浙教版八年级上一二单元练习卷
浙教版八年级科学上册单元测试题全套及答案
浙教版八年级科学上册单元测试题全套及答案(含期中期末试题,共6套)第1章测试卷一、选择题(每小题3分,共30分)1.有“环保鸟”之称的白鹭最近成为丽水人微信朋友圈的“网红”(如图)。
植被、稳定的水源、充足的食物是吸引白鹭停留的首要条件。
下列对淡水资源的保护起到积极作用的是()A.工业废水任意排放B.植树造林,修建水库C.大力推广使用农药和化肥D.生活垃圾和污水任意倾倒2.现有如下四种液体,其中属于溶液的是()A.食盐水B.肥皂水C.泥水D.纯牛奶3.“五水共治”是浙江省政府推出环保举措。
为清理河道,河道管理人员使用铁圈和塑料网做成网兜(如图)来打捞河道漂浮物,其原理与下列分离物质的方法相同的是()A.沉淀B.蒸馏C.结晶D.过滤4.实验室配制氯化钠溶液的操作中,正确的是()5.根据水电解过程示意图,下列说法正确的是()A.水在通电条件下,生成氢气和氧气B.水由氢分子和氧分子构成C.水通电发生的是物理变化D.电解过程中,分子和原子都没有发生改变6.如图,小试管内是硝酸钾饱和溶液,向水中加入某物质后,试管中有晶体析出,则加入的物质可能是()A.氢氧化钠B.氯化钠C.硝酸铵D.蔗糖7.某固体物质的溶解度曲线如图所示,下列说法正确的是()A.该物质是易溶物质B.该物质在70 ℃时的溶解度比60 ℃时的溶解度大C.40 ℃时,该物质饱和溶液中溶剂的质量为60克D.将85 ℃时该物质的饱和溶液降温不会析出晶体8.我国多个地区曾出现严重洪涝灾害,长江流域部分地区农业受到非常大的影响,长江三峡紧急放水泄洪,下列说法正确的是()A.从水循环角度讲,“长江三峡紧急放水”是对地表径流这一环节的影响B.从地球水体分类和比例来看,陆地水资源中比例最大的是河流水C.我国水资源丰富,人均水量远超世界平均水平D.我国水资源的空间分布特点是东多西少,北多南少9.如图是验证阿基米德原理的实验,下列关于该实验说法正确的是() A.正确的实验步骤是甲乙丙丁B.实验中弹簧测力计未调零对实验没有影响C.该实验用木块代替石块不能得出阿基米德原理D.通过实验可以得出物体受到的浮力与物体体积和液体密度有关10.如图,某同学做实验探究物体在水中所受浮力是否与浸入深度有关,他将一块长方体金属块挂在弹簧测力计下,将金属块缓慢浸入水中(水足够深),记录金属块下表面所处的深度h和相应的弹簧测力计示数F,在金属块接触容=0.8×103 kg/m3,g取10 N/kg)()器底之前,实验数据如下表,则(ρ酒精A.由上述实验数据可知金属块在水中所受浮力与金属块在水中的深度有关B.当h是8 cm时,金属块受到的浮力是6.15 NC.该金属块重2 ND.如果将该金属块完全浸入在酒精里,则与完全浸入水中相比它受到的浮力减小0.4 N二、填空题(每空2分,共28分)11.(1)________________________________。
浙教版数学八年级上册单元检测试题及答案(全册)
浙教版数学八年级上册第一章测试卷一、选择题(每题3分,共30分)1.如图,∠ACD=120°,∠B=20°,则∠A的度数是()A.120°B.90°C.100°D.30°(第1题)(第3题)2.下列各组数分别是三根小木棒的长度,将它们首尾相连能摆成三角形的是()A.3 cm,4 cm,8 cm B.4 cm,4 cm,8 cmC.5 cm,6 cm,8 cm D.5 cm,5 cm,12 cm3.用直尺和圆规作一个角等于已知角的示意图如图所示,则说明∠A′O′B′=∠AOB的依据是()A.SSS B.SAS C.ASA D.AAS4.如图,△ABC≌△A′B′C′,则∠C的度数是()A.56°B.51°C.107°D.73°(第4题)(第5题)(第7题)5.如图,在△ABC中,边AB的垂直平分线交BC于点D,连结AD.若AB=7,BC=8,AC=5,则△ADC的周长为()A.12 B.13 C.15 D.166.下列命题是假命题的是()A.如果a∥b,b∥c,那么a∥cB.锐角三角形中最大的角一定大于或等于60°C.两条直线被第三条直线所截,内错角相等D.同角或等角的补角相等7.如图,点B,E在线段FC上,且CE=BF,AB=DE,增加以下条件能判定△ABC≌△DEF的是()A.∠A=∠D B.∠C=∠FC.BC=EF D.AC=DF8.在△ABC中,∠C=90°,点O为△ABC三条角平分线的交点,OD⊥BC于D,OE⊥AC于E,OF⊥AB于F,且AB=10 cm,BC=8 cm,AC=6 cm,则点O到三边AB,AC,BC的距离分别为()A.2 cm,2 cm,2 cm B.3 cm,3 cm,3 cmC.4 cm,4 cm,4 cm D.2 cm,3 cm,5cm9.如图,在△ABC中,已知点D,E,F分别为边BC,AD,CE的中点,若△ABC 的面积为16,则图中阴影部分的面积为()A.8 B.6 C.4 D.2(第9题) (第12题)(第15题)10.已知△ABC中,AB=BC≠AC,作与△ABC只有一条公共边,且与△ABC全等的三角形,这样的三角形一共能作出()A.3个B.5个C.6个D.7个二、填空题(每题3分,共24分)11.把命题“同角或等角的余角相等”改写成“如果……那么……”的形式为__________________________.12.如图,若△OAD≌△OBC,且∠O=70°,∠C=25°,则∠AEB=________.13.在△ABC中,AB=4,AC=3,AD是△ABC的角平分线,则△ABD与△ACD 的面积之比是________.14.已知△ABC的三边长分别为a,b,c,若a=3,b=4,则c的取值范围是__________,设△ABC的周长是l,则l的取值范围是________.15.如图,在△ABC中,AB,AC的垂直平分线l1,l2相交于点O,若∠BAC=82°,则∠OBC=________.16.如图,在△ABC中,AD是BC边上的高,BE是AC边上的高,且AD,BE 交于点F,若BF=AC,CD=3,BD=8,则线段AF的长度为________.(第16题)(第17题)(第18题)17.如图,要测量河两岸相对的两点A,B间的距离(AB垂直于河岸BF),先在BF上取两点C,D,使CD=CB,再作出BF的垂线DE,且使A,C,E三点在同一条直线上,可以得到△EDC≌△ABC,所以ED=AB.因此测得ED 的长就是AB的长.判定△EDC≌△ABC的理由是____________.18.在探索“尺规三等分角”这个数学名题的过程中,曾利用了如图,该图中,四边形ABCD是长方形,E是BA延长线上一点,F是CE上一点,∠ACF=∠AFC,∠F AE=∠FEA.若∠ACB=24°,则∠ECD的度数是________.三、解答题(19,20题每题6分,21,22,23题每题8分,24题10分,共46分)19.写出下列命题的条件和结论:(1)两条直线被第三条直线所截,同旁内角互补;(2)如果两个三角形全等,那么它们对应边上的高相等.20.如图,点C,E,F,B在同一直线上,点A,D在BC异侧,AB∥CD,AE=DF,∠A=∠D.求证:AB=CD.(写上证明的依据)(第20题)21.已知a,b,c为△ABC的三边长,且b,c满足(b-5)2+c-7=0,a为方程|a-3|=2的解,求△ABC的周长,并判断△ABC的形状.22.如图,AB∥CD,AM平分∠CAB,交CD于点M.(1)过点C作AM的垂线,垂足为N;(要求:用直尺和圆规作图,保留作图痕迹,不要求写出作法)(2)求证:△MCN≌△ACN.(第22题)23.在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE=90°.(1)当点D在AC上时,如图①,线段BD,CE有怎样的数量关系和位置关系?直接写出你猜想的结论.(2)将图①中的△ADE绕点A顺时针旋转α(0°<α<90°),如图②,线段BD,CE有怎样的数量关系和位置关系?请说明理由.(第23题)24.如图①,已知线段AB,CD相交于点O,连结AC,BD,则我们把形如这样的图形称为“8字型”.(1)求证:∠A+∠C=∠B+∠D.(2)如图②,若∠CAB和∠BDC的平分线AP和DP相交于点P,AP与CD交于点M,AB与DP交于点N.①以线段AC为边的“8字型”有________个,以点O为交点的“8字型”有________个;②若∠B=100°,∠C=120°,求∠P的度数;③若角平分线中角的关系改为“∠CAP=13∠CAB,∠CDP=13∠CDB”,试探究∠P与∠B,∠C之间存在的数量关系,并说明理由.(第24题)答案一、1.C 2.C 3.A 4.D 5.B 6.C 7.D 8.A 9.C 10.D 二、11.如果两个角是同角或等角的余角,那么这两个角相等 12.120° 13.4:314.1<c <7;8<l <14 15.8°16.5 点拨:由已知可得∠ADC =∠BDF =∠BEC =90°,易得∠DAC =∠DBF .又因为AC =BF ,所以△ADC ≌△BDF .所以AD =BD =8,DC =DF =3.所以AF =AD -DF =8-3=5. 17.ASA18.22° 点拨:∵四边形ABCD 是长方形,∴AB ∥CD .∴∠ECD =∠BEC .∵∠F AE =∠FEA ,∴∠ACF =∠AFC =2∠BEC ,∴∠ACD =∠ACF +∠ECD =3∠ECD .∵∠ACB =24°,∴∠ACD =90°-24°=66°, ∴∠ECD =13∠ACD =22°.三、19.解:(1)条件:两条直线被第三条直线所截;结论:同旁内角互补.(2)条件:两个三角形全等;结论:它们对应边上的高相等. 20.证明:∵AB ∥CD (已知),∴∠B =∠C (两直线平行,内错角相等). 在△ABE 和△DCF 中,⎩⎨⎧∠B =∠C (已证),∠A =∠D (已知),AE =DF (已知),∴△ABE ≌△DCF (AAS )∴AB =CD (全等三角形的对应边相等). 21.解:∵(b -5)2+c -7=0,∴⎩⎨⎧b -5=0,c -7=0,解得⎩⎨⎧b =5,c =7. ∵a 为方程|a -3|=2的解, ∴a =5或a =1.当a =1,b =5,c =7时,1+5<7,不能组成三角形, 故a =1不符合题意. ∴a =5,∴△ABC 的周长=5+5+7=17. ∵a =b =5,∴△ABC 是等腰三角形. 22.(1)解:作图略.(2)证明:∵CN ⊥AM , ∴∠CNA =∠CNM =90°. ∵AB ∥CD ,∴∠CMA =∠MAB . ∵AM 平分∠CAB ,∴∠MAB =∠CAM .∴∠CMA =∠CAM . 在△MCN 和△ACN 中,∵⎩⎨⎧∠CMN =∠CAN ,∠CNM =∠CNA ,CN =CN ,∴△MCN ≌△ACN (AAS ). 23.解:(1)BD =CE ,BD ⊥CE .(2)BD =CE ,BD ⊥CE .理由如下:∵∠BAC =∠DAE =90°,∴∠BAC -∠DAC =∠DAE -∠DAC .∴∠BAD =∠CAE .在△ABD 与△ACE 中,AB =AC ,∠BAD =∠CAE ,AD =AE ,∴△ABD ≌△ACE ,∴BD =CE ,∠ABD =∠ACE .延长BD 交AC 于点F ,交CE 于点H .在△ABF 与△HCF 中,∵∠ABF =∠HCF ,∠AFB =∠HFC ,∴∠CHF =∠BAF =90°,∴BD ⊥CE .24.(1)证明:∵∠A +∠C =180°-∠AOC ,∠B +∠D =180°-∠BOD ,∠AOC=∠BOD ,∴∠A +∠C =∠B +∠D . (2)解:①3;4②以M 为交点的“8字型”中,有∠P +∠CDP =∠C +∠CAP , 以N 为交点的“8字型”中,有∠P +∠BAP =∠B +∠BDP ,∴2∠P +∠BAP +∠CDP =∠B +∠C +∠CAP +∠BDP . ∵AP ,DP 分别平分∠CAB 和∠BDC , ∴∠BAP =∠CAP ,∠CDP =∠BDP , ∴2∠P =∠B +∠C . ∵∠B =100°,∠C =120°,∴∠P =12(∠B +∠C )=12×(100°+120°)=110°. ③3∠P =∠B +2∠C ,其理由是: ∵∠CAP =13∠CAB ,∠CDP =13∠CDB ,∴∠BAP =23∠CAB ,∠BDP =23∠CDB .以M 为交点的“8字型”中,有∠P +∠CDP =∠C +∠CAP , 以N 为交点的“8字型”中,有∠P +∠BAP =∠B +∠BDP , ∴∠C -∠P =∠CDP -∠CAP =13(∠CDB -∠CAB ),∠P -∠B =∠BDP -∠BAP =23(∠CDB -∠CAB ), ∴2(∠C -∠P )=∠P -∠B , ∴3∠P =∠B +2∠C .第二章 测试卷一、选择题(每题3分,共30分)1.下列四个图形分别是低碳、节水、节能和绿色食品标志,在这四个标志中,是轴对称图形的是( )2.如图,在△ABC 中,AB =AC ,∠A =36°,BD 是AC 边上的高,则∠DBC 的度数是( ) A .18°B .24°C .30°D .36°(第2题) (第4题) (第8题)3.在直角三角形ABC 中,∠C =90°,AC =9,BC =12,则点C 到AB 的距离是( ) A.365B.1225C.94D.3344.如图,已知∠C =∠D =90°,添加一个条件,可使用“HL”判定Rt △ABC ≌Rt △ABD ,以下给出的条件合适的是( ) A .AC =ADB .BC =ADC .∠ABC =∠ABD D .∠BAC =∠BAD5.已知一个等腰三角形的两个内角度数之比为1:4,则这个等腰三角形顶角的度数为( ) A .20°B .120°C .20°或120°D .36°6.在△ABC 中,AB 2=(a +b )2,AC 2=(a -b )2,BC 2=4ab ,且a >b >0,则下列结论中正确的是( ) A .∠A =90° B .∠B =90°C .∠C =90°D .△ABC 不一定是直角三角形7.直角三角形两条直角边长分别是5和12,则第三条边上的中线长是( ) A .5B .6C .6.5D .128.如图,在△ABC 中,AD ,CE 分别是△ABC 的中线和角平分线,若AB =AC ,∠CAD =20°,则∠ACE 的度数是( ) A .20°B .35°C .40°D .70°9.如图,在直线l 上依次摆放着七个正方形.已知斜放置的三个正方形的面积分别是1,2,3,正放置的四个正方形的面积从左往右依次是S 1,S 2,S 3,S 4,则S 1+S 2+S 3+S 4等于( ) A .3B .4C .5D .6(第9题)(第10题)10.如图,点A,B,C在一条直线上,△ABD,△BCE均为等边三角形,连结AE和CD,AE分别交CD,BD于点M,P,CD交BE于点Q,连结PQ,BM,下面结论:①△ABE≌△DBC;②∠DMA=60°;③△BPQ为等边三角形.其中正确的有()A.0个B.1个C.2个D.3个二、填空题(每题3分,共24分)11.请写出“三个角都相等的三角形是等边三角形”的逆命题:______________________.12.若等腰三角形一腰上的高等于腰长的一半,则这个等腰三角形的底角为____________.13.已知实数x,y满足(x-4)2+(y-8)2=0,则以x,y的值为两边长的等腰三角形的周长是________.14.已知a,b,c是△ABC的三边长,且满足关系式(c2-a2-b2)2+|a-b|=0,则△ABC的形状为____________.15.如图,OP平分∠MON,PE⊥OM于E,PF⊥ON于F,OA=OB,则图中有________对全等三角形.(第15题)(第16题)(第17题)(第18题)16.如图,由四个边长为1的小正方形构成一个大正方形,连结小正方形的三个顶点,可得到△ABC,则△ABC中BC边上的高是________.17.如图,在正方形网格中,阴影部分是涂黑7个小正方形所形成的图案,再将网格内一个空白小正方形涂黑,使得到的新图案成为一个轴对称图形的涂法有________种.18.如图,在等腰三角形ABC中,AB=AC,∠BAC=50°,∠BAC的平分线与AB的垂直平分线交于点O,沿EF折叠后,点C与点O重合,则∠OEC的度数是________.三、解答题(19,20题每题6分,21,22,23题每题8分,24题10分,共46分)19.已知命题“等腰三角形两腰上的高相等”.(1)写出该命题的逆命题.(2)该逆命题是真命题还是假命题?如果是真命题,请画出“图形”,写出“已知”“求证”,再进行“证明”;如果是假命题,请举反例说明.20.如图,点E,F在△ABC的边BC上.若AE=AF,BE=CF,则AB=AC,并说明理由.(第20题)21.如图,AB∥CD,EG,FG分别是∠BEF和∠DFE的平分线.求证:△EGF 是直角三角形.(第21题)22.如图,∠ABC的平分线BF与△ABC中∠ACB的邻补角的平分线CF相交于点F,过F作DF∥BC,交AB于D,交AC于E,则:(1)图中有哪几个等腰三角形?为什么?(2)BD,DE,CE之间存在着什么数量关系?并说明理由.(第22题)23.如图,在△ABC中,∠C=90°,AD是∠BAC的平分线,DE⊥AB交AB于E,F在AC上,BD=DF.求证:(1)CF=EB;(2)AB=AF+2EB.(第23题)24.如图,等腰直角三角形DBC中,∠BDC=90°,BF平分∠DBC,与CD相交于点F,延长BD到A,使DA=DF,连结AC.(1)求证:△FBD≌△ACD;(2)如图,延长BF交AC于点E,且BE⊥AC,求证:CE=12BF.(3)在(2)的条件下,H是BC边的中点,连结DH,与BE相交于点G.试探索CE,GE,BG之间的数量关系,并证明你的结论.(第24题)答案一、1.D 2.A3.A 点拨:利用等积法解答.根据勾股定理求得AB =15,设点C 到AB 的距离是x ,可列方程12×9×12=12×15x ,解之即可. 4.A 5.C6.C 点拨:由题意可得,AB 2=AC 2+BC 2,所以△ABC 为直角三角形,AB 所对的角为直角,所以∠C =90°. 7.C8.B 点拨:因为△ABC 是等腰三角形,AD 是其底边上的中线,所以AD 也是底边上的高线,所以∠ACB =90°-∠CAD =70°.又因为CE 是∠ACB 的平分线,所以∠ACE =12∠ACB =35°.9.B 点拨:本题不能直接求出S 1,S 2,S 3,S 4,但我们可以利用三角形全等和勾股定理求出S 1+S 2+S 3+S 4.根据“AAS ”很容易证明△ABC ≌△CDE ,所以AB =CD .又因为CD 2+DE 2=CE 2,AB 2=S 3,CE 2=3,DE 2=S 4,所以S 3+S 4=3.同理可得S 1+S 2=1,所以S 1+S 2+S 3+S 4=1+3=4.10.D 点拨:∵△ABD ,△BCE 为等边三角形,∴AB =DB ,∠ABD =∠CBE =60°,BE =BC ,∴∠ABE =∠DBC ,∠PBQ =60°. 在△ABE 和△DBC 中,⎩⎨⎧AB =DB ,∠ABE =∠DBC ,BE =BC ,∴△ABE ≌△DBC (SAS ). ∴①正确. ∵△ABE ≌△DBC , ∴∠BAE =∠BDC .∵∠BDC +∠BCD =∠ABD =60°,∴∠DMA =∠BAE +∠BCD =∠BDC +∠BCD =60°. ∴②正确.易证△ABP ≌△DBQ (ASA), ∴BP =BQ .又∵∠DBQ =60°, ∴△BPQ 为等边三角形. ∴③正确.二、11.等边三角形的三个角都相等 12.75°或15° 13.20 14.等腰直角三角形15.3 点拨:△OPE ≌△OPF ,△OP A ≌△OPB ,△AEP ≌△BFP ,所以共有3对全等三角形.16.322 点拨:在网格中求三角形的高,应借助三角形的面积求解.以AC ,AB ,BC 为斜边的三个直角三角形的面积分别为1,1,12,因此△ABC 的面积为2×2-1-1-12=32.用勾股定理计算出BC 的长为2,因此BC 边上的高为322. 17.318.100° 点拨:连结OB ,OC .易得△AOB ≌△AOC (SAS). ∴∠ACO =∠ABO .又∵OD 垂直平分AB ,∴OB =OA , ∴∠ABO =∠BAO =12∠BAC =25°. ∴∠ACO =25°.在△ABC 中,∵∠BAC =50°,AB =AC , ∴∠ACB =12×(180°-50°)=65°. ∴∠ECO =∠ACB -∠ACO =40°. 由折叠可知,OE =EC . ∴∠EOC =∠ECO =40°. ∴∠OEC =100°.三、19.解:(1)两边上的高相等的三角形是等腰三角形.(2)真命题.已知:如图,在△ABC 中,BE ⊥AC 于E ,CD ⊥AB 于D ,且CD =BE . 求证:AB =AC .证明:∵BE ⊥AC ,CD ⊥AB , ∴∠BEA =∠CDA =90°, 又∵∠A =∠A ,BE =CD , ∴△ABE ≌△ACD ,∴AB =AC .(第19题)20.解:∵AE =AF ,∴∠AEF =∠AFE .∵BE =CF ,∴BE +EF =CF +EF ,∴BF=CE .在△ACE 和△ABF 中,⎩⎨⎧AE =AF ,∠AEC =∠AFB ,CE =BF ,∴△ACE ≌△ABF (SAS), ∴AB =AC .21.证明:∵AB ∥CD ,∴∠BEF +∠DFE =180°(两直线平行,同旁内角互补). ∵EG ,FG 分别是∠BEF 和∠DFE 的平分线, ∴∠GEF =12∠BEF ,∠GFE =12∠DFE ,∴∠GEF +∠GFE =12(∠BEF +∠DFE )=12×180°=90°, ∴△EGF 是直角三角形. 22.解:(1)△BDF 和△CEF .∵BF 平分∠ABC , ∴∠ABF =∠FBC ,∵DF ∥BC ,∴∠FBC =∠DFB , ∴∠DFB =∠DBF ,∴DB =DF , ∴△BDF 是等腰三角形. 同理,△CEF 也是等腰三角形.(2)BD =DE +CE .由(1)知△CEF 是等腰三角形,且EC =EF ,∵BD =DF =DE +EF ,∴BD =DE +CE .点拨:“平行线+角平分线”是等腰三角形中常见的基本图形之一,应注意在其他图形中的发掘与应用.23.证明:(1)∵AD 是∠BAC 的平分线,DE ⊥AB ,DC ⊥AC ,∴DE =DC .又∵BD =DF ,∴Rt △CDF ≌Rt △EDB (HL). ∴CF =EB .(2)由(1)可知DE =DC ,又∵AD =AD , ∴Rt △ADC ≌Rt △ADE .∴AC =AE .∴AB =AE +BE =AC +EB =AF +CF +EB =AF +2EB .点拨:(1)根据角平分线的性质“角平分线上的点到角的两边的距离相等”,可得点D 到AB 的距离等于点D 到AC 的距离,即CD =DE ,再根据Rt △CDF ≌Rt △EDB ,得CF =EB .(2)利用(1)中结论证明Rt △ADC ≌R t △ADE ,∴AC =AE ,再将线段AB 进行转化.24.(1)证明:∵△BCD 是等腰直角三角形,且∠BDC =90°,∴BD =CD ,∠BDC =∠CDA =90°. 在△FBD 和△ACD 中,⎩⎨⎧BD =CD ,∠BDF =∠CDA ,DF =DA ,∴△FBD ≌△ACD (SAS). (2)证明:∵BE ⊥AC , ∴∠BEA =∠BEC =90°.∵BF 平分∠DBC ,∴∠ABE =∠CBE , 又∵BE =BE ,∴△ABE ≌△CBE (ASA), ∴AE =CE .∴CE =12AC . 由(1)知△FBD ≌△ACD , ∴BF =AC ,∴CE =12BF . (3)解:BG 2=GE 2+CE 2.证明:连结CG ,∵H 是BC 边的中点,BD =CD ,∴DH 垂直平分BC ,∴BG =CG (线段垂直平分线上的点到这条线段两个端点的距离相等).∵BE ⊥AC ,∴CG 2=GE 2+CE 2,∴BG 2=GE 2+CE 2. 点拨:本题综合考查全等三角形的判定与性质,以及通过添加辅助线利用勾股定理解决问题.第3章 测试卷一、选择题(每题3分,共30分)1.下列各式中,是一元一次不等式的是( )A .5+4>8B .2x -1C .2x ≤5D.1x -3x ≥02.若x >y ,则下列式子中错误的是( )A .x -3>y -3B.x 3>y 3C .x +3>y +3D .-3x >-3y3.下列选项中的不等式,其解集是在如图所示的数轴上表示的是( )(第3题)A .x +1<0B .x -1≤0C .x -1<0D .x -1>04.关于x 的方程4x -2m +1=5x -8的解是负数,则m 的取值范围是( )A .m >92B .m <0C .m <92D .m >05.若不等式组⎩⎨⎧x -a >2,b -2x >0的解集是-1<x <2,则(a +b )2 019=( )A .1B .-1C .2 019D .-2 0196.不等式组⎩⎨⎧x <4,x >m 无解,则m 的取值范围是( )A .m <4B .m >4C .m ≥4D .m ≤47.若关于x 的不等式组⎩⎨⎧x <1,x >m -1恰有两个整数解,则m 的取值范围是( )A .-1≤m <0B .-1<m ≤0C .-1≤m ≤0D .-1<m <08.方程组⎩⎨⎧2x +y =k +1,x +2y =3的解满足0<x +y <1,则k 的取值范围是( )A .-4<k <0B .-1<k <0C .-4<k <-1D .k >-49.一次智力测验,有20道选择题,评分标准:答对1题给5分,答错1题扣2分,不答题不给分也不扣分,小明有两道题未答,他最后的总分不低于60分,则小明至少答对的题数是( ) A .14道 B .13道C .12道D .11道10.我们定义⎪⎪⎪⎪⎪⎪ab cd =ad -bc ,其中的运算为通常的减法和乘法,例如⎪⎪⎪⎪⎪⎪2 34 5=2×5-3×4=-2,若x 满足-2≤⎪⎪⎪⎪⎪⎪423 x <2,则x 的整数值有( ) A .0个B .1个C .2个D .3个二、填空题(每题3分,共24分)11.x 与23的差的一半是正数,用不等式表示为____________.12.如图是某机器零件的设计图纸(单位:mm),用不等式表示零件长度的合格尺寸,则合格零件长度l 的取值范围是________________.(第12题)13.不等式2x +3<-1的解集为________.14.用“>”或“<”填空:若a <b <0,则-a 5________-b 5;1a ________1b ;2a-1________2b -1.15.不等式6-4x ≥3x -8的非负整数解有________个.16.某校规定期中考试成绩的40%与期末考试成绩的60%的和作为学生的学期总成绩.该校李红同学期中考试数学考了86分,她希望自己这学期数学总成绩不低于95分,她在期末考试中数学至少应考多少分?设她在期末考试中数学考x 分,可列不等式为__________________.17.不等式组⎩⎪⎨⎪⎧3x +4≥0,12x -24≤1的所有整数解的积为________.18.已知实数x ,y 满足2x -3y =4,并且x ≥-1,y <2,现有k =x -y ,则k 的取值范围是____________.三、解答题(19,20题每题6分,21,22,23题每题8分,24题10分,共46分)19.解下列不等式或不等式组,并把它们的解集在数轴上表示出来. (1)5x +15>4x -13; (2)2x -13≤3x -46;(3)⎩⎨⎧x -5>1+2x ,①3x +2<4x ;② (4)⎩⎪⎨⎪⎧x -x -22≤1+4x 3,①1+3x >2(2x -1).②20.若式子5x +46的值不小于78-1-x3的值,求满足条件的x 的最小整数值.21.先阅读,再解题.解不等式:2x +5x -3>0. 解:根据两数相除,同号得正,异号得负,得 ①⎩⎨⎧2x +5>0,x -3>0或②⎩⎨⎧2x +5<0,x -3<0.解不等式组①,得x >3,解不等式组②,得x <-52. 所以原不等式的解集为x >3或x <-52.参照以上解题过程所反映的解题思想方法,试解不等式:2x -31+3x<0.22.若关于x ,y 的方程组⎩⎨⎧x +y =30-k ,3x +y =50+k 的解都是非负数.(1)求k 的取值范围;(2)若M =3x +4y ,求M 的取值范围.23.今年某区为绿化行车道,计划购买甲、乙两种树苗共计n棵.设购买甲种树苗x棵,有关甲、乙两种树苗的信息如图所示.(第23题)(1)当n=500时,①根据信息填表(用含x的式子表示):②如果购买甲、乙两种树苗共用去25 600元,那么甲、乙两种树苗各购买了多少棵?(2)要使这批树苗的成活率不低于92%,且使购买这两种树苗的总费用为26 000元,求n的最大值.24.某镇水库的可用水量为12 000万m3,假设年降水量不变,能维持该镇16万人20年的用水量.为实施城镇化建设,新迁入了4万人后,水库只够维持居民15年的用水量.(1)年降水量为多少万立方米?每人年平均用水量为多少立方米?(2)政府号召节约用水,希望将水库的使用年限提高到25年,则该镇居民人均每年需节约多少立方米水才能实现目标?(3)某企业投入1 000万元购买设备,每天能淡化5 000 m3海水,淡化率为70%.每淡化1 m3海水所需的费用为1.5元,政府补贴0.3元.企业将淡化水以3.2元/m3的价格出售,每年还需各项支出40万元.按每年实际生产300天计算,该企业至少几年后能收回成本?(结果精确到个位)答案一、1.C 2.D 3.C4.A 点拨:方程4x -2m +1=5x -8的解为x =9-2m .由题意得9-2m <0,则m >92. 5.A 6.C7.A 点拨:不等式组⎩⎨⎧x <1,x >m -1的解集为m -1<x <1.又∵不等式组⎩⎨⎧x <1,x >m -1恰有两个整数解,∴-2≤m -1<-1,解得-1≤m <0.8.C 点拨:两个方程相加得3x +3y =k +4,∴x +y =k +43,又∵0<x +y <1,∴0<k +43<1,∴-4<k <-1. 9.A10.B 点拨:根据题意得-2≤4x -6<2,解得1≤x <2,则x 的整数值是1,共1个.故选B. 二、11.12⎝ ⎛⎭⎪⎫x -23>012.39.8 mm≤l ≤40.2 mm 13.x <-2 14.>;>;< 15.3 16.86×40%+60%x ≥95 17.018.1≤k <3 点拨:由已知条件2x -3y =4,k =x -y 可得x =3k -4,y =2k -4.又∵x ≥-1,y <2,∴⎩⎨⎧3k -4≥-1,2k -4<2,解得⎩⎨⎧k ≥1,k <3.∴k 的取值范围是1≤k <3.三、19.解:(1)移项,得5x -4x >-13-15,所以x >-28.不等式的解集在数轴上表示如图.[第19(1)题](2)去分母,得2(2x -1)≤3x -4,去括号、移项,得4x -3x ≤2-4,所以x ≤-2.不等式的解集在数轴上表示如图.[第19(2)题](3)解不等式①,得x <-6;解不等式②,得x >2.不等式①②的解集在数轴上表示如图.[第19(3)题]所以原不等式组无解.(4)解不等式①,得x ≥45;解不等式②得,x <3.故原不等式组的解集为45≤x <3.不等式组的解集在数轴上表示如图.[第19(4)题]20.解:由题意得5x +46≥78-1-x 3,解得x ≥-14,故满足条件的x 的最小整数值为0.21.解:根据两数相除,同号得正,异号得负,得①⎩⎨⎧2x -3>0,1+3x <0或②⎩⎨⎧2x -3<0,1+3x >0.不等式组①无解,解不等式组②,得-13<x <32,所以原不等式的解集为-13<x <32. 22.解:(1)解关于x ,y 的方程组⎩⎨⎧x +y =30-k ,3x +y =50+k ,得⎩⎨⎧x =k +10,y =20-2k , ∴⎩⎨⎧k +10≥0,20-2k ≥0,解得-10≤k ≤10. 故k 的取值范围是-10≤k ≤10.(2)M =3x +4y =3(k +10)+4(20-2k )=110-5k ,∴k =110-M5,∴-10≤110-M5≤10,解得60≤M ≤160,即M 的取值范围是60≤M ≤160. 23.解:(1)①500-x ;50x ;80(500-x )②50x +80(500-x )=25 600,解得x =480,500-x =20.答:甲种树苗购买了480棵,乙种树苗购买了20棵.(2)依题意,得90%x +95%(n -x )≥92%×n ,解得x ≤35n .又50x +80(n -x )=26 000,解得x =8n -2 6003,∴8n -2 6003≤35n ,∴n ≤4191131.∵n 为整数,∴n 的最大值为418.24.解:(1)设年降水量为x 万m 3,每人年平均用水量为y m 3.由题意,得⎩⎨⎧12 000+20x =16×20y ,12 000+15x =(16+4)×15y ,解得⎩⎨⎧x =200,y =50.答:年降水量为200万m 3,每人年平均用水量为50 m 3. (2)设该镇居民人均每年用水量为z m 3才能实现目标. 由题意,得12 000+25×200=(16+4)×25z ,解得z =34, 50-34=16(m 3).答:该镇居民人均每年需节约16 m 3水才能实现目标.(3)设该企业n 年后能收回成本.由题意,得[3.2×5 000×70%-(1.5-0.3)×5 000]×300n 10 000-40n ≥1 000,解得n ≥81829. 答:该企业至少9年后能收回成本.解题归纳:本题考查了一元一次不等式、二元一次方程组的应用,解答本题的关键是仔细审题,建立等量关系与不等关系.第4章 测试卷一、选择题(每题3分,共30分) 1.下列各点中,在第三象限的是( )A .(1,7)B .(-1,-7)C .(1,-7)D .(-1,7)2.给新同学指路,介绍文具店的位置时,其中表达正确的是( )A .在学校的右边B .距学校900 m 处C .在学校的西边D .在学校的西边距学校900 m 处3.如图,已知棋子“相”的坐标为(-2,3),棋子“兵”的坐标为(1,3),则棋子“炮”的坐标为( ) A .(3,2)B .(3,1)C .(2,2)D .(-2,2)(第3题) (第9题)4.在平面直角坐标系中,点P (-20,a )与点Q (b ,13)关于x 轴对称,则a +b的值为( ) A .33B .-33C .-7D .75.若点P (3,-4),Q (x ,-4)之间的距离是5,则x 的值为( )A .-2B .-2或2C .8D .-2或86.在平面直角坐标系xOy 中,若点A 的坐标为(-3,3),点B 的坐标为(2,0),则三角形ABO 的面积是( ) A .15B .7.5C .6D .37.在平面直角坐标系中,点A (1,2)平移后的坐标是A ′(-3,3),按照此平移方式平移其他点,则下列变换符合这种要求的是( ) A .(3,2)→ (4,2) B .(-1,0) → (-5,-4) C.⎝ ⎛⎭⎪⎫2.5,-13 →⎝ ⎛⎭⎪⎫-1.5,23 D .(1.2,5) → (-3.2,6)8.在平面直角坐标系中,下列各点关于y 轴的对称点在第一象限的是( )A .(2,1)B .(2,-1)C .(-2,1)D .(-2,-1)9.如图,A,B两点的坐标分别为(2,0),(0,1),若将线段AB平移至A1B1,则a+b的值为()A.2B.3 C.4D.510.在平面直角坐标系xOy中,已知点A(2,-2),在y轴上确定一点P,使△AOP 为等腰三角形,则符合条件的点P有()A.1个B.2个C.3个D.4个二、填空题(每题3分,共24分)11.下列结论:①点(3,2)与(2,3)是同一个点;②点(0,-2)在x轴上;③点(0,0)是坐标原点;④点(1,1)在第二象限;⑤点(2,0)在x轴的正半轴上.其中正确的是________.(填序号)12.某市区有3个自行车站点,位置如图所示,若站点1的位置表示为(B,1),站点2的位置表示为(C,3),则站点3的位置可表示为____________.(第12题)(第15题)(第16题)(第17题)13.若点A(3,x-1)在x轴上,点B(2y+2,1)在y轴上,则x2+y2的值为________.14.在平面直角坐标系中,点A(-3,2)关于x轴对称的点B,将点B向右平移3个单位得到点C,则点C的坐标是________.15.如图,在平面直角坐标系中,平行于x轴的线段AB上所有点的纵坐标都是-1,横坐标x的取值范围是1≤x≤5,则线段AB上任意一点的坐标可以用“(x,-1)(1≤x≤5)”表示.若射线CD垂直平分AB于点C,那么按照类似这样的规定,射线CD上任意一点的坐标可以表示为____________.16.如图,在平面直角坐标系中,点A的坐标为(1,3),将线段OA向左平移2个单位,得到线段O′A′,则点A的对应点A′的坐标为________.17.如图,长方形OABC的边OA,OC分别在x轴,y轴上,点B的坐标为(3,2).点D,E分别在AB,BC边上,BD=BE=1.沿直线DE将三角形BDE翻折,点B落在点B′处,则点B′的坐标为________.18.将正整数按以下规律排列:第一列第二列第三列第四列第五列第一行 1 4 5 16 17 …第二行 2 3 6 15 …第三行9 8 7 14 …第四行10 11 12 13…第五行……表中数2在第二行,第一列,与有序数对(2,1)对应,数5与(1,3)对应,数14与(3,4)对应.根据这一规律,数2 019对应的有序数对为________.三、解答题(19,20题每题6分,21,22,23题每题8分,24题10分,共46分)19.如果规定北偏东30°的方向记做30°,从O点出发沿这个方向走50米记做50,图中点A记做(30°,50);北偏西45°的方向记做-45°,从O点出发沿着该方向的反方向走20米记做-20,图中点B记做(-45°,-20).(1)(-75°,-15),(10°,-25)分别表示什么意义?(2)在图中标出点(60°,-30)和(-30°,40).(第19题)20.根据下列条件建立适当的直角坐标系,标出学校、少年宫、体育馆、新华书店的位置.从学校向东走300 m,再向北走300 m是少年宫;从学校向西走100 m,再向北走200 m是体育馆;从学校向南走150 m,再向东走250 m,再向南走50 m是新华书店.21.已知点P(2x,3x-1)是平面直角坐标系内的点.(1)若点P在第一象限的角平分线上,求x的值;(2)若点P在第三象限,且到两坐标轴的距离之和为16,求x的值.22.如图,已知A(0,4),B(-2,2),C(3,0).(第22题)(1)作△ABC关于x轴对称的△A1B1C1;(2)写出点A1,B1,C1的坐标A1(________),B1(________),C1(________);(3)△A1B1C1的面积为________.23.如图,梯形ABCD是直角梯形.(1)直接写出点A,B,C,D的坐标;(2)画出直角梯形ABCD关于y轴的对称图形;(3)直角梯形ABCD与其关于y轴的对称图形构成一个等腰梯形,将这个等腰梯形向上平移4个单位,画出平移后的图形.(不写画法)(第23题)24.如图,在平面直角坐标系中,A,B,C三点的坐标分别为(0,1),(2,0),(2,1.5).(1)求△ABC的面积.(2)如果在第二象限内有一点P(a,2),试用含a的式子表示四边形ABOP的面积.(3)在(2)的条件下,是否存在点P,使得四边形ABOP的面积与△ABC的面积相等?若存在,求出点P的坐标;若不存在,请说明理由.(第24题)答案一、1.B 2.D 3.A4.B点拨:因为P,Q关于x轴对称,所以a=-13,b=-20,所以a+b=-33.5.D6.D点拨:此题首先运用数形结合思想,在平面直角坐标系中描点连线画出三角形ABO,然后运用转化思想将点的坐标转化为线段的长度,底BO=2,BO边上的高为3,所以三角形ABO的面积=12×2×3=3.7.C8.C9.A点拨:由A点的横坐标的变化可知线段AB向右平移了1个单位,由B 点的纵坐标的变化可知线段AB向上平移了1个单位.10.D点拨:本题利用分类讨论思想.当OA为等腰三角形的腰时,以O为圆心,OA为半径的圆与y轴有两个交点,以A为圆心,AO为半径的圆与y轴除点O外还有一个交点;当OA为等腰三角形的底时,作线段OA的垂直平分线,与y轴有一个交点.∴符合条件的点一共有4个.故选D.二、11.③⑤点拨:两个点的横纵坐标均不相等,表示的不是同一个点,所以①错误;横坐标为0的点在y轴上,所以②错误;第二象限的点的符号的特征是(-,+),所以④错误.12.(D,2)13.214.(0,-2)15.(3,y)(y≥-1)16.(-1,3)17.(2,1)点拨:由题意知四边形BEB′D是正方形,∴点B′的横坐标与点E 的横坐标相同,点B′的纵坐标与点D的纵坐标相同,∴点B′的坐标为(2,1).18.(45,7)三、19.解:(1)(-75°,-15)表示南偏东75°距O点15米处,(10°,-25)表示南偏西10°距O点25米处.(2)略.20.解:选取学校所在的位置为原点,以正东方向为x轴的正方向,以正北方向为y轴的正方向建立平面直角坐标系,学校、少年宫、体育馆、新华书店的位置如图所示.(第20题)21.解:(1)由题意得2x =3x -1,解得x =1.(2)∵点P (2x ,3x -1)在第三象限,∴⎩⎨⎧2x <0,3x -1<0,∴x <0,∴点P (2x ,3x -1)到坐标轴的距离之和为|2x |+|3x -1|=-2x -3x +1=16,解得x =-3. 22.解:(1)如图.(第22题)(2)0,-4;-2,-2;3,0 (3)723.解:(1)点A ,B ,C ,D 的坐标分别为(-2,-1),(-4,-4),(0,-4),(0,-1).(2)略. (3)略.24.解:(1)由点B (2,0),点C (2,1.5),可知CB ⊥x 轴.过点A 作AD ⊥BC ,垂足为D ,则S △ABC =12BC ·AD =12×1.5×2=1.5.(2)过点P 作PE ⊥y 轴,垂足为E .则S 四边形ABOP =S △AOB +S △AOP =12AO ·OB +12AO ·PE =12×1×2+12×1×(-a )=1-12a .(3)存在点P ,使得四边形ABOP 的面积与△ABC 的面积相等.依题意,得1-12a =1.5,解得a =-1.所以存在点P (-1,2),使得四边形ABOP 的面积与△ABC 的面积相等.第5章测试卷一、选择题(每题3分,共30分)1.函数y=1x-2+x-2的自变量x的取值范围是()A.x≥2 B.x>2 C.x≠2 D.x≤2 2.有一本书,每20页厚1 mm,设从第1页到第x页的厚度为y mm,则y关于x的函数表达式是()A.y=120x B.y=20x C.y=120+x D.y=20x3.已知点(-1,y1),(6,y2)在一次函数y=2x-3的图象上,则y1,y2,0的大小关系是()A.0<y1<y2B.y1<0<y2C.y1<y2<0 D.y2<0<y1 4.已知一次函数y=kx+b(k,b是常数,且k≠0)中x与y的部分对应值如下表,则不等式kx+b<0的解集是()A.x<0 B.x>0 C.x<1 D.x>15.已知一次函数y=kx+b,y随x的增大而减小,且kb>0,则这个函数的大致图象是()6.直线l1:y=k1x+b与直线l2:y=k2x在同一平面直角坐标系中的位置如图所示,则关于x的不等式k2x<k1x+b的解集为()A .x <-1B .x >-1C .x >2D .x <2(第6题) (第7题)7.如图,过A 点的一次函数的图象与正比例函数y =2x 的图象相交于点B ,则这个一次函数的表达式是( ) A .y =2x +3B .y =x -3C .y =2x -3D .y =-x +38.如图,在等腰三角形ABC 中,直线l 垂直于底边BC ,现将直线l 沿线段BC从B 点匀速平移至C 点,直线l 与△ABC 的边相交于E ,F 两点,设线段EF 的长度为y ,平移时间为t ,则能较好地反映y 与t 的函数关系的图象是( )(第8题)9.如图,点A 的坐标为(-1,0),点B 在直线y =x 上运动,当线段AB 最短时,点B 的坐标为( ) A .(0,0) B.⎝ ⎛⎭⎪⎫22,-22C.⎝ ⎛⎭⎪⎫-12,-12 D.⎝ ⎛⎭⎪⎫-22,-22(第9题) (第10题) (第14题)10.一辆慢车与一辆快车分别从甲、乙两地同时出发,匀速相向而行,两车在途中相遇后分别按原速同时驶往甲地,两车之间的距离s(km)与慢车行驶时间t (h )之间的函数图象如图所示,下列说法:①甲、乙两地之间的距离为560 km ;②快车速度是慢车速度的1.5倍;③快车到达甲地时,慢车距离甲地60 km ;④相遇时,快车距甲地320 km.其中正确的个数是( )A.1个B.2个C.3个D.4个二、填空题(每题3分,共24分)11.若函数y=(m-2)x+m2-4是正比例函数,则m=________.12.一次函数y=2x-6的图象与y轴的交点坐标为________.13.如果直线y=12x+n与直线y=mx-1的交点坐标为(1,-2),那么m=________,n=________.14.如图,一次函数y=kx+b的图象与x轴的交点坐标为(2,0),则下列说法:①y随x的增大而减小;②b>0;③关于x的方程kx+b=0的解为x=2.其中说法正确的有____________(把你认为说法正确的序号都填上).15.若一次函数y=(2m-1)x+3-2m的图象经过第一、二、四象限,则m的取值范围是__________.16.如图,直线l1,l2交于点A,观察图象,点A的坐标可以看作方程组__________的解.(第16题)(第18题)17.在平面直角坐标系中,点O是坐标原点,过点A(1,2)的直线y=kx+b与x 轴交于点B,且S△AOB=4,则k的值是______________.18.一次越野跑中,当小明跑了1 600 m时,小刚跑了1 400 m,小明、小刚在此后距离出发点的路程y(m)与时间t(s)之间的函数关系如图,则这次越野跑的全程为________m.三、解答题(19,20题每题6分,21,22,23题每题8分,24题10分,共46分)19.已知关于x的一次函数y=(6+3m)x+(n-4).(1)当m,n为何值时,y随x的增大而减小?(2)当m,n为何值时,函数的图象与y轴的交点在x轴的下方?(3)当m,n为何值时,函数图象经过原点?。
浙教版八年级数学上册单元测试题全套(含答案)
浙教版八年级数学上册单元测试题全套(含答案)第1章三角形的初步知识检测卷(时间:60分钟满分:100分)一、选择题(每题2分,共20分)1.如图,为估计池塘两岸A,B间的距离,杨阳在池塘一侧选取了一点P,测得PA=16m,PB=12m,那么AB间的距离不可能是( )(第1题图)A.5m B.15m C.20m D.28m2.一个三角形三个内角的度数之比为2∶3∶5,这个三角形一定是( )A.锐角三角形 B.直角三角形C.钝角三角形 D.等腰三角形3.张师傅不小心将一块三角形玻璃打破成如图中的三块,他准备去店里重新配置一块与原来一模一样的,最省事的做法是( )(第3题图)A.带1去 B.带2去C.带3去 D.三块都带去4.下列说法:①全等三角形的面积相等;②全等三角形的周长相等;③全等三角形的对应角相等;④全等三角形的对应边相等.其中正确的有( )A.1个 B.2个 C.3个 D.4个5.如图,下列A,B,C,D四个三角形中,能和模板中的△ABC完全重合的是( )(第5题图)6.BD是△ABC的中线,若AB=5cm,BC=3cm,则△ABD与△BCD的周长之差是( )A.1cm B.2cm C.3cm D.5cm7.如图,已知MB=ND,∠MBA=∠NDC,下列不能判定△ABM≌△CDN的条件是( ) A.∠M=∠N B.AB=CD C.AM=CN D.AM∥CN(第7题图)(第8题图)8.如图,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,S△ABC=7,DE=2,AB=4,则AC长是( ) A.3 B.4 C.6 D.59.如图,锐角三角形ABC中,直线l为BC的中垂线,直线m为∠ABC的角平分线,l与m相交于点P.若∠BAC=60°,∠ACP=24°,则∠ABP是( )A.24° B.30° C.32° D.36°(第9题图)(第10题图)10.如图,在△ABC中,∠C=90°,∠B=30°,以点A为圆心,任意长为半径画弧分别交AB,AC于点M和N,再分别以点M,N为圆心,大于12MN的长为半径画弧,两弧交于点P,连结AP并延长交BC于点D,则下列说法中正确的个数是( )①AD是∠BAC的平分线;②∠ADC=60°;③点D在AB的中垂线上;④S△DAC:S△ABC=1:3. A.1个 B.2个 C.3个 D.4个二、填空题(每题3分,共30分)11.木工师傅在做完门框后,为防止变形常常像图中那样钉上两条斜拉的木板条(即图中AB,CD两个木条),这样做根据的数学道理是____.(第11题图)(第12题图)(第13题图)12.如图,点D,E分别在线段AB,AC上,BE,CD相交于点O,AE=AD,要使△ABE≌△ACD,需添加一个条件是____________________(只要求写一个条件).13.一副具有30°和45°角的直角三角板,如图叠放在一起,则图中∠α的度数是____.14.可以用来证明命题“如果a,b是有理数,那么|a+b|=|a|+|b|”是假命题的反例可以是____ .15.如图,在△ABC中,∠C=90°,BD平分∠ABC,交AC于点D.若DC=3,则点D到AB的距离是_______.(第15题图)(第16题图)16.如图,在△ABC中,AB=12,EF为AC的垂直平分线,若EC=8,则BE的长为____.17.一个三角形的两边长分别是3和7,且第三边长为奇数,这样的三角形的周长最大值是___________. 18.如图,在△ABC中,高BD,CE相交于点H,若∠BHC=110°,则∠A等于____.19.如图,把△ABC纸片沿DE折叠,当点A落在四边形BCDE内部时,∠A,∠1,∠2之间有一种数量关系始终保持不变,这种关系是___ .(第18题图)(第19题图)(第20题图)20.如图,在△ABC中,BC边不动,点A竖直向上运动,∠A越来越小,∠B,∠C越来越大,若∠A减少α度,∠B增加β度,∠C增加γ度,则α,β,γ三者之间的等量关系是__ _.三、解答题(共50分)21.(6分)已知线段a,b及∠α,用直尺和圆规作△ABC,使∠B=∠α,AB=a,BC=b.(第21题图)22.(7分)如图,△ABC≌△ADE,且∠CAD=35°,∠B=∠D=20°,∠EAB=105°,求∠BFD和∠BED的度数.(第22题图)23.(6分)如图,在△ABC与△BAD中,AD与BC相交于点M,∠1=∠2,________,试说明△ABC≌△BAD.请你在横线上添加一个条件,使得它可以用“AAS”来说明△ABC≌△BAD,并写出说理过程.(第23题图)24.(7分)如图,在四边形ABCD中,∠A=∠BCD=90°,BC=DC,延长AD到点E,使DE=AB.(1)求证:∠ABC=∠EDC;(2)求证:△ABC≌△EDC.(第24题图)25.(8分)如图,在△ABC中,∠C=90°,BE平分∠ABC,AF平分外角∠BAD,BE与FA交于点E.求∠E的度数.(第25题图)26.(8分)如图,在△ABC中,AC=6cm,AB=9cm,D是边BC上一点,AD平分∠BAC,在AB上截取AE=AC,连结DE,已知DE=2cm,BD=3cm.求:(1)线段BC的长;(2)若∠ACB的平分线CF交AD于点O,且点O到AC的距离是a cm,请用含a的代数式表示△ABC的面积.(第26题图)27.(8分)如图,在△ABC中,AB=AC,∠BAC=90°,∠1=∠2,CE⊥BD交BD的延长线于点E,求证:BD=2CE.(第27题图)参考答案一、1.D 2.B 3.C 4.D 5.A 6.B 7.C 8.A 9.C 10.D二、11.三角形的稳定性12.AB =AC 或∠B=∠C 或∠ADC=∠AEB13.75°14.答案不唯一,如a =-1,b =3等异号两数15.316.417.1918.70°19.2∠A=∠1+∠220.α=β+γ三、21.略22.∠BFD=90°,∠BED =70°23.答案不唯一,如横线上添加的条件是∠C=∠D.理由如下:在△ABC 与△BAD 中,⎩⎪⎨⎪⎧∠C =∠D(已知),∠2=∠1(已知),AB =BA (公共边),∴△ABC ≌△BAD(AAS).(第24题答图)24.(1)证明:在四边形ABCD 中,∵∠A =∠BCD=90°,∴∠B +∠ADC=180°.又∵∠ADC+∠EDC=180°,∴∠ABC =∠EDC.(2)证明:连结AC.在△ABC 和△EDC 中,⎩⎪⎨⎪⎧BC =DC ,∠ABC =∠EDC,AB =ED ,∴△ABC ≌△EDC.25.∠E=45°26.(1)BC =5cm (2)10acm 227.证明:延长CE 与BA 的延长线交于点F ,∵∠BAC =90°,CE ⊥BD ,∴∠BAC =∠DEC,∵∠ADB =∠CDE,∴∠ABD =∠DCE,在△BAD 和△CAF 中,⎩⎪⎨⎪⎧∠BAD =∠CAF,AB =AC ,∠ABD =∠DCE,∴△BAD ≌△CAF(ASA),∴BD =CF ,在△BEF 和△BEC 中,⎩⎪⎨⎪⎧∠1=∠2,BE =BE ,∠BEF =∠BEC,∴△BEF ≌△BEC(ASA),∴CE =EF ,∴DB =2CE.(第27题答图)第2章 特殊三角形检测卷(时间:60分 满分:100分)一、选择题(每题2分,共20分)1.下列图形不是..轴对称图形的是( ) A .线段 B .等腰三角形C .角D .有一个内角为60°的直角三角形2.下列命题的逆命题正确的是( )A .全等三角形的面积相等B .全等三角形的周长相等C .等腰三角形的两个底角相等D .直角都相等3.等腰三角形的两条边长是3和6,则它的周长是( )A .12B .15C .12或15D .15或184.如图,在△ABC 中,AB =AC =5,BC =6,AD 是BC 边上的中线,点E ,F ,M ,N 是AD 上的四点,则图中阴影部分的总面积是( )A .6B .8C .4D .12(第4题图) (第6题图)5.有一个角是36°的等腰三角形,其他两个角的度数是( )A .36°,108°B .36°,72°C .72°,72°D .36°,108°或72°,72°6.如图,在Rt △ABC 中,∠C =90°,∠ABC 的平分线BD 交AC 于点D.若BC =4cm ,BD =5cm ,则点D 到AB 的距离是( )A .5cmB .4cmC .3cmD .2cm7.如果三角形满足一个角是另一个角的3倍,那么我们称这个三角形为“智慧三角形”.下列各组数据中,能作为一个智慧三角形三边长的一组是( )A .1,2,3B .1,1, 2C .1,1, 3D .1,2, 38.如图,△ABC 的顶点都在正方形网格的格点上,若小方格的边长为1,则△ABC 的形状是( )A .锐角三角形B .直角三角形C .钝角三角形D .等腰直角三角形(第8题图)9.如图,已知:∠MON=30°,点1A ,2A , 3A …在射线ON 上,点6B 1B 、2B 、3B …在射线OM 上,△1A 1B 2A 、△2A 2B 3A 、△3A 3B 4A …均为等边三角形,若O 1A =1,则△6A 6B 7A 的边长为( )A .6B .12C .32D .64(第9题图) (第10题图)10.如图,△ABC 和△ADE 都是等腰直角三角形,∠BAC =∠DAE=90°,连结CE 交AD 于点F ,连结BD 交CE 于点G ,连结BE.下列结论中,正确的结论有( )①CE =BD ;②△ADC 是等腰直角三角形;③∠ADB=∠AEB;④S 四边形BCDE =12BD ·CE ;⑤BC 2+DE 2=BE 2+CD 2. A .1个 B .2个 C .3个 D .4个二、填空题(每题3分,共30分)11.命题“角平分线上的点到角两边的距离相等”的逆命题是______.12.如图,在△ABC 中,AB =AC ,BC =6,AD ⊥BC 于点D ,则BD =________.(第12题图) (第13题图)13.如图,在Rt △ABC 中,CD 是斜边AB 上的中线,若∠A=20°,则∠BDC=____.14.如图,直线l 上有三个正方形a ,b ,c ,若a ,c 的面积分别为5和12,则b 的面积为____.(第14题图) (第15题图)15.如图,在等边三角形ABC 中,AB =6,D 是BC 的中点,将△ABD 绕点A 旋转后得到△ACE,那么线段DE 的长度为________.(第16题图) (第17题图)16.如图,△ABC 中,CD ⊥AB 于点D ,E 是AC 的中点.若AD =6,DE =5,则CD 的长等于_____.17.如图,折叠长方形的一边AD ,使点D 落在BC 边的点F 处,已知AB =8cm ,BC =10cm ,则EC 的长为___cm.18.如图,在△ABC 中,∠BAC =90°,AB =AC ,AE 是经过点A 的一条直线,且B ,C 在AE 的两侧,BD ⊥AE 于点D ,CE ⊥AE 于点E ,CE =2,BD =6,则DE 的长为_____.19.如图,在Rt △ABC 中,∠C =90°,AC =BC ,将其绕点A 逆时针旋转15°得到Rt △AB ′C ′,B ′C ′交AB 于点E ,若图中阴影部分面积为23,则B′E 的长为__________.(第18题图) (第19题图) 20.在Rt △ABC 中,∠C =90°,BC =8 cm ,AC =4 cm ,在射线BC 上一动点D ,从点B 出发,以5厘米每秒的速度匀速运动,若点D 运动t 秒时,以A ,D ,B 为顶点的三角形恰为等腰三角形,则所用时间t 为_______秒(结果可含根号).三、解答题(共50分)21.(7分)如图,在Rt △ABC 中,∠B =90°,分别以点A ,C 为圆心,大于12AC 长为半径画弧,两弧相交于点M ,N ,连结MN ,与AC ,BC 分别交于点D ,E ,连结AE.(1)求∠ADE;(直接写出结果)(2)当AB =3,AC =5时,求△ABE 的周长.(第21题图)22.(8分)如图,在等边三角形ABC 中,点D ,E 分别在边BC ,AC 上,DE ∥AB ,过点E 作EF⊥DE,交BC 的延长线于点F.(1)求∠F 的度数;(2)若CD =2,求DF 的长.(第22题图)23.(8分)给出两个三角形(如图),请你把图1分割成两个等腰三角形,把图2分割成三个等腰三角形,并在图上标出分割后等腰三角形的顶角的度数.(第23题图)24.(8分)如图,在△ABC 中,D 是BC 边上一点,且BA =BD ,∠DAC =12∠B ,∠C =50°.求∠BAC 的度数.(第24题图)25.(9分)已知:如图,在△ABC 中,AD 是△ABC 的高,作∠DCE=∠ACD,交AD 的延长线于点E ,点F 是点C 关于直线AE 的对称点,连结AF.(1)求证:CE =AF ;(2)若CD =1,AD =3,且∠B=20°,求∠BAF 的度数.(第25题图)26.(10分) 在△ABC中,AB=AC,点D是直线BC上一点(不与B,C重合),以AD为一边在AD的右侧作△ADE,使AD=AE,∠DAE=∠BAC,连结CE.(1)如图1,当点D在线段BC上时,如果∠BAC=90°,则∠BCE=__ _°.(2)设∠BAC=α,∠BCE=β.①如图2,当点D在线段BC上移动时,α,β之间有怎样的数量关系?请说明理由.②当点D在直线BC上移动时,α,β之间有怎样的数量关系?请你在备用图上画出图形,并直接写出你的结论.(第26题图)参考答案一、1.D 2. C 3. B 4. A 5. D 6. C 7.D 8. B 9.C 10.C 二、11.角的内部到角两边距离相等的点在角平分线上 12.3 13.40° 14.17 15.3 3 16.8 17.3 18.4 19.23-2 20.5,4,165 5三、21.(1)∵由题意可知MN 是线段AC 的垂直平分线,∴∠ADE =90°. (2)∵在Rt △ABC 中,∠B =90°,AB =3,AC =5,∴BC =52-32=4. ∵MN 是线段AC 的垂直平分线,∴AE =CE , ∴△ABE 的周长=AB +(AE +BE)=AB +BC =3+4=7. 22.(1)∵△ABC 是等边三角形,∴∠B =60°. ∵DE ∥AB ,∴∠EDC =∠B=60°. ∵EF ⊥DE ,∴∠DEF =90°, ∴∠F =90°-∠EDC=30°.(2)∵∠ACB=60°,∠EDC =60°,∴△EDC 是等边三角形.∴ED=DC =2. ∵∠DEF =90°,∠F =30°,∴DF =2DE =4. 23.略24.设∠DAC=x °,则∠B=2x °,∠BDA =∠C+∠DAC=50°+x °. ∵BD =BA ,∴∠BAD =∠BDA=50°+x °(等边对等角). ∵∠B +∠BAD+∠BDA=180°, 2x +50+x +50+x =180.解得x =20. ∴∠BAD =∠BDA=50°+20°=70°, ∠BAC =∠BAD+∠DAC=70°+20°=90°.25.(1)证明:如答图.∵AD 是△ABC 的高,∴∠ADC =∠ADF=90°. 又∵点F 是点C 关于直线AE 的对称点,∴FD =CD.∴AF=AC.又∵∠1=∠2,∴∠CAD =∠CED.∴EC=AC.∴CE=AF.(2)在Rt △ACD 中,CD =1,AD =3,∴AC =2,∴∠DAC =30°.同理可得∠DAF=30°,在Rt △ABD 中,∠B =20°,∴∠BAF =40°.(第25题答图)26.(1)90. ∵∠DAE=∠BAC,∠BAC =∠BAD+∠DAC=∠EAC+∠DAC;∴∠CAE=∠BAD;在△ABD 和△ACE中,⎩⎪⎨⎪⎧AB =AC ,∠BAD =∠CAE,AD =AE ,∴△ABD ≌△ACE(SAS); ∴∠B =∠ACE;∴∠BCE =∠BCA+∠ACE=∠BCA+∠B=180°-∠BAC=90°.(2)①由(1)中可知,β=180°-α,∴α、β存在的数量关系为α+β=180°;②当点D 在射线BC 上时,如答图1,α+β=180°;当点D 在射线BC 的反向延长线上时,如答图2,α=β.(第26题答图)第3章 一元一次不等式检测卷 (时间:60分钟 满分:100分)一、选择题(每题2分,共20分) 1.不等式2x>3-x 的解集是( )A .x<2B .x>2C .x>1D .x<12.甲种蔬菜保鲜适宜的温度是1℃~5℃,乙种蔬菜保鲜适宜的温度是3℃~8℃,将这两种蔬菜放在一起同时保鲜,适宜的温度是( )A .1℃~3℃B .3℃~5℃C .5℃~8℃D .1℃~8℃ 3.已知a<b ,c 是有理数,下列各式正确的是( ) A .ac 2<bc 2B .c -a<c -bC .a -3c<b -3c D. a c <b c4.不等式组⎩⎪⎨⎪⎧2x >-4,3x -5≤7的解集在数轴上可以表示为( )5.若2a +3b -1>3a +2b ,则a ,b 的大小关系为( )A .a<bB .a>bC .a =bD .不能确定6.设a ,b ,c 表示三种不同物体的质量,用天平称两次,情况如图,则这三种物体的质量从小到大排序正确的是( )(第6题图)A .c <b <aB .b <c <aC .c <a <bD .b <a <c7.若0<x<1,则x ,1x,x ²的大小关系是( )A.1x <x<x 2 B .x<1x <x 2 C .x 2<x<1x D. 1x<x 2<x 8.如果不等式组⎩⎪⎨⎪⎧2x -1>3(x -1),x >m 无解,那么m 的取值范围是( )A .m =2B .m >2C .m <2D .m ≥29.某种商品的进价为1000元,出售时的标价为1500元,后来由于该商品积压,商店准备打折出售,但要保持利润率不低于5%,则最多可打( )A .6折B .7折C .8折D .9折10.如果关于x 的不等式组⎩⎪⎨⎪⎧5x -2a>0,7x -3b≤0的整数解仅有7,8,9,那么适合这个不等式组的整数a ,b 的有序数对(a ,b)共有( )A .4对B .6对C .8对D .9对 二、填空题(每题3分,共30分)11.用不等式表示“7与m 的3倍的和是正数“就是____. 12.如果a<b ,那么3-2a___3-2b(用不等号连接). 13.满足不等式2x -1<6的最大负整数为________. 14.已知3x -2y =0,且x -1>y ,则x 的取值范围是___.15.若不等式组⎩⎪⎨⎪⎧x -m >4,n -2x >0的解集是-1<x <1,则m +n =____.16.若关于x 的不等式3m -2x <5的解集是x >2,则实数m 的值为______.17.某企业向银行贷款100万元,一年后归还银行106.6多万元,则年利率高于__ %. 18.下课时老师在黑板上抄了一道题:x +22≥2x -13+,是被一学生擦去的一个数字,又知其解集为x≤2,则被擦去的数字是_______.19.已知关于x 的方程2x +mx -2=3的解是正数,则m 的取值范围为___ .20.小军的期末总评成绩由平时、期中、期末成绩按权重比1∶1∶8组成,现小军平时考试得90分,期中考试得60分,要使他的总评成绩不低于79分,那么小军的期末考试成绩x 满足的条件是____ . 三、解答题(共50分)21.(6分)解不等式:x 3>1-x -36.22.(6分)解不等式组,并把它们的解集在数轴上表示出来. ⎩⎪⎨⎪⎧x -32+3≥x,1-3(x -1)<8-x.23.(6分)已知a =x +43,b =2x -74,并且2b≤52<a.请求出x 的取值范围,并将这个范围在数轴上表示出来.24.(7分)已知关于x ,y 的方程组⎩⎪⎨⎪⎧x -y =2m +7,①x +y =4m -3.②的解为负数,求m 的取值范围.25.(8分)为了提高饮水质量,越来越多的居民开始选购家用净水器.一商场抓住商机,从厂家购进了A ,B 两种型号家用净水器共160台,A 型号家用净水器进价是150元/台,B 型号家用净水器进价是350元/台,购进两种型号的家用净水器共用去36000元. (1)求A ,B 两种型号的家用净水器分别购进了多少台.(2)为了使每台B 型号家用净水器的毛利润是A 型号的2倍,且保证售完这160台家用净水器的毛利润不低于11000元,求每台A 型号家用净水器的售价至少是多少元. (注:毛利润=售价-进价)26.(8分)先阅读理解下面的例题,再按要求解答: 例题:解一元二次不等式x ²-9>0.解:∵x²-9=(x +3)(x -3),∴(x +3)(x -3)>0.由有理数的乘法法则“两数相乘,同号得正”,得(1)⎩⎪⎨⎪⎧x +3>0,x -3>0,(2)⎩⎪⎨⎪⎧x +3<0,x -3<0. 解不等式组(1),得x>3,解不等式组(2),得x<-3, 故(x +3)(x -3)>0的解集为x>3或x<-3, 即一元二次不等式x ²-9>0的解集为x>3或x<-3. 问题:求分式不等式5x +12x -3<0的解集.27.(9分)为了更好地治理流溪河水质,保护环境,市治污公司决定购买10台污水处理设备.现有A ,B 两种型号的设备,其中每台的价格,月处理污水量如表:经调查:购买一台A 型号设备比购买3台B 型号设备少6万元. (1)求a ,b 的值;(2)经预算:市治污公司购买污水处理设备的资金不超过105万元,你认为该公司有哪几种购买方案. (3)在(2)问的条件下,若每月要求处理流溪河两岸的污水量不低于2 040吨,为了节约资金,请你为治污公司设计一种最省钱的购买方案.参考答案一、1.C 2.B 3.C 4.B 5.A 6.A 7.C 8.D 9.B 10.D 二、11.7+3m>0 12.> 13.-1 14.x <-2 15.-3 16.3 17.6.6 18.1 19.m>-6且m≠-4 20.x≥80 三、21.2x >6-(x -3),2x >6-x +3, 3x >9,x >3.所以,不等式的解集为x >3. 22.-2<x≤3,图略. 23.72<x ≤6,图略. 24.⎩⎪⎨⎪⎧x =3m +2,y =m -5.由⎩⎪⎨⎪⎧3m +2<0,m -5<0得m <-23.25.(1)设A 型号家用净水器购进了x 台,B 型号家用净水器购进了y 台.由题意,得⎩⎪⎨⎪⎧x +y =160,150x +350y =36000.解得⎩⎪⎨⎪⎧x =100,y =60.所以,A 型号家用净水器购进了100台,B 型号家用净水器购进了60台.(2)设每台A 型号家用净水器的毛利润为z 元,则每台B 型号家用净水器的毛利润为2z 元. 由题意,得100z +60×2z≥11000, 解得z≥50,又150+50=200.所以,每台A 型号家用净水器的售价至少为200元.26.∵5x +12x -3<0,∴①⎩⎪⎨⎪⎧5x +1<0,2x -3>0,或②⎩⎪⎨⎪⎧5x +1>0,2x -3<0.解不等式组①无解;解不等式组②,得-15<x<32. 即不等式5x +12x -3<0的解集是-15<x<32.27.(1)根据题意,得⎩⎪⎨⎪⎧a -b =2,3b -2a =6,∴⎩⎪⎨⎪⎧a =12,b =10; (2)设购买A 型号设备x 台,B 型号设备(10-x)台,则12x +10(10-x)≤105,∴x ≤2.5. ∵x 取非负整数,∴x =0,1,2,∴有三种购买方案:①A 型号设备0台,B 型号设备10台;②A 型号设备1台,B 型号设备9台;③A 型号设备2台,B 型号设备8台.(3)由题意,得240x +200(10-x)≥2040,∴x ≥1.又∵x≤2.5,x 取非负整数,∴x 为1,2.当x =1时,购买资金为12×1+10×9=102(万元);当x =2时,购买资金为12×2+10×8=104(万元).∴为了节约资金,应选购A 型号设备1台,B 型号设备9台.第4章 图形与坐标检测卷 (时间:60分钟 满分:100分)一、选择题(每题2分,共20分)1.点P(-1,2)关于y 轴对称的点的坐标是( ) A .(1,2) B .(-1,-2) C .(1,-2) D .(2,-1) 2.如果P(m +3,2m +4)在y 轴上,那么点P 的坐标是( )A .(-2,0)B .(0,-2)C .(1,0)D .(0,1) 3.点P(m -1,2m +1)在第二象限,则m 的取值范围是( ) A .m>-12或m>1 B .-12<m<1 C .m<1 D .m>-124.点P 在第四象限且到x 轴的距离为4,到y 轴的距离为5,则点P 的坐标是( ) A .(4,-5) B .(-4,5) C .(-5,4) D .(5,-4)5.如图,将四边形ABCD 先向左平移3个单位,再向上平移2个单位,那么点A 的对应点A′的坐标是( ) A .(6,1) B .(0,1) C .(0,-3) D .(6,-3)(第5题图) (第6题图) (第7题图)6.如图,在平面直角坐标系中,已知点A(a ,0),B(0,b),如果将线段AB 绕点B 顺时针旋转90°至CB ,那么点C 的坐标是( )A .(-b ,b +a)B .(-b ,b -a)C .(-a ,b -a)D .(b ,b -a)7.如图,△ABC 与△DEF 关于y 轴对称,已知A(-4,6),B(-6,2),E(2,1),则点D 的坐标为( ) A .(-4,6) B .(4,6) C .(-2,1) D .(6,2)8.丽丽家的坐标为(-2,-1),红红家的坐标为(1,2),则红红家在丽丽家的( ) A .东南方向 B .东北方向 C .西南方向 D .西北方向9.在平面直角坐标系中,任意两点A(1x ,1y ),B(2x ,2y )规定运算:①A⊕B=(1x +2x ,1y +2y );②A ⊗B =1x 2x +1y 2y ;③当1x =2x 且1y =2y 时,A =B.有下列四个命题:(1)若A(1,2),B(2,-1),则A⊕B=(3,1),A ⊗B =0;(2)若A⊕B=B⊕C,则A =C ;(3)若A ⊗B =B ⊗C ,则A =C ;(4)对任意点A ,B ,C ,均有(A⊕B)⊕C=A⊕(B⊕C)成立;其中正确命题的个数为( ) A .1个 B .2个 C .3个 D .4个10.如图,一个动点P在平面直角坐标系中按箭头的方向做折线运动,即第一次从原点运动到(1,1),第二次从(1,1)运动到(2,0),第三次从(2,0)运动到(3,2),第四次从(3,2)运动到(4,0),第五次从(4,0)运动到(5,1),…,按这样的运动规律,经过第2013次运动后,动点P的坐标是( ) A.(2012,1) B.(2012,2) C.(2013,1) D.(2013,2)(第10题图)二、填空题(每题3分,共30分)11.如果电影院里的二排六号用(2,6)表示,则(1,5)的含义是____.12.若B地在A地的南偏东50°方向5km处,则A地在B地的____方向___处.13.已知点P(3,-1)关于y轴的对称点Q的坐标是(a+b,1-b),则ab的值为_______.14.△ABC在直角坐标系中的位置如图,若△A′B′C′与△ABC关于y轴对称,则点A的对应点A′的坐标为__ .(第14题图)(第15题图)(第16题图)15.如图,如果所在的位置坐标为(-1,-2),所在的位置坐标为(2,-2),则所在位置坐标为____.16.如图,已知A(0,1),B(2,0),把线段AB平移后得到线段CD,其中C(1,a),D(b,1),则a+b=______.17.在直角坐标系中,O为坐标原点,△ABO是正三角形,若点B的坐标是(-2,0),则点A的坐标是______.18.已知点P(2m-1,m)可能在某个象限的角平分线上,则点P坐标为______.19.已知点A(4,y),B(x,-3),若AB∥x轴,且线段AB的长为5,x=___ ,y=___ .20.如图,等边三角形OAB的顶点O在坐标原点,顶点A在x轴上,OA=2,将等边三角形OAB绕原点顺时针旋转105°至OA′B′的位置,则点B′的坐标为______.(第20题图)三、解答题(共50分)21.(7分)在棋盘中建立如图的直角坐标系,三颗棋子A,O,B的位置如图,它们的坐标分别是(-1,1),(0,0),(1,0).(1)如图2,添加棋子C ,使四颗棋子A ,O ,B ,C 成为一个轴对称图形,请在图中画出该图形的对称轴; (2)在其他格点位置添加一颗棋子P ,使四颗棋子A ,O ,B ,P 成为轴对称图形,请直接写出棋子P 的位置的坐标.(写出2个即可)(第21题图)22.(7分)已知四边形ABCD 各顶点的坐标分别是A(0,0),B(3,6),C(6,8),D(8,0). (1)请建立适当的平面直角坐标系,并描出点A ,点B ,点C ,点D. (2)求四边形ABCD 的面积.(第22题图) 23.(8分)如图,图形中每一小格正方形的边长为1,已知△ABC. (1)AC 的长等于________,△ABC 的面积等于____.(2)先将△ABC 向右平移2个单位得到△A′B′C′,则A 点的对应点A′的坐标是______. (3)再将△ABC 绕点C 按逆时针方向旋转90°后得到111A B C ,则A 点对应点1A 的坐标是___.(第23题图)24.(8分)已知边长为4的正方形OABC 在直角坐标系中,(如图)OA 与y 轴的夹角为30°,求点A,点C,点B 的坐标.(第24题图)25.(10分)如图,在平面直角坐标系中,A(0,1),B(2,0),C(4,3).(1)求△ABC的面积;(2)设点P在坐标轴上,且△ABP与△ABC的面积相等,求点P的坐标.(第25题图)26.(10分)在某河流的北岸有A,B两个村子,A村距河北岸的距离为1千米,B村距河北岸的距离为4千米,且两村相距5千米,现以河北岸为x轴,A村在y轴正半轴上(单位:千米).·B·A(第26题图)(1)请建立平面直角坐标系,并描出A,B两村的位置,写出其坐标.(2)近几年,由于乱砍滥伐,生态环境受到破坏,A,B两村面临缺水的危险.两村商议,共同在河北岸修一个水泵站,分别向两村各铺一条水管,要使所用水管最短,水泵站应修在什么位置?在图中标出水泵站的位置,并求出所用水管的长度.参考答案一、1.A 2.B 3.B 4.D 5.B 6.B 7.B 8.B 9.C 10.C二、11.一排五号 12.北偏西50° 5km 13.25 14.(3,2) 15.(-3,1)16.5 17.(-1,3)或(-1,-3) 18.(1,1)或⎝ ⎛⎭⎪⎫-13,13 19.9或-1 -3 20.(2,-2) 三、21.(1)如答图2,直线l 即为所求;(2)如答图1,P(0,-1),P ′(-1,-1)都符合题意.(第21题答图)22.(1)图略(2)过点B 作BE⊥AD 于点E ,过点C 作CF⊥AD 于点111A B C F ,则ABCD S 四边形=ABES +BEFC S 梯形+CFD S=38.23.(1)10 3.5 (2)(1,2) (3)(-3,-2) 24.A(2,23),B(-23+2,2+23),C(-23,2) 25.(1)过点C 作CH⊥x 轴于点H ,ABC S=AOHC S 梯形-AOB S-CHB S=12(1+3)×4-12×1×2-12×2×3=4; (2)当点P 在x 轴上时,设P(x ,0),得ABP S=12BP ·AO =12|x -2|×1=4,解得x =-6或10,故P(-6,0)或P(10,0),当点P 在y 轴上时,设P(0,y),得S △ABP =12BO ·AP =12|y -1|×2=4,解得y =-3或5,故P(0,-3)或P(0,5),综上,P 的坐标为(-6,0)或(10,0)或(0,-3)或(0,5). 26.(1)如答图①,点A(0,1),点B(4,4).(2)作A 关于x 轴的对称点A′,连结A′B 交x 轴于点P ,则P 点即为水泵站的位置,PA +PB =PA′+PB =A′B 且最短(如图②).过B,A′分别作x 轴,y 轴的垂线交于E ,作AD⊥BE,垂足为D ,则BD =3,在Rt △ABD 中,AD =52-32=4,所以A 点坐标为(0,1),B 点坐标为(4,4);A′点坐标为(0,-1),由A′E =4,BE =5知,在Rt △A ′BE 中,A ′B =42+52=41.故所用水管最短长度为41千米.① ②(第26题图)第5章 一次函数检测卷 (时间:60分钟 满分:100分) 一、选择题(每题2分,共20分)1.关于直线y =-2x ,下列结论正确的是( )A .图象必过点(1,2)B .图象经过第一、三象限C .与y =-2x +1平行D .y 随x 的增大而增大2.在平面直角坐标系上,一直线过(-3,4)和(-7,4)两点,则此直线会过的两象限是( ) A .第一象限和第二象限 B .第一象限和第四象限 C .第二象限和第三象限 D .第二象限和第四象限3.若点A(-3,3y 1y ),B(2,2y ),C(3,3y )是函数y =-x +2图象上的点,则( ) A .y 1>y 2>y 3 B .y 1<y 2<y 3 C .y 1<y 3<y 2 D .y 2>y 1>y 34.某星期天下午,小强和同学小明相约在某公共汽车站一起乘车回学校,小强从家出发先步行到车站,等小明到了后两人一起乘公共汽车回到学校.图中折线表示小强离开家的路程y(公里)和所用时间x(分)之间的函数关系.下列说法错误的是( )(第4题图)A .小强从家到公共汽车站步行了2公里B .小强在公共汽车站等小明用了10分钟C .公共汽车的平均速度是30公里/小时D .小强乘公共汽车用了20分钟5.下列图形,表示一次函数y =mx +n 与正比例函数y =mnx(m ,n 为常数,且mn≠0)的图象的是( )6.把直线y =-x +3向上平移m 个单位后,与直线y =2x +4的交点在第一象限,则m 的取值范围是( ) A .1<m <7 B .3<m <4 C .m >1 D .m <4 7.下表给出的是关于某个一次函数的自变量x 及其对应的函数值y 的若干信息.A .5B .6C .7D .88.如图1,在矩形ABCD 中,动点P 从点B 出发,沿矩形的边由B→C→D→A 运动,设点P 运动的路程为x ,△ABP 的面积为y ,把y 看作x 的函数,函数的图象如图2,则△ABC 的面积为( ) A .10 B .16 C .18 D .20(第8题图) (第9题图)9.如图,直线y =-43x +8与x 轴、y 轴分别交于A ,B 两点,点M 是OB 上一点,若直线AB 沿AM 折叠,点B 恰好落在x 轴上的点C 处,则点M 的坐标是( )A .(0,4)B .(0,3)C .(-4,0)D .(0,-3)10.如图,点A ,B ,C 在一次函数y =-2x +m 的图象上,它们的横坐标依次为-1,1,2,分别过这些点作x 轴与y 轴的垂线,则图中阴影部分的面积之和是( ) A .1 B .3 C .3(m -1) D. 32(m -2)(第10题图)二、填空题(每题3分,共30分)11.在圆的周长C =2πR 中,常量是______.12.若点(m ,m +3)在函数y =-x +2的图象上,则m =____.13.在一次函数y =2x -2的图象上,到x 轴的距离等于1的点的坐标是_______. 14.在函数x -2x -4中,自变量x 的取值范围是____. 15.已知点(3,5)在直线y =ax +b(a ,b 为常数,且a≠0)上,则ab -5的值为______.16.已知函数y =(2m -3)x +(3m +1)的图象经过第二、三、四象限,则m 的取值范围是________. 17.如图,已知函数y =x +b 和y =ax +3的图象交点为P ,则不等式x +b>ax +3的解集为___ .(第17题图) (第18题图)18.如图,是在同一坐标系内作出的一次函数1y 、2y 的图象1l 、2l ,设1y =1k x +1b ,2y =2k x +2b ,则方程组2t 的解是_______.19.如图,把Rt △ABC 放在直角坐标系内,其中∠CAB=90°,BC =5,点A ,B 的坐标分别为(1,0),(4,0),将△ABC 沿x 轴向右平移,当点C 落在直线y =2x -6上时,线段BC 扫过的面积为________.(第19题图) (第20题图)20.如图,点M 是直线y =2x +3上的动点,过点M 作MN 垂直x 轴于点N ,y 轴上是否存在点P ,使△MNP 为等腰直角三角形,请写出符合条件的点P 的坐标_______. 三、解答题(共50分)21.(7分)已知1y 与x 成正比例,2y 与x +2成正比例,且y =1y +2y ,当x =2时,y =4;当x =-1时,y =7,求y 与x 之间的函数关系式.22.(8分)已知一次函数y =kx +b 的图象经过点A(-4,0),B(2,6)两点. (1)求一次函数y =kx +b 的表达式; (2)在直角坐标系中,画出这个函数的图象; (3)求这个一次函数与坐标轴围成的三角形面积.(第22题图)23.(8分)某市生态公园计划在园内的坡地上造一片有A ,B 两种树的混合林,需要购买这两种树苗2000棵.种植A ,B 两种树苗的相关信息如表:设购买A 种树苗x (1)写出y(元)与x(棵)之间的函数关系式;(2)如果要求A 种树苗的数量不超过B 种树苗数量的两倍,问:造这片树林最多能种多少棵A 种树苗?24.(8分)如图,直线1l 过点A(0,4),点D(4,0),直线2l :y =12x +1与x 轴交于点C ,两直线1l ,2l 相交于点B.(1)求直线1l 的函数关系式; (2)求点B 的坐标; (3)求△ABC 的面积.(第24题图)25.(9分)某水果店计划购进甲、乙两种新出产的水果共140千克,这两种水果的进价、售价如下表.(1)(2)若该水果店决定乙种水果的进货量不超过甲种水果的进货量的3倍,应怎样安排进货才能使水果店在销售完这批水果时获利最多?此时利润为多少元?26.(10分)甲、乙两人匀速从同一地点到1500米处的图书馆看书,甲出发5分钟后,乙以50米/分的速度沿同一路线行走.设甲、乙两人相距s(米),甲行走的时间为t(分),s关于t的函数图象的一部分如图.(1)求甲行走的速度;(2)在坐标系中,补画s关于t的函数图象的其余部分;(3)问:甲、乙两人何时相距360米?(第26题图)参考答案一、1.C 2.A 3.A 4.D 5.A 6.C 7.B 8.A 9.B 10.B 二、11.2,π 12.-0.5 13.(0.5,-1)或(1.5,1)14.x≥2且x≠4 15.-13 16.m <-13 17.x >1 18.⎩⎪⎨⎪⎧x =-2,y =319.16 20.(0,0),(0,1),(0,34),(0,-3)三、21.设1y =kx ,2y =m(x +2).∵y =1y +2y ,∴y =kx +m(x +2), 当x =2时,y =4;当x =-1时,y =7,可得方程组为⎩⎪⎨⎪⎧4=2k +4m ,7=-k +m ,解得k =-4,m =3, ∴y 与x 之间的函数关系式为y =-x +6. 22.(1)y =x +4 (2)图略 (3)823.(1)y =(15+3)x +(20+4)(2000-x)=-6x +48000. (2)由题意得,x ≤2(2000-x),解得x≤133313.∵A 种树苗的棵数为整数,∴x 的最大值为1333. 答:造这片树林最多能种1333棵A 种树苗.24.(1)设1l 的函数关系式为y =kx +b ,根据题意得⎩⎪⎨⎪⎧b =4,4k +b =0,解得k =-1,所以1l :y =-x +4.(2)由题意得⎩⎪⎨⎪⎧y =-x +4,y =12x +1,解得⎩⎪⎨⎪⎧x =2,y =2, 所以B(2,2).(3)把y =0代入2l :y =12x +1,得x =-2,∴C(-2,0),∴ABC S=ACD S-BCD S=12×6×4-12×6×2=6. 25.(1)设购进甲种水果x 千克,则购进乙种水果(140-x)千克,根据题意可得: 5x +9(140-x)=1000,解得x =65, ∴140-x =75(千克),答:购进甲种水果65千克,乙种水果75千克;(2)由图表,可得甲种水果每千克利润为3元,乙种水果每千克利润为4元. 设总利润为W ,由题意可得出W =3x +4(140-x)=-x +560, 故W 随x 的增大而减小,则x 越小W 越大.因为该水果店决定乙种水果的进货量不超过甲种水果的进货量的3倍, ∴140-x≤3x,解得x≥35,∴当x =35时,W 最大=-35+560=525(元), 故140-35=105(kg).答:当购进甲种水果35千克,乙种水果105千克时,此时利润最大为525元. 26.(1)甲行走的速度:150÷5=30(米/分); (2)补画的图象如答图 (横轴上对应的时间为50);(第26题答图)(3)由函数图象可知,当t =12.5时,s =0. 当12.5≤t≤35时,s =20t -250. 当35<t≤50时,s =-30t +1500.∵甲、乙两人相距360米,即s =360,解得1t =30.5,2t =38. ∴当甲行走30.5分钟或38分钟时,甲、乙两人相距360米.。
【浙教版初中数学】八上第一、二章数学测试卷1
1八上第一、二章数学测试卷一、选择题(每题3分,共36分)1、如图,直线a ,b 被直线c 所截,已知a∥b,∠1=50°,则∠2的度数( )A 、40°B 、50°C 、140°D 、130°2、如图,下列条件不能判断a∥b 的( )A 、∠1=∠3B 、∠2=∠4C 、∠3=∠4D 、∠1=∠43、 等边三角形的对称轴有( )A 、 1 条B 、2条C 、3条D 、4条4、等腰三角形的底角的外角为110°,那么它的顶角度数为( )A 、30° B、40° C、50° D、60°5、如图,已知AB∥ED,∠B=110,∠C=90°,则∠D 的度数是( )21a bc2341ab (第2题)(第1题)2A 、155° B、160° C、165° D、170°6、以下列各数为边长,能组成直角三角形的是( )A 、3,4,5B 、4,5,6C 、6,7,8D 、7,8,97、下列说法正确的是( )A 、同位角相等B 、底角为60°的等腰三角形是等边三角形C 、斜边和一直角边对应相等的两个直角三角形不一定全等D 、若两个角的两边分别平行,则这两个角相等8、 如图,在Rt△ABC 中,CD 是斜边AB 上的高线,若∠A=30°, BC=4cm ,则BD 等于( )A 、4cmB 、3cmC 、2cmD 、1cm9、等腰直角三角形的斜边为2,则这个三角形的面积为( )A 、2B 、1C 、22D 、210、如图,在△ABC 中,AC AB =,︒=∠36A ,BD 、CE 分别是△ABC、△BCDDA BCE(第5题)DCBA第8题3的角平分线,则图中的等腰三角形有( )A 、5个B 、4个C 、3个D 、2个11、等腰三角形的两边分别为6和8,则其周长为( )A 、20B 、22C 、18或24D 、20或2212、若△ABC 三边长a,b,c 满足25b a -++1-a -b +()25-c =0,则△ABC 是( )A 、等腰三角形B 、等边三角形C 、直角三角形D 、等腰直角三角形二、选择题(每题3分,共18分)1、如图,两只手的食指和拇指在同一个平面内,它们构成的一对角可看成是 ;2、如图,在长方形ABCD 中,AB=3cm ,BC=2cm ,则AD 与BC 之间的距离为 cm ;CB(第2题)43、如图, 已知∠1 =∠2 =∠3 = 62°,则4∠= ;4、若直角三角形两锐角之差为20°,则较小的锐角为 ;5、直角三角形的两边为3和4,则该三角形的面积为 ;6、如图所示,在△ABC 中,∠C=∠ABC=2∠A ,BD 是AC 边上的高,则∠DBC=_______.B ADC第3题三、 解答题1、 (6分)作图题:如图已知直线l 和线段a ,现在要作一条直线m ,使l 与m 的距离为a ,这样的直线一共可以作几条?请你作出一条(不写作法,保留作图痕迹).第1题第6题5└──┘a2、(7分)说理题的规范性在于:条理清晰,因果相应,言必有据.这是初学说理题的同学应谨记和遵循的原则.如图,∠3=120°,∠4=120°,∠1=110°,求∠2的度数?(请完成以下说理题)解:∵∠3=∠4=120°(已知)∴ ∥ ( )∴∠ =∠ ( )又∵∠1=110°(已知)∴∠2= 度l21ab mn4363、(7分)中新社广州9月23日电,强台风“凡亚比”重创广东,损失惨重,据悉,一千年古樟在离地面6米处断裂,大树顶部落在离大树底部8米处,问大树折断之前有多高?4、(7分)如图,DAC ∠是ABC ∆的一个外角,AE 平分DAC ∠,且BC AE //,那么AC AB =吗?为什么?B75、(8分)如图,在△ABC 中,D 是BC 边上的点(不与B ,C 重合),F ,E 分别是AD 及其延长线上的点,CF ∥BE. 请你添加一个条件,使△BDE ≌△CDF (不再添加其它线段,不再标注或使用其他字母),并说明理由.(1)你添加的条件是: ;(2)解:6、(11分)如图,已知△ABC 和△CDE 均为等边三角形,且点B 、C 、D 在同一条直线上,连结AD 、BE ,交CE 和AC 分别于G 、H 点,连结GH.(1)请说出AD=BE 的理由;(2)试说出△BCH ≌△ACG 的理由;(3)试猜想:△CGH 是什么特殊的三角形,并加以说明.ACBD FE(第5题图)8G(第6题图)HBDE9参考答案一、选择题(每小题3分,共36分)题号 1 2 3 4 5 6答案 D C C B B A题号 7 8 9 10 1112答案 B C B A D C二、填空题(每小题3分,共18分)1、内错角;2、3;3、118°;4、35°;5、6或723(答对一个给1分); 6、18°. 三、解答题1、l└──┘a(说明可以作2条1分,结论1分,作图过程4分)2、解:∵∠3=∠4=120°(已知)∴m ∥n (同位角相等,两直线平行)∴∠ 1 =∠ 2 (两直线平行,内错角相等)又∵∠1=110°(已知)∴∠2= 110° 度(每空1分)3、解:设斜边为x米,由勾股定理可得: (1)x2 = 62 +82 =100 (4)∵x>0∴x=10 (5)∴x+6=16 (6)21a bmn 4310旗开得胜11答: (略) (7)4、解:AC AB =,理由如下:………………………………………………………1 ∵AE 平分DAC ∠∴∠1=∠3………………………………………………………………3 ∵BC AE //∴∠1=∠2,∠3 =∠4.........................................................5 ∴∠2 =∠4..................................................................... 6 ∴AC AB = (7)5、 解:(1)DC BD =(或点D 是线段BC 的中点),ED FD =,BE CF =中任选一个即可﹒…………………………………………3分(2)以DC BD =为例进行证明:旗开得胜 12 ∵CF ∥BE ,∴∠FCD ﹦∠EBD .又∵DC BD ,∠FDC ﹦∠EDB ,∴△BDE ≌△CDF .……………………………………8分6、解:(1)∵△ABC 和△CDE 均为等边三角形∴ AC=BC,EC=DC∠ACB ﹦∠ECD=60°∴∠ACD ﹦∠ECB∴△ACD ≌△BCE∴AD=BE……………………………………………………4分(2) ∵△ACD ≌△BCE∴∠CBH ﹦∠CAG∵∠ACB ﹦∠ECD=60°, 点B 、C 、D 在同一条直线上∴∠ACB ﹦∠ECD=∠ACG =60°又∵AC=BC旗开得胜∴△ACG≌△BCH…………………………………… 8分(3)△CGH是等边三角形,理由如下:…………………9分∵△ACG≌△BCH∴CG=CH又∵∠ACG=60°∴△CGH是等边三角形…………………………………11分13。
浙教版八年级上册数学第二章单元卷
浙教版八年级上册数学第二章单元卷八年级(上)第二章练卷一、选择题1、已知等腰三角形的两边长分别为4、9,则它的周长为()B)222、下列图形中,不是轴对称图形的是()A)线段3、等腰三角形的一个顶角为40º,则它的底角为()C)70º4、△ABC的三边长分别为a,b,c,且a+2ab=c+2bc,则△ABC是()D)等腰直角三角形5、已知ΔABC的三边分别是3cm。
4cm。
5cm,则ΔABC的面积是()A)6c㎡6、在△ABC中,∠A:∠B:∠C=1:2:3,CD⊥AB于D,AB=a,则DB等于()C)a/37、如图所示,△ABC中,AB=AC,过AC上一点作DE⊥AC,EF⊥BC,若∠BDE=140°,则∠DEF=()B)60°8、如图所示,已知△ABC中,AB=6,AC=9,AD⊥BC 于D,M为AD上任一点,则MC2-MB2等于()B)359、如图,CD是Rt△ABC斜边AB上的高,将△BCD沿CD折叠,B点恰好落在AB的中点E处,则∠A等于()C)4510、在直线l上依次摆放着七个正方形(如图所示)。
已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是S1、S2、S3、S4,则S1+S2+S3+S4等于C)6二、填空题11、等腰三角形一边长为3cm,另一边长为5cm,它的周长是8cm.12、Rt△ABC的斜边AB的长为10cm,则AB边上的中线长为5cm.13、在Rt△ABC中,∠C=90º,∠A=30º,BC=2cm,则AB=4cm。
14、等边三角形两条高线相交所成的钝角为120度。
15、在等腰三角形ABC中,平分线AF和CE相交于点D,且∠B=70º,则求∠ADE的度数。
16、在直角三角形ABC中,CD是AB边上的高,AC=4,BC=3,E和F分别是斜边AB上的两点,且AF=AC,BE=BC,则求∠ECF的度数。
2021-2022学年浙教版八年级数学上册第1-2章综合测试题含答案
第1 ~2章一、选择题(本题有10小题,每小题3分,共30分)1.在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是()图12.已知三角形的三边长分别为2,x,3,则x可以是()A.1B.4C.5D.63.下列命题中,属于假命题的是()A.三角形三个内角的和等于180°B.两直线平行,同位角相等C.全等三角形的对应边相等D.相等的两个角是对顶角4.如图2,△ABC△△DEF,若AB=DE,△B=△E,则下列结论错误的是()图2A.AC=CFB.△ACB=△DFEC.BC=EFD.△BAC=△EDF5.已知等腰三角形的一个内角为72°,则其顶角为()A.36°B.72°C.72°或36°D.无法确定6.如图3,已知在△ABC中,AB=AC,AB=5,BC=3,以A,B两点为圆心,大于1AB的长为半径画弧,2两弧相交于点M,N,连结MN与AC相交于点D,则△BDC的周长为()图3A.8B.10C.11D.137.将一副三角尺(△A=△FDE=90°,△F=45°,△C=60°,点D在边AB上)按图4中所示位置摆放,两条斜边为EF,BC,且EF△BC,则△ADF等于()图4A.70°B.75°C.80°D.85°8.如图5,点B,E,C,F在同一条直线上,△ABC△△DEF,且AB=4,BC=6,BE=2,△B=60°,连结DC,则DC的长为()图5A.3B.4C.5D.69.如图6,点D在△ABC的边AC上,将△ABC沿BD翻折后,点A恰好能与点C重合.若BC=5,AC=6,则BD的长为()图6A.1B.2C.3D.410.在数学活动课上,老师要求学生在如图7所示的4×4的正方形ABCD网格(小正方形的边长均为1)中画直角三角形,要求三个顶点都在格点上,而且三边均不在网格线上,则画出的不全等的直角三角形有()图7A.3种B.4种C.5种D.6种二、填空题(本题有6小题,每小题3分,共18分)11.如图8,在△ABC中,△A=60°,△B=40°,点D在AC的延长线上,则△BCD=________度.图812.如图9,在等腰三角形ABC中,AB=AC,DE垂直平分AB.已知△ADE=40°,则△DBC=________度.图913.如图10,在△ABC中,△ABC,△ACB的平分线相交于点O,过点O作EF△BC分别交AB,AC于点E,F.当EF=6,BE=2时,CF的长为________.图1014.如图11,CD是△ABC的中线,已知△ABC的面积为100 cm2,则△ACD的面积为________cm2.图1115.如图12,在△ABC中,△A=60°,若剪去△A得到四边形BCDE,则△1+△2=________度.图1216.如图13,在△ABC中,AB=AC,△A=108°,BD平分△ABC交AC于点D.图13(1)△DBC=________度;(2)写出BC,AB,CD三者之间的数量关系:______________.三、解答题(本题有8小题,共52分)17.(5分)如图14,请用没有刻度的直尺和圆规分别作出△ABC的角平分线AD和边AB的垂直平分线MN.(保留作图痕迹,不要求写出作法)图1418.(5分)如图15,AC=AE,△1=△2,AB=AD.求证:△ABC△△ADE.图1519.(5分)如图16,已知△ABC,AB>AC,利用没有刻度的直尺与圆规作一点P(保留作图痕迹),使得P A=PB=PC,并说明理由.图1620.(5分)已知:如图17,点B,F,E,C在同一直线上,AB△CD,AB=CD,BE=CF.求证:(1)AF=DE;(2)AF△DE.图1721.(7分)如图18,在△ABC中,AD是△ABC的高线,AE是△ABC的角平分线.已知△BAC=80°,△C=40°.求△DAE的大小.图1822.(7分)如图19所示,已知在△ABC中,AB=AC,点D在AB上,点E在AC的延长线上,点N在BC上,DE与BC相交于点F,DF=EF,FN=FC.求证:△DBN是等腰三角形.图1923.(9分)如图20,在等边三角形ABC中,D为AC边上一动点,E为AB延长线上一动点,DE交CB于点P,P为DE的中点.求证:CD=BE.图2024.(9分)如图21,已知在△ABC中,△B=△C,AB=8厘米,BC=6厘米,D为AB的中点.如果点P 在线段BC上以每秒2厘米的速度由点B向点C运动,同时,点Q在线段CA上以每秒a厘米的速度由点C向点A运动,设运动时间为t秒(0≤t≤3).(1)用含t的代数式表示PC的长度;(2)若点P,Q的运动速度相等,经过1秒后,△BPD与△CQP是否全等?请说明理由;(3)若点P,Q的运动速度不相等,当a为多少时,能够使△BPD与△CQP全等?图21答案1.C2.B3.D4.A5.C6.A7.B8.B9.D 10.C 11.100 12.15 13.4 14.50 15.24016.(1)18 (2)BC=AB+CD 或BC -CD=AB 或BC -AB=CD 17.略18.证明:∵∠1=∠2,∴∠1+∠BAE=∠2+∠BAE ,即∠BAC=∠DAE. 在△ABC 和△ADE 中, ∵{AC =AE ,∠BAC =∠DAE ,AB =AD ,∴△ABC ≌△ADE (SAS ).19.解:如图所示,点P 即为所求.理由:如图,连结P A ,PB ,PC. 由作图可知PD 垂直平分AB ,∴P A=PB.由作图可知PE 垂直平分AC ,∴P A=PC , ∴P A=PB=PC.20.证明:(1)∵AB ∥CD ,∴∠B=∠C. ∵BE=CF , ∴BE -EF=CF -EF ,即BF=CE.在△ABF 和△DCE 中,∵{∠B =∠C ,BF =CE ,∴△ABF ≌△DCE (SAS ), ∴AF=DE.(2)由(1)知△ABF ≌△DCE ,∴∠AFB=∠DEC , ∴∠AFE=∠DEF , ∴AF ∥DE.21.解:∵AE 是△ABC 的角平分线,且∠BAC=80°,∴∠EAC=12∠BAC=40°. ∵AD 是△ABC 的高线, ∴∠ADC=90°.又∵∠DAC+∠ADC+∠C=180°,∠C=40°,∴∠DAC=180°-∠ADC -∠C=50°, ∴∠DAE=∠DAC -∠EAC=50°-40°=10°.22.证明:在△DNF 和△ECF 中, ∵{DF =EF ,∠DFN =∠EFC ,FN =FC ,∴△DNF ≌△ECF , ∴∠DNF=∠ECF , ∴∠DNB=∠ACB. ∵AB=AC ,∴∠B=∠ACB , ∴∠DNB=∠B , ∴△DBN 是等腰三角形.23.证明:过点D 作DF ∥AB 交BC 于点F ,如图所示.∵△ABC 是等边三角形, ∴∠A=∠ABC=∠C=60°.∴∠CDF=∠A=60°,∠DFC=∠ABC=60°,∠PFD=∠PBE , ∴∠CDF=∠DFC=∠C=60°, ∴△CDF 是等边三角形,∴CD=DF . ∵P 为DE 的中点,∴PD=PE.在△PDF 和△PEB 中, ∵{∠PFD =∠PBE ,∠DPF =∠EPB ,PD =PE ,∴△PDF ≌△PEB ,∴DF=BE ,∴CD=BE.24.解:(1)由题意得BP=2t 厘米,则PC=BC -BP=(6-2t )厘米. (2)△BPD 与△CQP 全等.理由:当t=1时,BP=CQ=2×1=2(厘米),∴CP=6-2=4(厘米).∵AB=8厘米,D 为AB 的中点, ∴BD=4厘米, ∴CP=BD.在△BPD 和△CQP 中, ∵{BD =CP ,∠B =∠C ,BP =CQ ,∴△BPD ≌△CQP (SAS ).(3)∵点P ,Q 的运动速度不相等,∴BP ≠CQ.又∵∠B=∠C ,∴若△BPD 与△CQP 全等,则只能是△BPD ≌△CPQ , ∴BP=CP=3厘米,CQ=BD=4厘米,此时,点P ,Q 运动的时间t=BP 2=32,∴a=CQ t =432=83.故当a 为83时,能够使△BPD 与△CQP 全等.。
浙教版八年级上册数学第1章单元测试卷
第一章测试卷一、选择题(每题3分,共30分)1.如图,∠ACD=120°,∠B=20°,则∠A的度数是( )A.120°B.90°C.100°D.30°(第1题) (第3题)2.下列各组数分别是三根小木棒的长度,将它们首尾相连能摆成三角形的是( )A.3 cm,4 cm,8 cm B.4 cm,4 cm,8 cmC.5 cm,6 cm,8 cm D.5 cm,5 cm,12 cm3.用直尺和圆规作一个角等于已知角的示意图如图所示,则说明∠A′O′B′=∠AOB的依据是( )A.SSS B.SAS C.ASA D.AAS4.如图,△ABC≌△A′B′C′,则∠C的度数是( )A.56°B.51°C.107°D.73°(第4题) (第5题) (第7题)5.如图,在△ABC中,边AB的垂直平分线交BC于点D,连结AD.若AB=7,BC=8,AC=5,则△ADC的周长为( )A.12 B.13 C.15 D.166.下列命题是假命题的是( )A.如果a∥b,b∥c,那么a∥cB.锐角三角形中最大的角一定大于或等于60°C.两条直线被第三条直线所截,内错角相等D.同角或等角的补角相等7.如图,点B,E在线段FC上,且CE=BF,AB=DE,增加以下条件能判定△ABC≌△DEF的是( )A.∠A=∠D B.∠C=∠FC.BC=EF D.AC=DF8.在△ABC中,∠C=90°,点O为△ABC三条角平分线的交点,OD⊥BC于D,OE⊥AC于E,OF⊥AB于F,且AB=10 cm,BC=8 cm,AC=6 cm,则点O到三边AB,AC,BC的距离分别为( )A.2 cm,2 cm,2 cm B.3 cm,3 cm,3 cmC.4 cm,4 cm,4 cm D.2 cm,3 cm,5cm9.如图,在△ABC中,已知点D,E,F分别为边BC,AD,CE的中点,若△ABC 的面积为16,则图中阴影部分的面积为( )A.8 B.6 C.4 D.2(第9题) (第12题) (第15题)10.已知△ABC中,AB=BC≠AC,作与△ABC只有一条公共边,且与△ABC全等的三角形,这样的三角形一共能作出( )A.3个B.5个C.6个D.7个二、填空题(每题3分,共24分)11.把命题“同角或等角的余角相等”改写成“如果……那么……”的形式为__________________________.12.如图,若△OAD≌△OBC,且∠O=70°,∠C=25°,则∠AEB=________.13.在△ABC中,AB=4,AC=3,AD是△ABC的角平分线,则△ABD与△ACD 的面积之比是________.14.已知△ABC的三边长分别为a,b,c,若a=3,b=4,则c的取值范围是__________,设△ABC的周长是l,则l的取值范围是________.15.如图,在△ABC中,AB,AC的垂直平分线l1,l2相交于点O,若∠BAC=82°,则∠OBC=________.16.如图,在△ABC中,AD是BC边上的高,BE是AC边上的高,且AD,BE 交于点F,若BF=AC,CD=3,BD=8,则线段AF的长度为________.(第16题) (第17题) (第18题)17.如图,要测量河两岸相对的两点A,B间的距离(AB垂直于河岸BF),先在BF上取两点C,D,使CD=CB,再作出BF的垂线DE,且使A,C,E三点在同一条直线上,可以得到△EDC≌△ABC,所以ED=AB.因此测得ED 的长就是AB的长.判定△EDC≌△ABC的理由是____________.18.在探索“尺规三等分角”这个数学名题的过程中,曾利用了如图,该图中,四边形ABCD是长方形,E是BA延长线上一点,F是CE上一点,∠ACF=∠AFC,∠FAE=∠FEA.若∠ACB=24°,则∠ECD的度数是________.三、解答题(19,20题每题6分,21,22,23题每题8分,24题10分,共46分) 19.写出下列命题的条件和结论:(1)两条直线被第三条直线所截,同旁内角互补;(2)如果两个三角形全等,那么它们对应边上的高相等.20.如图,点C,E,F,B在同一直线上,点A,D在BC异侧,AB∥CD,AE=DF,∠A=∠D.求证:AB=CD.(写上证明的依据)(第20题)21.已知a,b,c为△ABC的三边长,且b,c满足(b-5)2+c-7=0,a为方程|a-3|=2的解,求△ABC的周长,并判断△ABC的形状.22.如图,AB∥CD,AM平分∠CAB,交CD于点M.(1)过点C作AM的垂线,垂足为N;(要求:用直尺和圆规作图,保留作图痕迹,不要求写出作法)(2)求证:△M≌△A.(第22题)23.在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE=90°.(1)当点D在AC上时,如图①,线段BD,CE有怎样的数量关系和位置关系?直接写出你猜想的结论.(2)将图①中的△ADE绕点A顺时针旋转α(0°<α<90°),如图②,线段BD,CE有怎样的数量关系和位置关系?请说明理由.(第23题)24.如图①,已知线段AB,CD相交于点O,连结AC,BD,则我们把形如这样的图形称为“8字型”.(1)求证:∠A+∠C=∠B+∠D.(2)如图②,若∠CAB和∠BDC的平分线AP和DP相交于点P,AP与CD交于点M,AB与DP交于点N.①以线段AC为边的“8字型”有________个,以点O为交点的“8字型”有________个;②若∠B=100°,∠C=120°,求∠P的度数;③若角平分线中角的关系改为“∠CAP=13∠CAB,∠CDP=13∠CDB”,试探究∠P与∠B,∠C之间存在的数量关系,并说明理由.(第24题)答案一、1.C 2.C 3.A 4.D 5.B 6.C 7.D 8.A 9.C 10.D 二、11.如果两个角是同角或等角的余角,那么这两个角相等 12.120° 13.4:314.1<c <7;8<l <14 15.8°16.5 :由已知可得∠ADC =∠BDF =∠BEC =90°,易得∠DAC =∠DBF .又因为AC =BF ,所以△ADC ≌△BDF .所以AD =BD =8,DC =DF =3.所以AF =AD -DF =8-3=5. 17.ASA18.22° :∵四边形ABCD 是长方形,∴AB ∥CD .∴∠ECD =∠BEC .∵∠FAE=∠FEA ,∴∠ACF =∠AFC =2∠BEC ,∴∠ACD =∠ACF +∠ECD =3∠ECD .∵∠ACB =24°,∴∠ACD =90°-24°=66°, ∴∠ECD =13∠ACD =22°.三、19.解:(1)条件:两条直线被第三条直线所截;结论:同旁内角互补.(2)条件:两个三角形全等;结论:它们对应边上的高相等. 20.证明:∵AB ∥CD (已知),∴∠B =∠C (两直线平行,内错角相等). 在△ABE 和△DCF 中, ⎩⎪⎨⎪⎧∠B =∠C (已证),∠A =∠D (已知),AE =DF (已知), ∴△ABE ≌△DCF (AAS )∴AB =CD (全等三角形的对应边相等). 21.解:∵(b -5)2+c -7=0,∴⎩⎪⎨⎪⎧b -5=0,c -7=0,解得⎩⎪⎨⎪⎧b =5,c =7.∵a 为方程|a -3|=2的解, ∴a =5或a =1.当a =1,b =5,c =7时,1+5<7, 不能组成三角形, 故a =1不符合题意. ∴a =5,∴△ABC 的周长=5+5+7=17. ∵a =b =5,∴△ABC 是等腰三角形. 22.(1)解:作图略.(2)证明:∵⊥AM , ∴∠A =∠M =90°.∵AB ∥CD ,∴∠CMA =∠MAB . ∵AM 平分∠CAB ,∴∠MAB =∠CAM .∴∠CMA =∠CAM . 在△M 和△A 中, ∵⎩⎪⎨⎪⎧∠CMN =∠CAN ,∠CNM =∠CNA ,CN =CN , ∴△M ≌△A (AAS ). 23.解:(1)BD =CE ,BD ⊥CE .(2)BD =CE ,BD ⊥CE .理由如下:∵∠BAC =∠DAE =90°,∴∠BAC -∠DAC =∠DAE -∠DAC .∴∠BAD =∠CAE .在△ABD 与△ACE 中,AB =AC ,∠BAD =∠CAE ,AD =AE ,∴△ABD ≌△ACE ,∴BD =CE ,∠ABD =∠ACE .延长BD 交AC 于点F ,交CE 于点H .在△ABF 与△HCF 中,∵∠ABF =∠HCF ,∠AFB =∠HFC ,∴∠CHF =∠BAF =90°,∴BD ⊥CE .24.(1)证明:∵∠A+∠C=180°-∠AOC,∠B+∠D=180°-∠BOD,∠AOC =∠BOD,∴∠A+∠C=∠B+∠D.(2)解:①3;4②以M为交点的“8字型”中,有∠P+∠CDP=∠C+∠CAP,以N为交点的“8字型”中,有∠P+∠BAP=∠B+∠BDP,∴2∠P+∠BAP+∠CDP=∠B+∠C+∠CAP+∠BDP.∵AP,DP分别平分∠CAB和∠BDC,∴∠BAP=∠CAP,∠CDP=∠BDP,∴2∠P=∠B+∠C.∵∠B=100°,∠C=120°,∴∠P=12(∠B+∠C)=12×(100°+120°)=110°.③3∠P=∠B+2∠C,其理由是:∵∠CAP=13∠CAB,∠CDP=13∠CDB,∴∠BAP=23∠CAB,∠BDP=23∠CDB.以M为交点的“8字型”中,有∠P+∠CDP=∠C+∠CAP,以N为交点的“8字型”中,有∠P+∠BAP=∠B+∠BDP,∴∠C-∠P=∠CDP-∠CAP=13(∠CDB-∠CAB),∠P-∠B=∠BDP-∠BAP=23(∠CDB-∠CAB),∴2(∠C-∠P)=∠P-∠B,∴3∠P=∠B+2∠C.。
浙教版八年级上册数学第2章单元测试卷
第二章测试卷一、选择题(每题3分,共30分)1.下列四个图形分别是低碳、节水、节能和绿色食品标志,在这四个标志中,是轴对称图形的是( )2.如图,在△ABC中,AB=AC,∠A=36°,BD是AC边上的高,则∠DBC的度数是( ) A.18° B.24° C.30° D.36°(第2题) (第4题) (第8题)3.在直角三角形ABC中,∠C=90°,AC=9,BC=12,则点C到AB的距离是( )A.365B.1225C.94D.3344.如图,已知∠C=∠D=90°,添加一个条件,可使用“HL”判定Rt△ABC≌Rt△ABD,以下给出的条件合适的是( )A.AC=AD B.BC=ADC.∠ABC=∠ABD D.∠BAC=∠BAD5.已知一个等腰三角形的两个内角度数之比为1:4,则这个等腰三角形顶角的度数为( ) A.20° B.120° C.20°或120° D.36°6.在△ABC中,AB2=(a+b)2,AC2=(a-b)2,BC2=4ab,且a>b>0,则下列结论中正确的是( )A.∠A=90° B.∠B=90°C.∠C=90° D.△ABC不一定是直角三角形7.直角三角形两条直角边长分别是5和12,则第三条边上的中线长是( )A.5 B.6 C.6.5 D.128.如图,在△ABC中,AD,CE分别是△ABC的中线和角平分线,若AB=AC,∠CAD=20°,则∠ACE的度数是( )A.20° B.35° C.40° D.70°9.如图,在直线l上依次摆放着七个正方形.已知斜放置的三个正方形的面积分别是1,2,3,正放置的四个正方形的面积从左往右依次是S1,S2,S3,S4,则S1+S2+S3+S4等于( ) A.3 B.4 C.5 D.6(第9题) (第10题)10.如图,点A,B,C在一条直线上,△ABD,△BCE均为等边三角形,连结AE和CD,AE分别交CD,BD于点M,P,CD交BE于点Q,连结PQ,BM,下面结论:①△ABE ≌△DBC;②∠DMA=60°;③△BPQ为等边三角形.其中正确的有( )A.0个B.1个C.2个D.3个二、填空题(每题3分,共24分)11.请写出“三个角都相等的三角形是等边三角形”的逆命题:______________________.12.若等腰三角形一腰上的高等于腰长的一半,则这个等腰三角形的底角为____________.13.已知实数x,y满足(x-4)2+(y-8)2=0,则以x,y的值为两边长的等腰三角形的周长是________.14.已知a,b,c是△ABC的三边长,且满足关系式(c2-a2-b2)2+|a-b|=0,则△ABC的形状为____________.15.如图,OP平分∠MON,PE⊥OM于E,PF⊥ON于F,OA=OB,则图中有________对全等三角形.(第15题) (第16题) (第17题) (第18题)16.如图,由四个边长为1的小正方形构成一个大正方形,连结小正方形的三个顶点,可得到△ABC,则△ABC中BC边上的高是________.17.如图,在正方形网格中,阴影部分是涂黑7个小正方形所形成的图案,再将网格内一个空白小正方形涂黑,使得到的新图案成为一个轴对称图形的涂法有________种.18.如图,在等腰三角形ABC中,AB=AC,∠BAC=50°,∠BAC的平分线与AB的垂直平分线交于点O,沿EF折叠后,点C与点O重合,则∠OEC的度数是________.三、解答题(19,20题每题6分,21,22,23题每题8分,24题10分,共46分)19.已知命题“等腰三角形两腰上的高相等”.(1)写出该命题的逆命题.(2)该逆命题是真命题还是假命题?如果是真命题,请画出“图形”,写出“已知”“求证”,再进行“证明”;如果是假命题,请举反例说明.20.如图,点E,F在△ABC的边BC上.若AE=AF,BE=CF,则AB=AC,并说明理由.(第20题)21.如图,AB∥CD,EG,FG分别是∠BEF和∠DFE的平分线.求证:△EGF是直角三角形.(第21题)22.如图,∠ABC的平分线BF与△ABC中∠ACB的邻补角的平分线CF相交于点F,过F 作DF∥BC,交AB于D,交AC于E,则:(1)图中有哪几个等腰三角形?为什么?(2)BD,DE,CE之间存在着什么数量关系?并说明理由.(第22题)23.如图,在△ABC中,∠C=90°,AD是∠BAC的平分线,DE⊥AB交AB于E,F在AC上,BD=DF.求证:(1)CF=EB;(2)AB=AF+2EB.(第23题) 24.如图,等腰直角三角形DBC中,∠BDC=90°,BF平分∠DBC,与CD相交于点F,延长BD 到A ,使DA =DF ,连结AC . (1)求证:△FBD ≌△ACD ;(2)如图,延长BF 交AC 于点E ,且BE ⊥AC ,求证:CE =12BF .(3)在(2)的条件下,H 是BC 边的中点,连结DH ,与BE 相交于点G .试探索CE ,GE ,BG 之间的数量关系,并证明你的结论.(第24题)答案一、1.D 2.A3.A :利用等积法解答.根据勾股定理求得AB =15,设点C 到AB 的距离是x ,可列方程12×9×12=12×15x ,解之即可. 4.A 5.C6.C :由题意可得,AB 2=AC 2+BC 2,所以△ABC 为直角三角形,AB 所对的角为直角,所以∠C =90°. 7.C8.B :因为△ABC 是等腰三角形,AD 是其底边上的中线,所以AD 也是底边上的高线,所以∠ACB =90°-∠CAD =70°.又因为CE 是∠ACB 的平分线,所以∠ACE =12∠ACB=35°.9.B :本题不能直接求出S 1,S 2,S 3,S 4,但我们可以利用三角形全等和勾股定理求出S 1+S 2+S 3+S 4.根据“AAS ”很容易证明△ABC ≌△CDE ,所以AB =CD .又因为CD 2+DE 2=CE 2,AB 2=S 3,CE 2=3,DE 2=S 4,所以S 3+S 4=3.同理可得S 1+S 2=1,所以S 1+S 2+S 3+S 4=1+3=4.10.D :∵△ABD ,△BCE 为等边三角形,∴AB =DB ,∠ABD =∠CBE =60°,BE =BC , ∴∠ABE =∠DBC ,∠PBQ =60°. 在△ABE 和△DBC 中,⎩⎪⎨⎪⎧AB =DB ,∠ABE =∠DBC ,BE =BC ,∴△ABE ≌△DBC (SAS ). ∴①正确. ∵△ABE ≌△DBC , ∴∠BAE =∠BDC .∵∠BDC +∠BCD =∠ABD =60°,∴∠DMA =∠BAE +∠BCD =∠BDC +∠BCD =60°. ∴②正确.易证△ABP ≌△DBQ (ASA), ∴BP =BQ .又∵∠DBQ =60°, ∴△BPQ 为等边三角形. ∴③正确.二、11.等边三角形的三个角都相等 12.75°或15° 13.20 14.等腰直角三角形15.3 :△OPE ≌△OPF ,△OPA ≌△OPB ,△AEP ≌△BFP ,所以共有3对全等三角形. 16.322 :在网格中求三角形的高,应借助三角形的面积求解.以AC ,AB ,BC 为斜边的三个直角三角形的面积分别为1,1,12,因此△ABC 的面积为2×2-1-1-12=32.用勾股定理计算出BC 的长为2,因此BC 边上的高为322.17.318.100° :连结OB ,OC .易得△AOB ≌△AOC (SAS). ∴∠ACO =∠ABO .又∵OD 垂直平分AB ,∴OB =OA , ∴∠ABO =∠BAO =12∠BAC =25°.∴∠ACO =25°.在△ABC 中,∵∠BAC =50°,AB =AC , ∴∠ACB =12×(180°-50°)=65°.∴∠ECO =∠ACB -∠ACO =40°. 由折叠可知,OE =EC .∴∠EOC =∠ECO =40°. ∴∠OEC =100°.三、19.解:(1)两边上的高相等的三角形是等腰三角形.(2)真命题.已知:如图,在△ABC 中,BE ⊥AC 于E ,CD ⊥AB 于D ,且CD =BE . 求证:AB =AC .证明:∵BE ⊥AC ,CD ⊥AB , ∴∠BEA =∠CDA =90°, 又∵∠A =∠A ,BE =CD , ∴△ABE ≌△ACD ,∴AB =AC .(第19题)20.解:∵AE =AF ,∴∠AEF =∠AFE .∵BE =CF ,∴BE +EF =CF +EF ,∴BF =CE .在△ACE和△ABF 中,⎩⎪⎨⎪⎧AE =AF ,∠AEC =∠AFB ,CE =BF ,∴△ACE ≌△ABF (SAS), ∴AB =AC .21.证明:∵AB ∥CD ,∴∠BEF +∠DFE =180°(两直线平行,同旁内角互补). ∵EG ,FG 分别是∠BEF 和∠DFE 的平分线, ∴∠GEF =12∠BEF ,∠GFE =12∠DFE ,∴∠GEF +∠GFE =12(∠BEF +∠DFE )=12×180°=90°,∴△EGF 是直角三角形. 22.解:(1)△BDF 和△CEF .∵BF 平分∠ABC ,∴∠ABF =∠FBC ,∵DF ∥BC ,∴∠FBC =∠DFB , ∴∠DFB =∠DBF ,∴DB =DF , ∴△BDF 是等腰三角形. 同理,△CEF 也是等腰三角形.(2)BD =DE +CE .由(1)知△CEF 是等腰三角形,且EC =EF ,∵BD =DF =DE +EF ,∴BD =DE +CE .:“平行线+角平分线”是等腰三角形中常见的基本图形之一,应注意在其他图形中的发掘与应用.23.证明:(1)∵AD 是∠BAC 的平分线,DE ⊥AB ,DC ⊥AC ,∴DE =DC .又∵BD =DF ,∴Rt △CDF ≌Rt △EDB (HL). ∴CF =EB .(2)由(1)可知DE =DC ,又∵AD =AD , ∴Rt △ADC ≌Rt △ADE .∴AC =AE .∴AB =AE +BE =AC +EB =AF +CF +EB =AF +2EB .:(1)根据角平分线的性质“角平分线上的点到角的两边的距离相等”,可得点D 到AB 的距离等于点D 到AC 的距离,即CD =DE ,再根据Rt △CDF ≌Rt △EDB ,得CF =EB . (2)利用(1)中结论证明Rt △ADC ≌Rt △ADE ,∴AC =AE ,再将线段AB 进行转化. 24.(1)证明:∵△BCD 是等腰直角三角形,且∠BDC =90°,∴BD =CD ,∠BDC =∠CDA =90°. 在△FBD 和△ACD 中,⎩⎪⎨⎪⎧BD =CD ,∠BDF =∠CDA ,DF =DA ,∴△FBD ≌△ACD (SAS). (2)证明:∵BE ⊥AC , ∴∠BEA =∠BEC =90°.∵BF 平分∠DBC ,∴∠ABE =∠CBE , 又∵BE =BE ,∴△ABE ≌△CBE (ASA), ∴AE =CE .∴CE =12AC .由(1)知△FBD ≌△ACD , ∴BF =AC ,∴CE =12BF .(3)解:BG 2=GE 2+CE 2. 证明:连结CG ,∵H 是BC 边的中点,BD =CD ,∴DH 垂直平分BC ,∴BG =CG (线段垂直平分线上的点到这条线段两个端点的距离相等).∵BE ⊥AC ,∴CG 2=GE 2+CE 2,∴BG 2=GE 2+CE 2.:本题综合考查全等三角形的判定与性质,以及通过添加辅助线利用勾股定理解决问题.。
【浙教版】八年级数学上册:第1章单元检测题(含答案)
第1章单元检测题(时间:100分钟满分:120分)一.选择题(每小题3分,共30分)1.已知AB=1.5,AC=4.5,若BC长为整数,则BC长为( D )A.3B.6C.3或6D.3或4或5或62.一个三角形三个内角度数之比为2∶3∶5,这个三角形一定是(B )A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形3.如图是婴儿车平面示意图,其中AB∥CD,∠1=120°,∠3=40°,那么∠2度数为( A )A.80°B.90°C.100°D.102°,第4题图) ,第5题图),第6题图)4.如图,△ABC平分线AD与中线BE交于点O,有下列结论:①AO 是△ABE角平分线;②BO是△ABD中线,下列说法正确是( D )A.①②都正确B.①不正确,②正确C.①②都不正确D.①正确,②不正确5.如图,△ACB≌△A′CB′,∠BCB′=30°,则∠ACA′度数为(B )A.20°B.30°C.35°D.40°6.要测量河两岸两点A,B距离,先在AB垂线BF上取两点C,D,使CD=BC,再作出BF垂线DE,使A,C,E在同一条直线上(如图),可以证明△ABC≌△EDC,得ED=AB,因此,测得DE长就是AB长.在这里判定△ABC≌△EDC条件是( A )A.ASAB.SASC.SSSD.以上答案均不正确7.如图,给出下列四组条件:①AB =DE ,BC =EF ,AC =DF ;②AB =DE ,∠B =∠E ,BC =EF ;③∠B =∠E ,BC =EF ,∠C =∠F ;④AB =DE ,AC =DF ,∠B =∠E.其中能使△ABC ≌△DEF 条件共有( C )A.1组B.2组C.3组D.4组8.如图,AD 是△ABC 中∠BAC 角平分线,DE ⊥AB 于点E ,S △ABC =7,DE =2,AB =4,则AC 长是( A ) A.3 B.4 C.6 D.5,第7题图) ,第8题图),第9题图) ,第10题图)9.如图,在锐角三角形ABC 中,直线l 为BC 中垂线,射线m 为∠ABC 角平分线,直线l 与m 相交于点P.若∠BAC =60°,∠ACP =24°,则∠ABP 度数是( C )A.24°B.30°C.32°D.36°10.两组邻边分别相等四边形叫做“筝形”.如图,四边形ABCD 是一个筝形,其中AD =CD ,AB =CB.小明在探究筝形性质时,得到如下结论:①AC ⊥BD ;②AO =CO =12AC ;③△ABD ≌△CBD.其中正确结论有( D ) A.0个 B.1个 C.2个 D.3个二.填空题(每小题4分,共24分)11.工人师傅在做完门框后,为防止变形常常像图中所示那样钉上两条斜拉木条(即图中AB ,CD 两根木条),这样做依据是__三角形稳定性__.,第11题图) ,第12题图) ,第13题图)12.如图,在△ABC中,D,E分别是AB,AC上点,点F在BC延长线上,DE∥BC,若∠1=50°,∠2=110°,则∠A=__60°__.13.如图,△ADB≌△ECB,若∠CBD=40°,BD⊥EC,则∠D度数为__50°__.14.要说明命题“若a·b=0,则a+b=0”是假命题,可举反例__(-2)×0=0,但(-2)+0=-2≠0(答案不唯一)__.15.如图,AC与BD相交于点O,∠A=∠D,请你补充一个条件,使得△AOB≌△DOC,你补充条件是__AO=DO或AB=DC或BO=CO__.,第15题图) ,第16题图)16.如图,在四边形ABCD中,给出了下列三个论断:①对角线AC平分∠BAD;②CD=BC;③∠D+∠B=180°.在上述三个论断中,若以其中两个论断作为条件,另外一个论断作为结论,则可以得出__3__个正确命题.三.解答题(共66分)17.(8分)将下列命题改写成“如果……那么……”形式,并指出命题条件和结论:(1)三条边对应相等两个三角形全等;(2)三角形外角等于和它不相邻两个内角和.解:(1)如果两个三角形三条边对应相等,那么这两个三角形全等;条件:两个三角形三条边对应相等,结论:这两个三角形全等(2)如果一个角是三角形一个外角,那么这个角等于和它不相邻两个内角和;条件:一个角是三角形一个外角,结论:这个角等于和它不相邻两个内角和18.(6分)如图,求作一个直角三角形ABC,使AB=a,BC=12a,∠ABC=90°.(要求:用尺规作图,保留作图痕迹,不必写出作法)解:略19.(8分)如图,DE⊥AC,∠AGF=∠ABC,∠1+∠2=180°,试判断BF与AC位置关系,并说明理由.解:BF⊥AC.理由:∵∠AGF=∠ABC,∴FG∥BC,∴∠1=∠3.又∵∠1+∠2=180°,∴∠2+∠3=180°,∴BF∥DE.又∵DE⊥AC,∴∠DEA =90°,∴∠AFB=∠DEA=90°,∴BF⊥AC20.(8分)如图,△ABC≌△DEB,点E在AB上,DE与AC相交于点F.(1)当DE=8,BC=5时,线段AE长为__3__;(2)若∠D=35°,∠C=60°,求∠DBC度数.解:(2)∠DBC=25°21.(8分)在数学课上,林老师在黑板上画出如图图形(其中点B,F,C,E在同一直线上),并写出四个条件:①AB=DE;②BF=EC;③∠B=∠E;④∠1=∠2.请你从这四个条件中选出三个作为条件,另一个作为结论,组成一个真命题,并给予证明.条件:__①②③或①③④或②③④__;结论:__④或②或①__.(均填写序号)证明:以题设①②③,结论④为例,∵BF=CE,∴BF+FC=CE+FC,∴BC=EF.又∵AB=DE,∠B=∠E,∴△ABC≌△DEF(SAS),∴∠1=∠222.(9分)如图,在△ABC中,AD是∠BAC补角平分线,点P是AD上异于点A任意一点,试比较PB+PC与AB+AC大小,并说明理由.解:PB+PC>AB+AC.理由:在线段BA延长线上取一点E,使AE=AC,连结PE.∵AD是∠EAC平分线,∴∠EAP=∠CAP,可证△EAP≌△CAP(SAS),∴PE=PC,∴PB+PC=PB+PE>BE.又∵AB+AC=AB +AE=BE,∴PB+PC>AB+AC23.(9分)如图,在△ABC中,AB=AC,∠BAC=90°,∠1=∠2,CE ⊥BD交BD延长线于点E.求证:BD=2CE.证明:分别延长BA,CE交于点F.∵BE⊥CE,∴∠BEF=∠BEC=90°.又∵∠1=∠2,BE=BE,∴△BEF≌△BEC(ASA),∴CE=FE=12CF.∵∠1+∠F=90°,∠ACF+∠F=90°,∴∠1=∠ACF.又∵AB=AC,∠BAD =∠CAF=90°,∴△ABD≌△ACF(ASA),∴BD=CF,∴BD=2CE24.(10分)(1)如图①,在△ABC中,AD平分∠BAC交BC于点D,DE ⊥AB于点E,DF⊥AC于点F,则有相等关系DE=DF,AE=AF,请加以证明;(2)如图②,在(1)情况下,如果∠MDN=∠EDF,∠MDN两边分别与AB,AC相交于M,N两点,其他条件不变,那么又有相等关系AM+__AN__=2AF,请加以证明.解:(1)∵AD平分∠BAC,∴∠BAD=∠CAD.∵DE⊥AB,DF⊥AC,∴∠AED=∠AFD=90°.可证△ADE≌△ADF(AAS),∴DE=DF,AE=AF(2)由(1)得DE=DF,∵∠MDN=∠EDF,∴∠MDE=∠NDF,可证△MDE≌△NDF(ASA),∴ME=NF,∴AM+AN=(AE+ME)+(AF-NF)=AE +AF,即AM+AN=2AF。
浙教版八年级上科学第一二单元测试卷
()()东方书院八年级(上)科学第一二单元试卷一.选择题(每小题2分,共40分,每题仅有一个选项正确)1.地球上水的状态呈()A. 液态和固态B. 液态和气态C. 气态和固态D. 液态、固态和气态2.天气预报说今天的最低气温是15℃, 最高气温是23℃, 这两个气温分别出现在什么时间?( )A.日出前后和傍晚6时B.日出前后和午后2时C.午夜24时和中午12时D.午夜24时和午后2时3. 下列家庭常用的调味品中,与水充分混合后不能形成溶液的是( )A.食用油 B.食盐 C.味精 D.蔗糖4. 如图所示,两手指用力捏住铅笔,使它保持静止,下列说法中正确的是 ( )A.两手指所受压力相同,左手指受到的压强较大B.两手指所受压强相同,左手指受到的压力较大C.两手指所受压力相同,右手指受到的压强较大D.两手指所受压强相同,右手指受到的压力较大5. 下列说法中错误的是( )A.电解水生成氢气和氧气说明水由氢气和氧气组成B.氢气和氧气反应生成水说明水由氢氧组成C.海水湖水是混合物,氢气燃烧生成的水是纯净物D.电解水生成氢气和氧气,说明水由氢和氧组成6.婺城区许多学校正在创建绿色学校,为了提醒广大师生注意节约用水,学校应在用水处张贴“节水徽记”。
你认为“节水徽记”的图案应该是()7. 冬天为了使空调制热的效果好一些,空调的导风板应该朝( )A. 上B. 下C. 左D. 右8. 下列有关溶液的叙述,正确的是( )A.溶液是混合物 B.饱和溶液一定是浓溶液C.物质的溶解度都随温度升高而增大 D.向溶液中加入溶剂,溶质的质量分数不变9.某同学用三块相同的海绵和几块相同的砖做了一次实验,从中探究压强跟压力、受力面积的关系,如图所示:其中最能说明压强跟受力面积关系的两个图是()A.(甲)和(乙)图 B.(甲)和(丙)图C.(乙)和(丙)图 D.任意两图均可A B C D 10. 下列现象中不属于利用大气压的实例是( )A. 吸式挂衣钩能贴在光滑的墙上挂衣物B. 吸尘器能吸灰尘C. 用吸管能吸敞口瓶内的饮料D. 用注射器能把药液注入肌肉里11. 表示空气中水汽含量多少的是( )A. 气温B. 降水量C. 湿度D. 气压12、达尔文通过植物的向光性的实验,由此得出的结论是( )A :猜想胚芽尖端会产生生长素B :实验证明胚芽尖端会产生长素C :从植物体中分离出生长素D :以上三个结论都不正确13.通常情况下,欲将一杯不饱和的蔗糖溶液变成饱和溶液,最适宜的方法是( )A .加蔗糖B .加水C .升温D .增大压强14.关于压力和压强,下列说法中正确的是( )A .物体的质量越大,对受力面的压力一定越大B .受力面积越小,产生的压强一定越大C .压力越大,对受力面的压强越大D .压力一定时,受力面积越小,产生的压强一定越大15.一个房间开着一扇窗,窗内挂着轻纱做成的窗帘。
第二单元综合测试卷浙教版八年级上册科学
第二单元综合测试卷一、选择题(本题共14个小题;每小题3分,共42分。
在每小题给出的四个选项中,只有一项是正确的)1.干湿球湿度计的湿球温度计与干球温度计的示数差距越大,表示()A.空气的绝对湿度越大B.空气的相对湿度越小C.空气中的水蒸气的实际压强离饱和程度越近D.空气中的水蒸气的绝对湿度离饱和程度越近2.在抗击新冠肺炎疫情的时期,“负压救护车”发挥了重要的作用,“负压救护车”是因为车内的气压低于车外气压而得名。
下列处于负压状态的是()A.吹足气的气球B.高空飞行中的飞机机舱C.吸饮料过程中的吸管D.漏气的足球3. “天宫二号”空间实验室于2016年9月15日成功发射。
空间实验室内适宜宇航员工作生活的气压约为( )A.100Pa B.1000Pa C.10000Pa D.100000Pa4.乒乓球前进过程中由于不同的旋转方向会沿不同的径迹运动。
运动员用三种不同的击球方法把乒乓球击出,请判断,图中1、2、3三条径迹分别表示上旋球(球沿逆时针方向旋转)、下旋球(球沿顺时针方向旋转)、不转球中的哪一种()A.上旋球、下旋球、不转球B.不转球、下旋球、上旋球C.上旋球、不转球、下旋球D.下旋球、不转球、上旋球5.如图是一艘水翼船,它的船身下方有两个水翼,使船在高速行驶时船身能离开水面,从而减小来自水的阻力,下面四幅图能正确表示水翼船行驶状态的是()A.B.C.D.6.小科用如图所示的装置探究气压与海拔的关系,小科将该装置从一楼拿到五楼,忽略温度的变化,玻璃管内液柱会()A.上升B.下降C.不变D.无法判断7.为改善地铁地下车站的通风状况,小应设计了抽气管道,利用地面横风实现自动抽气。
为提高抽气效果,管道上方迎而盖的形状应设计成下列图中的()A.B.C.D.8.如图所示的是“估测大气压的值"的实验,下列关于该实验的分析中错误的是()A.如果活塞与针简摩擦过大,会导致大气压的测量值偏小B.测量活塞受到的大气压力时,利用了二力平衡的知识C.测量注射器最大刻度对应的长度,是为了计算活塞的横截面积D.将活塞推至注射器筒的底端是为了排尽空气9.小温暑假乘飞机旅行。
浙教版八年级数学上册第1—3章测试卷
八年级数学(上)1—3章练习卷命题人: 应 凤姓名 成绩一、精心选一选,相信你一定会选对!(本大题共10小题,每题3分,共30分.)1、将下列长度的三根木棒首尾顺次连接,能组成直角三角形的是………………( )(A )1、2、3 (B )2、3、4 C )3、4、5 (D )4、5、62、如图所示,下列说法正确的是……………………………………………………( )A 、若AB//CD ,则21∠=∠B 、若AD//BC ,则43∠=∠C 、若21∠=∠,则AB//CDD 、若21∠=∠,则AD//BC 3、等腰三角形两边长分别是2和7,则它的周长是……………………………… ( )A 、9B 、11C 、16D 、11或164、下图几何体的主视图是…………………………………………( )5.下列命题错误的是 …………………………………………………( )A .等腰三角形两腰上的中线相等B .等腰三角形两腰上的高相等C .等腰三角形的中线与高重合D .等腰三角形顶角平分线上任一点到底边两端点的距离相等6、下列条件中,不能判定两个直角三角形全等的是…………………( )A 、两个锐角对应相等B 、一条直角边和一个锐角对应相等C 、两条直角边对应相等D 、一条直角边和一条斜边对应相等7、直角三角形两直角边长为5和12,则此直角三角形斜边上的中线的长是…… ( )A 、5B 、6C 、6.5D 、138.如图,在Rt △ABC 中,∠ACB=90O,BC=6,正方形ABDE 的面积为100,则正方形ACFG的面积为 ……………………………………………………( ) A.64 B.36 C.82 D.49 A E F G DC B第4题 B . C . D . D B A C E 第10题P O D C B A9、如图,△ABC 中,∠C=90°,AB 的中垂线DE 交AB 于E ,交BC 于D ,若AB=10,AC=6,则△ACD 的周长为…………………………………………………( )A 、16B 、14C 、20D 、1810.如图,∠AOP =∠BOP =15°,PC ∥OA ,PD ⊥OA 于点D ,若PC =4,则PD =( )A 、1B 、2C 、3D 、4二、细心填一填,相信你一定会填对的(本大题共有10小题,每题3分,共30分)11、如图,若a ∥b ,∠1=40°,则∠2= 度;12、等腰三角形是轴对称图形,它的对称轴有 条。
初二上册单元测试题及答案浙教版
初二上册单元测试题及答案浙教版一、基础知识(每题3分,共21分)1.下列加点字读音无误的一项是()A.溃退(guì)舀水(yǎo)白洋淀(dìng)B.绥靖(suí)脂粉(zhǐ)蹿一蹿(cuàn)C.寒噤(jīn)拂晓(fú)颤巍巍(chàn)D.提防(tí)惊骇(hài)迫击炮(pò)2.下列词语中无错别字的一项是()A.眼花嘹乱晨曦血腥闪烁B.臭名昭著荒谬憧憬珐琅C.响彻云宵杀戮箱箧揣摩D.精疲力竭纳粹鞠恭铁锈3.依次填入下面横线的词语恰当的是()我已歼灭及击溃一切抵抗之敌,扬中、镇江、江阴诸县的广大地区,并______ 江阴要塞,________长江。
A.占有牵制封锁 B.占领控制封锁C.占领控制封闭 D.占有牵制封锁4.为下列一段文字所添标点,准确的一项是()南斯拉夫的塞尔维亚人就那样年年不间断地表达他们的历史感① 没有仇恨② 没有愤怒③ 只有悲哀④ 只有记忆⑤ 只有警告⑥ 世间永远不能再有战争和屠杀了。
A.①——②,③;④、⑤,⑥—— B.①——②、③,④,⑤,⑥:C.①:②,③;④,⑤,⑥—— D.①:②,③、④;⑤,⑥——5.下列加点词语使用不妥当的一项是()A.因为人民解放军英勇善战,所以西路当面之敌锐不可当,纷纷溃退。
B.老头子张皇失措,船却走不动,鬼子紧紧追上了他。
C.老妇人又捧起土来继续往坟上盖,她要做一个名副其实的坟堆。
D.两个强盗从前对巴特农神庙怎么干,现在对圆明园也怎么干,仅仅更彻底,更漂亮,以至荡然无存。
6.下列相关文字常识的表述,有误的一项是()A.消息一般有时间、地点、人物、事件的起因、经过、结果六个要素,包括标题、导语、背景、主体和结语五部分结构。
B.《芦花荡》的作者是我国当代作家赵树理写的小说,他是荷花淀派的代表人物。
C.《蜡烛》的作者是前苏联作家西蒙诺夫。
D.雨果,法国作家,代表作有《巴黎圣母院》和《悲惨世界》等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
每周练习5
班级______________ 姓名______________ 学号______________
一、精心选一选(每小题3分,共24分)
1.下列语句是命题的是………………………………………………………………………()
A.作直线AB的垂线B.在线段AB上取点C
C.同旁内角互补D.垂线段最短吗?
2.命题“垂直于同一条直线的两条直线互相平行”的题设是……………………………………()
A.垂直B.两条直线
C.同一条直线D.两条直线垂直于同一条直线
3.下列命题中,属于假命题的是……………………………………………………………………()
A.若a-b=0,则a=b=0 B.若a-b>0,则a>b
C.若a-b<0,则a<b D.若a-b≠0,则a≠b
4.直角三角形的两锐角平分线所交成的角的度数是………………………………………()
A.45°B.135°C.45°或135°D.以上答案均不对5.适合条件∠A :∠B :∠C=1 : 2 : 3的三角形一定是………………………………………()
A.锐角三角形B.直角三角形C.钝角三角形D.任意三角形6.用反证法证明“3是无理数”时,最恰当的证法是先假设………………………………()
A.3是分数B.3是整数C.3是有理数D.3是实数
7.如图,∠1+∠2+∠3等于……………………………………()
A.180°B.360°C.270°D.300°
8.对于命题“如果∠1+∠2=90°,那么∠1≠∠2”
,能说明它是假
命题的反例是…………………………………………………()A.∠1=50°,∠2=40°B.∠1=50°,∠2=50°C.∠1=∠2=45°D.∠1=40°,∠2=40°
(第7题图)
二、细心填一填(每小题4分,共32分)
9.一个命题由 和 两部分组成.
10.根据命题结论正确与否,命题可分为 和 .
11.把命题“三角形内角和等于180°”改写成如果 ,那么 .
12.如图,∠1,∠2,∠3的大小关系是 .
13.如图,已知BC ⊥AC ,BD ⊥AD ,垂足分别是C 和D ,
若要使△ABC ≌△ABD ,应补上一条件是 .
14.命题“同位角相等”的题设是 .
15.证明命题“若x (1-x )=0,则x =0”是假命题的反例是
.
16.在△ABC 和△DEF 中,∠A =∠D ,CM ,FN 分别是AB 、DE
个条件①AB =DE ,②AC =DF ,③CM =FN 中任取两个条件做为条件,另一个条件做为结论, 能构成一个真命题,那么题设可以是 ,结论是 .(只填序号)
三、耐心做一做(本题有7小题,共44分)
17.(本题8分)如图,已知点E 、F 分别在AB 、AD 的延长线上,∠1=∠2,∠3=∠4.
求证:(1)∠A =∠3
(2)AF ∥BC
18.(本题5分)如图,在△ABC 中,∠A =70°,BO ,CO 分别是∠ABC 和∠ACB 的角平
分线,求∠BOC 的度数.
(第12题)
19.(本题8分)举反例说明下列命题是假命题.
(1)一个角的补角大于这个角;
(2)已知直线a,b,c,若a⊥b,b⊥c,则a⊥c.
20.(本题5分)已知,如图,AB与CD相交于点O,AC∥BD,且AO=OC.
求证:OB=OD.
21.(本题5分)如图,AB=DC,AC=DB,你能说明图中∠1=∠2的理由吗?
22.(本题5分)已知,如图,AD⊥BC于D,EF⊥BC于F,EF交AB于G,交CA延长线于E,且∠1=∠2.
求证:AD平分∠BAC,填写“分析”和“证明”中的空白.
分析:要证明AD平分∠BAC,只要证明∠=∠,而已知∠1=∠2,所以
应联想这两个角分别和∠1、∠2的关系,由已知BC的两条垂线可推出∥,这时再观察这两对角的关系已不难得到结论.证明:∵AD⊥BC,EF⊥BC(已知)
∴∥()
∴= (两直线平行,内错角相等.)
= (两直线平行,内错角相等.)
∵(已知)
∴,即AD平分∠BAC()
23、(本题8分)如图,在ΔABC中,BD、CE相交于点F,在以下几个条件中选择若干个条件作为题设,另一个条件作为结论,组合成一个真命题,并写出证明。
①∠A =α,②BD、CE分别是∠ABC、∠ACB的平分线;③BD、CE是ΔABC的两条高;
④∠BFC=900+1
2
α⑤∠BFC=1800-α
C。