黔东南州2011中考数学试卷
(中考真题)黔东南州初中毕业升学统一考试数学试卷
启用前·绝密黔东南州初中毕业升学统一考试数学试卷注意事项:1、本卷共有三个大题,26个小题,满分150分,考试时间120分钟。
2、请用(蓝、黑)色墨水钢笔或圆珠笔直接在试卷上答题。
、答题前务必将密封线内的项目填写清楚。
并填上座位号。
一、单项选择题:(每小题4分,共40分)1、下列运算正确的是()A、39±=B、33-=-C、39-=-D、932=-2、在下列几何图形中一定是轴对称图形的有()平行四边形抛物线三角形A、1个B、2个C、3个D、4个3、下列图形中,面积最大的是()A、对角线长为6和8的菱形;B、边长为6的正三角形;C、半径为3的圆;D、边长分别为6、8、10的三角形;4、下面简举几何体的主视图是()正面 A B C D5、抛物线的图象如图1所示,根据图象可知,抛物线的解析式可能..是()A、y=x2-x-2B、y=121212++-x_ _ __ _C 、y=121212+--x x D 、y=22++-x x 6、如图2,在△ABC 中,AB=AC ,点D 在AC 上,且BD=BC=AD ,则∠A 等于( )A 、30oB 、40oC 、45oD 、36o7、方程0|84|=--+-m y x x ,当0>y 时,m 的取值范围是( )A 、10<<mB 、2≥mC 、2<mD 、2≤m 8、设矩形ABCD 的长与宽的和为2,以AB 为轴心旋转一周得到一个几何体,则此几何体的侧面积有( )A 、最小值4πB 、最大值4πC 、最大值2πD 、最小值2π9、某校生物教师李老师在生物实验室做试验时,将水稻种子分组进行发芽试验;第1组取3粒,第2组取5粒,第3组取7粒……即每组所取种子数目比该组前一组增加2粒,按此规律,那么请你推测第n 组应该有种子数( )粒。
A 、12+nB 、12-nC 、n 2D 、2+n 10、如图3,在凯里一中学生耐力测试比赛中,甲、乙两学生测试的路程s (米)与时间t (秒)之间的函数关系的图象分别为折线OABC 和线段OD ,下列说法正确的是( )A 、乙比甲先到终点;B 、乙测试的速度随时间增加而增大;C 、比赛进行到29.4秒时,两人出发后第一次相遇;D 、比赛全程甲的测试速度始终比乙的测试速度快;二、填空题:(每小题4分,共32分)11、=-2)3(___________12、2x =___________13、当x______时,11+x 有意义。
2011年黔东南州数学中考卷
专业课原理概述部分一、选择题(每题1分,共5分)A. 归纳B. 演绎C. 类比D. 猜想2. 下列函数中,哪个是增函数?()A. y=2x+1B. y=2x^2C. y=x^3D. y=1/x3. 下列图形中,对称轴最多的是:()A. 等腰三角形B. 矩形C. 正方形D. 圆4. 下列哪个比例是黄金分割比?()A. 1:2B. 2:3C. 3:5D. 5:8A. √4B. √9C. √16D. √2二、判断题(每题1分,共5分)1. 任何数乘以0都等于0。
()2. 两个负数相乘得到正数。
()3. 平行线的距离处处相等。
()4. 对角线互相垂直的四边形一定是矩形。
()5. 相似三角形面积比等于边长比的平方。
()三、填空题(每题1分,共5分)1. 一次函数的一般形式是______。
2. 两条平行线之间的距离______。
3. 互为倒数的两个数乘积为______。
4. 三角形的内角和为______度。
5. 两个数的算术平均数一定大于等于它们的几何平均数,当且仅当这两个数______。
四、简答题(每题2分,共10分)1. 简述平面直角坐标系中,两点间距离公式。
2. 请解释概率论中的“独立事件”。
3. 简述三角形相似的判定条件。
4. 什么是算术平方根?5. 请列举出三种常见的统计量。
五、应用题(每题2分,共10分)1. 某商店进行打折促销,满100元减20元。
若小明购买200元的商品,实际支付多少钱?2. 一辆汽车以60km/h的速度行驶,行驶100km需要多少时间?3. 在一个等腰三角形中,底边长为10cm,高为12cm,求腰长。
4. 某班有50名学生,其中男生30人,女生20人。
随机抽取一名学生,求抽到女生的概率。
5. 一辆自行车行驶速度为15km/h,行驶3小时后,行驶的距离是多少?六、分析题(每题5分,共10分)1. 已知直角三角形的一条直角边长为3,斜边长为5,求另一条直角边长。
七、实践操作题(每题5分,共10分)1. 请用直尺和圆规作一个边长为5cm的正方形。
贵州省贵阳市2011年中考数学试题(word版答案解析)
2011年贵州省贵阳市中考数学试卷一、选择题(共10小题,每小题3分,满分30分)1、(2011•贵阳)如果“盈利10%”记为+10%,那么“亏损6%”记为()A、﹣16%B、﹣6%C、+6%D、+4%考点:正数和负数。
专题:计算题。
分析:首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.解答:解:根据题意可得:盈利为“+”,则亏损为“﹣”,∴亏损6%记为:﹣6%.故选:B.点评:此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.2、(2011•贵阳)2011年9月第九届全国少数民族传统体育运动会将在贵阳举行,为营造一个清洁、优美、舒适的美好贵阳,2011年3月贵阳市启动了“自己动手,美化贵阳”活动,在活动过程中,志愿者们陆续发放了50000份倡议书,50000这个数用科学记数法表示为()A、5xlO5B、5xlO4C、0.5x105D、0.5x104考点:科学记数法—表示较大的数。
分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将50000用科学记数法表示为5×104.故选B.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3、(2011•贵阳)一枚质地均匀的正方体骰子,其六个面上分别刻有1、2、3、4、5、6六个数字,投掷这个骰子一次,则向上一面的数字小于3的概率是()A 、B 、C 、D 、考点:概率公式。
专题:应用题。
分析:根据概率公式知,骰子共有六个面,其中向上一面的数字小于3的面有1,2,故掷该骰子一次,则向上一面的数字是1的概率是,向上一面的数字是2的概率是,从而得出答案.解答:解:骰子的六个面上分别刻有数字1,2,3,4,5,6,其中向上一面的数字小于3的面有1,2,∴掷该骰子一次,向上一面的数字是1的概率是,向上一面的数字是,2的概率是,∴向上一面的数字小于3的概率是,故选C.点评:本题考查随机事件概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=,难度适中.4、(2011•贵阳)一个几何体的三视图如图所示,则这个几何体是()A、圆柱B、三棱锥C、球D、圆锥考点:由三视图判断几何体。
2011年黔东南中考数学试题及参考答案
黔东南州2011年中考数学模拟试题及参考答案一、选择题1.-3的相反数是DA .-13B .13C .-3D .32.计算(x 2y)3,结果正确的是D A .x 5y B .x 6y C .x 2y 3 D .x 6y 3 3.等边三角形、正方形、菱形和等腰梯形这四个图形中,是中心对称图形的有B A .1个 B .2个 C .3个 D .4个4.已知⊙O 的半径为r ,圆心O 到直线l 的距离为d 。
若直线l 与⊙O 有交点,则下列结论正确的是B A .d =r B .d ≤r C .d ≥r D .d <r5.用换元法解分式方程222(1)672x x x x ++=+时,如果设21x y x +=,那么将原方程化为关于y 的一元二次方程的一般形式是AA .22760y y -+=B .22760y y ++=C .2760y y -+=D .2760y y ++=6.已知:如图1,在矩形ABCD 中,E ,F ,G ,H 分别为边AB ,BC ,CD ,DA 的中点。
若AB =2,AD =4,则图中阴影部分的面积为B A .3 B .4 C .6 D .87.某闭合电路中,电源的电压为定值,电流I (A )与电阻R (Ω)成反比例。
图2表示的是该电路中电流I 与电阻R 之间函数关系的图像,则用电阻R 表示电流I 的函数解析式为CA .2I R =B .3I R =C .6I R=D .6I R=-8.法国的“小九九”从“一一得一”到“五五二十五”和我国的“小九九”是一样的,后面的就改用手势了。
下面两个图框使用法国“小九九”计算7×8和8×9的两个示例。
若用法国的“小九九”计算7×9,左、右手依次伸出手指的个数是CD 图1)图2A .2,3B .3,3C .2,4D .3,49.古代有这样一个寓言故事:驴子和骡子一同走,它们驮着不同袋数的货物,每袋货物都是一样重的。
2011年贵州省贵阳市中考数学试卷
2011年贵州省贵阳市中考数学试卷一、选择题(共10小题,每小题3分,满分30分)1.(3分)如果“盈利10%”记为+10%,那么“亏损6%”记为()A.﹣16% B.﹣6% C.+6% D.+4%2.(3分)2011年9月第九届全国少数民族传统体育运动会将在贵阳举行,为营造一个清洁、优美、舒适的美好贵阳,2011年3月贵阳市启动了“自己动手,美化贵阳”活动,在活动过程中,志愿者们陆续发放了50000份倡议书,50000这个数用科学记数法表示为()A.5×l05B.5×l04C.0.5×105D.0.5×1043.(3分)一枚质地均匀的正方体骰子,其六个面上分别刻有1、2、3、4、5、6六个数字,投掷这个骰子一次,则向上一面的数字小于3的概率是()A.B.C.D.4.(3分)一个几何体的三视图如图所示,则这个几何体是()A.圆柱B.三棱锥C.球D.圆锥5.(3分)某市甲、乙、丙、丁四支中学生足球队在市级联赛中进球数分别为:7、7、6、5,则这组数据的众数是()A.5 B.6 C.7 D.6.56.(3分)如图,矩形OABC的边OA长为2,边AB长为1,OA在数轴上,以原点O为圆心,对角线OB的长为半径画弧,交正半轴于一点,则这个点表示的实数是()A.2.5 B.C.D.7.(3分)如图,△ABC中,∠C=90°,AC=3,∠B=30°,点P是BC边上的动点,则AP长不可能是()A.3.5 B.4.2 C.5.8 D.78.(3分)如图所示,货车匀速通过隧道(隧道长大于货车长)时,货车从进入隧道至离开隧道的时间x与货车在隧道内的长度y之间的关系用图象描述大致是()A.B.C.D.9.(3分)有下列五种正多边形地砖:①正三角形;②正方形;③正五边形;④正六边形;⑤正八边形,现要用同一种大小一样、形状相同的正多边形地砖铺设地面,其中能做到彼此之间不留空隙、不重叠地铺设的地砖有()A.4种 B.3种 C.2种 D.1种10.(3分)如图,反比例函数和正比例函数y2=k2x的图象交于A(﹣1,﹣3)、B(1,3)两点,若,则x的取值范围是()A.﹣1<x<0 B.﹣1<x<1 C.x<﹣1或0<x<1 D.﹣1<x<0或x>1二、填空题(共5小题,每小题4分,满分20分)11.(4分)如图,ED∥AB,AF交ED于点C,∠ECF=138°,则∠A=度.12.(4分)一次函数y=2x﹣3的图象不经过第象限.13.(4分)甲、乙两人分别在六次射击中的成绩如下表:(单位:环)这六次射击中成绩发挥比较稳定的是.14.(4分)写出一个开口向下的二次函数的表达式.15.(4分)如图,已知等腰Rt△ABC的直角边长为1,以Rt△ABC的斜边AC为直角边,画第二个等腰Rt△ACD,再以Rt△ACD的斜边AD为直角边,画第三个等腰Rt△ADE,…,依此类推到第五个等腰Rt△AFG,则由这五个等腰直角三角形所构成的图形的面积为.三、解答题(共10小题,满分100分)16.(8分)在三个整式x2﹣1,x2+2x+1,x2+x中,请你从中任意选择两个,将其中一个作为分子,另一个作为分母组成一个分式,并将这个分式进行化简,再求当x=2时分式的值.17.(10分)贵阳市某中学开展以“三创一办”为中心,以“校园文明”为主题的手抄报比赛,同学们积极参与,参赛同学每人交了一份得意作品,所有参赛作品均获奖,奖项分为一等奖、二等奖、三等奖和优秀奖,将获奖结果绘制成如下两幅统计图.请你根据图中所给信息解答下列问题:(1)一等奖所占的百分比是.(2)在此次比赛中,一共收到多少份参赛作品?请将条形统计图补充完整;(3)各奖项获奖学生分别有多少人?18.(10分)如图,点E是正方形ABCD内一点,△CDE是等边三角形,连接EB、EA,延长BE交边AD点于点F.(1)求证:△ADE≌△BCE;(2)求∠AFB的度数.19.(10分)一只不透明的袋子中装有4个质地、大小均相同的小球,这些小球分别标有数字3、4、5、x.甲、乙两人每次同时从袋中各随机摸出1个球,并计算摸出的这2个小球上数字之和,记录后都将小球放回袋中搅匀,进行重复实验.实验数据如下表解答下列问题:(1)如果实验继续进行下去,根据上表数据,出现“和为8”的频率将稳定在它的概率附近.估计出现“和为8”的概率是.(2)如果摸出的这两个小球上数字之和为9的概率是,那么x的值可以取7吗?请用列表法或画树状图法说明理由;如果x的值不可以取7,请写出一个符合要求的x值.20.(10分)某过街天桥的设计图是梯形ABCD(如图所示),桥面DC与地面AB 平行,DC=62米,AB=88米.左斜面AD与地面AB的夹角为23°,右斜面BC与地面AB的夹角为30°,立柱DE⊥AB于E,立柱CF⊥AB于F,求桥面DC与地面AB之间的距离(精确到0.1米)21.(10分)如图所示,二次函数y=﹣x2+2x+m的图象与x轴的一个交点为A(3,0),另一个交点为B,且与y轴交于点C.(1)求m的值;(2)求点B的坐标;=S△ABC,求(3)该二次函数图象上有一点D(x,y)(其中x>0,y>0)使S△ABD点D的坐标.22.(10分)在▱ABCD中,AB=10,∠ABC=60°,以AB为直径作⊙O,边CD切⊙O于点E.(1)圆心O到CD的距离是.(2)求由弧AE、线段AD、DE所围成的阴影部分的面积.(结果保留π和根号)23.(10分)童星玩具厂工人的工作时间为:每月22天,每天8小时.工资待遇为:按件计酬,多劳多得,每月另加福利工资500元,按月结算.该厂生产A、B两种产品,工人每生产一件A种产品可得报酬1.50元,每生产一件B种产品可得报酬2.80元.该厂工人可以选择A、B两种产品中的一种或两种进行生产.工人小李生产1件A产品和1件B产品需35分钟;生产3件A产品和2件B产品需85分钟.(1)小李生产1件A产品需要分钟,生产1件B产品需要分钟.(2)求小李每月的工资收入范围.24.(10分)[阅读]在平面直角坐标系中,以任意两点P(x1,y1)、Q(x2,y2)为端点的线段中点坐标为.[运用](1)如图,矩形ONEF的对角线相交于点M,ON、OF分别在x轴和y轴上,O 为坐标原点,点E的坐标为(4,3),则点M的坐标为.(2)在直角坐标系中,有A(﹣1,2),B(3,1),C(1,4)三点,另有一点D与点A、B、C构成平行四边形的顶点,求点D的坐标.25.(12分)用长度一定的不锈钢材料设计成外观为矩形的框架(如图①②③中的一种)设竖档AB=x米,请根据以上图案回答下列问题:(题中的不锈钢材料总长度均指各图中所有黑线的长度和,所有横档和竖档分别与AD、AB平行)(1)在图①中,如果不锈钢材料总长度为12米,当x为多少时,矩形框架ABCD 的面积为3平方米?(2)在图②中,如果不诱钢材料总长度为12米,当x为多少时,矩形架ABCD 的面积S最大?最大面积是多少?(3)在图③中,如果不锈钢材料总长度为a米,共有n条竖档,那么当x为多少时,矩形框架ABCD的面积S最大?最大面积是多少?2011年贵州省贵阳市中考数学试卷南通数学名师团解析一、选择题(共10小题,每小题3分,满分30分)1.(3分)如果“盈利10%”记为+10%,那么“亏损6%”记为()A.﹣16% B.﹣6% C.+6% D.+4%【分析】首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.【解答】解:根据题意可得:盈利为“+”,则亏损为“﹣”,∴亏损6%记为:﹣6%.故选:B.【点评】此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.2.(3分)2011年9月第九届全国少数民族传统体育运动会将在贵阳举行,为营造一个清洁、优美、舒适的美好贵阳,2011年3月贵阳市启动了“自己动手,美化贵阳”活动,在活动过程中,志愿者们陆续发放了50000份倡议书,50000这个数用科学记数法表示为()A.5×l05B.5×l04C.0.5×105D.0.5×104【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n 是负数.【解答】解:将50000用科学记数法表示为5×104.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)一枚质地均匀的正方体骰子,其六个面上分别刻有1、2、3、4、5、6六个数字,投掷这个骰子一次,则向上一面的数字小于3的概率是()A.B.C.D.【分析】根据概率公式知,骰子共有六个面,其中向上一面的数字小于3的面有1,2,故掷该骰子一次,则向上一面的数字是1的概率是,向上一面的数字是2的概率是,从而得出答案.【解答】解:骰子的六个面上分别刻有数字1,2,3,4,5,6,其中向上一面的数字小于3的面有1,2,∴6个结果中有2个结果小于3,故概率为=,∴向上一面的数字小于3的概率是,故选:C.【点评】本题考查随机事件概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=,难度适中.4.(3分)一个几何体的三视图如图所示,则这个几何体是()A.圆柱B.三棱锥C.球D.圆锥【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【解答】解:由于主视图和左视图为三角形可得此几何体为锥体,由俯视图为圆和一点可得为圆锥.故选:D.【点评】此题主要考查了学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.5.(3分)某市甲、乙、丙、丁四支中学生足球队在市级联赛中进球数分别为:7、7、6、5,则这组数据的众数是()A.5 B.6 C.7 D.6.5【分析】众数就是出现次数最多的数,据此即可求解.【解答】解:这组数据的众数是7.故选:C.【点评】本题主要考查了众数的定义,是需要熟记的内容.6.(3分)如图,矩形OABC的边OA长为2,边AB长为1,OA在数轴上,以原点O为圆心,对角线OB的长为半径画弧,交正半轴于一点,则这个点表示的实数是()A.2.5 B.C.D.【分析】本题利用实数与数轴的关系及直角三角形三边的关系(勾股定理)解答即可.【解答】解:由勾股定理可知,∵OB==,∴这个点表示的实数是.故选:D.【点评】本题考查了勾股定理的运用和如何在数轴上表示一个无理数的方法.7.(3分)如图,△ABC中,∠C=90°,AC=3,∠B=30°,点P是BC边上的动点,则AP长不可能是()A.3.5 B.4.2 C.5.8 D.7【分析】利用垂线段最短分析AP最小不能小于3;利用含30度角的直角三角形的性质得出AB=6,可知AP最大不能大于6.此题可解.【解答】解:根据垂线段最短,可知AP的长不可小于3;∵△ABC中,∠C=90°,AC=3,∠B=30°,∴AB=6,∴AP的长不能大于6.故选:D.【点评】本题主要考查了垂线段最短的性质和含30度角的直角三角形的理解和掌握,解答此题的关键是利用含30度角的直角三角形的性质得出AB=6.8.(3分)如图所示,货车匀速通过隧道(隧道长大于货车长)时,货车从进入隧道至离开隧道的时间x与货车在隧道内的长度y之间的关系用图象描述大致是()A.B.C.D.【分析】先分析题意,把各个时间段内y与x之间的关系分析清楚,本题是分段函数,分为三段.【解答】解:根据题意可知火车进入隧道的时间x与火车在隧道内的长度y之间的关系具体可描述为:当火车开始进入时y逐渐变大,火车完全进入后一段时间内y不变,当火车开始出来时y逐渐变小,∴反映到图象上应选A.故选:A.【点评】本题主要考查了根据实际问题作出函数图象的能力.解题的关键是要知道本题是分段函数,分情况讨论y与x之间的函数关系,难度适中.9.(3分)有下列五种正多边形地砖:①正三角形;②正方形;③正五边形;④正六边形;⑤正八边形,现要用同一种大小一样、形状相同的正多边形地砖铺设地面,其中能做到彼此之间不留空隙、不重叠地铺设的地砖有()A.4种 B.3种 C.2种 D.1种【分析】根据一种正多边形的镶嵌应符合一个内角度数能整除360°求解即可.【解答】解:①正三角形的每个内角是60°,能整除360°,能够铺满地面;②正方形的每个内角是90°,能整除360°,能够铺满地面;③正五边形每个内角是180°﹣360°÷5=108°,不能整除360°,不能够铺满地面;④正六边形的每个内角是120°,能整除360°,能够铺满地面;⑤正八边形的每个内角为:180°﹣360°÷8=135°,不能整除360°,不能够铺满地面.故选:B.【点评】本题意在考查学生对平面镶嵌知识的掌握情况,体现了学数学用数学的思想.由平面镶嵌的知识可知只用一种正多边形能够铺满地面的是正三角形或正四边形或正六边形.10.(3分)如图,反比例函数和正比例函数y2=k2x的图象交于A(﹣1,﹣3)、B(1,3)两点,若,则x的取值范围是()A.﹣1<x<0 B.﹣1<x<1 C.x<﹣1或0<x<1 D.﹣1<x<0或x>1【分析】根据题意知反比例函数和正比例函数相交于A、B两点,若要,只须y1>y2,在图象上找到反比例函数图象在正比例函数图象上方x的取值范围.【解答】解:根据题意知:若,则只须y1>y2,又知反比例函数和正比例函数相交于A、B两点,从图象上可以看出当x<﹣1或0<x<1时y1>y2,故选:C.【点评】本题主要考查了待定系数法求反比例函数与一次函数的解析式和反比例函数中k的几何意义.这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义.二、填空题(共5小题,每小题4分,满分20分)11.(4分)如图,ED∥AB,AF交ED于点C,∠ECF=138°,则∠A=42度.【分析】首先由邻补角求出∠DCF,再由平行线的性质得出∠A.【解答】解:∠DCF=180°﹣∠ECF=180°﹣138°=42°,又ED∥AB,∴∠A=∠DCF=42°.故答案为:42.【点评】此题考查的知识点是平行线的性质及邻补角,关键是先由邻补角求出∠DCF,再由平行线的性质求出∠A.12.(4分)一次函数y=2x﹣3的图象不经过第二象限.【分析】先根据一次函数的性质判断出此函数图象所经过的象限,再进行解答即可.【解答】解:∵一次函数y=2x﹣3中,k=2>0,∴此函数图象经过一、三象限, ∵b=﹣3<0,∴此函数图象与y 轴负半轴相交,∴此一次函数的图象经过一、三、四象限,不经过第二象限. 故答案为:二.【点评】本题考查的是一次函数的性质,即一次函数y=kx +b (k ≠0)中,当k >0时,函数图象经过一、三象限,当b <0时,(0,b )在y 轴的负半轴,直线与y 轴交于负半轴.13.(4分)甲、乙两人分别在六次射击中的成绩如下表:(单位:环)这六次射击中成绩发挥比较稳定的是 甲 .【分析】先根据平均数的定义分别计算出甲和乙的平均数,甲=乙=7;再根据方差的计算公式S 2=[(x 1﹣)2+(x 2﹣)2+…+(x n ﹣)2]计算出它们的方差,然后根据方差的意义即可确定答案. 【解答】解:∵甲=(6+7+7+8+6+8)=7,乙=(5+9+6+8+5+9)=7;∴S 2甲=[(6﹣7)2+(7﹣7)2+(7﹣7)2+(8﹣7)2+(6﹣7)2+(8﹣7)2]=, S 2乙=[(5﹣7)2+(9﹣7)2+(6﹣7)2+(8﹣7)2+(5﹣7)2+(9﹣7)2]=3; ∴S 2甲<S 2乙,∴甲在射击中成绩发挥比较稳定. 故答案为甲.【点评】本题考查了方差的定义和意义:数据x 1,x 2,…x n ,其平均数为,则其方差S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2];方差反映了一组数据在其平均数的左右的波动大小,方差越大,波动越大,越不稳定;方差越小,波动越小,越稳定.14.(4分)写出一个开口向下的二次函数的表达式y=﹣x2.【分析】根据二次函数开口向下,二次项系数为负,可据此写出满足条件的函数解析式【解答】解:二次函数的图象开口向下,则二次项系数为负,即a<0,满足条件的二次函数的表达式为y=﹣x2.故答案为:y=﹣x2.【点评】本题主要考查二次函数的性质,二次函数的图象开口向下,二次项系数为负,此题比较简单.15.(4分)如图,已知等腰Rt△ABC的直角边长为1,以Rt△ABC的斜边AC为直角边,画第二个等腰Rt△ACD,再以Rt△ACD的斜边AD为直角边,画第三个等腰Rt△ADE,…,依此类推到第五个等腰Rt△AFG,则由这五个等腰直角三角形所构成的图形的面积为15.5.【分析】根据△ABC是边长为1的等腰直角三角形,利用勾股定理分别求出Rt △ABC、Rt△ACD、Rt△ADE的斜边长,然后利用三角形面积公式分别求出其面积,找出规律,再按照这个规律得出第四个、第五个等腰直角三角形的面积,相加即可.【解答】解:∵△ABC是边长为1的等腰直角三角形,=×1×1==21﹣2;∴S△ABCAC==,AD==2…,∴S=××=1=22﹣2;△ACDS△ADE=×2×2=2=23﹣2…∴第n个等腰直角三角形的面积是2n﹣2.=24﹣2=4,∴S△AEFS△AFG=25﹣2=8,由这五个等腰直角三角形所构成的图形的面积为+1+2+4+8=15.5.故答案为:15.5.【点评】此题主要考查学生对等腰直角三角形、三角形面积公式和勾股定理的理解和掌握,解答此题的关键是根据△ABC是边长为1的等腰直角三角形分别求出Rt△ABC、Rt△ACD、Rt△ADE的面积,找出规律.三、解答题(共10小题,满分100分)16.(8分)在三个整式x2﹣1,x2+2x+1,x2+x中,请你从中任意选择两个,将其中一个作为分子,另一个作为分母组成一个分式,并将这个分式进行化简,再求当x=2时分式的值.【分析】先确定选x2﹣1作分母,x2+x作分子,然后化简代数式,化为最简后再代入x的值计算.【解答】解:==,当x=2时,原式==2.【点评】本题考查了分式的化简求值,解答此题的关键是把分式化到最简,然后代值计算.17.(10分)贵阳市某中学开展以“三创一办”为中心,以“校园文明”为主题的手抄报比赛,同学们积极参与,参赛同学每人交了一份得意作品,所有参赛作品均获奖,奖项分为一等奖、二等奖、三等奖和优秀奖,将获奖结果绘制成如下两幅统计图.请你根据图中所给信息解答下列问题:(1)一等奖所占的百分比是10%.(2)在此次比赛中,一共收到多少份参赛作品?请将条形统计图补充完整;(3)各奖项获奖学生分别有多少人?【分析】(1)用100%减去各个小扇形的百分比即可得到一等奖所占的百分比;(2)用一等奖的人数除以一等奖所占的百分比即可得到所有参赛作品份数;(3)用总数分别乘以各个小扇形的百分比即可得到各奖项获奖学生分别有多少人.【解答】解:(1)一等奖所占的百分比是:100%﹣46%﹣24%﹣20%=10%;(2)在此次比赛中,一共收到:20÷10%=200份;(3)一等奖有:20人,二等奖有:200×20%=40人,三等奖有:200×24%=48人,优秀奖有:200×46%=92人.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.18.(10分)如图,点E是正方形ABCD内一点,△CDE是等边三角形,连接EB、EA,延长BE交边AD点于点F.(1)求证:△ADE≌△BCE;(2)求∠AFB的度数.【分析】(1)由题意正方形ABCD的边AD=DC,在等边三角形CDE中,CE=DE,∠EDC等于∠ECD,即能证其全等.(2)根据等边三角形、等腰三角形、平行线的角度关系,可以求得∠AFB的度数.【解答】(1)证明:∵ABCD是正方形∴AD=BC,∠ADC=∠BCD=90°又∵三角形CDE是等边三角形∴CE=DE,∠EDC=∠ECD=60°∴∠ADE=∠ECB∴△ADE≌△BCE.(2)解:∵△CDE是等边三角形,∴CE=CD=DE,∵四边形ABCD是正方形∴CD=BC,∴CE=BC,∴△CBE为等腰三角形,且顶角∠ECB=90°﹣60°=30°∴∠EBC=(180°﹣30°)=75°∵AD∥BC∴∠AFB=∠EBC=75°.【点评】本题考查了正方形、等边三角形、等腰三角形性质的综合运用,是涉及几何证明与计算的综合题,难度不大.19.(10分)一只不透明的袋子中装有4个质地、大小均相同的小球,这些小球分别标有数字3、4、5、x.甲、乙两人每次同时从袋中各随机摸出1个球,并计算摸出的这2个小球上数字之和,记录后都将小球放回袋中搅匀,进行重复实验.实验数据如下表解答下列问题:(1)如果实验继续进行下去,根据上表数据,出现“和为8”的频率将稳定在它的概率附近.估计出现“和为8”的概率是0.33.(2)如果摸出的这两个小球上数字之和为9的概率是,那么x的值可以取7吗?请用列表法或画树状图法说明理由;如果x的值不可以取7,请写出一个符合要求的x值.【分析】(1)根据实验次数越大越接近实际概率求出出现“和为8”的概率即可;(2)根据小球分别标有数字3、4、5、x,用列表法或画树状图法说明当x=7时,得出数字之和为9的概率,即可得出答案.【解答】解:(1)利用图表得出:实验次数越大越接近实际概率,所以出现“和为8”的概率是0.33.(2)当x=7时,则两个小球上数字之和为9的概率是:=,故x的值不可以取7,∵出现和为9的概率是三分之一,即有3种可能,∴3+x=9 或5+x=9 或4+x=9解得x=4,x=5,x=6,故x的值可以为4,5,6其中一个.【点评】此题主要考查了利用频率估计概率,以及列树状图法求概率,注意甲、乙两人每次同时从袋中各随机摸出1个球,列出图表是解决问题的关键.20.(10分)某过街天桥的设计图是梯形ABCD(如图所示),桥面DC与地面AB 平行,DC=62米,AB=88米.左斜面AD与地面AB的夹角为23°,右斜面BC与地面AB的夹角为30°,立柱DE⊥AB于E,立柱CF⊥AB于F,求桥面DC与地面AB之间的距离(精确到0.1米)【分析】设桥面DC与地面AB之间的距离为x米,分别用x表示出AE和BF,AE+BF=AB﹣DC,则得到关于x的一元一次方程,从而求出x.【解答】解:设桥面DC与地面AB之间的距离为x米,即DE=CF=x,则AE=,BF=,AE+BF=AB﹣DC,∴+=88﹣62,解得:x≈6.4,答:桥面DC与地面AB之间的距离约为6.4米.【点评】此题考查的是解直角三角形的应用﹣坡度坡角问题,关键是由两个直角三角形得出关于桥面DC与地面AB之间的距离的方程求解.21.(10分)如图所示,二次函数y=﹣x2+2x+m的图象与x轴的一个交点为A(3,0),另一个交点为B,且与y轴交于点C.(1)求m的值;(2)求点B的坐标;=S△ABC,求(3)该二次函数图象上有一点D(x,y)(其中x>0,y>0)使S△ABD点D的坐标.【分析】(1)由二次函数y=﹣x2+2x+m的图象与x轴的一个交点为A(3,0),利用待定系数法将点A的坐标代入函数解析式即可求得m的值;(2)根据(1)求得二次函数的解析式,然后将y=0代入函数解析式,即可求得点B的坐标;(3)根据(2)中的函数解析式求得点C的坐标,由二次函数图象上有一点D(x,y)(其中x>0,y>0),可得点D在第一象限,又由S△ABD=S△ABC,可知点D与点C的纵坐标相等,代入函数的解析式即可求得点D的坐标.【解答】解:(1)∵二次函数y=﹣x2+2x+m的图象与x轴的一个交点为A(3,0),∴﹣9+2×3+m=0,解得:m=3;(2)∵二次函数的解析式为:y=﹣x2+2x+3,∴当y=0时,﹣x2+2x+3=0,解得:x1=3,x2=﹣1,∴B(﹣1,0);(3)如图,连接BD、AD,过点D作DE⊥AB,∵当x=0时,y=3,∴C(0,3),若S=S△ABC,△ABD∵D(x,y)(其中x>0,y>0),则可得OC=DE=3,∴当y=3时,﹣x2+2x+3=3,解得:x=0或x=2,∴点D的坐标为(2,3).另法:点D与点C关于x=1对称,故D(2,3).【点评】此题考查了待定系数法求二次函数的解析式,考查了一元二次方程的解法以及三角形的面积问题等知识.此题综合性较强,但难度不大,属于中档题,解题的关键是掌握二次函数与一元二次方程的关系,注意数形结合与方程思想的应用.22.(10分)在▱ABCD中,AB=10,∠ABC=60°,以AB为直径作⊙O,边CD切⊙O于点E.(1)圆心O到CD的距离是5.(2)求由弧AE、线段AD、DE所围成的阴影部分的面积.(结果保留π和根号)【分析】(1)连接OE,则OE的长就是所求的量;(2)阴影部分的面积等于梯形OADE的面积与扇形OAE的面积的差.【解答】解:(1)连接OE.∵边CD切⊙O于点E.∴OE⊥CD则OE就是圆心O到CD的距离,则圆心O到CD的距离是×AB=5.故答案是:5;(2)∵四边形ABCD是平行四边形.∴∠C=∠DAB=180°﹣∠ABC=120°,∴∠BOE=360°﹣90°﹣60°﹣120°=90°,∴∠AOE=90°,作EF∥CB,∴∠OFE=∠ABC=60°,在直角三角形OEF中,OE=5,∴OF=OE•tan30°=.EC=BF=5﹣.则DE=10﹣5+=5+,则直角梯形OADE的面积是:(OA+DE)×OE=(5+5+)×5=25+.扇形OAE的面积是:=.则阴影部分的面积是:25+﹣.【点评】本题主要考查了扇形的面积的计算,正确作出辅助线,把阴影部分的面积转化为梯形OADE的面积与扇形OAE的面积的差是解题的关键.23.(10分)童星玩具厂工人的工作时间为:每月22天,每天8小时.工资待遇为:按件计酬,多劳多得,每月另加福利工资500元,按月结算.该厂生产A、B两种产品,工人每生产一件A种产品可得报酬1.50元,每生产一件B种产品可得报酬2.80元.该厂工人可以选择A、B两种产品中的一种或两种进行生产.工人小李生产1件A产品和1件B产品需35分钟;生产3件A产品和2件B产品需85分钟.(1)小李生产1件A产品需要15分钟,生产1件B产品需要20分钟.(2)求小李每月的工资收入范围.【分析】(1)生产1件A产品需要的时间+生产1件B产品需要的时间=35分钟,生产3件A产品需要的时间+生产2件B产品需要的时间=85分钟,可根据这两个等量关系来列方程组求解;(2)可根据(1)中计算的生产1件A,B产品需要的时间,根据“每生产一件A 种产品,可得报酬1.50元,每生产一件B种产品,可得报酬2.80元”来计算出生产A,B产品每分钟的获利情况,然后根据他的工作时间,求出这两个获利额,那么他的工资范围就应该在这两个获利额之间.【解答】解:(1)设小李每生产一件A种产品、每生产一件B种产品分别需要x 分钟和y分钟,根据题意,得,解得.答:小李每生产一件A种产品、每生产一件B种产品分别需要15分钟和20分钟;(2)w=500+1.5x+2.8(22×8×60﹣15x)÷20,整理得w=﹣0.6x+1978.4,则w随x的增大而减小,由(1)知小李生产A种产品每分钟可获利1.50÷15=0.1元,生产B种产品每分钟可获利2.80÷20=0.14元,若小李全部生产A种产品,每月的工资数目为0.1×22×8×60+500=1556元,若小李全部生产B种产品,每月的工资数目为0.14×22×8×60+500=1978.4元.故小李每月的工资数目不低于1556元而不高于1978.4元.【点评】考查了二元一次方程组的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系:“1件A,1件B用时35分钟”和“3件A,2件B用时85分钟”,列出方程组,再求解.24.(10分)[阅读]在平面直角坐标系中,以任意两点P(x1,y1)、Q(x2,y2)为端点的线段中点坐标为.[运用](1)如图,矩形ONEF的对角线相交于点M,ON、OF分别在x轴和y轴上,O 为坐标原点,点E的坐标为(4,3),则点M的坐标为(2,1.5).(2)在直角坐标系中,有A(﹣1,2),B(3,1),C(1,4)三点,另有一点D与点A、B、C构成平行四边形的顶点,求点D的坐标.【分析】(1)根据矩形的对角线互相平分及点E的坐标即可得出答案.(2)根据题意画出图形,然后可找到点D的坐标.【解答】解:(1)M(,),即M(2,1.5).。
黔东南州2011-2012学年度第一学期七年级数学期末考试卷((含答题卡)
黔东南州2011~2012学年度第一学期期末考试七年级数学试卷(满分:150分)一、选择题(共10个小题,每小题4分,共40分) 1.下列运算正确的是A .523-=+-B .123-=--C .623=D .823= 2.方程32=x 的解是A .3=xB .23=xC .2=xD .32=x3.下列运算正确的是A .123=-x xB .2972x x x =+C .()2323+-=+-x xD .()770=-- 4.一种食品的包装袋上注明它的重量为“25.025±千克”,则下列重量合格的是 A .24.70千克 B .24.80千克 C .25.30千克 D .25.51千克 5.在下面的图形中,是正方体的展开图的是6.如果一个角的补角是︒120,那么这个角的余角是A .︒150B .︒90C .︒60D .︒30 7.海面上,灯塔位于一艘船的北偏东︒40,那么这艘船位这盏灯塔的 A .南偏西50° B .南偏西40° C .北偏东50° D .北偏东40° 8.已知12-=-b a ,则124+-b a 的值为A .1-B .0C .1D .3 9.如图,数轴上B A 、两点分别对应实数b a 、,则下列结论正确的是 A .0>ab B .0>-b aC .0>+b aD .0>-b a10.中国古代问题:有甲、乙两个牧童,甲对乙说:“把你的羊给我1只,我的羊数就是你的羊数的两倍”,乙回答说:“最好还是把你的羊给我1只,我们的羊数就一样了”,若设甲有x 只羊,则下列方程正确的是 A .()221-=+x x B .()123-=+x xC .1211++=-x x D .()321-=+x x 二、填空题(共10个小题,每小题4分,共40分) 11.计算:=--212 。
12.21-的绝对值的相反数是 。
13.单项式652yx -的系数是 ,次数是 。
黔东南州2011年初中毕业升学统一考试数学试卷(正卷)参考答案
黔东南州2011年初中毕业升学统一考试数学试卷参考答案及评分标准一、选择题二、填空题11、1212、10x x≥-≠且13、2-=x14、()()42x x-+15、2m-16、17、3yx=183三、解答题19、(10分)解法一:2211(1)x xxxx x--÷--+=()()()()21111x x x x xx x x+----÷+……………4分=()()()211121x x xx x x x+-∙+-+…………………5分=()()()()21111x x xx x x+-∙+-…………………6分=11x-………………………………………8分当x=2时,原式=1121=-………………10分20、(10分)解:(1)25-(6+5+4+7)=3(万元)补全图如图所示…………………………2分40%×3=1.2(万元)……………………4分∴超市服装部3月份的销售额是:1.2万元。
…5分(2)不同意∵服装部1月份的销售额是:30%×6=1.8(万元)服装部2月份的销售额是:32%×5=1.6(万元)…7分又∵ 1.8<1.6∴服装部2月份的销售额比1月份的销售额减少…9分∴不同意小莉的看法………………………………10分图1超市各月销售总额统计图3数学试卷参考答案及评分标准第 1 页共 4 页数学试卷参考答案及评分标准 第 2 页 共 4 页21、(10分)解:根据题意,可以画出如下的“树形图”: ………5分从树形图可以看出,所有的等可能出现的结果共有24个。
摸出的3个球中含有0号球的结果有18个,3个球中分别为0,1,2号球的结果有6个,3个球中按先后顺序依次为0,1,2号球的结果有1个。
∴P (中一等奖)=124;……………………………6分P (中二等奖)=624=14;…………………………8分P (中三等奖)=1824 =34。
………………………10分22、(12分)解:如图,过点A 作AM ⊥EF 于M ,则 AM=BC+CE ,ME=AB=10米在Rt △CDE 中,∵CD=220米,∠DCE=600 ∴由0sin 60=220D E ,得:由0cos 60=220C E ,得:CE=110………………………6分又∵BC=100,∴AM=BC+CE=100+110=210………………………………8分 在Rt △AMF 中,∵∠FAM=450 ∴由0tan 45=210FM ,得:FM=210………………………10分∴答:铁塔的高度为(………………………12分 23、(12分)(1)证明:连接OA ……………1分 ∵PA 切⊙O 于A∴∠PAB+∠OAB=900…………………………2分 又∵CB 是⊙O 的直径 ∴∠CAB=900 ∴∠C+∠CBA=900∵OB=OA ,∴∠OAB=∠CBA ………………4分 ∴∠C=∠PAB …………………………………5分 ∵∠P=∠PP(第23题图)第22题图M数学试卷参考答案及评分标准 第 3 页 共 4 页∴△PBA ∽△PAC ………………………………………6分 (2)∵△PBA ∽△PAC ,∠BAP=300∴∠C=∠BAP=300………………………………………8分 ∴在Rt △CAB 中,∠CBA= 900-∠C= 900-300=600 ∴∠P=∠BAP=300∴AB=PB=2………………………………………………10分 在Rt △CAB 中,∵∠CAB=900,∠C=300∴BC=2AB=4,∴⊙O 的半径为2。
2011年贵州省黔东南州中考数学试卷(含答案)
启用前★绝密黔东南州2010年初中毕业升学统一考试数学试题卷(本试卷总分150分。
考试时间120分钟)考试注意:1.答题时,务必将自己的姓名、准考证号填写在答题卡规定位置上。
2.答选择题,务必使用2B 铅笔将答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦擦干净后,再选涂其它答案标号。
3.答非选择题时,必须使用0.5毫米黑色签字笔,将答案书写在答题卡规定位置上。
4.所有题目必须在答题卡工作答,在试卷上答题无效。
5.考试结束后,将试卷和答题卡一并交回。
一.单项选择题:(每小题4分,共40分。
每小题只有一个正确答案,请在答题卡选题栏内用2B 铅笔将对应的题目的标号涂黑)1.下列运算正确的是 A.4=±2B.-(X-1)=-X-1C.23−=9D.-|-2|=-22.若分式,012922=−+−x x x 则X 的值是A.3或-3B.-3C.3D.93.观察下列图形它们是按一定的规律排列的,依照此规律,第20个图形的“★”有A.57个 B.60个 C.63个 D.85个4.在直角坐标系中,若解析式为5422+−=x x y 的图像沿着x 轴向左平移两个单位,再沿着y 轴向下平移一个单位,此时图像的解析式为A.4)3(22+−=x y B.2)3(22+−=x y C.4)1(22++=x y D.2)1(22++=x y5.设x 为锐角,若x sin =3K-9,则K 的取值范围是A.3<K B.3103<<K .C.3103<>或K D.310<K 6.如图,若CD C ABC Rt ,90,0=∠∆为斜边上的高,ACD n AB m AC ∆==则,,的面积与BCD ∆的面积比Ss ACDBCD ∆∆的值是A.22m n B.221mn −C.122−m n D.122+m n 7.将宽为cm 2的长方形折叠成如图所示的形状,那么折痕AB 的长是A.334 B.22 C.4D.3328.关于y x ,的方程组⎩⎨⎧=++=−my x m y x 523的解满足0>>y x ,则m 的取值范围是A.2>m B.3−>m C.23<<−m D.3<m 或2>m 9.关于x 的一元二次方程02)32(2=−+−−a x a x 根的情况是A .有两个相等的实数根 B.没有实数根C.有两个不相等的实数根C.根的情况无法确定1a 2−周老师中考资料室/ABCDE FH MO17.如图,曲线是反比例函数xky =在第二象限的一支,O 为坐标原点,点P 在曲线上,x PA ⊥轴,且PAO ∆的面积为2,则此曲线的解析式是__________。
历年贵州省黔东南州中考数学试卷(含答案)
2017年贵州省黔东南州中考数学试卷一、选择题(本大题共10小题,每小题4分,共40分)1.(4分)|﹣2|的值是()A.﹣2 B.2 C.﹣ D.2.(4分)如图,∠ACD=120°,∠B=20°,则∠A的度数是()A.120°B.90°C.100° D.30°3.(4分)下列运算结果正确的是()A.3a﹣a=2 B.(a﹣b)2=a2﹣b2C.6ab2÷(﹣2ab)=﹣3b D.a(a+b)=a2+b4.(4分)如图所示,所给的三视图表示的几何体是()A.圆锥B.正三棱锥C.正四棱锥D.正三棱柱5.(4分)如图,⊙O的直径AB垂直于弦CD,垂足为E,∠A=15°,半径为2,则弦CD的长为()A.2 B.﹣1 C.D.46.(4分)已知一元二次方程x2﹣2x﹣1=0的两根分别为x1,x2,则+的值为()A.2 B.﹣1 C.D.﹣27.(4分)分式方程=1﹣的根为()A.﹣1或3 B.﹣1 C.3 D.1或﹣38.(4分)如图,正方形ABCD中,E为AB中点,FE⊥AB,AF=2AE,FC交BD于O,则∠DOC的度数为()A.60°B.67.5°C.75°D.54°9.(4分)如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,给出下列结论:①b2=4ac;②abc>0;③a>c;④4a﹣2b+c>0,其中正确的个数有()A.1个 B.2个 C.3个 D.4个10.(4分)我国古代数学的许多创新和发展都位居世界前列,如南宋数学家杨辉(约13世纪)所著的《详解九章算术》一书中,用如图的三角形解释二项和(a+b)n的展开式的各项系数,此三角形称为“杨辉三角”.根据“杨辉三角”请计算(a+b)20的展开式中第三项的系数为()A.2017 B.2016 C.191 D.190二、填空题(本大题共6小题,每小题4分,共24分)11.(4分)在平面直角坐标系中有一点A(﹣2,1),将点A先向右平移3个单位,再向下平移2个单位,则平移后点A的坐标为.12.(4分)如图,点B、F、C、E在一条直线上,已知FB=CE,AC∥DF,请你添加一个适当的条件使得△ABC≌△DEF.13.(4分)在实数范围内因式分解:x5﹣4x=.14.(4分)黔东南下司“蓝莓谷”以盛产“优质蓝莓”而吸引来自四面八方的游客,某果农今年的蓝莓得到了丰收,为了了解自家蓝莓的质量,随机从种植园中抽取适量蓝莓进行检测,发现在多次重复的抽取检测中“优质蓝莓”出现的频率逐渐稳定在0.7,该果农今年的蓝莓总产量约为800kg,由此估计该果农今年的“优质蓝莓”产量约是kg.15.(4分)如图,已知点A,B分别在反比例函数y1=﹣和y2=的图象上,若点A是线段OB的中点,则k的值为.16.(4分)把多块大小不同的30°直角三角板如图所示,摆放在平面直角坐标系中,第一块三角板AOB的一条直角边与y轴重合且点A的坐标为(0,1),∠ABO=30°;第二块三角板的斜边BB1与第一块三角板的斜边AB垂直且交y轴于点B1;第三块三角板的斜边B1B2与第二块三角板的斜边BB1垂直且交x轴于点B2;第四块三角板的斜边B2B3与第三块三角板的斜边B1B2垂直且交y轴于点B3;…按此规律继续下去,则点B2017的坐标为.三、解答题(本大题共8小题,共86分)17.(8分)计算:﹣1﹣2+|﹣﹣|+(π﹣3.14)0﹣tan60°+.18.(8分)先化简,再求值:(x﹣1﹣)÷,其中x=+1.19.(8分)解不等式组,并把解集在数轴上表示出来.20.(12分)某体育老师测量了自己任教的甲、乙两班男生的身高,并制作了如下不完整的统计图表.根据以上统计图表完成下列问题:(1)统计表中m=,n=,并将频数分布直方图补充完整;(2)在这次测量中两班男生身高的中位数在:范围内;(3)在身高≥167cm的4人中,甲、乙两班各有2人,现从4人中随机推选2人补充到学校国旗护卫队中,请用列表或画树状图的方法求出这两人都来自相同班级的概率.21.(12分)如图,已知直线PT与⊙O相切于点T,直线PO与⊙O相交于A,B 两点.(1)求证:PT2=PA•PB;(2)若PT=TB=,求图中阴影部分的面积.22.(12分)如图,某校教学楼AB后方有一斜坡,已知斜坡CD的长为12米,坡角α为60°,根据有关部门的规定,∠α≤39°时,才能避免滑坡危险,学校为了消除安全隐患,决定对斜坡CD进行改造,在保持坡脚C不动的情况下,学校至少要把坡顶D向后水平移动多少米才能保证教学楼的安全?(结果取整数)(参考数据:sin39°≈0.63,cos39°≈0.78,tan39°≈0.81,≈1.41,≈1.73,≈2.24)23.(12分)某校为了在九月份迎接高一年级的新生,决定将学生公寓楼重新装修,现学校招用了甲、乙两个工程队.若两队合作,8天就可以完成该项工程;若由甲队先单独做3天后,剩余部分由乙队单独做需要18天才能完成.(1)求甲、乙两队工作效率分别是多少?(2)甲队每天工资3000元,乙队每天工资1400元,学校要求在12天内将学生公寓楼装修完成,若完成该工程甲队工作m天,乙队工作n天,求学校需支付的总工资w(元)与甲队工作天数m(天)的函数关系式,并求出m的取值范围及w的最小值.24.(14分)如图,⊙M的圆心M(﹣1,2),⊙M经过坐标原点O,与y轴交于点A,经过点A的一条直线l解析式为:y=﹣x+4与x轴交于点B,以M为顶点的抛物线经过x轴上点D(2,0)和点C(﹣4,0).(1)求抛物线的解析式;(2)求证:直线l是⊙M的切线;(3)点P为抛物线上一动点,且PE与直线l垂直,垂足为E,PF∥y轴,交直线l于点F,是否存在这样的点P,使△PEF的面积最小?若存在,请求出此时点P的坐标及△PEF面积的最小值;若不存在,请说明理由.2017年贵州省黔东南州中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题4分,共40分)1.(4分)(2017•黔东南州)|﹣2|的值是()A.﹣2 B.2 C.﹣ D.【分析】根据绝对值的性质作答.【解答】解:∵﹣2<0,∴|﹣2|=2.故选B.【点评】本题考查绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.(4分)(2017•黔东南州)如图,∠ACD=120°,∠B=20°,则∠A的度数是()A.120°B.90°C.100° D.30°【分析】根据三角形的外角的性质计算即可.【解答】解:∠A=∠ACD﹣∠B=120°﹣20°=100°,故选:C.【点评】本题考查的是三角形的外角的性质,掌握三角形的一个外角等于和它不相邻的两个内角的和是解题的关键.3.(4分)(2017•黔东南州)下列运算结果正确的是()A.3a﹣a=2 B.(a﹣b)2=a2﹣b2C.6ab2÷(﹣2ab)=﹣3b D.a(a+b)=a2+b【分析】各项计算得到结果,即可作出判断.【解答】解:A、原式=2a,不符合题意;B、原式=a2﹣2ab+b2,不符合题意;C、原式=﹣3b,符合题意;D、原式=a2+ab,不符合题意,故选C【点评】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.4.(4分)(2017•黔东南州)如图所示,所给的三视图表示的几何体是()A.圆锥B.正三棱锥C.正四棱锥D.正三棱柱【分析】由左视图和俯视图可得此几何体为柱体,根据主视图是三角形可判断出此几何体为正三棱柱.【解答】解:∵左视图和俯视图都是长方形,∴此几何体为柱体,∵主视图是一个三角形,∴此几何体为正三棱柱.故选:D.【点评】考查了由三视图判断几何体,用到的知识点为:由左视图和俯视图可得几何体是柱体,锥体还是球体,由主视图可确定几何体的具体形状.5.(4分)(2017•黔东南州)如图,⊙O的直径AB垂直于弦CD,垂足为E,∠A=15°,半径为2,则弦CD的长为()A.2 B.﹣1 C.D.4【分析】根据垂径定理得到CE=DE,∠CEO=90°,根据圆周角定理得到∠COE=30°,根据直角三角形的性质得到CE=OC=1,最后由垂径定理得出结论.【解答】解:∵⊙O的直径AB垂直于弦CD,∴CE=DE,∠CEO=90°,∵∠A=15°,∴∠COE=30°,∵OC=2,∴CE=OC=1,∴CD=2CE=2,故选A.【点评】本题是圆的计算题,考查了垂径定理和勾股定理的运用,是常考题型;熟练掌握垂直弦的直径平分这条弦,并且平分弦所对的两条弧;在圆中的计算问题中,因为常有直角三角形存在,常利用勾股定理求线段的长.6.(4分)(2017•黔东南州)已知一元二次方程x2﹣2x﹣1=0的两根分别为x1,x2,则+的值为()A.2 B.﹣1 C.D.﹣2【分析】根据根与系数的关系得到x1+x2=2,x1x2=﹣1,利用通分得到+=,然后利用整体代入的方法计算【解答】解:根据题意得x1+x2=2,x1x2=﹣1,所以+===﹣2.故选D.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a ≠0)的两根时,x1+x2=﹣,x1x2=.7.(4分)(2017•黔东南州)分式方程=1﹣的根为()A.﹣1或3 B.﹣1 C.3 D.1或﹣3【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:3=x2+x﹣3x,解得:x=﹣1或x=3,经检验x=﹣1是增根,分式方程的根为x=3,故选C【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.8.(4分)(2017•黔东南州)如图,正方形ABCD中,E为AB中点,FE⊥AB,AF=2AE,FC交BD于O,则∠DOC的度数为()A.60°B.67.5°C.75°D.54°【分析】如图,连接DF、BF.如图,连接DF、BF.首先证明∠FDB=∠FAB=30°,再证明△FAD≌△FBC,推出∠ADF=∠FCB=15°,由此即可解决问题.【解答】解:如图,连接DF、BF.∵FE⊥AB,AE=EB,∴FA=FB,∵AF=2AE,∴AF=AB=FB,∴△AFB是等边三角形,∵AF=AD=AB,∴点A是△DBF的外接圆的圆心,∴∠FDB=∠FAB=30°,∵四边形ABCD是正方形,∴AD=BC,∠DAB=∠ABC=90°,∠ADB=∠DBC=45°,∴∠FAD=∠FBC,∴△FAD≌△FBC,∴∠ADF=∠FCB=15°,∴∠DOC=∠OBC+∠OCB=60°.故选A.解法二:连接BF.易知∠FCB=15°,∠DOC=∠OBC+∠FCB=45°+15°=60°【点评】本题考查正方形的性质、全等三角形的判定和性质、圆等知识,解题的关键是灵活运用所学知识解决问题,学会添加辅助圆解决问题,属于中考选择题中的压轴题.9.(4分)(2017•黔东南州)如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,给出下列结论:①b2=4ac;②abc>0;③a>c;④4a﹣2b+c>0,其中正确的个数有()A.1个 B.2个 C.3个 D.4个【分析】①利用抛物线与x轴有2个交点和判别式的意义对①进行判断;②由抛物线开口方向得到a>0,由抛物线对称轴位置确定b>0,由抛物线与y轴交点位置得到c>0,则可作判断;③利用x=﹣1时a﹣b+c<0,然后把b=2a代入可判断;④利用抛物线的对称性得到x=﹣2和x=0时的函数值相等,即x=﹣2时,y>0,则可进行判断.【解答】解:①∵抛物线与x轴有2个交点,∴△=b2﹣4ac>0,所以①错误;②∵抛物线开口向上,∴a>0,∵抛物线的对称轴在y轴的右侧,∴a、b同号,∴b>0,∵抛物线与y轴交点在x轴上方,∴c>0,∴abc>0,所以②正确;③∵x=﹣1时,y<0,即a﹣b+c<0,∵对称轴为直线x=﹣1,∴﹣=﹣1,∴b=2a,∴a﹣2a+c<0,即a>c,所以③正确;④∵抛物线的对称轴为直线x=﹣1,∴x=﹣2和x=0时的函数值相等,即x=﹣2时,y>0,∴4a﹣2b+c>0,所以④正确.所以本题正确的有:②③④,三个,故选C.【点评】本题考查了二次函数与系数的关系:对于二次函数y=ax2+bx+c(a≠0),要熟练掌握以下几点:①二次项系数a决定抛物线的开口方向和大小.当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;②一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右;③常数项c决定抛物线与y轴交点:抛物线与y轴交于(0,c);④抛物线与x轴交点个数由△决定:△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.10.(4分)(2017•黔东南州)我国古代数学的许多创新和发展都位居世界前列,如南宋数学家杨辉(约13世纪)所著的《详解九章算术》一书中,用如图的三角形解释二项和(a+b)n的展开式的各项系数,此三角形称为“杨辉三角”.根据“杨辉三角”请计算(a+b)20的展开式中第三项的系数为()A.2017 B.2016 C.191 D.190【分析】根据图形中的规律即可求出(a+b)20的展开式中第三项的系数;【解答】解:找规律发现(a+b)3的第三项系数为3=1+2;(a+b)4的第三项系数为6=1+2+3;(a+b)5的第三项系数为10=1+2+3+4;不难发现(a+b)n的第三项系数为1+2+3+…+(n﹣2)+(n﹣1),∴(a+b)20第三项系数为1+2+3+…+19=190,故选D.【点评】此题考查了通过观察、分析、归纳发现其中的规律,并应用发现的规律解决问题的能力.二、填空题(本大题共6小题,每小题4分,共24分)11.(4分)(2017•黔东南州)在平面直角坐标系中有一点A(﹣2,1),将点A 先向右平移3个单位,再向下平移2个单位,则平移后点A的坐标为(1,﹣1).【分析】根据坐标平移规律即可求出答案.【解答】解:由题意可知:A的横坐标+3,纵坐标﹣2,即可求出平移后的坐标,∴平移后A的坐标为(1,﹣1)故答案为:(1,﹣1)【点评】本题考查坐标平移规律,解题的关键是根据题意进行坐标变换即可,本题属于基础题型.12.(4分)(2017•黔东南州)如图,点B、F、C、E在一条直线上,已知FB=CE,AC∥DF,请你添加一个适当的条件∠A=∠D使得△ABC≌△DEF.【分析】根据全等三角形的判定定理填空.【解答】解:添加∠A=∠D.理由如下:∵FB=CE,∴BC=EF.又∵AC∥DF,∴∠ACB=∠DFE.∴在△ABC与△DEF中,,∴△ABC≌△DEF(AAS).故答案是:∠A=∠D.【点评】本题主要考查对全等三角形的判定,平行线的性质等知识点的理解和掌握,熟练地运用全等三角形的判定定理进行证明是解此题的关键,是一个开放型的题目,比较典型.13.(4分)(2017•黔东南州)在实数范围内因式分解:x5﹣4x=x(x2+2)(x+)(x﹣).【分析】先提取公因式x,再把4写成22的形式,然后利用平方差公式继续分解因式.【解答】解:原式=x(x4﹣22),=x(x2+2)(x2﹣2)=x(x2+2)(x+)(x﹣),故答案是:x(x2+2)(x+)(x﹣).【点评】本题考查了在实数范围内分解因式,注意把2写成的形式继续分解因式,分解因式一定要彻底.14.(4分)(2017•黔东南州)黔东南下司“蓝莓谷”以盛产“优质蓝莓”而吸引来自四面八方的游客,某果农今年的蓝莓得到了丰收,为了了解自家蓝莓的质量,随机从种植园中抽取适量蓝莓进行检测,发现在多次重复的抽取检测中“优质蓝莓”出现的频率逐渐稳定在0.7,该果农今年的蓝莓总产量约为800kg,由此估计该果农今年的“优质蓝莓”产量约是560kg.【分析】根据题意可以估计该果农今年的“优质蓝莓”产量.【解答】解:由题意可得,该果农今年的“优质蓝莓”产量约是:800×0.7=560kg,故答案为:560.【点评】本题考查利用频率估计概率,解答本题的关键是明确题意,利用频率估计出所求问题的答案.15.(4分)(2017•黔东南州)如图,已知点A,B分别在反比例函数y1=﹣和y2=的图象上,若点A是线段OB的中点,则k的值为﹣8.【分析】设A(a,b),则B(2a,2b),将点A、B分别代入所在的双曲线方程进行解答.【解答】解:设A(a,b),则B(2a,2b),∵点A在反比例函数y1=﹣的图象上,∴ab=﹣2;∵B点在反比例函数y2=的图象上,∴k=2a•2b=4ab=﹣8.故答案是:﹣8.【点评】本题考查了反比例函数图象上点的坐标特征.图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.16.(4分)(2017•黔东南州)把多块大小不同的30°直角三角板如图所示,摆放在平面直角坐标系中,第一块三角板AOB的一条直角边与y轴重合且点A的坐标为(0,1),∠ABO=30°;第二块三角板的斜边BB1与第一块三角板的斜边AB 垂直且交y轴于点B1;第三块三角板的斜边B1B2与第二块三角板的斜边BB1垂直且交x轴于点B2;第四块三角板的斜边B2B3与第三块三角板的斜边B1B2垂直且交y轴于点B3;…按此规律继续下去,则点B2017的坐标为(0,﹣31009).【分析】根据题意和图象可以发现题目中的变化规律,从而可以求得点B2017的坐标.【解答】解:由题意可得,OB=OA•tan60°=1×=,OB1=OB•tan60°==()2=3,OB2=OB1•ta n60°=()3,…∵2017÷4=506…1,∴点B2017的坐标为(0,﹣)即(0,﹣31009),故答案为:(0,﹣31009).【点评】本题考查规律型:点的坐标,解答本题的关键是明确题意,找出题目中坐标的变化规律,求出相应的点的坐标.三、解答题(本大题共8小题,共86分)17.(8分)(2017•黔东南州)计算:﹣1﹣2+|﹣﹣|+(π﹣3.14)0﹣tan60°+.【分析】原式利用零指数幂、负整数指数幂法则,特殊角的三角函数值,以及绝对值的代数意义化简,计算即可得到结果.【解答】解:原式=﹣1+()+1﹣=3【点评】此题考查了实数的运算,零指数幂、负整数指数幂,以及特殊角的三角函数值,熟练掌握运算法则是解本题的关键.18.(8分)(2017•黔东南州)先化简,再求值:(x﹣1﹣)÷,其中x=+1.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把x的值代入计算即可求出值.【解答】解:原式=•=•=x﹣1,当x=+1时,原式=.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.19.(8分)(2017•黔东南州)解不等式组,并把解集在数轴上表示出来.【分析】先解不等式组中的每一个不等式,再根据大大取较大,小小取较小,大小小大取中间,大大小小无解,把它们的解集用一条数轴表示出来.【解答】解:由①得:﹣2x≥﹣2,即x≤1,由②得:4x﹣2<5x+5,即x>﹣7,所以﹣7<x≤1.在数轴上表示为:【点评】本题考查不等式组的解法和解集在数轴上的表示法,如果是表示大于或小于号的点要用空心,如果是表示大于等于或小于等于号的点用实心.20.(12分)(2017•黔东南州)某体育老师测量了自己任教的甲、乙两班男生的身高,并制作了如下不完整的统计图表.根据以上统计图表完成下列问题:(1)统计表中m=14,n=0.26,并将频数分布直方图补充完整;(2)在这次测量中两班男生身高的中位数在:161≤x<164范围内;(3)在身高≥167cm的4人中,甲、乙两班各有2人,现从4人中随机推选2人补充到学校国旗护卫队中,请用列表或画树状图的方法求出这两人都来自相同班级的概率.【分析】(1)设总人数为x人,则有=0.06,解得x=50,再根据频率公式求出m,n.画出直方图即可;(2)根据中位数的定义即可判断;(3)画出树状图即可解决问题;【解答】解:(1)设总人数为x人,则有=0.06,解得x=50,∴m=50×0.28=14,n==0.26.故答案为14,0.26.频数分布直方图:(2)观察表格可知中位数在161≤x<164内,故答案为161≤x<164.(3)将甲、乙两班的学生分别记为甲1、甲2、乙1、乙2树状图如图所示:==.所以P(两学生来自同一所班级)【点评】本题考查列表法和树状图法、频率分布表、频率分布直方图等知识,解题的关键是理解题意,学会画树状图解决问题,属于中考常考题型.21.(12分)(2017•黔东南州)如图,已知直线PT与⊙O相切于点T,直线PO 与⊙O相交于A,B两点.(1)求证:PT2=PA•PB;(2)若PT=TB=,求图中阴影部分的面积.【分析】(1)连接OT,只要证明△PTA∽△PBT,可得=,由此即可解决问题;(2)首先证明△AOT是等边三角形,根据S阴=S扇形OAT﹣S△AOT计算即可;【解答】(1)证明:连接OT.∵PT是⊙O的切线,∴PT⊥OT,∴∠PTO=90°,∴∠PTA+∠OTA=90°,∵AB是直径,∴∠ATB=90°,∴∠TAB+∠B=90°,∵OT=OA,∴∠OAT=∠OTA,∴∠PTA=∠B,∵∠P=∠P,∴△PTA∽△PBT,∴=,∴PT2=PA•PB.(2)∵TP=TB=,∴∠P=∠B=∠PTA,∵∠TAB=∠P+∠PTA,∴∠TAB=2∠B,∵∠TAB+∠B=90°,∴∠TAB=60°,∠B=30°,∴tanB==,∴AT=1,∵OA=OT,∠TAO=60°,∴△AOT是等边三角形,∴S阴=S扇形OAT﹣S△AOT=﹣•12=﹣.【点评】本题考查相似三角形的判定和性质、切线的性质、扇形的面积等计算等知识,解题的关键是正确寻找相似三角形解决问题,第二个问题的关键是证明△AOT的等边三角形.22.(12分)(2017•黔东南州)如图,某校教学楼AB后方有一斜坡,已知斜坡CD的长为12米,坡角α为60°,根据有关部门的规定,∠α≤39°时,才能避免滑坡危险,学校为了消除安全隐患,决定对斜坡CD进行改造,在保持坡脚C不动的情况下,学校至少要把坡顶D向后水平移动多少米才能保证教学楼的安全?(结果取整数)(参考数据:sin39°≈0.63,cos39°≈0.78,tan39°≈0.81,≈1.41,≈1.73,≈2.24)【分析】假设点D移到D′的位置时,恰好∠α=39°,过点D作DE⊥AC于点E,作D′E′⊥AC于点E′,根据锐角三角函数的定义求出DE、CE、CE′的长,进而可得出结论.【解答】解:假设点D移到D′的位置时,恰好∠α=39°,过点D作DE⊥AC于点E,作D′E′⊥AC于点E′,∵CD=12米,∠DCE=60°,∴DE=CD•sin60°=12×=6米,CE=CD•cos60°=12×=6米.∵DE⊥AC,D′E′⊥AC,DD′∥CE′,∴四边形DEE′D′是矩形,∴DE=D′E′=6米.∵∠D′CE′=39°,∴CE′=≈≈12.8,∴EE′=CE′﹣CE=12.8﹣6=6.8≈7(米).答:学校至少要把坡顶D向后水平移动7米才能保证教学楼的安全.【点评】本题考查的是解直角三角形的应用﹣坡度坡角问题,根据题意作出辅助线,构造出直角三角形是解答此题的关键.23.(12分)(2017•黔东南州)某校为了在九月份迎接高一年级的新生,决定将学生公寓楼重新装修,现学校招用了甲、乙两个工程队.若两队合作,8天就可以完成该项工程;若由甲队先单独做3天后,剩余部分由乙队单独做需要18天才能完成.(1)求甲、乙两队工作效率分别是多少?(2)甲队每天工资3000元,乙队每天工资1400元,学校要求在12天内将学生公寓楼装修完成,若完成该工程甲队工作m天,乙队工作n天,求学校需支付的总工资w(元)与甲队工作天数m(天)的函数关系式,并求出m的取值范围及w的最小值.【分析】(1)设甲队单独完成需要x天,乙队单独完成需要y天.列出分式方程组即可解决问题;(2)设乙先工作x天,再与甲合作正好如期完成.则+=1,解得x=6.由此可得m的范围,再构建一次函数,利用一次函数的性质即可解决问题;【解答】解:(1)设甲队单独完成需要x天,乙队单独完成需要y天.由题意,解得,经检验是分式方程组的解,∴甲、乙两队工作效率分别是和.(2)设乙先工作x天,再与甲合作正好如期完成.则+=1,解得x=6.∴甲工作6天,∵甲12天完成任务,∴6≤m≤12.∵完成该工程甲队工作m天,乙队工作n天,∴+=1,∴n=24﹣2m,∴w=3000m+1400(24﹣2m)=200m+33600,∵200>0,∴m=6时,此时费用最小,∴w的最小值为200×6+33600=34800元.【点评】本题考查一次函数的应用、分式方程组的应用等知识,解题的关键是学会设未知数,构建方程解决问题,属于中考常考题型.24.(14分)(2017•黔东南州)如图,⊙M的圆心M(﹣1,2),⊙M经过坐标原点O,与y轴交于点A,经过点A的一条直线l解析式为:y=﹣x+4与x轴交于点B,以M为顶点的抛物线经过x轴上点D(2,0)和点C(﹣4,0).(1)求抛物线的解析式;(2)求证:直线l是⊙M的切线;(3)点P为抛物线上一动点,且PE与直线l垂直,垂足为E,PF∥y轴,交直线l于点F,是否存在这样的点P,使△PEF的面积最小?若存在,请求出此时点P的坐标及△PEF面积的最小值;若不存在,请说明理由.【分析】(1)设抛物线的解析式为y=a(x﹣2)(x+4),将点M的坐标代入可求得a的值,从而得到抛物线的解析式;(2)连接AM,过点M作MG⊥AD,垂足为G.先求得点A和点B的坐标,可求得,可得到AG、ME、OA、OB的长,然后利用锐角三角函数的定义可证明∠MAG=∠ABD,故此可证明AM⊥AB;(3))先证明∠FPE=∠FBD.则PF:PE:EF=:2:1.则△PEF的面积=PF2,设点P的坐标为(x,﹣x2﹣x+),则F(x,﹣x+4).然后可得到PF与x 的函数关系式,最后利用二次函数的性质求解即可.【解答】解:(1)设抛物线的解析式为y=a(x﹣2)(x+4),将点M的坐标代入得:﹣9a=2,解得:a=﹣.∴抛物线的解析式为y=﹣x2﹣x+.(2)连接AM,过点M作MG⊥AD,垂足为G.把x=0代入y=﹣x+4得:y=4,∴A(0,4).将y=0代入得:0=﹣x+4,解得x=8,∴B(8,0).∴OA=4,OB=8.∵M(﹣1,2),A(0,4),∴MG=1,AG=2.∴tan∠MAG=tan∠ABO=.∴∠MAG=∠ABO.∵∠OAB+∠ABO=90°,∴∠MAG+∠OAB=90°,即∠MAB=90°.∴l是⊙M的切线.(3)∵∠PFE+∠FPE=90°,∠FBD+∠PFE=90°,∴∠FPE=∠FBD.∴tan∠FPE=.∴PF:PE:EF=:2:1.∴△PEF的面积=PE•EF=×PF•PF=PF2.∴当PF最小时,△PEF的面积最小.设点P的坐标为(x,﹣x2﹣x+),则F(x,﹣x+4).∴PF=(﹣x+4)﹣(﹣x2﹣x+)=﹣x+4+x2+x﹣=x2﹣x+=(x﹣)2+.∴当x=时,PF有最小值,PF的最小值为.∴P(,).∴△PEF的面积的最小值为=×()2=.【点评】本题主要考查的是二次函数的综合应用,解答本题主要应用待定系数法求二次函数的解析式、二次函数的性质、锐角三角函数的定义,列出PF与x的函数关系式是解题的关键.。
贵州省黔东南州中考数学试卷含答案
绝密★启用前贵州省黔东南州2016年初中毕业升学统一考试数学本试卷满分150分,考试时间120分钟.第Ⅰ卷(选择题 共40分)一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.2-的相反数是 ( )A .2B .2-C .12D .12-2.如图,直线a b ∥,若140∠=o ,255∠=o ,则3∠等于( ) A .85o B .95o C .105o D .115o3.已知一元二次方程2210x x --=的两根分别为m ,n ,则m n +的值为 ( )A .2-B .1-C .1D .24.如图,在菱形ABCD 中,对角线AC 与BD 相交于点O ,若2AB =,60ABC ∠=o ,则BD 的长为( )A .2B .3C .3D .235.小明在某商店购买商品A 、B 共两次,这两次购买商品A 、B 的数量和费用如下表.购买商品A 的数量(个) 购买商品B 的数量(个) 购买总费用(元) 第一次购物 4 3 93 第二次购物66162 若小丽需要购买3个商品A 和2个商品B ,则她要花费( )A .64元B .65元C .66元D .67元6.已知一次函数1y ax c =+和反比例函数2by x=的图象如图所示,则二次函数23y ax bx c =++的大致图象是( )ABC D 7.不等式组,3x a x >⎧⎨<⎩的整数解有三个,则a 的取值范围是( ) A .10a -≤<B .10a -<≤C .10a -≤≤D .10a -<<8.2002年8月在北京召开的国际数学家大会会徽取材于我国古代数学家赵爽的弦图,它是由四个全等的直角三角形和中间的小正方形拼成的大正方形,如图所示,如果大正方形的面积是13,小正方形的面积为1,直角三角形的较短直角边长为a ,较长直角边长为b ,那么2()a b +的值为( )A .13B .19C .25D .1699.将一个棱长为1的正方体水平放于桌面(始终保持正方体的一个面落在桌面上),则该正方体正视图面积的最大值为( )A .2B .21+C .2D .110.如图,在等腰直角三角形ABC 中,90C ∠=o ,点O 是AB 的中点,且6AB =,将一块直角三角板的直角顶点放在点O 处,始终保持该直角三角板的两直角边分别与AC ,BC 相交,交点分别为D ,E ,则CD CE +等于( )A .2B .3C .2D .6第Ⅱ卷(非选择题 共110分)二、填空题(本大题共6小题,每小题4分,共24分.请把答案填写在题中的横线上) 11.tan60=o .12.分解因式:3220x x x --= .毕业学校_____________姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------13.在一个不透明的箱子中装有4件同型号的产品,其中合格品3件、不合格品1件,现从这4件产品中随机抽取2件检测,则抽到的都是合格品的概率是 . 14.如图,在ACB △中,50BAC ∠=o,2AC =,3AB =,现将ACB △绕点A 逆时针旋转50o 得到11AC B △,则阴影部分的面积为 .15.如图,点A 是反比例函数11y x=(0)x >图象上一点,过点A 作x 轴的平行线,交反比例函数2ky x=(0)x >的图象于点B ,连接OA ,OB ,若OAB △的面积为2,则k 的值为 .16.如图,在平面直角坐标系xOy 中,矩形OABC 的边OA ,OC 分别在x 轴和y 轴上,3OC =,26OA =,D 是BC 的中点,将OCD △沿直线OD 折叠后得到OGD △,延长OG 交AB 于点E ,连接DE ,则点G 的坐标为 .三、解答题(本大题共8小题,共86分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分8分)计算:201()(π 3.14)|32|2cos302-+----o . 18.(本小题满分10分)先化简:22111()21x x x x x x x-+÷--+g ,然后x 在1-,0,1,2四个数中选一个你认为合适的数代入求值.19.(本小题满分8分)解方程:214111x x x ++=--.20.(本小题满分12分)黔东南州某中学为了解本校学生平均每天的课外学习时间情况,随机抽取部分学生进行问卷调查,并将调查结果分为A ,B ,C ,D 四个等级,设学习时间为t (小时),:1A t <,:1 1.5B t ≤<,:1.52C t ≤<,:2D t ≥,根据调查结果绘制了如图所示的两幅不完整的统计图.请你根据图中信息解答下列问题:(1)本次抽样调查共抽取了多少名学生?并将条形统计图补充完整; (2)本次抽样调查中,学习时间的中位数落在哪个等级内? (3)表示B 等级的扇形圆心角α的度数是多少?(4)在此次问卷调查中,甲班有2人平均每天课外学习时间超过2小时,乙班有3人平均每天课外学习时间超过2小时,若从这5人中任选2人去参加座谈,试用列表或画树状图的方法求选出的2人来自不同班级的概率. 21.(本小题满分10分)黔东南州某校吴老师组织九(1)班同学开展数学活动,带领同学们测量学校附近一电线杆的高.已知电线杆直立于地面上,某天在太阳光的照射下,电线杆的影子(折线BCD )恰好落在水平地面和斜坡上,在D 处测得电线杆顶端A 的仰角为30o ,在C 处测得电线杆顶端A 得仰角为45o ,斜坡与地面成60o 角,4m CD =,请你根据这些数据求电线杆的高()AB .(结果精确到1m ,参考数据:2 1.4≈,3 1.7≈). 22.(本小题满分12分)如图,AB 是O e 的直径,点P 在BA 的延长线上,弦CD AB ⊥,垂足为E ,且2PC PE PO =g .(1)求证:PC 是O e 的切线.(2)若12OE EA =::,6PA =,求O e 的半径. 23.(本小题满分12分)凯里市某文具店某种型号的计算器每只进价12元,售价20元,多买优惠,优惠方法是:凡是一次买10只以上的,每多买一只,所买的的全部计算器每只就降价0.1元,例如:某人18只计算器,于是每只只降价0.1(1810)0.8⨯-=(元),因此所买的18只计算器都按每只19.2元的价格购买,但是每只计算器的最低售价为16元.(1)求一次至少购买多少只计算器,才能以最低价购买?(2)写出该文具店一次销售(0)x x >1只时,所获利润y (元)与x (只)之间的函数关系式,并写出自变量x 的取值范围;(3)一天,甲顾客购买了46只,乙顾客购买了50只,店主发现卖46只赚的钱反而比卖50只赚的钱多,请你说明发生这一现象的原因;当1050x <≤时,为了获得最大利润,店家一次应卖多少只?这时的售价是多少? 24.(本小题满分14分)如图,直线3y x =-+与x 轴、y 轴分别相交于点B ,C ,经过B ,C 两点的抛物线2y ax bx c =++与x 轴的另一个交点为A ,顶点为P ,且对称轴为直线2x =.-------------在--------------------此----------------------------解得:2QB 3=。
云南省贵州省2011年中考数学试题分类解析汇编 专题1 实数
某某某某2011年中考数学试题分类解析汇编专题1:实数一、选择题1.(某某某某3分)某某小学1月份某天的气温为5℃,最低气温为﹣1℃,则某某这天的气温差为A 、4℃B 、6℃C 、﹣4℃D 、﹣6℃【答案】B 。
【考点】有理数的减法。
【分析】这天的温差就是最高气温与最低气温的差,即5-(-1)=5+1=6℃。
故选B 。
2.(某某某某3分)据2010年全国第六次人口普查数据公布,某某省常住人口为45966239人,45966239用科学记数法表示且保留两个有效数字为A 、4.6×107B 、4.6×106C 、4.5×108D 、4.5×107【答案】A 。
【考点】科学记数法,有效数字。
【分析】根据科学记数法的定义,科学记数法的表示形式为1010n a a <⨯≤,其中1,n 为整数,表示时关键要正确确定a 的值以及n 的值。
在确定n 的值时,看该数是大于或等于1还是小于1。
当该数大于或等于1时,n 为它的整数位数减1;当该数小于1时,-n 为它第一个有效数字前0的个数(含小数点前的1个0)。
45966239一共8位,从而45966239=4.5966239×107。
有效数字的计算方法是:从左边第一个不是0的数字起,后面所有的数字都是有效数字。
所以4.5966239×107≈4.6×107。
故选A 。
3.(某某某某、某某、某某、某某、某某、怒江、迪庆、某某3分)第六次全国人口普查结果公布:某某省常住人口约为46000000人,这个数据用科学记数法可表示为人.A.64610⨯B.74.610⨯C.80.4610⨯D.84.610⨯【答案】B 。
【考点】科学记数法。
【分析】根据科学记数法的定义,科学记数法的表示形式为1010n a a <⨯≤,其中1,n 为整数,表示时关键要正确确定a 的值以及n 的值。
在确定n 的值时,看该数是大于或等于1还是小于1。
2011贵州黔南中考数学及答案
2011年贵州黔南地区初中毕业、升学招生数学试卷一、选择题:(每题4分,共52分)1.(2011贵州黔南,1,4分)9的平方根为( ) A.3 B.±3 C.3 D.±3【答案】D2.(2011贵州黔南,2,4分)下列命题中,真命题是( ) A.对角线互相垂直且相等的四边形是正方形 B.等腰梯形既是轴对称图形又是中心对称图形 C.圆的切线垂直于经过切点的半径D.垂直于同一条直线的两条直线互相垂直 【答案】C3.(2011贵州黔南,3,4分)在平面直角坐标系中,设点P 到原点O 的距离为p ,OP 与x 轴正方向的夹角为α,则用[p, α]表示点P 的极坐标;显然,点P 的极坐标与它的坐标存在一一对应的关系。
例如,点P 的坐标(1,1),则极坐标为[2,450]。
若点Q 的极坐标为[4,600],则点Q 的坐标为( )A.(2,23)B.(2,-23)C.(23,2)D.(2,2) 【答案】A4.(2011贵州黔南,4,4分)下列函数:(1)y=-x,(2)y=2x,(3)y=-x1,(4)y=x 2(x <0),y 随x 增大而减小的函数有( )A.1个B.2个C.3个D.4个 【答案】B5.(2011贵州黔南,5,4分)如图,△ABC 中,AB=AC=6,BC=8,AE 平分∠BAC 交BC 于点E,点D 为AB 的中点,连接DE,则△BDE 的周长是( ) A.7+5 B.10 C.4+25 D.126.(2011贵州黔南,6,4分)观察下列各式:21=2,22=4,23=8,24=16,……根据上述算式中的规律,请你猜想210的末位数字是( ) A.2 B.4 C.8 D.6 【答案】B7.(2011贵州黔南,7,4分)估计20的算术平方根的大小在( ) A.2与3之间 B.3与4之间 C.4与5之间 D.5与6之间 【答案】C8.(2011贵州黔南,8,4分)有一个数值转换器,原理如下:A DB EC 第5题图当输入的x=64时,输出的y 等于( ) A.2 B.8 C.32 D.22【答案】D9.(2011贵州黔南,9,4分)二次函数y=-x 2+2x+k 的部分图像如图所示,则关于x 的一元二次方程-x 2+2x+k=0的一个解是x 1=3,另一个解x 2=(A.1B.-1C.-2D.0 【答案】B10.(2011贵州黔南,10,4分)王芳同学为参加学校组织的科技知识竞赛,她周末到新华书店购买资料,如图,是王芳离家的距离与时间的图像,若黑点表示王芳家的位置,则王芳走的路线可能是(A B C D 【答案】B11.(2011贵州黔南,11,4分)将一个平行四边形的纸片折一次,使得折痕平分这个平行四边形的面积,则这样的折纸方法共有( ) A.1种 B.2种 C.3种 D.无数种 【答案】D12.(2011贵州黔南,12,4分)如图所示的物体由两个紧靠在一起的圆柱组成,小刚准备画出它的三视图,他所画的三视图的俯视图应是( ) A.两个相交的圆 B.两个内切的圆 C.两个外切的圆 D.两个外离的圆 【答案】C13.(2011贵州黔南,13,4分)已知三角形的两边的长分别为3和6,第三边是方程x 2-6x+8=0的解,则这个三角形的周长是( )A.11B.13C.11或13D.11和13 【答案】B二、填空题:(每小题5分,共25分)14.(2011贵州黔南,14,5分)已知:0)53(322=--+-+y x y x ,则x y=【答案】21 ···第12题图15.(2011贵州黔南,15,5分)函数y=x-21中,自变量x 的取值范围是【答案】x <216.(2011贵州黔南,16,5分)如图,把直角三角形ABC 的斜边AB 放在定直线l 上,按照顺时针方向在l 上转动两次,使它转到△A //B //C //的位置,设BC=1,AC=3,则点A 运动到点A //的位置时,点A 两次运动所经过的路程 (计算结果不取近似值) 【答案】π)2334(+17.(2011贵州黔南,17,5分)如图,⊙A 和⊙B 都与x 轴相切,圆心A 和圆心B 都在反比例函数y=x1的图像上,则图中阴影部分的面积等于 (不取近似值) 【答案】π18.(2011贵州黔南,18,5分)贵州省将为义务教育阶段的贫困学生免费发放教科书,预计发放总量为1500000册,发放总量用科学计数法表示为 册(保留3个有效数字)【答案】1.50×106三、解答题:19. (2011贵州黔南,19,每小题5分) (1)计算:2-1-(2011-π)0+3cos300-(-1)2011+︱-6︱【答案】原式=21-1+3×23-(-1)+6=8 (2)解不等式组⎪⎩⎪⎨⎧-〉+≤--13214)2(3x x x x ,并用数轴表示解集【答案】解不等式x-3(x-2)≤4,得x ≥1; 解不等式1321-〉+x x,得x <2, 原不等式组的解集是1≤x <2.A B CA /A //C / 第16题图在数轴上表示为:20.(2011贵州黔南,20,9分)北京时间2011年3月11日13时46分,日本东部海域发生9级强烈地震并引发海啸。
2011年贵州黔东南州中考试题含答案-作文
2011年贵州黔东南州中考试题(含答案)年贵州黔东南州初中毕业、升学招生考试语文试题一、选择题(分,每小题分).下列词语中加点字注音完全正确的一项是().淙淙流水(ō)一蹴而就(ù)破绽(à)穿着打扮(á).一望无垠(í)断瓦残垣(á)湍急(ā)恬不知耻(á).潜移默化(á)既往不咎(ù)凄怆(à)沾花惹草(ā).一哄而散(ō)诲人不倦(ì)搅和(ò)草菅人命(à).下列词语中书写完全正确的一项是().无暇顾及脍灸人口栩栩如生生机盎然.明察秋毫相提并论走投无路世外桃园.荼毒生灵锐不可当咄咄逼人不屑置辩.大声疾呼人声鼎沸声色具厉川流不息.选出下列各句中加点的成语使用恰当的一项是().年下半年,中国将发射天宫一号目标飞行器,随后发射神舟八号飞船与之进行第一次无人交会对接,年之前将建成中国空间站和建立全球导航系统,这些消息真是骇人听闻。
.由于厂家对产品的设计和生产吹毛求疵,因而产品销路越来越好。
.浦东世博园区的一轴四馆不仅以美轮美奂的建筑造型吸引了众多眼球,更集中运用了当今全球绿色科技成果,成为未来低碳建筑的范例。
.总理和网友的互动,是网络民主的体现,而且上行下效,互联网在各级政府管理中的作用将进一步加大。
.下列句子中标点符号的作用分析错误的一项是().他说,法国语言是世界上最美的语言--最明白,最精确。
(破折号表示解释说明).这样的聪明人还是少一点好。
(引号表示着重指出的部分).北京紫禁城有四座城门:午门、神武门、东华门和西华门。
(冒号表示提示下文).好,好同志……你……你把它带给……(省略号表示说话断断续续).下列文学常识表述有误的一项是().《威尼斯商人》是一部具有极在社会讽刺性的喜剧作品,作者莎士比亚是英国伟大的戏剧家。
.《诗经》是我国最早的一部诗歌总集,也称诗三百,分为风雅颂三部分。
2011年黔东南中考数学试题及参考答案
黔东南州2011年中考数学模拟试题及参考答案一、选择题1.-3的相反数是DA .-13B .13C .-3D .32.计算(x 2y)3,结果正确的是D A .x 5y B .x 6y C .x 2y 3 D .x 6y 3 3.等边三角形、正方形、菱形和等腰梯形这四个图形中,是中心对称图形的有B A .1个 B .2个 C .3个 D .4个4.已知⊙O 的半径为r ,圆心O 到直线l 的距离为d 。
若直线l 与⊙O 有交点,则下列结论正确的是B A .d =r B .d ≤r C .d ≥r D .d <r5.用换元法解分式方程222(1)672x x x x ++=+时,如果设21x y x +=,那么将原方程化为关于y 的一元二次方程的一般形式是AA .22760y y -+=B .22760y y ++=C .2760y y -+=D .2760y y ++=6.已知:如图1,在矩形ABCD 中,E ,F ,G ,H 分别为边AB ,BC ,CD ,DA 的中点。
若AB =2,AD =4,则图中阴影部分的面积为B A .3 B .4 C .6 D .87.某闭合电路中,电源的电压为定值,电流I (A )与电阻R (Ω)成反比例。
图2表示的是该电路中电流I 与电阻R 之间函数关系的图像,则用电阻R 表示电流I 的函数解析式为CA .2I R =B .3I R =C .6I R=D .6I R=-8.法国的“小九九”从“一一得一”到“五五二十五”和我国的“小九九”是一样的,后面的就改用手势了。
下面两个图框使用法国“小九九”计算7×8和8×9的两个示例。
若用法国的“小九九”计算7×9,左、右手依次伸出手指的个数是CA .2,3B .3,3C .2,4D .3,49.古代有这样一个寓言故事:驴子和骡子一同走,它们驮着不同袋数的货物,每袋货物都是一样重的。
驴子抱怨负担太重,骡子说:“你抱怨干吗?如果你给我一袋,那我所负担的就是你的两倍;如果我给你一袋,我们才恰好驮的一样多!”那么驴子原来所托货物的袋数是AA D H图1 OI (A )R (Ω)B(3,2)图223A .5B .6C .7D .810.一根绳子弯曲成如图3-1所示的形状。
11-中考数学试卷(贵州黔东南专用)(解析版)
备战2021中考数学全真模拟卷(贵州黔东南专用)黄金卷11(总分:150分时间:120分钟)一、选择题(本题共计10小题,每题4分,共计40分)1.(2020·河北·中考复习)|-3|-1的值等于()A.4B.C.D.2【答案】D【考点】绝对值2.(2020·山东·中考复习)下列四个银行标志中,既是轴对称图形又是中心对称图形的是()A. B. C. D.【答案】C【考点】中心对称图形,轴对称图形【解析】由题意直接根据轴对称和中心对称图形的概念进行分析判断即可.3.(2020·山东·中考复习)将一副三角板(∠A=30∘)按如图所示方式摆放,保持两条斜边互相平行(AB // EF),则∠1等于().A.85∘B.95∘C.105∘D.115∘【答案】C【考点】平行线的判定,三角形的外角性质【解析】首先根据常识可知两个三角板,一个是等腰直角三角形,一个是含有30∘角的直角三角形,根据平行线的性质定理和外角的性质即可求解.4.(2020·广东·中考复习)SARS−CoV−2是一种新型冠状病毒,其病毒颗粒呈多形性,其中球形病毒的最大直径为0.00000014米,这一直径用科学记数法表示为().A.1.4×10−7米B.1.4×10−8米C.14×10−7米D.14×10−8米【答案】A【考点】科学记数法--表示较小的数【解析】由题意直接根据用科学记数法表示绝对值小于1的数的表示方法进行分析即可求解.5.(2021·山西·中考复习)2020年11月9日是第30个“消防宣传日”.某校举行“安全小能手”消防安全知识竞赛,有50位同学参加比赛,比赛结束后根据每个学生的最后得分计算出平均数、中位数、众数和方差,如果去掉一个最高分和一个最低分,则一定不发生变化的是().A.平均数B.中位数C.众数D.方差【答案】B【考点】统计量的选择,方差【解析】根据中位数的定义:位于中间位置或中间两数的平均数,可以得到去掉一个最高分和一个最低分不影响中位数.6.(2020·湖南·中考复习)已知点P(2a+1, 1−a)在第一象限,则a的取值范围在数轴上表示正确的是()A. B. C. D.【答案】C【考点】在数轴上表示不等式的解集,解一元一次不等式组,点的坐标【解析】根据点在坐标系中位置得关于a的不等式组,解不等式组求得a的范围,即可判断.7.(2020·云南·中考复习)若关于x的一元二次方程(k-2)x2-2kx+k=6有实数根,则k的取值范围为()A.k≥0B.k≥0且k≠2C.k≥32D..k≥32且k≠2【答案】D【考点】一元二次方程根的分布【解析】根据二次项系数非零结合根的判别式Δ≥0,即可得出关于k的一元一次不等式组,解之即可得出k 的取值范围.8.(2020·山东·中考复习)如图,AD // BC,∠ABC的角平分线BP与∠BAD的角平分线AP相交于点P,作PE⊥AB 于点E,若PE=2,则两平行线AD与BC间的距离为()A.4B.5C.6D.7【答案】A【考点】角平分线的性质9.(20贵州·山东·中考模拟)如图,是的内接三角形,,过点的圆的切线交于点,则的度数为()A.32∘B.31∘C.29∘D.61∘【答案】A【考点】圆周角定理【解析】根据题意连接OC,△COP为直角三角形,再根据BC的优弧所对的圆心角等于圆周角的2倍,可计算的∠COP的度,再根据直角三角形可得∠P的度数.10.(2020·山东·中考复习)将正整数按如图所示的规律排列下去,若有序数对(n, m)表示第n排,从左到右第m个数,如(4, 3)表示8,已知1+2+3+...+n=(1)2n n,则表示2020的有序数对是().A.(64, 4)B.(65, 4)C.(64, 61)D.(65, 61)【答案】C【考点】规律型:数字的变化类【解析】根据数字的排列规律,每一排的数字的个数与对应的排数相同,然后确定出2020所在的排数与这一排的序数,然后根据有序数对的表示写出即可.【解答】解:根据图形,第一排1个数,第二排2个数,数字从大到小排列,第三排3个数,数字从小到大排列,第四排4个数,数字从大到小排列,…则前n排的数字共有n(n+1)2个数,当n=63时,63×642=2016则可知2020是第64排从右到左的第4个数,即从左到右的第61个数,可表示为(64,61)二、填空题(本题共计10小题,每题3 ,共计30分)11.(2020·贵州·中考复习)分解因式:x3−x=________.【答案】x(x+1)(x−1)【考点】提公因式法与公式法的综合运用,因式分解-提公因式法,因式分解【解析】由题意可知本题可先提公因式x,分解成x(x2−1),而x2−1可利用平方差公式分解.12. (2020·云南·中考复习)若分式21x x x --=0,则x 的值为________. 【答案】x =0【考点】分式值为零的条件【解析】由题意根据分式的值为零的条件得到|x 2−x =0且x −1≠0,易得x =013.(2020·上海·中考复习)为考察甲、乙、丙、丁四种小麦的长势,在同一时期分别从中随机取部分麦苗,获得苗高(单位;cm )的平均数与方差为:,;.S 甲2=S 丁2=3.6,S 乙2=S 丙2=6.3,则麦苗又高又整齐的是________.【答案】丁【考点】方差,算术平均数【解析】先比较平均数得出苗高大的麦苗种类,再将所得两种麦苗的高度的方差比较,方差小的即为又高又整齐的种类.14.(2020·湖南·中考复习)如图,在△ABC 中,AB =AC ,∠A =40º,点D 在AC 上,BD =BC ,则∠ABD 的度数为________.【答案】30∘.【考点】等腰三角形的判定,三角形的外角性质【解析】试题分析:因为AB =AC∠A =40∘,所以∠ABC =∠C =70∘,又BD =BC ,所以∠BDC =∠C =70∘,又∠BDC =∠A +∠ABD.所以∠ABD =∠BDC∠A =70∘−40∘=30∘15.(2020·贵州·中考复习)若△ABC ∽△A′B′C′,相似比为1:3,则△ABC 与△A′B′C′的面积之比为________.【答案】1∶9.【考点】相似三角形的性质【解析】试题分析:△ABC −ΔA ′B ′C ,相似比为1:3△ABC5ΔA ′BC ’的面积之比为1:916.(2020·吉林·中考复习)已知{23x y==-是方程组{23ax bybx ay+=+=的解,则a2−b2=________.【答案】1【考点】平方差公式,利用方程组的解求参数,完全平方公式与平方差公式的综合【解析】将方程组的解代入原方程可得到关于参数a,b的二元一次方程组,分别利用两式相减和相加可得到a−b=−15a+b=−5,利用平方差公式即可解题17.(2020·云南·中考复习)已知一次函数y=kx+b的图象如图所示,则关于x的不等式3kx−b>0的解集为________.【答案】x<2【考点】一次函数与一元一次不等式【解析】由题意可得−6k+b=0k<0,继而把b=6k代入关于x的不等式3kπ−b>0中进行求解即可.18.(2019-2020·黑龙江·中考复习)在Rt△ABC中,∠C=90∘,AC=8,BC=6,D是AB的中点,点在直线CD上,且MD=3,则△MBC的面积是________.【答案】245或465【考点】切线的性质,平移的性质19.(2020·黑龙江·中考复习)如图,AB,BC是⊙O的两条弦,AO⊥BC于点D,若⊙O的半径为5,BC长为8,则AB的长为________.【答案】4√5【考点】垂径定理,勾股定理【解析】根据垂径定理求出BD,根据勾股定理求出OD,求出AD,再根据勾股定理求出AB即可.20.(2020·黑龙江·中考复习)如图,在平面直角坐标系中,A为原点.射线AN与x轴夹角为30∘,点A1在x轴上,且AA1=2,过点A1作A1M1⊥AN于点M1,以A2M2为底边上的高,作等腰三角形AA1A2;再过点A2作A2M2⊥x轴于点M2,以A2M2为底边上的高,作等腰三角形AA2A3;再过点A3作A3M3⊥AN于点M3,以A3M3为底边上的高,作等腰三角形AA3A4……以此类推,作等腰三角形AA2019A2020,则点A2020的坐标为________【答案】(31010,(√3)2019)【考点】圆的综合题【解析】根据锐角三角函数关系得出A1A2,A2A3…的长,进而得出各点的纵坐标关系,进而得出规律求出答案.【解答】解:过A作AA1⊥OB,垂足为A1;过A1作A1A2⊥x轴,过点A2作A2A3⊥OB,垂足为点A3;再过点A3作A3A4⊥x轴,垂足为A4…∶ ∠AOB=30∘,点A坐标为(2, 0),∶ A1A=12AO=1,∶ A1A2=A1A×cos30∘=√32,∶ A2A3=A1A2×cos30∘=√32×√32,…则A2020的纵坐标A2020A2020=(√3)2019.三、解答题(本题共计6大题、共计80分)21.(10分)(2020·广东·中考复习)(1)计算(π−1)0+|√3−2|−(13)−1+√12;(2)(2020·广东·中考复习)化简求值:(1a+1−a−2a2−1)÷1a2+a.选择一个你喜欢的值代入求值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
启用前★机密
黔东南州2011年初中毕业升学统一考试
数 学 试 卷
(本试卷总分150分,考试时间120分钟)
考生注意:
1.答题时,务必将自己的姓名、准考证号填写在答题卡规定的位置上。
2.答选择题,必须使用2B 铅笔将答题卡上对应题目的答案标号涂黑。
如果需要改动,用 像皮擦擦干净后,再选涂其它答案标号。
3.答非选择题时,必须使用0.5毫米黑色签字笔,将答案书写在答题卡规定的位置上。
4.所有题目必须在答题卡上作答,在试题卷上答题无效。
5.考试结束后,将试题卷和答题卡一并交回。
卷Ⅰ
一、单项选择题:(每小题4分,共40分。
每小题只有一个正确答案,请在答题卡选择题栏内用2B 铅笔将对应题目答案的标号涂黑。
) 1、下列计算正确的是
A 、6
4
2
x x x =+ B 、xy y x 532=+ C 、2
3
6
x x x =÷ D 、623)(x x =
2、一组数据:75、95、85、100、125的中位数是
A 、85
B 、95
C 、96
D 、100 3、已知12-=-b a ,则124+-b a 的值为
A 、1-
B 、0
C 、1
D 、3
4、某校九(1)班在庆祝“建党九十周年”开展的一次学党史知识手抄报活动中,一个由5人组成的小组里所有同学均相互传阅自己制作的手抄报,则该小组的同学共传阅 A 、5次 B 、15次 C 、20次 D 、25次
5、若a 、b 是一元二次方程012011
2
=+-x x 的两根,则b
a 1
1+的值为 A 、2010 B 、2011 C 、20101 D 、2011
1
6、将一副直角三角尺按如图所示的方式放置,若AE ∥BC ,则∠AFD 的度数为
A 、45°
B 、50°
C 、60°
D 、75°
7、小红需要用扇形薄纸板制作成底面半径为9厘米,高为12厘米的圆锥形生日帽,则该扇形薄纸板的圆心角为
A 、150°
B 、180°
C 、216°
D 、270°
8、用若干个大小相同、棱长为1的小正方体搭成一个几何体模型,其三视图如下图所示,则搭成这个几何体模型所用的小正方体的个数是 A 、6 B 、7
C 、8
D 、9
(俯视图)
(左视图)(主视图)
(第8题图)
9、如图,一次函数)0(1≠+=k n kx y 与二次函数)0(2
2≠++=a c bx ax y 的图象相交于A (1-,5)、B (9,
(第7题图)
F
E
C B
A
(第6题图)
(第17题图)
x
(第18题图)
A
B
C
D E F
G H
M
P
2)两点,则关于x 的不等式c bx ax n kx ++≥+2
的解集为
A 、91≤≤-x
B 、91<≤-x
C 、91≤<-x
D 、1-≤x 或9≥x
x
(第9题图)
(第10题图)
D
C
B
A
10、如图,在Rt △ABC 中,∠ACB =90°,CD 是AB 边上的中线,若BC =6,AC =8,则ta n ∠ACD 的值为 A 、
53 B 、54 C 、34 D 、4
3 卷Ⅱ
二、填空题:(每小题4分,共32分。
答题请用0.5毫米黑色墨水的签字笔或钢笔直接写在答题卡的相应位置上。
)
11、计算:sin30°=___________。
12、式子
x
x 1
+有意义的x 的取值范围是_____________。
13、分式方程
x
x 2
13=-的解是________________。
14、分解因式:=--822
x x ___________________。
15、若2>m ,化简=-2
)2(m _________________。
16、如图,P A 、PB 是⊙O 的切线,切点分别为A 、B ,已知⊙O 的半径为2,∠P =60°,则弦AB 的长为
_____________________。
17、如图所示,反比例函数x
k
y =
的图象与经过坐标原点的直线l 相交于A 、B 两点,过点B 作x 轴的垂线,垂足为C ,若△ABC 的面积为3,则这个反比例函数的解析式为 ________________________。
18、顺次连接一矩形场地ABCD 的边AB 、BC 、CD 、DA 的中点E 、F 、G 、H ,得到四边形EFGH ,M 为
边EH 的中点,点P 为小明在对角线EG 上走动的位置,若AB =10米,BC =310米,当PM +PH 的和为最小值时,EP 的长为________________。
(第
16题图)
三、解答题。
(7个小题,共78分。
答题请用0.5毫米黑色墨水的签字笔或钢笔直接书写在答题卡的相应
位置上。
)
19、(10分)先化简,再求值:)1
1(12
2x x x x
x x ---÷+-,其中2=x 20、(10分)凯里市某超市为了了解近期的销售情况,对今年1—5月份的销售额进行了统计,超市财务部
经理把收集到的统计数据绘制成如下统计图,请你根据下面的统计图解答下列问题:
87654321
(1)来至超市财务部的报告表明,超市1—5月份的销售额为25万元,请你根据这一信息补全图1;超
市服装部3月份的销售额是多少?
(2)小莉观察图2认为,服装部2月份的销售额比1月份增加了,你同意她的看法吗?为什么? 21、(10分)某食品店为了吸引顾客增加营业额,开展促销活动,规定购买金额达30元或30元以上的均
获得一次摸奖机会,摸奖规则是:“一个不透明的纸箱中装有编号为0,1,2,3的4个乒乓球,它们的颜色、大小、形状完全相同,一次摸奖由3次摸出的球决定是否中奖,每次摸球只能从摇匀的纸箱中摸出一个(不能放回)。
如果摸出的3个球中含有0号球中三等奖;如果摸出的3个球中分别为0,1,2号球中二等奖;如果摸出的3个球中按先后顺序依次为0,1,2号球则中一等奖”。
请你用画树形图的方法来帮助顾客计算一次摸奖分别中一、二、三等奖的概率。
F
E D
A
(第22题图)
60°
45°
(第23题图)
22、(12分)如图所示,某公司办公楼的对面小山上矗立着一座铁塔FD ,小敏站在10米高的楼顶上A 处
测得塔顶F 的仰角为45°,他从楼底B 处水平走到坡脚C ,从C 处测得塔底部D 的仰角为60°,铁塔FD 与水平地面BC 垂直于点E ,若BC =100米,斜坡长CD =220米,试求铁塔FD 的高(测量仪的高度忽略不计,结果保留根号)。
23、(12分)如图,点P 是⊙O 外一点,过点P 作⊙O 的切线,切点为A ,连接PO 并延长,交⊙O 于B 、
C 两点。
(1)求证:△PB A ∽△P AC
(2)若∠BAP =30°,PB =2,求⊙O 的半径。
24、(12分)在“五·一”期间,某公司组织318名员工到雷山西江千户苗寨旅游,旅行社承诺每辆车安
排有一名随团导游,并为此次旅行安排8名导游,现打算同时租甲、乙两种客车,其中甲种客车每辆载客45人,乙种客车每辆载客30人。
(1)请帮助旅行社设计租车方案。
(2)若甲种客车租金为800元/辆,乙种客车租金为600元/辆,旅行社按哪种方案租车最省钱?此时租
金是多少?
(3)旅行前,旅行社的一名导游由于有特殊情况,旅行社只能安排7名导游随团导游,为保证所租的每
辆车安排有一名导游,租车方案调整为:同时租65座、45座和30座的大小三种客车,出发时,所租的三种客车的座位恰好坐满,请问旅行社的租车方案如何安排? 25、(12分)矩形OABC 在直角坐标系中的位置如图所示,A 、C 两点的坐标分别为A (10,0)、C (0,3),
直线x y 3
1
=
与BC 相交于点D ,抛物线bx ax y +=2经过A 、D 两点。
(1)求抛物线的解析式;
(2)连接AD ,试判断△OAD 的形状,并说明理由。
(3)若点P 是抛物线的对称轴上的一个动点,对称轴与OD 、x 轴分别交于点M 、N ,问:是否存在点
P ,使得以点P 、O 、M 为顶点的三角形与△OAD 相似?若存在,请求出点P 的坐标;若不存在,请说明理由。
说明:1、试卷页面设置为A4纸。
2、初中数学试卷编辑由QQ :363276032 , e-mail :steven34965@ 提供
(第25题图)
x。