案】B【解析】由点A 、B 在数轴上的位置可知,505b a <-<<<,∴(1)0b a -<;(2)b a ->;(3)a b ->-;(4)0ba <.∴原来四个结论中成立的是②③.故选B.11. 下列说法中正确的有( )①同号两数相乘,符号不变;②异号两数相乘,积取负号;③互为相反数的两数相乘,积一定为负;④两个有理数的积的绝对值,等于这两个有理数的绝对值的积.A. 1个B. 2个C. 3个D. 4个 【答案】B【解析】①错误,如,符号改变; ③错误,如0×0,积为0;②④正确.12.能使式子|5+x|=|5|+|x|成立的数x 是( )A. 任意一个非正数B. 任意一个正数C. 任意一个非负数D. 任意一个负数【答案】C【解析】【分析】根据题意利用具特殊值的方法,即可判断出答案.【详解】当x =2时,|5+x |=|5+2|=7,而|5|+|x |=5+2=7,7=7,当x =0时,|5+x |=|5+0|=5,而|5|+|x |=5+0=5,故B 错误.当x =−2时,|5+x |=|5+(−2)|=3,而|5|+|x |=5+2=7,37,≠故A. D 错误;当x 是正数或0时,式子|5+x|=|5|+|x|成立.故选C.【点睛】考查绝对值的定义以及应用,注意分类讨论思想在解题中的应用.二.填空题(共6小题)13.若a 、b 互为倒数,则2ab ﹣6=_____.【答案】-4【解析】【分析】根据乘积为1的两个数互为倒数,可得互为倒数的两个数的积是1,可得答案.【详解】解:若a 、b 互为倒数,则2ab-6=2-6=-4.故答案为−4.【点睛】本题考查了倒数的定义,解题的关键是熟练的掌握倒数的定义.14.甲、乙两同学进行数字猜谜游戏:甲说一个数a 的相反数就是它本身,乙说一个数b 的倒数也等于本身,请你猜一猜|a ﹣b|=_____.【答案】1【解析】a 等于0,b 等于1.15.如果A 表示最小的正整数,B 表示最大的负整数,C 表示绝对值最小的有理数,那么计算(A ﹣B)×C=_____. 【答案】0.【解析】【分析】根据小的正整数是1,最大的负整数是﹣1,绝对值最小的有理数是0.得到A,B,C 的值,代入运算即可.【详解】A 表示最小的正整数,A=1B 表示最大的负整数 B=﹣1C 表示绝对值最小的有理数,C=0()()1100.A B C ⎡⎤-⨯=--⨯=⎣⎦故答案为0.【点睛】本题需掌握的知识点是:最小的正整数是1,最大的负整数是﹣1,绝对值最小的有理数是0. 16.已知|a|=1,|b|=2,且ab <0.则a ﹣b 的值为_____.【解析】【分析】根据题意,利用绝对值的代数意义化简求出a 与b 的值,即可确定出a-b 的值.【详解】∵|a |=1,|b |=2,且ab <0,∴a =1,b =−2;a =−1,b =2,则a −b =3或−3.故答案为3或−3.【点睛】考查[有理数的乘法, 绝对值, 有理数的减法,得到a 与b 的值是解题的关键.17.下列说法正确的是_____(填写符合要求的序号)(1)两个有理数的和为负数时,这两个数都是负数;(2)如果两个数的差是正数,那么这两个数都是正数;(3)几个有理数相乘,当负因数个数为奇数时,乘积一定为负;(4)数轴上到原点的距离为3的点表示的数是3或﹣3;(5)0乘以任何数都是0.【答案】(4)(5).【解析】【分析】根据有理数加法,减法,乘法法则以及数轴的性质进行判断即可.【详解】(1)两个有理数的和为负数时,这两个数不一定都是负数;例如()32,+-故错误.(2)如果两个数的差是正数,那么这两个数不一定都是正数;例如()12,--故错误.(3)几个有理数相乘,当负因数个数为奇数时,乘积不一定为负;当有一个因数为0时,结果为0.(4)数轴上到原点的距离为3的点表示的数是3或﹣3;正确.(5)0乘以任何数都是0.正确.故答案为(4)(5).【点睛】考查有理数的加法,减法,乘法法则以及数轴的性质,比较基础,难度不大.18.如图,是一个简单的数值运算程序,当输入x 的值为﹣3时,则输出的数值为_____.【解析】【分析】根据题中运算程序,将3x =-代入列出关系式中计算,即可得到输出的结果.【详解】根据题意列得:()()232418414.-⨯-+=-+=-则输出的数值为14.-故答案为:14.-【点睛】此题考查了代数式的求值,弄清题中的运算程序是解本题的关键. 三.解答题(共8小题)19.计算(1)5.6+(﹣0.9)+4.4+(﹣8.1)+(﹣0.1)(2)5+(﹣34)﹣7﹣(﹣2.5) (3)(﹣145)×(﹣27)+(﹣145)×(+177) (4)2213133()()(24)3468-⨯-+-+⨯- (5)8﹣23÷(﹣4)3+18 (6)(﹣1)2018+(﹣5)×[(﹣2)3+2]﹣(﹣4)2÷(﹣12) 【答案】(1)0.9;(2)﹣0.25;(3)﹣6;(4)﹣24;(5)814;(6)63. 【解析】分析】(1)利用加法结合律,进行加减运算即可求解;(2)把减法转化为加法,根据法则进行运算即可.(3)首先计算乘法,最后进行加减运算即可求解;(4)首先计算乘方,再利用分配律计算即可; (5)首先计算乘方,计算括号内的式子,再计算除法,最后进行加减运算即可;(6)首先计算乘方,计算括号内的式子,再计算除法,最后进行加减运算即可;【详解】(1)原式=(5.6+4.4)+(﹣0.9﹣8.1﹣0.1)=10﹣9.1=0.9;(2)原式=5﹣0.75﹣7+2.5 =7.5﹣7.75=﹣0.25;(3)原式434306. 555=-=-=-(4)原式191849,9=-⨯-+-=﹣1﹣18+4﹣9, =﹣24;(5)原式()18864,8=-÷-+118,88=++184=;(6)原式=1+(﹣5)×(﹣8+2)﹣16×(﹣2)=1+(﹣5)×(﹣6)+32=1+30+32=63.【点睛】考查有理数的混合运算,掌握运算法则是解题的关键.20.将有理数﹣12,0,20,﹣1.25,134,﹣|﹣12|,﹣(﹣5)放入恰当的集合中.【答案】详见解析.【解析】【分析】根据小于零的数是负数,可得负数集合;根据形如-1,-2,0,1,3,5…是整数,可得整数集合.【详解】解:∵﹣12=﹣1,﹣|﹣12|=﹣12,﹣(﹣5)=5,∴负数集合有:﹣12,﹣1.25,﹣|﹣12|,…整数集合有:﹣12,0,20,﹣|﹣12|,﹣(﹣5)|,…所以【点睛】考查有理数的分类,熟练掌握正数以及负数的定义是解题的关键.21.列式计算:(1)4119-减去163与499-的和,所得的差是多少?(2)求142与132的相反数的商.【答案】(1)183-;(2)9-7【解析】【分析】(1)根据题意列出算式即可求出正确答案;(2)先求132的相反数,再将依据题意作商即可得出答案.【详解】解:(1)由题意可得:(4119--163)+(499-),则(4119--163)+(499-)=411(9-+-163)+(499-)=183-;(2)∵132的相反数是132-,∴142与132的相反数的商即为14921732=--.故本题答案为:(1)183-;(2)9-7.【点睛】掌握有理数加减乘除运算和相反数的含义,以及会根据题意列出相应的算式是解答本题的关键.22.已知a=﹣312,b=﹣6.25,c=﹣2.5,求|b|﹣(a﹣c)的值.【答案】7.25【解析】分析】把a、b、c的值代入代数式,再根据绝对值的性质和有理数的减法运算法则进行计算即可得解.【详解】解:∵a=﹣312,b=﹣6.25,c=﹣2.5,∴|b|﹣(a﹣c)=﹣b﹣a+c=6.25+312﹣2.5=7.25.【点睛】本题考查了绝对值的性质与有理数的减法,解题的关键是熟练的掌握绝对值的性质与有理数的减法运算法则.23.今抽查10袋盐,每袋盐的标准质量是100克,超出部分记为正,统计成表:问:①这10袋盐以100克为标准质量,总计超过多少克或不足多少克?②这10袋盐一共多少克?【答案】(1)总计不足3千克;(2)997千克.【解析】【分析】(1)根据正数表示超出100克的重量,负数表示比100克差的重量,计算出10袋盐一共超出标准重量的重量;(2)根据(1)可得10袋盐一共超出标准重量的重量,然后用100×10加上这个数即可.【详解】解:(1)2×(﹣1)+3×(﹣0.5)+3×0+1×2.5+1×(﹣2)=﹣3,答:这10袋盐以100克为标准质量,总计不足3千克;(2)10×100﹣3=997千克.答:这10袋盐一共997千克.【点睛】本题考查了正数与负数,解题的关键是熟练的掌握正数与负数相关知识点.24.检修组乘汽车,沿公路检修线路,约定向东为正,向西为负,某天自A地出发,到收工时,行走记录为(单位:千米):+8、﹣9、+4、﹣7、﹣2、﹣10、+11、﹣12.回答下列问题:(1)收工时在A地的哪边?距A地多少千米?(2)若每千米耗油0.2升,问从A地出发到收工时,共耗油多少升?【答案】(1)收工时在A地的西边,距A地17千米;(2)若每千米耗油0.2升,从A地出发到收工时,共耗油12.6升.【解析】【分析】(1)根据题中的数据,将各个数据相加看最后的结果,即可解答本题;(2)根据题中的数据将它们的绝对值相加,然后乘以0.2即可解答本题.【详解】解:(1)+8﹣9+4﹣7﹣2﹣10+11﹣12=﹣17.答:收工时在A地的西边,距A地17千米.(2)|+8|+|﹣9|+|+4|+|﹣7|+|﹣2|+|﹣10|+|+11|+|﹣12|=63,63×0.2=12.6(升),答:若每千米耗油0.2升,从A地出发到收工时,共耗油12.6升.【点睛】本题考查了正数与负数,解题的关键是熟练的掌握正数与负数相关知识点.25.已知不相等的两数a,b互为相反数,c,d互为倒数,x的绝对值和倒数都是它本身,求:2016a+2018cd﹣2017x+2016b﹣2017的结果.【答案】﹣2016.【解析】【分析】先根据已知条件求出a+b=0,cd=1,x=1,再把这些数值代入所求式子,计算即可.【详解】解:∵不相等的两数a,b互为相反数,c,d互为倒数,x的绝对值和倒数都是它本身,∴a+b=0,cd=1,x=1,∴2016a+2018cd﹣2017x+2016b﹣2017=2016(a+b)+2018cd﹣2017(x+1)=2016×0+2018×1﹣2017×(1+1)=0+2018﹣4034=﹣2016.【点睛】考查代数式求值, 根据相反数, 绝对值, 倒数的定义得到a+b=0,cd=1,x=1,是解题的关键.26.某仓库本周运进货物件数和运出货物件数如下表:(1)如果用正数表示运进货物件数,负数表示运出货物件数,请你分别表示出周二、周五当天进出货物后变化的量;(2)若经过一周的时间,仓库货物总量相比上周末库存量减少了5件,求a的值;(3)若本周运进货物总件数比运出货物件数的一半多15件,本周运进货物总件数比上周减少16,而本周运出货物总件数比上周多23,这两周内,该仓库货物共增加了3件,求a、b的值.【答案】(1)周二进出货物后变化的量为﹣a,周五进出货物后变化的量为5;(2)a=0;(3)a=10,b=10.【解析】【分析】(1)根据有理数的加法法则即可求出周二、周五当天进出货物后变化的量;(2)运进货物件数-运出货物件数=-5,列出方程求解即可.(3)本周运进货物总件数比运出货物件数的一半多15件,列出方程即可求出b的值,设上周运进货物总件数为m,上周运出货物的总件数为n,找出题目中的等量关系,列方程即可求解.【详解】解:(1)周二运进货物件数+运出货物件数=a+(﹣2a)=﹣a,∴周二进出货物后变化的量为:﹣a,周五运进货物件数+运出货物件数=b+[﹣(b﹣5)]=5,∴周五进出货物后变化的量为:5;(2)依题意得:5×5+a+b﹣(12+2a+8+0+b﹣5+5+10)=﹣5解得a=0;(3)依题意得:5+a+5+5+b+5+5=12(12+2a+8+0+b ﹣5+5+10)+15, 化简得:b=10, 设上周运进货物总件数为m ,上周运出货物的总件数为n ,1555556a b m m ++++++=-, 即5256a b m ++=, 2122855103a b n n +++-++=+, 即52303a b n ++=, ∵这两周内,该仓库货物共增加了3件, ∴()55363m n m n ⎛⎫-+-= ⎪⎝⎭, ∴11m ﹣16n=18, ∴()()631125162301855a b a b ⨯++-⨯++=, 解得:a=10.【点睛】考查正负数的意义以及一元一次方程的应用,正数与负数表示意义相反的两种量,看清规定哪一个为正,则和它意义相反的就为负.熟练掌握正数和负数的意义和有理数的加减运算.。

人教版数学七年级上册第一章有理数综合测试题(含答案)

人教版数学七年级上册第一章有理数综合测试题(含答案)

人教版数学七年级上学期第一章有理数测试一.选择题(共10小题)1.如果温度上升10℃记作+10℃,那么温度下降6℃记作( )A. +10℃B. 10℃C. +6℃D. ﹣6℃2.若|a|+a=0,则a是( )A. 零B. 负数C. 负数或零D. 非负数3.计算﹣13﹣9的值( )A ﹣22 B. ﹣4 C. 22 D. ﹣194.﹣7+5相反数是( )A. 2B. ﹣2C. ﹣8D. 85.如果有理数a、b、c满足,a+b+c=0,abc>0,那么a、b、c中负数的个数是( )A. 0 ;B. 1 ;C. 2 ;D. 3 ;6.计算(-8)×(-2)÷(- 12)的结果为( )A. 16B. -16C. 32D. -327.我县人口约为530060人,用科学记数法可表示为( )A 53006×10人 B. 5.3006×105人 C. 53×104人 D. 0.53×106人8.若x的相反数是﹣2,|y|=5,则x+y的值为( )A ﹣7 B. 7 C. ﹣7或7 D. ﹣3或79.一天早晨的气温为3℃,中午上升了6℃,半夜又下降了7℃,则半夜的气温是( )A. ﹣5℃B. ﹣2℃C. 2℃D. ﹣16℃10.小虎做了以下4道计算题,请你帮他检查一下,他一共做对了( )①0﹣(﹣1)=1;②12÷(﹣12)=﹣1;③﹣12+13=﹣16;④(﹣1)2017=﹣2017.A. 1题B. 2题C. 3题D. 4题二.填空题(共8小题)11.如果正午(中午12:00)记作0小时,午后2点钟记作+2小时,那么上午10点钟可表示为_________.12.﹣2.5绝对值是_____.13.如果﹣2+△=﹣6,那么“△”表示的数是_____.14.计算:1-2+3-4+5-6+……+2017-2018+2019的值为___________.15.若|a|=8,|b|=5,且ab<0,那么a﹣b=_____.16.计算(﹣1)÷6×(﹣16)=_____.17.规定一种新运算:a⊗b=(a+b)b,如:2⊗3=(2+3)×3=15,则(﹣2)⊗2=_____.18.若|a|=2,|b|=3,若ab>0,则|a+b|=_____.三.解答题(共7小题)19.计算:(1)20+(﹣15)﹣(﹣17);(2)(﹣18)÷9×(﹣29 );(3)(16﹣23+34)×(﹣24);(4)﹣14﹣32÷[(﹣2)3+4].20.在数轴上分别标出表示有理数2.5,﹣2的点A,B,并求|AB|.21.已知|x+4|=5,(1﹣y)2=9,且x﹣y<0,求2x+y的值.22.规定一种新的运算:a★b=a×b﹣a﹣b2+1,例如3★(﹣4)=3×(﹣4)﹣3﹣(﹣4)2+1,请用上述规定计算下面各式:(1)2★8;(2)(﹣7)★[5★(﹣2)]23.某食品厂从生产的袋装食品中抽出样品20袋,检测每袋的质量是否符合标准,超出或不足的部分分别用正数、负数来表示,记录如下表与标准质量的差值(单位:千克)﹣3 ﹣2 0 1 1.5 2.51箱数 1 4 3 4 5 3若每袋标准质量为450g,则这批样品的总质量是多少?24.某检修站,甲乘一辆汽车,约定向东为正,从A地出发到收工时,行走记录为(单位:千米):+15,﹣2,+5,﹣1,+10,﹣3,﹣2,+12,+4,﹣5,+6.(1)计算收工时,甲在A地的哪一边,距A地多远?(2)若每千米汽车耗油0.5升,求出发到收工时甲耗油多少升?25.小明妈妈在某玩具厂工作,厂里规定每个工人每周要生产某种玩具,原计划每天生产20个,但由于种种原因,实际每天生产个数与原计划每天生产个数相比有出入.下表是小明妈妈某周的生产情况记录表(增产记为正、减产记为负):(1)根据表格可知小明妈妈本周五生产玩具多少个;(2)根据表格可知小明妈妈本周实际生产玩具多少个;(3)该厂实行“每日计件工资制”,每生产一个玩具可得工资5元;若当天超额完成,则每增产一个另奖3元;若当天未完成原计划生产个数,则每减产一个倒扣2元,求小明妈妈本周的工资总额是多少元?答案与解析一.选择题(共10小题)1.如果温度上升10℃记作+10℃,那么温度下降6℃记作( )A. +10℃B. 10℃C. +6℃D. ﹣6℃【答案】D【解析】【分析】根据正数和负数的定义和已知得出即可.【详解】解:温度上升10℃记作+10℃,温度下降6℃记作﹣6℃,故选D .【点睛】本题考查了正数和负数,能理解正数和负数的定义是解此题的关键.2.若|a|+a=0,则a 是( )A. 零B. 负数C. 负数或零D. 非负数 【答案】C【解析】【分析】根据绝对值的性质,从而得到答案.【详解】当a =0时,|a |+a =0,当a 为负数时,|a |+a =-a +a =0,当a 为非负数时,|a |+a =a +a =2a ≠0,综上所述,故答案选C.【点睛】本题主要考查了绝对值的性质,解本题的要点在于了解一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.3.计算﹣13﹣9的值( )A. ﹣22B. ﹣4C. 22D. ﹣19 【答案】A【解析】【分析】根据减去一个数等于加上这个数的相反数,进行运算即可.【详解】解:()13913922--=-+-=-,故选A .【点睛】此题考查了有理数的减法,熟练掌握运算法则是解本题的关键.4.﹣7+5的相反数是( )A. 2B. ﹣2C. ﹣8D. 8【答案】A【解析】【分析】先计算﹣7+5的值,再求它的相反数.【详解】﹣7+5=-2,-2的相反数是2.所以B选项是正确的.【点睛】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“-”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.5.如果有理数a、b、c满足,a+b+c=0,abc>0,那么a、b、c中负数的个数是( )A. 0 ;B. 1 ;C. 2 ;D. 3 ;【答案】C【解析】分析:先根据abc>0,结合有理数乘法法则,易知a、b、c中有2个负数或没有一个负数(都是正数),而都是正数,则a+b+c>0,不符合a+b+c=0的要求,于是可得a、b、c中必有2个负数.解答:解:∵abc>0,∴a、b、c中有2个负数或没有一个负数,若没有一个负数,则a+b+c>0,不符合a+b+c=0的要求,故a、b、c中必有2个负数.故选C.6.计算(-8)×(-2)÷(- 12)的结果为( )A. 16B. -16C. 32D. -32 【答案】D【解析】【分析】先把除法转化为乘法,然后根据乘法法则计算即可.【详解】(-8)×(-2)÷(- 1 2 )=(-8)×(-2) ×(- ) =-32.故选D.【点睛】本题考查了乘除混合运算,一般先把除法转化为乘法,再按照乘法法则计算.7.我县人口约为530060人,用科学记数法可表示为( )A. 53006×10人B. 5.3006×105人C. 53×104人D. 0.53×106人【答案】B【解析】【分析】根据科学记数法的定义及表示方法进行解答即可.【详解】解:∵530060是6位数,∴10的指数应是5,故选B.【点睛】本题考查的是科学记数法的定义及表示方法,熟知以上知识是解答此题的关键.8.若x的相反数是﹣2,|y|=5,则x+y的值为( )A. ﹣7B. 7C. ﹣7或7D. ﹣3或7【答案】D【解析】【分析】首先根据相反数的定义求出x的值,绝对值的定义可以求出y的值,然后就可以求出x+y的值.【详解】∵-x=-2,|y|=5,∴x=2,y=±5,∴当x=2,y=5时,x+y=7;当x=2,y=-5时,x+y=-3.故选D.【点睛】此题主要考查了绝对值的定义及性质,解题时首先利用绝对值的定义求出y的值,然后代入代数式计算即可求解.9.一天早晨的气温为3℃,中午上升了6℃,半夜又下降了7℃,则半夜的气温是( )A. ﹣5℃B. ﹣2℃C. 2℃D. ﹣16℃【答案】C【解析】【分析】根据题意设上升为正,下降为负,直接列出算式即可.【详解】解:根据题意知半夜的温度为:367972+-=-=(℃),故选C .【点睛】本题考查了有理数的加减混合运算法则,解题时认真审题,弄清题意,列出算式后再按照有理数的加减混合运算法则计算.10.小虎做了以下4道计算题,请你帮他检查一下,他一共做对了( )①0﹣(﹣1)=1;②12÷(﹣12)=﹣1;③﹣12+13=﹣16;④(﹣1)2017=﹣2017. A. 1题B. 2题C. 3题D. 4题【答案】C【解析】【分析】根据有理数的加减运算法则及除法和乘方的运算法则逐一计算可得. 【详解】解:①()01011--=+=,他计算正确; ②11122⎛⎫÷-=- ⎪⎝⎭,他计算正确; ③11111,23236⎛⎫-+=--=- ⎪⎝⎭他计算正确; ④()201711-=-,他计算错误; 他做对了3道题.故选C .【点睛】本题主要考查有理数的混合运算,解题的关键是熟练掌握有理数的混合运算顺序和 运算法则及其运算律.二.填空题(共8小题)11.如果正午(中午12:00)记作0小时,午后2点钟记作+2小时,那么上午10点钟可表示_________.【答案】-2【解析】【分析】根据正数和负数的意义解题即可.【详解】正午(中午12:00)记作0小时,午后2点钟记作+2小时,10-12=-2,则上午10点钟可表示为-2.【点睛】本题考查了正数和负数的意义,理解“正”和“负”的相对性是解题的关键.12.﹣2.5的绝对值是_____.【答案】2.5【解析】【分析】根据绝对值的含义和求法解答.【详解】解: 2.5-的绝对值是2.5,故答案为2.5.【点睛】此题主要考查了绝对值的含义和应用,要熟练掌握,解答此题的关键是要明确:① 当a 是正有理数时,a 的绝对值是它本身a ;②当a 是负有理数时,a 的绝对值是它的相反数﹣a ;③当a 是零时,a 的绝对值是零.13.如果﹣2+△=﹣6,那么“△”表示的数是_____.【答案】-4【解析】【分析】根据有理数的加法解答即可.【详解】解:因为26-+=-,所以()624=---=-,故答案为4-.【点睛】本题主要考查的是有理数的加法,掌握有理数的加法法则是解题的关键.14.计算:1-2+3-4+5-6+……+2017-2018+2019的值为___________.【答案】1010【解析】【分析】首先把数字分组:(1-2)+(3-4)+(5-6)+…+(2017-2018)+2019,算出前面有多少个-1相加,再加上2019即可.【详解】解:1-2+3-4+5-6+…+2015-2016+2017-2018+2019=(1-2)+(3-4)+(5-6)+…+(2017-2018)+2019=-1009+2019=1010.【点睛】此题考查有理数的加减混合运算,注意数字合理分组,按照分组后的规律计算得出结果即可. 15.若|a|=8,|b|=5,且ab <0,那么a ﹣b=_____.【答案】±13【解析】【分析】根据绝对值和有理数的乘法得出a,b 的值,进而利用有理数的加减运算法则计算得出答案.【详解】解:因为若|a|=8,|b|=5,且ab <0,所以85a b =-=,或85a b ==-,,所以8513a b -=--=-或()8513--=,故答案为±13. 【点睛】此题主要考查了有理数的乘法和加减,正确掌握运算法则是解题关键.16.计算(﹣1)÷6×(﹣16)=_____. 【答案】136 . 【解析】【分析】根据有理数乘除法法则进行计算.【详解】解:(-1)÷6×(-16), =-16×(−16), =136. 故答案为136. 【点睛】此题考查了有理数的乘除法,熟练掌握法则是解本题的关键.17.规定一种新运算:a ⊗b=(a+b)b ,如:2⊗3=(2+3)×3=15,则(﹣2)⊗2=_____.【答案】0【解析】【分析】根据新运算,直接运算得结果.【详解】解:()()222220.-⊗=-+⨯=故答案为0【点睛】本题考查了新运算及有理数的混合运算.题目比较简单,解决本题的关键是理解新 运算的规定.18.若|a|=2,|b|=3,若ab >0,则|a+b|=_____.【答案】5【解析】【分析】由条件可以求出a 、b 的值,再由ab >0可以知道a 、b 同号,据此确定a,b 的值,从而可以求出结论.【详解】解:∵|a|=2,|b|=3,∴a=±2,b=±3, ∵ab >0,∴a=2,b=3或23a b =-=-,,当a=2,b=3时,|a+b|=|2+3|=5;当23a b ,=-=-时,()2355a b +=-+-=-=;综上,|a+b|=5,故答案为5.【点睛】本题考查了有理数的乘法,解决本题的关键是根据绝对值性质求出a,b 的值,然后分两种情况解题.三.解答题(共7小题)19.计算:(1)20+(﹣15)﹣(﹣17);(2)(﹣18)÷9×(﹣29); (3)(16﹣23+34)×(﹣24); (4)﹣14﹣32÷[(﹣2)3+4].【答案】(1)22;(2)49;(3)﹣6;(4)7. 【解析】【分析】(1)先化简,再计算加减法;(2)从左往右依此计算即可求解;(3)根据乘法分配律简便计算;(4)先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.【详解】(1)原式201517,=-+3715,=-=22;(2)原式()22,9⎛⎫=-⨯- ⎪⎝⎭4.9= (3)原式()()()123242424,634=⨯--⨯-+⨯- 41618,=-+-6=-;(4)原式()132[84],=--÷-+()1324,=--÷-18,=-+=7.【点睛】考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.20.在数轴上分别标出表示有理数2.5,﹣2的点A,B ,并求|AB|.【答案】在数轴上2.5,﹣2处标出点A,B 如图所示见解析,AB=4.5.【解析】分析】直接根据数轴上两点间的距离公式求解即可.【详解】在数轴上2.5,﹣2处标出点A,B 如图所示,()2.52 4.5AB =--=.【点睛】本题考查的是数轴,熟知数轴上两点间的距离公式是解答此题的关键.21.已知|x+4|=5,(1﹣y)2=9,且x ﹣y <0,求2x+y 的值.【答案】6或20-或14-【解析】【分析】根据绝对值和偶次幂得出x,y 的值,进而解答即可.【详解】因为|x+4|=5,(1﹣y)2=9,且0x y -<,所以x=1,y=4,或92x y =-=-,,或94x y ,,=-=当x=1,y=4时,2x+y=6;当92x y =-=-,时,2x+y=20-; 当94x y =-=,时,2x+y= 14-.即2x+y 的值为6或20-或14-.【点睛】本题考查有理数的乘方、绝对值的性质,解题的关键是根据绝对值和偶次幂得出x,y 的值.22.规定一种新的运算:a ★b=a×b ﹣a ﹣b 2+1,例如3★(﹣4)=3×(﹣4)﹣3﹣(﹣4)2+1,请用上述规定计算下面各式:(1)2★8;(2)(﹣7)★[5★(﹣2)]【答案】(1)﹣49;(2)﹣190.【解析】【分析】(1)将a=2,b=8代入公式计算可得;(2)先计算()52-★,得其结果为18-,再计算()()718--★.【详解】(1)2★8228281,=⨯--+162641,=--+49=-;(2)∵()()()25252521,-=⨯----+★ 10541,=---+18=-,∴()()()()7[52]718,--=--★★★()()()()27187181,=-⨯-----+12673241,=+-+190=-.【点睛】此题主要考查了定义新运算,以及有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.23.某食品厂从生产的袋装食品中抽出样品20袋,检测每袋的质量是否符合标准,超出或不足的部分分别用正数、负数来表示,记录如下表若每袋标准质量为450g ,则这批样品的总质量是多少?【答案】这批样品总质量是9008g .【解析】【分析】首先审清题意,明确“正”和“负”所表示的意义;再根据题意计算解答作答.【详解】依题意,得 312414 1.55 2.538g -⨯-⨯+⨯+⨯+⨯=,450×20=9000g,9000+8=9008g,答:这批样品的总质量是9008g .【点睛】主要考查正负数在实际生活中应用.解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.24.某检修站,甲乘一辆汽车,约定向东为正,从A 地出发到收工时,行走记录为(单位:千米):+15,﹣2,+5,﹣1,+10,﹣3,﹣2,+12,+4,﹣5,+6.(1)计算收工时,甲在A 地的哪一边,距A 地多远?(2)若每千米汽车耗油0.5升,求出发到收工时甲耗油多少升?【答案】(1)甲在A地的东边,且距离A地39千米;(2)出发到收工时共耗油32.5升.【解析】【分析】(1)只需求得所有数据的和,若和为正数,则甲在A地的东边,若和为负数,则甲在A地的西边,结果的绝对值即为离A地的距离;(2)只需求得所有数的绝对值的和,即为所走的总路程,再根据每千米汽车耗油0.5升,求得总耗油.【详解】(1)15﹣2+5﹣1+10﹣3﹣2+12+4﹣5+6=+39(千米).则甲在A地的东边,且距离A地39千米;(2)15+2+5+1+10+3+2+12+4+5+6=65(千米),65×0.5=32.5(升).则出发到收工时共耗油32.5升.【点睛】此题考查了正数和负数的实际意义,即在实际问题中,表示具有相反意义的量.25.小明妈妈在某玩具厂工作,厂里规定每个工人每周要生产某种玩具,原计划每天生产20个,但由于种种原因,实际每天生产个数与原计划每天生产个数相比有出入.下表是小明妈妈某周的生产情况记录表(增产记为正、减产记为负):(1)根据表格可知小明妈妈本周五生产玩具多少个;(2)根据表格可知小明妈妈本周实际生产玩具多少个;(3)该厂实行“每日计件工资制”,每生产一个玩具可得工资5元;若当天超额完成,则每增产一个另奖3元;若当天未完成原计划生产个数,则每减产一个倒扣2元,求小明妈妈本周的工资总额是多少元?【答案】(1)小明妈妈星期五生产玩具为19个;(2)小明妈妈本周实际生产玩具为145;(3)小明妈妈这一周的工资总额是756元.【解析】【分析】(1)根据记录可知,小明妈妈星期五生产玩具20﹣1=19个;(2)先把增减的量都相加,然后根据有理数的加法运算法则进行计算,再加上计划生产量即可;(3)先计算每天的工资,再相加即可求解;【详解】(1)小明妈妈星期五生产玩具20﹣1=19个,--+-+++⨯=,(2)小明妈妈本周实际生产玩具71148160207145故答案为145;(3)()()1455786311412,⨯+++⨯-++⨯ 7256332,=+-=756(元)答:小明妈妈这一周的工资总额是756元.【点睛】主要考查正负数在实际生活中的应用.要注意弄清楚题意,仔细求解.。

2022年新人教版七年级数学上册第2单元综合能力提升测试卷(附参考答案)

2022年新人教版七年级数学上册第2单元综合能力提升测试卷(附参考答案)

2022年新人教版七年级数学上册第2单元综合能力提升测试卷时间:120分钟满分:120分班级__________姓名__________得分__________一、选择题(共7小题,满分21分,每小题3分)1.(3分)要比较A=2xx+1与B=x+12中的大小(x是正数),知道A﹣B的正负就可以判断,则下列说法正确的是()A.A≥B B.A>B C.A≤B D.A<B 2.(3分)已知有2个完全相同的边长为a、b的小长方形和1个边长为m、n的大长方形,小明把这2个小长方形按如图所示放置在大长方形中,小明经过推理得知,要求出图中阴影部分的周长之和,只需知道a、b、m、n中的一个量即可,则要知道的那个量是()A.a B.b C.m D.n3.(3分)如图所示,三张正方形纸片①,②,③分别放置于长(a+b),宽(a+c)的长方形中,正方形①,②,③的边长分别为a,b,c,且a>b>c,则阴影部分周长为()A.4a+2c B.4a+2b C.4a D.4a+2b+2c 4.(3分)有依次排列的3个整式:x,x+7,x﹣2,对任意相邻的两个整式,都用右边的整式减去左边的整式,所得之差写在这两个整式之间,可以产生一个新整式串:x,7,x+7,﹣9,x﹣2,则称它为整式串1;将整式串1按上述方式再做一次操作,可以得到整式串2;以此类推.通过实际操作,得出以下结论:①整式串2为:x,7﹣x,7,x,x+7,﹣x﹣16,﹣9,x+7,x﹣2;②整式串3共17个整式;③整式串3的所有整式的和比整式串2的所有整式的和小2;④整式串2021的所有整式的和为3x ﹣4037;上述四个结论正确的有( )个.A .1B .2C .3D .45.(3分)某楼盘在今年国庆节期间,为了增加销售业绩,提高销售量,该楼盘在原单价为a 元/平方米的基础上降价10%,则降价后的单价为( )元/平方米.A .(1+10%)aB .(1﹣10%)aC .1+10%aD .10%a6.(3分)甲、乙、丙三家商店对一种定价相同的文具开展促销活动.甲商店一次性降价30%;乙商店连续两次降价15%;丙商店先降价20%后又降价10%.若小雪准备在促销活动中,购买此种文具,则下列说法中,正确的是( )A .小雪到甲商店购买这种文具更合算B .小雪到乙商店购买这种文具更合算C .小雪到丙商店购买这种文具更合算D .在促销活动中,三家商店的这种文具售价相同,小雪可任选一家购买7.(3分)若(2x ﹣1)6=a 6x 6+a 5x 5+a 4x 4+a 3x 3+a 2x 2+a 1x +a 0,则a 6﹣a 5+a 4﹣a 3+a 2﹣a 1的值为( )A .0B .1C .728D .729 二、填空题(共7小题,满分21分,每小题3分)8.(3分)已知代数式3x 2﹣4x ﹣6的值是9,则代数式x 2−43x +2的值是 .9.(3分)已知x 2﹣2x =3,则3x 2﹣6x ﹣4的值为 .10.(3分)当代数式x 2+3x +1的值等于7时,代数式2x 2+6x ﹣2的值是 .11.(3分)某工厂去年春节派甲、乙两辆货车运输一批年货到两个不同的商场,甲车与乙车的行驶时间相同,乙年的平均速度是甲车的3倍.该工厂今年仍用这两辆货车从工厂运送同样的年货到另外两个商场,甲车今年的平均速度不变,乙车今年的平均速度增加了13.结果乙车今年增加的路程是甲车今年增加的路程的3倍,则今年甲车与乙车的行驶时间之比为 .12.(3分)(2x ﹣1)5=a 5x 5+a 4x 4+…+a 1x +a 0,则a 2+a 4= .13.(3分)已知有理数a ,b 满足ab <0,|a ﹣b |=b ﹣a ,a +3b +4=|a ﹣2b |,则代数式a +12b 的值为 .14.(3分)已知单项式2a 3b m 2−3m+n 与﹣3a n b 2是同类项,则代数式2m 2﹣6m +2022的值是 .三、解答题(共10小题,满分78分)15.(6分)先化简,再求值:(x 2﹣y 2﹣2xy )﹣(﹣3x 2+4xy )+(x 2+5xy ),其中x =﹣1,y =2.16.(6分)已知:关于x 、y 的多项式x 2+ax ﹣y +b 与多项式bx 2﹣3x +6y ﹣3的差的值与字母x 的取值无关,求代数式3(a 2﹣2ab ﹣b 2)﹣(4a 2+ab +b 2)的值.17.(6分)已知A =x 2﹣ax ﹣1,B =2x 2﹣ax ﹣1,且多项式A −12B 的值与字母x 取值无关,求a 的值.18.(6分)求值:(1)已知5x ﹣2y =3,求15x ﹣6y ﹣8的值.(2)已知a ﹣b =5,﹣ab =3,求(7a +4b +ab)−6(56b +a −ab)的值.19.(6分)已知代数式A =2m 2+3my +2y ﹣1,B =m 2﹣my .(1)若(m ﹣1)2+|y +2|=0,求3A ﹣2(A +B )的值;(2)若3A ﹣2(A +B )的值与y 的取值无关,求m 的值.20.(9分)为了推进学生综合素质的全面发展,积极落实校本课程.据了解,某校篮球社团有m 人,排球社团比篮球社团人数的34少20人,如果从篮球社团调出15人到排球社团,那么调动后篮球社团的人数比排球社团人数多多少人?当m =60时,问调动后篮球社团的人数比排球社团人数多多少人?21.(9分)某校校长在国庆节带领该校市级“三好学生”外出旅游,甲旅行社说“如果校长买一张票,则其余学生可享受半价优惠”,乙旅行社说“包括校长在内全部按票价的6折优惠”(即按票价的60%收费).现在全票价为240元,学生数为5人,请算一下哪家旅行社优惠?如果是一位校长,两名学生呢?如果是一位校长,x 名学生呢?(用含x 的代数式表示甲、乙两家旅行社的收费)22.(10分)长方形ABCD 的长是a ,宽是b ,分别以A ,C 为圆心,长方形的宽为半径画弧,得到如图所示的图形.(1)请你用代数式表示阴影部分的周长和面积(结果中保留π);(2)当a =4,b =1时,求阴影部分的面积是多少?(π取3.14)23.(10分)我们自从有了用字母表示数,发现表达有关的数和数量关系更加的简洁明了,从而更助于我们发现更多有趣的结论,请你按要求试一试:(1)用代数式表示:①a与b的差的平方;②a与b的平方和与a,b两数积的2倍的差.(2)当a=3,b=﹣2时,求第(1)题中①②所列的代数式的值.(3)由第(2)题的结果,你发现了什么等式?(4)利用你发现的结论,求:20222﹣4044+20212的值.24.(10分)如图,一块正方形纸板剪去四个相同的三角形后留下了阴影部分的图形.已知正方形的边长为a,三角形的高为h.(1)用代数式表示阴影部分的面积;(2)当|a﹣4|和|h﹣1|的值互为相反数时,求阴影部分的面积.参考答案一、选择题(共7小题,满分21分,每小题3分)1.C;2.D;3.A;4.D;5.B;6.A;7.C;二、填空题(共7小题,满分21分,每小题3分)8.79.510.1011.4:312.﹣12013.﹣214.2020三、解答题(共10小题,满分78分)15.解:原式=x2﹣y2﹣2xy+3x2﹣4xy+x2+5xy=5x2﹣xy﹣y2,当x=﹣1,y=2时,原式=5×(﹣1)2﹣(﹣1)×2﹣22=5+2﹣4=3.16.解:(x2+ax﹣y+b)﹣(bx2﹣3x+6y﹣3)=x2+ax﹣y+b﹣bx2+3x﹣6y+3=(1﹣b)x2+(a+3)x﹣7y+b+3,∵(1﹣b)x2+(a+3)x﹣7y+b+3与字母x的取值无关,∴1﹣b=0,a+3=0,∴b=1,a=﹣3,3(a2﹣2ab﹣b2)﹣(4a2+ab+b2)=3a2﹣6ab﹣3b2﹣4a2﹣ab﹣b2)=﹣a2﹣7ab﹣4b2,当b=1,a=﹣3时原式=﹣(﹣3)2﹣7×(﹣3)×1﹣4×12=﹣9+21﹣4=8.17.解:∵A =x 2﹣ax ﹣1,B =2x 2﹣ax ﹣1,∴A −12B=(x 2﹣ax ﹣1)−12(2x 2﹣ax ﹣1)=x 2﹣ax ﹣1﹣x 2+12ax +12=−12ax −12,∵多项式A −12B 的值与字母x 取值无关,∴−12a =0,∴a =0.18.解:(1)15x ﹣6y ﹣8=3(5x ﹣2y )﹣8,当5x ﹣2y =3时,原式=3×3﹣8=9﹣8=1;(2)(7a +4b +ab)−6(56b +a −ab)=7a +4b +ab ﹣5b ﹣6a +6ab=a ﹣b +7ab ,∵﹣ab =3,∴ab =﹣3,当a ﹣b =5,ab =﹣3时,原式=5+7×(﹣3)=5﹣21=﹣16.19.解:(1)∵(m ﹣1)2+|y +2|=0,∴m ﹣1=0,y +2=0,∴m =1,y =﹣2,∵A =2m 2+3my +2y ﹣1,B =m 2﹣my ,∴3A ﹣2(A +B )=3(2m 2+3my +2y ﹣1)﹣2(2m 2+3my +2y ﹣1+m 2﹣my )=6m 2+9my +6y ﹣3﹣4m 2﹣6my ﹣4y +2﹣2m 2+2my=5my +2y ﹣1,当m =1,y =﹣2时,原式=5×1×(﹣2)+2×(﹣2)﹣1=﹣15;(2)∵3A ﹣2(A +B )=5my +2y ﹣1=(5m +2)y ﹣1,又∵此式的值与y 的取值无关,∴5m +2=0,∴m =−25.20.解:排球社团的人数为:(34m ﹣20)人, 调动后排球社团的人数为:(m ﹣15)人,调动后排球社团的人数为:(34m ﹣20+15)=(34m ﹣5)人, 调动后篮球社团的人数比排球社团人数多的人数为:(m ﹣15)﹣(34m ﹣5)=(14m ﹣10)人; 当m =60时,14m ﹣10=14×60﹣10=5(人). 答:当m =60时,调动后篮球社团的人数比排球社团人数多5人.21.解:甲旅行社总费用为:240+240×5×50%=840(元),乙旅行社总费用为:240×6×60%=864(元)所以甲旅行社优惠.若1名校长,2名学生,那么:甲旅行社总费用为:240+240×2×50%=480(元),乙旅行社总费用为:240×3×60%=432(元)所以乙旅行社优惠.若1名校长,x 名学生,那么:甲旅行社总费用为:240+240×x ×50%=240+120x 乙旅行社总费用为:240×(x +1)×60%=144x +144,①当甲旅行社总费用<乙旅行社总费用得:240+120x <144x +144,解得x >4,所以当学生人数多于4人时,甲旅行社更优惠.②当甲旅行社总费用=乙旅行社总费用得,得240+120x =144x +144,解得x =4,所以当有4名学生时,两家旅行社的收费一样.③当甲旅行社总费用>乙旅行社总费用得:240+120x >144x +144,解得x<4,所以当学生人数少于4人时,乙旅行社更优惠.22.解:(1)∵四边形ABCD是长方形,∴AB=CD,∴两个14圆=半圆,∴C阴影=2(a−b)+2×14×2πb=2a−2b+πb,∴S阴影=S长方形ABCD﹣S半圆=ab−12πb2;(2)将a=4,b=1代入ab−12πb2得:4−π2=4﹣1.57=2.43.23.解:(1)①a与b的差的平方为:(a﹣b)2;②a与b的平方和与a,b两数积的2倍的差为a2+b2﹣2ab;(2)当a=3,b=﹣2时,(a﹣b)2=(3+2)2=52=25,a2+b2﹣2ab=9+4﹣2×3×(﹣2)=9+4+12=25;(3)(a﹣b)2=a2+b2﹣2ab;(4)20222﹣4044+20212=20222﹣2×2022×2021+20212+2×2022×2020=(2022﹣2021)2+2×2022×2020=1+8168880=8168881.24.解:(1)a2﹣4×1 2ah=a2﹣2ah;(2)∵|a﹣4|和|h﹣1|的值互为相反数,∴|a﹣4|+|h﹣1|=0,∴a﹣4=0,h﹣1=0,∴a=4,h=1,∴a2﹣2ah=42﹣2×4×1=16﹣8=8,∴阴影部分的面积为8.。

人教版七年级上册期中考试数学试卷及详细答案解析(共5套)

人教版七年级上册期中考试数学试卷及详细答案解析(共5套)

人教版七年级上册期中考试数学试卷(一)一、填空题(简洁的结果,表达的是你敏锐的思维,需要的是细心!每小题3分,共30分)1.水位上升30cm记作+30cm,那么﹣16cm表示.2.在月球表面,白天,阳光垂直照射的地方温度高达+127℃;夜晚,温度可降至﹣183℃.则月球表面昼夜的温差为℃.3.用“<”“=”或“>”填空:﹣(﹣1)﹣|﹣1|.4.据测试,拧不紧的水龙头每秒会滴下2滴水,每滴水约0.05毫升,小明同学在洗手后,没有把水龙头拧紧,当小明离开4小时后水龙头滴下的水用科学记数法表示为毫升.5.近似数2.30万精确到位.6.如果一个负数的平方等于它的相反数,那么这个数是.7.如图所示的日历中,任意圈出一竖列相邻的三个数,设中间一个数为a,则这三个数之和为(用含a的式子表示)日一二三四五六1 2 3 45 6 7 8 9 10 1112 13 14 15 16 17 1819 20 21 22 23 24 2526 27 28 29 30 318.若x p+4x3﹣qx2﹣2x+5是关于x的五次五项式,则﹣p= .9.m、n互为相反数,x、y互为负倒数(乘积为﹣1的两个数),则(m+n)﹣2010﹣2010xy= .10.计算(a+3a+5a+…+2009a)﹣(2a+4a+6a+…+2010a)= .二、精心选一选,慧眼识金!(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中只有一项是正确的)11.下列各组数中,互为相反数的有()①﹣(﹣2)和﹣|﹣2|;②(﹣1)2和﹣12;③23和32;④(﹣2)3和﹣23.A.④B.①②C.①②③D.①②④12.如果a2=(﹣3)2,那么a等于()A.3 B.﹣3 C.±3 D.913.下列各式a2b2,,﹣25,,a2﹣2ab+b2中单项式的个数有()A.4个B.3个C.2个D.1个14.下列说法正确的是()①最大的负整数是﹣1;②数轴上表示数2和﹣2的点到原点的距离相等;③当a≤0时,|a|=﹣a成立;④a+5一定比a大.A.1个B.2个C.3个D.4个15.下列各式中,是二次三项式的是()A.B.32+3+1 C.32+a+ab D.x2+y2+x﹣y16.若﹣3xy2m与5x2n﹣3y8的和是单项式,则m、n的值分别是()A.m=2,n=2 B.m=4,n=1 C.m=4,n=2 D.m=2,n=317.计算(﹣1)2n+(﹣1)2n+1的值是()A.2 B.﹣2 C.±2 D.018.近似数4.50所表示的准确值a的取值范围是()A.4.495≤a<4.505 B.4040≤a<4.60C.4.495≤a≤4.505 D.4.500≤a<4.505619.下面用数学语言叙述﹣b,其中表达不正确的是()A.比a的倒数小b的数B.1除以a的商与b的绝对值的差C.1除以a的商与b的相反数的和D.b与a的倒数的差的相反数20.若a+b<0,ab<0,则下列说法正确的是()A.a、b同号B.a、b异号且负数的绝对值较大C.a、b异号且正数的绝对值较大D.以上均有可能三、解答题(耐心计算,认真推理,表露你萌动的智慧!共60分)21.计算(1)(+3.5)﹣(1.4)﹣(2.5)+(﹣4.6)(2)﹣22÷(﹣4)3+|0.8﹣1|×(2)2;(3)[2﹣(+﹣)×24]÷5×(﹣1)2009(4)x﹣2( x+1 )+3x;(5)3x2+2xy﹣4y2﹣(3xy﹣4y2+3x2);(6)4(x2﹣5x)﹣5(2x2+3x)22.在数轴上表示下列各数,并按从小到大的顺序用“<”将这些数连接起来:2.5,﹣2.5,,0,.23.根据如图所示的数轴,解答下面问题(1)分别写出A、B两点所表示的有理数;(2)请问A、B两点之间的距离是多少?(3)在数轴上画出与A点距离为2的点(用不同于A、B的其它字母表).24.化简求值:已知|a﹣4|+(b+1)2=0,求5ab2﹣[2a2b﹣(4ab2﹣2a2b)]+4a2b 的值.25.如图,梯形的上底为a2+2a﹣10,下底为3a2﹣5a﹣80,高为40.(π取3)(1)用式子表示图中阴影部分的面积;(2)当a=10时,求阴影部分面积的值.26.振子从一点A开始左右来回振动8次,如果规定向右为正,向左为负,这8次振动记录为(单位:毫米):+10,﹣9,+8,﹣6,+7.5,﹣6,+8,﹣7.(1)求振子停止时所在位置距A点有多远?(2)如果每毫米需时间0.02秒,则共用时间多少秒?参考答案与试题解析一、填空题(简洁的结果,表达的是你敏锐的思维,需要的是细心!每小题3分,共30分)1.水位上升30cm记作+30cm,那么﹣16cm表示水位下降了16cm .【考点】正数和负数.【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【解答】解:“正”和“负”相对,所以若水位上升30cm记作+30cm,那么﹣16cm表示水位下降了16cm.故答案为:水位下降了16cm.2.在月球表面,白天,阳光垂直照射的地方温度高达+127℃;夜晚,温度可降至﹣183℃.则月球表面昼夜的温差为310 ℃.【考点】正数和负数.【分析】首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.【解答】解:白天,阳光垂直照射的地方温度高达+127℃,夜晚,温度可降至﹣183℃,所以月球表面昼夜的温差为:127℃﹣(﹣183℃)=310℃.故答案为:310℃.3.用“<”“=”或“>”填空:﹣(﹣1)>﹣|﹣1|.【考点】有理数大小比较.【分析】先依据相反数和绝对值的性质化简各数,然后进行比较即可.【解答】解:﹣(﹣1)=1,﹣|﹣1|=﹣1.∵1>﹣1,∴﹣(﹣1)>﹣|﹣1|.故答案为:>.4.据测试,拧不紧的水龙头每秒会滴下2滴水,每滴水约0.05毫升,小明同学在洗手后,没有把水龙头拧紧,当小明离开4小时后水龙头滴下的水用科学记数法表示为 1.44×103毫升.【考点】科学记数法—表示较大的数.【分析】首先把4小时化为秒,再用时间×0.05×2计算可得答案.【解答】解:0.05×2×4×3600=1440=1.44×103,故答案为:1.44×103.5.近似数2.30万精确到百位.【考点】近似数和有效数字.【分析】近似数2.30万精确到0.01万位,即百位.【解答】解:近似数2.30万精确到百位.故答案为百.6.如果一个负数的平方等于它的相反数,那么这个数是﹣1 .【考点】有理数的乘方;相反数.【分析】设这个数为x(x<0),由于一个负数的平方等于它的相反数得到x2=﹣x,解得x=0或x=﹣1,因此这个数只能为﹣1.【解答】解:设这个数为x(x<0),根据题意得x2=﹣x,x(x+1)=0,∴x=0或x=﹣1,∴这个数为﹣1.故答案为﹣1.7.如图所示的日历中,任意圈出一竖列相邻的三个数,设中间一个数为a,则这三个数之和为3a (用含a的式子表示)日一二三四五六1 2 3 45 6 7 8 9 10 1112 13 14 15 16 17 1819 20 21 22 23 24 2526 27 28 29 30 31【考点】列代数式.【分析】认真观察日历中,竖列相邻的三个数之间的规律,问题即可解决.【解答】解:任意圈出一竖列相邻的三个数,设中间一个数为a,则另外两个数为:a﹣7,a+7,∴这三个数之和=a+a﹣7+a+7=3a.故答案为3a.8.若x p+4x3﹣qx2﹣2x+5是关于x的五次五项式,则﹣p= ﹣5 .【考点】多项式.【分析】根据单项式的系数和次数的定义,多项式的定义求解.【解答】解:∵x p+4x3﹣qx2﹣2x+5是关于x的五次五项式,∴﹣p=﹣5.9.m、n互为相反数,x、y互为负倒数(乘积为﹣1的两个数),则(m+n)﹣2010﹣2010xy= 0 .【考点】有理数的混合运算;相反数;倒数.【分析】利用相反数,负倒数的定义求出m+n,xy与的值,代入原式计算即可求出值.【解答】解:根据题意得:m+n=0,xy=﹣1,即=﹣1,则原式=0﹣2010+2010=0.故答案为:010.计算(a+3a+5a+…+2009a)﹣(2a+4a+6a+…+2010a)= ﹣1005a .【考点】整式的加减.【分析】首先去括号,然后再把化成(a﹣2a)+(3a﹣4a)+(5a﹣6a)+…+,再合并即可.【解答】解:原式=a+3a+5a+…+2009a﹣2a﹣4a﹣6a﹣…﹣2010a,=(a﹣2a)+(3a﹣4a)+(5a﹣6a)+…+,=﹣a+(﹣a)+(﹣a)+(﹣a)+…+(﹣a),=﹣1005a,故答案为:﹣1005a.二、精心选一选,慧眼识金!(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中只有一项是正确的)11.下列各组数中,互为相反数的有()①﹣(﹣2)和﹣|﹣2|;②(﹣1)2和﹣12;③23和32;④(﹣2)3和﹣23.A.④B.①②C.①②③D.①②④【考点】有理数的乘方;相反数;绝对值.【分析】根据a n表示n个a相乘,而﹣an表示an的相反数,而(﹣a)2n=a2n,(﹣a)2n+1=﹣a2n+1(n是整数)即可对各个选项中的式子进行化简,然后根据相反数的定义即可作出判断.【解答】解:①﹣(﹣2)=2,﹣|﹣2|=﹣2,故互为相反数;②(﹣1)2=1,﹣12=﹣1,故互为相反数;③23=8,32=9不互为相反数;④(﹣2)3=﹣8,﹣23=﹣8,相等,不是互为相反数.故选B.12.如果a2=(﹣3)2,那么a等于()A.3 B.﹣3 C.±3 D.9【考点】有理数的乘方.【分析】先求出(﹣3)2的值,∵32=9,(﹣3)2=9,可求出a的值.【解答】解:∵a2=(﹣3)2=9,且(±3)2=9,∴a=±3.故选C.13.下列各式a2b2,,﹣25,,a2﹣2ab+b2中单项式的个数有()A.4个B.3个C.2个D.1个【考点】单项式.【分析】根据单项式的定义进行解答即可.【解答】解: a2b2,是数与字母的积,故是单项式;,,a2﹣2ab+b2中是单项式的和,故是多项式;﹣25是单独的一个数,故是单项式.故共有2个.故选C.14.下列说法正确的是()①最大的负整数是﹣1;②数轴上表示数2和﹣2的点到原点的距离相等;③当a≤0时,|a|=﹣a成立;④a+5一定比a大.A.1个B.2个C.3个D.4个【考点】有理数大小比较;数轴.【分析】根据实数的分类以及绝对值的性质即可作出判断.【解答】解:①最大的负整数是﹣1,正确;②数轴上表示数2和﹣2的点到原点的距离相等,正确;③当a≤0时,|a|=﹣a成立,正确;④a+5一定比a大,正确.故选D15.下列各式中,是二次三项式的是()A.B.32+3+1 C.32+a+ab D.x2+y2+x﹣y【考点】多项式.【分析】由于多项式次数是多项式中次数最高的项的次数,项数是多项式中所有单项式的个数,由此可确定所有答案的项数和次数,然后即可作出选择.【解答】解:A、a2+﹣3是分式,故选项错误;B、32+3+1是常数项,可以合并,故选项错误;C、32+a+ab是二次三项式,故选项正确;D、x2+y2+x﹣y是二次四项式,故选项错误.故选C.16.若﹣3xy2m与5x2n﹣3y8的和是单项式,则m、n的值分别是()A.m=2,n=2 B.m=4,n=1 C.m=4,n=2 D.m=2,n=3【考点】解二元一次方程组;同类项.【分析】两个单项式的和为单项式,则这两个单项式是同类项再根据同类项的定义列出方程组,即可求出m、n的值.【解答】解:由题意,得,解得.故选C.17.计算(﹣1)2n+(﹣1)2n+1的值是()A.2 B.﹣2 C.±2 D.0【考点】有理数的乘方.【分析】根据有理数乘方的含义,得(﹣1)2n+1=﹣1,(﹣1)2n=1,再计算求和即可.【解答】解:(﹣1)2n+(﹣1)2n+1=1+(﹣1)=0.故选D.18.近似数4.50所表示的准确值a的取值范围是()A.4.495≤a<4.505 B.4040≤a<4.60C.4.495≤a≤4.505 D.4.500≤a<4.5056【考点】近似数和有效数字.【分析】根据近似数的精确度求解.【解答】解:近似数4.50所表示的准确值a的取值范围是4.495≤a<4.505.故选A.19.下面用数学语言叙述﹣b,其中表达不正确的是()A.比a的倒数小b的数B.1除以a的商与b的绝对值的差C.1除以a的商与b的相反数的和D.b与a的倒数的差的相反数【考点】代数式.【分析】根据代数式,可得代数式的表达意义.【解答】解:用数学语言叙述﹣bA、比a的倒数小b的数,故A正确;B、1除以a的商与b的绝对值的差,故B错误;C、1除以a的商与b的相反数的和,故C正确;D、b与a的倒数的差的相反数,故D正确;故选:B.20.若a+b<0,ab<0,则下列说法正确的是()A.a、b同号B.a、b异号且负数的绝对值较大C.a、b异号且正数的绝对值较大D.以上均有可能【考点】有理数的乘法;有理数的加法.【分析】根据有理数的加法和有理数的乘法运算法则进行判断即可.【解答】解:∵ab<0,∴a、b异号,∵a+b<0,∴负数的绝对值较大,综上所述,a、b异号且负数的绝对值较大.故选B.三、解答题(耐心计算,认真推理,表露你萌动的智慧!共60分)21.计算(1)(+3.5)﹣(1.4)﹣(2.5)+(﹣4.6)(2)﹣22÷(﹣4)3+|0.8﹣1|×(2)2;(3)[2﹣(+﹣)×24]÷5×(﹣1)2009(4)x﹣2( x+1 )+3x;(5)3x2+2xy﹣4y2﹣(3xy﹣4y2+3x2);(6)4(x2﹣5x)﹣5(2x2+3x)【考点】整式的加减;有理数的混合运算.【分析】利用实数的运算法则和整式的运算法则即可求出答案.【解答】解:(1)原式=3.5﹣2.5﹣1.4﹣4.6=1﹣6=﹣5;(2)原式=﹣4÷(﹣64)+0.2×=+=;(3)原式=[﹣(9+4﹣18)]÷5×(﹣1)=÷5×(﹣1)=﹣;(4)原式=x﹣2x﹣2+3x=2x﹣2;(5)原式=3x2+2xy﹣4y2﹣3xy+4y2﹣3x2=﹣xy;(6)原式=4x2﹣20x﹣10x2﹣15x=﹣6x2﹣35x;22.在数轴上表示下列各数,并按从小到大的顺序用“<”将这些数连接起来:2.5,﹣2.5,,0,.【考点】有理数大小比较;数轴.【分析】先在数轴上表示出各数,再按照从左到右的顺序用“<”连接起来即可.【解答】解:各点在数轴上的位置如图所示:故﹣2.5<﹣<0<1<2.5.23.根据如图所示的数轴,解答下面问题(1)分别写出A、B两点所表示的有理数;(2)请问A、B两点之间的距离是多少?(3)在数轴上画出与A点距离为2的点(用不同于A、B的其它字母表).【考点】数轴.【分析】(1)读出数轴上的点表示的数值即可;(2)根据两点的距离公式,即可求出A、B两点之间的距离;(3)与点A的距离为2的点有两个,一个向左,一个向右.【解答】解:(1)根据所给图形可知A:1,B:﹣2;(2)依题意得:AB之间的距离为:1+2=3;(3)设这两点为C、D,则这两点为C:1+2=3,D:1﹣2=﹣1.如图所示:24.化简求值:已知|a﹣4|+(b+1)2=0,求5ab2﹣[2a2b﹣(4ab2﹣2a2b)]+4a2b 的值.【考点】整式的加减—化简求值;非负数的性质:绝对值;非负数的性质:偶次方.【分析】根据非负数的性质,可求出a、b的值,然后再去括号、合并同类项,对原代数式进行化简,最后把a,b的值代入计算即可.【解答】解:∵|a﹣4|+(b+1)2=0,∴a=4,b=﹣1;原式=5ab2﹣(2a2b﹣4ab2+2a2b)+4a2b=5ab2﹣4a2b+4ab2+4a2b=9ab2=36.25.如图,梯形的上底为a2+2a﹣10,下底为3a2﹣5a﹣80,高为40.(π取3)(1)用式子表示图中阴影部分的面积;(2)当a=10时,求阴影部分面积的值.【考点】列代数式;代数式求值.【分析】(1)根据梯形的面积=(上底+下底)×高,阴影部分的面积等于梯形的面积减去半圆的面积,列式进行计算即可得解;(2)把a=10代入(1)中的代数式进行计算即可得解.【解答】解:(1)∵梯形的上底为a2+2a﹣10,下底为3a2﹣5a﹣80,高为40,半圆的直径为4a,∴阴影部分的面积=(a2+2a﹣10+3a2﹣5a﹣80)×40﹣π()2,=80a2﹣60a﹣1800﹣2a2π,=80a2﹣60a﹣1800﹣2a2×3,=74a2﹣60a﹣1800;(2)当a=10时,74a2﹣60a﹣1800=74×102﹣60×10﹣1800=5000.26.振子从一点A开始左右来回振动8次,如果规定向右为正,向左为负,这8次振动记录为(单位:毫米):+10,﹣9,+8,﹣6,+7.5,﹣6,+8,﹣7.(1)求振子停止时所在位置距A点有多远?(2)如果每毫米需时间0.02秒,则共用时间多少秒?【考点】正数和负数.【分析】(1)根据有理数的加法,可得答案;(2)根据一次用的时间乘以次数,可得答案.【解答】解:(1)+10+(﹣9)+8+(﹣6)+7.5+(﹣6)+8+(﹣7)=5.5毫米,答:振子停止时所在位置距A点5.5毫米;(2)0.02×(10+|﹣9|+8+|﹣6|+7.5+|﹣6|+8+|﹣7|)=0.02×61.5=1.23秒.答:共用时间1.23秒.人教版七年级上册期中考试数学试卷(二)一.精心选一选(本大题共l0小题,每题3分,共30分.在每题所给出的四个选项中,只有一项是符合题意的,把所选项前的字母代号填在卷Il的答题栏内.相信你一定能选对!)1.的绝对值是()A.B.﹣C.D.﹣2.一只蜗牛从深度为10米的井底向上爬3米,然后向下爬1米,接着又向上爬3米,然后又向下爬I米,则此时蜗牛离井口的距离为()A.4米B.5米C.6米D.7米3.下列说法中正确的是()A.整数都是非负数B.带有负号的数一定是负数C.分数都是有理数D.相反数是它本身的数是0和14.2016年10月10日,山东移动4G用户突破3000万,3000万用科学记数法可表示为()A.0.3×108B.3×107C.3×106D.3×1035.若有理数a,b满足a+b<0,ab<0,则()A.a,b都是正数B.a,b都是负数C.a,b中一个正数,一个负数,且正数的绝对值大于负数的绝对值D.a,b中一个正数,一个负数,且负数的绝对值大于正数的绝对值6.下列说法中正确的个数是()①1是单项式;②单项式﹣的系数是﹣1,次数是2;③多项式x2+x﹣1的常数项是1;④多项式x2+2xy+y2的次数是2.A.1个B.2个C.3个D.4个7.与﹣a2b是同类项的是()A.2ab2B.﹣3a2C.ab D.8.多项式x+2y与2x﹣y的差是()A.﹣x+3y B.3x+y C.﹣x+y D.﹣x﹣y9.已知a﹣2b+1的值是﹣l,则(a﹣2b)2+2a﹣4b的值是()A.﹣4 B.﹣l C.0 D.210.如图是用大小相等的小正方形拼成的一组图案,观察并探索:第100个图案中有小正方形的个数是()A.393 B.397 C.401 D.405二、细心填一填(本大题共有5小题,每题3分,共15分.请把结果直接填在题中的横线上.只要你仔细运算,积极思考,相信你一定能填对!)11.一个数的倒数是它本身,这个数是.12.由四舍五入法得到的近似数10.560精确到位.13.若|x﹣1|+(y+2)2=0,则(x+y)2017= .14.请写出一个只含有想x,y两个字母的三次四项式.15.如图,半圆的半径为r,直角三角形的两条直角边分别为a,b,则图中阴影部分的面积是.三、认真答一答(本大题共7题,满分55分.只要你认真审题,细心运算,一定能解答正确!解答应写出文字说明、证明过程或推演过程)16.计算题(1)(﹣2)×(﹣5)+|﹣3|÷(2)﹣23×÷(﹣)2(3)(2﹣1﹣)÷(﹣)17.如图是一个梯形硬纸板,上底为a,下底为2a,一腰为a,另一腰为b(其中b>a),如图所示,用两张同样的梯形纸板可以拼成一个大的梯形,也可以拼成一个长方形.(1)请在方框中画出你拼出的大梯形和长方形.(2)计算拼成的大梯形和长方形的周长.18.化简:5x+(2x+y)﹣(x﹣4y).(2)先化简,再求值:(2x2﹣1+x)﹣2(x﹣x2﹣3),其中x=﹣.19.已知:M=x3﹣3xy+2x+1,N=﹣3x+xy,求多项式3M+2N,并计算当x=﹣1,y=时,3M+2N的值.20.一辆货车从仓库0出发在东西街道上运送水果,规定向东为正方向,依次到达的5个销售地点分别为A,B,C,D,E,最后回到仓库0.货车行驶的记录(单位:千米)如下:+1,+3,﹣6,﹣l,﹣2,+5.请问:(1)请以仓库0为原点,向东为正方向,选择适当的单位长度,画出数轴,并标出A,B,C,D,E的位置;(2)试求出该货车共行驶了多少千米?(3)如果货车运送的水果以l00千克为标准重量,超过的千克数记为正数,不足的千克数记为负数,则运往A,B,C,D,E五个地点的水果重量可记为:+50,﹣l5,+25,﹣l0,﹣15,则该货车运送的水果总重量是多少千克?21.小明和小红在一起玩数学小游戏,他们规定:a*b=a2﹣2ab+b2;=a+b﹣c; =ad﹣bc.请你和他们一起按规定计算:(1)2*(﹣5)的值;(2)(3).22.我国出租车的收费标准因地而异,济宁市规定:起步价为6元,3千米之后每千米1.4元;济南市规定:起步价8元,3千米之后每千米1.2元.(1)求济宁的李先生乘出租车2千米,5千米应付的车费;(2)写出在济宁乘出租车行x千米时应付的车费;(3)当行驶路程超过3千米,不超过l3千米时,求在济南、济宁两地坐出租车的车费相差多少?(4)如果李先生在济南和济宁乘出租车所付的车费相等,试估算出李先生乘出租车多少千米(直接写出答案,不必写过程).参考答案与试题解析一.精心选一选(本大题共l0小题,每题3分,共30分.在每题所给出的四个选项中,只有一项是符合题意的,把所选项前的字母代号填在卷Il的答题栏内.相信你一定能选对!)1.的绝对值是()A.B.﹣C.D.﹣【考点】绝对值.【分析】根据正数的绝对值等于它本身即可求解.【解答】解:的绝对值是.故选A.【点评】本题主要考查绝对值的定义,规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.一只蜗牛从深度为10米的井底向上爬3米,然后向下爬1米,接着又向上爬3米,然后又向下爬I米,则此时蜗牛离井口的距离为()A.4米B.5米C.6米D.7米【考点】有理数的减法;有理数的加法.【专题】常规题型.【分析】先定义向上爬为正,向下爬为负,用井深减去各个数就得到此时蜗牛离井口的距离.【解答】解:向上爬记作“+”,往下爬记作“﹣”蜗牛离井口的距离为10﹣3﹣(﹣1)﹣3﹣(﹣1)=10﹣3+1﹣3+1=6(米)故选C.【点评】本题考查了有理数的加减运算.计算有理数的加减,先把减法转化为加法,可以运用加法的交换律和结合律.3.下列说法中正确的是()A.整数都是非负数B.带有负号的数一定是负数C.分数都是有理数D.相反数是它本身的数是0和1【考点】相反数;有理数.【分析】根据相反数的概念解答即可.【解答】解:A、整数有负整数、0、正整数,故A错误;B、小于零的数是负数,故B错误;C、分数都是有理数,故C正确;D、相反数是它本身的数是非负数,故D错误;故选:C.【点评】本题考查了相反数的意义:只有符号不同的两个数互为相反数,0的相反数是0.4.2016年10月10日,山东移动4G用户突破3000万,3000万用科学记数法可表示为()A.0.3×108B.3×107C.3×106D.3×103【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:3000万用科学记数法可表示为3×107,故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.若有理数a,b满足a+b<0,ab<0,则()A.a,b都是正数B.a,b都是负数C.a,b中一个正数,一个负数,且正数的绝对值大于负数的绝对值D.a,b中一个正数,一个负数,且负数的绝对值大于正数的绝对值【考点】有理数的乘法;正数和负数;绝对值;有理数的加法.【分析】两有理数相乘,同号得正,异号得负,因为ab<0,所以a、b异号,再根据a+b<0进一步判定负数的绝对值大于正数的绝对值.【解答】解:∵ab<0,∴a、b异号,∵a+b<0,∴负数的绝对值大于正数的绝对值.故选:D.【点评】考查了有理数的乘法,有理数的加法,本题主要利用两有理数相乘,同号得正,异号得负.6.下列说法中正确的个数是()①1是单项式;②单项式﹣的系数是﹣1,次数是2;③多项式x2+x﹣1的常数项是1;④多项式x2+2xy+y2的次数是2.A.1个B.2个C.3个D.4个【考点】多项式;单项式.【分析】根据单项式和多项式的系数、次数、项数的定义可得.【解答】解:①单独的数字或字母是单项式,正确;②单项式﹣的系数是﹣,次数是2,错误;③多项式x2+x﹣1的常数项是﹣1,错误;④多项式x2+2xy+y2的次数是2,正确;故选:B.【点评】本题主要考查单项式和多项式,熟练掌握单项式的系数、次数和多项式的项数、次数、常数项等概念是关键.7.与﹣a2b是同类项的是()A.2ab2B.﹣3a2C.ab D.【考点】同类项.【分析】根据同类项的定义:所含字母相同,并且相同字母的指数也相同,结合选项进行判断.【解答】解:A、相同字母的指数不同不是同类项,故A错误;B、字母不同不是同类项,故B错误;C、相同字母的指数不同不是同类项,故C错误;D、字母相同,相同字母的指数相同,故D正确;故选:D.【点评】本题考查了同类项的定义,解答本题的关键是掌握同类项定义中的两个“相同”:相同字母的指数相同.8.多项式x+2y与2x﹣y的差是()A.﹣x+3y B.3x+y C.﹣x+y D.﹣x﹣y【考点】整式的加减.【分析】根据题意对两个多项式作差即可.【解答】解:(x+2y)﹣(2x﹣y)=x+2y﹣2x+y=﹣x+3y故选(A)【点评】本题考查多项式运算,要注意多项式参与运算时,需要对该多项式添加括号.9.已知a﹣2b+1的值是﹣l,则(a﹣2b)2+2a﹣4b的值是()A.﹣4 B.﹣l C.0 D.2【考点】代数式求值.【分析】先化简条件得a﹣2b=﹣2,再将(a﹣2b)2+2a﹣4b整理,代值即可得出结论.【解答】解:∵a﹣2b+1的值是﹣l,∴a﹣2b+1=﹣1,∴a﹣2b=﹣2,∴(a﹣2b)2+2a﹣4b=(a﹣2b)2+2(a﹣2b)=4+2×(﹣2)=0,故选C.【点评】此题是代数式求值,主要考查了整式的加减、整体思想,整体代入是解本题的关键.10.如图是用大小相等的小正方形拼成的一组图案,观察并探索:第100个图案中有小正方形的个数是()A.393 B.397 C.401 D.405【考点】规律型:图形的变化类.【分析】观察图形可知后面一个图形比前面一个图形多4个小正方形,所以可得规律为:第n个图形中共有4(n﹣1)+1个小正方形.【解答】解:由图片可知:规律为小正方形的个数=4(n﹣1)+1=4n﹣3.n=100时,小正方形的个数=4n﹣3=397.故选B.【点评】此题考查了规律型:图形的变化,是找规律题,目的是培养同学们观察、分析问题的能力.注意由特殊到一般的分析方法,此题的规律为:第n个图形中共有4(n﹣1)+1个小正方形.二、细心填一填(本大题共有5小题,每题3分,共15分.请把结果直接填在题中的横线上.只要你仔细运算,积极思考,相信你一定能填对!)11.一个数的倒数是它本身,这个数是1或﹣1 .【考点】倒数.【专题】计算题.【分析】根据倒数的定义得倒数等于它本身只有1和﹣1.【解答】解:1或﹣1的倒数等于它本身.故答案为1或﹣1.【点评】本题考查了倒数:a的倒数为.12.由四舍五入法得到的近似数10.560精确到千分位.【考点】近似数和有效数字.【分析】根据近似数的精确度求解.【解答】解:近似数10.560精确到千分位.故答案为千分位.【点评】本题考查了近似数和有效数字:从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.13.若|x﹣1|+(y+2)2=0,则(x+y)2017= ﹣1 .【考点】非负数的性质:偶次方;非负数的性质:绝对值.【分析】首先根据非负数的性质:几个非负数的和等于0,则每个数等于0,从而列方程求得x和y的值,进而求解.【解答】解:根据题意得:x﹣1=0,y+2=0,解得:x=1,y=﹣2,则原式=(1﹣2)2017=﹣1.故答案是:﹣1.【点评】本题考查了非负数的性质:几个非负数的和等于0,则每个数等于0,理解性质是关键.14.请写出一个只含有想x,y两个字母的三次四项式x3+xy+y+1(答案不唯一).【考点】多项式.【分析】由多项式的定义即可求出答案.【解答】解:故答案为:x3+xy+y+1(答案不唯一)【点评】本题考查多项式的概念,属于基础题型.15.如图,半圆的半径为r,直角三角形的两条直角边分别为a,b,则图中阴影部分的面积是πr2﹣ab .【考点】列代数式.【分析】利用大图形面积减去小图形面积即可求出答案.【解答】解:阴影部分面积=πr2﹣ab故答案为:πr2﹣ab【点评】本题考查列代数式,涉及圆面积公式,三角形面积公式.三、认真答一答(本大题共7题,满分55分.只要你认真审题,细心运算,一定能解答正确!解答应写出文字说明、证明过程或推演过程)16.计算题(1)(﹣2)×(﹣5)+|﹣3|÷(2)﹣23×÷(﹣)2(3)(2﹣1﹣)÷(﹣)【考点】有理数的混合运算.【专题】常规题型;实数.【分析】(1)原式先计算乘除运算,再计算加减运算即可得到结果;(2)原式先计算乘方运算,再计算乘除运算即可得到结果;(3)原式利用除法法则变形,再利用乘法分配律计算即可得到结果.【解答】解:(1)原式=10+5=15;(2)原式=﹣8××=﹣8;(3)原式=(﹣+)×(﹣)=﹣3+2﹣=﹣1.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.17.如图是一个梯形硬纸板,上底为a,下底为2a,一腰为a,另一腰为b(其中b>a),如图所示,用两张同样的梯形纸板可以拼成一个大的梯形,也可以拼成一个长方形.(1)请在方框中画出你拼出的大梯形和长方形.(2)计算拼成的大梯形和长方形的周长.【考点】图形的剪拼;矩形的判定与性质;梯形.【分析】(1)直接利用已知图形进而拼凑出梯形与长方形;(2)直接利用已知图形得出其周长.【解答】解:(1)如图所示:;(2)大梯形的周长为:2a+4a+2b=6a+2b(cm),长方形的周长为:2(3a+a)=8a(cm).【点评】此题主要考查了图形的剪拼,正确得出符合题意的图形是解题关键.18.(1)化简:5x+(2x+y)﹣(x﹣4y).(2)先化简,再求值:(2x2﹣1+x)﹣2(x﹣x2﹣3),其中x=﹣.【考点】整式的加减—化简求值.【专题】计算题;整式.【分析】(1)原式去括号合并即可得到结果;(2)原式去括号合并得到最简结果,把x的值代入计算即可求出值.【解答】解:(1)原式=5x+2x+y﹣x+4y=6x+5y;(2)原式=2x2﹣1+x﹣2x+2x2+6=4x2﹣x+5,当x=﹣时,原式=1++5=6.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.19.已知:M=x3﹣3xy+2x+1,N=﹣3x+xy,求多项式3M+2N,并计算当x=﹣1,y=时,3M+2N的值.【考点】整式的加减—化简求值.【专题】计算题;整式.【分析】把M与N代入3M+2N中,去括号合并得到最简结果,将x与y的值代入计算即可求出值.【解答】解:∵M=x3﹣3xy+2x+1,N=﹣3x+xy,∴3M+2N=3(x3﹣3xy+2x+1)+2(﹣3x+xy)=3x3﹣9xy+6x+3﹣6x+2xy=3x3﹣7xy+3,当x=﹣1,y=时,原式=﹣3++3=.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.20.一辆货车从仓库0出发在东西街道上运送水果,规定向东为正方向,依次到达的5个销售地点分别为A,B,C,D,E,最后回到仓库0.货车行驶的记录(单位:千米)如下:+1,+3,﹣6,﹣l,﹣2,+5.请问:(1)请以仓库0为原点,向东为正方向,选择适当的单位长度,画出数轴,并标出A,B,C,D,E的位置;(2)试求出该货车共行驶了多少千米?(3)如果货车运送的水果以l00千克为标准重量,超过的千克数记为正数,不足的千克数记为负数,则运往A,B,C,D,E五个地点的水果重量可记为:+50,﹣l5,+25,﹣l0,﹣15,则该货车运送的水果总重量是多少千克?【考点】数轴;正数和负数.【分析】(1)根据数轴的三要素画出数轴,并根据题意在数轴上表示出A、B、C、D、E的位置;(2)求出行驶记录的数据的绝对值的和即可;(3)根据有理数的加法进行计算即可.【解答】解:(1如图所示:取1个单位长度表示1千米,;。

人教版七年级数学上册第二章《整式的加减》综合测试卷(含答案)

人教版七年级数学上册第二章《整式的加减》综合测试卷(含答案)

人教版七年级数学上册第二章《整式的加减》综合测试卷(含答案)一、选择题1.已知2x n+1y3与13x4y3是同类项,则n的值是()A.2B.3C.4D.52.[2020·重庆]已知a+b=4,则多项式1+a2+b2的值为()A.3B.1C.0D.-13.[2019·黄石]化简13(9x-3)-2(x+1)的结果是 () A.2x-2 B.x+1C.5x+3D.x-34.[2020·孝感月考]下列说法中,正确的有()①3πxy5的系数是35;②近似数1.8与近似数1.80的精确度一样;③把479954873精确到万位得47995;④-22ab2的次数是5;⑤a-b和xy2都是整式;⑥近似数4.52×104精确到百分位.A.1个B.2个C.3个D.4个5.如图,把六张形状、大小完全相同的小长方形卡片(如图①)不重叠地放在一个底面为长方形(长为7 cm,宽为6 cm)的盒子底部(如图②),盒子底面未被卡片覆盖的部分用阴影表示,则图②中阴影部分的周长是()A.16 cmB.24 cmC.28 cmD.32 cm二、填空题6.[2020·绵阳]若多项式xy|m-n|+(n-2)x2y2+1是关于x,y的三次多项式,则mn= .7.[2020·十堰]已知x+2y=3,则1+2x+4y= .8.如图所示,在长方形ABCD中,横向涂色部分是长方形,另一涂色部分是平行四边形,则空白部分的面积是.(用字母a,b,c表示)9.当x=1时,px3+qx-1=2021,则当x=-1时,px3+qx+1= .10.一种商品每件成本a元,原来按成本增加30%定出售价,现在由于库存积压减价,按原价的80%出售,则现售价为每件元.11.[2020·山西]如图是一组有规律的图案,它们是由边长相等的正三角形组合而成,第1个图案有4个三角形,第2个图案有7个三角形,第3个图案有10个三角形……按此规律摆下去,第n个图案有个三角形(用含n的式子表示).三、解答题.12.先化简,再求值:2(a2b+ab2)-3(a2b-1)-2ab2-4,其中a=2021,b=1202113.如图,长方形的长为a,宽为b.(1)求阴影部分的面积;(用字母a,b表示)(2)当a=5,b=3时,求阴影部分的面积.14.已知A=-6x2y+4xy2-5,B=-3x2y+2xy2-3.(1)求A-B的值,其中x=1,y=-2;(2)A-2B的值与x,y的取值是否有关系?请说明理由.15.某中学七年级一班在一次活动中要分为四个组,其中第一组有x人,第二组人倍少5,第三组人数比第一、二组人数的和少15,第四组人数数比第一组人数的32与第一组人数的2倍的和是34.(1)用含x的式子表示第二、三、四组的人数,把答案填在下表相应的位置;第一组第二组第三组第四组x12(2)求x=12时第二、三、四组的人数,把答案填在上表相应的位置;(3)求七年级一班的总人数(用含x的式子表示),并求当x=10时,该班的总人数;(4)x能否等于13?x能否等于6?请说明理由.16.某公司要设置一个会议室,需要购买办公桌和椅子,办公桌需要x张,椅子的数量比办公桌数量的3倍多5把.办事员小王在兴旺家具城找到了合适的桌椅并要在这里购买,小王看中的办公桌每张标价1000元,椅子每把标价60元.在“双十一”促销期间这个家具城提供了两种优惠方案:①办公桌和椅子都按标价的9折付款;②每买1张办公桌送2把椅子.(1)若小王分别按方案①②购买,则各需付款多少元?(用含x的式子表示)方案①需付款元;方案②需付款元.(2)若x=10,只能选择一种方案来购买,通过计算说明按哪种方案购买较为合算.(3)若两种优惠方案可同时使用,当x=10时,你能给出一种更省钱的购买方案吗?若能,请写出你的购买方案,并算出需要的总费用;若不能,请说明理由.参考答案1.B [解析] 因为2x n+1y 3与13x 4y 3是同类项, 所以n+1=4. 解得n=3. 故选B .2.A [解析] 当a+b=4时, 原式=1+12(a+b )=1+12×4=1+2=3. 故选A . 3.D4.A [解析] ①3πxy 5的系数是3π5,故不正确;②1.8精确到十分位,1.80精确到百分位,所以近似数1.8与近似数1.80的精确度不一样,故不正确;③479954873精确到万位是4.7995×108,故不正确; ④-22ab 2的次数是3,故不正确; ⑤a-b 和xy2都是整式,正确;⑥2在原数的百位上,所以近似数4.52×104精确到百位,故不正确.故选A . 5.B [解析] 设小长方形的长为x cm,宽为y cm(x>y ), 则根据题意,得3y+x=7.阴影部分的周长为2(6-3y+6-x )+2×7=12+2(-3y-x )+12+14 =38+2×(-7) =24(cm). 故选B .6.0或8 [解析] 因为多项式xy |m-n|+(n-2)x 2y 2+1是关于x ,y 的三次多项式, 所以n-2=0,1+|m-n|=3. 所以n=2,|m-n|=2. 所以m-n=2或n-m=2. 所以m=4或m=0.所以mn=0或mn=8. 故答案为:0或8.7.7 [解析] 因为x+2y=3, 所以2(x+2y )=2x+4y=2×3=6. 所以1+2x+4y=1+6=7. 故答案为:7. 8.(a-c )(b-c )9.-2021 [解析] 将x=1代入px 3+qx-1=2021,得p+q-1=2021, 即p+q=2022.把x=-1代入px 3+qx+1,得-p-q+1=-(p+q )+1=-2022+1=-2021. 10.1.04a [解析] 依题意得a ×(1+30%)×80%=1.04a (元). 故现售价为每件1.04a 元.11.(3n+1) [解析] 第1个图案有4个三角形,即4=3×1+1; 第2个图案有7个三角形,即7=3×2+1; 第3个图案有10个三角形,即10=3×3+1; ……按此规律摆下去,第n 个图案有(3n+1)个三角形. 故答案为:(3n+1).12.解:原式=2a 2b+2ab 2-3a 2b+3-2ab 2-4=-a 2b-1. 当a=2021,b=12021时,原式=-2021-1=-2022. 13.解:(1)S 阴影部分=S 长方形-4S 扇形=ab-4×14×π12b 2 =ab-14πb 2.(2)把a=5,b=3代入,得ab-14πb 2=5×3-14π×32=15-94π.14.解:(1)A-B=(-6x 2y+4xy 2-5)-(-3x 2y+2xy 2-3)=-6x 2y+4xy 2-5+3x 2y-2xy 2+3 =-3x 2y+2xy 2-2. 当x=1,y=-2时,原式=-3×12×(-2)+2×1×(-2)2-2=6+8-2=12. (2)A-2B的值与x ,y 的取值无关.理由:因为A-2B=(-6x 2y+4xy 2-5)-2(-3x 2y+2xy 2-3) =-6x 2y+4xy 2-5+6x 2y-4xy 2+6=1, 所以A-2B 的值与x ,y 的取值无关. 15.解:(1)(2)填表如下:第一组第二组第三组第四组 x 32x-5 52x-20 34-2x 12131010(3)x+32x-5+52x-20+(34-2x )=3x+9,即七年级一班的总人数为(3x+9)人.当x=10时,3x+9=30+9=39,即当x=10时,该班的总人数为39人. (4)x 不能等于13,也不能等于6.理由: 由题意,得32x-5,52x-20均为正整数. 若x=13,则32x-5=19.5-5=14.5.因为14.5不是整数,所以x 不能等于13. 若x=6,则52x-20=15-20=-5. 因为-5是负数,所以x 不能等于6.16.解:(1)方案①需付款0.9[1000x+60(3x+5)]=(1062x+270)元; 方案②需付款1000x+60(3x+5-2x )=(1060x+300)元. (2)当x=10时,按方案①购买所需费用为1062×10+270=10620+270=10890(元); 按方案②购买所需费用为1060×10+300=10600+300=10900(元).因为10890<10900,所以按方案①购买较为合算.(3)能.先按方案②购买办公桌10张,获赠20把椅子,再按方案①购买3×10+5-20=15(把)椅子更为省钱.先按方案②购买10张办公桌,所需费用为1000×10=10000(元),再按方案①购买15把椅子所需费用为60×0.9×15=810(元),所以总费用为10000+810=10810(元).所以此种购买方案更省钱,需要的总费用为10810元.。

7年级数学上册(人教版)精品训练及答案—第3章一元一次方程综合练习

7年级数学上册(人教版)精品训练及答案—第3章一元一次方程综合练习

《一元一次方程》综合练习一. 希望你能填得又快又准 1. 若x =2是方程2x -a =7的解,那么a =_______.2. |2y-x|+|x-2|=0,则x=________,y=__________ .3. 若9a x b 7 与 – 7a3x –4b 7是同类项,则x= .4.一个两位数,个位上的数字是十位上数字的3倍,它们的和是12,那么这个两位数是______.5.关于x 的方程2x -4=3m 和x +2=m 有相同的根,那么m =_________6. x 关于的方程是一元一次方程,那么()|m |m x m ++==+13027. 若m -n =1,那么4-2m +2n 的值为___________8. 某校教师假期外出考察4天,已知这四天的日期之和是42,那么这四天的日期分别是______________二. 相信自己,精心选一选,其中只有一个结论是正确的。

9. 下列方程中,一元一次方程是( )A. 2X=1B. 3X –5C. 3+7=10D. X 2+X=1 10.下列变形正确的是( )A. 4x – 5 = 3x+2变形得4x –3x = –2+5B. 32x – 1 = 21x+3变形得4x –6 = 3x+18C. 3(x –1) = 2(x+3) 变形得3x –1 = 2x+6D. 3x = 2变形得x =2311. 若x =2是方程k (2x -1)=kx +7的解,那么k 的值是( ) A. 1 B. -1 C. 7 D. -712. 某商店上月的营业额是m 万元,本月比上月增长15%,那么本月的营业额是( )A. (m +1)·15%万元B. 15%万元C. (1+15%)m 万元D. (1+15%)2m 万元13. 某班分两组去两处植树,第一组22人,第二组26人。

现第一组在植树中遇到困难,需第二组支援.问第二组调多少人去第一组才能使第一组的人数是第二组的2倍?设抽调x 人则可列方程 ( )A.26222⨯=+xB.()x x -=+26222C.()x x -=+26222D.()x -=2622214. 小明的爸爸买回两块地毯,他告诉小明小地毯的面积正好是大地毯面积的31,且两块地毯的面积和为20平方米,小明很快便得出了两块地毯的面积分别为(单位:平方米)( ) A. 340,320B. 30, 10C. 15, 5D.12,8 15. 下列变形中,正确的是()A 、若ac=bc ,那么a=b 。

人教版数学七年级上册第一学期期中测试(部分含答案)共3份

人教版数学七年级上册第一学期期中测试(部分含答案)共3份

七年级上册期中考试综合训练(附答案)一.选择题1.下列语句:①一个数的绝对值一定是正数;②﹣a一定是一个负数;③没有绝对值为﹣3的数;④若﹣a=a,则a=0;⑤倒数等于本身的数是1.正确的有()个.A.1B.2C.3D.42.如果a与1互为相反数,那么a=()A.2B.﹣2C.1D.﹣13.有理数a,b,c在数轴上对应的点的位置如图所示,则下列式子正确的是()A.a>b B.|a﹣b|=a﹣b C.﹣a<﹣b<c D.b+c>0 4.x﹣y的相反数是()A.x+y B.﹣x﹣y C.y﹣x D.x﹣y5.某种鞋子进价为每双a元,销售利润率为20%,则这种鞋子的销售价格为()A.20%a B.80%a C.D.120%a 6.按如图所示的运算程序,能使输出y值为1的是()A.m=﹣1,n=1B.m=1,n=0C.m=1,n=2D.m=2,n=1 7.若﹣3a2b x与﹣3a y b是同类项,则y x的值是()A.1B.2C.3D.48.《算法统宗》是我国古代数学著作,其中记载了一道数学问题大意如下:若将绳子三折后测井深则多4尺;若将绳子四折去测井深则多1尺.问绳长和井深各多少尺?设井深为x尺,则可列方程为()A.3(x+4)=4(x+1)B.3x+4=4x+1C.3(x﹣4)=4(x﹣1)D.﹣4=﹣19.已知关于x的方程a﹣x=+3a的解是x=4,则代数式3a+1的值为()A.﹣5B.5C.8D.﹣810.定义一种新运算“a☆b”的含义为:当a≥b时,a☆b=a+b;当a<b时,a☆b=a﹣b.例如:3☆(﹣4)=3+(﹣4)=﹣1,(﹣6)☆=(﹣6)﹣=﹣6,则方程(3x﹣7)☆(3﹣2x)=2的值为()A.1B.C.6或D.6二.填空题11.若数轴上点A表示的数为﹣2,将点A沿数轴正方向平移4个单位,则平移后所得到的点表示的数是.12.已知代数式a﹣2b+7=13,那么代数式2a﹣4b的值为.13.“绿水青山就是金山银山”,为了进一步优化环境,某区计划对长2000米的河道进行整治,原计划每天修x米,为减少施工对居民生活的影响,须缩短施工时间,实际施工时,每天的工作效率比原计划提高25%,那么实际整治这段河道的工期比原计划缩短了天.(结果化为最简)14.已知方程(m﹣2)x|m|﹣1+7=0是关于x的一元一次方程,则m=.15.一列方程如下排列:=1的解是x=2;=1的解是x=3;=1的解是x=4;…根据观察得到的规律,写出其中解是x=2020的方程:.三.解答题16.画出数轴,用数轴上的点表示下列各数,并用“<”将它们连接起来:3,﹣2,1.5,0,﹣0.5.17.出租车司机小王某天上午营运是在东西走向的大街上进行的,如果规定向东为正,向西为负,他这天上午行车里程(单位:千米)如下:+15,﹣2,+5,﹣1,+10,+3,﹣2,+12,+4,﹣5,+6.(1)将最后一名乘客送到目的地时小王距上午出发时的出发点多远?(2)若汽车耗油量为0.12升/千米,这天上午小王的汽车共耗油多少升?18.先化简,再求值:(2a2b+4ab2)﹣(3ab2+a2b),其中a=2,b=﹣1.19.“今有善行者行一百步,不善行者行六十步.”(出自《九章算术》)意思是:同样的时间段里,走路快的人能走100步,走路慢的人只能走60步.假定两者步长相等,据此回答以下问题:(1)今善行者与不善行者相距960步,两者相向而行,问,相遇时两者各行几步?(2)今不善行者先行100步,善行者追之,不善行者再行300步,请问谁在前面,两人相隔多少步?20.已知x=﹣3是关于x的方程(k+3)x+2=3x﹣2k的解.(1)求k的值;(2)在(1)的条件下,已知线段AB=6cm,点C是线段AB上一点,且BC=kAC,若点D是AC的中点,求线段CD的长.(3)在(2)的条件下,已知点A所表示的数为﹣2,有一动点P从点A开始以2个单位长度每秒的速度沿数轴向左匀速运动,同时另一动点Q从点B开始以4个单位长度每秒的速度沿数轴向左匀速运动,当时间为多少秒时,有PD=2QD?参考答案一.选择题1.解:①一个数的绝对值可能是正数,也可能是0,故此选项错误;②a若小于0,﹣a则是正数,故此选项错误;③任何数的绝对值都是非负数,故没有绝对值为﹣3的数,故此选项正确;④若﹣a=a,则a是0,故此选项正确;⑤倒数等于本身的数是±1,故此选项错误;综上所述,正确的有③④共2个,故选:B.2.解:因为a与1互为相反数,﹣1与1互为相反数,所以a=﹣1,故选:D.3.解:由题意,可知a<b<0<c,|a|=|c|>|b|.A、∵a<b<0<c,∴a>b错误,本选项不符合题意;B、∵a<b,∴a﹣b<0,∴|a﹣b|=﹣﹣a+b,∴|a﹣b|=a﹣b错误,本选项不符合题意;C、∵a<b<0<c,|a|=|c|>|b|,∴﹣a<﹣b<c错误,本选项不符合题意;D、∵b<0<c,|c|>|b|,∴c+b<0,正确,本选项符合题意.故选:D.4.解:将x﹣y括起来,前面加一个“﹣”号,即可得到x﹣y的相反数﹣(x﹣y)=y﹣x.故选:C.5.解:根据题意得:(1+20%)a=120%a,则这种鞋子的销售价格为120%a.故选:D.6.解:当m=﹣1,n=1时,y=2m﹣n+1=2×(﹣1)﹣1+1=﹣2,不合题意;当m=1,n=0时,y=2m+n=2×1+0=2,不合题意;当m=1,n=2时,y=2m﹣n+1=2×1﹣2+1=1,符合题意;当m=2,n=1时,y=2m+n=2×2+1=5,不合题意;故选:C.7.解:∵﹣3a2b x与﹣3a y b是同类项,∴x=1,y=2,∴y x=21=2.故选:B.8.解:设井深为x尺,由题意得:3x+4=4x+1,故选:B.9.解:把x=4代入a﹣4=2+3a,移项合并得:﹣2a=6,解得:a=﹣3,则原式=﹣9+1=﹣8,故选:D.10.解:当3x﹣7≥3﹣2x,即x≥2时,由题意得:(3x﹣7)+(3﹣2x)=2,解得x=6;当3x﹣7<3﹣2x,即x<2时,由题意得:(3x﹣7)﹣(3﹣2x)=2,解得x=(舍去),∴x的值为6.故选:D.二.填空题11.解:﹣2+4=2,故答案为:2.12.解:由a﹣2b+7=13可得a﹣2b=6,∴2a﹣4b=2(a﹣2b)=2×6=12.故答案为:12.13.解:根据题意,得﹣=(天).故答案是:.14.解:∵方程(m﹣2)x|m|﹣1+7=0是关于x的一元一次方程,∴m﹣2≠0且|m|﹣1=1,解得m=﹣2.故答案为:﹣2.15.解:∵一列方程如下排列:=1的解是x=2;=1的解是x=3;=1的解是x=4;∴一列方程如下排列:+=1的解是x=2;+=1的解是x=3;+=1的解是x=4;…∴+=1,∴方程为+=1,故答案为:+=1.三.解答题16.解:如图所示:∴﹣2<﹣0.5<0<1.5<5.17.解:(1)15﹣2+5﹣1+10+3﹣2+12+4﹣5+6=45(千米)答:将最后一名乘客送到目的地时,小王距上午出车时的出发点45千米;(2)|+15|+|﹣2|+|+5|+|﹣1|+|+10|+|+3|+|﹣2|+|+12|+|+4|+|﹣5|+|+6|=65(千米),65×0.12=7.8(升).答:这天上午小王的汽车共耗油7.8升.18.先化简,再求值:解:(2a2b+4ab2)﹣(3ab2+a2b)=a2b+2ab2﹣3ab2﹣a2b=﹣ab2当a=2,b=﹣1时,原式=﹣2×1=﹣2.19.解:(1)设两者相遇时行走的时间为t,根据题意得,100t+60t=960,解得,t=6,100t=600,60t=360,答:相遇时,善行者走了600步,不善行者走了360步;(2)不善行者一共走了100+300=400(步),善行者行走了(步)>400步,∴善行者在前面,两人相距:500﹣400=100(步),答:善行者在前面,两人相隔100步.20.解:(1)把x=﹣3代入方程(k+3)x+2=3x﹣2k得:﹣3(k+3)+2=﹣9﹣2k,解得:k=2;(2)当k=2时,BC=2AC,AB=6cm,∴AC=2cm,BC=4cm,当C在线段AB上时,如图1,∵D为AC的中点,∴CD=AC=1cm.即线段CD的长为1cm;(3)在(2)的条件下,∵点A所表示的数为﹣2,AD=CD=1,AB=6,∴D点表示的数为﹣1,B点表示的数为4.设经过x秒时,有PD=2QD,则此时P与Q在数轴上表示的数分别是﹣2﹣2x,4﹣4x.分两种情况:①当点D在PQ之间时,∵PD=2QD,∴﹣1﹣(﹣2﹣2x)=2[4﹣4x﹣(﹣1)],解得x=;②当点Q在PD之间时,∵PD=2QD,∴﹣1﹣(﹣2﹣2x)=2[﹣1﹣(4﹣4x)],解得x=.答:当时间为或秒时,有PD=2QD.七年级上学期期中考试数学试卷(二)(前3章)(无答案)一、选择题(每小题3分,共30分)1. 下列各组数中,互为相反数的是( )A .-(-1)与1B .(-1)2与1C .|-1|与1D .-12与12. 十年来,我国知识产权战略实施取得显著成就,全国著作权登记量已达到274.8万件.数据274.8万用科学记数法表示为( )A .2.748×102B .274.8×104C .2.748×106D .0.274 8×107 3. 单项式2449x y π的系数与次数分别为( )A .49,7 B .49π,6 C .4π,6 D .49π,44. 如果单项式312a b x y +与25b x y 的和仍是单项式,则|a -b |的值为( ) A .4 B .3 C .2 D .1 5. 已知a =5,|b |=8,且满足a +b <0,则a -b 的值为( )A .3B .-3C .-13D .13 6. 由四舍五入得到的近似数3.05万,下列说法正确的是( )A .该近似数精确到千分位B .该近似数精确到百分位C .该近似数精确到百位D .该近似数精确到万分位7. 已知代数式3x 2-4x 的值为9,则6x 2-8x -6的值为( ) A .3 B .24 C .18 D .12 8. 下列解方程过程中,变形正确的是( )A .由213x -=得231x =-B .由255143xx-=-得65201x x -=-C .由54x -=得54x =-D .由132x x-=得236x x -= 9. 现定义一种新运算“*”,规定a *b =ab +a -b ,如1*3=1×3+1-3,则-2*5等于( )A .17B .15C .-17D .-1510. 如图,把六张形状大小完全相同的小长方形卡片(如图1)不重叠的放在一个底面为长方形(长为7 cm ,宽为6 cm )的盒子底部(如图2),盒子底面未被卡片覆盖的部分用阴影表示,则图2中两块阴影部分的周长和是( ) A .16 cmB .24 cmC .28 cmD .32 cm图2图1二、填空题(每小题3分,共15分)11.. 12. 已知a ,b ,c 在数轴上的位置如图所示,化简:|a |-|a +b |+|c -a |+|b -c |=_____.13. 如果(a -2)x |a |-1-3=6是关于x 的一元一次方程,那么21a a--=__________. 14. 已知长方形的一边长为2a +3b ,另一边比它短b -a ,则此长方形的周长为__________. 15. 如图所示的运算程序中,若开始输入的x 值为15,则第1次输出的结果为18,第2次输出的结果为9,……,第2 020次输出的结果为__________.三、解答题(本大题共8个小题,满分75分)16.(12分)计算:(1)16(3)8-÷-⨯;(2)3511(24)4612⎛⎫-⨯--+⎪⎝⎭;(3)21548214⎛⎫+÷⨯-- ⎪⎝⎭;(4)-14-(1-0.5)×12×[2-(-3)2].17. (8分)解方程:(1)413(1)2x x ⎛⎫--=-+ ⎪⎝⎭; (2)11132y y -+=-.18. (8分)先化简,再求值:(1)a 2+(5a 2-2a )-2(a 2-3a ),其中a =-3;(2)已知|2a +1|+(b -1)2=0,求:2223121222332a b a b a b ⎛⎫⎛⎫⎛⎫-++--+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.19.(9分)已知关于x的方程2132x a x ax---=-与方程3(x-2)=4x-5有相同的解,求a的值.20.(9分)如图,数轴上每相邻两点相距一个单位长度,点A,B,C,D是这些点中的四个,且对应的位置如图所示,它们对应的数分别是a,b,c,d.(1)当ab=-1,则d=__________.(2)若|d-2a|=7,求点C对应的数.(3)若abcd<0,a+b>0,化简|a-b|-|b+c-5|-|c-5|-|d-a|+|8-d|.A21.(9分)一辆出租车从A地出发,在一条东西走向的街道上往返,每次行驶的路程(记向东为正)记录如下(x>9且x<26,单位:km)第一次第二次第三次第四次x12xx-5 2(9-x)(1)说出这辆出租车每次行驶的方向;(2)求经过连续4次行驶后,这辆出租车所在的位置;(3)这辆出租车一共行驶了多少路程?22.(10分)如图,在数轴上点A表示的有理数为6-,点B表示的有理数为6.点P从点→→运动,同时,点Q从点B出发以每A出发以每秒2个单位长度的速度由A B A→运动,当点Q到达点A时P,Q两点停止运动.设运秒1个单位长度的速度由B A动时间为t(单位:秒).t=时,点P和点Q表示的有理数;(1)求2(2)求点P与点Q第一次重合时的t值;(3)当t的值为多少时,点P表示的有理数与点Q表示的有理数距离是3个单位长度.23.(10分)某中学库存若干套桌凳,准备修理后支援贫困山区学校.现有甲、乙两个木工组,甲组每天修桌凳16套,乙组每天比甲组多修8套,甲组单独修完这些桌凳比乙组单独修完多用20天,学校每天付甲组80元修理费,付乙组120元修理费.(1)该中学库存多少套桌凳?(2)在修理过程中,学校要派一名工人进行质量监督,学校负担他每天10元生活补助费,现有三种修理方案:①由甲单独修理;②由乙单独修理;③甲、乙合作同时修理.你认为哪种方案省时又省钱?为什么?七年级上册期中试题(附答案)一.选择题(共10小题)1.a为有理数,下列说法正确的是()A.﹣a为负数B.a一定有倒数C.|a+2|为正数D.|﹣a|+2为正数2.如果盈利100元记为+100元,那么亏损90元记为()A.﹣90元B.﹣10元C.+10元D.+90 元3.在﹣2020,2.3,0,π,﹣4五个数中,非负的有理数共有()A.1个B.2个C.3个D.4个4.如图,数轴上A,B,C三点表示的数分别为a,b,c,且AB=BC.如|b|<|a|<|c|,那么关于原点O的位置,下列说法正确的是()A.在B,C之间更靠近B B.在B,C之间更靠近CC.在A,B之间更靠近B D.在A,B之间更靠近A5.如果多项式(a﹣1)x4﹣x b+x+1是关于x的三次三项式,则()A.a=0,b=3B.a=1,b=4C.a=1,b=3D.a=1,b=2 6.若多项式3x|m|+(m﹣2)x+1是关于x的二次三项式,则m的值()A.2或﹣2B.2C.﹣2D.﹣47.下列各式计算正确的是()A.m+n=mn B.2m﹣(﹣3m)=5mC.3m2﹣m=2m2D.(2m﹣n)﹣(m﹣n)=m﹣2n8.一项工程,甲单独做5天完成,乙单独做8天完成.若甲先做1天,然后甲、乙合作完成此项工作的.若设甲一共做了x天,则所列方程为()A.B.C.D.9.若x=2是关于x的方程﹣a=x+2的解,则a2﹣1的值是()A.10B.﹣10C.8D.﹣810.定义运算“*”,其规则为a*b=,则方程4*x=4的解为()A.x=﹣3B.x=3C.x=2D.x=4二.填空题(共5小题)11.绝对值大于2.5且不大于6的所有负整数的和是.12.已知|a|=12,b比6的相反数小﹣5,则b﹣a=.13.已知x=5﹣y,xy=2,计算3x+3y﹣4xy的值为.14.某文具店一支铅笔的售价为1.2元,一支圆珠笔的售价为2元.该店为庆“元旦”举行文具优惠售卖活动,铅笔按原价打8折出售,圆珠笔按原价打9折出售,结果两种笔卖出60支,卖得金额87元.该文具店在这次活动中卖出铅笔支.15.如果方程(k﹣2)x|2k﹣3|﹣3=0是一个关于x的一元一次方程,那么k的值是.三.解答题(共5小题)16.计算下列各式:(1);(2).17.在一条不完整的数轴上从左到右有点A,B,C,其中AB=2,BC=1,如图所示,设点A,B,C所对应数的和是P.(1)若以B为原点,写出点A,C所对应的数,并计算P的值;若以C为原点,P又是多少?(2)若原点O在图中数轴上点C的右边,且CO=38,求P.18.学校体育室有两个球筐,已知甲筐内的球比乙筐内球的个数的2倍还多6只.现进行如下操作:第一次,从甲筐中取出一半放入乙筐;第二次,又从甲筐中取出若干只球放入乙筐.设乙筐内原来有a只球.(1)第一次操作后,乙筐内球的个数为只;(用含a的代数式表示)(2)若第一次操作后乙筐内球的个数比甲筐内球的个数多10只,求a的值;(3)第二次操作后,乙筐内球的个数可能是甲筐内球个数的2倍吗?请说明理由.19.已知x=﹣3是关于x的方程(k+3)x+2=3x﹣2k的解.(1)求k的值;(2)在(1)的条件下,已知线段AB=6cm,点C是线段AB上一点,且BC=kAC,若点D是AC的中点,求线段CD的长.(3)在(2)的条件下,已知点A所表示的数为﹣2,有一动点P从点A开始以2个单位长度每秒的速度沿数轴向左匀速运动,同时另一动点Q从点B开始以4个单位长度每秒的速度沿数轴向左匀速运动,当时间为多少秒时,有PD=2QD?20.定义:若关于x的一元一次方程ax=b的解为b+a,则称该方程为“和解方程”,例如:2x=﹣4的解为x=﹣2,且﹣2=﹣4+2,则该方程2x=﹣4是和解方程.(1)判断﹣3x=是否是和解方程,说明理由;(2)若关于x的一元一次方程5x=m﹣2是和解方程,求m的值.参考答案一.选择题(共10小题)1.解:当a=0时,﹣a也等于0,不是负数,因此选项A不正确;当a=0时,0没有倒数,因此选项B不正确;当a=﹣2时,|a+2|=0,因此选项C不正确;|a|≥0,|a|+2≥2,因此选项D正确;故选:D.2.解:把盈利100元记为+100元,那么亏损90元记为﹣90元,故选:A.3.解:在“﹣2020,2.3,0,π,﹣4”这五个数中,非负有理数是2.3,0,故选:B.4.解:∵|b|<|a|<|c|∴点C到原点的距离最大,点A次之,点B最小又∵AB=BC∴原点O的位置在点A与点B之间,更靠近点B.故选:C.5.解:∵多项式(a﹣1)x4﹣x b+x+1是关于x的三次三项式,∴a﹣1=0,b=3.解得:a=1.故选:C.6.解:因为多项式3x|m|+(m﹣2)x+1是关于x的二次三项式,所以|m|=2,且m﹣2≠0,解得m=±2,且m≠2,则m的值为﹣2.故选:C.7.解:A、m+n,不是同类项,无法合并,故此选项错误;B、2m﹣(﹣3m)=5m,正确;C、3m2﹣m,不是同类项,无法合并,故此选项错误;D、(2m﹣n)﹣(m﹣n)=m,故此选项错误;故选:B.8.解:设甲一共做了x天,由题意得:+=,故选:B.9.解:依题意得:﹣a=2+2解得a=﹣3,则a2﹣1=(﹣3)2﹣1=9﹣1=8.故选:C.10.解:根据题中的新定义化简得:=4,去分母得:8+x=12,解得:x=4,故选:D.二.填空题(共5小题)11.解:绝对值大于2.5且不大于6的所有负整数有:3,﹣4、﹣5、﹣6,它们的和是:(﹣3)+(﹣4)+(﹣5)+(﹣6)=﹣18.故答案为:﹣1812.解:∵|a|=12,b比6的相反数小﹣5,∴a=±12,b=﹣6﹣(﹣5)=﹣1,∴b﹣a=﹣1﹣12=﹣13或b﹣a=﹣1﹣(﹣12)=11.∴b﹣a=﹣13或11.故答案为:﹣13或1113.解:∵x=5﹣y,∴x+y=5,当x+y=5,xy=2时,原式=3(x+y)﹣4xy=3×5﹣4×2=15﹣8=7,故答案为:7.14.解:设铅笔卖出x支,由题意,得1.2×0.8x+2×0.9(60﹣x)=87.解得:x=25.答:铅笔卖出25支.故答案是:25.15.解:由题意得:|2k﹣3|=1,且k﹣2≠0,解得:k=1,故答案为:1.三.解答题(共5小题)16.解:(1)==21;(2)=4×+(﹣)×+﹣1=2+(﹣)﹣1=1.17.解:如图所示:(1)∵AB=2,BC=1,∴点A,C所对应的数分别为﹣2,1;又∵P=﹣2+0+1,∴P=﹣1,当以C为原点时,A表示﹣3,B表示﹣1,C表示0,此时P=﹣3+(﹣1)+0=﹣4.(2)∵原点0在图中数轴上点C的右边,CO=38,∴C所对应数为﹣38,又∵AB=2,BC=1,点A,B在点C的左边,∴点A,B,所对应数分别为﹣39,﹣41,又∵P=﹣41+(﹣39)+(﹣38)∴P=﹣118.18.解:(1)设乙筐内原来有a只球,则甲筐内的球的个数为(2a+6)只,∴甲筐球数的一半为(a+3)只,∴从甲筐中取出一半放入乙筐后,乙筐内的球数为:a+(a+3)=(2a+3)只;(2)第一次操作后甲筐内的球的个数为:(2a+6)÷2=a+3,乙筐内的球数为(2a+3)只,根据题意得,(2a+3)﹣(a+3)=10,解得,a=10;(3)可能,理由如下:设第二次操作从甲筐取出n只球放入乙筐,则此时甲筐内的球数为a+3﹣n,乙筐的只数为2a+3+n,且2(a+3﹣n)=2a+3+n,解得,n=1,∴第二次从甲筐中取出1只球放入乙筐后,乙筐内球的个数是甲筐内球个数的2倍.19.解:(1)把x=﹣3代入方程(k+3)x+2=3x﹣2k得:﹣3(k+3)+2=﹣9﹣2k,解得:k=2;(2)当k=2时,BC=2AC,AB=6cm,∴AC=2cm,BC=4cm,当C在线段AB上时,如图1,∵D为AC的中点,∴CD=AC=1cm.即线段CD的长为1cm;(3)在(2)的条件下,∵点A所表示的数为﹣2,AD=CD=1,AB=6,∴D点表示的数为﹣1,B点表示的数为4.设经过x秒时,有PD=2QD,则此时P与Q在数轴上表示的数分别是﹣2﹣2x,4﹣4x.分两种情况:①当点D在PQ之间时,∵PD=2QD,∴﹣1﹣(﹣2﹣2x)=2[4﹣4x﹣(﹣1)],解得x=;②当点Q在PD之间时,∵PD=2QD,∴﹣1﹣(﹣2﹣2x)=2[﹣1﹣(4﹣4x)],解得x=.答:当时间为或秒时,有PD=2QD.20.解:(1)∵﹣3x=,∴x=﹣,∵﹣3=﹣,∴﹣3x=是和解方程;(2)∵关于x的一元一次方程5x=m﹣2是和解方程,∴m﹣2+5=,解得:m=﹣.故m的值为﹣.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

精品资料·人教版初中数学人教版七年级上学期数学期末综合能力测试题(一)一、填空题1、俯视图为圆的立体图形可能是_______________。

2、观察下列图形和所给表样中的数据后回答问题。

当图形的周长为80时,梯形的个数为___________。

3、近似数3.1×105精确到________位,有_________个有效数字。

4、为了了解某地初中二年级男生的身高情况,从其中的一个学校测量了60名男生的身高,分组情况如下:(单位:cm)请问:a=_________,b=__________,c=________,m=________,n=__________.5、一家商店将某种微波炉按原价提高40%后标价,又以8折优惠卖出,结果每台微波炉比原价多赚了180元,这种微波炉原价是________元。

6、已知x是整数,且3≤|x|<5,则x=__________。

7、方程2y-6=y+7变形为2y-y=7+6,这种变形叫___________,根据是____________.8、有公共顶点的两条射线分别表示南偏西15°与北偏东25°,则这两条射线组成的角的度数为_____________________.9、从和式11111124681012+++++中,去掉两个数,使余下的数之和为1,这两个数是___。

10、一跳蚤在一直线上从O点开始,第1次向右跳1个单位,紧接着第2次向左跳2个单位,第3次向右跳3个单位,第4次向左跳4个单位,……,依此规律跳下去,当它跳第100次落下时,落点处离O点的距离是个单位.65423111、乘火车从A 站出发,沿途经过3个车站方可到达B 站,那么在A 、B 两站之间需要安排不同的车票 种。

12、一个角的余角比它的补角的31还少20°,则这个角的度数是_________。

13、某市2004年接待境外游客人数和旅游直接创汇名列全省前茅,实现旅游直接创汇29092700美元,这个数用科学计数法表示是______________美元(保留三个有效数字)14、观察下列图形,并阅读图形下面的相关文字:………… 两条直线相交, 三条直线相交 四条直线相交 最多有1个交点 最多有3个交点 最多有6个交点 像这样有11条直线相交,最多交点的个数是15、如图,将硬纸片沿虚线折起来,便可做成一个正方体,这个正方体,这个正方体的2号面的对面是________号面.二、选择题(本题共10个小题,每小题3分,共30分) 1、与算式32+32+32的运算结果相等的是( ) A.33B.23C.36D.382、宾馆客房的标价影响住宿百分率.下表是某一宾馆在近几年旅游周统计的平均数据:在旅游周,要使宾馆客房收入最大,客房标价应选( ) A.160元B.140元C.120元D.100元3、平面上有任意三点,过其中两点画直线,共可以画( )A .1条B .3条C .1条或3条D .无数条4、下列图中角的表示方法正确的个数有( )CBA∠ABCCBA∠CAB直线是平角∠AOB 是平角A .1个B .2个C .3个D .4个 5、计算(-1)1001÷(-1)2002所得的结果是( )A .12B .-12 C .1 D .-l 6、任何一个有理数的平方( )A .一定是正数B .一定不是负数C .一定大于它本身D .一定不大于它的绝对值7、如图,∠AOC 和∠BOD 都是直角,如果∠AOB=150°,那么∠COD 等于( ) A .30° B.40° C.50° D.60° 8、下列语句正确的是 ( ) A .在所有连接两点的线中,直线最短 B .线段AB 是点A 与点B 的距离C .两条不重合的直线,在同一平面内,不平行必相交D .三条直线两两相交,必定有三个交点 9、下列各式一定成立的有几个( )①a 2=(-a)2;②a 3=(-a)3;③-a 2=|-a 2|;④a 3=|-a 3|; A .1个 B .2个 C .3个 D .4个10、将如图所示的正方体沿某些棱展开后,能得到的图形是( )A .B .C .D .11、计算(-2)11+(-2)10的值是( ) A .-2 B .(-2)21 C .0 D .-210 12、(0)a bab a b+≠的所有可能的值有( ) ADCBOA.1个B.2个C.3个D.4个13、用绳子量井深:把绳子三折来量,井外余4尺;把绳子四折来量,井外余1尺,则井深和绳长分别是( ).(A )8尺,36尺 (B )3尺,13尺 (C )10尺,34尺 (D )11尺,37尺 14、若“!”是一种数学运算符号,并且1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1,…,则100!98!的值为( ) A.5049B. 99!C. 9900D. 2!15、“五·一”黄金周期间,为了促销商品,甲、乙两个商店都采取优惠措施,甲店推出八折后再打八折,乙店则一次性六折优惠,若同样价格的商品,下列结论正确的是( ) A.甲比乙优惠 B.乙比甲优惠 C.两店优惠条件相同 D.不能进行比较 三、解答题1、计算:(1)⎥⎦⎤⎢⎣⎡-+-⨯-⨯-522)2()32(323 (2)-2x+(3x -1)-(x -5)2、如果规定符号“﹡”的意义是a ﹡b= aba+b,求2﹡(-3)﹡4的值。

3、(1)解方程:3252243x x---=.(2)x-30.5-x+40.2=1.64、儿童公园的门票价格规定如下表:某校七年级甲、乙两班共104人去游公园,其中甲班人数较多,有50多人,经估计,如果两班都以班为单位分别购票,则一共应付1240元。

问:(1)两班各有多少学生?(2)如果两班联合起来,作为一个团体购票,可以省多少钱?5、观察右面的图形(每个正方形的边长均为1)和左面相应的等式,探究其中的规律:(1)写出第五个等式,并在给出的五个正方形上面画出与之对应的图示;(2)猜想并写出与第n 个图形相对应的等式.6、如图所示,已知90AOC BOD ==∠∠,3AOD BOC =∠∠,求BOC ∠的度数.7、已知线段AB=CD,且彼此重合各自的13,M、N分别为AB和CD的中点,且MN=14cm,求AB的长.8、一所中学准备搬迁到新校舍,在迁入新校舍之前就该校300名学生如何到校问题进行了一次调查,并得到如下数据:根据上面的数据:(1)补画残缺的条形统计图; (2)填好扇形统计图中的相关信息;(3)根据你所制作的统计图,你能得出哪些结论?(要求至少写两条)9、如图所示已知︒=∠︒=∠30,90BOC AOB ,OM 平分AOC ∠,ON 平分BOC ∠; (1)︒=∠_____MON ;(2) βα=∠=∠BOC AOB ,,求MON ∠的度数;并从你的求解你能看出什么什么规律吗?MO N CB A10、利用方程解决下列问题:相传有个人不讲究说话艺术常引起误会,一天他设宴请客,他看到几个人没来,就自言自语:“怎么该来的还不来呢?”客人听了,心想难道我们是不该来的,于是有一半客人走了,他一看十分着急,又说:“嗨,不该走的倒走了!”剩下的人一听,是我们该走啊!又有三分之二的人离开了,他着急地一拍大腿,连说:“我说的不是他们.”于是剩下了3个人也都告辞走了.聪明的你能知道开始来了多少客人吗?11、如图,读句画图:(1)延长AB到D,使BD=AB;(2)反向延长线段CA到E,使AE=2AC;(3)连接DE。

量出BC与DE的长度,并猜想它们的关系。

(不需说理由)(一)参考答案一、填空题1、圆柱、圆锥、球、圆台2、263、万、两4、10%、35%、45%、27、65、15006、3和47、移项,等式性质18、170°9、11 810和10、5011、2012、75013、2.91×10714、5515、6二、选择题(本题共10个小题,每小题3分,共30分)1、A2、B3、C4、B5、D6、B7、A8、C9、A10、C11、D12、C13、B14、C15、B三、解答题1、计算:(1)原式=349(32)29⎡⎤-⨯-⨯+-⎢⎥⎣⎦=[]34(32)2-⨯-+-=54。

(2)42、2.43、(1)、解:去分母,得 3(3x -2)=24-4(5x -2)去括号,得 9x -6=24-20x +8移项、合并,得 29x =38系数化为1,得 x =3829(2) x=-9.24、(1)甲56人,乙48人 (2) 304元5、(1)555566⨯=-. (2)11n n n n n n ⨯=-++. 6、4507、35cm8、解:(1)如图:(2)①3%,②44%,③步行,④骑自行车;(3)从图中可以直观地看出:坐公共汽车上学的人最多为130人,占到校方式的44%,骑自行车上学的人次之100人,点到校方式的33%;大部分同学都是以坐公共汽车或骑自行车两种方式上学。

9、解:(1)因∠AO C =∠AOB+∠BOC=90°+30°=120°.而OM 平分AOC ∠,ON 平分BOC ∠; 所以∠MOC=∠AOC=60°,∠CON=12∠BOC=15°, 所以∠MON=∠MOC-∠CON=60°-15°=45°.(2)同理可得,∠MOC=12()αβ+,∠CON=12β, 所以∠MON=∠MOC-∠CON=12()αβ+-12β=2α. 10、2111、DE=2BC ;DE ∥BC。

相关文档
最新文档