高中数学第二章圆锥曲线与方程2.4二次抛物线的公式素材新人教A版选修2_1
2021_2022学年高中数学第2章圆锥曲线与方程测评含解析新人教A版选修2_1
第二章测评(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分) 1.方程x 2+2y 2=4所表示的曲线是()A.焦点在x 轴的椭圆B.焦点在y 轴的椭圆C.抛物线D.圆 方程化为x 24+y 22=1,因此其表示焦点在x 轴的椭圆.2.已知椭圆x 2a 2+y 2b 2=1(a>b>0)分别过点A (2,0)和B (0,-1),则该椭圆的焦距为() A.√3 B.2√3 C.√5 D.2√5a=2,b=1,所以a 2=4,b 2=1,所以c=√a 2-b 2=√4-1=√3,所以2c=2√3.故选B .3.已知双曲线x 2a 2−y 2b 2=1(a>0,b>0)的渐近线方程为y=±2√33x ,则此双曲线的离心率为()A.√72B.√133C.53D.√213x 轴上,所以ba=2√33,于是e=ca=√1+(b a)2=√73=√213.4.已知抛物线C :y 2=8x 焦点为F ,点P 是C 上一点,O 为坐标原点,若△POF 的面积为2,则|PF|等于() A.5B.3C.72D.4F (2,0),设P (x 0,y 0),则12·2·|y 0|=2,所以|y 0|=2,于是x 0=12,于是|PF|=x 0+p2=52.5.已知一个动圆P 与圆O :x 2+y 2=1外切,而与圆C :x 2+y 2-6x+8=0内切,则动圆圆心P 的轨迹是() A.双曲线的一支 B.椭圆 C.抛物线D.圆R ,依题意有|PO|=R+1,|PC|=R-1,因此|PO|-|PC|=2,而|OC|=3,由双曲线定义知点P 的轨迹为双曲线的右支.6.已知点A 是抛物线y 2=2px (p>0)上一点,点F 是抛物线的焦点,O 为坐标原点,当|AF|=4时,∠OFA=120°,则抛物线的准线方程是()A.x=-1B.x=-3C.x=-1或x=-3D.y=-1∠BFA=∠OFA-90°=30°,过点A 作准线的垂线AC ,过点F 作AC 的垂线,垂足分别为C ,B.如图,A 点到准线的距离为d=|AB|+|BC|=p+2=4,解得p=2,则抛物线的准线方程是x=-1. 故选A.7.双曲线C :x 2-y 23=1的一条渐近线与抛物线M :y 2=4x 的一个交点为P (异于坐标原点O ),抛物线M 的焦点为F ,则△OFP 的面积为() A.2√33B.4√33C.23D.43解析双曲线C :x 2-y 23=1的一条渐近线方程为y=√3x ,将y=√3x 代入抛物线方程,可得3x 2=4x ,解得x=0(舍)或x=43,所以P 43,4√33,又抛物线y 2=4x 的焦点F (1,0),则△OFP 的面积为S=12×1×4√33=2√33.故选A .8.已知双曲线的中心在坐标原点,对称轴为坐标轴,若双曲线的一个焦点坐标为(0,√5),且圆x 2+(y-√5)2=1与双曲线的渐近线相切,则双曲线的方程是() A.x 24-y 2=1B.y 24-x 2=1C.x 26-y 2=1D.y 26-x 2=1(0,√5),则c=√5.由题意可知焦点在y 轴上, 设双曲线为y 2a2−x 2b 2=1,渐近线为by ±ax=0.焦点到渐近线的距离为1=√a 2+b 2=b ,即b=1,a=√c 2-b 2=2,则双曲线的方程是y 24-x 2=1,故选B.9.已知点P (x 0,y 0)在椭圆x 212+y 23=1上,其左、右焦点分别是F 1,F 2,若∠F 1PF 2为钝角,则x 0的取值X 围是() A.(-3,3)B.(-∞,-2√2)∪(2√2,+∞)C.(-∞,-3)∪(3,+∞)D.(-2√2,2√2)F 1(-3,0),F 2(3,0),所以PF 1⃗⃗⃗⃗⃗⃗⃗ =(-3-x 0,-y 0),PF 2⃗⃗⃗⃗⃗⃗⃗ =(3-x 0,-y 0),则PF 1⃗⃗⃗⃗⃗⃗⃗ ·PF 2⃗⃗⃗⃗⃗⃗⃗ =x 02+y 02-9,而y 02=3-14x 02, 所以PF 1⃗⃗⃗⃗⃗⃗⃗ ·PF 2⃗⃗⃗⃗⃗⃗⃗ =34x 02-6.又∠F 1PF 2为钝角,所以34x 02-6<0,解得-2√2<x 0<2√2.10.椭圆x 2a2+y 2b 2=1(a>b>0)的左、右焦点分别为F 1,F 2,上顶点为A ,若△AF 1F 2的面积为√3,且∠F 1AF 2=4∠AF 1F 2,则椭圆方程为() A.x 23+y 2=1B.x 23+y 22=1 C.x 24+y 2=1D.x 24+y 23=1△AF 1F 2中,AF 1=AF 2,∠F 1AF 2=4∠AF 1F 2,则∠AF 1F 2=30°,所以bc =√33. 又△AF 1F 2面积为√3, 即S=12×2c×b=√3,解得b=1,c=√3,则a=√b 2+c 2=2, 所以椭圆方程为x 24+y 2=1.11.直线y=k (x-1)与椭圆C :x 24+y 22=1交于不同的两点M ,N ,椭圆x 24+y 22=1的一个顶点为A (2,0),当△AMN 的面积为√103时,则k 的值为()A.±√2B.±√3C.±1D.±√5y=k (x-1)与椭圆C 联立{y =k (x -1),x 24+y 22=1消元可得(1+2k 2)x 2-4k 2x+2k 2-4=0,设M (x 1,y 1),N (x 2,y 2),则x 1+x 2=4k 21+2k 2,x 1x 2=2k 2-41+2k 2,∴|MN|=√1+k 2·√(x 1+x 2)2-4x 1x 2=2√(1+k 2)(4+6k 2)1+2k 2.∵A (2,0)到直线y=k (x-1)的距离为d=√1+k 2, ∴△AMN 的面积S=12|MN|d=|k |√4+6k 21+2k 2.∵△AMN 的面积为√103, ∴|k |√4+6k 21+2k 2=√103, ∴k=±1,故选C .12.如图所示,过抛物线y 2=2px (p>0)的焦点F 的直线l ,交抛物线于点A ,B.交其准线于点C ,若|BC|=√2|BF|,且|AF|=√2+1,则此抛物线的方程为()A.y 2=√2xB.y 2=2xC.y 2=√3xD.y 2=3x,过点A 作AD 垂直于抛物线的准线,垂足为D ,过点B 作BE 垂直于抛物线的准线,垂足为E ,点P 为准线与x 轴的交点,由抛物线的定义,|BF|=|BE|,|AF|=|AD|=√2+1,因为|BC|=√2|BF|,所以|BC|=√2|BE|,所以∠DCA=45°, |AC|=√2|AD|=2+√2,|CF|=2+√2−√2-1=1, 所以|PF|=√2=√22,即p=|PF|=√22,所以抛物线的方程为y 2=√2x ,故选A.二、填空题(本大题共4小题,每小题5分,共20分)13.已知双曲线C :y 2a 2−x 2b 2=1的焦距为4,点P (1,√3)在双曲线C 的渐近线上,则C 的方程为.C :y 2a2−x 2b2=1的渐近线方程为y=±a bx ,∵双曲线C :y 2a 2−x 2b 2=1的焦距为4,点P (1,√3)在C 的渐近线上,可得a=√3b ,∴2c=4, ∵c 2=a 2+b 2,∴a 2=3,b 2=1, ∴双曲线C 的方程为y 23-x 2=1.故答案为y 23-x 2=1.2=114.若直线x-my+m=0经过抛物线x 2=2py (p>0)的焦点,则p=.直线x-my+m=0可化为x-m (y-1)=0,所以直线x-my+m=0过点(0,1), 即抛物线x 2=2py (p>0)的焦点F 为(0,1),∴p2=1,则p=2,故答案为2.15.已知双曲线E :x 2a2−y 2b 2=1(a>0,b>0)与抛物线C :y 2=2px (p>0)有共同的一个焦点,过双曲线E 的左焦点且与抛物线C 相切的直线恰与双曲线E 的一条渐近线平行,则E 的离心率为.,所以c=p2,p=2c ,抛物线方程为y 2=4cx ,设双曲线的左焦点为F 1,F 1(-c ,0),过F 1与一条渐近线y=ba x 平行的直线方程为y=ba (x+c ), 由{y 2=4cx ,y =ba(x +c )得by 2-4acy+4bc 2=0, 所以Δ=16a 2c 2-16b 2c 2=0,所以a=b ,从而c=√a 2+b 2=√2a ,离心率为e=ca =√2. √216.已知椭圆方程为x 2a2+y 2b2=1(a>b>0),双曲线方程为x 2m2−y 2n 2=1(m>0,n>0),若该双曲线的两条渐近线与椭圆的四个交点以及椭圆的两个焦点恰为一个正六边形的六个顶点,则椭圆的离心率与双曲线的离心率之和为.椭圆方程为x 2a 2+y 2b 2=1(a>b>0),双曲线方程为x 2m 2−y 2n 2=1(m>0,n>0),若双曲线N 的两条渐近线与椭圆M 的四个交点及椭圆M 的两个焦点恰为一个正六边形的顶点,可得椭圆的焦点坐标F 2(c ,0),F 1(-c ,0),正六边形的一个顶点Ac 2,√32c .|AF 1|+|AF 2|=(c2(√3c 2)(c2-c) (√3c 2)=2a , 因为√3c+c=2a ,所以椭圆离心率e 1=ca =√3-1,因为双曲线的渐近线的斜率为√3,即nm =√3,可得双曲线的离心率为e 2=√1+n 2m 2=2.所以e 1+e 2=√3-1+2=√3+1. 故答案为√3+1. √3+1三、解答题(本大题共6小题,共70分)17.(本小题满分10分)已知双曲线C 的一个焦点与抛物线C 1:y 2=-16x 的焦点重合,且其离心率为2. (1)求双曲线C 的方程;(2)求双曲线C 的渐近线与抛物线C 1的准线所围成三角形的面积.抛物线C 1:y 2=-16x 的焦点坐标为(-4,0),因此可设双曲线方程为x 2a2−y 2b 2=1(a>0,b>0),则依题意有{c =4,c a =2,解得a 2=4,b 2=12, 故双曲线C 的方程为x 24−y 212=1.(2)抛物线C 1的准线方程为x=4,双曲线C 的渐近线方程为y=±√3x , 于是双曲线C 的渐近线与抛物线C 1的准线的两个交点为(4,4√3),(4,-4√3), 所围成三角形的面积S=12×8√3×4=16√3.18.(本小题满分12分)已知抛物线x 2=-2py (p>0)上纵坐标为-p 的点到其焦点F 的距离为3. (1)求抛物线的方程;(2)若直线l 与抛物线以及圆x 2+(y-1)2=1都相切,求直线l 的方程.由已知得抛物线的准线方程为y=p2,则由抛物线的定义知p+p2=3,则p=2,所以抛物线的方程为x 2=-4y.(2)由题意知直线l 的斜率存在,设其方程为y=kx+b ,则有{y =kx +b ,x 2=-4y ,消去y 得x 2+4kx+4b=0,则有Δ=16k 2-16b=0,即k 2=b.又直线l 与圆x 2+(y-1)2=1都相切,所以√k 2+1=1.解方程组{√k 2+1=1,k 2=b ,得{k =0,b =0或{k =√3,b =3或{k =-√3,b =3,故所求直线l 的方程为y=0或y=√3x+3或y=-√3x+3. 19.(本小题满分12分)已知F 1,F 2是椭圆M :y 2a2+x 2b 2=1(a>b>0)的两个焦点,椭圆M 的离心率为√63,P (x 0,y 0)是M 上异于上下顶点的任意一点,且△PF 1F 2面积的最大值为2√2.(1)求椭圆M 的方程;(2)若过点C (0,1)的直线l 与椭圆C 交于A ,B 两点,AC ⃗⃗⃗⃗⃗ =2CB ⃗⃗⃗⃗⃗ ,求直线l 的方程.据题意,得{ ca =√63,12×2c ×b =2√2,c 2=a 2-b 2,∴a 2=6,b 2=2.∴椭圆M 的方程为y 26+x 22=1.(2)据题设知,直线AB 的斜率存在,设直线l 的方程为y=kx+1. 据{y =kx +1,y 26+x 22=1,得(3+k 2)x 2+2kx-5=0.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-2k3+k 2,x 1x 2=-53+k 2. ∵AC⃗⃗⃗⃗⃗ =2CB ⃗⃗⃗⃗⃗ , ∴(-x 1,1-y 1)=2(x 2,y 2-1). ∴x 1=-2x 2.∴x 1+x 2=-x 2=-2k3+k 2,则x 2=2k3+k 2.又x 1x 2=-2x 22=-53+k 2,∴(2k3+k 2)2=53+k 2×12, ∴k=±√5.故直线l 的方程为y=-√5x+1或y=√5x+1.20.(本小题满分12分)已知点F 是抛物线C :x 2=2py (p>0)的焦点,点M 是抛物线上的定点,且MF ⃗⃗⃗⃗⃗⃗ =(4,0). (1)求抛物线C 的方程;(2)直线AB 与抛物线C 交于不同两点A (x 1,y 1),B (x 2,y 2),且x 2-1=x 1+m 2(m 为常数),直线l 与AB 平行,且与抛物线C 相切,切点为N ,试问△ABN 的面积是否是定值.若是,求出这个定值;若不是,请说明理由. 设M (x 0,y 0),由题知F (0,p2),所以MF ⃗⃗⃗⃗⃗⃗ =(-x 0,p 2-y 0)=(4,0).所以{-x 0=4,p 2-y 0=0,即{x 0=-4,y 0=p 2. 代入x 2=2py (p>0)中,得16=p 2,解得p=4. 所以抛物线C 的方程为x 2=8y.(2)由题意知,直线AB 的斜率存在,设其方程为y=kx+b. 由{y =kx +b ,x 2=8y ,消去y ,整理得x 2-8kx-8b=0, 则x 1+x 2=8k ,x 1x 2=-8b.∴y 1+y 2=k (x 1+x 2)+2b=8k 2+2b ,设AB 的中点为Q , 则点Q 的坐标为(4k ,4k 2+b ). 由条件,设切线方程为y=kx+t , 由{y =kx +t ,x 2=8y ,消去y 整理得x 2-8kx-8t=0.∵直线与抛物线相切, ∴Δ=64k 2+32t=0. ∴t=-2k 2. ∴x 2-8kx+16k 2=0, ∴x=4k , ∴y=2k 2.∴切点N 的坐标为(4k ,2k 2). ∴NQ ⊥x 轴,∴|NQ|=(4k 2+b )-2k 2=2k 2+b. ∵x 2-x 1=m 2+1,又∵(x 2-x 1)2=(x 1+x 2)2-4x 1x 2=64k 2+32b.∴2k 2+b=(m 2+1)232.∴S △ABN =12|NQ|·|x 2-x 1|=12·(2k 2+b )·|x 2-x 1|=(m 2+1)364.∵m 为常数,∴△ABN 的面积为定值,且定值为(m 2+1)364.21.(本小题满分12分)已知F 1,F 2分别是椭圆E :x 2a 2+y 2b 2=1(a>b>0)的左、右焦点,点P -1,√22在椭圆E 上,且抛物线y 2=4x 的焦点是椭圆E 的一个焦点. (1)求椭圆E 的标准方程;(2)过点F 2作不与x 轴重合的直线l ,设l 与圆x 2+y 2=a 2+b 2相交于A ,B 两点,且与椭圆E 相交于C ,D 两点,当F 1A ⃗⃗⃗⃗⃗⃗⃗ ·F 1B ⃗⃗⃗⃗⃗⃗⃗ =1时,求△F 1CD 的面积.y 2=4x 焦点为F (1,0),则椭圆E 的焦点F 1(-1,0),F 2(1,0). 2a=|PF 1|+|PF 2|=2√2. 解得a=√2,c=1,b=1,所以椭圆E 的标准方程为x 22+y 2=1.(2)由已知,可设直线l 方程为x=ty+1,A (x 1,y 1),B (x 2,y 2).联立{x =ty +1,x 2+y 2=3,得(t 2+1)y 2+2ty-2=0,易知Δ>0.则{y 1+y 2=-2tt 2+1,y 1y 2=-2t 2+1.F 1A ⃗⃗⃗⃗⃗⃗⃗ ·F 1B⃗⃗⃗⃗⃗⃗⃗ =(x 1+1)(x 2+1)+y 1y 2=(ty 1+2)(ty 2+2)+y 1y 2 =(t 2+1)y 1y 2+2t (y 1+y 2)+4=2-2t 2t 2+1.因为F 1A ⃗⃗⃗⃗⃗⃗⃗ ·F 1B ⃗⃗⃗⃗⃗⃗⃗ =1, 所以2-2t 2t 2+1=1,解得t 2=13.联立{x =ty +1,x 22+y 2=1,得(t 2+2)y 2+2ty-1=0,Δ=8(t 2+1)>0.设C (x 3,y 3),B (x 4,y 4), 则{y 3+y 4=-2tt 2+2,y 3y 4=-1t 2+2.S △F 1CD =12|F 1F 2|·|y 3-y 4|=√8(1+t 2)t 2+2=√8×4373=4√67. 22.(本小题满分12分)已知椭圆C :x 2a 2+y 2b 2=1(a>b>0)的长轴长为2√2,离心率为√22.(1)求椭圆C 的方程;(2)过动点M (0,m )(m>0)的直线交x 轴于点N ,交椭圆C 于点A ,P (P 在第一象限),且点M 是线段PN 的中点.过点P 作x 轴的垂线交椭圆C 于另一点Q ,延长QM 交椭圆C 于点B.①设直线PM 、QM 的斜率分别为k ,k',证明kk '为定值;②求直线AB 斜率取最小值时,直线PA 的方程.由题意得2a=2√2,ca =√22, 所以a=√2,c=1,b=√a 2-c 2=√2-1=1. 故椭圆方程为x 22+y 2=1.(2)①设P (x 0,y 0)(x 0>0,y 0>0),由M (0,m ),可得P (x 0,2m ),Q (x 0,-2m ), 所以直线PM 的斜率k=2m -m x 0=m x 0,直线QM 的斜率k'=-2m -m x 0=-3mx 0.此时kk '=-13,所以kk '为定值-13.②设A (x 1,y 1),B (x 2,y 2),直线PA 的方程为y=kx+m ,直线QB 的方程为y=-3kx+m.联立{y =kx +m ,x 22+y 2=1,整理得(2k 2+1)x 2+4kmx+2m 2-2=0, 由{Δ=16k 2m 2-8(m 2-1)(2k 2+1)>0,x 0x 1=2m 2-22k 2+1, 可得x 1=2m 2-2(2k 2+1)x 0, y 1=kx 1+m=k 2m 2-2(2k 2+1)x 0+m ,同理x 2=2m 2-2(18k 2+1)x 0,y 2=-3kx 2+m=-3k2m 2-2(18k 2+1)x 0+m.所以x 1-x 2=32k 2(m 2-1)(2k 2+1)(18k 2+1)x 0, y 1-y 2=3k 2m 2-2(18k 2+1)x 0+k2m 2-2(2k 2+1)x 0,y 1-y 2=2k (m 2-1)24p 2+4(2k 2+1)(18k 2+1)x 0=8k (m 2-1)6k 2+1(2k 2+1)(18k 2+1)x 0,所以k AB =y 1-y 2x 1-x 2=6k 2+14k=146k+1k ,由m>0,x 0>0,可知k>0,所以6k+1k≥2√6,当且仅当k=√66时取等号.由P (x 0,2m ),m>0,x 0>0在椭圆C :x 22+y 2=1上,得x 0=√2-8m 2, k=m x 0=√2-8m 2,此时√2-8m2=√66,即m=√77,word11 / 11 由Δ>0得,m 2<2k 2+1,所以k=√66时,m=√77符合题意.所以直线AB 的斜率最小时,直线PA 的方程为y=√66x+√77.。
2021_2022高中数学第二章圆锥曲线与方程3双曲线2双曲线的简单几何性质1课件新人教A版选修2
渐近线方程为
y=±
2 2 x.
典例剖析
一.已知双曲线的方程,研究其几何性质
• 求双曲线9y2-4x2=-36的顶点坐标、焦点坐标、实轴长、虚轴长 、离心率和渐近线方程,并作出草图.
• [分析] 将双曲线方程化成标准方程,求出a、b、c的值,然后依 据各几何量的定义作答.
[解析] 将 9y2-4x2=-36 变形为x92-y42=1, 即3x22-2y22=1,∴a=3,b=2,c= 13, 因此顶点为 A1(-3,0),A2(3,0), 焦点坐标为 F1(- 13,0),F2( 13,0), 实轴长是 2a=6,虚轴长是 2b=4,
∴双曲线的标准方程为y22-x42=1.
三.双曲线的离心率
已知 F1、F2 是双曲线ax22-by22=1(a>0,b>0)的两个焦点,PQ 是经过 F1 且垂直于 x 轴的双曲线的弦.如果∠PF2Q=90°,求 双曲线的离心率.
• [解析] 设F1(c,0),由|PF2|=|QF2|, ∠PF2Q=90°,
)
B.x42-y52=1 D.x22- y25=1
• [答案] B
[解析] e=32,c=3,∴a=2,∴b2=c2-a2=5, 即双曲线的标准方程为x42-y52=1.
4.已知双曲线ax22-y52=1 的右焦点为(3,0),则该双曲线的
离心率等于( )
A.3 1414
B.3 4 2
C.32
D.43
第二章 圆锥曲线与方程
2.3 双曲线
2.3.2 双曲线的简单几何性质
学习目标
• 1.类比椭圆的性质,能根据双曲线的标准方程,讨论它的几何性质 .
• 2.能运用双曲线的性质解决一些简单的问题.
2014-2015学年高中数学(人教版选修2-1)配套课件第二章 2.4.2 抛物线的简单几何性质
x∈R,y≥0
x∈R,y≤0
栏 目 链 接
x 轴 ____ O(0,0) ________
______ e= 1
y轴 ____
性 质
顶点 离心率 开口方 向
向右 ____
向左 ____
向上 ____
向下 ____
基 础 梳 理 2.焦半径与焦点弦. 抛物线上一点与焦点F的连线段叫做焦半径,过焦 点的直线与抛物线相交所得弦叫做焦点弦.设抛物线上 任意一点P(x0,y0),焦点弦端点A(x1,y1),B(x2,y2), 则四种标准形式下的焦点弦和焦半径公式
D.y=4
栏 目 链 接
解析:对于此类问题,解决过程中尤其要注意所给的方 1 2 程形式是否是标准方程形式,否则容易出错.由 y=- x 得 8 x2=-8y,故其准线方程是 y=2. 答案:C
3.设抛物线 y2=8x 的焦点为 F,准线为 l,P 为抛物线上一点,
PA⊥l,A 为垂足.如果直线 AF 的斜率为- 3,那么|PF|=( B )
变 式 迁 移
解析:(1)依题意知抛物线方程为 x2=±2py(p>0)的形式, 又 =3,所以 p=6,2p=12,故方程为 x2=±12y. 2 (2)线段 OA 的垂直平分线为 4x+2y-5=0,与 x 轴的交点 5 5 为 ,0,所以抛物线的焦点为 ,0,所以其标准方程是 y2= 4 4 5x. 答案:(1)C (2)y2=5x
解析:抛物线的焦点为 F(1,0),准线方程为 x=-1.由抛物线 p p 定义知|AB|=|AF|+|BF|=x1+ +x2+ =x1+x2+p,即 x1+x2+2 2 2 5 =7,得 x1+x2=5,于是弦 AB 的中点 M 的横坐标为 .因此点 M 2 5 7 到抛物线准线的距离为 +1= . 2 2
高中数学 第二章《圆锥曲线与方程》2.1圆锥曲线学案 新人教版选修2-1
第2章圆锥曲线与方程2.1 圆锥曲线二、预习指导1.预习目标(1)认识用平面截圆锥面得到的各种曲线;(2)掌握椭圆、双曲线、抛物线的定义;(3)会根据不同的已知条件,利用圆锥曲线的定义判断动点的轨迹.2.预习提纲(1)查找有关轨迹的概念,回答下列问题:①平面内到线段两端点距离相等的点的轨迹是____________;②平面内到定点的距离等于定长的点的轨迹是____________;③空间中到定点的距离等于定长的点的轨迹是____________.(2)阅读教材选修4-1的71页到78页,教材选修2-1的25页到27页写下列空格:①一个平面截一个圆锥面,改变平面的位置,可得到如下图形____________,____________,____________,____________,____________;②平面内到两个定点F1,F2的距离_____等于常数(__________)的点的轨迹叫做椭圆,两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的__________;③平面内到两个定点F1,F2的距离____________等于常数(______________)的点的轨迹叫做双曲线,两个定点叫做双曲线的焦点,两焦点间的距离叫做双曲线的焦距;④平面内到一个定点F和一条定直线l(________________)的距离________的点的轨迹叫做抛物线,定点F叫做抛物线的焦点,定直线l叫做抛物线的_________.(3)阅读课本例1,动手实践借助细绳画椭圆,结合课本27页习题2.1第3题,动手实践借助拉链画双曲线,并说明理由,以此加深对椭圆、双曲线定义的认识.3.典型例题例1 动点P(x,y)与两个定点A(-2,0)、B(2,0)构成的三角形周长为10.(1)试证:动点P在一个椭圆上运动;(2)写出这个椭圆的焦点坐标.分析:找动点P满足的条件,利用圆锥曲线的定义.解:(1)由题意得:PA+PB+AB=10,AB=4,故PA+PB=6>4.由椭圆的定义得:动点P在以A(-2,0)、B(2,0)为焦点的椭圆上运动.(2)由(1)得:这个椭圆的两个焦点坐标为A(-2,0)、B(2,0).点评:在圆锥曲线(椭圆、双曲线、抛物线)的定义中,条件都有特定的限制,如在具体问题中不加以判断,会造成错解.如本题中PA+PB=6>4是十分必要的.在椭圆的定义中,PF1+PF2等于常数,常数大于F1F2的判断是必不可少的.若常数等于F 1F 2,则轨迹是线段F 1F 2;若常数小于F 1F 2,则不表示任何图形.在双曲线的定义中,注意两个限制:一是常数小于F 1F 2,二是差的绝对值,两者缺一不可.若PF 1-PF 2是正常数且常数小于F 1F 2,则点的轨迹是双曲线以F 2为焦点的一支;若PF 2-PF 1是正常数且常数小于F 1F 2,则点的轨迹是双曲线以F 1为焦点的一支;若|PF 1-PF 2|是常数且等于F 1F 2,则点的轨迹是两条射线;若PF 1-PF 2是常数且等于F 1F 2,则点的轨迹是以F 2为端点与F 1F 2同向的射线;若PF 2-PF 1是常数且等于F 1F 2,则点的轨迹是以F 1为端点与F 1F 2反向的射线. 在抛物线的定义中,当点F 在直线l 上时,则点P 的轨迹是过点F 与直线l 垂直的直线.例2 已知圆()221:31C x y ++=和圆()222:39C x y -+=,动圆M 同时与圆C 1及圆C 2相外切,试问动圆圆心M 在怎样的曲线上运动?分析:两圆外切,则圆心距等于半径之和.解: 设动圆的半径为R ,则由动圆M 同时与圆C 1及圆C 2相外切得:1213MC R MC R =+⎧⎨=+⎩ 消去R 得:MC 2-MC 1=2,故可知动点M 到两定点C 1,C 2的距离之差是常数2.由双曲线的定义得:动圆圆心M 在双曲线的一支(左边的一支)上运动.点评:本题由于动点M 到两定点C 1,C 2的距离之差是常数,而不是差的绝对值为常数,因此其轨迹只能是双曲线的一支.这一点在应用过程中要特别注意.4.自我检测(1)已知点A (1,0)、B (-1,0),动点P 满足:PA +PB =4,则动点P 的轨迹是__ .(2)已知点A (-2,0)、B (2,0),动点M 满足:|MA -MB |=2,则动点M 的轨迹是 ____ ,其两个焦点分别为 .(3)已知定点A (1,0)和定直线l :x = -3,若点N 到定点A 与到定直线l 的距离相等,则点N 的轨迹是 ,其焦点为 ,准线为 .(4)已知点A (-2,0)、B (2,0),动点M 满足:|MA -MB |=4,则动点M 的轨迹是 _.(5)在△ABC 中,B (0,-3),C (0,3),且AB ,BC ,AC 成等差数列,试证:点A 在以B 、C 为焦点的椭圆上运动.三、课后巩固练习A 组1.用合适的选项填写下列轨迹 ( 要求只填写序号 )①直线;②圆;③椭圆;④双曲线;⑤双曲线的一支;⑥抛物线;⑦线段(1)动点P 到两定点F 1(-4,0)、F 2(4,0)的距离和是8,则动点P 的轨迹为_______; (2)已知椭圆的焦点为F 1、F 2,P 是椭圆上的一个动点,如果延长F 1P 到Q ,使得PQ =PF 2,那么动点Q 的轨迹是_________;(3)动点P 到直线x +4=0的距离减去它到M (2,0)的距离之差等于2,则动点P 的轨迹是___________;(4)经过定圆外一定点,并且与定圆外切的动圆圆心的轨迹是__________.2.已知O (0,0)、A0)为平面内两个定点,动点P 满足:PO +PA =2,求动点P 的轨迹.3.在△ABC 中,a ,b ,c 分别是内角A ,B ,C 的对边,且b ,a ,c 成等差数列,b ≥c .已知顶点B 、C 的坐标为B (-1,0),C (-1,0).试证:点A 在以B 、C 为焦点的左半椭圆上运动.4.在△ABC 中,A 为动点,(,0)(,0)(0)22a a B C a ->、为定点,且满足:1s i n s i n s i n 2C B A -=,试问动点A 在怎样的曲线上运动?B 组5.圆O 1与圆O 2的半径分别为1和2,O 1O 2=4,动圆与圆O 1内切而与圆O 2外切,则动圆圆心的轨迹是_____________________.6.已知定点A (-3,3)和定直线l :x =-3,若点N 到定点A 与到定直线l 的距离相等,则点N 的轨迹是 .7.已知圆的方程为22100x y +=,点A 的坐标为(-6,0),M 是圆O 上的任意一点,AM 的垂直平分线交OM 于点P ,试证明:点P 在以A 、O 为焦点的椭圆上运动.C 组8.已知A(0,7)、B(0,-7)、C(12,2),以C 为一个焦点作过A 、B 的椭圆,记椭圆的另一个焦点为F ,证明:点F 在以A(0,7)、B(0,-7)为焦点的双曲线的一支上运动.9.已知两个同心圆,其半径分别为R ,r (R >r ),AB 为小圆的一条定直径,求证:以大圆切线为准线,且过A 、B 两点的抛物线的焦点F 在以A 、B 为焦点的椭圆上.10.若一个动点P (x ,y )到定点F 1(-1,0),F 2(1,0)距离之和为定值m (m ≥0),试讨论点P 的轨迹.题号我们身边的圆锥曲线圆锥曲线的发现确实是一个伟大的发现.在笛卡尔直角坐标系中,这些曲线的方程是二次方程,所以圆锥曲线又叫做二次曲线.对于二次曲线的价值大概还没有人会估计得过高.在我们的实际生活中处处都有圆锥曲线.例如,我们的地球绕太阳运行的轨道是椭圆,太阳系的其他行星的运行轨道都是椭圆.这个事实是由开普勒第一定律确定的,之所以沿着椭圆轨道运动,是因为每一个行星在每一个瞬间都有不超过某一个值的速度.事实证明,假如这个速度过大了,运动就会沿着抛物线或双曲线轨道运行.相对于一个静止的物体,并按照万有引力定律受它吸引的物体运动,不可能有任何其他的轨道.因此,二次曲线实际上是以我们的宇宙为基础的.又如,如果让抛物线绕其轴旋转,就得到一个叫做旋转抛物面的曲面.在抛物面的轴上,有一个具有美妙性质的焦点,任何一条通过该点的直线由抛物面上反射出来之后,在指向上都平行于抛物面的轴.而这意味着如果把探照灯做成抛物面的形状,并且把灯泡放在焦点上,那么从抛物面上反射回来的所有光线就形成一束平行光束.这显然是一个很大的优点,因为正是这样一束光线在空间中,甚至于在离光源距离相当大的情况下,很少扩散.当然,实际上我们得不到理想的平行光束,因为灯泡不是一个点,但对于实用的目的来说,只要接近于这样的光束就够了.天文望远镜上的反射镜也是利用抛物面的形状制作的.它的作用刚好和探照灯的作用相反:探照灯的反射镜把光线反射到空间,天文望远镜的反射面则把来自宇宙的光线聚焦到自己的焦点上.只要用放大镜组瞄准这个焦点就行了,这样,我们就会得到聚焦到其光线的那个星球的信息,这比肉眼观察所能提供的信息要多得多.那条不穿过双曲线的对称轴叫做双曲线的虚轴.如果使双曲线绕这条轴旋转,那么,形成的曲面(这样的曲面称为单叶双曲面)也有许多实际用处.单叶双曲面是直纹曲面.上面有两组母直线族,各组内母线彼此不相交,而与另一组母线永远相交.正是这种性质在技术中得到了应用.例如,用直立木杆造水塔,如果把这些杆垂直地放置,那就只能得到一个很不牢固的建筑物,他会因为非常小的负荷而损坏.如果立杆时,使他们构成一个单叶双曲面(就是两组母线族),并使他们的交点处连接在一起,就会得到一个非常轻巧而又非常坚固的建筑物.许多化工厂或热电厂的冷却塔就是利用了这个原理.在尝试解决古代名题的过程中,所发现的各种美妙曲线远不限于螺线,蚌线和圆锥曲线.可是,不管找到了多少美妙的曲线,他们还是解决不了古代名题.要知道,正像我们还记得的那样,要求不只是解出这些名题,而是除了直尺和圆规外,不准利用其他任何工具.而仅仅利用这两种工具能否解决其中任何一个问题呢?这个问题该如何回答呢?如果这个答案存在的话,对这个问题给与肯定的回答,原则上显得比给与否定的回答更容易,只不过需要尝试才能找到这个答案.经过或多或少接连不断的寻找,这种题解通常可以找到.在题解不存在的情况下,事情则难办的多.这时,只停留在普通的几何直观上,几乎不可能得到所需要的答案.在这种情况下,可以对问题进行精确的代数分析,以便归结为完成某些代数方程的不可能性证明解答这个问题的不可能性.这样,就要求助于代数!2.1 圆锥曲线自我检测(1)以A,B为焦点的椭圆 (2) 以A,B为焦点的双曲线,A(-2,0)、B(2,0) (3)抛物线,A(1,0) ,l:x= -3 (4) 以A,B为端点的两条射线(5)因为AB,BC,AC成等差数列,所以AB+AC =2BC=12>BC,因此点A在以B、C为焦点的椭圆上运动.课后巩固练习A组1.(1)⑦;(2)②;(3)⑥;(4)⑤ 2.以O,A为焦点的椭圆3.证明略 4.点A在以B,C为焦点的双曲线的右支上B组5.以O1,O2为焦点的双曲线的一支 6.过点A且垂直于l的直线7.8.证明略C组9.证明略10.当m<2时,轨迹不存在;当m=2是,轨迹是以F1F2为端点的线段;当m>2时,轨迹是以F1F2为焦点的椭圆。
新课标人教版高中A版数学目录(超详细完美版)
人教版高中数学A版目录新课标A版必修1•第一章集合与函数概念•第二章基本初等函数(Ⅰ)•第三章函数的应用•单元测试•综合专栏第一章集合与函数概念• 1.1集合• 1.2函数及其表示• 1.3函数的基本性质•实习作业•同步练习•单元测试•本章综合1.1集合• 1.1.1集合的含义与表示• 1.1.2集合间的基本关系• 1.1.3集合的基本运算•本节综合1.2函数及其表示• 1.2.1函数的概念• 1.2.2函数的表示法•本节综合1.3函数的基本性质• 1.3.1单调性与最大(小)值• 1.3.2奇偶性•本节综合实习作业同步练习单元测试本章综合第二章基本初等函数(Ⅰ)• 2.1指数函数• 2.2对数函数• 2.3幂函数•同步练习•单元测试•本章综合2.1指数函数• 2.1.1指数与指数幂的运算• 2.1.2指数函数及其性质•本节综合2.2对数函数• 2.2.1对数与对数运算• 2.2.2对数函数及其性质•本节综合2.3幂函数同步练习单元测试本章综合第三章函数的应用• 3.1函数与方程• 3.2函数模型及其应用•实习作业•同步练习•单元测试•本章综合3.1函数与方程• 3.1.1方程的根与函数的零点• 3.1.2用二分法求方程的近似解•本节综合3.2函数模型及其应用• 3.2.1几类不同增长的函数模型• 3.2.2函数模型的应用实例•本节综合实习作业同步练习单元测试本章综合单元测试综合专栏新课标A版必修2•第一章空间几何体•第二章点、直线、平面之间的位置关系•第三章直线与方程•第四章圆与方程•单元测试综合专栏第一章空间几何体• 1.1空间几何体的结构• 1.2空间几何体的三视图和直观图• 1.3空间几何体的表面积与体积•复习参考题•实习作业•同步练习•单元测试•本章综合•第二章点、直线、平面之间的位置关系• 2.1空间点、直线、平面之间的位置关系• 2.2直线、平面平行的判定及其性质• 2.3直线、平面垂直的判定及其性质•同步练习•单元测试•本章综合第三章直线与方程• 3.1直线的倾斜角与斜率• 3.2直线的方程• 3.3直线的交点坐标与距离公式•同步练习•单元测试•本章综合第四章圆与方程• 4.1圆的方程• 4.2直线、圆的位置关系• 4.3空间直角坐标系•同步练习•单元测试•本章综合单元测试综合专栏新课标A版必修3•第一章算法初步•第二章统计•第三章概率•单元测试•综合专栏第一章算法初步• 1.1算法与程序框图• 1.2基本算法语句• 1.3算法与案例•同步练习•单元测试•本章综合1.1算法与程序框图• 1.1.1算法的概念• 1.1.2程序框图和算法的逻辑结构•本节综合1.2基本算法语句• 1.2.1输入、输出、赋值语句• 1.2.2条件语句• 1.2.3循环语句•本节综合1.3算法与案例同步练习单元测试本章综合第二章统计• 2.1随机抽样• 2.2用样本估计总体• 2.3变量间的相关关系•实习作业•同步练习•单元测试•本章综合2.1随机抽样• 2.1.1简单随机抽样• 2.1.2系统抽样• 2.1.3分层抽样•本节综合2.2用样本估计总体• 2.2.1用样本的频率分布估计总体• 2.2.2用样本的数字特征估计总体•本节综合2.3变量间的相关关系• 2.3.1变量之间的相关关系• 2.3.2两个变量的线性相关•本节综合实习作业同步练习单元测试本章综合第三章概率• 3.1随机事件的概率• 3.2古典概型• 3.3几何概型•同步练习•单元测试•本章综合3.1随机事件的概率• 3.1.1随机事件的概率• 3.1.2概率的意义• 3.1.3概率的基本性质•本节综合3.2古典概型• 3.2.1古典概型• 3.2.2随机数的产生•本节综合3.3几何概型• 3.3.1几何概型• 3.3.2均匀随机数的产生•本节综合同步练习单元测试本章综合单元测试综合专栏新课标A版必修4•第一章三角函数•第二章平面向量•第三章三角恒等变换•单元测试•综合专栏第一章三角函数• 1.1任意角和弧度制• 1.2任意的三角函数• 1.3三角函数的诱导公式• 1.4三角函数的图象与性质• 1.5函数y=Asin(ωx+ψ)• 1.6三角函数模型的简单应用•同步练习•单元测试•本章综合第二章平面向量• 2.1平面向量的实际背景及基本概念• 2.2平面向量的线性运算• 2.3平面向量的基本定理及坐标表示• 2.4平面向量的数量积• 2.5平面向量应用举例•同步练习•单元测试•本章综合第三章三角恒等变换• 3.1两角和与差的正弦、余弦和正切公式• 3.2简单的三角恒等变换•同步练习•单元测试•本章综合单元测试综合专栏新课标A版必修5•第一章解三角形•第二章数列•第三章不等式•单元测试•综合专栏第一章解三角形• 1.1正弦定理和余弦定理• 1.2应用举例• 1.3实习作业•探究与发现解三角形的进一步讨论•同步练习•单元测试•本章综合第二章数列• 2.1数列的概念与简单表示法• 2.1等差数列• 2.3等差数列的前n项和• 2.4等比数列• 2.5等比数列的前n项和•同步练习•单元测试•本章综合第三章不等式• 3.1不等关系与不等式• 3.2一元二次不等式及其解法• 3.3二元一次不等式(组)与简单的线性• 3.4基本不等式:•同步练习•单元测试•本章综合单元测试综合专栏新课标A版选修一•新课标A版选修1-1•新课标A版选修1-2新课标A版选修1-1•第一章常用逻辑用语•第二章圆锥曲线与方程•第三章导数及其应用•月考专栏•期中专栏•期末专栏•单元测试•综合专栏第一章常用逻辑用语• 1.1命题及其关系• 1.2充分条件与必要条件• 1.3简单的逻辑联结词• 1.4全称量词与存在量词•同步练习•单元测试•本章综合第二章圆锥曲线与方程• 2.1椭圆• 2.2双曲线• 2.3抛物线•同步练习•单元测试•本章综合第三章导数及其应用• 3.1变化率与导数• 3.2导数的计算• 3.3导数在研究函数中的应用• 3.4生活中的优化问题举例•同步练习•单元测试•本章综合月考专栏期中专栏期末专栏单元测试新课标A版选修1-2•第一章统计案例•第二章推理与证明•第三章数系的扩充与复数的引入•第四章框图•月考专栏•期中专栏•期末专栏•单元测试•本章综合点击这里展开-- 查看子节点索引目录,更精确地筛选资料!第一章统计案例• 1.1回归分析的基本思想及其初步应用• 1.2独立性检验的基本思想及其初步应用•实习作业•同步练习•综合第二章推理与证明• 2.1合情推理与演绎推理• 2.2直接证明与间接证明•同步练习•综合第三章数系的扩充与复数的引入• 3.1数系的扩充和复数的概念• 3.2复数代数形式的四则运算•同步练习•综合第四章框图• 4.1流程图• 4.2结构图•同步练习•综合月考专栏期中专栏期末专栏单元测试本章综合新课标A版选修二•新课标人教A版选修2-1•新课标人教A版选修2-2•新课标人教A版选修2-3新课标人教A版选修2-1•第一章常用逻辑用语•第二章圆锥曲线与方程•第三章空间向量与立体几何•单元测试•本册综合第一章常用逻辑用语• 1.1命题及其关系• 1.2充分条件与必要条件• 1.3简单的逻辑联结词• 1.4全称量词与存在量词•同步练习•本章综合第二章圆锥曲线与方程• 2.1曲线与方程• 2.2椭圆• 2.3双曲线• 2.4抛物线•同步练习•本章综合第三章空间向量与立体几何• 3.1空间向量及其运算• 3.2立体几何中的向量方法•同步练习•本章综合单元测试本册综合新课标人教A版选修2-2•第一章导数及其应用•第二章推理与证明•第三章数系的扩充与复数的引入•单元测试•本册综合第一章导数及其应用• 1.1变化率与导数• 1.2导数的计算• 1.3导数在研究函数中的应用• 1.4生活中的优化问题举例• 1.5定积分的概念• 1.6微积分基本定理• 1.7定积分的简单应用•同步练习•本章综合第二章推理与证明• 2.1合情推理与演绎推理• 2.2直接证明与间接证明• 2.3数学归纳法•同步练习•本章综合第三章数系的扩充与复数的引入• 3.1数系的扩充和复数的概念• 3.2复数代数形式的四则运算•同步练习•本章综合单元测试本册综合新课标人教A版选修2-3•第一章计数原理•第二章随机变量及其分布•第三章统计案例•单元测试•本册综合第一章计数原理• 1.1分类加法计数原理与分步乘法计.• 1.2排列与组合• 1.3二项式定理•同步练习•本章综合第二章随机变量及其分布• 2.1离散型随机变量及其分布列• 2.2二项分布及其应用• 2.3离散型随机变量的均值与方差• 2.4正态分布•同步练习•本章综合第三章统计案例• 3.1回归分析的基本思想及其初步应用• 3.2独立性检验的基本思想及其初步•本章综合•同步练习单元测试本册综合新课标A版选修三•新课标A版选修3-1•新课标A版选修3-3•新课标A版选修3-4新课标A版选修3-1•第一讲早期的算术与几何•第二讲古希腊数学•第三讲中国古代数学瑰宝•第四讲平面解析几何的产生•第五讲微积分的诞生•第六讲近代数学两巨星•第七讲千古谜题•第八讲对无穷的深入思考•第九讲中国现代数学的开拓与发展•单元测试•本册综合第一讲早期的算术与几何•一古埃及的数学•二两河流域的数学•三丰富多彩的记数制度•同步练习•本章综合第二讲古希腊数学•一希腊数学的先行者•二毕达哥拉斯学派•三欧几里得与《原本》•四数学之神──阿基米德•同步练习•本章综合第三讲中国古代数学瑰宝•一《周髀算经》与赵爽弦图•二《九章算术》•三大衍求一术•四中国古代数学家•同步练习•本章综合第四讲平面解析几何的产生•一坐标思想的早期萌芽•二笛卡儿坐标系•三费马的解析几何思想•四解析几何的进一步发展•同步练习•本章综合第五讲微积分的诞生•一微积分产生的历史背景•二科学巨人牛顿的工作•三莱布尼茨的“微积分”•同步练习•本章综合第六讲近代数学两巨星•一分析的化身──欧拉•二数学王子──高斯•同步练习•本章综合第七讲千古谜题•一三次、四次方程求根公式的发现•二高次方程可解性问题的解决•三伽罗瓦与群论•四古希腊三大几何问题的解决•同步练习•本章综合第八讲对无穷的深入思考•一古代的无穷观念•二无穷集合论的创立•三集合论的进一步发展与完善•同步练习•本章综合第九讲中国现代数学的开拓与发展•一中国现代数学发展概观•二人民的数学家──华罗庚•三当代几何大师──陈省身•同步练习•本章综合单元测试本册综合新课标A版选修3-3•第一讲从欧氏几何看球面•第二讲球面上的距离和角•第三讲球面上的基本图形•第四讲球面三角形•第五讲球面三角形的全等•第六讲球面多边形与欧拉公式•第七讲球面三角形的边角关系•第八讲欧氏几何与非欧几何•单元测试•本册综合第一讲从欧氏几何看球面•一平面与球面的位置关系•二直线与球面的位置关系和球幂定理•三球面的对称性•同步练习•本章综合第二讲球面上的距离和角•一球面上的距离•二球面上的角•同步练习•本章综合第三讲球面上的基本图形•一极与赤道•二球面二角形•三球面三角形•同步练习•本章综合第四讲球面三角形•一球面三角形三边之间的关系•二、球面“等腰”三角形•三球面三角形的周长•四球面三角形的内角和•同步练习•本章综合第五讲球面三角形的全等•1.“边边边”(s.s.s)判定定理•2.“边角边”(s.a.s.)判定定理•3.“角边角”(a.s.a.)判定定理•4.“角角角”(a.a.a.)判定定理•同步练习•本章综合第六讲球面多边形与欧拉公式•一球面多边形及其内角和公式•二简单多面体的欧拉公式•三用球面多边形的内角和公式证明欧拉公式•同步练习•本章综合第七讲球面三角形的边角关系•一球面上的正弦定理和余弦定理•二用向量方法证明球面上的余弦定理•三从球面上的正弦定理看球面与平面•四球面上余弦定理的应用──求地球上两城市间的距离•同步练习•本章综合第八讲欧氏几何与非欧几何•一平面几何与球面几何的比较•二欧氏平行公理与非欧几何模型──庞加莱模型•三欧氏几何与非欧几何的意义•同步练习•本章综合单元测试本册综合新课标A版选修3-4•第一讲平面图形的对称群•第二讲代数学中的对称与抽象群的概念•第三讲对称与群的故事•综合专栏•单元测试第一讲平面图形的对称群•平面刚体运动•对称变换•平面图形的对称群•同步练习•本章综合第二讲代数学中的对称与抽象群的概念•n元对称群S•多项式的对称变换•抽象群的概念•同步练习•本章综合第三讲对称与群的故事•带饰和面饰•化学分子的对称群•晶体的分类•伽罗瓦理论•同步练习•本章综合综合专栏单元测试新课标A版选修四•新课标人教A版选修4-1•选修4-2•新课标A版选修4-4•新课标A版选修4-5新课标人教A版选修4-1•第一讲相似三角形的判定及有关性质•第二讲直线与圆的位置关系•第三讲圆锥曲线性质的探讨•单元测试•本册综合第一讲相似三角形的判定及有关性质•一平行线等分线段定理•二平行线分线段成比例定理•三相似三角形的判定及性质•四直角三角形的射影定理•同步练习•本章综合第二讲直线与圆的位置关系•一圆周角定理•二圆内接四边形的性质与判定定理•三圆的切线的性质及判定定理•四弦切角的性质•五与圆有关的比例线段•同步练习•本章综合第三讲圆锥曲线性质的探讨•一平行射影•二平面与圆柱面的截线•三平面与圆锥面的截线•同步练习•本章综合单元测试本册综合选修4-2•第一讲线性变换与二阶矩阵•第二讲变换的复合与二阶矩阵的乘法•第三讲逆变换与逆矩阵•第四讲变换的不变量与矩阵的特征向量•单元测试•本册综合第一讲线性变换与二阶矩阵•一线性变换与二阶矩阵•二二阶矩阵与平面向量的乘法•三线性变换的基本性质•同步练习•本章综合第二讲变换的复合与二阶矩阵的乘法•一复合变换与二阶短阵的乘法•二矩阵乘法的性质•同步练习•本章综合第三讲逆变换与逆矩阵•一逆变换与逆矩阵•二二阶行列式与逆矩阵•三逆矩阵与二元一次方程组•同步练习•本章综合第四讲变换的不变量与矩阵的特征向量•一变换的不变量---矩阵的特征向量•二特征向量的应用•同步练习•本章综合单元测试本册综合新课标A版选修4-4•第一章坐标系•第二章参数方程•单元测试•本册综合第一章坐标系• 1.1直角坐标系、平面上的伸缩变换• 1.2极坐标系• 1.3曲线的极坐标方程• 1.4圆的极坐标方程• 1.5柱坐标系与球坐标系•同步练习•本章综合第二章参数方程• 2.1曲线的参数方程• 2.2直线和圆的参数方程• 2.3圆锥曲线的参数方程• 2.4一些常见曲线的参数方程•同步练习•本章综合单元测试本册综合新课标A版选修4-5•第一讲不等式和绝对值不等式•第二讲讲明不等式的基本方法•第三讲柯西不等式与排序不等式•第四讲数学归纳法证明不等式•单元测试•本册综合第一讲不等式和绝对值不等式•一不等式•二绝对值不等式•单元测试•本章综合第二讲讲明不等式的基本方法•一比较法•二综合法与分析法•三反证法与放缩法•单元测试•本章综合第三讲柯西不等式与排序不等式•一二维形式的柯西不等式•二一般形式的柯西不等式•三排序不等式•单元测试•本章综合第四讲数学归纳法证明不等式•一数学归纳法•二用数学归纳法证明不等式•单元测试•本章综合单元测试本册综合。
2021_2022高中数学第二章圆锥曲线与方程1曲线与方程2求曲线的方程3课件新人教A版选修2
2.1 曲线与方程
2.1.2 求曲线的方程
【学习要求】 1.掌握求轨迹方程时建立坐标系的一般方法,熟悉求曲线方程
的四个步骤以及利用方程研究曲线五个方面的性质. 2.掌握求轨迹方程的几种常用方法. 【学法指导】
通过建立直角坐标系得到曲线的方程,从曲线方程研究曲线的 性质和位置关系,进一步感受坐标法的作用和数形结合思想.
因为曲线在 x 轴的上方,所以 y>0. 虽然原点 O 的坐标(0,0)是这个方程的解,但不属于已知曲线, 所以曲线的方程应是 y=18x2 (x≠0). 小结 (1)求曲线方程时,建立的坐标系不同,得到的方程也 不同.
(2)求曲线轨迹方程时,一定要注意检验方程的解与曲线上点 的坐标的对应关系,对于坐标适合方程但又不在曲线上的点 应注意剔除.
例 2 讨论方程 y2=1-x2x (x≥0)的曲线性质,并画出图形. 解 (1)范围:∵y2≥0,又 x2≥0,∴1-x>0. 解得 x<1,∴0≤x<1. 又当 x=0 时,y=0,∴曲线过原点. 当 x→1 时,y2→+∞,∴y2≥0. 综上可知,曲线分布在两平行直线 x=0 和 x=1 之间.
当堂检测
1.在△ABC 中,若 B、C 的坐标分别是(-2,0)、(2,0),BC
边上的中线的长度为 5,则 A 点的轨迹方程是 ( D )
AHale Waihona Puke x2+y2=5B.x2+y2=25
C.x2+y2=5 (y≠0) D.x2+y2=25 (y≠0)
解析 BC 的中点为原点,BC 边上的中线长为 5,即 OA =5.设 A(x,y),则有 x2+y2=25 (y≠0).
知识要点
1.解析几何研究的主要问题: (1)根据已知条件,求出__表__示___曲__线__的__方__程____; (2)通过曲线的方程,研究_曲__线__的___性__质______.
(新)高中数学第二章圆锥曲线与方程2_4_2抛物线的几何性质学案新人教B版选修2-1
2.4.2 抛物线的几何性质学习目标 1.了解抛物线的范围、对称性、顶点、焦点、准线等几何性质.2.会利用抛物线的性质解决一些简单的抛物线问题.知识点一抛物线的范围思考观察下列图形,思考以下问题:(1)观察焦点在x轴的抛物线与双曲线及椭圆的图形,分析其几何图形存在哪些区别?(2)根据图形及抛物线方程y2=2px(p>0)如何确定横坐标x的范围?梳理抛物线y2=2px(p>0)中,x∈__________,y∈__________.抛物线y2=-2px(p>0)中,x∈__________,y∈__________.抛物线x2=2py(p>0)中,x∈__________,y∈__________.抛物线x2=-2py(p>0)中,x∈__________,y∈__________.知识点二四种形式的抛物线的几何性质标准方程y2=2px(p>0) y2=-2px(p>0) x2=2py(p>0) x2=-2py(p>0) 图形范围x≥0,y∈R x≤0,y∈R y≥0,x∈R y≤0,x∈R 对称轴x轴x轴y轴y轴焦点F(p2,0)F(-p2,0)F(0,p2)F(0,-p2)准线方程 x =-p 2x =p 2y =-p 2y =p 2顶点坐标 O (0,0) 离心率 e =1通径长 2p知识点三 直线与抛物线的位置关系直线y =kx +b 与抛物线y 2=2px (p >0)的交点个数决定于关于x 的方程组⎩⎪⎨⎪⎧y =kx +b ,y 2=2px解的个数,即二次方程k 2x 2+2(kb -p )x +b 2=0解的个数.当k ≠0时,若Δ>0,则直线与抛物线有______个不同的公共点;若Δ=0时,直线与抛物线有______个公共点;若Δ<0时,直线与抛物线________公共点.当k =0时,直线与抛物线的轴__________,此时直线与抛物线有______个公共点.类型一 依据抛物线的几何性质求标准方程例1 抛物线的顶点在原点,对称轴重合于椭圆9x 2+4y 2=36短轴所在的直线,抛物线焦点到顶点的距离为3,求抛物线的方程及抛物线的准线方程. 引申探究将本例改为“若抛物线的焦点F 在x 轴上,直线l 过F 且垂直于x 轴,l 与抛物线交于A ,B 两点,O 为坐标原点,若△OAB 的面积等于4”,求此抛物线的标准方程.反思与感悟 用待定系数法求抛物线方程的步骤跟踪训练1 已知抛物线的顶点在坐标原点,对称轴为x 轴,且与圆x 2+y 2=4相交于A ,B 两点,|AB |=23,求抛物线方程.类型二 抛物线的焦半径和焦点弦问题例2 (1)过抛物线y 2=8x 的焦点,倾斜角为45°的直线被抛物线截得的弦长为________. (2) 直线l 过抛物线y 2=4x 的焦点,与抛物线交于A ,B 两点,若|AB |=8,则直线l 的方程为________________.(3)过抛物线y 2=4x 的焦点作直线交抛物线于点A (x 1,y 1),B (x 2,y 2),若|AB |=7,则AB 的中点M 到抛物线准线的距离为________________.反思与感悟 (1)抛物线上任一点P (x 0,y 0)与焦点F 的连线得到的线段叫做抛物线的焦半径,对于四种形式的抛物线来说其焦半径的长分别为: ①抛物线y 2=2px (p >0),|PF |=|x 0+p 2|=p2+x 0;②抛物线y 2=-2px (p >0),|PF |=|x 0-p 2|=p2-x 0;③抛物线x 2=2py (p >0),|PF |=|y 0+p 2|=p2+y 0;④抛物线x 2=-2py (p >0),|PF |=|y 0-p2|=p2-y 0.(2)已知AB 是过抛物线y 2=2px (p >0)的焦点的弦,F 为抛物线的焦点,A (x 1,y 1),B (x 2,y 2),则:①y 1·y 2=-p 2,x 1·x 2=p 24;②|AB |=x 1+x 2+p =2psin 2θ(θ为直线AB 的倾斜角); ③S △ABO =p 22sin θ(θ为直线AB 的倾斜角);④1|AF |+1|BF |=2p ; ⑤以AB 为直径的圆与抛物线的准线相切.(3)当直线经过抛物线的焦点,且与抛物线的对称轴垂直时,直线被抛物线截得的线段称为抛物线的通径,显然通径长等于2p .跟踪训练2 已知直线l 经过抛物线y 2=6x 的焦点F ,且与抛物线相交于A ,B 两点. (1)若直线l 的倾斜角为60°,求|AB |的值; (2)若|AB |=9,求线段AB 的中点M 到准线的距离.类型三 抛物线综合问题命题角度1 与抛物线有关的最值问题例3 抛物线y 2=4x 的焦点为F ,点P (x ,y )为该抛物线上的动点,若点A (-1,0),求|PF ||PA |的最小值.反思与感悟 (1)若曲线和直线相离,在曲线上求一点到直线的距离最小问题,可找到与已知直线平行的直线,使其与曲线相切,则切点为所要求的点.(2)以上问题一般转化为“两点之间线段最短”或“点到直线的垂线段最短”来解决. 跟踪训练3 已知直线l 1:4x -3y +6=0和直线l 2:x =-1,抛物线y 2=4x 上一动点P 到直线l 1和直线l 2的距离之和的最小值是( ) A .2 B .3 C.115 D.3716命题角度2 定值或定点问题例4 抛物线y 2=2px (p >0)上有两动点A ,B 及一个定点M ,F 为抛物线的焦点,若|AF |,|MF |,|BF |成等差数列.(1)求证:线段AB 的垂直平分线过定点Q ;(2)若|MF |=4,|OQ |=6(O 为坐标原点),求抛物线的方程.反思与感悟 在抛物线的综合性问题中,存在着许多定值问题,我们不需要记忆关于这些定值的结论,但必须牢牢掌握研究这些定值问题的基本方法,如设直线的点斜式方程、根与系数关系的利用、焦半径的转化等.跟踪训练4 在平面直角坐标系xOy 中,直线l 与抛物线y 2=4x 相交于不同的A ,B 两点,OA →·OB →=-4,求证:直线l 必过一定点.1.已知点A (-2,3)在抛物线C :y 2=2px 的准线上,记C 的焦点为F ,则直线AF 的斜率为( )A .-43B .-1C .-34D .-122.已知点P 是抛物线y 2=2x 上的一个动点,则点P 到点(0,2)的距离与点P 到该抛物线准线的距离之和的最小值为( ) A.172 B .3 C. 5 D.923.过抛物线y 2=4x 的焦点作直线l 交抛物线于A ,B 两点,若线段AB 的中点的横坐标为3,则|AB |=________.4.已知过抛物线y 2=2px (p >0)的焦点F 作倾斜角为45°的直线交抛物线于A ,B 两点,若线段AB 的长为8,则p =________.5.已知抛物线C :y 2=8x 的焦点为F ,准线与x 轴的交点为K ,点A 在抛物线C 上,且|AK |=2|AF |,则△AFK 的面积为________.1.抛物线的中点弦问题用点差法较简便.2.轴对称问题,一是抓住对称两点的中点在对称轴上,二是抓住两点连线的斜率与对称轴所在直线斜率的关系.3.在直线和抛物线的综合问题中,经常遇到求定值、过定点问题.解决这类问题的方法很多,如斜率法、方程法、向量法、参数法等.解决这些问题的关键是代换和转化.提醒:完成作业 第二章 2.4.2答案精析问题导学 知识点一思考 (1)抛物线与另两种曲线相比较,有明显的不同,椭圆是封闭曲线,有四个顶点,有两个焦点,有中心;双曲线虽然不是封闭曲线,但是有两支,有两个顶点,两个焦点,有中心;抛物线只有一条曲线,一个顶点,一个焦点,无中心.(2)由抛物线y 2=2px (p >0)有⎩⎪⎨⎪⎧2px =y 2≥0,p >0,所以x ≥0.所以抛物线x 的范围为x ≥0.抛物线在y 轴的右侧,当x 的值增大时,︱y ︱也增大,这说明抛物线向右上方和右下方无限延伸.梳理 [0,+∞) (-∞,+∞) (-∞,0] (-∞,+∞) (-∞,+∞) [0,+∞) (-∞,+∞) (-∞,0] 知识点三两 一 没有 平行或重合 一 题型探究例1 解 椭圆的方程可化为x 24+y 29=1,其短轴在x 轴上,∴抛物线的对称轴为x 轴,∴设抛物线的方程为y 2=2px 或y 2=-2px (p >0). ∵抛物线的焦点到顶点的距离为3, 即p2=3,∴p =6. ∴抛物线的标准方程为y 2=12x 或y 2=-12x , 其准线方程分别为x =-3或x =3. 引申探究解 由题意,设抛物线方程为y 2=2mx (m ≠0),焦点F (m 2,0),直线l :x =m2,所以A ,B 两点坐标为(m 2,m ),(m2,-m ),所以|AB |=2|m |. 因为△OAB 的面积为4,所以12·|m2|·2|m |=4,所以m =±2 2.所以抛物线的标准方程为y 2=±42x .跟踪训练1 解 由已知,抛物线的焦点可能在x 轴正半轴上,也可能在负半轴上. 故可设抛物线方程为y 2=ax (a ≠0).设抛物线与圆x 2+y 2=4的交点A (x 1,y 1),B (x 2,y 2). ∵抛物线y 2=ax (a ≠0)与圆x 2+y 2=4都关于x 轴对称, ∴点A 与B 关于x 轴对称, ∴|y 1|=|y 2|且|y 1|+|y 2|=23, ∴|y 1|=|y 2|=3,代入圆x 2+y 2=4, 得x 2+3=4,∴x =±1,∴A (±1,3)或A (±1,-3),代入抛物线方程,得(3)2=±a ,∴a =±3. ∴所求抛物线方程是y 2=3x 或y 2=-3x .例2 (1)16 (2)x +y -1=0或x -y -1=0 (3)72跟踪训练2 解 (1)因为直线l 的倾斜角为60°,所以其斜率k =tan 60°= 3.又F ⎝ ⎛⎭⎪⎫32,0,所以直线l 的方程为y =3⎝ ⎛⎭⎪⎫x -32. 联立⎩⎪⎨⎪⎧y 2=6x ,y =3⎝ ⎛⎭⎪⎫x -32,消去y 得x 2-5x +94=0.若设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=5, 而|AB |=|AF |+|BF |=x 1+p 2+x 2+p2=x 1+x 2+p ,所以|AB |=5+3=8.(2)设A (x 1,y 1),B (x 2,y 2),由抛物线定义知|AB |=|AF |+|BF |=x 1+p 2+x 2+p2=x 1+x 2+p=x 1+x 2+3,所以x 1+x 2=6.于是线段AB 的中点M 的横坐标是3,又准线方程是x =-32,所以M 到准线的距离等于3+32=92.例3 解 抛物线y 2=4x 的准线方程为x =-1,如图,过点P 作PN 垂直x =-1于点N ,由抛物线的定义可知|PF |=|PN |, 连接PA , 在Rt△PAN 中,sin∠PAN =|PN ||PA |,当|PN ||PA |=|PF ||PA |最小时,sin∠PAN 最小,即∠PAN 最小,即∠PAF 最大,此时,PA 为抛物线的切线, 设PA 的方程为y =k (x +1), 联立⎩⎪⎨⎪⎧y =k x +1,y 2=4x ,得k 2x 2+(2k 2-4)x +k 2=0, 所以Δ=(2k 2-4)2-4k 4=0, 解得k =±1,所以∠PAF =∠NPA =45°, |PF ||PA |=|PN ||PA |=cos∠NPA =22. 跟踪训练3 A例4 (1)证明 设点A (x 1,y 1),B (x 2,y 2),M (x 0,y 0), 则|AF |=x 1+p 2,|BF |=x 2+p2,|MF |=x 0+p2,x 0为已知值. 由题意得x 0=x 1+x 22,∴线段AB 的中点坐标可设为(x 0,t ), 其中t =y 1+y 22≠0(否则|AF |=|MF |=|BF |⇒p =0).而k AB =y 1-y 2x 1-x 2=y 1-y 212py 21-y 22=2p y 1+y 2=pt , 故线段AB 的垂直平分线的方程为y -t =-t p(x -x 0),即t (x -x 0-p )+yp =0,可知线段AB 的垂直平分线过定点Q (x 0+p ,0).(2)解 由|MF |=4,|OQ |=6,得x 0+p2=4,x 0+p =6,联立解得p =4,x 0=2.∴抛物线方程为y 2=8x .跟踪训练4 证明 设l :x =ty +b ,代入抛物线y 2=4x , 消去x 得y 2-4ty -4b =0,设A (x 1,y 1),B (x 2,y 2),则y 1+y 2=4t ,y 1y 2=-4b . 又∵OA →·OB →=x 1x 2+y 1y 2 =(ty 1+b )(ty 2+b )+y 1y 2 =t 2y 1y 2+bt (y 1+y 2)+b 2+y 1y 2 =-4bt 2+4bt 2+b 2-4b =b 2-4b , 又∵OA →·OB →=-4,∴b 2-4b =-4, 解得b =2,故直线过定点(2,0). 当堂训练1.C 2.A 3.8 4.2 5.8。
高中数学新人教A版选修2-1课件:第二章圆锥曲线与方程2.4.2抛物线的简单几何性质
> 0.
即 A=0(直线与抛物线的对称轴平行,即相交);
≠ 0,
(2)直线与抛物线相切⇔有一个公共点,即
= 0.
≠ 0,
(3)直线与抛物线相离⇔没有公共点,即
< 0.
课堂篇探究学习
探究一
探究二
探究三
当堂检测
变式训练2设抛物线y2=8x的准线与x轴交于点Q,若过点Q的直线l
③当Δ<0时,即k>1时,l与C没有公共点,此时直线l与C相离.
综上所述,(1)当k=1或k=0时,直线l与C有一个公共点;
(2)当k<1,且k≠0时,直线l与C有两个公共点;
(3)当k>1时,直线l与C没有公共点.
课堂篇探究学习
探究一
探究二
探究三
当堂检测
反思感悟方程思想解决直线与抛物线的位置关系
题,通过我们学过的数学知识进行求解.利用抛物线模型解决问题
时,关键是建立坐标系得到抛物线的标准方程,一般都是将抛物线
的顶点作为坐标原点,将对称轴作为x轴或y轴建立坐标系,其次要注
意抛物线上关键点的坐标,并善于运用抛物线的对称性进行求解.
课堂篇探究学习
探究一
探究二
探究三
当堂检测
变式训练3如图是抛物线形拱桥,当水面到直线l时,拱顶离水面2
图形
对称轴
x轴
焦点
F
顶点
原点(0,0)
准线
x=-2
离心率
e=1
p
2
x轴
,0
p
开口方向 向右
p
F - ,0
2
p
y轴
F 0,
p
y轴
高中数学 第二章 圆锥曲线与方程 2.2 椭圆预习案 新人教A版选修2-1(2021年整理)
山西省忻州市2016-2017学年高中数学第二章圆锥曲线与方程2.2 椭圆预习案新人教A版选修2-1编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(山西省忻州市2016-2017学年高中数学第二章圆锥曲线与方程2.2 椭圆预习案新人教A版选修2-1)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为山西省忻州市2016-2017学年高中数学第二章圆锥曲线与方程2.2 椭圆预习案新人教A 版选修2-1的全部内容。
2.2 椭圆§2.2。
1 椭圆及其标准方程(一)【教学目标】1.知识与技能:掌握椭圆的定义;了解椭圆标准方程的推导过程,熟记椭圆标准方程;会根据条件求椭圆的标准方程;掌握椭圆方程中的参数a、b、c的关系.2。
过程与方法:借助课件展示椭圆轨迹的产生,让学生经历椭圆的形成过程,师生共同推导标准方程,体会坐标法在平面解析几何中的应用,感受数学推理的严密.3.情感态度价值观:椭圆的定义及标准方程是本章的重点,也是高考经常涉及的考点;体会数与形的内在联系和完美统一,激发学生的求知欲.【预习任务】阅读教材P38—40,回答:1.(1)写出椭圆的定义.椭圆的焦点、焦距,椭圆定义中,有哪些特别注意事项;(2)若常数=|F1F2|,则动点的轨迹是什么?;若常数<|F1F2|,则动点的轨迹是否存在?2.建立适当坐标系,推导椭圆的标准方程.3.根据椭圆的标准方程如何确定焦点所在的位置?4.找出右图中能表示a,b,c的所有线段.写出a,b,c 的关系式并体会它们的大小关系.B ACDF1F2【自主检测】1。
已知两点A(0,—3)、B(0,3),由下列条件,分别写出点M的轨迹方程(1)|MA|+|MB|=8 (2) |MA|+|MB|=62.课本P42练习1,2,3【组内互检】椭圆的定义.椭圆的焦点、焦距及标准方程§2.2。
2022高中数学第二章圆锥曲线与方程4抛物线2抛物线的简单几何性质3作业含解析新人教A版选修2_
抛物线的简单几何性质(二)一、基础过关1.已知抛物线y 2=2px (p >0),过其焦点且斜率为1的直线交抛物线于A 、B 两点,若线段AB 的中点的纵坐标为2,则该抛物线的准线方程为( ) A .x =1B .x =-1C .x =2D .x =-2 2.已知抛物线y 2=2px (p >0)的焦点为F ,点P 1(x 1,y 1),P 2(x 2,y 2),P 3(x 3,y 3)在抛物线上,且|P 1F |,|P 2F |,|P 3F |成等差数列,则有( )A .x 1+x 2=x 3B .y 1+y 2=y 3C .x 1+x 3=2x 2D .y 1+y 3=2y 23.设O 是坐标原点,F 是抛物线y 2=2px (p >0)的焦点,A 是抛物线上的一点,FA →与x 轴正向的夹角为60°,则|OA |为 ( ) A.214p B.212p C.136p D.1336p 4.已知F 是抛物线y =14x 2的焦点,P 是该抛物线上的动点,则线段PF 中点的轨迹方程是 ( )A .x 2=2y -1B .x 2=2y -116C .x 2=y -12D .x 2=2y -2 5.抛物线x 2=ay (a ≠0)的焦点坐标为__________.6.设抛物线y 2=2px (p >0)的焦点为F ,点A (0,2).若线段FA 的中点B 在抛物线上,则B 到该抛物线准线的距离为________.二、能力提升7.若点P 在抛物线y 2=x 上,点Q 在圆M :(x -3)2+y 2=1上,则|PQ |的最小值是( )A.3-1B.102-1 C .2 D.112-1 8.过抛物线y 2=2px (p >0)的焦点F 作两弦AB 和CD ,其所在直线的倾斜角分别为π6与π3,则|AB |与|CD |的大小关系是( )A .|AB |>|CD | B .|AB |=|CD |C .|AB |<|CD | D .|AB |≠|CD |9.设抛物线y 2=2x 的焦点为F ,过点M (3,0)的直线与抛物线相交于A ,B 两点,与抛物线的准线相交于点C ,|BF |=2,则△BCF 与△ACF 的面积之比S △BCF S △ACF=________. 10.已知过抛物线y 2=2px (p >0)的焦点的直线交抛物线于A 、B 两点,且|AB |=52p ,求AB 所在的直线方程.11.在平面直角坐标系xOy 中,直线l 与抛物线y 2=4x 相交于不同的A 、B 两点.(1)如果直线l 过抛物线的焦点,求OA →·OB →的值;(2)如果OA →·OB →=-4,证明直线l 必过一定点,并求出该定点.12.抛物线y 2=2px (p >0)的焦点为F ,准线与x 轴交点为Q ,过Q 点的直线l 交抛物线于A 、B 两点.(1)直线l 的斜率为22,求证:FA →·FB →=0; (2)设直线FA 、FB 的斜率为k FA 、k FB ,探究k FB 与k FA 之间的关系并说明理由.三、探究与拓展13.已知过抛物线y 2=2px (p >0)的焦点F 的直线交抛物线于A 、B 两点,设A (x 1,y 1),B (x 2,y 2),则称AB 为抛物线的焦点弦.求证:(1)y 1y 2=-p 2;x 1x 2=p 24; (2)1|FA |+1|FB |=2p ; (3)以AB 为直径的圆与抛物线的准线相切.答案1.B 2.C 3.B 4.A5.⎝ ⎛⎭⎪⎫0,a 46.34 2 7.D 8.A10.解 如图所示,抛物线y 2=2px (p >0)的准线为x =-p2,A (x 1,y 1), B (x 2,y 2),设A 、B 到准线的距离分别为d A ,d B ,由抛物线的定义知,|AF |=d A =x 1+p 2, |BF |=d B =x 2+p 2, 于是|AB |=x 1+x 2+p =52p ,x 1+x 2=32p . 当x 1=x 2时,|AB |=2p <52p ,直线AB 与Ox 不垂直. 设直线AB 的方程为y =k ⎝ ⎛⎭⎪⎫x -p 2. 由⎩⎪⎨⎪⎧ y =k ⎝ ⎛⎭⎪⎫x -p 2,y 2=2px ,得k 2x 2-p (k 2+2)x +14k 2p 2=0. x 1+x 2=p k 2+2k 2=32p ,解得k =±2. ∴直线AB 的方程为y =2⎝ ⎛⎭⎪⎫x -p 2或y =-2⎝ ⎛⎭⎪⎫x -p 2. 11.解 (1)由题意知,抛物线焦点为(1,0),设l :x =ty +1,代入抛物线方程y 2=4x ,消去x ,得y 2-4ty -4=0.设A (x 1,y 1)、B (x 2,y 2),则y 1+y 2=4t ,y 1y 2=-4,OA →·OB →=x 1x 2+y 1y 2=(ty 1+1)(ty 2+1)+y 1y 2=t 2y 1y 2+t (y 1+y 2)+1+y 1y 2=-4t 2+4t 2+1-4=-3.(2)设l :x =ty +b ,代入抛物线方程y 2=4x ,消去x ,得 y 2-4ty -4b =0,设A (x 1,y 1)、B (x 2,y 2),则y 1+y 2=4t ,y 1y 2=-4b .∵OA →·OB →=x 1x 2+y 1y 2=(ty 1+b )(ty 2+b )+y 1y 2=t 2y 1y 2+bt (y 1+y 2)+b 2+y 1y 2=-4bt 2+4bt 2+b 2-4b =b 2-4b ,令b 2-4b =-4,∴b 2-4b +4=0,∴b =2,∴直线l 过定点(2,0).12.(1)证明 ∵Q ⎝ ⎛⎭⎪⎫-p 2,0, ∴直线l 的方程为y =22⎝ ⎛⎭⎪⎫x +p2,由⎩⎪⎨⎪⎧y =22⎝ ⎛⎭⎪⎫x +p2y 2=2px .消去x 得y 2-22py +p 2=0.解得A ⎝ ⎛⎭⎪⎫3+222p ,2+1p ,B ⎝ ⎛⎭⎪⎫3-222p ,2-1p .而F ⎝ ⎛⎭⎪⎫p2,0,故FA →=((1+2)p ,(1+2)p ),FB →=((1-2)p ,(2-1)p ),∴FA →·FB →=-p 2+p 2=0.(2)解 k FA =-k FB 或k FA +k FB =0.因直线l 与抛物线交于A 、B 两点,故直线l 方程:y =k ⎝ ⎛⎭⎪⎫x +p2 (k ≠0).由⎩⎪⎨⎪⎧y =k ⎝ ⎛⎭⎪⎫x +p2y 2=2px ,消去x 得ky 2-2py +kp 2=0.设A (x 1,y 1),B (x 2,y 2),则y 1y 2=p 2.k FA =y 1x 1-p 2,k FB =y 2x 2-p2,∴k FA=p2y2y212p-p2=p2y2⎝⎛⎭⎪⎫p2y222p-p2=y2p2-y222p=-k FB.13.证明 如图所示.(1)抛物线y 2=2px (p >0)的焦点F ⎝ ⎛⎭⎪⎫p 2,0,准线方程:x =-p 2. 设直线AB 的方程为x =ky +p 2,把它代入y 2=2px ,化简,得y 2-2pky -p 2=0.∴y 1y 2=-p 2,∴x 1x 2=y 212p ·y 222p =y 1y 224p 2=-p224p 2=p 24.(2)根据抛物线定义知|FA |=|AA 1|=x 1+p 2,|FB |=|BB 1|=x 2+p2,∴1|FA |+1|FB |=1x 1+p 2+1x 2+p2=22x 1+p +22x 2+p=22x 2+p +22x 1+p2x 1+p 2x 2+p=4x 1+x 2+4p4x 1x 2+2p x 1+x 2+p2=4x 1+x 2+p 2p x 1+x 2+p =2p.(3)设AB 中点为C (x 0,y 0),过A 、B 、C 分别作准线的垂线,垂足分别为A 1,B 1,C 1. 则|CC 1|=12·(|AA 1|+|BB 1|)=12(|AF |+|BF |)=12·|AB |.∴以线段AB 为直径的圆与抛物线的准线相切.。
最新人教A版高中数学教材目录(全)
人教A版高中数学目录必修1第一章集合与函数概念1.1 集合1.2 函数及其表示1.3 函数的基本性质第二章基本初等函数(Ⅰ)2.1 指数函数2.2 对数函数2.3 幂函数第三章函数的应用3.1 函数与方程3.2 函数模型及其应用必修2第一章空间几何体1.1 空间几何体的结构1.2 空间几何体的三视图和直观图 1.3 空间几何体的表面积与体积第二章点、直线、平面之间的位置关系2.1 空间点、直线、平面之间的位置关系2.2 直线、平面平行的判定及其性质2.3 直线、平面垂直的判定及其性质第三章直线与方程3.1 直线的倾斜角与斜率3.2 直线的方程3.3 直线的交点坐标与距离公式必修3第一章算法初步1.1 算法与程序框图1.2 基本算法语句1.3 算法案例阅读与思考割圆术第二章统计2.1 随机抽样阅读与思考一个著名的案例阅读与思考广告中数据的可靠性阅读与思考如何得到敏感性问题的诚实反应2.2 用样本估计总体阅读与思考生产过程中的质量控制图2.3 变量间的相关关系阅读与思考相关关系的强与弱第三章概率3.1 随机事件的概率阅读与思考天气变化的认识过程3.2 古典概型3.3 几何概型必修4第一章三角函数1.1 任意角和弧度制1.2 任意角的三角函数1.3 三角函数的诱导公式1.4 三角函数的图象与性质1.5 函数y=Asin(ωx+ψ)1.6 三角函数模型的简单应用第二章平面向量2.1 平面向量的实际背景及基本概念2.2 平面向量的线性运算2.3 平面向量的基本定理及坐标表示2.4 平面向量的数量积2.5 平面向量应用举例第三章三角恒等变换3.1 两角和与差的正弦、余弦和正切公式3.2 简单的三角恒等变换必修5第一章解三角形1.1正弦定理和余弦定理1.2应用举例1.3实习作业第二章数列2.1数列的概念与简单表示法2.2等差数列2.3等差数列的前n项和2.4等比数列2.5等比数列的前n项和第三章不等式3.1不等关系与不等式3.2一元二次不等式及其解法3.3二元一次不等式(组)与简单的线性规划问题3.3.1二元一次不等式(组)与平面区域3.3.2简单的线性规划问题3.4基本不等式选修1-1第一章常用逻辑用语1.1命题及其关系1.2充分条件与必要条件1.3简单的逻辑联结词1.4全称量词与存在量词第二章圆锥曲线与方程2.1椭圆2.2双曲线2.3抛物线第三章导数及其应用3.1变化率与导数3.2导数的计算3.3导数在研究函数中的应用3.4生活中的优化问题举例选修1-2第一章统计案例1.1回归分析的基本思想及其初步应用1.2独立性检验的基本思想及其初步应用第二章推理与证明2.1 合情推理与演绎证明2.2 直接证明与间接证明第三章数系的扩充与复数的引入3.1数系的扩充和复数的概念3.2复数代数形式的四则运算第四章框图4.1流程图4.2结构图选修2-1第一章常用逻辑用语1.1命题及其关系1.2充分条件与必要条件1.3简单的逻辑联结词1.4全称量词与存在量词第二章圆锥曲线与方程2.1曲线与方程2.2椭圆2.3双曲线2.4抛物线第三章空间向量与立体几何3.1空间向量及其运算3.2立体几何中的向量方法选修2-2第一章导数及其应用1.1变化率与导数1.2导数的计算1.3导数在研究函数中的应用1.4生活中的优化问题举例1.5定积分的概念1.6微积分基本定理1.7定积分的简单应用第二章推理与证明2.1合情推理与演绎推理2.2直接证明与间接证明2.3数学归纳法第三章数系的扩充与复数的引入3.1数系的扩充和复数的概念3.2复数代数形式的四则运算选修2-3第一章计数原理1.1分类加法计数原理与分步乘法计数原理1.2排列与组合1.3二项式定理第二章随机变量及其分布2.1离散型随机变量及其分布列2.2二项分布及其应用2.3离散型随机变量的均值与方差2.4正态分布第三章统计案例3.1回归分析的基本思想及其初步应用3.2独立性检验的基本思想及其初步应用选修3-1第一讲早期的算术与几何第二讲古希腊数学第三讲中国古代数学瑰宝第四讲平面解析几何的产生五讲微积分的诞生第六讲近代数学两巨星第七讲千古谜题第八讲对无穷的深入思考第九讲中国现代数学的开拓与发展选修3-2选修3-3第一讲从欧氏几何看球面第二讲球面上的距离和角第三讲球面上的基本图形第四讲球面三角形第五讲球面三角形的全等第六讲球面多边形与欧拉公式第七讲球面三角形的边角关系第八讲欧氏几何与非欧几何选修3-4第一讲平面图形的对称群第二讲代数学中的对称与抽象群的概念第三讲对称与群的故事选修4-1第一讲相似三角形的判定及有关性质第二讲直线与圆的位置关系第三讲圆锥曲线性质的探讨选修4-2第一讲线性变换与二阶矩阵第二讲变换的复合与二阶矩阵的乘法第三讲逆变换与逆矩阵第四讲变换的不变量与矩阵的特征向量选修4-3选修4-4第一讲坐标系第二讲参数方程选修4-5第一讲不等式和绝对值不等式第二讲证明不等式的基本方法第三讲柯西不等式与排序不等式第四讲数学归纳法证明不等式选修4-6第一讲整数的整除第二讲同余与同余方程第三讲一次不定方程第四讲数伦在密码中的应用选修4-7第一讲优选法第二讲试验设计初步选修4-8选修4-9第一讲风险与决策的基本概念第二讲决策树方法第三讲风险型决策的敏感性分析第四讲马尔可夫型决策简介高中人教版(B)教材目录介绍必修一第一章集合1.1 集合与集合的表示方法1.2 集合之间的关系与运算第二章函数2.1 函数2.2 一次函数和二次函数2.3 函数的应用(Ⅰ)2.4 函数与方程第三章基本初等函数(Ⅰ)3.1 指数与指数函数3.2 对数与对数函数3.3 幂函数3.4 函数的应用(Ⅱ)必修二第一章立体几何初步1.1 空间几何体1.2 点、线、面之间的位置关系第二章平面解析几何初步2.1 平面真角坐标系中的基本公式 2.2 直线方程2.3 圆的方程2.4 空间直角坐标系必修三第一章算法初步1.1 算法与程序框图1.2 基本算法语句1.3 中国古代数学中的算法案例第二章统计2.1 随机抽样2.2 用样本估计总体2.3 变量的相关性第三章概率3.1 随机现象3.2 古典概型3.3 随机数的含义与应用3.4 概率的应用必修四第一章基本初等函(Ⅱ)1.1 任意角的概念与弧度制1.2 任意角的三角函数 1.3 三角函数的图象与性质第二章平面向量2.1 向量的线性运算2.2 向量的分解与向量的坐标运算2.3 平面向量的数量积2.4 向量的应用第三章三角恒等变换3.1 和角公式3.2 倍角公式和半角公式3.3 三角函数的积化和差与和差化积必修五第一章解直角三角形1.1 正弦定理和余弦定理1.2 应用举例第二章数列2.1 数列2.2 等差数列2.3 等比数列第三章不等式3.1 不等关系与不等式3.2 均值不等式3.3 一元二次不等式及其解法3.4 不等式的实际应用3.5 二元一次不等式(组)与简单线性规划问题选修1-1第一章常用逻辑用语1.1 命题与量词1.2 基本逻辑联结词1.3 充分条件、必要条件与命题的四种形式第二章圆锥曲线与方程2.1 椭圆2.2 双曲线2.3 抛物线第三章导数及其应用3.1 导数3.2 导数的运算3.3 导数的应用选修1-2第一章统计案例第二章推理与证明第三章数系的扩充与复数的引入第四章框图选修4-5第一章不等式的基本性质和证明的基本方法1.1 不等式的基本性质和一元二次不等式的解法1.2 基本不等式1.3 绝对值不等式的解法1.4 绝对值的三角不等式1.5 不等式证明的基本方法第二章柯西不等式与排序不等式及其应用2.1 柯西不等式2.2 排序不等式2.3 平均值不等式(选学)2.4 最大值与最小值问题,优化的数学模型第三章数学归纳法与贝努利不等式3.1 数学归纳法原理3.2 用数学归纳法证明不等式,贝努利不等式。
人教A版高中数学选修2-1第二章 圆锥曲线与方程-圆锥曲线基本题型总结习题
圆锥曲线基本题型总结:提纲:一、定义的应用:1、定义法求标准方程:2、涉及到曲线上的点到焦点距离的问题:3、焦点三角形问题:二、圆锥曲线的标准方程:1、对方程的理解2、求圆锥曲线方程(已经性质求方程)3、各种圆锥曲线系的应用:三、圆锥曲线的性质:1、已知方程求性质:2、求离心率的取值或取值范围3、涉及性质的问题:四、直线与圆锥曲线的关系:1、位置关系的判定:2、弦长公式的应用:3、弦的中点问题:4、韦达定理的应用:一、定义的应用:1.定义法求标准方程:(1)由题目条件判断是什么形状,再由该形状的特征求方程:(注意细节的处理)1.设F1,F2为定点,|F1F2|=6,动点M满足|MF1|+|MF2|=6,则动点M的轨迹是()A.椭圆B.直线C.圆D.线段【注:2a>|F1 F2|是椭圆,2a=|F1 F2|是线段】A.x 225+y 29=1 (y ≠0) B.y 225+x 29=1 (y ≠0) C.x 216+y 216=1 (y ≠0) D.y 216+x 29=1 (y ≠0) 【注:检验去点】3.已知A (0,-5)、B (0,5),|P A |-|PB |=2a ,当a =3或5时,P 点的轨迹为( ) A.双曲线或一条直线 B.双曲线或两条直线 C.双曲线一支或一条直线D.双曲线一支或一条射线 【注:2a<|F 1 F 2|是双曲线,2a=|F 1 F 2|是射线,注意一支与两支的判断】4.已知两定点F 1(-3,0),F 2(3,0),在满足下列条件的平面内动点P 的轨迹中,是双曲线的是( ) A.||PF 1|-|PF 2||=5 B.||PF 1|-|PF 2||=6 C.||PF 1|-|PF 2||=7D.||PF 1|-|PF 2||=0 【注:2a<|F 1 F 2|是双曲线】5.平面内有两个定点F 1(-5,0)和F 2(5,0),动点P 满足|PF 1|-|PF 2|=6,则动点P 的轨迹方程是( ) A.x 216-y 29=1(x ≤-4)B.x 29-y 216=1(x ≤-3) C.x 216-y 29=1(x ≥4)D.x 29-y 216=1(x ≥3) 【注:双曲线的一支】 6.如图,P 为圆B :(x +2)2+y 2=36上一动点,点A 坐标为(2,0),线段AP 的垂直平分线交直线BP 于点Q ,求点Q 的轨迹方程.7.已知点A(0,3)和圆O 1:x 2+(y +3)2=16,点M 在圆O 1上运动,点P 在半径O 1M 上,且|PM|=|PA|,求动点P 的轨迹方程.(2)涉及圆的相切问题中的圆锥曲线:8.已知圆A :(x +3)2+y 2=100,圆A 内一定点B (3,0),圆P 过B 且与圆A 内切,求圆心P 的轨迹方程. 已知动圆M 过定点B (-4,0),且和定圆(x -4)2+y 2=16相切,则动圆圆心M 的轨迹方程为( ) A.x 24-y 212=1 (x >0)B.x 24-y 212=1 (x <0) C.x 24-y 212=1D.y 24-x 212=1 【注:由题目判断是双曲线的一支还是两支】 9.若动圆P 过点N (-2,0),且与另一圆M :(x -2)2+y 2=8相外切,求动圆P 的圆心的轨迹方程. 【注:双曲线的一支,注意与上题区分】10.如图,已知定圆F 1:x 2+y 2+10x +24=0,定圆F 2:x 2+y 2-10x +9=0,动圆M 与定圆F 1、F 2都外切,求动圆圆心M 的轨迹方程.11.若动圆与圆(x -2)2+y 2=1相外切,又与直线x +1=0相切,则动圆圆心的轨迹是( ) A.椭圆 B.双曲线 C.双曲线的一支 D.抛物线12.已知动圆M 经过点A (3,0),且与直线l :x =-3相切,求动圆圆心M 的轨迹方程. 【注:同上题做比较,说法不一样,本质相同】13.已知点A (3,2),点M 到F ⎝⎛⎭⎫12,0的距离比它到y 轴的距离大12.(M 的横坐标非负) (1)求点M 的轨迹方程; 【注:体现抛物线定义的灵活应用】(2)是否存在M ,使|MA |+|MF |取得最小值?若存在,求此时点M 的坐标;若不存在,请说明理由. 【注:抛物线定义的应用,涉及抛物线上的点到焦点的距离转化成到准线的距离】(3)其他问题中的圆锥曲线:14.已知A ,B 两地相距2 000 m ,在A 地听到炮弹爆炸声比在B 地晚4 s ,且声速为340 m/s ,求炮弹爆炸点的轨迹方程. 【注:双曲线的一支】2.15.如图所示,在正方体ABCD —A 1B 1C 1D 1中,P 是侧面BB 1C 1C 内一动点,若P 到直线BC 与到直线C 1D 1的距离相等,则动点P 的轨迹所在的曲线是( )A .直线B .圆C . 双曲线D .抛物线【注:体现抛物线定义的灵活应用】2.涉及到曲线上的点到焦点距离的问题:16.设椭圆x 2m 2+y 2m 2-1=1 (m >1)上一点P 到其左焦点的距离为3,到右焦点的距离为1,则椭圆的离心率为( )A.22 B.12 C.2-12 D.3417.椭圆x 216+y 27=1的左右焦点为F 1,F 2,一直线过F 1交椭圆于A 、B 两点,则△ABF 2的周长为( )A .32B .16C .8D .418.已知双曲线的方程为x 2a 2-y 2b2=1,点A ,B 在双曲线的右支上,线段AB 经过双曲线的右焦点F 2,|AB |=m ,F 1为另一焦点,则△ABF 1的周长为( )A .2a +2mB .4a +2mC .a +mD .2a +4m19.若双曲线x 2-4y 2=4的左、右焦点分别是F 1、F 2,过F 2的直线交右支于A 、B 两点,若|AB |=5,则△AF 1B 的周长为________.20.设F 1、F 2是椭圆x 216+y 212=1的两个焦点,P 是椭圆上一点,且P 到两个焦点的距离之差为2,则△PF 1F 2是( )A .钝角三角形B .锐角三角形C .斜三角形D .直角三角形21.椭圆x 29+y 22=1的焦点为F 1、F 2,点P 在椭圆上.若|PF 1|=4,则|PF 2|=________,∠F 1PF 2的大小为________.【注:椭圆上的点到焦点的距离,最小是a -c ,最大是a+c 】22.已知P 是双曲线x 264-y 236=1上一点,F 1,F 2是双曲线的两个焦点,若|PF 1|=17,则|PF 2|的值为________.【注:注意结果的取舍,双曲线上的点到焦点的距离最小为c -a 】23.已知双曲线的方程是x 216-y 28=1,点P 在双曲线上,且到其中一个焦点F 1的距离为10,点N 是PF 1的中点,求|ON |的大小(O 为坐标原点). 【注:O 是两焦点的中点,注意中位线的体现】24.设F 1、F 2分别是双曲线x 25-y 24=1的左、右焦点.若点P 在双曲线上,且1PF u u u u r ·2PF u u u u r =0,则|1PF u u u u r +2PF u u u u r |等于( ) A .3 B .6 C .1 D .225.已知点P 是抛物线y 2=2x 上的一个动点,则点P 到点(0,2)的距离与点P 到该抛物线准线的距离之和的最小值是( ) A.172B.3C. 5D.92【注:抛物线定义的应用,将抛物线上的点到焦点的距离转化成到准线的距离】26.已知抛物线y 2=4x 上的点P 到抛物线的准线的距离为d 1,到直线3x -4y +9=0的距离为d 2,则d 1+d 2的最小值是( ) A.125 B.65 C .2 D.55【注:抛物线定义的应用,将抛物线上的点到准线的距离转化成到焦点的距离】27.设点A 为抛物线y2=4x 上一点,点B(1,0),且|AB|=1,则A 的横坐标的值为( )A .-2B .0C .-2或0D .-2或2 【注:抛物线的焦半径,即定义的应用】3.焦点三角形问题:椭圆的焦点三角形周长2c 2a 2C PF PF C 21F PF 21+∆=++= 椭圆的焦点三角形面积:推导过程:2tan sin cos 121sin 21cos 1 -)cos (12 (1)-(2)(2)2a (1)COS 2-2 1 b 2b PFPF S 2bPFPF 4c 4a PFPF PF PF 4c PF PF PF PF 2221F PF 22122212212212221θθθθθθθ=+==+==+⎪⎩⎪⎨⎧=+=+∆得双曲线的焦点三角形面积:2tanbS 2F PF 21θ=∆28.设P 为椭圆x 2100+y 264=1上一点,F 1、F 2是其焦点,若∠F 1PF 2=π3,求△F 1PF 2的面积.【注:小题中可以直接套用公式。
高中数学第二章圆锥曲线与方程2.2椭圆周长和面积计算公式素材新人教A版选修2-1(2021学年)
高中数学第二章圆锥曲线与方程2.2 椭圆周长和面积计算公式素材新人教A版选修2-1编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中数学第二章圆锥曲线与方程 2.2 椭圆周长和面积计算公式素材新人教A版选修2-1)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中数学第二章圆锥曲线与方程 2.2 椭圆周长和面积计算公式素材新人教A版选修2-1的全部内容。
2.2椭圆周长和面积计算公式椭圆定理(又名:椭圆猜想)ﻫﻫ椭圆定理易亚苏ﻫﻫ(关键词:椭圆周长公式、椭圆周长定理、椭圆面积公式、椭圆面积定理等。
)ﻫ圆完美的和谐,椭圆和谐的完美.ﻫﻫ一、椭圆第一定义ﻫ椭圆第一定义:平面内与两个定点F1、F2的距离的和等于常数(大于F1F2)的点的轨迹叫做椭圆,这两个定点叫做椭圆的焦点,两焦点的距离叫做椭圆的焦距。
椭圆第一定义的数学表达式:MF1+MF2=2a〉F1F2(由于网上发文的遗憾,公式和符号略有缺陷,相信您能够看懂.)M为动点,F1、F2为定点,a为常数。
在椭圆中,用a表示长半轴的长,b表示短半轴的长,且a>b>0;2c表示焦距。
二、椭圆定理(一)椭圆定理Ⅰ(椭圆焦距定理)ﻫ椭圆定理Ⅰ:任意同心圆,小圆任意切线与大圆形成的弦等于以大圆半径为长半轴长、小圆半径为短半轴长的椭圆焦距。
该椭圆中心在同心圆圆心,焦点在圆心以焦距一半为半径的圆上。
附图:椭圆的奥秘图解之一(焦距定理)(略)ﻫ(二)椭圆定理Ⅱ(椭圆第一常数定理)ﻫ定义1:K1=2/(π—2),K1为椭圆第一常数。
定义2:f=b/a,f为椭圆向心率(a〉b〉0)。
定义3:T=K1+f,T为椭圆周率.ﻫ椭圆定理Ⅱ:椭圆是同心圆依照勾股定理和谐组合,椭圆第一常数K1的数值加上椭圆向心率f的数值等于椭圆周率T的数值。
高中数学第2章圆锥曲线与方程习题课_双曲线的综合问题及应用课件新人教A版选修2_1
思路分析直线方程与双曲线方程联立方程组⇒判断“Δ”与“0”的
关系⇒直线与双曲线的位置关系.
探究一
探究二
当堂检测
= -1,
2 - 2 = 1,
消去 y 并整理,得(1-k2)x2+2kx-2=0.
∵直线与双曲线有两个不同的交点,
1- 2 ≠ 0,
则
= 4 2 + 8(1- 2 ) > 0,
(1)定义:|r1-r2|=2a.
(2)余弦公式:4c2=12 + 22 -2r1r2cos θ.
1
(3)面积公式:△ 1 2 = 2r1r2sin θ.
一般地,在△PF1F2中,通过以上三个等式,所求问题就会顺利解决.
【思考】直线与圆(椭圆)有且只有一个公共点,则直线与圆(椭圆)
相切,那么,直线与双曲线相切,能用这个方法判断吗?
1
有唯一公共点,由于双曲线的渐近线为 y=±2x,
1
1
故直线 l 的方程为 y=2(x-2)或 y=-2(x-2),
1
1
即 y=2x-1 或 y=-2x+1.故选 C.
答案C
2
【做一做4】 双曲线x2- 3=1的左、右顶点分别为A,B,右支上有一
点M,且kMA=1,则△MAB的面积为
.
2
解析因为kMA=1,A(-1,0),故直线MA的方程为y=x+1,代入x2- 3 =1,整
习题课——双曲线的综合问题及应用
课标阐释
思维脉络
1.掌握利用双曲线的定义解决 双曲线的综合问题及应用
有关问题的方法.
双曲线定义的应用
2.理解直线与双曲线的位置关
人教版A版高中数学高二选修2-1 第二章复习圆锥曲线的弦长公式
弦长公式实战演示(高二第20期)龚学谦在直线与圆锥曲线相交的位置关系中,涉及弦长的题型很多,这里介绍一个弦长公式,供同学们在有关题型的求解证明中应用。
一、公式的形成已知直线l :y =k x +m 和圆锥曲线C :f (x ,y )=0,若直线l 与圆锥曲线C 交于两点A(x 1,y 1),B(x 2,y 2),设由方程组⎩⎨⎧y =k x +m f (x ,y )=0消去y 所得的一元二次方程为a x ²+b x +c=0,则A 、B 两点的横坐标x 1,x 2满足方程。
于是x 1+x 2= -b a ,x 1x 2=c a ,判别式Δ=b²-4ac. 从而|AB|=(x 1-x 2)2+(y 1-y 2)2=(x 1-x 2)2+[(kx 1+m)-(kx 2+m)]2 =(1+k 2)(x 1-x 2)2=(1+k 2)[(x 1+x 2)2-4x 1x 2]=(1+k 2)[(-b a )2-4×c a ]= (1+k 2)Δ|a|于是有圆锥曲线的弦长公式⑴:|AB|= (1+k 2)Δ|a| 同理:设由方程组⎩⎨⎧y =k x +m f (x ,y )=0消去x 所得的一元二次方程为a y ²+b y +c=0,可得圆锥曲线的弦长公式⑵:|AB|= (1+k 2)Δ|a|二、公式的应用举例⒈已知曲线和弦的中点,求弦长例1 已知抛物线y ²=6x ,过点P(4,1)作一弦与抛物线相交于A 、B ,使P 恰为弦AB 的中点,求弦AB 所在的直线方程和弦AB 的长。
分析:设出直线AB 方程,由根与系数关系,中点公式,弦长公式求解。
解:设过P 点的直线AB 方程为y -1=k(x -4)(k ≠0),由方程组⎩⎨⎧y 2=6x y-1=k(x-4)中消去x 得k y ²-6y +6-24k=0,⑴ 由中点公式及根与系数的关系得- -62k = y 1+y 22=1,解之k=3, 故弦AB 所在的直线方程为y -1=3(x -4),即y =3x -11,这时,方程⑴化为y ²-2y -22=0.由弦长公式得 |AB|=|13|)22(14)2)[(31(22⋅-⋅⋅--+=23032 点评:显然,由方程组消去y 比消去x 好,但要注意用弦长公式⑵求解弦长。
高中数学 第二章 圆锥曲线与方程 2.4 二次抛物线的公式素材 新人教A版选修2-1
2.4 二次抛物线的公式
二次函数中抛物线的公式中的a.b.c各代表什么意思?
二次函数中抛物线的公式中的a.b.c分别是二次项系数,一次项系数,常数项.a>0抛物线开口向上,a<0抛物线开口向下.x=-b/2a是抛物线的对称轴.c是抛物线与y轴交点的纵坐标.
最简单的二次抛物线Y=a*X^2的长度计算公式?
任意设两点(x1,y1) (x2,y2)
y1=a×x1^2
y2=a×x2^2
y1-y2=a(x1^2-x2^2)
长度s=根号[(x1-x2)^2+(y1-y2)^2]=|x1-x2|根号[1+a^2(x1+x2)^2]
二次抛物线公式是什么?
标准式:y=ax^2+bx+c
顶点式:y=a(x+m)^2+k
两根式:y=a(x-x1)(x-x2)
^2是平方的意思,且a不等于零。
{圆钢管重量计算公式}
普通钢管重量(kg)=壁厚×(外径-壁厚)×0.02466×长度
螺旋焊管重量(kg)=壁厚×(外径-壁厚)×0.02466×长度+0.5
式中壁厚、外径都是以毫米为单位计算的
2×(48-2)×0.02466×6=2.2687×6=13.612。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.4 二次抛物线的公式
二次函数中抛物线的公式中的a.b.c各代表什么意思?
二次函数中抛物线的公式中的a.b.c分别是二次项系数,一次项系数,常数项.a>0抛物线开口向上,a<0抛物线开口向下.x=-b/2a是抛物线的对称轴.c是抛物线与y轴交点的纵坐标.
最简单的二次抛物线Y=a*X^2的长度计算公式?
任意设两点(x1,y1) (x2,y2)
y1=a×x1^2
y2=a×x2^2
y1-y2=a(x1^2-x2^2)
长度s=根号[(x1-x2)^2+(y1-y2)^2]=|x1-x2|根号[1+a^2(x1+x2)^2]
二次抛物线公式是什么?
标准式:y=ax^2+bx+c
顶点式:y=a(x+m)^2+k
两根式:y=a(x-x1)(x-x2)
^2是平方的意思,且a不等于零。
{圆钢管重量计算公式}
普通钢管重量(kg)=壁厚×(外径-壁厚)×0.02466×长度
螺旋焊管重量(kg)=壁厚×(外径-壁厚)×0.02466×长度+0.5
式中壁厚、外径都是以毫米为单位计算的
2×(48-2)×0.02466×6=2.2687×6=13.612
1。