数字信号处理上机报告
2016年北航数字信号处理上机实验一实验报告
离散时间信号处理实验报告实验一信号的采样与重构班级学号姓名同组者日期实验介绍连续时间信号采样是获得离散时间信号的一种重要方式,但是时域上的离散化会带来信号在频域上发生相应的变化。
在本实验中,我们将分别看到低通信号和带通信号在不同的采样率下得到的离散信号波形与连续信号波形在时域和频域上的对应关系。
同时,离散信号的二次采样在实际的应用中可能是必须的,有时甚至是非常重要的。
在实验的最后,我们也会看到离散信号的抽取和内插所带来的频谱变化。
由于matlab 语言无法表达连续信号,实验中我们采用足够密的采样点来模拟连续信号(远大于奈奎斯特采样的要求),即:t=0:Ts:T (Ts=1/fs<<奈奎斯特采样频率)实验中,为了分析离散信号与连续信号之间的频谱关系,加深对采样定理的理解,了解模拟频谱、数字频谱、以及离散信号被加窗后各自的频谱,从而直观的理解采样频率对频谱的影响和加窗后对频谱的影响。
由此可以掌握数字处理方法对模拟信号进行频谱分析的基本原则,即:如何选择合适的信号长度、采样周期以使得对模拟信号的频谱分析的误差达到分析的要求。
在该实验中,用到的Matlab 函数有:plot(x,y),其作用是在坐标中以x 为横坐标、y 为纵坐标的曲线,注意x 和y 都是长度相同的离散向量; xlabel(‘xxx ’),其作用是对x 轴加上坐标轴说明“xxx ”; ylabel(‘yyy ’),其作用是对y 轴加上坐标轴说明“yyy ”; title(‘ttt ’),其作用是对坐标系加上坐标轴说明“ttt ”;subplot(m,n,w),其作用是当需要在同一显示面板中显示多个不同的坐标系时,m 、n分别指明每行和每列的坐标系个数,w 为当前显示坐标系的流水号(1到m*n 之间)。
在实验中我们需要画出信号的频谱,对于连续信号频谱的逼近需要你自己编写,原理如下:连续时间非周期信号()x t 的傅里叶变换对为: ()()j t X j x t e dt ∞-Ω-∞Ω=⎰用DFT 方法对该变换逼近的方法如下:1、将)(t x 在t 轴上等间隔(宽度为T )分段,每一段用一个矩形脉冲代替,脉冲的幅度为其起始点的抽样值)(()(n x nT x t x nT t ===),然后把所有矩形脉冲的面积相加。
数字信号处理实验报告(自己的实验报告)
数字信号处理实验报告(⾃⼰的实验报告)数字信号处理实验报告西南交通⼤学信息科学与技术学院姓名:伍先春学号:20092487班级:⾃动化1班指导⽼师:张翠芳实验⼀序列的傅⽴叶变换实验⽬的进⼀步加深理解DFS,DFT 算法的原理;研究补零问题;快速傅⽴叶变换(FFT )的应⽤。
实验步骤1. 复习DFS 和DFT 的定义,性质和应⽤;2. 熟悉MATLAB 语⾔的命令窗⼝、编程窗⼝和图形窗⼝的使⽤;利⽤提供的程序例⼦编写实验⽤程序;按实验内容上机实验,并进⾏实验结果分析;写出完整的实验报告,并将程序附在后⾯。
实验内容1. 周期⽅波序列的频谱试画出下⾯四种情况下的的幅度频谱,并分析补零后,对信号频谱的影响。
2. 有限长序列x(n)的DFT(1)取x(n)(n=0:10)时,画出x(n)的频谱X(k) 的幅度;(2)将(1)中的x(n)以补零的⽅式,使x(n)加长到(n:0~100)时,画出x(n)的频谱X(k) 的幅度;(3)取x(n)(n:0~100)时,画出x(n)的频谱X(k) 的幅度。
利⽤FFT进⾏谱分析已知:模拟信号以t=0.01n(n=0:N-1)进⾏采样,求N 点DFT 的幅值谱。
请分别画出N=45; N=50;N=55;N=60时的幅值曲线。
数字信号处理实验⼀1.(1) L=5;N=20;60,7)4(;60,5)3(;40,5)2(;20,5)1()](~[)(~,2,1,01)1(,01,1)(~=========±±=??-+≤≤+-+≤≤=N L N L N L N L n x DFS k X m N m n L mN L mN n mN n x )52.0cos()48.0cos()(n n n x ππ+=)8cos(5)4sin(2)(t t t x ππ+=n=1:N;xn=[ones(1,L),zeros(1,N-L)];Xk=dfs(xn,N);magXk=abs([Xk(N/2+1:N) Xk(1:N/2+1)]);k=[-N/2:N/2];figure(1)subplot(2,1,1);stem(n,xn);xlabel('n');ylabel('xtide(n)'); title('DFS of SQ.wave:L=5,N=20'); subplot(2,1,2);stem(k,magXk);axis([-N/2,N/2,0,16]);xlabel('k');ylabel('Xtide(k)');(2)L=5;N=40;n=1:N;xn=[ones(1,L),zeros(1,N-L)];Xk=dfs(xn,N);magXk=abs([Xk(N/2+1:N) Xk(1:N/2+1)]);k=[-N/2:N/2];figure(2)subplot(2,1,1);stem(n,xn);xlabel('n');ylabel('xtide(n)'); title('DFS of SQ.wave:L=5,N=40');subplot(2,1,2);stem(k,magXk);axis([-N/2,N/2,0,16]);xlabel('k');ylabel('Xtide(k)');(3)L=5;N=60;n=1:N;xn=[ones(1,L),zeros(1,N-L)];Xk=dfs(xn,N);magXk=abs([Xk(N/2+1:N) Xk(1:N/2+1)]);k=[-N/2:N/2];figure(3)subplot(2,1,1);stem(n,xn);xlabel('n');ylabel('xtide(n)'); title('DFS of SQ.wave:L=5,N=60'); subplot(2,1,2);stem(k,magXk);axis([-N/2,N/2,0,16]);xlabel('k');ylabel('Xtide(k)');(4)L=7;N=60;n=1:N;xn=[ones(1,L),zeros(1,N-L)];Xk=dfs(xn,N);magXk=abs([Xk(N/2+1:N) Xk(1:N/2+1)]);k=[-N/2:N/2];figure(4)subplot(2,1,1);stem(n,xn);xlabel('n');ylabel('xtide(n)'); title('DFS of SQ.wave:L=7,N=60'); subplot(2,1,2);stem(k,magXk);axis([-N/2,N/2,0,16]);xlabel('k');ylabel('Xtide(k)');2. (1)M=10;N=10;n=1:M;xn=cos(0.48*pi*n)+cos(0.52*pi*n);n1=[0:1:N-1];y1=[xn(1:1:M),zeros(1,N-M)]; figure(1)subplot(2,1,1);stem(n1,y1);xlabel('n'); title('signal x(n),0<=n<=10'); axis([0,N,-2.5,2.5]);Y1=fft(y1);magY1=abs(Y1(1:1:N/2+1));k1=0:1:N/2;w1=2*pi/N*k1;subplot(2,1,2);title('Samples of DTFT Magnitude');stem(w1/pi,magY1); axis([0,1,0,10]);xlabel('frequency in pi units');(2)M=10;N=100;n=1:M;xn=cos(0.48*pi*n)+cos(0.52*pi*n);n1=[0:1:N-1];y1=[xn(1:1:M),zeros(1,N-M)]; figure(2)subplot(2,1,1);stem(n1,y1);xlabel('n'); title('signal x(n),0<=n<=10'); axis([0,N,-2.5,2.5]);Y1=fft(y1);magY1=abs(Y1(1:1:N/2+1));k1=0:1:N/2;w1=2*pi/N*k1;subplot(2,1,2);title('Samples of DTFT Magnitude');stem(w1/pi,magY1); axis([0,1,0,10]);xlabel('frequency in pi units');(3)M=100;N=100;n=1:M;xn=cos(0.48*pi*n)+cos(0.52*pi*n);n1=[0:1:N-1];y1=[xn(1:1:M),zeros(1,N-M)]; figure(3)subplot(2,1,1);stem(n1,y1);xlabel('n'); title('signal x(n),0<=n<=100'); axis([0,N,-2.5,2.5]);Y1=fft(y1);magY1=abs(Y1(1:1:N/2+1));k1=0:1:N/2;w1=2*pi/N*k1;subplot(2,1,2);title('Samples of DTFT Magnitude');stem(w1/pi,magY1); axis([0,1,0,10]);xlabel('frequency in pi units');3.figure(1)subplot(2,2,1)N=45;n=0:N-1;t=0.01*n;q=n*2*pi/N;x=2*sin(4*pi*t)+5*cos(8*pi*t); y=fft(x,N); plot(q,abs(y))stem(q,abs(y))title('FFT N=45')%subplot(2,2,2)N=50;n=0:N-1;t=0.01*n;q=n*2*pi/N;x=2*sin(4*pi*t)+5*cos(8*pi*t); y=fft(x,N); plot(q,abs(y))title('FFT N=50')%subplot(2,2,3)N=55;n=0:N-1;t=0.01*n;q=n*2*pi/N;x=2*sin(4*pi*t)+5*cos(8*pi*t); y=fft(x,N);title('FFT N=55')%subplot(2,2,4)N=16;n=0:N-1;t=0.01*n;q=n*2*pi/N;x=2*sin(4*pi*t)+5*cos(8*pi*t); y=fft(x,N);plot(q,abs(y))title('FFT N=16')function[Xk]=dfs(xn,N)n=[0:1:N-1];k=[0:1:N-1];WN=exp(-j*2*pi/N);nk=n'*k;WNnk=WN.^nk;Xk=xn*WNnk;实验⼆⽤双线性变换法设计IIR 数字滤波器⼀、实验⽬的1.熟悉⽤双线性变换法设计IIR 数字滤波器的原理与⽅法; 2.掌握数字滤波器的计算机仿真⽅法;3.通过观察对实际⼼电图的滤波作⽤,获得数字滤波器的感性知识。
《数字信号处理》实验报告
《数字信号处理》上机实验指导书一、引言“数字信号处理”是一门理论和实验密切结合的课程,为了深入地掌握课程内容,应当在学习理论的同时,做习题和上机实验。
上机实验不仅可以帮助学生深入地理解和消化基本理论,而且能锻炼初学者的独立解决问题的能力。
所以,根据本课程的重点要求编写了四个实验。
第一章、二章是全书的基础内容,抽样定理、时域离散系统的时域和频域分析以及系统对输入信号的响应是重要的基本内容。
由于第一、二章大部分内容已经在前期《信号与系统》课程中学习完,所以可通过实验一帮助学生温习以上重要内容,加深学生对“数字信号处理是通过对输入信号的一种运算达到处理目的” 这一重要概念的理解。
这样便可以使学生从《信号与系统》课程顺利的过渡到本课程的学习上来。
第三章、四章DFT、FFT是数字信号处理的重要数学工具,它有广泛的使用内容。
限于实验课时,仅采用实验二“用FFT对信号进行谱分析”这一实验。
通过该实验加深理解DFT的基本概念、基本性质。
FFT是它的快速算法,必须学会使用。
所以,学习完第三、四章后,可安排进行实验二。
数字滤波器的基本理论和设计方法是数字信号处理技术的重要内容。
学习这一部分时,应重点掌握IIR和FIR两种不同的数字滤波器的基本设计方法。
IIR滤波器的单位冲激响应是无限长的,设计方法是先设计模拟滤波器,然后再通过S~Z平面转换,求出相应的数字滤波器的系统函数。
这里的平面转换有两种方法,即冲激响应不变法和双线性变换法,后者没有频率混叠的缺点,且转换简单,是一种普遍应用的方法。
学习完第六章以后可以进行实验三。
FIR滤波器的单位冲激响应是有限长的,设计滤波器的目的即是求出符合要求的单位冲激响应。
窗函数法是一种基本的,也是一种重要的设计方法。
学习完第七章后可以进行实验四。
以上所提到的四个实验,可根据实验课时的多少恰当安排。
例如:实验一可根据学生在学习《信号与系统》课程后,掌握的程度来确定是否做此实验。
若时间紧,可以在实验三、四之中任做一个实验。
《数字信号处理》上机实习报告
数字信号处理实习报告一、从给定的程序(文件包Friday.rar)中,选择一个源程序做详细标注。
(目的:熟悉Matlab程序)程序名:Gibbs_Phenomena_CFSTzhushi.m程序思路:学习matlab基础程序二、能够利用Matlab熟悉地画图,内容包括:X、Y坐标轴上的label,每幅图上的title,绘画多条曲线时的legend,对图形进行适当的标注等。
(1)在一副图上画出多幅小图;(2)画出一组二维图形;(3)画出一组三维图形;(4)画出复数的实部与虚部。
(5)完成对一个源程序进行详细注释。
例1X、Y坐标轴上的label,每幅图上的title,(1)在一副图上画出多幅小图;(3)画出一组三维图形;(5)完成对一个源程序进行详细注释。
使用subplot画出两个三维椭球,一个制作三维网格图,一个为表面图。
x轴范围[-3,3],y轴范围[-16,16],z轴范围[-2,2]程序名:tuoqiu.m对此源程序的注释:sita=0:0.1:2*pi;%设置sita角度的范围arfa=sita'; %确定arfa的范围X = 9*cos(arfa)*cos(sita); %用三角坐标将x表示出来Y =256*cos(arfa)*sin(sita); %用三角坐标将y表示出来Z = 4*sin(arfa)*ones(size(sita)); %用三角坐标将z表示出来subplot(1,2,1),mesh(X,Y,Z) %画三维椭球网格图使用meshtitle('三维网格图');%注释命令xlabel ('x区间(-3:3)'); %在x轴上添加注释x的坐标ylabel ('y区间(-16:16)'); %在y轴上添加注释y的坐标zlabel ('z区间(-2:2)'); %在z轴上添加注释z的坐标subplot(1,2,2),surf(X,Y,Z)% 在第二个小图上画出椭球的三维曲面图title('三维曲面图') %注释命令xlabel ('x区间(-3:3)'); %在x轴上添加注释x的坐标ylabel ('y区间(-16:16)'); %在y轴上添加注释y的坐标zlabel ('z区间(-2:2)'); %在z轴上添加注释z的坐标运行结果:例2绘画多条曲线时的legend,对图形进行适当的标注等。
数字信号处理上机实验报告
实验一系统响应及系统稳定性一、实验目的(1)掌握求系统响应的方法。
(2)掌握时域离散系统的时域特性。
(3)分析、观察及检验系统的稳定性。
二、实验内容(1)给定一个低通滤波器的差分方程为y(n)=(n)+(n-1)+(n-1)输入信号x1(n)=R8(n)x2(n)=u(n)(a) 分别求出系统对x1(n)=R8(n) 和x2(n)=u(n)的响应序列,并画出其波形。
(b) 求出系统的单位冲响应,画出其波形。
实验程序:A=[1,];B=[,]; %%系统差分方程系数向量 B 和 Ax1n=[1 1 1 1 1 1 1 1 zeros(1,50)]; %产生信号 x1(n)=R8(n) x2n=ones(1,128); %产生信号 x2(n)=u(n)y1n=filter(B,A,x1n); %求系统对 x1(n)的响应 y1(n)n=0:length(y1n)-1;subplot(2,2,1);stem(n,y1n,'.');title('(a) 系统对 R_8(n)的响应y_1(n)');xlabel('n');ylabel('y_1(n)');y2n=filter(B,A,x2n); %求系统对 x2(n)的响应 y2(n)n=0:length(y2n)-1;subplot(2,2,2);stem(n,y2n,'.');title('(b) 系统对 u(n)的响应y_2(n)');xlabel('n');ylabel('y_2(n)');hn=impz(B,A,58); %求系统单位脉冲响应 h(n) n=0:length(hn)-1;subplot(2,2,3);y=hn;stem(n,hn,'.');title('(c) 系统单位脉冲响应h(n)');xlabel('n');ylabel('h(n)');运行结果图:(2)给定系统的单位脉冲响应为h1(n)=R10(n)h2(n)= δ(n)+δ(n-1)+δ(n-2)+δ(n-3)用线性卷积法分别求系统h1(n)和h2(n)对x1(n)=R8(n)的输出响应,并画出波形。
《数字信号处理》上机实验指导书
《数字信号处理》上机实验指导书实验1 离散时间信号的产生1.实验目的数字信号处理系统中的信号都是以离散时间形态存在,所以对离散时间信号的研究是数字信号处理的基本所在。
而要研究离散时间信号,首先需要产生出各种离散时间信号。
MATLAB 是一套功能强大的工程计算及数据处理软件,广泛应用于工业,电子,医疗和建筑等众多领域。
使用MATLAB软件可以很方便地产生各种常见的离散时间信号,而且它还具有强大的绘图功能,便于用户直观地输出处理结果。
通过本实验,学生将学习如何用MATLAB产生一些常见的离散时间信号,并通过MATLAB中的绘图工具对产生的信号进行观察,加深对常用离散信号的理解。
2.实验要求本实验要求学生运用MATLAB编程产生一些基本的离散时间信号,并通过MATLAB的几种绘图指令画出这些图形,以加深对相关教学内容的理解,同时也通过这些简单的函数练习了MATLAB的使用。
3.实验原理(1)常见的离散时间信号1)单位抽样序列,或称为离散时间冲激,单位冲激:?(n)???1?0n?0 n?0如果?(n)在时间轴上延迟了k个单位,得到?(n?k)即:?1n?k ?(n?k)??0n?0?2)单位阶跃序列n?0?1 u(n)?n?0?0在MATLAB中可以利用ones( )函数实现。
x?ones(1,N);3)正弦序列x(n)?Acos(?0n??)这里,A,?0,和?都是实数,它们分别称为本正弦信号x(n)的振幅,角频率和初始相位。
f0??02?为频率。
x(n)?ej?n4)复正弦序列5)实指数序列x(n)?A?n(2)MATLAB编程介绍MATLAB是一套功能强大,但使用方便的工程计算及数据处理软件。
其编程风格很简洁,没有太多的语法限制,所以使用起来非常方便,尤其对初学者来说,可以避免去阅读大量的指令系统,以便很快上手编程。
值得注意得就是,MATLAB中把所有参与处理的数据都视为矩阵,并且其函数众多,希望同学注意查看帮助,经过一段时间的训练就会慢慢熟练使用本软件了。
数字信号处理上机实验报告
数字信号处理上机实验报告实验一 熟悉MATLAB 环境一、实验目的1、 熟悉MATLAB 的主要操作命令。
2、 学会简单的矩阵输入和数据读写。
3、 掌握简单的绘图命令。
4、 用MATLAB 编程并学会创建函数。
5、 观察离散系统的频率响应。
二、实验内容认真阅读本章附录,在MATLAB 环境下重新做一遍附录中的例子,体会各条命令的含义。
在熟悉MATLAB 基本命令的基础上,完成以下实验。
上机实验内容:1、 数组的加减乘除和乘方运算,输入[]4 3 2 1=A ,[]6 5 4 3=B ,求B A C +=,B A D -=,B A E *=.,B A F /.=,B A G .^=,并用stem 语句画出A 、B 、C 、D 、E 、F 、G 。
程序:>> A=[1 2 3 4];B=[3 4 5 6];C=A+B; D=A-B; E=A.*B; F=A./B; G=A.^B;subplot(2,4,1);stem(A,'.'); subplot(2,4,2);stem(B,'.'); subplot(2,4,3);stem(C,'.'); subplot(2,4,4);stem(D,'.'); subplot(2,4,5);stem(E,'.'); subplot(2,4,6);stem(F,'.');subplot(2,4,7);stem(G,'.')2、 用MATLAB 实现下列序列。
a) 150 8.0)(≤≤=n n x nb) 150 )()32.0(≤≤=+n en x n jc) 150 )1.025.0sin(2)2.0125.0cos(3)(≤≤+++=n n n n x ππππ 程序: A) clear;clc; n=[0:15]; x1=0.8.^n;subplot(3,1,1),stem(x1) title('x1=0.8^n')xlabel('n'); ylabel('x1');B)clear;clc;n=[0:15];x2=exp((0.2+3j)*n);subplot(3,1,1),stem(x2)title('x2=exp((0.2+3j)*n)')xlabel('n'); ylabel('x2');C)clear;clc;n=[0:15];x3=3*cos(0.125*pi*n+0.2*pi)+2*sin(0.25*pi*n+0.1*pi);subplot(3,1,1),stem(x3)title('x3=3*cos(0.125*pi*n+0.2*pi)+2*sin(0.25*pi*n+0.1*pi)') xlabel('n'); ylabel('x3');3、 绘出下列时间常数的图形,对x 轴,y 轴以及图形上方均须加上适当的标注: a) s t t t x 100 )2sin()(≤≤=π b) 4s t 0 )sin()100cos()(≤≤=t t t x ππ >> m=0:0.01:10; n=0:0.01:4; x1t=sin(2*pi*m);x2t=cos(100*pi*n).*sin(pi*n); subplot(2,1,1);plot(m,x1t); subplot(2,1,2);plot(n,x2t);4、 给定一因果系统H(z)=(1+2-1-z z 2+)/(2167.0-1--+z z ),求出并绘制H(z)的幅频响应与相频响应。
西安电子科技大学数字信号处理上机报告
数字信号处理大作业院系:电子工程学院学号:02115043姓名:邱道森实验一:信号、系统及系统响应一、实验目的(1) 熟悉连续信号经理想采样前后的频谱变化关系,加深对时域采样定理的理解。
(2) 熟悉时域离散系统的时域特性。
(3) 利用卷积方法观察分析系统的时域特性。
(4) 掌握序列傅里叶变换的计算机实现方法,利用序列的傅里叶变换对连续信号、离散信号及系统响应进行频域分析。
二、实验原理采样是连续信号数字处理的第一个关键环节。
对连续信号()a x t 进行理想采样的过程可用(1.1)式表示:()()()ˆa a xt x t p t =⋅ 其中()t xa ˆ为()a x t 的理想采样,()p t 为周期冲激脉冲,即 ()()n p t t nT δ∞=-∞=-∑()t xa ˆ的傅里叶变换()j a X Ω为 ()()s 1ˆj j j a a m X ΩX ΩkΩT ∞=-∞=-∑进行傅里叶变换,()()()j ˆj e d Ωt a a n X Ωx t t nT t δ∞∞--∞=-∞⎡⎤=-⎢⎥⎣⎦∑⎰ ()()j e d Ωtan x t t nT t δ∞∞--∞=-∞=-∑⎰()j e ΩnTan x nT ∞-=-∞=∑式中的()a x nT 就是采样后得到的序列()x n , 即()()a x n x nT =()x n 的傅里叶变换为()()j j e enn X x n ωω∞-=-∞=∑比较可知()()j ˆj e aΩTX ΩX ωω==为了在数字计算机上观察分析各种序列的频域特性,通常对()j e X ω在[]0,2π上进行M 点采样来观察分析。
对长度为N 的有限长序列()x n ,有()()1j j 0eekk N nn X x n ωω--==∑其中2π,0,1,,1k k k M Mω==⋅⋅⋅-一个时域离散线性时不变系统的输入/输出关系为()()()()()m y n x n h n x m h n m ∞=-∞=*=-∑上述卷积运算也可以转到频域实现()()()j j j e e e Y X H ωωω= (1.9)三、实验内容及步骤(1) 认真复习采样理论、 离散信号与系统、 线性卷积、 序列的傅里叶变换及性质等有关内容, 阅读本实验原理与方法。
数字信号处理实验七(上机)报告
数字信号处理实验报告实验名称: 实验七冲击响应不变法IIR 数字滤波器设计实验时间: 2014 年 12 月 2 日 学号: 201211106134 姓名: 孙舸 成绩:评语:一、 实验目的:1、掌握构成一个频率响应与给定的滤波特性相接近的模拟滤波器的设计原理;2、掌握用冲激响应不变法设计IIR 数字滤波器的基本原理和算法;3、了解数字滤波器和模拟滤波器的频率响应特性,掌握相应的计算方法,分析用冲激响应不变法获得的数字滤波器频率响应特性中出现的混叠现象。
二、 实验原理与计算方法:1、冲激响应不变法设计IIR 数字滤波器的基本原理和算法采用冲激响应不变法设计数字滤波器,就是使其单位样值响应)(n h 与相应的模拟滤波器的冲激响应)(t h a 在抽样点处的量值相等,即)()()(nT h t h n h a nTt a === (1)其中T 为抽样周期。
因此用冲激响应不变法设计IIR 数字滤波器的基本步骤,就是首先根据设计要求确定相应的模拟滤波器的传递函数)(s H a ,经Laplace 反变换求出冲激响应)(t h a 后,对它进行抽样得到的)(nT h a 等于数字滤波器的单位样值响应)(n h ,再经z 变换所得)(z H 就是数字滤波器的传递函数。
如果模拟滤波器的传递函数)(s H a 的N 个极点i s 都是单极点,则可以将)(s H a 写成部分分式展开的形式∑=-=Ni iia s s A s H 1)( (2) 那么,经Laplace 反变换求出的模拟滤波器的冲激响应)(t h a 为)()(1t u e A t h Ni t s i a i ∑==相对应的数字滤波器的单位样值响应为)()()(1n u eA t h n h Ni nTs i nTt a i ∑====对上式作z 变换,得∑∑∑∑∑=-=∞=-∞==--===ni T s iN i n nTn s in nTs i Ni n zeA z eA eA zz H i i i 11111)( (3)由上面的推导可见,只要模拟滤波器的传递函数)(s H a 的N 个极点i s 都是单极点,当已经求出各个极点值i s 和部分分式的系数i A 后,则可以从模拟滤波器的传递函数的表达式(2)直接得到数字滤波器的传递函数)(z H 的表达式(3)。
数字信号处理实验一(上机)报告
数字信号处理实验报告实验名称:实验一离散时间信号的时域表示实验时间: 2014 年 9 月 16 日学号:201211106134 姓名:孙舸成绩:评语:一、实验目的1、熟悉MATLAB命令,掌握离散时间信号-序列的时域表示方法;2、掌握用MATLAB描绘二维图像的方法;3、掌握用MATLAB对序列进行基本的运算和时域变换的方法。
二、实验原理与计算方法(一)序列的表示方法序列的表示方法有列举法、解析法和图形法,相应的用MATLAB也可以有这样几种表示方法,分别介绍如下:1、列举法在MATLAB中,用一个列向量来表示一个有限长序列,由于一个列向量并不包含位置信息,因此需要用表示位置的n和表示量值的x两个向量来表示任意一个序列,如:例1.1:>>n=[-3,-2,-1,0,1,2,3,4];>>x=[2,1,-1,0,1,4,3,7];如果不对向量的位置进行定义,则MATLAB 默认该序列的起始位置为n=0。
由于内存有限,MATLAB 不能表示一个无限序列。
2、解析法对于有解析表达式的确定信号,首先定义序列的范围即n 的值,然后直接写出该序列的表达式,如:例1.2:实现实指数序列n n x )9.0()(=,100≤≤n 的MATLAB 程序为: >>n=[0:10];>>x=(0.9).^n;例1.3:实现正余弦序列)5.0sin(2)31.0cos(3)(n n n x πππ++=,155≤≤n 的MATLAB 程序为:>>n=[5:15];>>x=3*cos(0.1*pi*n+pi/3)+2*sin(0.5*pi*n);3、图形法在MATLAB 中用图形法表示一个序列,是在前两种表示方法的基础上将序列的各个量值描绘出来,即首先对序列进行定义,然后用相应的画图语句画图,如:例1.4:绘制在1中用列举法表示的序列的图形,则在向量定义之后加如下相应的绘图语句:>>stem(n,x);此时得到的图形的横坐标范围由向量n的值决定,为-3到4,纵坐标的范围由向量x的值决定,为-1到7。
数字信号处理上机实验 作业结果与说明 实验三、四、五
上机频谱分析过程及结果图 上机实验三:IIR 低通数字滤波器的设计姓名:赵晓磊 学号:赵晓磊 班级:02311301 科目:数字信号处理B一、实验目的1、熟悉冲激响应不变法、双线性变换法设计IIR 数字滤波器的方法。
2、观察对实际正弦组合信号的滤波作用。
二、实验内容及要求1、分别编制采用冲激响应不变法、双线性变换法设计巴特沃思、切贝雪夫I 型,切贝雪夫II 型低通IIR 数字滤波器的程序。
要求的指标如下:通带内幅度特性在低于πω3.0=的频率衰减在1dB 内,阻带在πω6.0=到π之间的频率上衰减至少为20dB 。
抽样频率为2KHz ,求出滤波器的单位取样响应,幅频和相频响应,绘出它们的图,并比较滤波性能。
(1)巴特沃斯,双线性变换法Ideal And Designed Lowpass Filter Magnitude Responsefrequency in Hz|H [e x p (j w )]|frequency in pi units|H [ex p (j w )]|Designed Lowpass Filter Phase Response in radians frequency in pi unitsa r g (H [e x p (j w )](2)巴特沃斯,冲激响应不变法(3)切贝雪夫I 型,双线性变换法(4)切贝雪夫Ⅱ型,双线性变换法综合以上实验结果,可以看出,使用不同的模拟滤波器数字化方法时,滤波器的性能可能产生如下差异:使用冲击响应不变法时,使得数字滤波器的冲激响应完全模仿模拟滤波器的冲激响应,也就是时域逼急良好,而且模拟频率和数字频率之间呈线性关系;但频率响应有混叠效应。
frequency in Hz|H [e x p (j w )]|Designed Lowpass Filter Magnitude Response in dBfrequency in pi units|H [e x p (j w )]|frequency in pi unitsa r g (H [e x p (j w )]Ideal And Designed Lowpass Filter Magnitude Responsefrequency in Hz|H [e x p (j w )]|frequency in pi units|H [e xp (j w )]|frequency in pi unitsa r g (H [e x p (j w )]Ideal And Designed Lowpass Filter Magnitude Responsefrequency in Hz|H [e x p (j w )]|frequency in pi units|H [ex p (j w )]|Designed Lowpass Filter Phase Response in radiansfrequency in pi unitsa r g (H [e x p (j w )]使用双线性变换法时,克服了多值映射的关系,避免了频率响应的混叠现象;在零频率附近,频率关系接近于线性关系,高频处有较大的非线性失真。
数字信号处理上机实验
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电,力通根保1据过护生管高产线中工敷资艺设料高技试中术卷资0配不料置仅试技可卷术以要是解求指决,机吊对组顶电在层气进配设行置备继不进电规行保范空护高载高中与中资带资料负料试荷试卷下卷问高总题中体2资2配,料置而试时且卷,可调需保控要障试在各验最类;大管对限路设度习备内题进来到行确位调保。整机在使组管其高路在中敷正资设常料过工试程况卷中下安,与全要过,加度并强工且看作尽护下可关都能于可地管以缩路正小高常故中工障资作高料;中试对资卷于料连继试接电卷管保破口护坏处进范理行围高整,中核或资对者料定对试值某卷,些弯审异扁核常度与高固校中定对资盒图料位纸试置,卷.编保工写护况复层进杂防行设腐自备跨动与接处装地理置线,高弯尤中曲其资半要料径避试标免卷高错调等误试,高方要中案求资,技料编术试写5交、卷重底电保要。气护设管设装备线备置4高敷、调动中设电试作资技气高,料术课中并3试、中件资且卷管包中料拒试路含调试绝验敷线试卷动方设槽技作案技、术,以术管来及架避系等免统多不启项必动方要方式高案,中;为资对解料整决试套高卷启中突动语然过文停程电机中气。高课因中件此资中,料管电试壁力卷薄高电、中气接资设口料备不试进严卷行等保调问护试题装工,置作合调并理试且利技进用术行管,过线要关敷求运设电行技力高术保中。护资线装料缆置试敷做卷设到技原准术则确指:灵导在活。分。对线对于盒于调处差试,动过当保程不护中同装高电置中压高资回中料路资试交料卷叉试技时卷术,调问应试题采技,用术作金是为属指调隔发试板电人进机员行一,隔变需开压要处器在理组事;在前同发掌一生握线内图槽部纸内 故资,障料强时、电,设回需备路要制须进造同行厂时外家切部出断电具习源高题高中电中资源资料,料试线试卷缆卷试敷切验设除报完从告毕而与,采相要用关进高技行中术检资资查料料和试,检卷并测主且处要了理保解。护现装场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
数字信号处理实验报告完整版[5篇模版]
数字信号处理实验报告完整版[5篇模版]第一篇:数字信号处理实验报告完整版实验 1利用 T DFT 分析信号频谱一、实验目的1.加深对 DFT 原理的理解。
2.应用 DFT 分析信号的频谱。
3.深刻理解利用DFT 分析信号频谱的原理,分析实现过程中出现的现象及解决方法。
二、实验设备与环境计算机、MATLAB 软件环境三、实验基础理论T 1.DFT 与与 T DTFT 的关系有限长序列的离散时间傅里叶变换在频率区间的N 个等间隔分布的点上的 N 个取样值可以由下式表示:212 /0()|()()0 1Nj knjNk NkX e x n e X k k Nπωωπ--====≤≤-∑由上式可知,序列的 N 点 DFT ,实际上就是序列的 DTFT 在 N 个等间隔频率点上样本。
2.利用 T DFT 求求 DTFT方法 1 1:由恢复出的方法如下:由图 2.1 所示流程可知:101()()()Nj j n kn j nNn n kX e x n e X k W eNωωω∞∞----=-∞=-∞=⎡⎤==⎢⎥⎣⎦∑∑∑由上式可以得到:IDFT DTFT第二篇:数字信号处理实验报告JIANGSUUNIVERSITY OF TECHNOLOGY数字信号处理实验报告学院名称:电气信息工程学院专业:班级:姓名:学号:指导老师:张维玺(教授)2013年12月20日实验一离散时间信号的产生一、实验目的数字信号处理系统中的信号都是以离散时间形态存在的,所以对离散时间信号的研究是数字信号的基本所在。
而要研究离散时间信号,首先需要产生出各种离散时间信号。
使用MATLAB软件可以很方便地产生各种常见的离散时间信号,而且它还具有强大绘图功能,便于用户直观地处理输出结果。
通过本实验,学生将学习如何用MATLAB产生一些常见的离散时间信号,实现信号的卷积运算,并通过MATLAB中的绘图工具对产生的信号进行观察,加深对常用离散信号和信号卷积和运算的理解。
数字信号处理上机实验MATLAB程序及结果
(2**f2*,'k')显示波形
('时间');
('幅值');
('原始信号');
(y)进行快速傅里叶变换
1;
1(f2/()+1)=02频率对应的幅值为零
1((2)/()+1)=02/2频率对应f2的对称频率值对应幅值为零
(1)逆变换
(212);
(2**f2*);
('时间');
('幅值');
实验三设计一个巴尔低通滤波器
%设计一个巴尔沃特低通滤波器,12140;
1000;
2000;
2**;
2**;
1;
40;
[](,'s');
('阶数为\n');
[](,'s');
%[](n);
('分子多项式系数分别为');
('%.4e\n');
('分母多项式系数分别为');
('%.4e\n');
[ ];
h1();
(0,2*,1024);
();
20*10((h));
();
(' ');
('');
([0 1 -50 0]);
;
输出结果
分子多项式的系数
1.577701
3.155501
1.577701
分母多项式的系数
1.000000
-6.062001
2.373001
0.3945
15.0000
图形为
实验8切比雪夫1型设计低通和高通滤波器
数字信号处理上机实验
数字信号处理上机实验一声音信号的频谱分析班级___________________ 学号_____________________ 姓名____________________一、实验目的1、了解声音信号的基本特征2、掌握如何用Matlab处理声音信号3、掌握FFT变换及其应用二、实验原理与方法根据脉动球表面波动方程可知,声压与该球的尺寸和振动的频率的乘积成正比,即声压一定时,球的尺寸越大,振动的频率越小。
可以将此脉动球看作人的声带,人说话的声压变化在0.1~0.6pa的很小范围内,可以看作恒定,所以声带越大,声音频率就越小,反之,声带越小,声音频率就越大。
女子的声带为11~15mm,男子的声带为17~21mm,由此可见,女声频率高,男声频率低,因此听起来女声尖利而男声低沉。
人类歌唱声音频率最大范围的基频:下限可达65.4 Hz,上限可达1046.5 Hz,不包括泛音。
出色的女高音的泛音最高的可达2700hz。
童声:童高音:261.6Hz~880Hz,童低音:196Hz~698.5Hz;女声:女高音:220Hz~1046.5Hz,女低音:174.6Hz~784Hz;男声:男高音:110Hz~523.3Hz,男低音:24.5Hz~349.2Hz。
FFT方法是处理声音信号的基本方法,详细原理参见参考书三、实验内容1、应用Windows录音机录入一段声音文件;2、应用Matlab分析该声音文件的信息,包括采样频率、数据位数,数据格式等;3、应用Matlab画出该声音文件的时域曲线;(如果是双声道数据,只处理左声道数据)4、应用FFT分析该声音文件的频谱信息,并画出频域曲线;5、以100Hz为间隔,在0-1100Hz的基频范围内统计声音能量分布情况,并画出柱形图。
四、思考题1、同一个人不同的声音文件是否具有相同的频谱信号?2、试分析男女声的频谱区别。
3、能否从频谱信号中将自己的声音与其他人的声音区分开来?五、实验报告要求1、简述实验目的及原理2、按实验要求编写Matlab文件,并附上程序及程序运行结果;3、结合所学知识总结实验中的主要结论;4、简要回答思考题。
西安电子科技大学数字信号处理上机报告解析
数字信号处理大作业院系:电子工程学院学号:********姓名:***实验一:信号、系统及系统响应一、实验目的(1) 熟悉连续信号经理想采样前后的频谱变化关系,加深对时域采样定理的理解。
(2) 熟悉时域离散系统的时域特性。
(3) 利用卷积方法观察分析系统的时域特性。
(4) 掌握序列傅里叶变换的计算机实现方法,利用序列的傅里叶变换对连续信号、离散信号及系统响应进行频域分析。
二、实验原理采样是连续信号数字处理的第一个关键环节。
对连续信号()a x t 进行理想采样的过程可用(1.1)式表示:()()()ˆa a xt x t p t =⋅ 其中()t xa ˆ为()a x t 的理想采样,()p t 为周期冲激脉冲,即 ()()n p t t nT δ∞=-∞=-∑()t xa ˆ的傅里叶变换()j a X Ω为 ()()s 1ˆj j j a a m X ΩX ΩkΩT ∞=-∞=-∑进行傅里叶变换,()()()j ˆj e d Ωt a a n X Ωx t t nT t δ∞∞--∞=-∞⎡⎤=-⎢⎥⎣⎦∑⎰ ()()j e d Ωtan x t t nT t δ∞∞--∞=-∞=-∑⎰()j e ΩnTan x nT ∞-=-∞=∑式中的()a x nT 就是采样后得到的序列()x n , 即()()a x n x nT =()x n 的傅里叶变换为()()j j e enn X x n ωω∞-=-∞=∑比较可知()()j ˆj e aΩTX ΩX ωω==为了在数字计算机上观察分析各种序列的频域特性,通常对()j e X ω在[]0,2π上进行M 点采样来观察分析。
对长度为N 的有限长序列()x n ,有()()1j j 0eekk N nn X x n ωω--==∑其中2π,0,1,,1k k k M Mω==⋅⋅⋅-一个时域离散线性时不变系统的输入/输出关系为()()()()()m y n x n h n x m h n m ∞=-∞=*=-∑上述卷积运算也可以转到频域实现()()()j j j e e e Y X H ωωω= (1.9)三、实验内容及步骤(1) 认真复习采样理论、 离散信号与系统、 线性卷积、 序列的傅里叶变换及性质等有关内容, 阅读本实验原理与方法。
数字信号处理第一次上机实验报告
数字信号处理第一次上机实验报告1、用MATLAB计算序列{-2 0 1 –1 3}和序列{1 2 0 -1}的离散卷积。
MATLAB程序如下:a=[-2 0 1 -1 3];b=[1 2 0 -1];c=conv(a,b);M=length(c)-1;n=0:1:M;stem(n,c);xlabel('n'); ylabel('幅度');图1给出了卷积结果的图形,求得的结果存放在数组c中为:{-2 -4 1 3 1 5 1 -3}。
2、用MATLAB计算差分方程,y(n)+0.7y(n-1)-0.45y(n-2)-0.6y(n-3)=0.8x(n)-0.44x(n-1)+0.36x(n-2)+0.02x(n-3)当输入序列为x(n)=δ(n)时的输出结果y(n), 0≤n≤40。
解 MATLAB程序如下:N=41;a=[0.8 -0.44 0.36 0.22];b=[1 0.7 -0.45 -0.6];x=[1 zeros(1,N-1)];k=0:1:N-1;y=filter(a,b,x);stem(k,y)xlabel('n');ylabel('幅度')图 2 给出了该差分方程的前41个样点的输出,即该系统的单位脉冲响应。
3、用MATLAB 计算2中差分方程所对应系统函数的DTFT 。
例2差分方程所对应的系统函数为:其DTFT 为1231230.80.440.360.02()10.70.450.6z z z H z z z z-------++=+--23230.80.440.360.02()10.70.450.6j j j j j j j e e e H e e e e ωωωωωωω--------++=+--用MATLAB计算的程序如下:k=256;num=[0.8 -0.44 0.36 0.02];den=[1 0.7 -0.45 -0.6];w=0:pi/k:pi;h=freqz(num,den,w);subplot(2,2,1);plot(w/pi,real(h));gridtitle('实部')xlabel('\omega/\pi');ylabel('幅度') subplot(2,2,2);plot(w/pi,imag(h));gridtitle('虚部')xlabel('\omega/\pi');ylabel('Amplitude') subplot(2,2,3);plot(w/pi,abs(h));gridtitle('幅度谱')xlabel('\omega/\pi');ylabel('幅值')subplot(2,2,4);plot(w/pi,angle(h));gridtitle('相位谱')xlabel('\omega/\pi');ylabel('弧度')。
数字信号处理上机实习报告
数字信号处理上机实习报告————————————————————————————————作者:————————————————————————————————日期:2专题一 离散卷积的计算一、实验内容设线性时不变(LTI )系统的冲激响应为h(n),输入序列为x (n) 1、h (n)=(0.8)n,0≤n ≤4; x (n)=u (n)—u (n-4) 2、h (n)=(0.8)n u (n), x (n )=u(n)—u (n-4) 3、h(n)=(0。
8)nu (n ), x(n)=u (n) 求以上三种情况下系统的输出y (n )。
二、实验目的1、掌握离散卷积计算机实现.2、进一步对离散信号卷积算法的理解.三、原理及算法概要算法:把冲激响应h(n)与输入序列x (n)分别输入到程序中,然后调用离散卷积函数y=conv (x 。
,h)即可得到所要求的结果.原理:离散卷积定义为 ∑∞-∞=-=k k n h k x n y )()()(当序列为有限长时,则∑=-=nk k n h k x n y 0)()()(四.理论计算1、h (n)=(0。
8)n,0≤n≤4; x(n )=u (n )—u(n —4) ∑∞-∞=-=*=m m n h m x n h n x n y )()()()()((a) 当n 〈0 时,y (n )=0 (b ) 当30≤≤n 时,∑==nm n y 0)((0。
8)n(c ) 当74≤≤n 时,∑-==43)(n m n y (0.8)n(d ) 当n 〉7时,y (n )=0理论结果与上图实验结果图中所示吻合。
2、h(n)=(0.8)nu(n ), x(n )=u(n)—u(n-4) ∑∞-∞=-=*=m m n h m x n h n x n y )()()()()((a) 当n <0 时,y (n )=0 (b) 当30≤≤n 时,∑==nm n y 0)((0。
《数字信号处理》上机实习报告 (3)
数字信号实习报告第一次6.21一、从给定的程序(文件包Friday.rar)中,选择一个源程序做详细标注。
(目的:熟悉Matlab 程序)参见程序Gibbs_Phenomena_CFST.m第二次6.22二、能够利用Matlab熟悉地画图,内容包括:X、Y坐标轴上的label,每幅图上的title,绘画多条曲线时的legend,对图形进行适当的标注等。
(1)在一副图上画出多幅小图;程序aa1.m(2)画出一组二维图形;程序aa2.m(3)画出一组三维图形;程序aa3.m(4)画出复数的实部与虚部。
程序aa4.m第三次6月23-24三、计算普通褶积与循环褶积,分别使用时间域与频率域两种方法进行正、反演计算,指出循环褶积计算时所存在的边界效应现象;编写一个做相关分析的源程序。
线性褶积:程序bb1.m结果:循环褶积:程序bb2.m循环相关函数bb3.m第四次6月25四、设计一个病态(矩阵)系统,分析其病态程度;找出对应的解决方法(提示:添加白噪因子)。
程序cc.m结果第五次6月26-27五、设计一个一维滤波处理程序(1、分别做低通、高通、带通、带阻等理想滤波器进行处理;2、窗函数)。
低通程序dd.m窗函数dd1.m第六次6月28六、设计一个二维滤波处理程序(分别做低通、高通等处理)。
ee.m第七次6月29-30七、验证时间域的循环褶积对应的是频率域的乘积;线性褶积则不然。
程序ff.mC2=D2从而证明了时间域的循环褶积对应的是频率域的乘积;线性褶积则不然第八次7月1八、请用通俗、易懂的语言说明数字信号处理中的一种性质、一条定理或一个算例(顺便利用Matlab对其进行实现)。
程序gg.m证明:虚序列的频谱是共轭反对称的。
《数字信号处理》上机实习报告 (10)
《计算机编程与数字信号处理实习》大作业6月21日实习任务:从给定的程序(文件包Friday.rar)中,选择一个源程序做详细标注。
(目的:熟悉Matlab程序)程序名:diyiti原理:通过对几个程序的详细分析,熟悉掌握了Matlab的一些常用函数的用法和一些简单操作。
包括数组的定义和赋值,如行向量:a=[1 1 1 1],a=(1:3)a=[1:3],列向量:a=[1 1 1 1]等text,grid on,hold on,print,legend,subplotk,循环语句的用法等。
6月22日实习任务:二、能够利用Matlab熟悉地画图,内容包括:X、Y 坐标轴上的label,每幅图上的title,绘画多条曲线时的legend,对图形进行适当的标注等。
(1)在一副图上画出多幅小图;(2)画出一组二维图形;(3)画出一组三维图形;(4)画出复数的实部与虚部。
(5)完成对一个源程序进行详细注释。
程序名:erweituxing.mSanweituxing.mShibuxubu.m原理:在一副图上画出多幅小图是利用subplot()函数三维图形用plot3(x,y,z)复数的实部用real,虚部用imag6月23-24日实习任务:三、计算普通褶积与循环褶积,分别使用时间域与频率域两种方法进行正、反演计算,指出循环褶积计算时所存在的边界效应现象;编写一个做相关分析的源程序。
程序名:bianjiexiaoying.mxiangguan.mxunhuanzheji.mzhengfanyan.m原理:时间域的普通褶积直接用褶积的公式计算,频率域的褶积先对原函数做fft变换,得出的结果是时间域的循环褶积等于频率域的褶积,N的大小与数组的长度相同,如果N小于数组长度则会出现边界效应。
6月25-26日实习任务:四、设计一个病态(矩阵)系统,分析其病态程度;找出对应的解决方法(提示:添加白噪因子)。
程序名:bingtai.m6月27日实习任务:五、设计一个一维滤波处理程序(1、分别做低通、高通、带通、带阻等理想滤波器进行处理;2、窗函数)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数字信号处理上机报告实验一:信号、系统及系统响应一、实验目的(1) 熟悉连续信号经理想采样前后的频谱变化关系, 加深对时域采样定理的理解。
(2) 熟悉时域离散系统的时域特性。
(3) 利用卷积方法观察分析系统的时域特性。
(4) 掌握序列傅里叶变换的计算机实现方法, 利用序列的傅里叶变换对连续信号、 离散信号及系统响应进行频域分析。
二、实验原理(1) 时域采样定理模拟信号经过采样脉冲进行采样,得到离散时间信号。
若采用周期脉冲进行等间隔采样,则得到的离散时间信号的频谱是原信号频谱的周期延拓。
假设采样脉冲为:()()n p t t nT δ+∞=-∞=-∑原模拟信号是()x t 则采样输出信号:'()()()x t x t p t =根据采样脉冲的周期性,进行傅里叶级数展开,得到()s jk tkk p t c eΩ+∞=-∞=∑其中:221()s jk t T k Tc p t e dt T-Ω-=⎰解得:1kc T= 则1()s jk tk p t e T +∞Ω=-∞=∑因此,采样输出信号的频谱为()1'()()()()11()()s s jk t j tj t k j t s k k X j x t p t edt x t e e dtTx t e dt X j jk TT+∞+∞+∞Ω-Ω-Ω-∞-∞=-∞+∞+∞+∞-Ω-Ω-∞=-∞=-∞Ω====Ω-Ω∑⎰⎰∑∑⎰输出信号频谱为原模拟信号频谱周期延拓,延拓周期为12s sT f π==Ωs f 为采样周期。
要使采样后信号频谱包含原信号频谱而不发生混叠,要满足max 2s f f >= 。
max f 为原信号频谱的最大值。
(2) LTI 系统的输入输出关系LTI 系统满足线性和时不变性,如果系统输入()x n ,输出为()y n ,系统函数为()h n ,则满足关系()()*()()()m y n h n x n h m x n m +∞=-∞==-∑用卷积定理表示:()()()j j j Y e X e H e ωωω=(3)DFT 与DTFT 的关系当有限长序列的长度很大时,直接计算DTFT 的计算量很大。
而计算DFT 可采用FFT ,大大减轻计算量,加快程序运行速度。
DFT 是DTFT 在[)0,2π 上的等间隔采样,即220()()|()|Nj n j n NNx k x n e x e ωωππωω-=====∑ 01k N ≤≤-通过序列补零增大N ,则会使()x k 更多地反映()j x e ω的信息。
如果N 足够大,()x k 近似逼近()j x e ω。
通过FFT 就可以近似求得()j x e ω。
三、实验内容:1、分析采样序列的特性 (1)、实验条件连续模拟信号:x(t)=Ae -at sin(Ω0t)u(t)其中:A=444.128,a=50*sqrt(2)*pi; Ω0=50*sqrt(2)*pi; (2)实验步骤:取采样频率f s =1 kHz ,观察|X(e j ω)|的变化, 并做记录;进一步降低采样频率, 取f s =300 Hz ,f s =200 Hz ,观察频谱混叠现象,并记录这时的|X(e j ω)|曲线,分析异同。
(3)实验结果:1s f KHz =300s f Hz =200s f Hz =(4)实验结论:通过比较不同频率采样的输出信号幅频特性,可以发现当采样频率较大时,输出信号频谱不发生混叠,随着采样频率的降低,输出信号频谱越来越胖,下凹部分越来越尖,当f=300HZ 和200HZ 时已经发生了混叠。
2、时域离散信号、 系统和系统响应分析 (1)、实验条件 单位脉冲序列: x b (n)=δ(n) 矩形序列: x c (n)=R N (n), N=10 两种FIR 系统单位脉冲响应: a. h a (n)=R 10(n);b. h b (n)=δ(n)+2.5δ(n-1)+2.5δ(n-2)+δ(n-3) (2)、实验步骤1、观察信号x b (n)和系统h b (n)的时域和频域特性;2、利用线性卷积求信号x b (n)通过系统h b (n)的响应y(n), 比较所求响应y(n)和h b (n)的时域及频域特性, 注意它们之间的差别,并绘图。
同时观察系统h a (n)对信号x c (n)的响应特性。
3、卷积定理的验证。
直接调用MATLAB 语言中的卷积函数conv 得到线性卷积结果y=conv (x, h)。
通过对y 、x 、h 进行DTFT 运算,验证()()()j j j Y e X e H e ωωω= (3)、实验结果信号的时域、频域分析和系统输出系统h a(n)对x c(n)的响应特性卷积定理的验证(4)实验结论:由图可知,y(n)和h b (n)的时域图像和幅频特性几乎一致,从而验证了x(n)=x(n)* δ(n). 通过程序直接计算y(n)=h a (n)*x c (n)和频域计算()()()j j j c a Y e X e H e ωωω=,对比y(n)的幅度谱可以发现二者几乎一致。
从而验证了卷积定理。
思考题:(1) 在分析理想采样序列特性的实验中, 采样频率不同时,相应理想采样序列的傅里叶变换频谱的数字频率度量是否都相同? 它们所对应的模拟频率是否相同? 为什么?答:采样频率不同时,相应数字频率度量相同,其频谱都是[)0,2π 的周期函数。
而相同数字频率对应的模拟频率不同,有关系sT ωΩ=。
ω 相同,而s T 不同,对应模拟频率不同。
(2) 在卷积定理验证的实验中, 如果选用不同的频域采样点数M 值, 例如, 选M=10和M=20, 分别做序列的傅里叶变换, 求得的结果有无差异?为什么?答:有差别。
DFT 相当于序列频谱的等间隔采样,当取点少时,DFT 包含序列频谱的信息会少,与序列频谱的误差会增大。
取点多时,DFT 会反映更多的频谱信息,误差会小,减轻了栅栏效应。
二者因为误差而有差别。
实验程序: clear all;clc; A=444.128;a=50*sqrt(2)*pi; om=50*sqrt(2)*pi; Y=1/1000;%采样周期 t=0:.0001:.05-.0001;n=0:1:max(t)/Y;%从零开始[0,0.05) t和n分离p=length(n);N=1024; %FFT点数xa=A.*exp((-1)*a*t).*sin(om*t);%实验序列xb=dert(p,0);%单位脉冲响应xc=[ones(1,10) zeros(1,p-10)];%矩形函数10ha=xc;hb=xb+2.5.*dert(p,1)+2.5.*dert(p,2)+dert(p,3);%产生采样序列xa_a=A.*exp((-1)*a*Y*n).*sin(om*Y*n);figure(1);subplot(1,3,1)plot(t,xa,'b-');grid on;%绘制图形title('原序列');subplot(1,3,2)stem(n,xa_a,'g-');grid on;title('采样后序列');c=fft(xa_a,N);c=abs(c);c=[c c];t=1:2*N;subplot(1,3,3);plot(t,c,'r-');grid on;title('采样后序列幅度谱');figure(2)subplot(3,2,1)stem(n,xb,'g-');c=fft(xb,N);c=abs(c);t=1:N;subplot(3,2,2)plot(t,c);title('Xb频谱幅度特性')subplot(3,2,3)stem(n,hb,'r-');c=fft(hb,N);c=abs(c);subplot(3,2,4)t=1:N;plot(t,c);title('Hb频谱幅度特性');%输出响应ynyn=conv(xb,hb);subplot(3,2,5)n1=0:1:2*p-2;stem(n1,yn);title('输出信号');c=fft(yn,2*N);c=abs(c);t=1:2*N;subplot(3,2,6)plot(t,c);title('输出信号幅度谱');yn=conv(xc,ha);figure(3)subplot(1,3,1)stem(n,xc);title('Xc的波形');subplot(1,3,2)stem(n1,yn);c=fft(yn,2*N);c=abs(c);subplot(1,3,3)plot(t,c);title('输出幅度谱');%验证卷积定理figure(4)subplot(1,2,1)plot(t,c);title('时域处理结果');xcf=fft(xc,2*N);haf=fft(ha,2*N);xcf=abs(xcf);haf=abs(haf);ynf=xcf.*haf;subplot(1,2,2)plot(t,ynf);title('频域处理结果');hold offclear c haf xcf;子函数:function y=dert(a,b)%a为n大小,b为位置y=[zeros(1,b) 1 zeros(1,(a-b)-1)];end实验二、用FFT 作谱分析一、实验目的(1) 进一步加深DFT 算法原理和基本性质的理解(因为FFT 只是DFT 的一种快速算法, 所以FFT 的运算结果必然满足DFT 的基本性质)。
(2) 熟悉FFT 算法原理和FFT 子程序的应用。
(3) 学习用FFT 对连续信号和时域离散信号进行谱分析的方法, 了解可能出现的分析误差及其原因, 以便在实际中正确应用FFT 。
二、实验内容利用FFT 进行谱分析 (1)实验条件 用到的信号:(2)实验步骤1、对所给的信号逐个进行谱分析。
2、令x(n)=x 4(n)+x 5(n), 用FFT 计算 8 点和 16 点离散傅里叶变换,得X(k)=FFT [x(n)]3、令x(n)=x 4(n)+jx 5(n), 重复(2)。
(3)实验结果1、逐个信号谱分析1423()()1,03()8470403()3470x n R n n n x n n n n n x n n n =⎧+≤≤⎪=-≤≤⎨⎪⎩-≤≤⎧⎪=-≤≤⎨⎪⎩456()cos 4()sin 8()cos8cos16cos 20x n n x n nx n t t tπππππ===++2、x(n)=x4(n)+x5(n)的DFT3、x(n)=x4(n)+jx5(n)的DFT(4)实验结论利用FFT可以快速地进行序列的谱分析。