金属热处理知识点

合集下载

(完整版)金属热处理知识点概括

(完整版)金属热处理知识点概括

(一)淬火--将钢加热到Ac

3或Ac

1

以上,保温一段时间,使之奥氏体化后,以

大于临界冷速的速度冷却的一种热处理工艺。

淬火目的:提高强度、硬度和耐磨性。结构钢通过淬火和高温回火后,可以获得较好的强度和塑韧性的配合;弹簧钢通过淬火和中温回火后,可以获得很高的弹性极限;工具钢、轴承钢通过淬火和低温回火后,可以获得高硬度和高耐磨性;对某些特殊合金淬火还会显著提高某些物理性能(如高的铁磁性、热弹性即形状记忆特性等)。

表面淬火--表面淬火是将钢件的表面层淬透到一定的深度,而心部分仍保持未淬火状态的一种局部淬火的方法。分类——感应加热表面淬火、火焰加热表面淬火、电接触加热表面淬火、电解液加热表面淬火、激光加热表面淬火、电子束加热表面淬火、离子束加热表面淬火、盐浴加热表面淬火、红外线聚焦加热表面淬火、高频脉冲电流感应加热表面淬火和太阳能加热表面淬火。

单液淬火——将奥氏体化后的钢件投入一种淬火介质中,使之连续冷却至室温(图9-1a线)。淬火介质可以是水、油、空气(静止空气或风)或喷雾等。

双液淬火——双液淬火方法是将奥氏体化后的钢件先投人水中快冷至接近M

S

点,然后立即转移至油中较慢冷却(图9-1b线)。

分级淬火——将奥氏体化后的钢件先投入温度约为M

S

点的熔盐或熔碱中等温保持一定时间,待钢件内外温度一致后再移置于空气或油中冷却,这就是分级淬火等温淬火--奥氏体化后淬入温度稍高于Ms点的冷却介质中等温保持使钢发生下贝氏体相变的淬火硬化热处理工艺。

等温淬火与分级淬火的区别是:分级淬火的最后组织中没有贝氏体而等温淬火组织中有贝氏体。。。根据等温温度不同,等温淬火得到的组织是下贝氏体、下贝氏体+马氏体以及残余奥氏体等混合组织。

金属学与热处理知识点总结

金属学与热处理知识点总结

金属学与热处理总结

一、金属的晶体结构

重点内容:面心立方、体心立方金属晶体结构的配位数、致密度、原子半径.八面体、四面体间隙个数;晶向指数、晶面指数的标定;柏氏矢量具的特性、晶界具的特性。

基本内容:密排六方金属晶体结构的配位数、致密度、原子半径.密排面上原子的堆垛顺序、晶胞、晶格、金属键的概念。晶体的特征、晶体中的空间点阵。

晶格类型晶胞中的原子

数原子半

配位

致密度

体心立方 2 a

4

38 68%

面心立方 4 a

4

212 74%

密排六方 6 a

2

112 74% 晶格类型fcc(A1) bcc(A2) hcp(A3)

间隙类型正四面

正八面

四面体扁八面体四面体

正八面

间隙个数8 4 12 6 12 6

原子半径

r

A

a

4

2a

4

3

2

a

间隙半径

r

B ()

4

2

3a

-()42

2

a

-()43

5a

-()43

2a

-()42

6a

-()21

2a

-

晶胞:在晶格中选取一个能够完全反映晶格特征的最小的几何单元.用来分析原子排列的规律性.这个最小的几何单元称为晶胞。

金属键:失去外层价电子的正离子与弥漫其间的自由电子的静电作用而结合起来.这种结合方式称为金属键。

位错:晶体中原子的排列在一定范围内发生有规律错动的一种特殊结构组态。

位错的柏氏矢量具有的一些特性:

①用位错的柏氏矢量可以判断位错的类型;②柏氏矢量的守恒性.即柏氏矢量与回路起点及回路途径无关;③位错的柏氏矢量个部分均相同。

刃型位错的柏氏矢量与位错线垂直;螺型平行;混合型呈任意角度。

晶界具有的一些特性:

①晶界的能量较高.具有自发长大和使界面平直化.以减少晶界总面积的趋势;②原子在晶界上的扩散速度高于晶内.熔点较低;③相变时新相优先在晶界出形核;④晶界处易于发生杂质或溶质原子的富集或偏聚;⑤晶界易于腐蚀和氧化;⑥常温下晶界可以阻止位错的运动.提高材料的强度。

金属学与热处理知识点总结

金属学与热处理知识点总结

金属学与热处理总结

一、金属的晶体结构

重点内容:面心立方、体心立方金属晶体结构的配位数、致密度、原子半径,八面体、四面体间隙个数;晶向指数、晶面指数的标定;柏氏矢量具的特性、晶界具的特性。

基本内容:密排六方金属晶体结构的配位数、致密度、原子半径,密排面上原子的堆垛顺序、晶胞、晶格、金属键的概念。晶体的特征、晶体中的空间点阵。

晶格类型晶胞中的原子原子半配位致密度

数径数

体心立方243 a868%

面心立方442 a1274%

密排六方612 a1274%

晶格类型fcc(A1)bcc(A2)hcp(A3)

间隙类型正四面正八面

四面体扁八面体四面体

正八面体体体

间隙个数84126126

原子半径

2

a3a a

442 r A

间隙半径

3 2 a

2 2

a

5 3

a

2 3

a

6 2

a

2 1

a 444442

r B

晶胞:在晶格中选取一个能够完全反映晶格特征的最小的几何单元,用来分析原子排列的规律性,这个最小的几何单元称为晶胞。

金属键:失去外层价电子的正离子与弥漫其间的自由电子的静电作用而结合起来,这种结合方式称为金属键。

位错:晶体中原子的排列在一定范围内发生有规律错动的一种特殊结构组态。

位错的柏氏矢量具有的一些特性:

①用位错的柏氏矢量可以判断位错的类型;②柏氏矢量的守恒性,即柏氏矢量与回路起点及回路途径无关;③位错的柏氏矢量个部分均相同。

刃型位错的柏氏矢量与位错线垂直;螺型平行;混合型呈任意角度。

晶界具有的一些特性:

①晶界的能量较高,具有自发长大和使界面平直化,以减少晶界总面积的趋势;②原子在晶界上的扩散速度高于晶内,熔点较低;③相变时新相优先在晶界出形核;④晶界处易于发生杂质或溶质原子的富集或偏聚;⑤晶界易于腐蚀和氧化;⑥常温下晶界可以阻止位错的运动,提高材料的强度。

金属热处理知识

金属热处理知识

图5 马氏体
图6 马氏体加铁素体
● 对共析钢和过共析钢 组淬织火为温细度马为氏A体c1+加30颗~粒50状℃,
渗碳体和少量残余奥氏体, 如图所示。
图7
●对合金钢,一般淬火温度为临界点以上50~100℃。
提高淬火温度有利于合金元素在奥氏体中充分溶解和 均匀化。
3) 淬火介质
●为了保证得到马氏体 组织,淬火速度必须大
③ ε碳化物转变为Fe3C 主要发生 在250~400℃,此时回火马氏体转 变为在保持马氏体形态的铁素体基 体上分布着细粒状渗碳体的组织, 称为回火屈氏体,用“T回”表示。图13
④ 渗碳体的聚集长大及α相再结晶 主要发生在400℃以上,此时 形成颗 粒状渗碳体,铁素体由针片状转变 为多边形,这种组 织称为回火索氏 体,用“S回”表示。如图所示。图14
金属材料与金属热处理
热处理是指通过对工件的加热、保温和冷却,使
金属或合金的组织结构发生变化,从而获得预期的性 能(如机械性能、加工性能、物理性能和化学性能等) 的操作工艺称为热处理。
工件热处理的目的是通过热处理这一重要手 段,来改变(或改善)工件内部组织结构,从而获得所 需要的性能并提高工件的使用寿命。
度、保温时间和冷却速度。通常把加热速度、 最高加热温度、保温时间和冷却速度称为工件 热处理的四个要素,也称工艺参数。正确地确
定和保证实施好工艺,就能获得预期的效果, 并将得到满意的性能。

金属热处理基础知识

金属热处理基础知识

金属热处理基础知识

金属热处理基础知识一

金属热处理是将金属工件放在一定的介质中加热到适宜的温度,并在此温度中保持一定时间后,又以不同速度冷却的一种工艺。

1.金属组织

金属:具有不透明、金属光泽良好的导热和导电性并且其导电能力随温度的增高而减小,富有延性和展性等特性的物质。金属内部原子具有规律性排列的固体(即晶体)。

合金:由两种或两种以上金属或金属与非金属组成,具有金属特性的物质。

相:合金中成份、结构、性能相同的组成部分。

固溶体:是一个(或几个)组元的原子(化合物)溶入另一个组元的晶格中,而仍保持另一组元的晶格类型的固态金属晶体,固溶体分间隙固溶体和置换固溶体两种。

固溶强化:由于溶质原子进入溶剂晶格的间隙或结点,使晶格发生畸变,使固溶体硬度和强度升高,这种现象叫固溶强化现象。

化合物:合金组元间发生化合作用,生成一种具有金属性能的新的晶体固态结构。

机械混合物:由两种晶体结构而组成的合金组成物,虽然是两面种晶体,却是一种组成成分,具有独立的机械性能。

铁素体:碳在a-Fe(体心立方结构的铁)中的间隙固溶体。

奥氏体:碳在g-Fe(面心立方结构的铁)中的间隙固溶体。

渗碳体:碳和铁形成的稳定化合物(Fe3c)。

珠光体:铁素体和渗碳体组成的机械混合物(F+Fe3c 含碳0.8%)

莱氏体:渗碳体和奥氏体组成的机械混合物(含碳4.3%)

金属热处理是机械制造中的重要工艺之一,与其它加工工艺相比,热处理一般不改变工件的形状和整体的化学成分,而是通过改变工件内部的显微组织,或改变工件表面的化学成分,赋予或改善工件的使用性能。其特点是改善工件的内在质量,而这一般不是肉眼所能看到的。

金属热处理的基本知识

金属热处理的基本知识

金属热处理基本知识

金属热处理是将金属工件放在一定的介质中加热到适宜的温度,并在此温度中保持一定时间后,又以不同速度冷却的一种工艺。1.金属组织金属:具有不透明、金属光泽良好的导热和导电性并且其导电能力随温度的增高而减小,富有延性和展性等特性的物质。金属内部原子具有规律性排列的固体(即晶体)。合金:由两种或两种以上金属或金属与非金属组成,具有金属特性的物质。

相:合金中成份、结构、性能相同的组成部分。

固溶体:是一个(或几个)组元的原子(化合物)溶入另一个组

元的晶格中,而仍保持另一组元的晶格类型的固态金属晶体,固

溶体分间隙固溶体和置换固溶体两种。

固溶强化:由于溶质原子进入溶剂晶格的间隙或结点,使晶格

发生畸变,使固溶体硬度和强度升高,这种现象叫固溶强化现

象。

化合物:合金组元间发生化合作用,生成一种具有金属性能的新

的晶体固态结构。

机械混合物:由两种晶体结构而组成的合金组成物,虽然是两面

种晶体,却是一种组成成分,具有独立的机械性能。铁素体:碳

在a-Fe (体心立方结构的铁)中的间隙固溶体。奥氏体:碳在g-Fe (面心立方结构的铁)中的间隙固溶体。

渗碳体:碳和铁形成的稳定化合物(Fe3c)。

珠光体:铁素体和渗碳体组成的机械混合物(F+Fe3c 含碳

0.8%)莱氏体:渗碳体和奥氏体组成的机械混合物(含碳

4.3%)

金属热处理是机械制造中的重要工艺之一,与其它加工工艺相比,热处理一般不改变工件的形状和整体的化学成分,而是通过改变工件内部的显微组织,或改变工件表面的化学成分,赋予或改善工件的使用性能。其特点是改善工件的内在质量,而这一般不是肉眼所能看到的。

金属学与热处理知识点总结

金属学与热处理知识点总结

金属学与热处理总结

一、金属的晶体结构

重点内容:面心立方、体心立方金属晶体结构的配位数、致密度、原子半径,八面体、四面体间隙个数;晶向指数、晶面指数的标定;柏氏矢量具的特性、晶界具的特性。

基本内容:密排六方金属晶体结构的配位数、致密度、原子半径,密排面上原子的堆垛顺序、晶胞、晶格、金属键的概念。晶体的特征、晶体中的空间点阵。

晶格类型晶胞中的原子

数原子半

配位

致密度

体心立方 2 8 68%

面心立方 4 12 74%

密排六方 6 12 74%

晶格类型fcc(A1) bcc(A2) hcp(A3)

间隙类型正四面

正八面

四面体扁八面体四面体

正八面

间隙个数8 4 12 6 12 6

原子半径

r

A

间隙半径

r

B

晶胞:在晶格中选取一个能够完全反映晶格特征的最小的几何单元,用来分析原子排列的规律性,这个最小的几何单元称为晶胞。

金属键:失去外层价电子的正离子与弥漫其间的自由电子的静电作用而结合起来,这种结合方式称为金属键。

位错:晶体中原子的排列在一定范围内发生有规律错动的一种特殊结构组态。

位错的柏氏矢量具有的一些特性:

①用位错的柏氏矢量可以判断位错的类型;②柏氏矢量的守恒性,即柏氏矢量与回路起点及回路途径无关;③位错的柏氏矢量个部分均相同。

刃型位错的柏氏矢量与位错线垂直;螺型平行;混合型呈任意角度。

晶界具有的一些特性:

①晶界的能量较高,具有自发长大和使界面平直化,以减少晶界总面积的趋势;②原子在晶界上的扩散速度高于晶内,熔点较低;③相变时新相优先在晶界出形核;④晶界处易于发生杂质或溶质原子的富集或偏聚;⑤晶界易于腐蚀和氧化;⑥常温下晶界可

金属热处理基础入门必须了解的二十个知识点

金属热处理基础入门必须了解的二十个知识点

金属热处理基础入门必须了解的二十个知识点

1、什么是热处理

将固态金属或合金采取适当方式进行加热,保温一定的时间,以一定的冷却速度冷却以改变其组织,从而获得所需性能的一种工艺方法。

2、热处理的目的是什么

通过适当的热处理工艺改变钢的内部组织结构,来控制相变过程中组织转变的程度和转变产物的形态,从而改善钢的性能。

3、热处理的条件是什么

必须有固态相变转变的合金才可以进行热处理。

4、热处理的工艺过程是什么

(1)加热:临界点+△T值

(2)保温

(3)冷却:临界点- △T值一定冷却速度

5、主要参数有哪些

(1)加热温度T

(2)保温时间 t

(3)冷却速度V,冷却介质决定冷却速度,如:水、盐水、碱水、空气

6、按处理阶段及目的可分为哪几种

(1)预处理

目的是消除偏析、内应力,为最终热处理或后续的加工获得平衡组织。

(2)最终处理

作为工件处理的最后工序,获得最终组织。

7、按热处理工艺参数可分为哪几种

(1)普通热处理

这是生产中最常用的热处理工艺,如退火、正火、淬火、回火等。这类的热处理一般不会额外的加入其他元素,主要是通过自身组织转

变来得到所需要的性能。

(2)化学热处理

这类在热处理在齿轮、轴等耐磨件上会经常用到。工件进行化学热处理时,会在表面一层渗入其他的元素,而对心部的成分不会产生什么影响。一般渗入什么元素,我们就称为渗×处理,如表面渗C、渗N,C、N共渗等。

(3)表面热处理

综合了上述两类热处理的特点,即热处理时不加入其他元素,而且只是针对表面进行的热处理,不影响心部的组织,如表面淬火,但其要求工件的含碳量较高。

金属学与热处理知识点总结

金属学与热处理知识点总结

金属学与热处理知识点

总结

文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

金属学与热处理总结

一、金属的晶体结构

重点内容:面心立方、体心立方金属晶体结构的配位数、致密度、原子半径,八面体、四面体间隙个数;晶向指数、晶面指数的标定;柏氏矢量具的特性、晶界具的特性。

基本内容:密排六方金属晶体结构的配位数、致密度、原子半径,密排面上原子的

晶胞:在晶格中选取一个能够完全反映晶格特征的最小的几何单元,用来分析原子排列的规律性,这个最小的几何单元称为晶胞。

金属键:失去外层价电子的正离子与弥漫其间的自由电子的静电作用而结合起来,这种结合方式称为金属键。

位错:晶体中原子的排列在一定范围内发生有规律错动的一种特殊结构组态。

位错的柏氏矢量具有的一些特性:

①用位错的柏氏矢量可以判断位错的类型;②柏氏矢量的守恒性,即柏氏矢量与回路起点及回路途径无关;③位错的柏氏矢量个部分均相同。

刃型位错的柏氏矢量与位错线垂直;螺型平行;混合型呈任意角度。

晶界具有的一些特性:

①晶界的能量较高,具有自发长大和使界面平直化,以减少晶界总面积的趋势;②原子在晶界上的扩散速度高于晶内,熔点较低;③相变时新相优先在晶界出形核;④晶

界处易于发生杂质或溶质原子的富集或偏聚;⑤晶界易于腐蚀和氧化;⑥常温下晶界可以阻止位错的运动,提高材料的强度。

二、纯金属的结晶

重点内容:均匀形核时过冷度与临界晶核半径、临界形核功之间的关系;细化晶粒的方法,铸锭三晶区的形成机制。

基本内容:结晶过程、阻力、动力,过冷度、变质处理的概念。铸锭的缺陷;结晶的热力学条件和结构条件,非均匀形核的临界晶核半径、临界形核功。

超全的金属热处理知识大汇总!

超全的金属热处理知识大汇总!

超全的金属热处理知识大汇总!

总类

1)热处理

采用适当的方式对金属材料或工件(以下简称工件)进行加热、保温和冷却以获得预期的组织结构与性能的工艺。

2)整体热处理

对工件整体进行穿透加热的热处理。

3)化学热处理

将工件置于适当的活性介质中加热、保温,使一种或几种元素渗入其表层,以改变其化学成分、组织和性能的热处理。

4)化合物层

化学热处理、物理气相沉积和化学气相沉积时在工件表面形成的化合物层。

5)扩散层

化学热处理时工件化合物层之下的渗层和化学气相沉积时化合物溶解并进行扩散的内层,统称扩散层。

6)表面热处理

为改变工件表面的组织和性能,仅对其表面进行热处理的工艺。

7)局部热处理

仅对工件的某一部位或几个部位进行热处理的工艺。

8)预备热处理

为调整原始组织,以保证工件最终热处理或(和)切削加工质量,预先进行热处理的工艺。9)真空热处理

在低于1×105 Pa(通常是10-1~10-3 Pa)的环境中加热的热处理工艺。

10)光亮热处理

工件在热处理过程中基本不氧化,表面保持光亮的热处理。

11)磁场热处理

为改善某些铁磁性材料的磁性能而在磁场中进行的热处理。

12)可控气氛热处理

为达到无氧化、无脱碳或按要求增碳,在成分可控的炉气中进行的热处理。

13)保护气氛热处理

在工件表面不氧化的气氛或惰性气体中进行的热处理。

14)离子轰击热处理

在低于1×105Pa(通常是10-1~10-3Pa)的特定气氛中利用工件(阴极)和阳极之间等离子体辉光放电进行的热处理。

15)流态床热处理

工件在由气流和悬浮其中的固体粉粒构成的流态层中进行的热处理。

(完整版)金属热处理知识点

(完整版)金属热处理知识点

1 热处理的目的、分类、条件;

定义:通过加热、保温和冷却的方法,使金属的内部组织结构发生变化,从而获得所要求的性能的一种工艺方法。

目的:1、消除毛坯中的缺陷,改善工艺性能,为切削加工或热处理做组织和性能上的准备。2、提高金属材料的力学性能,充分发挥材料的潜力,节约材料延长零件使用寿命。

分类:

特点:热处理区别于其他加工工艺如铸造、压力加工等的特点是只通过改变工件的组织来改变性能,而不改变其形状。

热处理条件:

(1)有固态相变发生的金属或合金

(2)加热时溶解度有显著变化的合金

热处理过程中四个重要因素:

(1)加热速度V;(2)最高加热温度T;

(3)保温时间h; (4)冷却速度Vt.

2 什么是铁素体、奥氏体、渗碳体?其结构与性能; Ac1、Ar1、Ac3、Ar3、Accm、Arcm临界温度的意义;奥氏体的形成条件;奥氏体界面形核的原因/条件;以共析钢为例,详细分析奥氏体的形成机理;影响奥氏体转变速度的因素;影响奥氏体晶粒长大的因素;

铁素体:碳溶于α-Fe中形成的间隙固溶体,以F或α表示;

结构:体心立方结构;组织:多边形晶粒

性能:铁素体的塑性、韧性很好(δ=30~50%、aKU=160~200J/cm2),但强度、硬度较低(σb=180~280MPa、σs=100~170MPa、硬度为50~80HBS)。其力学性能几乎与纯铁相同。

奥氏体:碳溶于γ-Fe中的间隙固溶体;用A或γ表示

结构:面心立方晶格

性能:奥氏体常存在于727℃以上,是铁碳合金中重要的高温相,强度和硬度不高,但塑性和韧性很好(σb≈400 MPa、δ≈40~50%、硬度为160~200HBS),易锻压成形。钢材热加工都在γ区进行。

金属材料热处理

金属材料热处理

金属材料热处理

金属材料热处理是指通过加热、保温和冷却等一系列工艺操作,改变金属材料

的组织结构和性能,以达到满足特定要求的目的。热处理是金属材料加工过程中非常重要的一环,能够显著提高金属材料的硬度、强度、韧性和耐磨性等性能,同时也能改善其加工性能和使用性能。本文将对金属材料热处理的基本原理、常见方法和应用进行介绍。

一、热处理的基本原理。

金属材料的组织结构和性能与其晶粒大小、晶界分布、相组成等密切相关。在

热处理过程中,通过控制金属材料的加热温度、保温时间和冷却速度等参数,可以改变其晶粒大小和分布,调整相组成,从而达到改善材料性能的目的。常见的热处理工艺包括退火、正火、淬火、回火等,它们分别适用于不同类型的金属材料和不同的性能要求。

二、常见的热处理方法。

1. 退火。

退火是将金属材料加热至一定温度,保持一定时间后,以适当速度冷却到室温

的热处理工艺。退火可以消除材料内部应力,软化材料,改善塑性,提高加工性能。常见的退火工艺包括全退火、球化退火、再结晶退火等。

2. 正火。

正火是将金属材料加热至临界温度以上,然后在空气中冷却的热处理工艺。正

火可以提高材料的硬度和强度,改善耐磨性和耐蚀性。常见的正火工艺包括普通正火、等温正火等。

3. 淬火。

淬火是将金属材料加热至临界温度以上,然后迅速冷却到室温的热处理工艺。淬火可以使材料获得高硬度和高强度,但也容易导致脆性。因此,在淬火后通常需要进行回火处理,以提高材料的韧性。

4. 回火。

回火是将经过淬火处理的金属材料加热至较低的温度,然后保温一定时间后冷却的热处理工艺。回火可以降低材料的硬度和强度,提高其韧性和韧韧性。常见的回火工艺包括低温回火、中温回火、高温回火等。

金属学与热处理知识点总结.

金属学与热处理知识点总结.

金属学与热处理总结

一、金属的晶体结构

重点内容:面心立方、体心立方金属晶体结构的配位数、致密度、原子半径,八面体、四面体间隙个数;晶向指数、晶面指数的标定;柏氏矢量具的特性、晶界具的特性。

基本内容:密排六方金属晶体结构的配位数、致密度、原子半径,密排面上原子的堆垛顺序、晶胞、晶格、金属键的概念。晶体的特征、晶体中的空间点阵。

晶格类型晶胞中的原子

数原子半

配位

致密度

体心立方 2 a

4

38 68%

面心立方 4 a

4

212 74%

密排六方 6 a

2

112 74% 晶格类型fcc(A1) bcc(A2) hcp(A3)

间隙类型正四面

正八面

四面体扁八面体四面体

正八面

间隙个数8 4 12 6 12 6

原子半径

r A

a

4

2a

4

3

2

a

间隙半径

r B ()

4

2

3a

-()42

2

a

-()43

5a

-()43

2a

-()42

6a

-()21

2a

-

晶胞:在晶格中选取一个能够完全反映晶格特征的最小的几何单元,用来分析原子排列的规律性,这个最小的几何单元称为晶胞。

金属键:失去外层价电子的正离子与弥漫其间的自由电子的静电作用而结合起来,这种结合方式称为金属键。

位错:晶体中原子的排列在一定范围内发生有规律错动的一种特殊结构组态。

位错的柏氏矢量具有的一些特性:

①用位错的柏氏矢量可以判断位错的类型;②柏氏矢量的守恒性,即柏氏矢量与回路起点及回路途径无关;③位错的柏氏矢量个部分均相同。

刃型位错的柏氏矢量与位错线垂直;螺型平行;混合型呈任意角度。

晶界具有的一些特性:

①晶界的能量较高,具有自发长大和使界面平直化,以减少晶界总面积的趋势;②原子在晶界上的扩散速度高于晶内,熔点较低;③相变时新相优先在晶界出形核;④晶界处易于发生杂质或溶质原子的富集或偏聚;⑤晶界易于腐蚀和氧化;⑥常温下晶界可以阻止位错的运动,提高材料的强度。

金属学与热处理知识点总结

金属学与热处理知识点总结

金属学与热处理总结

一、金属的晶体结构

重点内容:面心立方、体心立方金属晶体结构的配位数、致密度、原子半径,八面体、四面体间隙个数;晶向指数、晶面指数的标定;柏氏矢量具的特性、晶界具的特性;

基本内容:密排六方金属晶体结构的配位数、致密度、原子半径,密排面上原子的堆垛顺

晶胞:在晶格中选取一个能够完全反映晶格特征的最小的几何单元,用来分析原子排列的规律性,这个最小的几何单元称为晶胞;

金属键:失去外层价电子的正离子与弥漫其间的自由电子的静电作用而结合起来,这种结合方式称为金属键;

位错:晶体中原子的排列在一定范围内发生有规律错动的一种特殊结构组态;

位错的柏氏矢量具有的一些特性:

①用位错的柏氏矢量可以判断位错的类型;②柏氏矢量的守恒性,即柏氏矢量与回路起点及回路途径无关;③位错的柏氏矢量个部分均相同;

刃型位错的柏氏矢量与位错线垂直;螺型平行;混合型呈任意角度;

晶界具有的一些特性:

①晶界的能量较高,具有自发长大和使界面平直化,以减少晶界总面积的趋势;②原子在晶界上的扩散速度高于晶内,熔点较低;③相变时新相优先在晶界出形核;④晶界处易于发生杂质或溶质原子的富集或偏聚;⑤晶界易于腐蚀和氧化;⑥常温下晶界可以阻止位错的运动,提高材料的强度;

二、纯金属的结晶

重点内容:均匀形核时过冷度与临界晶核半径、临界形核功之间的关系;细化晶粒的方法,铸锭三晶区的形成机制;

基本内容:结晶过程、阻力、动力,过冷度、变质处理的概念;铸锭的缺陷;结晶的热力学条件和结构条件,非均匀形核的临界晶核半径、临界形核功;

相起伏:液态金属中,时聚时散,起伏不定,不断变化着的近程规则排列的原子集团; 过冷度:理论结晶温度与实际结晶温度的差称为过冷度;

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 热处理的目的、分类、条件;

定义:通过加热、保温和冷却的方法,使金属的内部组织结构发生变化,从而获得所要求的性能的一种工艺方法。

目的:1、消除毛坯中的缺陷,改善工艺性能,为切削加工或热处理做组织和性能上的准备。2、提高金属材料的力学性能,充分发挥材料的潜力,节约材料延长零件使用寿命。

分类:

特点:热处理区别于其他加工工艺如铸造、压力加工等的特点是只通过改变工件的组织来改变性能,而不改变其形状。

热处理条件:

(1)有固态相变发生的金属或合金

(2)加热时溶解度有显著变化的合金

热处理过程中四个重要因素:

(1)加热速度V;(2)最高加热温度T;

(3)保温时间h; (4)冷却速度Vt.

2 什么是铁素体、奥氏体、渗碳体?其结构与性能; Ac1、Ar1、Ac3、Ar3、Accm、Arcm临界温度的意义;奥氏体的形成条件;奥氏体界面形核的原因/条件;以共析钢为例,详细分析奥氏体的形成机理;影响奥氏体转变速度的因素;影响奥氏体晶粒长大的因素;

铁素体:碳溶于α-Fe中形成的间隙固溶体,以F或α表示;

结构:体心立方结构;组织:多边形晶粒

性能:铁素体的塑性、韧性很好(δ=30~50%、aKU=160~200J/cm2),但强度、硬度较低(σb=180~280MPa、σs=100~170MPa、硬度为50~80HBS)。其力学性能几乎与纯铁相同。

奥氏体:碳溶于γ-Fe中的间隙固溶体;用A或γ表示

结构:面心立方晶格

性能:奥氏体常存在于727℃以上,是铁碳合金中重要的高温相,强度和硬度不高,但塑性和韧性很好(σb≈400 MPa、δ≈40~50%、硬度为160~200HBS),易锻压成形。钢材热加工都在γ区进行。

组织:多边形等轴晶粒,在晶粒内部往往存在孪晶亚结构渗碳体:铁与碳形成的金属化合物,是钢铁中的强化相,高温下可分解,Fe3C →3Fe+C(石墨) 。

结构:复杂斜方

性能:渗碳体中碳的质量分数为6.69%,熔点为1227℃,硬度很高(800HBW),塑性和韧性极低(δ≈0、aKU≈0),脆性大。渗碳体是钢中的主要强化相,其数量、形状、大小及分布状况对钢的性能影响很大。

由于碳在α-Fe中的溶解度很小,因而常温下碳在铁碳合金中主要以Fe3C或石墨的形式存在。

五个重要的成份点: P、S、E、C、F。

四条重要的线: ECF、ES、GS、PSK。

三个重要转变: 包晶转变反应式、共晶转变反应式、共析转变反应式。

两个重要温度: 1148 ℃、727 ℃。

奥氏体

1.奥氏体:碳溶于γ-Fe中的间隙固溶体;用A或γ表示

结构:面心立方晶格

组织:多边形等轴晶粒,在晶粒内部往往存在孪晶亚结构

性能:奥氏体常存在于727℃以上,是铁碳合金中重要的高温相,强度和硬度不高,但塑性和韧性很好(σb≈400 MPa、δ≈40~50%、硬度为160~200HBS),易锻压成形。钢材热加工都在γ区进行。

室温不稳定相

高塑性、低屈服强度(利用奥氏体量改善材料塑性)

顺磁性能(测残余奥氏体和相变点)

线膨胀系数大(应用于仪表元件)

导热性能差(耐热钢)

比容最小(利用残余奥氏体量减少材料淬火变形)

2.Ac1、Ar1、Ac3、Ar3、Accm、Arcm临界温度的意义

Ac1——加热时珠光体向奥氏体转变的开始温度;

Ar1——冷却时奥氏体向珠光体转变的开始温度;

Ac3——加热时先共析铁素体全部转变为奥氏体的终了温度;

Ar3——冷却时奥氏体开始析出先共析铁素体的温度;

Accm--加热时二次渗碳体全部溶入奥氏体的终了温度

Arcm——冷却时奥氏体开始析出二次渗碳体的温度

3.奥氏体的形成条件

过热(T>A1)

4.奥氏体界面形核的原因/条件

(1) 易获得形成A所需浓度起伏,结构起伏和能量起伏.

(2) 在相界面形核使界面能和应变能的增加减少。

△G = -△Gv + △Gs + △Ge

△Gv—体积自由能差,△Gs —表面能,△Ge —弹性应变能

相界面△Gs 、△Ge 较小,更易满足热力学条件△G<0.

5.以共析钢为例,详细分析奥氏体的形成机理

(1)奥氏体的形核

球状珠光体中:优先在F/Fe3C界面形核

片状珠光体中:优先在珠光体团的界面形核,也在F/Fe3C片层界面形核(2)奥氏体的长大

片状珠光体:奥氏体向垂直于片层和平行于片层方向长大.

球状珠光体:奥氏体的长大首先包围渗碳体,把渗碳体和铁素体隔开,然后通

过A/F界面向铁素体一侧推移, A / Fe3C界面向Fe3C一侧推移,使F和Fe3C逐渐消失来实现长大的.

A长大方向基本垂直于片层和平行于片层。A平行于片层长大速度> 垂直于片层长大速度

(3)残余碳化物的溶解

残余碳化物: 当F完全转变为A时,仍有部分Fe3C没有转变为A,称为残余碳化物。

∵①A/F界面向F推移速度> A/Fe3C界面向Fe3C推移速度

②刚形成的A平均含碳量

残余碳化物溶解:

由Fe3C中的C原子向A中扩散和铁原子向贫碳Fe3C扩散, Fe3C向A 晶体点阵改组实现的.

(4)奥氏体的均匀化

奥氏体的不均匀性:即使Fe3C完全溶解转变为奥氏体,碳在奥氏体中的分布仍然不均匀,表现为原Fe3C区域碳浓度高,原F区碳浓度低。

奥氏体的均匀化:随着继续加热或继续保温,以便于碳原子不断扩散,最终使奥氏体中碳浓度均匀一致。

6.影响奥氏体转变速度的因素

温度、成分、原始组织

1、温度的影响

T↗,I ↗,G↗,且I ↗> G↗

各种因素中,T的影响作用最强烈

2、原始组织的影响

片状P转变速度>球状P

薄片较厚片转变快

3、碳含量的影响

C%↗,A形成速度↗

4、合金元素的影响

(1)对A形成速度的影响

改变临界点位置;影响碳在A 中的扩散系数;合金碳化物在A中溶解难易程度的牵制;对原始组织的影响

(2)对A均匀化的影响

合金钢需要更长均匀化时间

7.影响奥氏体晶粒长大的因素

(1)加热温度和保温时间

随加热温度升高,奥氏体晶粒长大速度成指数关系迅速增大。

加热温度升高时,保温时间应相应缩短,这样才能获得细小的奥氏体晶粒。

(2)加热速度:

加热速度快,奥氏体实际形成温度高,形核率增高,由于时间短奥氏体晶粒来不及长大,可获得细小的起始晶粒度

(3)钢的碳含量的影响

碳在固溶于奥氏体的情况下,由于提高了铁的自扩散系数,将促进晶界的迁移,使奥氏体晶粒长大。共析碳钢最容易长大。

当碳以未溶二次渗碳体形式存在时,由于其阻碍晶界迁移,所以将阻碍奥

相关文档
最新文档