高中数学3.1.2指数函数(二)课时作业新人教A版必修1

合集下载

高中数学 第三章 函数的概念与性质 3.1.2 函数的表示法课时作业(含解析)新人教A版必修第一册-

高中数学 第三章 函数的概念与性质 3.1.2 函数的表示法课时作业(含解析)新人教A版必修第一册-

3.1.2 函数的表示法一、选择题1.如图是反映某市某一天的温度随时间变化情况的图象.由图象可知,下列说法中错误的是( )A .这天15时的温度最高B .这天3时的温度最低C .这天的最高温度与最低温度相差13 ℃D .这天21时的温度是30 ℃解析:这天的最高温度与最低温度相差为36-22=14 ℃,故C 错. 答案:C2.已知f (x -1)=1x +1,则f (x )的解析式为( ) A .f (x )=11+x B .f (x )=1+xxC .f (x )=1x +2D .f (x )=1+x 解析:令x -1=t ,则x =t +1,∴f (t )=1t +1+1=12+t,∴f (x )=1x +2. 答案:C3.函数y =x 2|x |的图象的大致形状是( )解析:因为y =x 2|x |=⎩⎪⎨⎪⎧x ,x >0,-x ,x <0,所以函数的图象为选项A.答案:A4.已知函数f (x )=⎩⎪⎨⎪⎧2x ,x >0,x +1,x ≤0,且f (a )+f (1)=0,则a 等于( )A .-3B .-1C .1D .3解析:当a >0时,f (a )+f (1)=2a +2=0⇒a =-1,与a >0矛盾;当a ≤0时,f (a )+f (1)=a +1+2=0⇒a =-3,符合题意.答案:A 二、填空题5.f (x )=⎩⎪⎨⎪⎧x ,x ∈[0,1]2-x ,x ∈(1,2]的定义域为______,值域为______.解析:函数定义域为[0,1]∪(1,2]=[0,2].当x ∈(1,2]时,f (x )∈[0,1),故函数值域为[0,1)∪[0,1]=[0,1]. 答案:[0,2] [0,1]6.已知函数f (2x +1)=3x +2,且f (a )=4,则a =________.解析:因为f (2x +1)=32(2x +1)+12,所以f (a )=32a +12.又f (a )=4,所以32a +12=4,a =73.答案:737.若f (x )-12f (-x )=2x (x ∈R ),则f (2)=________.解析:∵f (x )-12f (-x )=2x ,∴⎩⎪⎨⎪⎧f (2)-12f (-2)=4,f (-2)-12f (2)=-4,得⎩⎪⎨⎪⎧2f (2)-f (-2)=8,f (-2)-12f (2)=-4,相加得32f (2)=4,f (2)=83.答案:83三、解答题8.某同学购买x (x ∈{1,2,3,4,5})X 价格为20元的科技馆门票,需要y 元.试用函数的三种表示方法将y 表示成x 的函数.解析:(1)列表法x /X 1 2 3 4 5 y /元20406080100(2)图象法:如下图所示.(3)解析法:y =20x ,x ∈{1,2,3,4,5}. 9.求下列函数解析式:(1)已知f (x )是一次函数,且满足3f (x +1)-f (x )=2x +9,求f (x ); (2)已知f (x +1)=x 2+4x +1,求f (x )的解析式. 解析:(1)由题意,设函数为f (x )=ax +b (a ≠0), ∵3f (x +1)-f (x )=2x +9, ∴3a (x +1)+3b -ax -b =2x +9, 即2ax +3a +2b =2x +9,由恒等式性质,得⎩⎪⎨⎪⎧2a =2,3a +2b =9,∴a =1,b =3.∴所求函数解析式为f (x )=x +3. (2)设x +1=t ,则x =t -1,f (t )=(t -1)2+4(t -1)+1,即f (t )=t 2+2t -2.∴所求函数为f (x )=x 2+2x -2.[尖子生题库]10.画出下列函数的图象:(1)f (x )=[x ]([x ]表示不大于x 的最大整数); (2)f (x )=|x +2|.解析:(1)f (x )=[x ]=⎩⎪⎨⎪⎧…-2,-2≤x <-1,-1,-1≤x <0,0,0≤x <1,1,1≤x <2,2,2≤x <3,…函数图象如图1所示.图1 图2(2)f (x )=|x +2|=⎩⎪⎨⎪⎧x +2,x ≥-2,-x -2,x <-2.画出y =x +2的图象,取[-2,+∞)上的一段;画出y =-x -2的图象,取(-∞,-2)上的一段,如图2所示.。

人教A版高中数学必修一第二章2.1.2指数函数的图像及性质 1.2-第2课时

人教A版高中数学必修一第二章2.1.2指数函数的图像及性质 1.2-第2课时
栏目 导引
第二章 基本初等函数(Ⅰ)
因为 t=-x2+2x=-(x-1)2+1≤1, 所以 y=23t(t≤1),所以 y≥23. 所以这个函数的值域为y|y≥23, 所以原函数的值域为y|y≥23.
栏目 导引
第二章 基本初等函数(Ⅰ)
函数 y=af(x)(a>0,a≠1)的单调性的处理方法 (1)关于指数型函数 y=af(x)(a>0,且 a≠1)的单调性由两点决定, 一是底数 a>1 还是 0<a<1;二是 f(x)的单调性,它由两个函数
栏目 导引
第二章 基本初等函数(Ⅰ)
3.函数 y=121-x的单调递增区间为(
)
A.(-∞,+∞)
B.(0,+∞)
C.(1,+∞)
D.(0,1)
解析:选 A.定义域为 R.设 u=1-x,则 y=12u.
因为 u=1-x 在 R 上为减函数,
又因为 y=12u在(-∞,+∞)上为减函数,
栏目 导引
第二章 基本初等函数(Ⅰ)
(2)重视数学语言的规范和准确 对于函数的单调性、奇偶性的表述要注意语言的规范性、准确 性.如本例中证明函数 f(x)在 R 上是单调增函数,必须严格按 照增函数的定义证明,同时要特别注意与 0 的比较.
栏目 导引
第二章 基本初等函数(Ⅰ)
1.下列判断正确的是( A.2.52.5>2.53 C.π2<π 2
栏目 导引
第二章 基本初等函数(Ⅰ)
比较幂值大小的三种类型及处理方法源自栏目 导引第二章 基本初等函数(Ⅰ)
1.试比较下列各组数的大小: (1)20.3,12-0.4,80.2; (2)1.30.3,0.82,-343.
栏目 导引
第二章 基本初等函数(Ⅰ)

人教A版高中数学第一册(必修1)课时作业3:§2.2 第2课时 基本不等式的应用练习题

人教A版高中数学第一册(必修1)课时作业3:§2.2 第2课时 基本不等式的应用练习题

第2课时 基本不等式的应用1.已知x >0,则9x +x 的最小值为( )A .6B .5C .4D .3 『答 案』 A『解 析』 ∵x >0,∴9x+x ≥2x ·9x=6, 当且仅当x =9x ,即x =3时,等号成立.2.已知x >-2,则x +1x +2的最小值为( )A .-12B .-1C .2D .0『答 案』 D『解 析』 ∵x >-2,∴x +2>0, ∴x +1x +2=x +2+1x +2-2≥2-2=0,当且仅当x =-1时,等号成立.3.若正实数a ,b 满足a +b =2,则ab 的最大值为( ) A .1B .22C .2D .4 『答 案』 A『解 析』 由基本不等式得,ab ≤⎝ ⎛⎭⎪⎫a +b 22=1,当且仅当a =b =1时,等号成立. 4.(多选)设y =x +1x -2,则( )A .当x >0时,y 有最小值0B .当x >0时,y 有最大值0C .当x <0时,y 有最大值-4D .当x <0时,y 有最小值-4 『答 案』 AC『解 析』 当x >0时,y =x +1x -2≥2x ·1x-2 =2-2=0,当且仅当x =1x,即x =1时,等号成立,故A 正确,B 错误;当x <0时,y =-⎣⎢⎡⎦⎥⎤(-x )+1(-x )-2≤-2-2=-4,当且仅当-x =1-x,即x =-1时,等号成立,故C 正确,D 错误.5.已知x >0,y >0,且x +y =8,则(1+x )(1+y )的最大值为( ) A .16B .25C .9D .36 『答 案』 B『解 析』 (1+x )(1+y )≤⎣⎢⎡⎦⎥⎤(1+x )+(1+y )22=⎣⎢⎡⎦⎥⎤2+(x +y )22=⎝ ⎛⎭⎪⎫2+822=25, 当且仅当1+x =1+y ,即x =y =4时,等号成立. 6.已知a >0,b >0,则1a +1b +2ab 的最小值是________.『答 案』 4『解 析』 ∵a >0,b >0, ∴1a +1b+2ab ≥21ab+2ab ≥41ab·ab =4,当且仅当a =b =1时,等号成立. 7.若正数m ,n 满足2m +n =1,则1m +1n 的最小值为________.『答 案』 3+2 2 『解 析』 ∵2m +n =1, 则1m +1n =⎝⎛⎭⎫1m +1n (2m +n ) =3+2m n +n m ≥3+22,当且仅当n =2m ,即m =1-22,n =2-1时,等号成立,即最小值为3+2 2.8.要制作一个容积为4m 3,高为1m 的无盖长方体容器.已知该容器的底面造价是每平方米20元,侧面造价是每平方米10元,则该容器的最低总造价是________元. 『答 案』 160『解 析』 设底面矩形的一边长为x ,由容器的容积为4m 3,高为1m ,得另一边长为4x m.记容器的总造价为y 元,则y =4×20+2⎝⎛⎭⎫x +4x ×1×10=80+20⎝⎛⎭⎫x +4x ≥80+20×2x ·4x=160, 当且仅当x =4x ,即x =2时,等号成立.因此当x =2时,y 取得最小值160, 即容器的最低总造价为160元. 9.(1)已知x <3,求4x -3+x 的最大值;(2)已知x ,y 是正实数,且x +y =4,求1x +3y 的最小值.解 (1)∵x <3,∴x -3<0, ∴4x -3+x =4x -3+(x -3)+3 =-⎣⎢⎡⎦⎥⎤43-x +(3-x )+3≤-243-x·(3-x )+3=-1, 当且仅当43-x =3-x ,即x =1时,等号成立,∴4x -3+x 的最大值为-1. (2)∵x ,y 是正实数,x +y =4, ∴1x +3y =⎝⎛⎭⎫1x +3y ·x +y4=14⎝⎛⎭⎫4+y x +3x y ≥1+234=1+32, 当且仅当y x =3xy,即x =2(3-1),y =2(3-3)时等号成立.故1x +3y 的最小值为1+32. 10.某农业科研单位打算开发一个生态渔业养殖项目,准备购置一块1800平方米的矩形地块,中间挖三个矩形池塘养鱼,挖出的泥土堆在池塘四周形成基围(阴影部分所示)种植桑树,鱼塘周围的基围宽均为2米,如图所示,池塘所占面积为S 平方米,其中a ∶b =1∶2.(1)试用x ,y 表示S ;(2)若要使S 最大,则x ,y 的值分别为多少? 解 (1)由题意得,xy =1 800,b =2a , 则y =a +b +6=3a +6,S =a (x -4)+b (x -6)=a (x -4)+2a (x -6)=(3x -16)a =(3x -16)×y -63=xy -6x -163y +32=1832-6x -163y ,其中6<x <300,6<y <300.(2)由(1)可知,6<x <300,6<y <300,xy =1 800, 6x +163y ≥26x ·163y =26×16×600=480,当且仅当6x =163y 时等号成立,∴S =1 832-6x -163y ≤1 832-480=1 352,此时9x =8y ,xy =1 800,解得x =40,y =45, 即x 为40,y 为45.11.设自变量x 对应的因变量为y ,在满足对任意的x ,不等式y ≤M 都成立的所有常数M 中,将M 的最小值叫做y 的上确界.若a ,b 为正实数,且a +b =1,则-12a -2b 的上确界为( )A .-92B.92C.14D .-4『答 案』 A『解 析』 因为a ,b 为正实数,且a +b =1, 所以12a +2b =⎝⎛⎭⎫12a +2b ×(a +b )=52+⎝⎛⎭⎫b 2a +2a b ≥52+2b 2a ×2a b =92, 当且仅当b =2a ,即a =13,b =23时,等号成立,因此有-12a -2b ≤-92,即-12a -2b 的上确界为-92.12.(多选)一个矩形的周长为l ,面积为S ,则下列四组数对中,可作为数对(S ,l )的有( ) A .(1,4) B .(6,8) C .(7,12) D.⎝⎛⎭⎫3,12 『答 案』 AC『解 析』 设矩形的长和宽分别为x ,y , 则x +y =12l ,S =xy .由xy ≤⎝ ⎛⎭⎪⎫x +y 22知,S ≤l 216,故AC 成立.13.已知x >-1,则(x +10)(x +2)x +1的最小值为________.『答 案』 16『解 析』 (x +10)(x +2)x +1=(x +1+9)(x +1+1)x +1=(x +1)2+10(x +1)+9x +1=(x +1)+9x +1+10,∵x >-1,∴x +1>0,∴(x +1)+9x +1+10≥29+10=16.当且仅当x +1=9x +1,即x =2时,等号成立.14.若对∀x >-1,不等式x +1x +1-1≥a 恒成立,则实数a 的取值范围是________.『答 案』 a ≤0『解 析』 因为x >-1,所以x +1>0, 则x +1x +1-1=x +1+1x +1-2 ≥2(x +1)×1x +1-2=2-2=0,当且仅当x +1=1x +1,即x =0时等号成立,由题意可得a ≤⎝ ⎛⎭⎪⎫x +1x +1-1min =0,即a ≤0.15.若不等式ax 2+1x 2+1≥2-3a 3(a >0)恒成立,则实数a 的取值范围是________.『答 案』 ⎩⎨⎧⎭⎬⎫a ⎪⎪a ≥19 『解 析』 原不等式可转化为a (x 2+1)+1x 2+1≥23,又a >0,则a (x 2+1)+1x 2+1≥2a (x 2+1)·1x 2+1=2a ,当且仅当a (x 2+1)=1x 2+1, 即a =1(x 2+1)2时,等号成立,则根据恒成立的意义可知2a ≥23,解得a ≥19.16.某厂家拟在2020年举行某产品的促销活动,经调查,该产品的年销售量(即该产品的年产量)x (单位:万件)与年促销费用m (m ≥0)(单位:万元)满足x =3-km +1(k 为常数),如果不举行促销活动,该产品的年销量是1万件.已知2020年生产该产品的固定投入为8万元,每生产1万件该产品需要再投入16万元,厂家将每件产品的销售价格定为每件产品年平均成本的1.5倍(产品成本包括固定投入和再投入两部分资金,不包括促销费用).那么该厂家2020年的促销费用为多少万元时,厂家的利润最大?最大利润为多少?解 设2020年该产品利润为y , 由题意,可知当m =0时,x =1, ∴1=3-k ,解得k =2,∴x =3-2m +1,又每件产品的销售价格为1.5×8+16xx 元,∴y =x ⎝ ⎛⎭⎪⎫1.5×8+16x x -(8+16x +m )=4+8x -m =4+8⎝ ⎛⎭⎪⎫3-2m +1-m =-⎣⎢⎡⎦⎥⎤16m +1+(m +1)+29,∵m ≥0,16m +1+(m +1)≥216=8,当且仅当16m +1=m +1,即m =3时,等号成立,∴y ≤-8+29=21,∴y max =21.故该厂家2020年的促销费用为3万元时,厂家的利润最大,最大利润为21万元.。

高中数学课时作业(人教A版必修第一册)课时作业 1

高中数学课时作业(人教A版必修第一册)课时作业 1

课时作业1集合的概念基础强化1.下列语言叙述中,能表示集合的是()A.数轴上离原点距离很近的所有点B.德育中学的全体高一学生C.某高一年级全体视力差的学生D.与△ABC大小相仿的所有三角形2.下列结论不正确的是()A.0∈N B.2∉QC.0∈Q D.-1∈Z3.若a,b,c,d为集合A的4个元素,则以a,b,c,d为边长构成的四边形可能是() A.菱形B.平行四边形C.梯形D.正方形4.2022年北京冬奥会吉祥物“冰墩墩”寓意创造非凡、探索未来;北京冬残奥会吉祥物“雪容融”寓意点亮梦想、温暖世界.这两个吉祥物的中文名字中的汉字组成集合M,则M中元素的个数为()A.3 B.4C.5 D.65.(多选)下列说法中不正确的是()A.集合N与集合N*是同一个集合B.集合N中的元素都是集合Z中的元素C.集合Q中的元素都是集合Z中的元素D.集合Q中的元素都是集合R中的元素6.(多选)下列说法正确的是()A.N*中最小的数是1B.若-a∉N*,则a∈N*C.若a∈N*,b∈N*,则a+b最小值是2D.x2+4=4x的实数解组成的集合中含有2个元素7.集合A中的元素x满足63-x∈N,x∈N,则集合A中的元素为________.8.已知集合A含有三个元素1,0,x,若x2∈A,则实数x的值为________.9.设集合A中含有三个元素3,x,x2-2x,(1)求实数x应满足的条件.(2)若-2∈A,求实数x.10.已知集合A中含有两个元素x,y,集合B中含有两个元素0,x2,若A=B,求实数x,y的值.能力提升11.下列各组中集合P与Q,表示同一个集合的是()A.P是由2,3构成的集合,Q是由有序数对(2,3)构成的集合B.P是由π构成的集合,Q是由59构成的集合C.P是由元素1,3,π构成的集合,Q是由元素π,1,|-3|构成的集合D.P是满足不等式-1≤x≤1的自然数构成的集合,Q是方程x2=1的解集12.由实数x,-x,|x|,x2,-3x3所组成的集合中,最多含有元素的个数为()A.2 B.3C.4 D.513.(多选)已知集合M中的元素x满足x=a+2b,其中a,b∈Z,则下列选项中属于集合M的是()A.0 B.6C.11-2D.32-114.(多选)已知x,y为非零实数,代数式x|x|+y|y|的值所组成的集合为M,则下列判断错误的是()A.0∉M B.1∈MC.-2∈M D.2∈M15.已知集合A由a,b,c三个元素组成,集合B由0,1,2三个元素组成,且集合A 与集合B相等.下列三个关系:①a≠2;②b=2;③c≠0有且只有一个正确,则100a+10b +c=________.16.集合A中共有3个元素-4,2a-1,a2,集合B中也共有3个元素9,a-5,1-a,现知9∈A且集合B中再没有其他元素属于集合A,能否根据上述条件求出实数a的值?若能,则求出a的值,若不能,则说明理由.。

高中数学课时作业二十二指数函数的概念图象及性质新人教A版必修第一册

高中数学课时作业二十二指数函数的概念图象及性质新人教A版必修第一册

课时作业(二十二) 指数函数的概念、图象及性质练 基 础1.下列函数中,不能化为指数函数的是( ) A .y =2x ·3x B .y =2x -1C .y =32xD .y =4-x2.若指数函数f (x )的图象过点(4,81),则f (x )的解析式为( ) A .f (x )=x 3B .f (x )=3xC .f (x )=⎝ ⎛⎭⎪⎫12xD .f (x )=x 133.函数y =x +a 与y =a x,其中a >0,且a ≠1,它们的大致图象在同一直角坐标系中有可能是( )4.函数y =4-2x的值域是( ) A .[0,+∞) B .[0,2] C .[0,2) D .(0,2)5.(多选)若函数f (x )=(12a -3)·a x(a >0且a ≠1)是指数函数,则下列说法正确的是( )A .a =8B .f (0)=-3C .f (12)=2 2 D .a =46.函数y =ax +3+3(a >0且a ≠1)的图象恒过定点________.7.[2022·山东烟台高一期末]函数f (x )=2x-1+1x -1的定义域为________. 8.已知函数f (x )=a x -1(x ≥0)的图象经过点⎝ ⎛⎭⎪⎫2,12,其中a >0且a ≠1. (1)求a 的值;(2)求函数y =f (x )(x ≥0)的值域提 能 力9.已知函数f (x )=a x +b (a >0,a ≠1)的定义域和值域都是[-1,0],则a +b =( ) A .-32 B .-1C .1D .3210.(多选)已知实数a ,b 满足等式2 021a =2 022b,下列式子可以成立的是( ) A .a =b =0 B .a <b <0 C .0<a <b D .0<b <a11.函数y =2x的图象与函数y =2-x的图象关于________对称,它们的交点坐标是________.12.求函数y =4x-2x+1的定义域、值域.13.已知函数f (x )=⎩⎪⎨⎪3x -1,x ≥0的值域为R ,则实数a 的取值范围为________.课时作业(二十二) 指数函数的概念、图象及性质1.解析:对于A ,y =2x·3x=6x是指数函数; 对于B ,y =2x -1=2x2不是指数函数; 对于C ,y =32x=9x是指数函数; 对于D ,y =4-x=(14)x 是指数函数.答案:B2.解析:设f (x )=a x (a >0且a ≠1),则81=a 4,∴a =3, ∴f (x )=3x. 答案:B3.解析:∵a >0,则y =x +a 单调递增,故排除AC ;对于BD ,y =a x单调递减,则0<a <1, ∴y =x +a 与y 轴交于0和1之间,故排除B. 答案:D4.解析:∵2x >0,故0≤4-2x<4,∴函数值域为[0,2). 答案:C5.解析:因为函数f (x )是指数函数,所以12a -3=1,所以a =8,所以f (x )=8x,所以f (0)=1,f (12)=812=22,故B 、D 错误,A 、C 正确.答案:AC6.解析:当x =-3时,y =a 0+3=4, 所以函数y =ax +3+3(a >0且a ≠1)的图象恒过定点(-3,4).答案:(-3,4)7.解析:根据题意,由⎩⎪⎨⎪⎧2x-1≥0x ≠1,解得x ≥0且x ≠1,因此定义域为[0,1)∪(1,+∞).答案:[0,1)∪(1,+∞)8.解析:(1)∵f (x )的图象过点(2,12),∴a2-1=12,则a =12. (2)由(1)知,f (x )=⎝ ⎛⎭⎪⎫12x -1,x ≥0.由x ≥0,得x -1≥-1,于是0<⎝ ⎛⎭⎪⎫12x -1≤⎝ ⎛⎭⎪⎫12-1=2,所以函数y =f (x )(x ≥0)的值域为(0,2].9.解析:当a >1时,⎩⎪⎨⎪⎧f (-1)=a -1+b =-1f (0)=a 0+b =0,方程组无解; 当0<a <1时,⎩⎪⎨⎪⎧f (-1)=a -1+b =0f (0)=a 0+b =-1,解得⎩⎪⎨⎪⎧a =12b =-2∴a +b =12-2=-32.答案:A 10.解析:分别画出y =2 021x ,y =2 022x的图象,如示意图: 实数a ,b 满足等式2 021a =2 022b, 可得:a >b >0,或a <b <0,或a =b =0. 答案:ABD11.解析:函数y =2x的图象与函数y =2-x的图象如下:由指数函数的性质可知,函数y =2x的图象与函数y =2-x的图象关于y 轴对称,它们的交点坐标是()0,1.答案:y 轴 (0,1)12.解析:函数的定义域为R ,y =(2x )2-2x +1=(2x -12)2+34,∵2x >0,∴当2x=12,即x =-1时,y 取最小值34,同时y 可以取一切大于等于34的实数,∴值域为[34,+∞).13.解析:∵函数f (x )=⎩⎪⎨⎪⎧(1-a )x +2a ,x <03x -1,x ≥0的值域为R ,又当x ≥0时,3x -1≥13,∴⎩⎪⎨⎪⎧1-a >02a ≥13,解得16≤a <1.答案:16≤a <1。

指数函数(含2课时)-2022-2023学年高一数学课件(人教A版2019必修第一册)

指数函数(含2课时)-2022-2023学年高一数学课件(人教A版2019必修第一册)

解 : 设f (x) ax (a 0, a 1).a2 9,a 3(3舍去). f (x) 3x. f (2) 32 1 . 9
新知应用:指数函数的概念
倍增模型
解 : 设f (x) k ax (a 0, a 1). f (x) k a0 3,k 3. f (0.5) 3a0.5 3 a 2 f (0) 6, a 2,a 4. f (x) 3 4x.
思考:5分与0.05元不一样吗?
某日钱某向一公司求职,老板答应他,试用期一周(7 天),日工资100元。钱某对老板说:“工资能否再谈 一谈?”老板很随和地说:“你开个价吧!”钱某心 中暗喜,说道:“第1天您需付给我5分钱,以后每天 付的工资,第几天就是几个第一天工资相乘。”老板 一听,略作思考后答应了,并叫来秘书与白日梦签订 如下合同:“经双方同意,钱某在试用期间的工资按 如下方案付给:第一天付给0.05元,以后每天付的工 资,第几天就是几个第一天工资相乘。”
指数函数的应用二:比较大小
1
[思考]已知a
4
23
,b
2
45
,
c
25
3
,
则(
A)
A.b a c B.a b c C.b c a D.c a b
4
2
4
关键1:化同底 a 2 3 , b 4 5 2 5
y 2x 在R上单调递增, 4 4 ,a b. 35
4
2
1
2
关键2:化同指数 a 2 3 4 3 , c 25 3 53
(0,) 图象均在x轴上方
a0 1
指数函数的应用一:求定点
y ax (a 0,且a 1)的图象恒过定点(1,0) 原理 : a 0时,恒有a0 1.

新教材高中数学第四章指数函数与对数函数 指数函数的概念课时作业新人教A版必修第一册

新教材高中数学第四章指数函数与对数函数 指数函数的概念课时作业新人教A版必修第一册

4.2.1 指数函数的概念必备知识基础练1.(多选)下列函数是指数函数的有( ) A .y =x 4B .y =(12)xC .y =22xD .y =-3x2.已知某种细胞分裂时,由1个分裂成2个,2个分裂成4个……依此类推,那么1个这样的细胞分裂3次后,得到的细胞个数为( )A .4个B .8个C .16个D .32个3.如果指数函数f (x )=a x(a >0,且a ≠1)的图象经过点(2,4),那么a 的值是( ) A . 2 B .2 C .3 D .44.若函数f (x )是指数函数,且f (2)=2,则f (x )=( ) A .(2)x B .2xC .(12)xD .(22)x5.已知f (x )=3x -b(b 为常数)的图象经过点(2,1),则f (4)的值为( )A .3B .6C .9D .86.已知函数f (x )=⎩⎪⎨⎪⎧2x,x <0,3x ,x >0,则f (f (-1))=( )A .2B . 3C .0D .127.已知函数y =a ·2x和y =2x +b都是指数函数,则a +b =________.8.已知函数f (x )是指数函数,且f (-32)=525,则f (3)=________.关键能力综合练1.若函数y =(m 2-m -1)·m x是指数函数,则m 等于( ) A .-1或2 B .-1 C .2 D .122.函数f (x )=⎩⎪⎨⎪⎧2x ,x >0,x +3,x ≤0,则f (f (-2))的值为( )A .14B .12C .2D .43.若函数f (x )=(12a -1)·a x是指数函数,则f (12)的值为( )A .-2B .2C .-2 2D .2 24.若函数y =(2a -1)x(x 是自变量)是指数函数,则a 的取值范围是( ) A .a >0且a ≠1 B .a ≥0且a ≠1 C .a >12且a ≠1 D .a ≥125.某产品计划每年成本降低p %,若三年后成本为a 元,则现在成本为( ) A .a (1+p %)元 B .a (1-p %)元 C .a (1-p %)3元 D .a1+p %元 6.(多选)设指数函数f (x )=a x(a >0,且a ≠1),则下列等式中正确的是( ) A .f (x +y )=f (x )f (y ) B .f (x -y )=f (x )f (y )C .f (xy)=f (x )-f (y ) D .f (nx )=[f (x )]n(n ∈Q )7.某厂2018年的产值为a 万元,预计产值每年以7%的速度增加,则该厂到2022年的产值为________万元.8.若函数y =(k +2)a x+2-b (a >0,且a ≠1)是指数函数,则k =________,b =________. 9.已知指数函数f (x )=a x(a >0,且a ≠1), (1)求f (0)的值;(2)如果f (2)=9,求实数a 的值.10.已知函数f (x )=(a 2+a -5)a x是指数函数. (1)求f (x )的表达式;(2)判断F (x )=f (x )-f (-x )的奇偶性,并加以证明.核心素养升级练1.某乡镇现在人均一年占有粮食360千克,如果该乡镇人口平均每年增长1.2%,粮食总产量平均每年增长4%,那么x 年后若人均一年占有y 千克粮食,则y 关于x 的解析式为( )A .y =360(1.041.012)x -1B .y =360×1.04xC .y =360×1.04x1.012D .y =360(1.041.012)x2.已知函数f (x )=⎩⎪⎨⎪⎧3x(x >0)2x -3(x ≤0),若f (a )-f (2)=0,则实数a 的值等于________.3.截止到2018年底,我国某市人口约为130万.若今后能将人口年平均递增率控制在3‰,经过x 年后,此市人口数为y (万).(1)求y 与x 的函数关系y =f (x ),并写出定义域;(2)若按此增长率,2029年年底的人口数是多少?(3)哪一年年底的人口数将达到135万?4.2.1 指数函数的概念必备知识基础练1.答案:BC解析:对于A,函数y =x 4不是指数函数, 对于B,函数y =(12)x是指数函数;对于C,函数y =22x=4x是指数函数; 对于D,函数y =-3x不是指数函数. 2.答案:B解析:由题意知1个细胞分裂3次的个数为23=8. 3.答案:B解析:由题意可知f (2)=a 2=4,解得a =2或a =-2(舍). 4.答案:A解析:由题意,设f (x )=a x(a >0且a ≠1), 因为f (2)=2,所以a 2=2,解得a = 2. 所以f (x )=(2)x. 5.答案:C 解析:f (2)=32-b=1=30,即b =2,f (4)=34-2=9.6.答案:B解析:f (-1)=2-1=12,f (f (-1))=f (12)=312= 3.7.答案:1解析:因为函数y =a ·2x是指数函数,所以a =1, 由y =2x +b是指数函数,所以b =0,所以a +b =1. 8.答案:125解析:设f (x )=a x(a >0且a ≠1),则f (-32)=a -32=525=5-32,得a =5,故f (x )=5x,因此,f (3)=53=125.关键能力综合练1.答案:C解析:由题意可得⎩⎪⎨⎪⎧m 2-m -1=1m >0m ≠1,解得m =2.2.答案:C解析:由题意f (-2)=-2+3=1,∴f (f (-2))=f (1)=2. 3.答案:B解析:因为函数f (x )=(12a -1)·a x 是指数函数,所以12a -1=1,即a =4,所以f (x )=4x,那么f (12)=412=2.4.答案:C解析:由于函数y =(2a -1)x(x 是自变量)是指数函数,则2a -1>0且2a -1≠1,解得a >12且a ≠1.5.答案:C解析:设现在成本为x 元,因为某产品计划每年成本降低p %,且三年后成本为a 元, 所以(1-p %)3x =a , 所以x =a(1-p %)3.6.答案:ABD解析:因指数函数f (x )=a x(a >0,且a ≠1),则有: 对于A,f (x +y )=ax +y=a x ·a y=f (x )f (y ),A 中的等式正确;对于B,f (x -y )=a x -y=a x·a -y=a x a y =f (x )f (y ),B 中的等式正确;对于C,f (x y )=a x y ,f (x )-f (y )=a x -a y ,显然,a xy≠a x -a y,C 中的等式错误;对于D,n ∈Q ,f (nx )=a nx =(a x )n =[f (x )]n,D 中的等式正确. 7.答案:a (1+7%)4解析:2018年产值为a ,增长率为7%. 2019年产值为a +a ×7%=a (1+7%)(万元).2020年产值为a (1+7%)+a (1+7%)×7%=a (1+7%)2(万元). ……2022年的产值为a (1+7%)4万元. 8.答案:-1 2解析:根据指数函数的定义,得⎩⎪⎨⎪⎧k +2=1,2-b =0,解得⎩⎪⎨⎪⎧k =-1,b =2.9.解析:(1)f (0)=a 0=1. (2)f (2)=a 2=9,∴a =3.10.解析:(1)由a 2+a -5=1,可得a =2或a =-3(舍去), ∴f (x )=2x.(2)F (x )=2x -2-x,定义域为R , ∴F (-x )=2-x-2x=-F (x ), ∴F (x )是奇函数.核心素养升级练1.答案:D解析:不妨设现在乡镇人口总数为a ,则现在乡镇粮食总量为360a ,故经过x 年后,乡镇人口总数为a (1+0.012)x ,乡镇粮食总量为360a (1+0.04)x, 故经过x 年后,人均占有粮食y =360a (1+0.04)xa (1+0.012)x =360(1.041.012)x. 2.答案:2解析:由已知,得f (2)=9; 又当x >0时,f (x )=3x, 所以当a >0时,f (a )=3a, 所以3a-9=0,所以a =2. 当x <0时,f (x )=2x -3, 所以当a <0时,f (a )=2a -3, 所以2a -3-9=0,所以a =6, 又因为a <0,所以a ≠6. 综上可知a =2.3.解析:(1)2018年年底的人口数为130万;经过1年,2019年年底的人口数为130+130×3‰=130(1+3‰)(万);经过2年,2020年年底的人口数为130(1+3‰)+130(1+3‰)×3‰=130(1+3‰)2(万);经过3年,2021年年底的人口数为130(1+3‰)2+130(1+3‰)2×3‰=130(1+3‰)3(万).……所以经过的年数与(1+3‰)的指数相同,所以经过x年后的人口数为130(1+3‰)x(万).即y=f(x)=130(1+3‰)x(x∈N*).(2)2029年年底,经过了11年,过2029年底的人口数为130(1+3‰)11≈134(万).(3)由(2)可知,2029年年底的人口数为130(1+3‰)11≈134<135.2030年年底的人口数为130(1+3‰)12≈134.8(万),2031年年底的人口数为130(1+3‰)13≈135.2(万).所以2031年年底的人口数将达到135万.。

2022版数学人教A版必修1基础训练:指数函数及其性质第2课时含解析

2022版数学人教A版必修1基础训练:指数函数及其性质第2课时含解析

第二章 基本初等函数(Ⅰ)2.1 指数函数2.1.2 指数函数及其性质第2课时 指数函数的性质及其应用基础过关练题组一 指数型函数的单调性及其应用1.(2020福建厦门双十中学高一月考)已知a =0.80.7,b =0.80.9,c =1.20.8,则a ,b ,c 的大小关系是 ( )A.a >b >cB.c >a >bC.b >a >cD.c >b >a2.若函数f (x )={(3-a )x -3,x ≤7,a x -6,x >7在定义域上单调递增,则实数a 的取值范围是( )A.94,3B.94,3C.(1,3)D.(2,3)3.(2020广东普宁华美实验学校开学考试)设x >0,且1<b x <a x ,则 ( )A.0<b <a <1B.0<a <b <1C.1<b <aD.1<a <b4.(2020陕西西安电子科技大学附属中学高一月考)已知函数f (x )=a |2x -4|(a >0,a ≠1),且满足f (1)=19,则f (x )的单调递减区间是 ( ) A.(-∞,2] B.[2,+∞) C.[-2,+∞) D.(-∞,-2]5.(2020浙江杭州高级中学高一上期末)函数f (x )=(14)-|x |+1的单调增区间为 ;奇偶性为 (填奇函数、偶函数或者非奇非偶函数).6.已知函数f (x )是定义在R 上的偶函数,当x ≥0时, f (x )=e -x (e 为自然对数的底数). (1)求函数f (x )在R 上的解析式,并作出函数f (x )的大致图象; (2)根据图象写出函数f (x )的单调区间和值域.7.(1)判断f(x)=(13)x2-2x的单调性,并求其值域;(2)求函数y=a x2+2x-3(a>0,且a≠1)的单调区间.题组二指数型方程与指数型不等式8.方程4x-3·2x+2=0的解构成的集合为()A.{0}B.{1}C.{0,1}D.{1,2}9.(2020山东日照第一中学高一月考)已知集合A={x|x2-2x-3<0},集合B={x|2x+1>1},则∁B A= ()A.[3,+∞)B.(3,+∞)C.(-∞,-1]∪[3,+∞)D.(-∞,-1)∪(3,+∞)10.已知关于x的不等式(13)x-4>3-2x,则该不等式的解集为()A.{x|x≥4}B.{x|x>-4}C.{x|x≤-4}D.{x|-4<x≤1}11.已知函数f(x)=2x+b的图象过点(2,8).(1)求实数b的值;(2)求不等式f(x)>√323的解集.能力提升练一、选择题1.(2020河北保定一中高一月考,)若关于x的不等式a2x≥a3-x(0<a<1)的解集为A,则函数y=3x+1,x∈A的最大值为()A.1B.3C.6D.92.(2020湖南株洲二中高一月考,)对于函数f(x)定义域中任意的x1,x2(x1≠x2),当f(x)=2-x时,下列结论中错误的是()A.f(x1+x2)=f(x1)f(x2)B.f(x1·x2)=f(x1)+f(x2)C.(x1-x2)[f(x1)-f(x2)]<0D.f(x1+x22)<f(x1)+f(x2)23.(2020湖南衡阳第四中学高一月考,)函数f(x)=x|x|·2x的图象大致是()4.(2020安徽安庆高一上期末教学质量调研监测,)某数学课外兴趣小组对函数f (x )=2|x -1|的图象与性质进行了探究,得到下列四条结论:①该函数的值域为(0,+∞);②该函数在区间[0,+∞)上单调递增;③该函数的图象关于直线x =1对称;④该函数的图象与直线y =-a 2(a ∈R )不可能有交点.则其中正确结论的个数为( )A .1B .2C .3D .45.(2020河北石家庄高一期末,)已知函数f (x )=m x -m (m >0,且m ≠1)的图象经过第一、二、四象限,则a =|f (√2)|,b =|f (438)|,c =|f (0)|的大小关系为 ( )A.c <b <aB.c <a <bC.a <b <cD.b <a <c二、填空题6.(2020江西临川第二中学高一月考,)如果函数y =a 2x +2a x -1(a >0,且a ≠1)在[-1,1]上的最大值是14,那么a 的值为 . 7.(2020山东烟台高一上期末,)已知函数f (x )=3|x +a |(a ∈R )满足f (x )=f (2-x ),则实数a 的值为 ;若f (x )在[m ,+∞)上单调递增,则实数m 的最小值等于 .8.(2020合肥第六中学高一开学考试,)若关于x 的不等式2x +1-2-x -a >0的解集包含区间(0,1),则a 的取值范围为 . 9.(2020黑龙江大庆实验中学高一上月考,)已知函数f (x )=b ·a x (其中a ,b 为常数,a >0,且a ≠1)的图象经过点A (1,6),B (2,18).若不等式(2a )x +(1b )x-m ≥0在x ∈(-∞,1]上恒成立,则实数m 的最大值为 . 三、解答题10.(2020山东泰安一中高一上期中,)已知函数f (x )=a +22x -1.(1)求f(x)的定义域;(2)若f(x)为奇函数,求a的值,并求f(x)的值域.11.(2020甘肃兰州五十一中高一期中,)已知函数f(x)=(13)ax2-4x+3.(1)若a=-1,求f(x)的单调区间;(2)若f(x)有最大值3,求a的值;(3)若f(x)的值域是(0,+∞),求a的取值范围.12.(2020河南郑州高一段考,)为了检验某种溶液的挥发性,在容积为1升的容器中注入该溶液,然后在挥发的过程中测量剩余溶液的体积.已知溶液注入过程中,其体积y(升)与时间t(分钟)成正比,且恰在2分钟注满;注入完成后,y与t的关系为y=(15)t30-a(a为常数),如图.(1)求溶液的体积y与时间t之间的函数关系式;(2)当容器中的溶液少于0.008升时,试验结束,则从注入溶液开始,至少需要经过多少分钟,才能结束试验?13.(2019河南郑州高一上期末,)设函数f(x)=2kx2+x(k∈R且k为常数)为奇函数,函数g(x)=a f(x)+1(a>0,且a≠1).(1)求k的值;(2)求函数g(x)在[-2,1]上的最大值和最小值;(3)当a=2时,g(x)≤-2mt+3对所有的x∈[-1,0]及m∈[-1,1]恒成立,求实数t的取值范围.14.()设函数f(x)=a x-(k-1)a-x(a>0,且a≠1)是定义域为R的奇函数.(1)求实数k的值;(2)若f(1)<0,求使不等式f(x2+tx)+f(4-x)<0恒成立的实数t的取值范围;(3)若f(1)=3,g(x)=a2x+a-2x-2mf(x),且g(x)在[1,+∞)上的最小值为-2,求实数m的值.2答案全解全析第二章 基本初等函数(Ⅰ)2.1 指数函数2.1.2 指数函数及其性质第2课时 指数函数的性质及其应用基础过关练1.B2.B3.C4.B 8.C 9.A 10.B1.B 因为1=0.80>0.80.7>0.80.9,1.20.8>1.20=1,即1>a >b ,c >1, 所以c >a >b ,故选B . 2.B 由函数f (x )={(3-a )x -3,x ≤7,a x -6,x >7在定义域上单调递增,可得{3-a >0,a >1,(3-a )×7-3≤a 7-6,解得94≤a <3. 所以实数a 的取值范围是94,3 . 3.C ∵x >0,且b x>1,∴b >1,同理可得a >1,又a x>b x>1,∴a xb x=(ab)x>1,∴a b >1,即a >b ,∴a >b >1,故选C .4.B 由f (1)=19,得a 2=19,所以a =13或a =-13(舍),即f (x )=13|2x -4|.由于y =|2x -4|在(-∞,2]上单调递减,在[2,+∞)上单调递增,y =a x (0<a <1)在R 上单调递减,所以f (x )在(-∞,2]上单调递增,在[2,+∞)上单调递减,故选B . 5.答案 [0,+∞);偶函数解析 设μ=-|x |+1,则y =14μ. 易知μ=-|x |+1的递减区间为[0,+∞),递增区间为(-∞,0).又y =14μ是减函数,∴y =14-|x |+1的递增区间是[0,+∞). 易知函数f (x )的定义域为R ,关于原点对称. 又f (-x )=14-|-x |+1=14-|x |+1=f (x ), ∴f (x )是偶函数.6.解析 (1)当x <0时,-x >0,所以f (-x )=e x ,因为f (x )是偶函数,所以当x <0时,f (x )=f (-x )=e x,所以f (x )={e x ,x <0,e -x ,x ≥0.作出大致图象如图所示.(2)由图象得,函数f (x )的单调递增区间是(-∞,0],单调递减区间是[0,+∞),值域是(0,1].7.解析 (1)令u =x 2-2x ,则u =x 2-2x =(x -1)2-1在(-∞,1]上单调递减,在[1,+∞)上单调递增.又0<13<1,所以y =(13)u在R 上单调递减.根据“同增异减”规律可得,f (x )=(13)x 2-2x在(-∞,1]上单调递增,在[1,+∞)上单调递减. 因为u =x 2-2x =(x -1)2-1≥-1,所以y =13u ,u ∈[-1,+∞),所以0<13u ≤13-1=3,由此可得函数f (x )的值域为(0,3].(2)令u =x 2+2x -3,则y =a u (a >0,且a ≠1),由u =x 2+2x -3=(x +1)2-4,得u =x 2+2x -3在(-∞,-1]上为减函数,在[-1,+∞)上为增函数. 当a >1时,y =a u 在R 上为增函数,此时函数y =a x 2+2x -3 的增区间为[-1,+∞),减区间为(-∞,-1];当0<a <1时,y =a u 在R 上为减函数,此时函数y =a x 2+2x -3 的增区间为(-∞,-1],减区间为[-1,+∞).8.C 令2x =t (t >0),则4x =(2x )2=t 2, 原方程可化为t 2-3t +2=0, 解得t =1或t =2.当t =1时,2x =1=20,解得x =0; 当t =2时,2x =2=21,解得x =1.因此原方程的解构成的集合为{0,1}, 故选C .9.A 因为A ={x |x 2-2x -3<0}={x |(x +1)(x -3)<0}=(-1,3),B ={x |2x +1>1}=(-1,+∞),所以∁B A =[3,+∞).故选A .10.B ∵3-2x=(13)2x,∴原不等式可化为(13)x -4>(13)2x.又函数y =(13)x在R 上是单调递减函数,∴x -4<2x ,解得x >-4.∴原不等式的解集为{x |x >-4}.故选B .方法指导解不等式a f (x )>a g (x )(a >0,且a ≠1)的依据是指数型函数的单调性,若底数不确定,需进行分类讨论.a f (x )>a g (x )⇔{f (x )>g (x ),a >1,f (x )<g (x ),0<a <1.11.解析 (1)∵函数f (x )=2x +b 的图象过点(2,8),∴22+b =8,即2+b =3,故b =1.(2)由(1)得,f (x )=2x +1,由f (x )>√323,得2x +1>253,∴x +1>53,即x >23,∴不等式f (x )>√323的解集为(23,+∞). 能力提升练1.D2.B3.B4.B5.C 一、选择题1.D ∵0<a <1且a 2x ≥a 3-x ,∴2x ≤3-x ,解得x ≤1,∴A ={x |x ≤1}.又函数y =3x +1,x ∈A 为增函数,∴当x =1时,y =3x +1取得最大值,为9.故选D .2.B 由已知得,f (x 1+x 2)=2-(x 1+x 2),f (x 1)·f (x 2)=2-x 1·2-x 2=2-(x 1+x 2),故A 正确;f (x 1·x 2)=2-(x 1·x 2)≠2-x 1+2-x 2=f (x 1)+f (x 2),故B 错误;因为f (x )=2-x=(12)x为减函数,所以有(x 1-x 2)[f (x 1)-f (x 2)]<0,故C 正确; 画出y =12x 的图象,如图,不妨设x 1<x 2,由图可知,fx 1+x 22<f (x 1)+f (x 2)2,故D 正确.故选B . 3.B f (x )=x |x |·2x ={2x,x >0,-2x ,x <0.∴当x >0时,其图象为y =2x (x >0)的图象;当x <0时,其图象与y =2x (x <0)的图象关于x 轴对称.故选B .4.B 函数f (x )的值域为[1,+∞),①错误;函数f (x )在区间(-∞,1)上单调递减,在[1,+∞)上单调递增,②错误;函数f (x )的图象关于直线x =1对称,③正确;因为y =-a 2≤0,所以函数f (x )的图象与直线y =-a 2(a ∈R )不可能有交点,④正确.所以正确结论的个数为2,故选B .5.C 因为f (x )=m x -m (m >0,且m ≠1)的图象经过第一、二、四象限,所以0<m <1,所以函数f (x )为减函数,易知f (1)=0,所以函数|f (x )|在(-∞,1)上单调递减,在(1,+∞)上单调递增,又因为1<√2=212<438=234<2,所以a <b <|f (2)|,又c =|f (0)|=1-m ,|f (2)|=m 2-m ,所以|f (2)|-|f (0)|=m 2-1<0,所以|f (2)|<|f (0)|=c ,所以a <b <c.故选C .二、填空题6.答案 3或13解析 设t =a x ,t >0,则y =t 2+2t -1,其图象的对称轴为直线t =-1.若a >1,则当x ∈[-1,1]时,t =a x ∈[1a,a], ∴当t =a 时,y max =a 2+2a -1=14,解得a =3或a =-5(舍去).若0<a <1,则当x ∈[-1,1]时,t =a x ∈[a ,1a], ∴当t =1a 时,y max =(1a)2+2×1a -1=14, 解得a =13或a =-15(舍去). 综上,a 的值为3或13. 7.答案 -1;1解析 由f (x )=f (2-x ),得f (x )的图象关于直线x =1对称,又f (x )=3|x +a |的图象关于直线x =-a 对称,∴-a =1,即a =-1.此时f (x )=3|x -1|,它的单调递增区间为[1,+∞),依题意得[m ,+∞)⊆[1,+∞),从而m ≥1, 因此m 的最小值为1.8.答案 (-∞,1]解析 不等式2x +1-2-x -a >0的解集包含区间(0,1),等价于对任意的x ∈(0,1),2x +1-2-x >a 恒成立.令2x =t ,则t ∈(1,2),问题转化为a <(2t -1t )min , 易知y =2t -1t在区间(1,2)上是单调递增函数, 所以y >2-1=1.故只需a ≤1即可.9.答案76 解析 由已知可得{ba =6,ba 2=18,解得{a =3,b =2,则不等式为(23)x +(12)x -m ≥0,设g (x )=(23)x +(12)x -m ,显然函数g (x )在(-∞,1]上单调递减,∴g (x )≥g (1)=23+12-m =76-m , 故76-m ≥0,解得m ≤76, ∴实数m 的最大值为76. 三、解答题10.解析 (1)由2x -1≠0,可得x ≠0,∴函数f (x )的定义域为{x |x ≠0}.(2)∵f (x )为奇函数,∴f (-x )=-f (x ),又f (-x )=a +22-x -1=a +2×2x 1-2x =a -2(2x -1)+22x -1=a -2-22x -1,-f (x )=-a -22x -1,∴a -2=-a ,解得a =1.因此f (x )=1+22x -1.当x >0时,2x -1>0,∴f (x )>1;当x <0时,-1<2x -1<0,∴f (x )<-1.∴f (x )的值域为(-∞,-1)∪(1,+∞).11.解析 (1)当a =-1时,f (x )=(13)-x 2-4x+3, 令g (x )=-x 2-4x +3,易知g (x )在(-∞,-2)上单调递增,在(-2,+∞)上单调递减,又y =(13)x 在R 上单调递减, 所以f (x )在(-∞,-2)上单调递减,在(-2,+∞)上单调递增,即函数f (x )的单调递增区间是(-2,+∞),单调递减区间是(-∞,-2).(2)令h (x )=ax 2-4x +3,y =(13)ℎ(x ),由于f (x )有最大值3,所以h (x )应有最小值-1,因此{a >0,ℎ(2a )=3a -4a =-1,解得a =1.即当f (x )有最大值3时,a 的值等于1.(3)由指数函数的性质知,要使y =f (x )的值域为(0,+∞),应使h (x )=ax 2-4x +3的值域为R .若a ≠0,则h (x )为二次函数,其值域不可能为R ,因此只能有a =0.故a 的取值范围是{0}.12.信息提取 溶液的体积y (升)与时间t (分钟)的关系与图象.数学建模 以检验溶液的挥发性为情境,构建溶液的体积与时间的函数关系.解析 (1)当0≤t ≤2时,设函数的解析式为y =kt (k ≠0),将点(2,1)的坐标代入,得k =12, 所以y =12t ; 当t >2时,函数的解析式为y =(15)t 30-a ,将点(2,1)的坐标代入,得a =115,所以y =(15)t 30-115. 综上,y ={12t ,0≤t ≤2,(15)t 30-115,t >2. (2)令(15)t 30-115<0.008=1125,解得t >92,所以至少需要经过92分钟后,试验才能结束.13.解析 (1)因为函数f (x )=2kx 2+x (k ∈R ,且k 为常数)为奇函数,且定义域为R , 所以f (-x )=-f (x ),即2kx 2-x =-2kx 2-x ,所以k =0.(2)由(1)知,f (x )=x ,则g (x )=a f (x )+1=a x +1(a >0,且a ≠1).当a >1时,g (x )在[-2,1]上是增函数,所以g (x )的最大值为g (1)=a +1,g (x )的最小值为g (-2)=1a 2+1;当0<a <1时,g (x )在[-2,1]上是减函数,所以g (x )的最大值为g (-2)=1a 2+1,g (x )的最小值为g (1)=a +1.(3)当a =2时,g (x )=2x +1,在[-1,0]上是增函数,则g (x )≤g (0)=2,所以-2mt +3≥2,即2mt -1≤0对所有的m ∈[-1,1]恒成立.令h (m )=2tm -1,m ∈[-1,1],则{ℎ(-1)≤0,ℎ(1)≤0,即{-2t -1≤0,2t -1≤0, 解得-12≤t ≤12, 故实数t 的取值范围是[-12,12]. 14.解析 (1)∵f (x )是定义域为R 的奇函数,∴f (0)=0,∴k =2.此时f (x )=a x -a -x ,为奇函数,∴k =2符合题意.(2)由(1)得f (x )=a x -a -x ,∵f (1)<0,∴a -1a<0,∴0<a <1, ∴f (x )在R 上为减函数.又∵f (x 2+tx )+f (4-x )<0在R 上恒成立,即f (x 2+tx )<f (x -4)在R 上恒成立,∴x 2+tx >x -4在R 上恒成立,∴x 2+(t -1)x +4>0在R 上恒成立,∴(t -1)2-4×1×4<0,解得-3<t <5,∴t 的取值范围为(-3,5).(3)∵f (1)=32,∴a =2a =-12舍去,∴g (x )=22x +2-2x -2m (2x -2-x ).令t =2x -2-x ,x ≥1,则h (t )=t 2-2mt +2,t ≥32.函数g (x )在[1,+∞)上的最小值为-2可转化为函数h (t )=t 2-2mt +2在区间[32,+∞)上的最小值为-2,当m ≤32时,h (t )在区间32,+∞上单调递增,∴h (t )min =h (32)=-2,解得m =2512,舍去;当m >32时,h (t )在区间32,m 上单调递减,在区间[m ,+∞)上单调递增,∴h (t )min =h (m )=-2,解得m =2(负值舍去).综上所述,m =2.。

2023版新教材高中数学第三章函数的概念与性质-函数的概念课时作业新人教A版必修第一册

2023版新教材高中数学第三章函数的概念与性质-函数的概念课时作业新人教A版必修第一册

3.1.1 函数的概念必备知识基础练1.下列四个图形中,不是以x为自变量的函数的图象是( )2.已知函数f(x)=+,则f(3)=( )A.1 B.2C.3 D.43.已知函数f(x)=x,则下列函数与f(x)表示同一函数的是( )A.y=B.y=C.y=()2D.y=4.函数y=f(x)与y轴的交点个数为( )A.至少1个 B.至多一个C.有且只有一个 D.与f(x)有关,不能确定5.[2022·广东深圳高一期末]函数f(x)=的定义域为( )A.[1,2)∪(2,+∞) B.(1,+∞)C.[1,2) D.[1,+∞)6.[2022·山东青岛高一期末](多选)下面选项中,变量y是变量x的函数的是( ) A.x表示某一天中的时刻,y表示对应的某地区的气温B.x表示年份,y表示对应的某地区的GDP (国内生产总值)C.x表示某地区的学生某次数学考试成绩,y表示该地区学生对应的考试号D.x表示某人的月收入,y表示对应的个税7.函数f(x)=的定义域是________.8.已知函数f(x)=-1,且f(a)=3,则a=________.关键能力综合练1.[2022·安徽歙县高一期末]∀x∈R,[x]表示不超过x的最大整数,十八世纪,函数y=[x]被“数学王子”高斯采用,因此得名高斯函数,人们更习惯称之为“取整函数”,则[4.8]-[-3.5]=( )A.0 B.1 C.7 D.82.学习了函数的概念后,对于构成函数的要素:定义域、对应关系和值域,甲、乙、丙三个同学得出了各自的判断:甲:存在函数f(x),g(x),它们的定义域相同,值域相同,但对应关系不同;乙:存在函数f(x),g(x),它们的定义域相同,对应关系相同,但值域不同;丙:存在函数f(x),g(x),它们的对应关系相同,值域相同,但定义域不同.上述三个判断中,正确的个数是( )A.3 B.2 C.1 D.03.函数f(x)=-(x+3)0的定义域是( )A.(-∞,-3)∪(3,+∞)B. (-∞,-3)∪(-3,3)C.(-∞,-3)D.(-∞,3)4.若函数f(x)=3x-1,则f(f(1))的值为( )A.2 B.4C.5 D.145.已知函数f(x)=的定义域为R,则a的取值范围是( )A.[0,1] B.(0,+∞)C.[1,+∞) D.[0,+∞)6.(多选)下列各组函数是同一个函数的是( )A.f(x)=·与g(x)=B.f(x)= 与g(x)=xC.f(x)=与g(x)=D.f(x)=与g(x)=7.[2022·江苏盐城高一期末]函数f(x)=的定义域为________.8.[2022·辽宁营口高一期末][x]为不超过x的最大整数,若函数f(x)=[x],x∈(a,b),f(x)的值域为{-1,0,1,2},则b-a的最大值为________.9.求下列函数的定义域:(1)y=·;(2)y=.10.已知定义域为R的函数f(x)=2x2-3和g(x)=4x,求f(g(-1)),g(f(-1)),f(f(-2)),g(g(-2))的值.核心素养升级练1.已知函数f(x)的定义域为(0,4),则函数g(x)=的定义域为( )A.(0,16) B.(-1,2)C.(-1,0)∪(0,2) D.(-2,0)∪(0,2)2.若一系列函数的解析式相同,值域相同,但其定义域不同,则称这些函数为“同族函数”,那么函数解析式为f(x)=x2,值域为{0,1}的“同族函数”共有________个.3.已知函数f(x)=.(1)求f(2)+f(),f(3)+f()的值;(2)求证:f(x)+f()是定值;(3)求f(2)+f(3)+…+f(2 022)+f()+f()+…+f()的值.3.1.1 函数的概念必备知识基础练1.答案:C解析:由函数定义:定义域内的每一个x都有唯一函数值与之对应,A、B、D选项中的图象都符合;C项中对于大于零的x而言,有两个不同的函数值与之对应,不符合函数定义.2.答案:C解析:f(3)=+=3.3.答案:A解析:f(x)=x的定义域是R,四个选项中,B选项定义域是{x|x≠0},C选项定义域是{x|x≥0},不是同一函数,AD选项定义域都是R,D选项对应法则是y=|x|,不是同一函数,A选项化简后为y=x,是同一函数.4.答案:B解析:由函数定义可知,定义域包含x=0时,则与y轴有1个交点,当定义域不包含x=0时,则与y轴无交点,所以函数y=f(x)与y轴的交点个数最多为1个.5.答案:A解析:函数f(x)=有意义,则有,解得x≥1且x≠2,所以原函数的定义域是[1,2)∪(2,+∞).6.答案:ABD解析:ABD均满足函数的定义,C选项,同一个分数可以对应多个考试号,不满足对于任意的x,都有唯一的y与其对应,故C选项错误.7.答案:(-2,+∞)解析:x+2>0,x>-2,所以f(x)的定义域为(-2,+∞).8.答案:16解析:因为f(x)=-1,f(a)=3,所以-1=3,解得:a=16.关键能力综合练1.答案:D解析:由题意可知[4.8]-[-3.5]=4-(-4)=8.2.答案:B解析:甲:f(x)=x2,g(x)=|x|,两个函数的定义域和值域相同,但对应关系不同,故甲正确;乙:根据函数相等的定义可知,若两个函数的定义域相同,对应关系相同,值域一定相同,故乙错误;丙:f(x)=x2,x∈(1,2),g(x)=x2,x∈(-2,-1),两个函数的对应关系相同,值域相同,但定义域不同,故丙正确.3.答案:B解析:由f(x)=-(x+3)0,则,解得x<3且x≠-3,所以函数的定义域为(-∞,-3)∪(-3,3).4.答案:C解析:由f(x)=3x-1,所以f(1)=2,所以f(f(1))=f(2)=5.5.答案:D解析:由题意,函数f(x)=有意义,则满足ax2+1≥0,因为函数f(x)的定义域为R,即不等式ax2+1≥0在R上恒成立,当a=0时,1≥0恒成立,符合题意;当a>0时,ax2+1≥0恒成立,符合题意.当a<0时,不符合题意,综上可得,实数a的取值范围是[0,+∞).6.答案:CD解析:A选项,f(x)的定义域为{x|x≥1},g(x)的定义域为{x|x≤-1或x≥1},不是同一个函数.B选项,f(x)=,x≤0,f(x)==-x≠g(x),不是同一个函数.C选项,f(x)===g(x),是同一个函数.D选项,f(x)==1(x>0),g(x)==1(x>0),是同一个函数.7.答案:[1,5]解析:由-x2+6x-5≥0,得x2-6x+5≤0,(x-1)(x-5)≤0,解得1≤x≤5,所以函数的定义域为[1,5].8.答案:4解析:因为函数f(x)=[x],x∈(a,b),f(x)的值域为{-1,0,1,2},所以b最大取到3,a最小取到-1,所以b-a的最大值为3-(-1)=4.9.解析:(1)依题意⇒2≤x≤3,所以函数的定义域为[2,3].(2)依题意,解得-2≤x<2且x≠-.所以函数的定义域为[-2,-)∪(-,2).10.解析:由已知g(-1)=4×(-1)=-4,f(-1)=2×(-1)2-3=-1,同理g(-2)=-8,f(-2)=5,所以f(g(-1))=f(-4)=29,g(f(-1))=g(-1)=-4,f(f(-2))=f(5)=47,g(g(-2))=g(-8)=-32.核心素养升级练1.答案:C解析:因为f(x)的定义域为(0,4),所以0<x2<4,解得-2<x<0或0<x<2.又因为x+1>0,解得x>-1,所以g(x)的定义域为(-1,0)∪(0,2).2.答案:3解析:已知函数解析式为f(x)=x2,值域为{0,1}的“同族函数”的定义域可以为:{0,1},{0,-1},{0,-1,1},所以“同族函数”共有3个.3.解析:(1)f(x)=,f(2)+f()=+=1,f(3)+f()=+=1.(2)f(x)+f()=+=+=1.(3)f(2)+f(3)+…+f(2 022)+f()+f()+…+f()=[f(2)+f()]+[f(3)+f()]+…+[f(2 022)+f()]=2 021×1=2 021.。

高中数学第四章指数函数与对数函数指数函数第2课时指数函数及其性质的应用学案新人教A版必修第一册

高中数学第四章指数函数与对数函数指数函数第2课时指数函数及其性质的应用学案新人教A版必修第一册

第2课时 指数函数及其性质的应用课程标准(1)掌握指数函数与其他函数复合所得的函数单调区间的求法及单调性的判断.(2)能借助指数函数图象及单调性比较大小.(3)会解简单的指数方程、不等式.(4)会判断指数型函数的奇偶性.新知初探·课前预习——突出基础性教材要点要点一 比较大小❶1.对于同底数不同指数的两个幂的大小,利用指数函数的________来判断;2.对于底数不同指数相同的两个幂的大小,利用指数函数的______的变化规律来判断;3.对于底数不同指数也不同的两个幂的大小,则通过______来判断.要点二 解指数方程、不等式(1)形如a f(x)>a g(x)的不等式,可借助y=a x的________求解❷;(2)形如a f(x)>b的不等式,可将b化为以a为底数的指数幂的形式,再借助y=a x的_ _______求解;(3)形如a x>b x的不等式,可借助两函数y=a x,y=b x的图象求解.要点三 指数型函数的单调性❸一般地,有形如y=a f(x)(a>0,且a≠1)函数的性质(1)函数y=a f(x)与函数y=f(x)有________的定义域.(2)当a>1时,函数y=a f(x)与y=f(x)具有________的单调性;当0<a<1时,函数y=a f(x)与函数y=f(x)的单调性________.助学批注批注❶ 注意区别指数函数与幂函数的比较大小.批注❷ 如果a的取值不确定,需分a>1与0<a<1两种情况进行讨论.批注❸ 与复合函数的单调性“同增异减”一致,即内外两个函数单调性相同,则复合函数为增函数;内外两个函数单调性相反,则复合函数为减函数.基础自测1.思考辨析(正确的画“√”,错误的画“×”)(1)若0.3a>0.3b,则a>b.( )(2)函数y=3x2在[0,+∞)上为增函数.( )(3)函数y=21x在其定义域上为减函数.( )(4)若a m>1,则m>0.( )2.设a=1.20.2,b=0.91.2,c=0.3-0.2,则a,b,c大小关系为( ) A.a>b>c B.a>c>bC.c>a>b D.c>b>a3.已知2m>2n>1,则下列不等式成立的是( )A.m>n>0B.n<m<0C.m<n<0D.n>m>04.函数f(x)=2|x|的递增区间是________.题型探究·课堂解透——强化创新性题型 1 利用指数函数的单调性比较大小例1 若a=(12)32,b=(34)14,c=(34)34,则a,b,c的大小关系是( ) A.a>b>c B.b>a>cC.b>c>a D.c>b>a方法归纳底数与指数都不同的两个数比较大小的策略巩固训练1 下列选项正确的是( )A.0.62.5>0.63B.1.7−13<1.7−12C.1.11.5<0.72.1D.212>313题型 2 解简单的指数不等式例2 (1)不等式3x -2>1的解集为________.(2)若a x +1>(1a )5−3x(a >0且a ≠1),求x 的取值范围.方法归纳利用指数函数单调性解不等式的步骤巩固训练2 已知集合M ={-1,1},N ={x |12<2x +1<4,x ∈Z },则M ∩▒N = ()A .{-1,1}B .{-1}C .{0}D .{-1,0}题型 3 指数型函数的单调性例3 求函数f (x )=(13)x 2-2x 的单调区间.方法归纳指数型函数单调区间的求解步骤巩固训练3 函数f (x )=2x2-1的单调减区间为________.题型 4 指数函数性质的综合问题例4 已知函数f (x )=e x -mex 是定义在R 上的奇函数.(1)求实数m 的值;(2)用单调性定义证明函数f (x )是R 上的增函数;(3)若函数f (x )满足f (t -3)+f (2t 2)<0,求实数t 的取值范围.方法归纳有关指数函数性质的综合问题的求解策略是奇函数.巩固训练4 已知函数f(x)=2x−a2x+a(1)求实数a的值;(2)求f(x)的值域.第2课时 指数函数及其性质的应用新知初探·课前预习[教材要点]要点一单调性 图象 中间值要点二单调性 单调性要点三相同 相同 相反[基础自测]1.答案:(1)× (2)√ (3)× (4)×2.解析:∵a=1.20.2>1.20=1,b=0.91.2<0.90=1,∴b<a,又y=x0.2在(0,+∞)上单调递增,∴1<a=1.20.2<0.3-0.2=(103)0.2,∴b<a<c.答案:C3.解析:因为2m>2n>1,所以2m>2n>20;又函数y=2x是R上的增函数,所以m>n>0.答案:A4.解析:因为f(x)=2|x|={2x,x>0(12)x,x≤0,故函数f(x)的单调递增区间为(0,+∞).答案:(0,+∞)题型探究·课堂解透例1 解析:因为b=(34)14,c=(34)34,函数y=(34)x在R上单调递减,所以(34)14>(34)34,即b>c;又a=(12)32=(14)34,c=(34)34,函数y=x34在(0,+∞)上单调递增,所以(14)34<(34)34,即a<c,所以b>c>a.答案:C巩固训练1 解析:对于A:y=0.6x在定义域R上单调递减,所以0.62.5>0.63,故A正确;对于B:y=1.7x在定义域R上单调递增,所以1.7−13>1.7−12,故B错误;对于C:因为1.11.5>1.10=1,0<0.72.1<0.70=1,所以1.11.5>0.72.1,故C错误;对于D:因为¿)6=23=8,¿)6=32=9,即(212)6<¿)6,所以212<313,故D错误.答案:A例2 解析:(1)3x-2>1⇒3x-2>30⇒x-2>0⇒x>2,所以解集为(2,+∞).(2)因为a x+1>(1a)5−3x,所以当a>1时,y=a x为增函数,可得x+1>3x-5,所以x<3.当0<a<1时,y=a x为减函数,可得x+1<3x-5,所以x>3.综上,当a>1时,x的取值范围为(-∞,3),当0<a<1时,x的取值范围为(3,+∞).答案:(1)(2,+∞) (2)见解析巩固训练2 解析:∵12<2x+1<4,∴2-1<2x+1<22,∴-1<x+1<2,∴-2<x<1.又∵x∈Z,∴x=0或x=-1,即N={0,-1},∴M∩N={-1}.答案:B例3 解析:令u=x2-2x,则原函数变为y=(1 3 )u.∵u=x2-2x=(x-1)2-1在(-∞,1)上单调递减,在[1,+∞)上单调递增,又∵y=( 13)u在(-∞,+∞)上单调递减,∴y=(13)x2-2x单调递增区间是(-∞,1),单调递减区间是[1,+∞).巩固训练3 解析:令t=x2,则y=2t-1为增函数,当x∈(-∞,0)时,t=x2为减函数,所以f(x)=2x2-1在x∈(-∞,0)上是减函数.答案:(-∞,0)例4 解析:(1)∵f(x)是定义在R上的奇函数,∴f(0)=0,得m=1;(2)设x1,x2∈R,且x1<x2,则f(x1)-f(x2)=e x1−1e x1−e x2+1e x2=(e x1−e x2)¿)∵x1<x2,∴0<e x1<e x2,因此f(x1)<f(x2),即f(x)是R上的增函数;(3)∵f(x)是奇函数,∴f(2t2)<-f(t-3)=f(3-t),又f(x)在R上为增函数,∴2t2<3-t,解得-32<t<1.巩固训练4 解析:(1)因为f(x)=2x−a2x+a,f(-x)=2−x−a2−x+a =1−a·2x 1+a·2x由f(-x)=-f(x),可得1−a·2x1+a·2x =-2x−a2x+a,(1-a·2x)(2x+a)=(1+a·2x)(a-2x),2x-a·2x·2x+a-a2·2x=a+a2·2x-2x-a·2x·2x,整理得2x(a2-1)=0,于是a2-1=0,a=±1.当a=1时,f(x)定义域为R,f(x)是奇函数.当a=-1时,f(x)定义域为{x|x≠0},f(x)是奇函数.因此a=±1.(2)当a=1时,f(x)=1-22x+1,定义域为R,所以2x>0,于是2x+1>1,0<22x+1<2,因此-1<1-22x+1<1,故f(x)的值域为(-1,1).当a=-1时,f(x)=1+22x−1,定义域为{x|x≠0},所以2x>0,且2x≠1,于是2x-1>-1,且2x-1≠0,所以22x−1<-2,或22x−1>0.因此1+22x−1<-1或1+22x−1>1,故f(x)的值域为(-∞,-1)∪(1,+∞).。

人教A版高中数学必修1《第二章 基本初等函数(Ⅰ) 2.1 指数函数 习题2.1》_24

人教A版高中数学必修1《第二章 基本初等函数(Ⅰ) 2.1 指数函数 习题2.1》_24

函数的应用1.题型为选择题或填空题,主要考查零点个数的判断及零点所在区间.2.函数的零点与方程的根的关系:方程f (x )=0有实数根⇔函数y =f (x )的图象与x 轴有交点⇔函数y =f (x )有零点.[典题示例] 函数f (x )=⎩⎪⎨⎪⎧x 2-1,x ≤0,x -2+ln x ,x >0的零点个数为________.[解析] 令f (x )=0,得到⎩⎪⎨⎪⎧x 2-1=0,x ≤0,解得x =-1;或⎩⎪⎨⎪⎧x -2+ln x =0,x >0,在同一个直角坐标系中画出y =2-x 和y =ln x 的图象,观察交点个数,如图所示.函数y =2-x 和y =ln x ,x >0,在同一个直角坐标系中交点个数是1,所以函数f (x )在x <0时的零点有一个,在x >0时零点有一个,所以f (x )的零点个数为2.[答案] 2 [类题通法]确定函数零点个数的方法(1)解方程f (x )=0有几个根.(2)利用图象找y =f (x )的图象与x 轴的交点或转化成两个函数图象的交点个数. (3)利用f (a )·f (b )与0的关系进行判断.[题组训练]1.函数f (x )=lg x -9x 的零点所在的大致区间是( ) A .(6,7) B .(7,8) C .(8,9)D .(9,10)解析:选D ∵f (6)=lg 6-96=lg 6-32<0,f (7)=lg 7-97<0,f (8)=lg 8-98<0,f (9)=lg 9-1<0,f (10)=lg 10-910>0, ∴f (9) · f (10)<0.函数的零点问题∴f (x )=lg x -9x的零点的大致区间为(9,10).2.已知函数f (x )=ln x -⎝⎛⎭⎫12x -2的零点为x 0,则x 0所在的区间是( ) A .(0,1) B .(1,2) C .(2,3)D .(3,4)解析:选C ∵f (x )=ln x -⎝⎛⎭⎫12x -2在(0,+∞)是增函数, 又f (1)=ln 1-⎝⎛⎭⎫12-1=ln 1-2<0, f (2)=ln 2-⎝⎛⎭⎫120<0, f (3)=ln 3-⎝⎛⎭⎫121>0, ∴x 0∈(2,3).3.函数y =⎝⎛⎭⎫12|x |-m 有两个零点,则m 的取值范围是________. 解析:在同一直角坐标系内,画出y 1=⎝⎛⎭⎫12|x |和y 2=m 的图象,如图所示,由于函数有两个零点,故0<m <1.答案:(0,1)1.通过对近几年高考试题的分析可以看出,对函数的实际应用问题的考查,更多地以实际生活为背景,设问新颖、灵活;题型以解答题为主,难度中等偏上;主要考查建模能力,同时考查分析问题、解决问题的能力.2.函数实际应用的示意图[典题示例] 某网店经营的某消费品的进价为每件12元,周销售量p (件)与销售价格x (元)的关系,如图中折线所示,每周各项开支合计为20元.(1)写出周销售量p (件)与销售价格x (元)的函数关系式; (2)写出利润周利润y (元)与销售价格x (元)的函数关系式;函数的应用(3)当该消费品销售价格为多少元时,周利润最大?并求出最大周利润. [解] (1)由题设知,当12≤x ≤20时,设p =ax +b ,则⎩⎪⎨⎪⎧12a +b =26,20a +b =10,∴a =-2,b =50. ∴p =-2x +50,同理得,当20<x ≤28时,p =-x +30,所以p =⎩⎪⎨⎪⎧-2x +50,12≤x ≤20,-x +30,20<x ≤28.(2)当12≤x ≤20时,y =(x -12)(-2x +50)-20=-2x 2+74x -620; 当20<x ≤28时,y =(x -12)(-x +30)-20=-x 2+42x -380.∴y =⎩⎪⎨⎪⎧-2x 2+74x -620,12≤x ≤20,-x 2+42x -380,20<x ≤28. (3)当12≤x ≤20时,y =-2x 2+74x -620, ∴x =372时,y 取得最大值1292. 当20<x ≤28时,y =-x 2+42x -380, ∴x =21时,y 取得最大值61. ∵1292>61,∴该消费品销售价格为372时,周利润最大,最大周利润为1292. [类题通法]建立恰当的函数模型解决实际问题的步骤(1)对实际问题进行抽象概括,确定变量之间的主被动关系,并用x ,y 分别表示. (2)建立函数模型,将变量y 表示为x 的函数,此时要注意函数的定义域. (3)求解函数模型,并还原为实际问题的解.[题组训练]1.某工厂8年来某种产品的总产量C 与时间t (年)的函数关系如图所示.以下四种说法:①前三年产量增长的速度越来越快; ②前三年产量增长的速率越来越慢; ③第三年后这种产品停止生产; ④第三年后产量保持不变. 其中说法正确的是序号是________.解析:由t ∈[0,3]的图象联想到幂函数y =x α(0<α<1),反映了C 随时间的变化而逐渐增长但速度越来越慢.由t ∈[3,8]的图象可知,总产量C 没有变化,即第三年后停产,所以②③正确.答案:②③2.将甲桶中的a 升水缓慢注入空桶乙中,t 分钟后甲桶中剩余的水量符合指数衰减曲线y =a e nt .若5分钟后甲桶和乙桶的水量相等,又过了m 分钟后甲桶中的水只有a8升,则m的值为( )A .7B .8C .9D .10解析:选D 令18a =a e nt ,即18=e nt ,由已知得12=e 5n ,故18=e 15n ,比较知t =15,m =15-5=10.3.某企业决定从甲、乙两种产品中选择一种投资生产,打入国际市场,已知投资生产这两种产品的有关数据如表:时需上交0.05x 2万美元的特别关税.(1)写出该厂分别投资生产甲、乙两种产品的年利润y 1,y 2与生产相应产品的件数x (x ∈N)之间的函数关系式;(2)分别求出投资生产这两种产品的最大年利润.解:(1)由题知y 1=10x -(20+ax )=(10-a )x -20,0≤x ≤200且x ∈N ;y 2=18x -(40+8x )-0.05x 2=-0.05x 2+10x -40=-0.05(x-100)2+460,0≤x ≤120且x ∈N.(2)∵3≤a ≤8,∴10-a >0, ∴y 1=(10-a )x -20为增函数. 又0≤x ≤200,x ∈N ,∴x =200时y 1取最大值,即生产甲产品的最大年利润为(10-a )×200-20=1 980-200a (万美元).又y 2=-0.05(x -100)2+460,0≤x ≤120,x ∈N ,∴x =100时y 2取最大值,即生产乙产品的最大年利润为460万美元.1.已知函数f (x )=⎩⎪⎨⎪⎧x (x +4),x <0,x (x -4),x ≥0,则该函数的零点的个数为( )A .1B .2C .3D .4解析:选C 当x <0时,令x (x +4)=0,解得x =-4;当x ≥0时,令x (x -4)=0,解得x =0或4.综上,该函数的零点有3个.2.函数f (x )=ln(x +1)-2x 的零点所在的大致区间是( )A .(1,2)B .(0,1)C .(2,e)D .(3,4)解析:选A f (1)=ln 2-2=ln 2e 2<ln 1=0,f (2)=ln 3-1=ln 3e>ln 1=0,所以函数f (x )=ln(x +1)-2x的零点所在的大致区间是(1,2).3.某家具的标价为132元,若降价以九折出售(即优惠10%),仍可获利10%(相对进货价),则该家具的进货价是( )A .118元B .105元C .106元D .108元解析:选D 设该家具的进货价是x 元,由题意得132(1-10%)-x =x ·10%,解得x =108元.4.下列函数:①y =lg x ;②y =2x ;③y =x 2;④y =|x |-1,其中有2个零点的函数是( ) A .①② B .③④ C .②③D .④解析:选D 分别作出这四个函数的图象,其中④y =|x |-1的图象与x 轴有两个交点,即有2个零点,选D.5.已知函数f (x )在区间[a ,b ]上是单调函数,且f (a )f (b )<0,则方程f (x )=0在区间[a ,b ]内( )A .至少有一实根B .至多有一实根C .没有实根D .必有唯一实根解析:选B 由于f (a )f (b )<0,则f (a )<0<f (b )或f (b )<0<f (a ),又函数f (x )在区间[a ,b ]上是单调函数,则至多有一个实数x 0∈[a ,b ],使f (x 0)=0,即方程f (x )=0在区间[a ,b ]内至多有一实根.6.已知0<a <1,则方程a |x |=|log a x |的实根个数为( ) A .2 B .3C .4D .与a 的值有关解析:选A 设y 1=a |x |,y 2=|log a x |,分别作出它们的图象如图所示.由图可知,有两个交点,故方程a |x |=|log a x |有两个根.故选A.7.长为4,宽为3的矩形,当长增加x ,宽减少x2时,面积达到最大,此时x 的值为________.解析:由题意,S =(4+x )⎝⎛⎭⎫3-x 2,即S =-12x 2+x +12,∴当x =1时,S 最大. 答案:18.某学校要装备一个实验室,需要购置实验设备若干套,与厂家协商,同意按出厂价结算,若超过50套就可以每套比出厂价低30元给予优惠.如果按出厂价购买应付a 元,但再多买11套就可以按优惠价结算,恰好也付a 元(价格为整数),则a 的值为________.解析:设按出厂价y 元购买x (x ≤50)套应付a 元, 则a =xy .再多买11套就可以按优惠价结算恰好也付a 元,则a =(x +11)(y -30),其中x +11>50.∴xy =(x +11)(y -30)(39<x ≤50).∴3011x =y -30.又x ∈N ,y ∈N(因价格为整数),39<x ≤50, ∴x =44,y =150,a =44×150=6 600. 答案:6 6009.若函数f (x )=a x -x -a (a >0,且a ≠1)有两个零点,则实数a 的取值范围为________. 解析:函数f (x )的零点的个数就是函数y =a x 与函数y =x +a 交点的个数,如下图,由函数的图象可知a >1时两函数图象有两个交点,0<a <1时两函数图象有唯一交点,故a >1.答案:(1,+∞)10.某产品按质量分为10个档次,生产第一档(即最低档次)的利润是每件8元,每提高一个档次,利润每件增加2元,但每提高一个档次,在规定的时间内,产量减少3件.如果在规定的时间内,最低档次的产品可生产60件.(1)请写出规定时间内产品的总利润y 与档次x 之间的函数关系式,并写出x 的定义域; (2)在规定的时间内,生产哪一档次产品的总利润最大?并求出最大利润.解:(1)由题意知,生产第x 个档次的产品每件的利润为8+2(x -1)元,该档次的产量为60-3(x -1)件.则规定时间内第x 档次的总利润y =(2x +6)(63-3x )=-6x 2+108x +378,其中x ∈{x ∈N *|1≤x ≤10}.(2)y =-6x 2+108x +378=-6(x -9)2+864,则当x =9时,y 有最大值为864.故在规定的时间内,生产第9档次的产品的总利润最大,最大利润为864元.11.A 、B 两城相距100 km ,在两地之间距A 城x km 处D 地建一核电站给A 、B 两城供电,为保证城市安全.核电站与城市距离不得少于10 km.已知供电费用与供电距离的平方和供电量之积成正比,比例系数λ=0.25.若A 城供电量为20亿度/月,B 城为10亿度/月.(1)求x 的范围;(2)把月供电总费用y 表示成x 的函数;(3)核电站建在距A 城多远,才能使供电费用最小. 解:(1)x 的取值范围为[10,90].(2)y =0.25×20x 2+0.25×10(100-x )2=5x 2+52(100-x )2(10≤x ≤90).(3)由y =5x 2+52(100-x )2=152x 2-500x +25 000=152⎝⎛⎭⎫x -10032+50 0003. 则当x =1003km 时,y 最小. 故当核电站建在距A 城1003km 时,才能使供电费用最小.12.为了保护环境,发展低碳经济,某单位在国家科研部门的支持下,进行技术攻关,采用了新工艺,把二氧化碳转化为一种可利用的化工产品.已知该单位每月的处理量最少为400吨,最多为600吨,月处理成本y (元)与月处理量x (吨)之间的函数关系可近似地表示为y =12x 2-200x +80 000,且每处理一吨二氧化碳得到可利用的化工产品价值为100元.该单位每月能否获利?如果获利,求出最大利润;如果不获利,则国家至少需要补贴多少元才能使该单位不亏损?解:设该单位每月获利为S 元, 则S =100x -y=100x -⎝⎛⎭⎫12x 2-200x +80 000=-12x 2+300x -80 000=-12(x -300)2-35 000,因为400≤x ≤600,所以当x =400时,S 有最大值-40 000.故该单位不获利,需要国家每月至少补贴40 000元才能不亏损.(时间120分钟 满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设U ={1,2,3,4,5},A ={1,2,3},B ={2,3,4},则下列结论中正确的是( ) A .A ⊆B B .A ∩B ={2} C .A ∪B ={1,2,3,4,5}D .A ∩(∁U B )={1}解析:选D A 显然错误;A ∩B ={2,3},B 错;A ∪B ={1,2,3,4},C 错,故选D. 2.(2017·山东高考)设函数y =4-x 2的定义域为A ,函数y =ln(1-x )的定义域为B ,则A ∩B =( )A .(1,2)B .(1,2]C .(-2,1)D .[-2,1)解析:选D 由题意可知A ={x |-2≤x ≤2},B ={x |x <1},故A ∩B ={x |-2≤x <1}.3.设f (x )=⎩⎪⎨⎪⎧2e x -1,x <2,log 3(2x-1),x ≥2,则f (f (2))=( ) A .0 B .1 C .2D .3解析:选C ∵f (2)=log 3(22-1)=1. ∴f (f (2))=f (1)=2e 1-1=2.4.下列函数中,既是偶函数,又在区间(0,+∞)上单调递减的函数是( ) A .y =x -2B .y =x -1C .y =x 2-2D .y =log 12x解析:选A ∵y =x-1是奇函数,y =log 12x 不具有奇偶性,故排除B 、D ,又函数y =x 2-2在区间(0,+∞)上是单调递增函数,故排除C ,只有选项A 符合题意.5.函数y =log 2|1-x |的图象是( )解析:选D 函数y =log 2|1-x |可由下列变换得到: y =log 2x →y =log 2|x |→y =log 2|x -1|→y =log 2|1-x |.故选D.6.已知幂函数y =f (x )的图象过点⎝⎛⎭⎫12,22,则log 2f (2)的值为( )A.12 B .-12C .2D .-2解析:选A 设f (x )=x α,则22=⎝⎛⎭⎫12α,∴α=12,f (2)=212,所以log 2f (2)=log 2212=12. 7.函数f (x )=lg x -1x 的零点所在的区间是( ) A .(0,1) B .(1,10) C .(10,100)D .(100,+∞)解析:选B ∵f (1)=-1<0,f (10)=1-110=910>0,f (100)=2-1100>0, ∴f (1)·f (10)<0,由函数零点存在性定理知,函数f (x )=lg x -1x 的零点所在的区间为(1,10).8.设a =60.4,b =log 0.40.5,c =log 80.4,则a ,b ,c 的大小关系是( ) A .a <b <c B .c <b <a C .c <a <bD .b <c <a解析:选B ∵a =60.4>1,b =log 0.40.5∈(0,1),c =log 80.4<0,∴a >b >c .故选B. 9.如右图,向放在水槽底部的烧杯注水(流量一定),注满烧杯后,继续注水,直至注满水槽,水槽中整体水面上升高度h 与注水时间t 之间的函数关系大致是下列图象中的( )解析:选B 开始一段时间,水槽底部没有水,烧杯满了之后,水槽中水面上升先快后慢.故选B.10.已知函数f (x )=1+x 21-x 2,则有( )A .f (x )是奇函数,且f ⎝⎛⎭⎫1x =-f (x ) B .f (x )是奇函数,且f ⎝⎛⎭⎫1x =f (x ) C .f (x )是偶函数,且f ⎝⎛⎭⎫1x =-f (x ) D .f (x )是偶函数,且f ⎝⎛⎭⎫1x =f (x ) 解析:选C ∵f (-x )=f (x ), ∴f (x )是偶函数,排除A 、B.又f ⎝⎛⎭⎫1x =1+⎝⎛⎭⎫1x 21-⎝⎛⎭⎫1x 2=1+x 2x 2-1=-f (x ),故选C. 11.已知函数f (x )=m +log 2x 2的定义域是[1,2],且f (x )≤4,则实数m 的取值范围是( ) A .(-∞,2] B .(-∞,2) C .[2,+∞)D .(2,+∞)解析:选A 因为f (x )=m +2log 2x 在[1,2]是增函数,且由f (x )≤4,得f (2)=m +2≤4,得m ≤2.12.已知函数f (x )=⎩⎪⎨⎪⎧|lg x |,0<x ≤10,-12x +6,x >10,若a ,b ,c 互不相等,且f (a )=f (b )=f (c ),则abc 的取值范围是( )A .(1,10)B .(5,6)C .(10,12)D .(20,24)解析:选C 作出f (x )的大致图象.由图象知,要使f (a )=f (b )=f (c ),不妨设a <b <c ,则-lg a =lg b =-12c +6.于是lg a +lg b =0. 故ab =1.因而abc =c .由图知10<c <12,故abc ∈(10,12).二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上) 13.设U =R ,已知集合A ={x |x >1},B ={x |x >a },且(∁U A )∪B =R ,则实数a 的取值范围是________.解析:∵A ={x |x >1}, ∴∁U A ={x |x ≤1}.由B ={x |x >a },(∁U A )∪B =R 可知a ≤1. 答案:(-∞,1]14.调查表明,酒后驾驶是导致交通事故的主要原因,交通法规规定,驾驶员在驾驶机动车时血液中酒精含量不得超过0.2 mg/mL.某人喝酒后,其血液中酒精含量将上升到3 mg/mL ,在停止喝酒后,血液中酒精含量以每小时50%的速度减少,则至少经过________小时他才可以驾驶机动车.(精确到小时)解析:设n 小时后他才可以驾驶机动车,由题意得3(1-0.5)n ≤0.2,即2n ≥15,解得n ≥log 215,故至少经过4小时他才可以驾驶机动车.答案:415.已知函数f (x )=⎩⎪⎨⎪⎧2x +1,x <1,x 2+ax ,x ≥1,若f (f (0))=4a ,则实数a 等于________. 解析:∵0<1,∴f (0)=20+1=2.∵2>1,∴f (2)=4+2a ,∴f (f (0))=f (2)=4+2a =4a ,∴a =2.答案:216.已知函数f (x )=lg(2x -b )(b 为常数),若x ∈[1,+∞)时,f (x )≥0恒成立,则b 的取值范围是________.解析:∵要使f (x )=lg(2x -b )在x ∈[1,+∞)上,恒有f (x )≥0,∴有2x -b ≥1在x ∈[1,+∞)上恒成立,即2x ≥b +1恒成立.又∵指数函数g (x )=2x 在定义域上是增函数.∴只要2≥b +1成立即可,解得b ≤1.答案:(-∞,1]三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)已知集合A ={x |2<2x <8},B ={x |a ≤x ≤a +3}.(1)当a =2时,求A ∩B ;(2)若B ⊆∁R A ,求实数a 的取值范围.解:(1)当a =2时,A ={x |2<2x <8}=(1,3),B ={x |a ≤x ≤a +3}=[2,5],故A ∩B =[2,3).(2)∁R A =(-∞,1]∪[3,+∞).故由B ⊆∁R A 知,a +3≤1或a ≥3,故实数a 的取值范围为(-∞,-2]∪[3,+∞).18.(本小题满分12分)已知f (x )=log a x (a >0且a ≠1)的图象过点(4,2).(1)求a 的值;(2)若g (x )=f (1-x )+f (1+x ),求g (x )的解析式及定义域;(3)在(2)的条件下,求g (x )的单调减区间.解:(1)由已知f (x )=log a x (a >0且a ≠1)的图象过点(4,2),则2=log a 4,即a 2=4,又a >0且a ≠1,所以a =2.(2)g (x )=f (1-x )+f (1+x )=log 2(1-x )+log 2(1+x ).由⎩⎪⎨⎪⎧1-x >0,1+x >0,得-1<x <1,定义域为(-1,1).(3)g (x )=log 2(1-x )+log 2(1+x )=log 2(1-x 2),其单调减区间为[0,1).19.(本小题满分12分)若f (x )是定义在(0,+∞)上的增函数,且对一切x ,y >0,满足f ⎝⎛⎭⎫x y =f (x )-f (y ).(1)求f (1)的值;(2)若f (6)=1,解不等式f (x +3)-f ⎝⎛⎭⎫13<2.解:(1)在f ⎝⎛⎭⎫x y =f (x )-f (y )中,令x =y =1,则有f (1)=f (1)-f (1),∴f (1)=0.(2)∵f (6)=1,∴f (x +3)-f ⎝⎛⎭⎫13<2=f (6)+f (6).∴f (3x +9)-f (6)<f (6),即f ⎝⎛⎭⎫x +32<f (6).∵f (x )是定义在(0,+∞)上的增函数,∴⎩⎪⎨⎪⎧ x +3>0,x +32<6.解得-3<x <9, 即不等式的解集为(-3,9).20.(本小题满分12分)随着新能源的发展,电动汽车在全社会逐渐普及开来,据某报记者了解,某市电动汽车国际示范区运营服务公司逐步建立了全市乃至全国的分时租赁服务体系,为新能源汽车分时租赁在全国的推广提供了可复制的市场化运营模式.现假设该公司有750辆电动汽车供租赁使用,管理这些电动汽车的费用是每日1 725元.调查发现,若每辆电动汽车的日租金不超过90元,则电动汽车可以全部租出;若超过90元,则每超过1元,租不出的电动汽车就增加3辆.设每辆电动汽车的日租金为x (元)(60≤x ≤300,x ∈N *),用y (元)表示出租电动汽车的日净收入(日净收入等于日出租电动汽车的总收入减去日管理费用).(1)求函数y =f (x )的解析式;(2)试问当每辆电动汽车的日租金为多少元时,才能使日净收入最多?解:(1)当60≤x ≤90,x ∈N *时,y =750x -1 725;当90<x ≤300,x ∈N *时,y =[750-3(x -90)]x -1 725,故f (x )=⎩⎪⎨⎪⎧750x -1 725,60≤x ≤90,x ∈N *,-3x 2+1 020x -1 725,90<x ≤300,x ∈N *. (2)对于y =750x -1 725,60≤x ≤90,x ∈N *,∵y 在[60,90](x ∈N *)上单调递增,∴当x =90时,y max =65 775.对于y =-3x 2+1 020x -1 725=-3(x -170)2+84 975,90<x ≤300,x ∈N *,当x =170时,y max =84 975.∵84 975>65 775,∴当每辆电动汽车的日租金为170元时,日净收入最多.21.(本小题满分12分)已知f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=2x -1.(1)求f (3)+f (-1);(2)求f (x )的解析式;(3)若x ∈A ,f (x )∈[-7,3],求区间A .解:(1)∵f (x )是奇函数,∴f (3)+f (-1)=f (3)-f (1)=23-1-2+1=6.(2)设x <0,则-x >0,∴f (-x )=2-x -1, ∵f (x )为奇函数,∴f (x )=-f (-x )=-2-x +1, ∴f (x )=⎩⎪⎨⎪⎧2x -1,x ≥0,-2-x +1,x <0.(3)作出函数f (x )的图象,如图所示.根据函数图象可得f (x )在R 上单调递增,当x <0时,-7≤-2-x +1<0, 解得-3≤x <0;当x ≥0时,0≤2x -1≤3,解得0≤x ≤2;∴区间A 为[-3,2].22.(本小题满分12分)对于函数f (x )=a -2b x+1(a ∈R ,b >0,且b ≠1). (1)探索函数y =f (x )的单调性;(2)求实数a 的值,使函数y =f (x )为奇函数;(3)在(2)的条件下,令b =2,求使f (x )=m (x ∈[0,1])有解的实数m 的取值范围.解:(1)函数f (x )的定义域为R ,设x 1<x 2,则f (x 1)-f (x 2)=⎝⎛⎭⎫a -2bx 1+1-⎝⎛⎭⎫a -2bx 2+1=2(bx 1-bx 2)(bx 1+1)(bx 2+1).当b >1时,由x 1<x 2,得bx 1<bx 2,从而bx 1-bx 2<0,于是f (x 1)-f (x 2)<0,所以f (x 1)<f (x 2),此时函数f (x )在R 上是单调增函数; 当0<b <1时,由x 1<x 2,得bx 1>bx 2,从而bx 1-bx 2>0,于是f (x 1)-f (x 2)>0,所以f (x 1)>f (x 2), 此时函数f (x )在R 上是单调减函数.(2)函数f (x )的定义域为R ,由f (0)=0得a =1. 当a =1时,f (x )=1-2b x +1=b x -1b x +1, f (-x )=1-2b -x +1=b -x -1b -x +1=1-b x 1+b x . 满足条件f (-x )=-f (x ),故a =1时,函数f (x )为奇函数.(3)f (x )=1-22x+1, ∵x ∈[0,1],∴2x ∈[1,2],2x +1∈[2,3],22x+1∈⎣⎡⎦⎤23,1, ∴f (x )∈⎣⎡⎦⎤0,13, 要使f (x )=m (x ∈[0,1])有解,则0≤m ≤13,即实数m 的取值范围为⎣⎡⎦⎤0,13.。

高中数学 3.1.2《用二分法求方程的近似解》课件 新人教A版必修1

高中数学 3.1.2《用二分法求方程的近似解》课件 新人教A版必修1

(1.375,1.5) 1.438
(1.375,1.43
|a-b| 1 0.5
0.25 0.125
第十六页,共24页。
由上表计算可知区间(1.375,1.438)长度小于0.1,故可在 (1.438,1.5)内取1.406 5作为函数f(x)正数的零点的近似值.
第十七页,共24页。
1.准确理解“二分法”的含义 顾名思义,二分就是平均分成两部分.二分法就是通过不 断地将所选区间一分为二,逐步逼近零点的方法,找到零点附 近足够小的区间,根据所要求的精确度,用此区间的某个数值 近似地表示真正的零点.
图象可以作出,由图象确定根的大致区间,再用二分法求解.
第九页,共24页。
【解析】 作出y=lg x,y=3-x的图象可以发现,方程lgx=3-x有 唯一解,记为x0,并且解在区间(2,3)内.
设f(x)=lgx+x-3,用计算器计算,得
f(2)<0,f(3)>0,
∴x0∈(2,3); f(2.5)<0,f(3)>0⇒x0∈(2.5,3); f(2.5)<0,f(2.75)>0⇒x0∈(2.5,2.75); f(2.5)<0,f(2.625)>0⇒x0∈(2.5,2.625); f(2.562)<0,f(2.625)>0⇒x0∈(2.562,2.625). ∵|2.625-2.562|=0.063<0.1 ∴方程的近似解可取为2.625(不唯一).
第四页,共24页。
下列函数图象与x轴均有交点,其中不能用二分法求图中函数零点的 是( )
【思路点拨】 由题目可获取以下主要信息: ①题中给出了函数的图象;
②二分法的概念. 解答本题可结合二分法的概念,判断是否具备使用二分法的条件.

数学人教版高中一年级必修1 指数函数及其性质(第2课时)

数学人教版高中一年级必修1 指数函数及其性质(第2课时)

二、自主检测
1.下列大小关系正确的是( )
A.0.43<30.4<π0
B.0.43<π0<30.4
C.30.4<0.43<π0
D.π0<30.4<0.43
解析: 因为π0=1,0.43<0.40=1,30.4>30=1,所以 0.43<π0<30.4,故选B.
答案: B
ax,x>1, 2.若函数f(x)= 4-a2x+2,x≤1
∴f(0)=m2·20+0-11=0,即m1+-11=0,
∴m=1.
答案: 1
4.(2014·济南高一检测)若ax+1>
1 a
5-3x(a>0,且a≠1),求x
的取值范围.
解析: ax+1>1a5-3x⇔ax+1>a3x-5, 当a>1时,可得x+1>3x-5,∴x<3.
(2)∵f(x)在 x∈R 上为奇函数,
∴f(0)=0,
7分

a-20+1 1=0,解得
a=1. 2
8分
经检验,a=12时,f(x)=12-2x+1 1是奇函数.
9分
(3)由(2)知,f(x)=12-2x+1 1, 由(1)知,f(x)在(-∞,+∞)为增函数, ∴f(x)在区间[1,5]上的最小值为f(1). ∵f(1)=12-13=16, ∴f(x)在区间[1,5]上的最小值为61.
解简单的指数不等式
(1)解不等式13x2-2≤3; (2)已知(a2+2a+3)x>(a2+2a+3)1-x,求 x 的取值范围.
[思路探究] 1.未知数在什么位置? 2.如何转化为常规不等式?
解析: (1)13x2-2=(3-1) x2-2=32-x2, ∴原不等式等价于 32-x2≤31. ∵y=3x 是 R 上的增函数,∴2-x2≤1. ∴x2≥1,即 x≥1 或 x≤-1. ∴原不等式的解集是{x|x≥1 或 x≤-1}.

4.2.2指数函数的图象和性质(第二课时)课件-高一上学期数学人教A版【01】

4.2.2指数函数的图象和性质(第二课时)课件-高一上学期数学人教A版【01】

【变式训练】
1.函数 y=12x2-2x-3的值域为_(_0_,_1_6__]_.
解析:定义域为 R.因为 x2-2x-3=(x-1)2-4≥-4,
所以12x2-2x-3≤12-4=16. 又12x2-2x-3>0, 所以函数 y=12x2-2x-3的值域为(0,16].
题型二 指数函数的单调性及应用
角度 2 解指数不等式
(, 1)
例 3、(1)不等式 4x<42-3x 的解集是_______2_.
(2)若 a-5x>ax+7(a>0 且 a≠1),求 x 的取值范围.
(1)解析:因为
4x<42-3x,所以
x<2-3x,所以
1 x<2.
(2) 解:①当 a>1 时,因为 a5x ax7 ,且函数 y=ax 为增函数,所以-5x>x+7,解得 x<-76. ②当 0<a<1 时,因为 a5x ax7 ,且函数 y=ax 为减函数,所以-5x<x+7,解得 x>-76.

a
4
1 x
1
a
1 4x
1
恒成立,解得Fra bibliotek2a1 4x 1
1 4x 1
1,所以
a
1 2
.
题型三 指数函数性质的综合问题 例 5、已知定义在 R 上的函数 f(x)=a+4x+1 1是奇函数. (2)判断 f(x)的单调性(不需要证明); (3)若对任意的 t∈R,不等式 f(t2-2t)+f(2t2-k)<0 恒成立,求实数 k 的取值范围. (2)由(1)知 f(x)=-12+4x+1 1,故 f(x)在 R 上为减函数.
综上所述,当 a>1 时,x 的取值范围为-∞,-67;当 0<a<1 时,x 的取值范围为-76,+∞.

高中数学人教版A版必修一课时作业及解析:第二章2-1指数函数

高中数学人教版A版必修一课时作业及解析:第二章2-1指数函数

∴原式=--24x1-≤2x<3 -3<x<1 .
12.解
1
1
1
原式=
a3
2
a 8b
1
2
a3
2b3
1
1
×a3
4b3 2a3 a 3
a3
13.解 ∵x- xy-2y=0,x>0,y>0, ∴( x)2- xy-2( y)2=0, ∴( x+ y)( x-2 y)=0, 由 x>0,y>0 得 x+ y>0, ∴ x-2 y=0,∴x=4y, ∴y2+x-2 xxyy=8yy+-42yy=65.
6
1
-32>0, 33
<0,C
选项错.故选
D.]
6.B [①中,当 a<0 时,
a2
3 2
a2
1 2
3
=(-a)3=-a3,
∴①不正确;
②中,若 a=-2,n=3,
则3 -23=-2≠|-2|,∴②不正确;
x-2≥0, ③中,有3x-7≠0,
即 x≥2 且 x≠73,
故定义域为[2,73)∪(73,+∞),∴③不正确; ④中,∵100a=5,10b=2, ∴102a=5,10b=2,102a×10b=10,即 102a+b=10.
1 2
3
xy
1 2
·(xy)-1
12
= x3 ·y 3
1
x6
y
1 6
x
1 2
y
1 2
=x1 3·x1 31, =-1,x<0
x>0
.
(2)原式= 1 + 1 + 2+1-22 22
=2 2-3.

新教材高中数学指数函数的图象和性质第2课时指数函数的图象和性质的综合应用课时作业新人教A版必修第一册

新教材高中数学指数函数的图象和性质第2课时指数函数的图象和性质的综合应用课时作业新人教A版必修第一册

第2课时 指数函数的图象和性质的综合应用必备知识基础练1.函数f (x )=(a -1)x是R 上的单调减函数,则a 的取值范围是( ) A .a >2 B .1<a <2 C .0<a <1 D .a >12.已知指数函数f (x )=(2a 2-5a +3)a x在(0,+∞)上单调递增,则实数a 的值为( ) A .12 B .1 C .32D .2 3.下列不等式中成立的是( ) A .1.12.1<1.11.9B .0.82.1<0.81.9C .0.82.1>1.11.9D .1.12.1<0.82.14.[2022·广东汕尾高一期末]若a =(12)13,b =(14)13,c =(12)14,则( )A .c >a >bB .c >b >aC .b >c >aD .a >b >c5.[2022·江苏宿迁高一期末]函数f (x )=x 22x+2-x的图象大致是( )6.(多选)已知函数f (x )=e x-e -x,则下列说法正确的是( ) A .函数f (x )是奇函数 B .函数f (x )是偶函数 C .函数f (x )在R 上是减函数 D .函数f (x )在R 上是增函数7.函数f (x )=2|x |的递增区间是________. 8.已知a =5+12,函数f (x )=a x,若实数m 、n 满足f (m )>f (n ),则m 、n 的大小关系为________.关键能力综合练1.已知函数y =(a -2)x,且当x <0时,y >1,则实数a 的取值范围是( ) A .a >3 B .2<a <3 C .a >4 D .3<a <42.若(13)2a +1>(13)4-a,则实数a 的取值范围是( )A .(-∞,1)B .(1,+∞)C .(3,+∞)D .(-∞,3)3.已知实数x ,y 满足(12)x <(12)y,则下列关系式中恒成立的是( )A.x 2>y 2B .πx >πyC .1x <1yD .x >y4.已知函数f (x )=⎩⎪⎨⎪⎧(2-a )x +1,x ≥1a x ,x <1是R 上的单调递增函数,则实数a 的取值范围是( )A .a >1B .1<a <32C .1<a <2D .1<a ≤325.设14<(14)b <(14)a<1,那么( )A .a a<a b<b aB .a a<b a<a bC .a b<a a<b aD .a b<b a<a a6.[2022·重庆九龙坡高一期末](多选)已知函数f (x )=2x-12x +1,则下列结论正确的是( )A .函数f (x )的定义域为R B.函数f (x )的值域为(-1,1)C .函数f (x )的图象关于y 轴对称D .函数f (x )在R 上为增函数7.若f (x )=a 2x -1+12是奇函数.则实数a 的值是________.8.函数f (x )=(12)x2-2x -3的单调减区间是________.9.[2022·湖南邵阳高一期末]已知函数f (x )=a 3-x,(a 为常数,a >0且a ≠1),若f (2)=3.(1)求a 的值; (2)解不等式f (x )>9.10.[2022·广东广州高一期末]已知f (x )=a ·2x +a -22x+1是定义在R 上的奇函数.(1)求实数a 和f (1)的值;(2)根据单调性的定义证明:f (x )在定义域上为增函数.核心素养升级练1.(多选)设函数f (x )=2x,对于任意的x 1,x 2(x 1≠x 2),下列命题中正确的是( ) A .f (x 1+x 2)=f (x 1)·f (x 2) B .f (x 1·x 2)=f (x 1)+f (x 2) C .f (x 1)-f (x 2)x 1-x 2<0D .f (x 1+x 22)<f (x 1)+f (x 2)22.写出一个同时具有下列性质①②③的函数f (x )=________. ①定义域为R ; ②值域为(-∞,1);③对任意x 1,x 2∈(0,+∞)且x 1≠x 2,均有f (x 1)-f (x 2)x 1-x 2>0.3.[2022·湖北十堰高一期末]已知函数f (x )=2a +2x +11+2x .(1)当a =6时,求方程f (x )=2x的解;(2)若对任意x ∈(0,+∞),不等式f (x )≥a 恒成立,求a 的取值范围.第2课时 指数函数的图象和性质的综合应用必备知识基础练1.答案:B解析:函数f (x )=(a -1)x是R 上的单调减函数, 所以0<a -1<1,解得1<a <2. 2.答案:D解析:由题得2a 2-5a +3=1,∴2a 2-5a +2=0,∴a =2或a =12.当a =2时,f (x )=2x在(0,+∞)上单调递增,符合题意; 当a =12时,f (x )=(12)x在(0,+∞)上单调递减,不符合题意.所以a =2. 3.答案:B解析:A.因为y =1.1x 在R 上是增函数,所以1.12.1>1.11.9,故错误; B .因为y =0.8x 在R 上是减函数,所以0.82.1<0.81.9,故正确; C .因为0.82.1<1,1.11.9>1,所以0.82.1<1.11.9,故错误; D .因为1.12.1>1,0.82.1<1,所以1.12.1>0.82.1,故错误. 4.答案:A解析:b =(14)13=(12)23,因为y =(12)x 在R 上为减函数,且14<13<23,所以(12)14>(12)13>(12)23,所以c >a >b .5.答案:C 解析:x ∈R ,f (-x )=x 22-x+2x=f (x ),所以f (x )为偶函数,图象关于y 轴对称,排除选项AB ; 当x >0时,f (x )=x 22-x +2x >0,故D 错误.6.答案:AD解析:f (-x )=e -x-e x =-f (x ),函数f (x )=e x -e -x的定义域为R , 函数f (x )是奇函数,A 正确,B 错误;y =e x 为R 上的增函数,y =e -x 为R 上的减函数,则函数f (x )=e x-e -x为R 上的增函数,C 错误,D 正确. 7.答案:(0,+∞)解析:因为f (x )=2|x |=⎩⎪⎨⎪⎧2x,x >0(12)x ,x ≤0,故函数f (x )的单调递增区间为(0,+∞).8.答案:m >n 解析:∵a =5+12>1,所以,函数f (x )=a x为R 上的增函数, ∵f (m )>f (n ),∴m >n .关键能力综合练1.答案:B解析:∵当x <0时,y >1,∴0<a -2<1,解得2<a <3. 2.答案:A解析:因为函数y =(13)x在R 上为减函数,∴(13)2a +1>(13)4-a,等价于2a +1<4-a ,解得a <1, 所以实数a 的取值范围是(-∞,1). 3.答案:B解析:由(12)x <(12)y 以及指数函数y =(12)x为减函数,可得x >y ,对于A,当x =1>y =-1时,x 2>y 2不成立,故A 不正确;对于B,根据指数函数y =πx为R 上的增函数可知,πx>πy恒成立,故B 正确; 对于C,当x >0,y <0时,1x <1y不成立,故C 不正确;对于D,当x 或y 为负数时,x 或y 无意义,所以D 不正确. 4.答案:D解析:根据题意可列不等式如下,⎩⎪⎨⎪⎧2-a >0a >1(2-a )+1≥a 解得 1<a ≤32,选项D 正确. 5.答案:C解析:∵14<(14)b <(14)a<1,∴0<a <b <1,因为y =a x单调递减,所以a a>a b, 因为y =x a在(0,1)单调递增,所以a a<b a, ∴a b<a a<b a . 6.答案:ABD解析:A :因为2x>0,所以函数f (x )的定义域为R ,因此本选项结论正确;B :f (x )=2x-12x +1=1-22x +1,由2x >0⇒2x+1>1⇒0<12x +1<1⇒-2<-22x +1<0⇒-1<1-22x+1<1,所以函数f (x )的值域为(-1,1),因此本选项结论正确; C :因为f (-x )=2-x -12-x +1=1-2x1+2x =-f (x ),所以函数f (x )是奇函数,其图象关于原点对称,不关于y 轴对称,因此本选项说法不正确;D :因为函数y =2x +1是增函数,因为y =2x+1>1,所以函数y =22x +1是减函数,因此函数f (x )=1-22x +1是增函数,所以本选项结论正确.7.答案:1解析:由题意f (-x )+f (x )=0即a2-x-1+12+a 2x -1+12=0,-a +1=0,a =1. 8.答案:(1,+∞)解析:由题知函数f (x )的定义域为R ,∵y =(12)x 单调递减,故只需求出y =x 2-2x -3的单调递增区间即可,∵y =x 2-2x -3开口向上,对称轴为x =1,故在(1,+∞)单调递增,∴f (x )=(12)x 2-2x -3的单调递减区间是(1,+∞).9.解析:(1)∵函数f (x )=a 3-x,f (2)=3,∴f (2)=a3-2=a =3,∴a =3.(2)由(1)知f (x )=33-x,由f (x )>9,得33-x>32,∴3-x >2,即x <1,∴f (x )>9的解集为(-∞,1).10.解析:(1)因为f (x )是定义在R 上的奇函数,所以f (0)=0,a =1, f (x )=2x-12x +1=1-22x +1, f (1)=13.(2)设任意x 1<x 2,则f (x 1)-f (x 2)=-22x 1+1+22x 2+1=2(2x 1-2x 2)(2x 1+1)(2x 2+1), ∵x 1<x 2,∴2x 1<2x 2,2x 1-2x 2<0, 所以f (x 1)-f (x 2)<0,f (x 1)<f (x 2), 故f (x )在定义域上为增函数.核心素养升级练1.答案:AD 解析:2x 1·2x 2=2x 1+x 2,所以A 项成立;2x 1+2x 2≠2x 1x 2,所以B 项不成立;函数f (x )=2x在R 上是单调递增函数,若x 1>x 2,则f (x 1)>f (x 2),则f (x 1)-f (x 2)x 1-x 2>0,若x 1<x 2,则f (x 1)<f (x 2),则f (x 1)-f (x 2)x 1-x 2>0,故C 项不正确;函数f (x )=2x任意两点之间的连线在其图象的上方,所以f (x )=2x的图象满足f (x 1+x 22)<f (x 1)+f (x 2)2,故D 项正确.2.答案:f (x )=1-12x (答案不唯一)解析:f (x )=1-12x ,定义域为R ;12x >0,f (x )=1-12x <1,值域为(-∞,1);是增函数,满足对任意x 1,x 2∈(0,+∞)且x 1≠x 2,均有f (x 1)-f (x 2)x 1-x 2>0.3.解析:(1)当a =6时,由f (x )=2x,可得12+2x +11+2x =2x,则(2x )2-2x -12=0,所以2x =4或2x=-3(舍去),解得x =2. 故方程f (x )=2x的解为2.(2)由题意知2a +2x +11+2x ≥a 在(0,+∞)上恒成立,即2×2x ≥a (2x-1)在(0,+∞)上恒成立.又因为x ∈(0,+∞),所以2x-1>0,则a ≤2×2x2x -1=2+22x -1.因为22x -1>0,所以2+22x -1>2,所以a ≤2,即a 的取值范围是(-∞,2].。

新人教A版高中数学教材目录(必修+选修)

新人教A版高中数学教材目录(必修+选修)

必修1第一章集合与函数概念1.1 集合1.2 函数及其表示1.3 函数的基本性质实习作业小结复习参考题第二章基本初等函数(Ⅰ)2.1 指数函数2.2 对数函数2.3 幂函数小结复习参考题第三章函数的应用3.1 函数与方程3.2 函数模型及其应用实习作业小结复习参考题必修2第一章空间几何体1.1 空间几何体的结构1.2 空间几何体的三视图和直观图1.3 空间几何体的表面积与体积实习作业小结复习参考题第二章点、直线、平面之间的位置关系2.1 空间点、直线、平面之间的位置关系2.2 直线、平面平行的判定及其性质2.3 直线、平面垂直的判定及其性质小结复习参考题第三章直线与方程3.1 直线的倾斜角与斜率3.2 直线的方程3.3 直线的交点坐标与距离公式小结复习参考题第四章圆与方程4.1 圆的方程4.2 直线、圆的位置关系4.3 空间直角坐标系小结复习参考题必修3第一章算法初步1.1 算法与程序框图1.2 基本算法语句1.3 算法案例阅读与思考割圆术小结复习参考题第二章统计2.1 随机抽样阅读与思考一个著名的案例阅读与思考广告中数据的可靠性阅读与思考如何得到敏感性问题的诚实反应2.2 用样本估计总体阅读与思考生产过程中的质量控制图2.3 变量间的相关关系阅读与思考相关关系的强与弱实习作业小结复习参考题第三章概率3.1 随机事件的概率阅读与思考天气变化的认识过程3.2 古典概型3.3 几何概型阅读与思考概率与密码小结复习参考题必修4第一章三角函数1.1 任意角和弧度制1.2 任意角的三角函数1.3 三角函数的诱导公式1.4 三角函数的图象与性质1.5 函数y=Asin(ωx+ψ)1.6 三角函数模型的简单应用小结复习参考题第二章平面向量2.1 平面向量的实际背景及基本概念2.2 平面向量的线性运算2.3 平面向量的基本定理及坐标表示2.4 平面向量的数量积2.5 平面向量应用举例小结复习参考题第三章三角恒等变换3.1 两角和与差的正弦、余弦和正切公式3.2 简单的三角恒等变换小结复习参考题必修5第一章解三角形1.1 正弦定理和余弦定理探究与发现解三角形的进一步讨论1.2 应用举例阅读与思考海伦和秦九韶1.3 实习作业小结复习参考题第二章数列2.1 数列的概念与简单表示法阅读与思考斐波那契数列阅读与思考估计根号下2的值2.2 等差数列2.3 等差数列的前n项和2.4 等比数列2.5 等比数列前n项和阅读与思考九连环探究与发现购房中的数学小结复习参考题第三章不等式3.1 不等关系与不等式3.2 一元二次不等式及其解法3.3 二元一次不等式(组)与简单的线性规划问题阅读与思考错在哪儿信息技术应用用Excel解线性规划问题举例3.4 基本不等式小结复习参考题选修1-1第一章常用逻辑用语1.1 命题及其关系1.2 充分条件与必要条件1.3 简单的逻辑联结词1.4 全称量词与存在量词小结复习参考题第二章圆锥曲线与方程2.1 椭圆探究与发现为什么截口曲线是椭圆信息技术应用用《几何画板》探究点的轨迹:椭圆2.2 双曲线2.3 抛物线阅读与思考圆锥曲线的光学性质及其应用小结复习参考题第三章导数及其应用3.1 变化率与导数3.2 导数的计算探究与发现牛顿法──用导数方法求方程的近似解3.3 导数在研究函数中的应用信息技术应用图形技术与函数性质3.4 生活中的优化问题举例实习作业走进微积分小结复习参考题选修1-2第一章统计案例1.1 回归分析的基本思想及其初步应用1.2 独立性检验的基本思想及其初步应用实习作业小结复习参考题第二章推理与证明2.1 合情推理与演绎证明阅读与思考科学发现中的推理2.2 直接证明与间接证明小结复习参考题第三章数系的扩充与复数的引入3.1 数系的扩充和复数的概念3.2 复数代数形式的四则运算小结复习参考题第四章框图4.1 流程图4.2 结构图信息技术应用用Word2002绘制流程图小结复习参考题选修2-1第一章常用逻辑用语1.1 命题及其关系1.2 充分条件与必要条件1.3 简单的逻辑联结词1.4 全称量词与存在量词小结复习参考题第二章圆锥曲线与方程2.1 曲线与方程2.2 椭圆探究与发现为什么截口曲线是椭圆信息技术应用用《几何画板》探究点的轨迹:椭圆2.3 双曲线探究与发现2.4 抛物线探究与发现阅读与思考小结复习参考题选修 2-2第一章导数及其应用1.1 变化率与导数1.2 导数的计算1.3 导数在研究函数中的应用1.4 生活中的优化问题举例1.5 定积分的概念1.6 微积分基本定理1.7 定积分的简单应用小结复习参考题第二章推理与证明2.1 合情推理与演绎推理2.2 直接证明与间接证明2.3 数学归纳法小结复习参考题第三章数系的扩充与复数的引入3.1 数系的扩充和复数的概念3.2 复数代数形式的四则运算小结复习参考题选修2-3第一章计数原理1.1 分类加法计数原理与分步乘法计数原理探究与发现子集的个数有多少1.2 排列与组合探究与发现组合数的两个性质1.3 二项式定理探究与发现“杨辉三角”中的一些秘密小结复习参考题第二章随机变量及其分布2.1 离散型随机变量及其分布列2.2 二项分布及其应用探究与发现服从二项分布的随机变量取何值时概率最大2.3 离散型随机变量的均值与方差2.4 正态分布信息技术应用μ,σ对正态分布的影响小结复习参考题第三章统计案例3.1 回归分析的基本思想及其初步应用3.2 独立性检验的基本思想及其初步应用实习作业小结复习参考题选修3-1数学史选讲第一讲早期的算术与几何一古埃及的数学二两河流域的数学三丰富多彩的记数制度第二讲古希腊数学一希腊数学的先行者二毕达哥拉斯学派三欧几里得与《原本》四数学之神──阿基米德第三讲中国古代数学瑰宝一《周髀算经》与赵爽弦图二《九章算术》三大衍求一术四中国古代数学家第四讲平面解析几何的产生一坐标思想的早期萌芽二笛卡儿坐标系三费马的解析几何思想四解析几何的进一步发展第五讲微积分的诞生一微积分产生的历史背景二科学巨人牛顿的工作三莱布尼茨的“微积分”第六讲近代数学两巨星一分析的化身──欧拉二数学王子──高斯第七讲千古谜题一三次、四次方程求根公式的发现二高次方程可解性问题的解决三伽罗瓦与群论四古希腊三大几何问题的解决第八讲对无穷的深入思考一古代的无穷观念二无穷集合论的创立三集合论的进一步发展与完善第九讲中国现代数学的开拓与发展一中国现代数学发展概观二人民的数学家──华罗庚三当代几何大师──陈省身学习总结报告选修3-3球面上的几何第一讲从欧氏几何看球面一平面与球面的位置关系二直线与球面的位置关系和球幂定理三球面的对称性思考题第二讲球面上的距离和角一球面上的距离二球面上的角思考题第三讲球面上的基本图形一极与赤道二球面二角形三球面三角形1.球面三角形2.三面角3.对顶三角形4.球极三角形思考题第四讲球面三角形一球面三角形三边之间的关系二、球面“等腰”三角形三球面三角形的周长四球面三角形的内角和思考题第五讲球面三角形的全等1.“边边边”(s.s.s)判定定理2.“边角边”(s.a.s.)判定定理3.“角边角”(a.s.a.)判定定理4.“角角角”(a.a.a.)判定定理思考题第六讲球面多边形与欧拉公式一球面多边形及其内角和公式二简单多面体的欧拉公式三用球面多边形的内角和公式证明欧拉公式思考题第七讲球面三角形的边角关系一球面上的正弦定理和余弦定理二用向量方法证明球面上的余弦定理1.向量的向量积2.球面上余弦定理的向量证明三从球面上的正弦定理看球面与平面四球面上余弦定理的应用──求地球上两城市间的距离思考题第八讲欧氏几何与非欧几何一平面几何与球面几何的比较二欧氏平行公理与非欧几何模型──庞加莱模型三欧氏几何与非欧几何的意义阅读与思考非欧几何简史学习总结报告选修3-4对称与群第一讲平面图形的对称群一平面刚体运动1.平面刚体运动的定义2.平面刚体运动的性质思考题二对称变换1.对称变换的定义2.正多边形的对称变换3.对称变换的合成4.对称变换的性质5.对称变换的逆变换思考题三平面图形的对称群思考题第二讲代数学中的对称与抽象群的概念一n元对称群Sn思考题二多项式的对称变换思考题三抽象群的概念1.群的一般概念2.直积思考题第三讲对称与群的故事一带饰和面饰思考题二化学分子的对称群三晶体的分类四伽罗瓦理论学习总结报告选修4-1几何证明选讲第一讲相似三角形的判定及有关性质一平行线等分线段定理二平行线分线段成比例定理三相似三角形的判定及性质1.相似三角形的判定2.相似三角形的性质四直角三角形的射影定理第二讲直线与圆的位置关系一圆周角定理二圆内接四边形的性质与判定定理三圆的切线的性质及判定定理四弦切角的性质五与圆有关的比例线段第三讲圆锥曲线性质的探讨一平行射影二平面与圆柱面的截线三平面与圆锥面的截线学习总结报告选修 4-2第一讲线性变换与二阶矩阵一线性变换与二阶矩阵(一)几类特殊线性变换及其二阶矩阵1.旋转变换2.反射变换3.伸缩变换4.投影变换5.切变变换(二)变换、矩阵的相等二二阶矩阵与平面向量的乘法(二)一些重要线性变换对单位正方形区域的作用第二讲变换的复合与二阶矩阵的乘法一复合变换与二阶矩阵的乘法二矩阵乘法的性质第三讲逆变换与逆矩阵一逆变换与逆矩阵1.逆变换与逆矩阵2.逆矩阵的性质二二阶行列式与逆矩阵三逆矩阵与二元一次方程组1.二元一次方程组的矩阵形式2.逆矩阵与二元一次方程组第四讲变换的不变量与矩阵的特征向量一变换的不变量——矩阵的特征向量1.特征值与特征向量2.特征值与特征向量的计算二特征向量的应用1.Aa的简单表示2.特征向量在实际问题中的应用学习总结报告选修4-5不等式选讲第一讲不等式和绝对值不等式一不等式1.不等式的基本性质2.基本不等式3.三个正数的算术-几何平均不等式二绝对值不等式1.绝对值三角不等式2.绝对值不等式的解法第二讲讲明不等式的基本方法一比较法二综合法与分析法三反证法与放缩法第三讲柯西不等式与排序不等式一二维形式柯西不等式二一般形式的柯西不等式三排序不等式第四讲数学归纳法证明不等式一数学归纳法二用数学归纳法证明不等式学习总结报告选修4-6初等数论初步第一讲整数的整除一整除1.整除的概念和性质2.带余除法3.素数及其判别法二最大公因数与最小公倍数1.最大公因数2.最小公倍数三算术基本定理第二讲同余与同余方程一同余1.同余的概念2.同余的性质二剩余类及其运算三费马小定理和欧拉定理四一次同余方程五拉格朗日插值法和孙子定理六弃九验算法第三讲一次不定方程一二元一次不定方程二二元一次不定方程的特解三多元一次不定方程第四讲数伦在密码中的应用一信息的加密与去密二大数分解和公开密钥学习总结报告附录一剩余系和欧拉函数附录二多项式的整除性选修4-7优选法与试验设计初步第一讲优选法一什么叫优选法二单峰函数三黄金分割法——0.618法1.黄金分割常数2.黄金分割法——0.618法阅读与思考黄金分割研究简史四分数法1.分数法阅读与思考斐波那契数列和黄金分割2.分数法的最优性五其他几种常用的优越法1.对分法2.盲人爬山法3.分批试验法4.多峰的情形六多因素方法1.纵横对折法和从好点出发法2.平行线法3.双因素盲人爬山法第二讲试验设计初步一正交试验设计法1.正交表2.正交试验设计3.试验结果的分析4.正交表的特性二正交试验的应用学习总结报告选修4-9风险与决策第一讲风险与决策的基本概念一风险与决策的关系二风险与决策的基本概念1.风险(平均损失)2.平均收益3.损益矩阵4.风险型决策探究与发现风险相差不大时该如何决策第二讲决策树方法第三讲风险型决策的敏感性分析第四讲马尔可夫型决策简介一马尔可夫链简介1.马尔可夫性与马尔可夫链2.转移概率与转移概率矩阵二马尔可夫型决策简介三长期准则下的马尔可夫型决策理论1.马尔可夫链的平稳分布2.平稳分布与马尔可夫型决策的长期准则3.平稳准则的应用案例学习总结报告。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学3.1.2指数函数(二)课时作业新人教A版必修1
课时目标
1.理解指数函数的单调性与底数a的关系,能运用指数函数的单调性解决一些问题.
2.理解指数函数的底数a对函数图象的影响.
1.下列一定是指数函数的是( )
A .y =-3x
B .y =x x
(x >0,且x ≠1)
C .y =(a -2)x (a >3)
D .y =(1-2)x
2.指数函数y =a x 与y =b x
的图象如图,则( )
A .a <0,b <0
B .a <0,b >0
C .0<a <1,b >1
D .0<a <1,0<b <1
3.函数y =πx
的值域是( ) A .(0,+∞) B.[0,+∞) C .R D .(-∞,0)
4.若(12)2a +1<(12
)3-2a
,则实数a 的取值范围是( )
A .(1,+∞) B.(1
2
,+∞)
C .(-∞,1)
D .(-∞,1
2
)
5.设13<(13)b <(13)a
<1,则( )
A .a a <a b <b a
B .a a <b a <a b
C .a b <a a <b a
D .a b <b a <a a
6.若指数函数f (x )=(a +1)x
是R 上的减函数,那么a 的取值范围为( ) A .a <2 B .a >2
C .-1<a <0
D .0<a <1
一、选择题
1.设P ={y |y =x 2,x ∈R },Q ={y |y =2x
,x ∈R },则( )
A .Q P
B .Q P
C .P ∩Q ={2,4}
D .P ∩Q ={(2,4)}
2.函数y =16-4x
的值域是( ) A .[0,+∞) B.[0,4] C .[0,4) D .(0,4)
3.函数y =a x
在[0,1]上的最大值与最小值的和为3,则函数y =2ax -1在[0,1]上的最大值是( ) A .6 B .1
C .3 D.3
2
4.若函数f (x )=3x +3-x 与g (x )=3x -3-x
的定义域均为R ,则( ) A .f (x )与g (x )均为偶函数
B .f (x )为偶函数,g (x )为奇函数
C .f (x )与g (x )均为奇函数
D .f (x )为奇函数,g (x )为偶函数
5.函数y =f (x )的图象与函数g (x )=e x
+2的图象关于原点对称,则f (x )的表达式为( )
A .f (x )=-e x -2
B .f (x )=-e -x
+2
C .f (x )=-e -x -2
D .f (x )=e -x
+2
6.已知a =1
3
35-
⎛⎫ ⎪
⎝⎭,b =12
35-
⎛⎫ ⎪⎝⎭
,c =12
43-
⎛⎫

⎝⎭,则a ,b ,c 三个数的大小关系是( )
A .c <a <b
B .c <b <a
C .a <b <c
D .b <a <c
二、填空题
7.春天来了,某池塘中的荷花枝繁叶茂,已知每一天新长出荷叶覆盖水面面积是前一天的2倍,若荷叶20天可以完全长满池塘水面,当荷叶刚好覆盖水面面积一半时,荷叶已生长了________天.
8.已知函数f (x )是定义在R 上的奇函数,当x >0时,f (x )=1-2-x
,则不等式f (x )<-1
2的解集是________. 9.函数y =2212x x
-+⎛⎫
⎪⎝⎭
的单调递增区间是________.
三、解答题
10.(1)设f (x )=2u
,u =g (x ),g (x )是R 上的单调增函数.(1)试判断f (x )的单调性; (2)求函数y =221
2
x x --的单调区间.
11.函数f (x )=4x
-2
x +1
+3的定义域为[-12,1
2
].
(1)设t =2x
,求t 的取值范围; (2)求函数f (x )的值域. 能力提升
12.函数y =2x -x 2
的图象大致是( )
13.已知函数f (x )=2x
-1
2x +1
.
(1)求f [f (0)+4]的值;
(2)求证:f (x )在R 上是增函数;
(3)解不等式:0<f (x -2)<15
17
.
1.比较两个指数式值的大小主要有以下方法:
(1)比较形如a m 与a n 的大小,可运用指数函数y =a x
的单调性.
(2)比较形如a m 与b n 的大小,一般找一个“中间值c ”,若a m <c 且c <b n ,则a m <b n
;若a m >c 且c >b n ,则a m >b n .
2.了解由y =f (u )及u =φ(x )的单调性探求y =f [φ(x )]的单调性的一般方法.
3.1.2 指数函数(二)
双基演练
1.C 2.C 3.A
4.B [∵函数y =(12)x
在R 上为减函数,
∴2a +1>3-2a ,∴a >1
2
.]
5.C [由已知条件得0<a <b <1, ∴a b <a a ,a a <b a ,∴a b <a a <b a
.] 6.C 作业设计 1.B [因为P ={y |y ≥0},Q ={y |y >0},所以
Q
P .]
2.C [∵4x
>0,∴0≤16-4x
<16,
∴16-4x
∈[0,4).]
3.C [函数y =a x 在[0,1]上是单调的,最大值与最小值都在端点处取到,故有a 0+a 1
=3,解得a =2,因此函数y =2ax -1=4x -1在[0,1]上是单调递增函数,当x =1时,y max =3.]
4.B [∵f (-x )=3-x +3x
=f (x ), g (-x )=3-x -3x =-g (x ).]
5.C [∵y =f (x )的图象与g (x )=e x
+2的图象关于原点对称,
∴f (x )=-g (-x )=-(e -x +2)=-e -x
-2.]
6.A [∵y =(35)x 是减函数,-13>-1
2

∴b >a >1.又0<c <1,∴c <a <b .] 7.19
解析 假设第一天荷叶覆盖水面面积为1,则荷叶覆盖水面面积y 与生长时间的函数关
系为y =2x -1
,当x =20时,长满水面,所以生长19天时,荷叶布满水面一半. 8.(-∞,-1)
解析 ∵f (x )是定义在R 上的奇函数, ∴f (0)=0.
当x <0时,f (x )=-f (-x )=-(1-2x )=2x
-1.
当x >0时,由1-2-x
<-12,(12)x >32,得x ∈∅;
当x =0时,f (0)=0<-1
2
不成立;
当x <0时,由2x
-1<-12
,2x <2-1,得x <-1.
综上可知x ∈(-∞,-1). 9.[1,+∞)
解析 利用复合函数同增异减的判断方法去判断.
令u =-x 2+2x ,则y =(12
)u 在u ∈R 上为减函数,问题转化为求u =-x 2
+2x 的单调递
减区间,
即为x ∈[1,+∞).
10.解 (1)设x 1<x 2,则g (x 1)<g (x 2). 又由y =2u
的增减性得()
12
g x <()
22
g x ,。

相关文档
最新文档