泼尼松
备孕醋酸泼尼松片的作用及使用方法详解
备孕醋酸泼尼松片的作用及使用方法详解备孕阶段对于准父母来说是一个重要的时期,由于它打算了受孕和怀孕的胜利率。
备孕醋酸泼尼松片是备孕过程中常用的一种药物,它可以起到肯定的帮助作用。
在本文中,我将具体介绍备孕醋酸泼尼松片的作用及使用方法。
1. 醋酸泼尼松片的作用:备孕醋酸泼尼松片主要起到调整免疫系统的作用。
它可以抑制免疫反应,降低免疫系统的活性,从而削减对胚胎的排斥反应。
这对于一些存在免疫问题的准父母来说尤为重要,由于免疫问题可能导致不孕或多次流产。
醋酸泼尼松片可以关心准父母提高受孕和怀孕的胜利率。
2. 醋酸泼尼松片的使用方法:首先,准父母在考虑使用醋酸泼尼松片之前应当询问医生的建议。
医生会依据个人的状况和需要来打算是否需要使用该药物,并确定适当的剂量。
通常状况下,醋酸泼尼松片的剂量为每天15-30毫克,分2-3次口服。
使用时应当根据医生的指示来服用,不要自行增减剂量。
同时,醋酸泼尼松片应当在饭后服用,以削减对胃的刺激。
在使用醋酸泼尼松片的过程中,准父母需要亲密关注身体的反应。
假如消失严峻的不良反应,如消化道出血、腹痛、呕吐等,应马上停止使用,并准时就医。
3. 留意事项:在使用醋酸泼尼松片时,准父母需要留意以下几点:-遵循医生的建议:醋酸泼尼松片是处方药,必需在医生的指导下使用。
不要自行购买和使用该药物,以免造成不良后果。
-严格根据剂量使用:不要超过医生建议的剂量,也不要随便削减剂量。
只有根据医生的指示来使用,才能发挥药物的最佳效果。
-留意不良反应:假如消失严峻的不良反应,应马上停止使用,并询问医生的建议。
不要自行停药或更换其他药物,以免影响备孕效果。
-定期复诊:在使用醋酸泼尼松片的过程中,准父母需要定期复诊,与医生进行沟通和评估。
医生会依据个人的状况来调整剂量和疗程。
总结:备孕醋酸泼尼松片在调整免疫系统方面起到重要作用。
使用时应当遵循医生的建议,根据剂量使用,并留意身体的反应。
在使用过程中消失严峻不良反应时,应准时停药并询问医生。
醋酸泼尼松作用
醋酸泼尼松作用醋酸泼尼松是一种合成皮质类固醇,其化学结构与人体内分泌的皮质醇相似。
醋酸泼尼松具有抗炎、抗过敏和免疫抑制等多种作用,广泛应用于临床医学。
首先,醋酸泼尼松具有强效的抗炎作用。
炎症是引起局部肿胀、红肿热痛等症状的重要原因,醋酸泼尼松通过抑制炎症反应中的多种介质的释放,如前列腺素、白三烯等,从而减轻炎症反应,缓解炎症相关症状。
其次,醋酸泼尼松还具有抗过敏作用。
过敏反应是机体在暴露于过敏原后产生的异常免疫反应,如过敏性鼻炎、过敏性皮炎等。
醋酸泼尼松可以抑制过敏反应中的多种免疫细胞的活化和介质的释放,从而减轻过敏反应,缓解过敏相关症状。
此外,醋酸泼尼松还具有免疫抑制作用。
免疫抑制是指抑制机体免疫系统的功能,从而减少免疫反应。
在某些自身免疫性疾病、器官移植等情况下,机体免疫系统会产生过度的免疫反应,导致疾病的发生和进展。
醋酸泼尼松可以抑制免疫细胞的活化和免疫反应的发生,从而起到治疗作用。
在临床应用中,醋酸泼尼松有多种给药途径,如口服、皮下注射、静脉注射等。
在炎症性疾病的治疗中,通常选择口服给药,以达到全身的治疗效果。
在进行组织移植、器官移植等手术后,常常选择静脉注射醋酸泼尼松,以达到较快的免疫抑制效果。
然而,醋酸泼尼松也存在一定的副作用。
长期或大剂量使用醋酸泼尼松可能会导致免疫功能下降,易感染;出现激素依赖或戒断综合征等。
因此,在使用醋酸泼尼松的过程中,需要根据具体情况,权衡其治疗效果和副作用,合理使用。
总之,醋酸泼尼松作为一种合成皮质类固醇,具有抗炎、抗过敏和免疫抑制等作用。
在治疗炎症性疾病、过敏性疾病和某些免疫相关疾病方面有着广泛应用。
然而,需要注意其潜在的副作用和合理用药原则,以达到最佳治疗效果。
地塞米松换算泼尼松的公式
地塞米松换算泼尼松的公式
地塞米松换算到泼尼松的公式是:
泼尼松剂量(mg)= 地塞米松剂量(mg)* 0.75
地塞米松(Dexamethasone)和泼尼松(Prednisone)都属于类固醇药物,常用
于治疗各种炎症和免疫系统相关的疾病。
在一些情况下,医生可能需要根据患者的需要从地塞米松换算到泼尼松或者反过来。
这是因为两种药物的效力略有不同。
据医学研究表明,地塞米松的效力大约是泼尼松的1.5倍。
所以,为了将地塞
米松的剂量换算成相当的泼尼松剂量,我们可以使用上述公式,即地塞米松剂量乘以0.75。
举个例子,如果患者需要接受地塞米松治疗,给定地塞米松剂量为4mg,我们
可以使用公式计算:
泼尼松剂量 = 4mg * 0.75 = 3mg
所以,相当于4mg的地塞米松剂量为泼尼松剂量3mg。
这个换算公式是基于药物等效性的研究得出的,但请注意,每个患者的具体情
况可能有所不同。
因此,在任何换算过程中,应该始终依据医生的建议,并与医生密切合作,以确保准确的药物剂量。
对于任何疑问或不确定之处,请咨询专业医生。
泼尼松(Prednisone)使用说明书
泼尼松(Prednisone)使用说明书泼尼松(Prednisone)使用说明书一、药品介绍泼尼松是一种皮质类固醇类药物,具有抗炎、抗过敏和免疫抑制等作用。
它主要用于治疗多种炎症性疾病,包括过敏性疾病、风湿性疾病、自身免疫疾病以及器官移植后的免疫抑制等情况。
二、使用方法1. 剂量:泼尼松的剂量应根据疾病类型、病情严重程度和患者个体差异来确定。
请遵医嘱使用,并不得擅自调整剂量。
2. 用药时间:通常情况下,泼尼松的疗程为数天至几周不等,具体根据医生的建议来决定,且不得提前停药。
3. 服药方法:泼尼松有口服和注射剂型。
如果是口服药物,请按照医嘱的剂量和时间进行服用。
如果是注射剂型,请由专业医生进行注射。
4. 饭前或饭后:泼尼松可饭前或饭后服用,但建议在饭后服用可减少胃肠道不良反应的发生。
三、注意事项1. 严格按医生的指导用药,不得擅自调整剂量或停药。
如需更改剂量或停药,应咨询医生意见。
2. 使用泼尼松期间,应避免与其他药物相互作用。
如果同时使用其他药物,请告知医生或药师,以避免可能的相互作用。
3. 使用泼尼松的过程中,应密切关注身体反应和可能出现的副作用。
如出现消化不良、失眠、免疫功能下降等不良反应,请及时与医生联系。
4. 使用泼尼松时,应避免接触感染源和接种活疫苗,以免引发感染或减弱疫苗的免疫效果。
5. 孕妇、哺乳期妇女和儿童使用泼尼松前,应告知医生。
在这些特殊人群中,泼尼松的使用需要谨慎,并在医生的指导下进行。
四、储存要求1. 泼尼松应存放在阴凉、干燥的地方,远离阳光直射。
2. 儿童无法接触的地方,以免误食。
3. 使用过期的泼尼松是不安全的,应及时丢弃过期药物并购买新的药物。
五、可能的副作用泼尼松在治疗疾病的同时,也可能带来一些副作用。
常见的副作用包括但不限于:消化不良、失眠、免疫功能下降、水钠潴留和肾上腺皮质功能抑制等。
如果出现严重副作用或不良反应,请及时就医。
六、紧急情况处理如果发生过敏反应、呼吸困难、严重头痛、持续呕吐或其他严重症状,请立即就医或紧急就诊,告知医生使用了泼尼松。
泼尼松片的作用及功能主治
泼尼松片的作用及功能主治1. 引言泼尼松片是一种常用的药物,属于肾上腺皮质激素类药物。
它具有广泛的作用和功能主治,被广泛应用于临床医疗领域。
本文将详细介绍泼尼松片的作用和功能主治。
2. 泼尼松片的作用泼尼松片的作用主要包括以下几个方面:•抗炎作用:泼尼松片能够抑制炎症反应,减少炎症引起的组织损伤和病变。
它可以抑制炎症细胞的活性,减少炎症介质的释放,从而减轻患者的炎症症状。
•免疫抑制作用:泼尼松片能够抑制免疫系统的功能,减少免疫反应,从而减轻自身免疫性疾病患者的症状。
它可以抑制免疫细胞的活性,减少细胞因子的产生,从而减轻炎症和免疫反应。
•抗过敏作用:泼尼松片能够抑制过敏反应,减少过敏介质的释放,从而减轻过敏性疾病患者的症状。
它可以抑制过敏细胞的活性,减少组织胺等过敏介质的产生,从而减轻过敏反应。
3. 泼尼松片的功能主治泼尼松片的功能主治涵盖了多个疾病和症状,包括但不限于以下方面:•风湿性疾病:泼尼松片在治疗风湿性疾病中具有重要作用。
它可以减轻风湿性疾病引起的关节疼痛、肿胀和活动受限等症状,改善患者的生活质量。
•免疫性疾病:泼尼松片在治疗免疫性疾病中发挥重要的作用。
它可以减轻免疫性疾病引起的炎症和免疫反应,改善患者的症状,控制疾病的进展。
•过敏性疾病:泼尼松片对过敏性疾病的治疗也非常有效。
它可以减轻过敏引起的症状,如过敏性鼻炎、过敏性皮炎等,改善患者的生活质量。
•呼吸系统疾病:泼尼松片对呼吸系统疾病的治疗具有显著效果。
它可以缓解哮喘、支气管炎等疾病引起的呼吸困难、咳嗽等症状,改善患者的呼吸功能。
•皮肤疾病:泼尼松片在治疗皮肤疾病中也常被使用。
它可以缓解过敏性皮炎、湿疹等疾病引起的皮肤瘙痒、红肿等症状,改善皮肤状况。
•其他疾病:泼尼松片还可用于其他多种疾病的治疗,如肾上腺皮质功能减退症、白血病等。
4. 注意事项在使用泼尼松片时,需要注意以下事项:•用药剂量和疗程:使用泼尼松片需要根据医生的指导进行,不能自行增减剂量。
泼尼松的名词解释
泼尼松的名词解释泼尼松(prednisone)是一种广泛用于医学领域的合成类固醇药物。
它属于皮质类固醇激素的一种,有着广泛的应用范围,并被广泛用于治疗多种疾病和炎症。
首先,泼尼松属于激素药物的一种。
激素是人体内部分泌系统的重要组成部分,通过在局部或全身发挥重要的调节作用。
泼尼松是一种糖皮质激素,它在人体内的主要来源是肾上腺分泌的肾上腺皮质激素。
与自然激素相比,泼尼松的作用更为强大,且持续的时间更长。
泼尼松的主要作用是抗炎作用。
它通过抑制炎症反应,减轻组织的水肿、红肿、疼痛等症状,因而被广泛用于治疗风湿性关节炎、类风湿性关节炎、系统性红斑狼疮、红斑狼疮性肾炎等自身免疫性疾病。
此外,泼尼松还可以用于治疗哮喘、支气管炎、过敏性疾病、结缔组织病、器官移植排斥反应等。
泼尼松的药理作用是通过与细胞内胞浆内的胞核内受体结合,对基因转录、细胞信号传导途径进行调节。
它能够抑制多种炎症介质的产生和释放,如前列腺素、白介素、肿瘤坏死因子等,从而达到抗炎的效果。
泼尼松也具有免疫抑制作用。
它可以抑制免疫细胞的活性和功能,减少免疫反应的强度和持续时间。
这对于一些自身免疫性疾病的治疗非常重要,因为这些疾病是由于人体免疫系统对自身组织产生异常反应导致的。
然而,泼尼松也具有一些副作用。
长期使用高剂量的泼尼松可能会引发一系列的不良反应,如骨质疏松、胃溃疡、高血压、糖尿病等。
此外,泼尼松还会减弱人体对感染的抵抗力,增加感染的风险。
在使用泼尼松时,医生往往会制定个体化的治疗方案,根据患者的具体病情和需要进行剂量和时间的调整。
同时,为了避免患者对药物的依赖性和副作用的产生,医生通常会选择尽量使用最小剂量,并尽早地逐步停药。
总结而言,泼尼松是一种重要的合成类固醇药物,具有广泛的应用领域。
它的主要作用是抗炎和免疫抑制,用于治疗多种炎症和自身免疫性疾病。
然而,患者在使用泼尼松时需要注重剂量和时间的控制,以最大程度地发挥疗效,同时减少副作用的发生。
酸酸泼尼松片的功能主治
酸酸泼尼松片的功能主治
1. 什么是酸酸泼尼松片?
酸酸泼尼松片是一种口服的肾上腺皮质激素类药物,其活性成分是泼尼松龙。
泼尼松龙是一种合成的糖皮质激素,具有抗炎、抗过敏和免疫调节等多种作用。
2. 酸酸泼尼松片的功能主治
酸酸泼尼松片具有广泛的功能主治,适用于以下情况:
•抗炎作用:酸酸泼尼松片可以抑制炎症反应,减轻炎症引起的症状和不适。
它可用于治疗风湿性关节炎、类风湿性关节炎等炎症性关节病,减轻关节疼痛和肿胀。
•抗过敏作用:酸酸泼尼松片能够减轻过敏反应引起的症状,如鼻塞、流鼻涕、打喷嚏等。
它常用于治疗过敏性鼻炎、过敏性皮炎等过敏性疾病。
•免疫调节作用:酸酸泼尼松片可以调节免疫系统的功能,抑制免疫反应。
它可用于治疗自身免疫性疾病,如系统性红斑狼疮、类风湿性关节炎等。
•抗肿瘤作用:酸酸泼尼松片在一些特定情况下可以用于治疗恶性肿瘤,如白血病、淋巴瘤等。
它可以抑制肿瘤细胞的生长和扩散。
•其他作用:酸酸泼尼松片还可以用于治疗其他一些疾病和症状,如哮喘、溃疡性结肠炎、过敏性休克等。
酸酸泼尼松片的功能主治基于其主要成分泼尼松龙的药理作用,通过抑制炎症
反应、减轻过敏症状、调节免疫系统和抗肿瘤作用等方式,起到治疗和缓解相关疾病的效果。
值得注意的是,酸酸泼尼松片是一种处方药,使用时应遵循医生的指导,并按
照正确的剂量和规定的时间进行用药。
酸酸泼尼松片的功能主治涵盖了多种疾病和症状,但使用时还需注意药物的安
全性和副作用。
因此,在使用酸酸泼尼松片前,建议咨询医生的建议,并遵循医嘱进行用药。
泼尼松片的功效与作用
泼尼松片的功效与作用
泼尼松片是一种糖皮质激素药物,它具有以下功效和作用:
1. 抗炎作用:泼尼松片能够抑制体内炎症反应,减轻炎症相关症状和疾病。
它可以抑制免疫系统中的炎症介质的合成和释放,减少组织炎症反应,从而缓解疼痛、肿胀和红肿等炎症相关症状。
2. 免疫抑制作用:泼尼松片能够抑制免疫系统的功能,减少免疫细胞的活性和趋化性,从而抑制免疫反应。
这可以在一些过度免疫反应性疾病(如风湿性关节炎、系统性红斑狼疮等)中减轻症状,并减少免疫系统攻击自身组织的可能性。
3. 抗过敏作用:泼尼松片可以减轻过敏反应,抑制过敏介质的合成和释放,从而减少过敏症状如鼻塞、流涕、皮疹等。
4. 其他作用:除上述作用外,泼尼松片还可以提高红细胞、白细胞和血小板的产生,促进肾脏对盐类的保留,抑制骨骼肌蛋白质分解,增加胃肠道内脂肪和糖类的吸收,对心肌有保护作用等。
需要注意的是,泼尼松片的使用应该在医生的指导下进行,不能随意滥用或中断使用。
不同疾病需要的剂量和疗程可能有所不同,因此必须根据具体情况进行合理使用。
同时,长期大剂量使用泼尼松片可能会引起一系列副作用,如骨质疏松、血糖升高、感染风险增加等,需在医生的监测下使用并注意防范。
泼尼松片副作用
泼尼松片副作用
泼尼松片是一种在临床上常用的类固醇药物,主要用于治疗一些炎症性疾病、免疫相关疾病和过敏性疾病。
但是,泼尼松片在使用过程中也存在一些副作用。
首先,泼尼松片的副作用主要包括以下几个方面。
第一是对免疫系统的影响,长期使用泼尼松片会抑制免疫系统的功能,使身体对疾病的抵抗力下降,容易发生感染等不良反应。
第二是对内分泌系统的影响,泼尼松片会抑制肾上腺皮质激素的分泌,导致肾上腺皮质功能减退,出现肾上腺皮质功能不全症状,如肌肉无力、乏力等。
第三是对消化系统的影响,泼尼松片可引起胃黏膜损害,导致消化道溃疡、消化不良等症状。
第四是对骨骼系统的影响,长期使用泼尼松片会导致骨骼疏松、骨质疏松等骨骼问题。
此外,泼尼松片还可能引起心血管系统、神经系统和皮肤等方面的不良反应。
其次,在使用泼尼松片时,还需要注意以下几点。
首先,泼尼松片不能停药突然停药,必须逐渐减量,以免导致肾上腺皮质功能不全。
其次,患有高血压、糖尿病等疾病的患者,在使用泼尼松片时需要监测相应的生理指标,以及积极采取个体化的治疗措施。
再次,使用泼尼松片时,要注意避免与其他药物的相互作用,以免增加不良反应的风险。
最后,使用泼尼松片时,应该经过医生的指导和监督,严格按照剂量和用药时间进行服用,不能随意变更剂量或者延长用药时间。
总之,泼尼松片是一种常用的药物,但是在使用时也需要注意其副作用。
必须在医生的指导下合理使用,严格掌握剂量和用
药时间,以减少不良反应的风险。
此外,如果出现不良反应,应及时就医,并向医生报告,以便及时调整治疗方案。
只有正确使用泼尼松片,才能发挥其治疗作用,提高患者的生活质量。
泼尼松片的功能主治和作用
泼尼松片的功能主治和作用什么是泼尼松片?泼尼松片是一种含有泼尼松龙作为主要成分的药片。
泼尼松龙是一种合成的皮质类固醇激素,具有抗炎、抗过敏和免疫调节作用。
泼尼松片可用于治疗多种疾病和症状。
泼尼松片的功能主治以下是泼尼松片的功能主治:1.抗炎作用:泼尼松片可抑制炎症反应,减轻炎症引起的组织损伤。
它可以抑制多种炎症介质的产生,如前列腺素和白细胞趋化因子,从而减轻炎症症状。
2.抗过敏作用:泼尼松片可以抑制过敏反应,减轻过敏引起的症状。
它可以阻断过敏反应的发生,抑制过敏介质的产生,如组胺和白细胞介素,从而减轻鼻炎、荨麻疹等过敏症状。
3.免疫调节作用:泼尼松片可以调节免疫系统功能,抑制过度的免疫反应。
它可以抑制免疫细胞的活化和增殖,降低免疫系统对自身组织的攻击,从而减轻自身免疫性疾病的症状。
4.其他功能主治:泼尼松片还可用于治疗器官移植、白血病、血小板减少性紫癜、溃疡性结肠炎等疾病和症状。
使用注意事项1.使用剂量:泼尼松片的剂量应根据病情和医生的指导来确定,不可擅自增减剂量。
2.使用时机:泼尼松片的使用时间和使用周期应按照医生的指导来进行。
不得随意停药或延长服药时间。
3.不良反应:泼尼松片可能引起一些不良反应,如胃肠道不适、水钠潴留、高血压、糖尿病等。
如果出现不适反应,应及时告知医生。
4.对特定人群的影响:泼尼松片在孕妇、哺乳期妇女、儿童和老年人中的使用应慎重,并且要根据医生的指导来进行。
5.使用禁忌:对泼尼松片过敏者禁用,严重感染、消化性溃疡、骨折等患者的使用应在医生指导下进行。
注意事项总结•合理使用泼尼松片剂量,不可擅自增减剂量。
•严格按医生指导使用泼尼松片的时间和周期。
•注意不良反应,如胃肠道不适、水钠潴留等,及时告知医生。
•孕妇、哺乳期妇女、儿童和老年人的使用应慎重,遵循医生指导。
•对泼尼松片过敏者禁用,严重感染、消化性溃疡、骨折等患者需在医生指导下使用。
以上是关于泼尼松片的功能主治和使用注意事项的介绍。
泼尼松引起手抖的原理
泼尼松引起手抖的原理
泼尼松是一种肾上腺皮质激素类药物,长期或大剂量使用可能会引起手抖的不良反应。
其原理可能与以下几个方面有关:
1. 影响神经系统:泼尼松可以影响中枢神经系统,导致手抖等神经系统不良反应。
这可能与泼尼松对神经元的直接作用有关,也可能与泼尼松影响神经递质的释放和代谢有关。
2. 影响代谢:泼尼松可以影响碳水化合物、脂肪和蛋白质的代谢,导致血糖升高、脂肪堆积和蛋白质分解增加等。
这些代谢变化可能会影响神经系统的正常功能,从而导致手抖等不良反应。
3. 影响电解质平衡:泼尼松可以影响体内电解质的平衡,导致钾、钠等电解质的丢失。
电解质失衡可能会影响神经系统的正常功能,从而导致手抖等不良反应。
需要注意的是,手抖是泼尼松的一种常见不良反应,但并不是所有患者都会出现。
如果出现手抖等不良反应,应及时就医,并在医生的指导下调整用药剂量或更换其他药物。
同时,在使用泼尼松期间,应注意饮食、运动和生活方式等方面的调整,以减少不良反应的发生。
氢化泼尼松的用法
氢化泼尼松的用法氢化泼尼松是一种糖皮质激素类药物,主要用于以下疾病的治疗:1.炎症性疾病:氢化泼尼松可用于治疗多种炎症性疾病,如风湿性关节炎、类风湿性关节炎、系统性红斑狼疮、肾炎、红皮病等。
它可以减轻炎症反应,缓解疼痛和肿胀。
2.过敏性疾病:氢化泼尼松可用于治疗过敏性鼻炎、过敏性皮炎、过敏性哮喘等过敏反应引起的症状。
它可以抑制过敏反应,减轻炎症和过敏症状。
3.免疫调节:氢化泼尼松可用于治疗器官移植术后的排斥反应、自身免疫性疾病(如系统性红斑狼疮、硬皮病等)和肾上腺功能不全等。
它可以调节免疫系统的功能,减轻免疫反应。
4.呼吸系统疾病:氢化泼尼松可用于治疗支气管炎、慢性阻塞性肺疾病(COPD)、支气管哮喘等呼吸系统疾病。
它可以减轻炎症反应,扩张支气管,减轻呼吸困难。
氢化泼尼松的使用方法通常为口服给药,根据疾病的不同,剂量和疗程也会有所差异。
一般建议根据医生的指导,按照医生的处方进行用药。
不要随意增减剂量或停止用药,避免出现副作用或疾病复发。
在使用氢化泼尼松时,需要注意以下事项:1.遵循医生的用药指导:根据医生的处方和用药建议正确使用氢化泼尼松,避免自行调整剂量或停药。
2.注意用药时间和频率:按照医生的指导,按时按量服用药物,不要忘记用药。
3.了解可能的副作用:氢化泼尼松可能引起一些副作用,如免疫抑制、水肿、肠胃不适、高血压等。
如出现任何不适症状,应及时告知医生。
4.不要突然停药:长期使用氢化泼尼松的患者,应在医生指导下逐渐减少剂量,不要突然停药,以免引起肾上腺皮质功能减退等问题。
5.避免与其他药物相互作用:在使用氢化泼尼松期间,要告诉医生正在使用的其他药物,以避免药物相互作用。
总之,氢化泼尼松是一种常用的糖皮质激素类药物,适用于多种炎症性、过敏性和免疫相关性疾病的治疗。
使用时应遵循医生的指导,并注意药物的剂量、副作用和可能的相互作用。
如有任何不适或疑问,应及时咨询医生。
如何预防泼尼松
如何预防泼尼松1. 什么是泼尼松泼尼松,又称皮质类固醇,是一种具有抗炎、免疫调节和免疫抑制作用的药物。
它常用于控制和治疗多种疾病,例如风湿性关节炎、哮喘、过敏反应等。
然而,长期使用泼尼松可能带来一些副作用,如骨质疏松、易感染、水肿等。
为了预防泼尼松引起的不良影响,我们可以采取一些措施来改善疾病管理和减少泼尼松使用的频率和剂量。
2. 遵循医嘱首先,遵循医生的建议和处方是非常重要的。
按照医生的指示正确用药,遵守用药时间和剂量,可以有效控制疾病的症状,减少泼尼松使用的需要。
3. 保持健康生活方式保持健康的生活方式有助于减少泼尼松的使用。
以下是一些建议:•饮食均衡:健康饮食对整体健康至关重要。
保持适当的体重,摄入足够的营养素,增强免疫力。
•锻炼:适量的运动可以提高身体的抵抗力,增强肌肉和骨骼的功能,减少疲劳感。
•戒烟限酒:烟草和酒精对身体健康产生负面影响,增加疾病风险,并降低治疗效果。
•睡眠充足:良好的睡眠有助于恢复体力和免疫功能,提高抵抗力。
4. 充分了解泼尼松的副作用和风险了解泼尼松的副作用和潜在风险是预防措施的关键。
通过与医生和药剂师的沟通,可以了解泼尼松的使用方法、剂量和可能的副作用。
同时,及时与医生联系,如果出现任何副作用或不适,应及时报告给医生,以便及时调整治疗方案。
5. 寻求替代方法在一些情况下,可以尝试寻找替代方法来减少泼尼松的使用。
例如,通过改变饮食、增加锻炼和进行物理治疗等非药物治疗方法来控制疾病症状。
在一些适用的情况下,可以考虑替代疗法,例如中药、保健品等,但必须在医生的指导下进行。
6. 定期检查定期检查有助于监测疾病的进展和泼尼松治疗的效果。
通过定期检查,医生可以评估疾病的进展情况,根据需要调整治疗方案,减少泼尼松的使用剂量和频率。
7. 注意休息和放松长期使用泼尼松可能会导致身体疲劳和免疫力下降。
因此,注意休息和放松,合理安排工作和生活,有助于提高身体的抵抗力,减少症状的发作。
8. 接种疫苗使用泼尼松的患者可能容易感染疾病。
泼尼松的副作用
泼尼松的副作用泼尼松是一种针对多种疾病的类固醇类药物。
它的主要作用是抑制免疫系统,减轻炎症和过敏反应。
然而,泼尼松的使用也会伴随一些副作用。
下面将介绍泼尼松的常见副作用。
泼尼松的副作用主要分为两大类:短期副作用和长期副作用。
短期副作用通常在停药后即可消失。
首先是免疫系统的副作用,使用泼尼松会抑制免疫系统的功能,使身体更容易受到感染。
因此,感染的风险会增加。
常见的感染症状包括发热、咳嗽、喉咙痛和尿路感染等。
其次是消化系统的副作用。
泼尼松可以影响胃肠系统的正常功能,引起消化问题,如胃灼热、消化不良、胃部疼痛等。
还有一些其他的短期副作用,比如水肿、失眠、情绪波动、肌肉骨骼疼痛和头痛等。
然而,更为严重和长期的副作用可能出现在长期使用泼尼松的患者身上。
长期使用泼尼松会导致内分泌紊乱,特别是肾上腺功能减退。
肾上腺功能减退会引起一系列症状,如疲劳、低血压、低血糖和体重下降等。
此外,长期使用泼尼松还会给骨骼健康带来风险。
它会抑制骨骼的新陈代谢,导致骨质疏松,增加骨折的风险。
心血管系统也容易受到泼尼松的影响。
长期使用泼尼松会导致高血压、心脏病和脂质代谢紊乱等问题。
长期使用泼尼松还会影响皮肤和视力。
它会导致皮肤薄化和皮肤疾病,如痤疮和紫癜。
同时,泼尼松还会引起青光眼和白内障等眼部问题。
最后,长期使用泼尼松还可能影响生殖系统和生育能力。
它会导致月经不规律,性功能障碍和不孕。
总结来说,泼尼松是一种有效的药物,但其副作用也是不可忽视的。
短期使用泼尼松可能会出现感染、消化问题和其他症状。
长期使用泼尼松可能会导致内分泌紊乱、骨质疏松、心血管问题、皮肤和视力问题以及生殖系统问题。
因此,在使用泼尼松之前,患者应该咨询医生,了解其潜在的风险和副作用,并在医生的指导下进行治疗。
盐酸泼尼松片的功能主治
盐酸泼尼松片的功能主治1. 简介盐酸泼尼松片是一种常见的药物,属于类固醇类药物,其主要成分是泼尼松。
它具有抗炎、抗过敏、免疫抑制等功能,可以用于治疗多种疾病。
2. 常见适应症盐酸泼尼松片常用于以下疾病的治疗:•炎症性疾病:盐酸泼尼松片可以有效缓解关节炎、肌腱炎、骨髓炎等炎症引起的疼痛和肿胀。
•过敏性疾病:对于过敏性鼻炎、过敏性哮喘、过敏性皮炎等过敏性疾病,盐酸泼尼松片可以抑制过敏反应,减轻症状。
•免疫系统疾病:盐酸泼尼松片可以调节免疫系统功能,治疗类风湿性关节炎、系统性红斑狼疮等免疫系统疾病。
•神经系统疾病:盐酸泼尼松片可以减轻脑水肿、缓解神经病变引起的症状,例如多发性硬化症、脑震荡等。
3. 使用注意事项在使用盐酸泼尼松片时,需要注意以下事项:•需要在医生指导下正确定量用药,不可随意增加剂量或停药。
•长期服用盐酸泼尼松片可能会引起免疫抑制、激素依赖等副作用,需定期复查相关指标。
•盐酸泼尼松片不适用于病毒性感染性疾病,如感冒、流感等。
•孕妇、哺乳期妇女及儿童慎用盐酸泼尼松片,需在医生指导下使用。
4. 使用方法盐酸泼尼松片的常规使用方法如下:•常见剂型:盐酸泼尼松片通常以片剂形式供应。
•用药剂量:剂量根据疾病情况、年龄、体重等因素而异,须在医生指导下使用。
•用药时间:按医生嘱托进行规定时间内的连续服用。
5. 不良反应使用盐酸泼尼松片时可能出现一些不良反应,包括但不限于以下症状:•消化系统不适:如恶心、呕吐、腹胀等。
•免疫系统抑制:可能导致免疫功能下降,出现感染、发热等症状。
•激素依赖:长期使用可能会导致身体依赖激素,停药时可能出现戒断症状。
•骨质疏松:长期大剂量使用可能会引起骨质疏松。
•其他不良反应:如心血管系统异常、体重增加、情绪波动等。
在出现不良反应时,应及时告知医生,调整用药方案。
6. 注意事项在使用盐酸泼尼松片期间,需要注意以下事项:•不可与其他药物混合使用,特别是NSAID类药物、抗凝药物等,需在医生指导下使用。
泼尼松分子式
泼尼松分子式以泼尼松分子式为标题,我将介绍泼尼松的相关信息。
一、泼尼松的基本概述泼尼松(Prednisone)是一种合成的糖皮质激素,属于类固醇类药物。
其分子式为C21H26O5,分子量为358.43g/mol。
泼尼松具有广泛的药理作用,可用于治疗多种炎症和免疫相关疾病。
二、泼尼松的药理作用1. 抗炎作用:泼尼松可以抑制炎症反应,减轻炎症引起的红肿、疼痛等症状。
它通过抑制炎症介质的产生和释放,降低血管通透性,减少白细胞的浸润等方式发挥抗炎作用。
2. 免疫抑制作用:泼尼松可以抑制免疫系统的活性,减少免疫细胞的数量和活性,从而减轻自身免疫性疾病和移植排斥反应等免疫相关疾病的症状。
3. 抗过敏作用:泼尼松可以抑制过敏反应,减轻过敏症状如鼻塞、喷嚏、皮疹等。
它通过抑制过敏介质的产生和释放,减少嗜酸性粒细胞的炎症反应等方式发挥抗过敏作用。
三、泼尼松的适应症1. 炎症性疾病:泼尼松可以用于治疗风湿性关节炎、类风湿性关节炎、系统性红斑狼疮、强直性脊柱炎等炎症性关节病和结缔组织病。
2. 免疫相关疾病:泼尼松可用于治疗自身免疫性疾病如系统性红斑狼疮、硬皮病、肌无力等,以及预防和治疗移植排斥反应等。
3. 过敏性疾病:泼尼松可以用于治疗过敏性鼻炎、过敏性皮炎、过敏性哮喘等过敏疾病。
四、泼尼松的用法和剂量泼尼松可口服给药,剂量根据疾病的类型和严重程度而定。
一般而言,初始剂量较高,随后逐渐减少,以维持疗效。
在使用过程中,应遵医嘱定期复查病情,并注意逐渐减药以避免副作用。
五、泼尼松的不良反应1. 消化系统不良反应:泼尼松可引起胃肠道不适,如胃痛、消化不良、恶心、呕吐等。
2. 免疫系统抑制:长期大剂量使用泼尼松可导致免疫系统抑制,增加感染的风险。
3. 代谢系统不良反应:泼尼松可引起水钠潴留、高血压、糖尿病等代谢紊乱。
4. 骨质疏松:长期使用泼尼松可导致骨质疏松,增加骨折的风险。
六、泼尼松的注意事项1. 孕妇、哺乳期妇女、儿童和老年人应在医生指导下使用泼尼松。
用泼尼松护士重点观察内容
用泼尼松护士重点观察内容以用泼尼松护士重点观察内容为标题,写一篇文章泼尼松是一种常用的激素药物,被广泛应用于临床治疗中。
作为一名护士,掌握用泼尼松观察的重点内容对于病人的护理至关重要。
下面将从不同角度介绍用泼尼松护士重点观察的内容。
一、用泼尼松护士重点观察病人的症状变化。
泼尼松是一种免疫抑制剂,常用于治疗过敏反应、自身免疫性疾病等病症。
在给病人使用泼尼松后,护士需要密切观察病人的症状变化,包括体温、呼吸、心率、血压等生命体征的变化。
同时,还需要关注病人是否出现过敏反应、消化道不适、皮肤变化等症状。
二、用泼尼松护士重点观察病人的药物反应。
泼尼松是一种激素药物,长期使用可能会导致一系列的药物反应。
护士需要密切观察病人是否出现药物不良反应,如消化不良、肝肾功能异常、骨质疏松等。
同时,还需要关注病人是否出现药物相互作用的现象,特别是与其他药物的相互作用可能导致的不良反应。
三、用泼尼松护士重点观察病人的精神状态。
泼尼松是一种可影响神经系统的药物,长期使用可能会对病人的精神状态产生影响。
护士需要观察病人是否出现情绪波动、焦虑、抑郁等精神症状,及时与医生沟通,采取相应的护理措施。
四、用泼尼松护士重点观察病人的血糖变化。
泼尼松是一种可影响血糖调节的药物,长期使用可能导致血糖升高。
护士需要定期监测病人的血糖水平,特别是糖尿病患者。
对于血糖异常的病人,护士需要及时与医生沟通,调整药物剂量或采取相应的护理措施。
五、用泼尼松护士重点观察病人的免疫功能变化。
泼尼松是一种免疫抑制剂,长期使用可能会导致病人的免疫功能下降。
护士需要观察病人是否容易感染,如发热、咳嗽、咳痰等症状。
同时,还需要注意观察病人是否出现乏力、食欲不振等非特异性症状,这些可能是免疫功能下降的表现。
六、用泼尼松护士重点观察病人的药物依从性。
泼尼松是一种需要长期服用的药物,护士需要密切关注病人的药物依从性。
通过与病人进行交流,了解病人对药物的理解和使用情况,及时解答病人的疑惑,帮助病人正确使用药物,提高治疗效果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Talanta79(2009)768–774Contents lists available at ScienceDirectTalantaj o u r n a l h o m e p a g e:w w w.e l s e v i e r.c o m/l o c a t e/t a l a n taSimultaneous voltammetric determination of prednisone and prednisolone in human bodyfluidsRajendra N.Goyal∗,Sunita BishnoiDepartment of Chemistry,Indian Institute of Technology Roorkee,Roorkee247667,Indiaa r t i c l e i n f oArticle history:Received1April2009Received in revised form29April2009 Accepted30April2009Available online9May2009Keywords:PrednisonePrednisoloneVoltammetryDopingBiologicalfluids a b s t r a c tA sensitive,rapid and reliable electrochemical method based on voltammetry at single wall carbon nan-otube(SWNT)modified edge plane pyrolytic graphite electrode(EPPGE)is proposed for the simultaneous determination of prednisolone and prednisone in human bodyfluids and pharmaceutical preparations. The electrochemical response of both the drugs was evaluated by osteryoung square wave voltammetry (OSWV)in phosphate buffer medium of pH7.2.The modified electrode exhibited good electrocat-alytic properties towards prednisone and prednisolone reduction with a peak potential of∼−1230and ∼−1332mV respectively.The concentration versus peak current plots were linear for both the analytes in the range0.01–100M and the detection limit(3 /slope)observed for prednisone and prednisolone were0.45×10−8,0.90×10−8M,respectively.The results of the quantitative estimation of prednisone and prednisolone in biologicalfluids were also compared with HPLC and the results were in good agreement.©2009Elsevier B.V.All rights reserved.1.IntroductionCorticosteroids affect biochemical events and cellular processes in tissues and organ of the body,hence,play a crucial role in human physiology[1].Synthetic corticosteroids also have important physi-ological activities,such as anti-inflammatory and anti-stress action and are regarded as the most effective treatment for topical dis-eases[2,3]and these drugs also have the potential positive effects on sports performance.Hence,synthetic corticoids are extensively abused by athletes in competitive games and their use has been forbidden by the International Olympic Committee and World Anti-Doping Agency[4–6].Prednisone(I)and prednisolone(II)are synthetic corticosteroids usually prescribed in the treatment of a wide variety of inflammatory diseases such as asthma,rheumatoid arthritis,various kidney diseases including nephritic syndrome, allergies and cluster headache[7–11].These are available in market in the form of tablets,capsules,injections,ointments and creams and the use of both the compounds is banned in sports under anti-doping rules[12–14].Simultaneous determination of prednisolone and prednisone has great significance to bioscience and clinical diagnosis since prednisone is a biologically inactive11-dehydro metabolite of prednisolone.In human system prednisone is con-verted to the bioactive moiety prednisolone,via reduction of the 11-oxo group by the liver enzyme,11--hydroxydehydrogenase ∗Corresponding author.Tel.:+911332285794;fax:+911332273560.E-mail addresses:rngcyfcy@iitr.ernet.in,rngcyfcy@(R.N.Goyal).[15,16].In mammals including humans interconversion of pred-nisone to prednisolone was found after oral administration of either of them with somewhat favoured prednisolone[17–19].In view of the clinical importance and increased abuse of prednisolone and prednisone by athletes,it is considered desirable to analyze their concentrations in bodyfluids as well as in pharmaceutical formu-lations.In view of the importance of corticosteroids in human physi-ology many methods such as spectroscopy and chromatographic methods coupled with spectroscopy or diode array detector and chemiluminescence have been developed for the simultaneous or individual determination of prednisone and prednisolone in biolog-icalfluids[20–23].However,inspite of the fact that above methods are sensitive and widely used,they require special sample prepa-ration,time consuming extraction steps and long derivatization procedures.Polarography has also been attempted for determi-nation of prednisone and prednisolone,however,the two peaks were found to be seriously overlapping[24].In view of the increas-ing cases of doping by the athletes,simple,efficient,sensitive and reproducible analytical technique is needed to detect such cases at the site of games.Osteryoung square wave voltammetry has been used for the sensitive determination of large number of anabolic steroids[25,26].However,the determination in these studies is based on oxidation of steroids.Since blood and urine possess uric acid,dopamine,xanthine and ascorbic acid,etc.,a major problem is encountered due to interference of their oxidation signals with ana-lyte signal.Hence,attempts in the present method are focused on determination based on reduction of prednisone and prednisolone.0039-9140/$–see front matter©2009Elsevier B.V.All rights reserved. doi:10.1016/j.talanta.2009.04.067R.N.Goyal,S.Bishnoi /Talanta 79(2009)768–774769The present paper presents determination of prednisone and pred-nisolone in biological fluids using edge plane pyrolytic graphite electrode after modification with single wall carbonnanotube.2.Materials and methods 2.1.InstrumentationVoltammetric experiments were carried out using a comput-erized BAS (Bioanalytical Systems,West Lafayette,USA)CV-50W analyzer.A three-electrode single compartment cell system was employed,with a platinum wire as counter electrode and Ag/AgCl electrode (3M NaCl)as reference (Model MF-2052RB-5B).The edge plane pyrolytic graphite electrode (∼6mm 2)used as the working electrode was prepared in the laboratory by the reported method [27].The pH of the buffers was measured using a Century India Ltd.,digital pH meter (Model CP-901).All potentials reported are referred to Ag/AgCl electrode at an ambient temperature of 27±2◦C.High performance liquid chromatography (HPLC)experi-ments were performed on Agilent 1100series system with reverse phase column RP-18e (5M).The mobile phase used for HPLC experiments was a mixture of water:methanol (60:40)at a flow rate of 1.4ml min −1and absorbance of the eluent was monitored at 254nm.The JEOL JSM-7400F field emission scanning electron microscopy (FE-SEM)instrument was used to study the surface morphology of SWNT modified EPPGE.2.2.Chemicals and reagentsPrednisone and prednisolone were obtained from Sigma (St.Louis,MO,USA).Prednisolone containing tablets manufactured by different pharmaceutical companies were purchased from the local market.Single-wall carbon nanotube (SWNT)of purity >95%was purchased from Bucky,USA.Phosphate buffers of desired pH and ionic strength (0.5M)were prepared according to the method of Christian and Purdy [28]using analytical grade chemicals from Merck.The stock solutions of desired concentration of prednisone and prednisolone were prepared in methanol (A.R.).Other solvents and chemicals used were of analytical grade.2.3.ProcedureVoltammograms were recorded after mixing 2mL of the stock solution of appropriate compound with 2mL of phosphate buffer.The solution was deoxygenated by bubbling nitrogen for 8–10min before recording the voltammograms.The optimized operating parameters to record osteryoung square voltammograms (OSWVs)were:initial E :0.0mV and final E :−1600mV,square wave fre-quency (f ):15Hz,square wave amplitude (E SW ):25mV and potential step (E ):4mV.Control urine sample were received from healthy laboratory personnel and urine samples of patients undergoing treatment with prednisolone were obtained from the Institute Hospital.The samples were obtained after 4h of administration of prednisolonetablet (Nucort Forte 10mg).The human blood samples from three healthy volunteers were obtained from the Institute Hospital.The blood with EDTA as anticoagulant was ultra-centrifuged and the supernatant blood plasma obtained was taken for the analysis of prednisone and prednisolone.Urine and blood plasma samples were used for voltammetric analysis without any dilution since bio-logical samples did not show any reduction peak on scanning from 0.0to −1600mV.2.4.Fabrication of SWNT modified PGEThe bare edge plane pyrolytic graphite electrode was rubbed on an emery paper and washed with double distilled water and then touched softly onto tissue paper.The electrode was then ready for modification.A 0.05mg mL −1suspension of SWNT was prepared by dispersing 0.05mg SWNT in 1.0mL N,N-dimethylformamide (DMF)by ultrasonic agitation.Initially 10–100L of the solution was casted at the surface of EPPGE using a microsyringe and dried in a stream of hot air.It was found that the peak current for pred-nisone as well as prednisolone did not increase after 40L.Hence,for further studies 40L of this solution was coated onto the sur-face of the clean pyrolytic graphite electrode.The electrode was then kept in air for 8–10h and now the working electrode with a well-coated layer of SWNT on its surface was ready for experi-mental purpose.Initially the response of modified electrode was recorded in a solution containing 2mL phosphate buffer solution of pH 7.2and 2mL methanol,which was previously de-oxygenated with nitrogen for at least 10min.The absence of peak in voltammo-gram in the region 0.0to −1.6V versus Ag/AgCl and very low current values indicate that the modified electrode can be safely used for experimental purposes.A comparison of typical FE-SEM images of bare edge plane PGE with SWNT modified EPPGE is presented in Fig.1.3.Results and discussion3.1.Electrochemical behaviour of prednisone and prednisolone Fig.2presents a comparison of typical osteryoung square wave voltammograms of 10M of prednisolone and prednisone at the bare and modified edge plane pyrolytic graphite electrodes in phosphate buffer of pH 7.2.Well defined peaks for the reduc-tion of prednisone and prednisolone were observed at potentials ∼−1299and ∼−1412mV respectively at the bare electrode.The peak obtained for both the compounds is rather broad,suggesting slow electron transfer kinetics.However,with increase in concen-tration of prednisolone the second peak merged with background,hence,the attempts to use bare EPPGE for determination of the two steroids failed.At the SWNT modified electrode,well-defined reduction peaks were obtained,where,the reduction peak potential of prednisone and prednisolone shifted to less negative potentials,∼−1230and ∼−1332mV respectively and the peak current also increased.The above results suggested that the SWNT modified electrode promoted the electrochemical reduction of prednisone and prednisolone by considerably accelerating the rate of elec-tron transfer.One of the reasons for this catalysis is that metallic impurities in nanotubes act as a promoter by increasing the rate of electron transfer,thus,a negative shift in their reduction poten-tials is observed.The electrocatalytic activity of SWNT has been assigned by many workers to entrapped metals in the cavity [29,30].3.2.Effect of pH and square wave frequencyThe effect of pH on the reduction of both the drugs was studied in the pH range 2.4–10.0.The peak potential (E p )of both the drugs770R.N.Goyal,S.Bishnoi /Talanta 79(2009)768–774Fig.1.A comparison of typical FE-SEM image of (A)bare edge plane PGE and (B)SWNT modified edge plane pyrolytic graphiteelectrode.Fig.2.Observed osteryoung square wave voltammograms for the reduction of 10M of prednisolone and prednisone at bare EPPGE (—–),SWCNT modified EPPGE (—)and background PBS (pH 7.2)at SWNT modified EPPGE (......).Fig.3.(A)Observed dependence of peak potential (−E p )on pH for 10M prednisone ( )and 10M prednisolone ( )at SWNT modified EPPGE.(B)Plot of −E p versus logarithm of frequency (log f )of 10M prednisone ( )and 10M prednisolone ( )at SWNT modified EPPGE.(C)Calibration plot observed for prednisone ( )and prednisolone ( )at SWNT modified EPPGE at pH 7.2.was found to shift towards more negative potentials with increase in pH (Fig.3A).The variation of peak potential (E p )with pH was linear for both the analytes and the dependence of E p on pH obey the relations:−E p (pH 2.4−10.0)=[825.52+54.53pH]versus Ag/AgCl for prednisone−E p (pH 2.4−10.0)=[944.52+54.58pH]versus Ag/AgCl for prednisolonehaving correlation coefficients 0.9973and 0.9968respectively.The slope of the −E p versus pH curves was ∼55mV/pH for both the analytes,indicating that equal number of protons and electrons are involved in the electrode reaction.The influence of square wave frequency (f )on the peak current (i p )of both analytes was examined in the range of 5–75Hz.At fre-quency higher than 75Hz,the peaks merged with the background.The peak current (i p )of both the analytes was found to increase with increase in square wave frequency (f ).The dependence of peak cur-rent on square wave frequency was linear suggesting thereby that the electrode reaction for both the compounds is adsorption con-trolled [31,32].The variation of i p with f can be expressed by theR.N.Goyal,S.Bishnoi/Talanta79(2009)768–774771equations:i p(A)=0.2268f+0.4283for prednisonei p(A)=0.2215f+0.1444for prednisolonehaving correlation coefficients0.9958and0.9991respectively.The peak potential of prednisone and prednisolone were also found to shift towards more negative potentials with increase in square wave frequency and the plots of E p versus log f were linear in the frequency range5–75Hz(Fig.3B).The variation of E p with log f can be expressed by the equations:−E p(mV)=103.22log f+1107.4for prednisone−E p(mV)=98.775log f+1212.6for prednisolonewith correlation coefficients0.9988and0.9929respectively.Sucha behaviour indicates the nature of redox reaction as reversible[32].3.3.Individual determination of prednisone and prednisoloneThe square wave voltammograms were recorded for prednisone as well as prednisolone at different concentrations in the range 0.01–100M.It was found that the peak currents increased lin-early with increasing concentration(Fig.3C).The graphs between peak current(i p)and concentration from the data generated during OSWV studies were linear and the relation can be represented by the equations:i p(A)=0.3233C(M)+0.8415for prednisonei p(A)=0.1897C(M)+0.5815for prednisolonewith correlation coefficients0.9993and0.9945respectively,where i p is current inA and C is concentration inM.The observed sensi-tivities for prednisone and prednisolone are0.33and0.19AM−1 respectively,indicating that both analytes can be safely estimated in the given concentration range.The detection limit of pred-nisone and prednisolone was calculated by using the formula3 /b, where is standard deviation of the blank and b is slope of the calibration curve,and found to be0.45×10−8and0.90×10−8M respectively.3.4.Simultaneous determination of prednisone and prednisoloneThe main aim of the present study was to simultaneously investi-gate the electrochemical response of prednisone and prednisolone in human bodyfluids,as metabolism of prednisolone in human system proceeds through prednisone.The main problem encoun-tered with simultaneous determination in earlier reports was close reduction potentials due to which it was difficult to resolve the overlapped voltammograms[33].This problem was resolved in the present studies using SWNT modified edge plane pyrolytic graphite electrode.The simultaneous determination of prednisone and pred-nisolone at modified EPPGE was carried out byfixing the concentration of one compound and varying the concentration of other at pH7.2.Fig.4A shows square wave voltammograms for different concentration of prednisone keeping the concentration of prednisolone constant(10M).Thefigure clearly depicts that the voltammetric peak of prednisolone remains unaltered and the peak current remained practically constant.The peak current of prednisone increased with increase in its concentration.Similarly, Fig.4B shows square wave voltammograms obtained by varying the concentration of prednisolone keeping the concentration of pred-nisone constant(10M).The prednisolone signal increaseswith Fig.4.(A)Square wave voltammograms of mixture of prednisolone and prednisone at modified electrodes in0.1M phosphate buffer(pH7.2);(A)prednisone at a fixed concentration of prednisolone10M;[prednisone]:a=5,b=10,c=30,d=40, e=60M and(B)prednisolone at afixed concentration of prednisone;[prednisone] 10M;[prednisolone]:a=5,b=10,c=30,d=40,e=60M.increase in its concentration without affecting the prednisone sig-nal,which remains almost constant.Currents observed in both the cases for the varied component were essentially same as observed during the individual determination and obeyed the relation for the calibration plot.It was found that the reduction peak of nei-ther prednisone nor prednisolone interferes with each other in the studied concentration range and thus,the proposed method can be safely applied for their simultaneous determination.3.5.Interference studyIt was considered necessary to evaluate the influence of some electroactive interferents such as,uric acid,ascorbic acid,xanthine, albumin and hypoxanthine in the determination of prednisone and prednisolone,since these are common biological compounds present in noticeable amount in living systems.Study of their influ-ence on voltammetric response of prednisone and prednisolone was carried out by recording voltammograms for mixtures con-tainingfixed quantity(10M)of the analytes(prednisone or prednisolone)and varying concentration of each interferent in the range10–1000M.The addition of these interferents did not affect the peak current of prednisone or prednisolone and no new reduc-tion peaks were observed in the range0to−1.6V.This behaviour suggested that prednisone and prednisolone can be safely deter-mined in biologicalfluids.As determination is based on reduction of prednisone and prednisolone,it is understandable that common metabolites present in biologicalfluids do not interfere because none of them are reducible.772R.N.Goyal,S.Bishnoi /Talanta 79(2009)768–774Fig.5.Square wave voltammograms of control urine sample (a),urine sample after administration of prednisolone tablet (b),control urine spiked with 30M pred-nisolone (c)and control urine spiked with 30M prednisone (d)at SWNT modified EPPGE.3.6.Analytical applications3.6.1.Real sample analysisTo establish the utility of the developed method,prednisone and prednisolone was determined in human urine samples.In mammals including humans,interconversion of prednisolone to prednisone,has been reported,hence,residues of both steroids are found after oral administration of either of them [17–19].Square wave voltammograms of control urine sample from healthy volunteer (a),urine sample (sample 1)from patient undergoing treatment with prednisolone after 4h of administration of sin-gle dose of 10mg prednisolone tablet (Nucort Forte)(b),control urine sample spiked with 30M of prednisolone (c)and con-trol urine sample spiked with 30M of prednisone (d)at SWNT modified edge plane pyrolytic graphite electrode are depicted in Fig.5.As can be seen,two clear peaks at −1230and −1332mV are observed in voltammograms (c)and (d),which are due to reduction of prednisone and prednisolone respectively.Curve (a)presents voltammogram of control urine and does not exhibit peaks corre-sponding to prednisone and prednisolone,however,peaks at same potentials in curve (b)indicate that both these steroids are excreted in urine sample (sample 1)from the patient undergoing treatment with prednisolone.The concentrations of both the compounds in urine sample 1were determined using developed method and were found as 12.48and 7.12M for prednisolone and prednisone respectively.Three urine samples were analyzed and the results obtained are presented in Table 1.The concentrations of prednisone and prednisolone in human urine samples were also determined using HPLC and the results were compared with the ones observed by present method.For this purpose,various concentrations of prednisone and prednisolone standards were analyzed using HPLC and the calibration curves were obtained by plotting the peak area of the analytes peaks against concentrations.Typical HPLC chromatograms of prednisoneTable 1A comparison of prednisone and prednisolone concentration determined by SWNT modified EPPGE and HPLC in human urine after 4h of administration of 10mg of prednisolone tablet.SamplePrednisolone Prednisone Modified EPPGEHPLC Modified EPPGE HPLC 112.4812.007.127.20212.0612.207.447.80312.8012.607.606.60Fig.6.A comparison of typical HPLC chromatograms observed for (A)standard solu-tion of prednisone,(B)standard solution of prednisolone,(C)control urine sample,(D)urine sample obtained from patient undergoing treatment with prednisolone after 4h of administration of 10mg prednisolone tablet.and prednisolone are presented by curves A and B in Fig.6and exhibit peaks at retention time ∼7.990and ∼9.432min respectively.Urine samples were diluted 6times prior to analysis to minimize the complexity of matrix.Curve C in Fig.6presents chromatogram of control urine and does not exhibit peaks corresponding to pred-nisone and prednisolone.The urine samples obtained from patients undergoing treatment with prednisolone after 4h of administration of prednisolone tablet were then injected.Samples were then ana-lyzed using HPLC method and a typical chromatogram observed for sample 1is presented by curve D.Two well-defined peaks at reten-tion time ∼7.990and ∼9.432min were noticed corresponding to prednisone and prednisolone respectively.Other prominent peaks in chromatogram were observed at R t ∼1.090and ∼1.223min,most probably due to the presence of major urine metabolites like uric acid,xanthine,etc.,however,no attempts were made to identify them.Finally,the concentrations of prednisolone and prednisone in human urine samples were determined using calibration curves and found as 2.00and 1.2M respectively.As urine sample was diluted 6times before injection in HPLC,the concentration of pred-nisone and prednisolone in urine (sample 1)was determined as 12.0and 7.2M respectively.A comparison of prednisone and prednisolone determined by the developed method and HPLC is presented in Table 1and clearly indicates that the proposed method is in good agreement with those obtained by HPLC method.3.6.2.Analysis of prednisolone in pharmaceutical preparationsPrednisolone is normally prescribed for the treatment of vari-ous diseases,hence,the modified EPPGE was also used to analyze the prednisolone content in three common commercial medicinal samples,viz.Nucort Forte (Unimax Laboratories,Mfg.Lic.No.;32-B (H)),Omnacortil –10(Macleods Pharmaceuticals Ltd.,Mfg.Lic.No.;DD/313)and Wysolone*10,(Wyeth Ltd.,Mfg.Lic.No.;545).The tablets were grounded to powder,dissolved in methanol and then diluted so that the concentration of prednisolone falls in theR.N.Goyal,S.Bishnoi/Talanta79(2009)768–774773Table2Determination of prednisolone in commercial tablets using SWNT modified edgeplane pyrolytic graphite electrode.Sample Stated content(mg/tablet)Detected content(mg/tablet)Error(%)Nucort Forte109.83−1.7 Wysolone109.94−0.6 Omnacortil-10109.62−3.8working range.Following the proposed method the concentration of prednisolone in three commercial samples was determined using modified EPPGE.The results are summarized in Table2and clearly indicate that the prednisolone content determined by the proposed method is in good agreement with the claimed prednisolone con-tent in pharmaceutical preparations.It is also expected that the SWNT modified EPPGE has great potential for the determination of prednisone and prednisolone in pharmaceutical sample analysis.3.6.3.Recovery testRecovery experiments were also performed using standard addition method to evaluate the accuracy of the proposed method. The recovery tests of both drugs ranging from10to50M were carried out utilizing SWNT modified EPPGE.Three human plasma samples obtained from healthy volunteers were spiked with known amounts of standard prednisone and prednisolone subsequently followed by recording their voltammograms.In all the cases two separate well-defined peaks were observed with E p−1230and −1332mV corresponding to prednisone and prednisolone respec-tively.The concentration of the two compounds was calculated using calibration plots and the results observed are listed in Table3. The recoveries varied in the range from97.60%to101.50%in the case of prednisolone and from96.60%to103.28%in case of pred-nisone.The recoveries indicate that the accuracy of the proposed voltammetric method is good.3.7.Stability and reproducibility of modified EPPGEThe stability and reproducibility of the modified electrode was evaluated by monitoring the peak current responses daily at a con-stant prednisolone or prednisone concentration over a period of15 days.The experimental results indicated that the current responses showed a relative standard deviation of3.24%and4.12%for pred-nisone and prednisolone respectively.After15days,reduction peak potentials shifted towards more negative potentials and current values were also decreased.These results suggest that the modi-fied electrode can be safely used up to15days of its preparation, hence,possesses good stability.Table3Recovery results obtained for prednisone and prednisolone in human plasma sam-ples at the modified electrode.Prednisolone PrednisoneSpiked(M)Detected(M)Recovery(%)Detected(M)Recovery(%) Sample110.010.15101.509.8898.8030.029.8499.4730.24100.8050.050.60101.2051.64103.28Sample210.09.7697.609.6696.6030.030.34101.1330.96103.2050.049.9599.9051.08102.16 Sample310.010.00100.009.7697.6030.030.09100.3030.16100.5350.049.5099.0050.0100.00To examine the intraday reproducibility,repetitive measure-ments were carried out in a solution offixed concentration of either prednisolone or prednisone.The results of seven successive scans show a relative standard deviation of1.06%and1.64%respectively for prednisone and prednisolone.To ascertain the reproducibility of the results further,four electrodes with almost same area were modified with the same volume of SWNT solution in DMF and their response towards the reduction offixed concentration of pred-nisolone and prednisone was observed.The current obtained for the four independent electrodes showed a relative standard devi-ation of2.08%and1.84%respectively,confirming thereby that the results are reproducible.Thus,the modified electrode exhibits good reproducibility and stability for the determination of prednisone and prednisolone.4.ConclusionsThe results presented above clearly demonstrate that pred-nisone and prednisolone can be simultaneously determined using square wave voltammetric technique at SWNT modified edge plane pyrolytic graphite electrode.The most promising result of the proposed method is the use of pyrolytic graphite electrode.The modified electrode not only exhibited strong catalytic activity towards the simultaneous reduction of prednisone and pred-nisolone,but also increased the peak currents.Several studies have been devoted to investigate the reason of electrocatalytic activity of SWNT.It is now generally accepted that embedded metals present in SWNT and accessible tofluids are responsible for such catalysis. The impurity of metals in SWNT has been assigned to cause elec-trocatalysis[29].Hurt et al.[34]and Liu et al.[35]have reported that metal which is completely encapsulated in impermeable car-bon shells and not in contact withfluid does not play any role during bioavailability studies of nickel in SWNT.It is also reported that with purification of carbon nanotubes,the peak potential of dopamine shifts to more negative potential[30].Hence,such a metal is expected not to be electrochemically active.Thus,the “fluid accessible metal”is probably an important property of car-bon nanotubes(rather than total metal present)and is believed to be responsible for electrocatalytic activity of CNT.The method has been successfully applied for the determina-tion of prednisolone in commercial preparations.Both the steroids have also been determined in human blood and urine samples with adequate reproducibility and sensitivity.As both drugs are exten-sively abused by athletes for doping and both are interconvertable to each other,therefore,it is expected that the simultaneous deter-mination of these corticosteroids in bodyfluids would provide a simple and fast method for detecting the cases of doping at the site of competitive games.Thus,the proposed method is a fast, sensitive and reliable approach for simultaneous determination of both synthetic corticosteroids and a promising substitute to other reported methods owing to its simplicity,rapidity and lowfinancial input.The available sites for reduction in prednisolone are the keto groups at positions3and20and in prednisone the keto groups at positions3,11and20.Ketosteroid having a carbonyl group con-jugated with a double bond has been reported to undergo easier reduction in comparison to isolated keto groups[36].In prednisone reduction at carbonyl group,C-11has been reported to be hindered due to the presence of methyl group at position10[23,37].Thus,the probable active site for reduction in both ketosteroids is carbonyl groups at position3.Therefore,peaks at−1230and−1332mV are assigned to the reduction of carbonyl groups at position3to give corresponding hydroxyl groups in a2H+,2e−reaction.Their inter-conversion in liver indicates that carbonyl group at position11is reduced to CHOH group[17–19]in prednisone and hydroxyl group in prednisolone is oxidized to C O.。