金属热处理知识点概括
金属学及热处理要点总结
第一章金属的晶体结构决定材料性能的三个因素:化学成分、内部结构、组织状态金属:具有正的电阻温度系数的物质。
金属与非金属的主要区别是金属具有正的电阻温度系数和良好的导电能力。
金属键:处以聚集状态的金属原子,全部或大部分贡献出他们的价电子成为自由电子,为整个原子集体所共有,这些自由电子与所有自由电子一起在所有原子核周围按量子力学规律运动着,贡献出价电子的原子则变为正离子,沉浸在电子云中,依靠运动于其间的公有化的自由电子的静电作用结合起来,这种结合方式叫做金属键。
双原子模型:晶体:原子在三维空间做有规则周期性重复排列的物质叫做晶体。
晶体的特性:1、各向异性2、具有一定的熔点。
空间点阵:为了清晰地描述原子在三维空间排列的规律性,常将构成晶体的实际质点忽略,而将其抽象为纯粹的几何点,称为阵点或节点,这些阵点可以是原子或分子的中心,也可以是彼此等同的原子团或分子团的中心,各个阵点的周围环境都相同。
做许多平行的直线将这些阵点连接起来形成一个三维空间格架,叫做空间点阵。
晶胞:从点阵中选取的一个能够完全反映晶格特征的最小几何单元。
晶格常数:晶胞的棱边长度称为晶格常数,在X、Y、Z轴上分别以a、b、c表示。
致密度:表示晶胞中原子排列的紧密程度,可用原子所占体积与晶胞体积之比K表示。
三种典型的晶体结构:体心立方晶格、面心立方晶格、密排六方晶格。
体心立方晶格:α-Fe、Cr、W、V、Nb、Mo 配位数8 致密度0.68 滑移系:{110}*<111> 共12 个堆垛顺序ABAB 面心立方晶格:γ-Fe、Cu、Ni、Al、Au、Ag 配位数12 致密度0.74 滑移系:{111}*<110> 共12 个堆垛顺序ABCABC 密排六方晶格:Zn、Mg、Be、Cd 配位数12 致密度0.74 滑移系:{0001}*<1121> 堆垛顺序ABAB晶向族指数包含的晶向指数:一、写出<u v w>的排列二、给其中每个晶向加一个负号,分三次加三、给其中每个晶向加两个负号,分三次加四、给每个晶向加三个负号晶面族指数包含的晶面指数:(如果h k l 中有一个是零就写出排列各加一个负号,如果有两个零就只写出排列就行。
(完整版)金属热处理知识点概括
(一)淬火--将钢加热到Ac3或Ac1以上,保温一段时间,使之奥氏体化后,以大于临界冷速的速度冷却的一种热处理工艺。
淬火目的:提高强度、硬度和耐磨性。
结构钢通过淬火和高温回火后,可以获得较好的强度和塑韧性的配合;弹簧钢通过淬火和中温回火后,可以获得很高的弹性极限;工具钢、轴承钢通过淬火和低温回火后,可以获得高硬度和高耐磨性;对某些特殊合金淬火还会显著提高某些物理性能(如高的铁磁性、热弹性即形状记忆特性等)。
表面淬火--表面淬火是将钢件的表面层淬透到一定的深度,而心部分仍保持未淬火状态的一种局部淬火的方法。
分类——感应加热表面淬火、火焰加热表面淬火、电接触加热表面淬火、电解液加热表面淬火、激光加热表面淬火、电子束加热表面淬火、离子束加热表面淬火、盐浴加热表面淬火、红外线聚焦加热表面淬火、高频脉冲电流感应加热表面淬火和太阳能加热表面淬火。
单液淬火——将奥氏体化后的钢件投入一种淬火介质中,使之连续冷却至室温(图9-1a线)。
淬火介质可以是水、油、空气(静止空气或风)或喷雾等。
双液淬火——双液淬火方法是将奥氏体化后的钢件先投人水中快冷至接近MS点,然后立即转移至油中较慢冷却(图9-1b线)。
分级淬火——将奥氏体化后的钢件先投入温度约为MS点的熔盐或熔碱中等温保持一定时间,待钢件内外温度一致后再移置于空气或油中冷却,这就是分级淬火等温淬火--奥氏体化后淬入温度稍高于Ms点的冷却介质中等温保持使钢发生下贝氏体相变的淬火硬化热处理工艺。
等温淬火与分级淬火的区别是:分级淬火的最后组织中没有贝氏体而等温淬火组织中有贝氏体。
根据等温温度不同,等温淬火得到的组织是下贝氏体、下贝氏体+马氏体以及残余奥氏体等混合组织。
(二)回火--将淬火后的钢/铁,在AC1以下加热、保温后冷却下来的金属热处理工艺。
回火的目的:为了稳定组织,减小或消除淬火应力,提高钢的塑性和韧性,获得强度、硬度和塑性、韧性的适当配合,以满足不同工件的性能要求。
金属热处理基本知识
金属热处理基本知识金属热处理是一种通过加热和冷却来改变金属结构和性能的工艺,广泛应用于工业制造过程中。
本文将介绍金属热处理的基本知识,包括常见的热处理方法、热处理的目的以及热处理对金属材料性能的影响。
一、常见的热处理方法1. 固溶处理固溶处理是一种通过加热金属至其固溶温度,然后迅速冷却以增加金属的硬度和强度的方法。
常见的固溶处理方法包括淬火和时效处理。
淬火是将金属加热至固溶温度,然后迅速冷却以形成固溶体,从而提高金属的硬度和强度。
时效处理是在淬火后,将金属加热至适当温度保持一段时间,以达到固溶体中的晶粒溶解和析出硬化相的目的,提高金属的综合性能。
2. 马氏体转变马氏体转变是一种通过加热金属至马氏体起始温度,然后迅速冷却以在金属中形成马氏体组织的方法。
马氏体转变可以显著提高金属的强度和硬度,同时还可以改善其耐磨性能和韧性。
常见的马氏体转变方法包括淬火和回火。
淬火是将金属加热至马氏体起始温度,然后迅速冷却以形成马氏体,进而提高金属的硬度和强度。
回火是在淬火后,将金属加热至适当温度保持一段时间,使马氏体转变为较为稳定的组织,从而提高金属的韧性。
3. 回火处理回火处理是一种通过加热金属至适当温度,然后保温一段时间以改善金属的组织和性能的方法。
回火处理可以降低金属的硬度和强度,提高其韧性和延展性。
不同的回火处理参数可以得到不同的金属组织和性能。
常见的回火处理方法包括低温回火、中温回火和高温回火,分别适用于不同的金属材料和应用需求。
二、热处理的目的金属热处理的主要目的是改善金属材料的组织和性能,以满足特定的工艺和使用要求。
具体来说,热处理可以实现以下几个方面的目标:1. 提高金属的硬度和强度:通过热处理,可以使金属中的晶体细化,晶体界面增多,从而提高金属的硬度和强度。
2. 改善金属的韧性和延展性:热处理可以消除金属中的内应力和缺陷,减少晶界的孔洞,从而提高金属的韧性和延展性。
3. 提高金属的耐磨性和耐蚀性:通过调整金属的组织和相态,热处理可以增加金属的耐磨性和耐蚀性,提高其在恶劣环境下的使用寿命。
金属热处理基础知识
金属热处理基础知识金属热处理是指通过加热和冷却的方式,以改变金属的结构和性能。
它是制造工业中非常重要的一项技术,涉及到金属材料的强度、硬度、韧性、耐磨性等方面的改善。
本文介绍金属热处理的基本原理、常用方法和应用。
1. 基本原理金属热处理的基本原理是通过对金属材料进行加热和冷却过程中的相变和组织改变来改善其性能。
加热过程中,金属晶格结构中的原子会发生位移和重新排列,形成新的相态和组织结构。
而冷却过程中,原子又会重新排列,使金属材料的结构趋于稳定。
这些相变和组织改变将直接影响金属的物理性能和力学性能。
2. 常用方法金属热处理的常用方法包括退火、淬火、回火、正火、表面处理等。
- 退火:通过加热和缓慢冷却的方法来消除金属材料内部的应力和硬度,使其结构更加均匀,提高塑性和韧性。
- 淬火:通过快速冷却的方法,使金属材料产生硬度较高的组织结构,提高其强度和硬度。
- 回火:在淬火后,将金属材料重新加热到一定温度,然后缓慢冷却,以减轻淬火造成的内部应力,提高金属的韧性和延展性。
- 正火:将金属材料加热到一定温度,然后在空气或其他介质中冷却,以改善金属的力学性能和耐磨性。
- 表面处理:金属热处理还可以通过表面处理方法,如渗碳、氮化、氧化等,来改善金属材料的表面硬度和耐磨性。
3. 应用领域金属热处理广泛应用于制造业的各个领域,其中最常见的应用包括汽车制造、机械工业、航空航天、电子电器等。
- 汽车制造:金属热处理在汽车制造中起到关键的作用。
通过对零部件进行热处理,可以提高其强度和硬度,增加耐磨性和耐久性,从而提高整车的可靠性和安全性。
- 机械工业:金属热处理在机械工业中也是不可或缺的。
通过对机械零部件进行热处理,可以提高其抗疲劳性能、耐腐蚀性能和耐磨性能,增加其使用寿命。
- 航空航天:航空航天领域对材料的性能要求极高,金属热处理可以使金属材料具有更高的强度、硬度和耐高温性能,满足航空航天工业对材料性能的要求。
- 电子电器:电子电器领域对金属材料的功能性要求也很高。
金属热处理重点归纳
一名词解释1. 热处理:将钢在固态下进行加热、保温和冷却三个基本过程,以改变钢的内部组织结构,从而获得所需性能的一种加工工艺(P69)2. 同素异构转变:把同一元素或同一成分合金,在固态下随温度变化而具有不同晶体结构形态的转变3 . 过冷度:理论结晶温度与实际结晶温度的差。
(P11)4 . 变质处理:在液态金属结晶前,加入一些变质剂或形核剂作为现成晶核或用以抑制长大速度以细化晶粒,这种处理方法称为变质处理(P14)5. 淬硬性:指钢在淬火时硬化能力,用淬成马氏体可能得到的最高硬度表示。
(P97)6. 晶內偏析:由于非平衡结晶造成晶体内化学成分不均匀的现象(P28)7 . 淬火:指将钢加热到临界温度Ac3(亚共析钢)或Ac1(过共析钢)以上,保温并随之以大于临界冷却速度冷却,以得到介稳状态的马氏体或下贝氏体组织的热处理方式。
(P90)8 . 比重偏析: 当合金组成相与合金溶液之间密度相差较大时,初生相便会在液体中上浮或者下沉而造成的偏析。
(P32)9 .冷加工:指材料在再结晶温度以下所进行的塑性变形加工。
(P67)10 . 配位数:晶体中任意一个原子周围最近邻且等距的原子数目(P6)11 . 正火:指将材料加热到临界温度以上的适当温度,保温适当时间后以较快冷却速度冷却(空冷),以获得珠光体类型组织的热处理工艺。
(P85)12 . 致密度:晶体中原子所占体积与晶体体积的比值(P6)13.冷处理:指把淬冷至室温的钢继续冷却到一定低的温度,保持一段时间,使残余奥氏体在继续冷却的过程中转变为马氏体的处理方式。
(P94)14.回火:指将淬火钢加热到Ac1以下的某一温度保温后进行冷却的热处理工艺。
(P100)15. 加工硬化:随着变形量的增大,由于晶粒破碎和位错密度增加,晶体的塑性变形抗力迅速增大,强度和硬度明显升高,塑性和韧性下降的现象。
(P62)16 . 调制处理:淬火加高温回火相结合的热处理工艺(P102)17. 热加工:指在材料在结晶温度以上所进行的塑性变形加工工艺。
金属材料热处理的重要知识点
一:珠光体类型组织有哪几种?他们形成条件、组织形态和性能方面有何不同?答:珠光体分为片状主珠光体和粒状珠光体两种组织形态,前者渗碳体呈片状,后者呈粒状。
它们的形成条件,组织和性能不同。
1、片状珠光体的形成,同其他相变一样,也是通过形核好和长大两个基本过程进行的。
由Fe-Fe3C相图可知,Wc=0.77%的奥氏体在近于平衡的缓慢冷却条件下形成的珠光体是由渗碳体和铁素体组成的片层相间的组织。
在较高奥氏体化温度下形成的均匀奥氏体于A1-500℃之间温度等温时也能形成片状珠光体。
根据片间距的大小,可将珠光体分为三类。
在A1-650℃较高温度范围内形成的珠光体比较粗,在片间距为0.6-1.0um,称为珠光体,通常在光学显微镜下极易分辨出铁素体和渗碳体层片状组织形态。
在650-600℃温度范围内形成的珠光体,其片间距较细,约为0.25-0.3um,只有在高倍光学显微镜下才能分辨出铁素体和渗碳体的片层形态,这种细片状珠光体有称作索氏体。
在600-550℃更低温度下形成的珠光体,其片间距极细,只有0.1-0.15um。
在光学显微镜下无法分辨其层片特征而呈黑色,只有在电子显微镜下才能区分出来。
这种极细的珠光体又称为托氏体。
片状珠光体的力学性能主要取决于珠光体的片间距。
共析钢珠光体的硬度和断裂强度均随片间距的缩小而增大。
片状珠光体的塑性也随片间距的减小而增大。
2、粒状珠光体组织是渗碳体呈颗粒状分布在连续的铁素体基体中。
粒状珠光体组织即可以有过冷奥氏体直接分解而成,也可由片状珠光体球化而成,还可以由淬火组织回火形成。
与片状珠光体相比,粒状珠光体的硬度和强度较低,塑性和韧性较好。
二:贝氏体类型组织有哪几种?它们在形成条件、组织形态和性能方面有何不同?答:在贝氏体区较高温度范围内(600-350℃)形成的贝氏体叫上贝氏体,在较低温度范围内(350℃-Ma)形成的贝氏体叫下贝氏体。
上贝氏体形成温度较高,铁素体晶粒和碳化物颗粒较粗大,碳化物呈短杆状平行分布在铁素体板条之间,铁素体和碳化物分布有明显的方向性。
金属学与热处理期末复习总结
一、名词解释:1热强性:在室温下,钢的力学性能与加载时间无关,但在高温下钢的强度及变形量不但与时间有关,而且与温度有关,这就是耐热钢所谓的热强性;2形变热处理:是将塑性变形同热处理有机结合在一起,获得形变强化和相变强化综合效果的工艺方法;3热硬性:热硬性是指钢在较高温度下,仍能保持较高硬度的性能;4固溶处理:指将合金加热到高温单相区恒温保持,使过剩相充分溶解到固溶体中后快速冷却,以得到的热处理工艺;5回火脆性:是指回火后出现韧性下降的;6二次硬化:某些铁碳合金如高速钢须经多次回火后,才进一步提高其硬度;7回火稳定性:在时,抵抗强度、硬度下降的能力称为回火稳定性;8淬硬性:指钢在淬火时硬化能力,用淬成马氏体可能得到的最高硬度表示;9水韧处理:将钢加热至奥氏体区温度1050-1100℃,视钢中碳化物的细小或粗大而定并保温一段时间每25mm壁厚保温1h,使铸态组织中的碳化物基本上都固溶到奥氏体中,然后在水中进行淬火,从而得到单一的奥氏体组织;10分级淬火:将奥氏体状态的工件首先淬入温度略高于钢的Ms点的盐浴或碱浴炉中保温,当工件内外温度均匀后,再从浴炉中取出空冷至室温,完成马氏体转变;11临界淬火冷却速度:是过冷奥氏体不发生分解直接得到全部马氏体含残留奥氏体的最低冷却速度;12季裂:它指的是经冷变形后的金属内有拉伸应力存在又处于特定环境中所发生的断裂; 13奥氏体化:将钢加热至临界点以上使形成奥氏体的金属热处理过程;14本质晶粒度:本质晶粒度用于表征钢加热时晶粒长大的倾向;二、简答:1 何为奥氏体化简述共析钢的奥氏体化过程;答:1、将钢加热至临界点以上使形成奥氏体的金属热处理过程;2、它是一种扩散性相变,转变过程分为四个阶段;1形核;将珠光体加热到Ac1以上,在铁素体和渗碳体的相界面上奥氏体优先形核;珠光体群边界也可形核;在快速加热时,由于过热度大,铁素体亚边界也能形核;2长大;奥氏体晶粒长大是通过渗碳体的溶解、碳在奥氏体和铁素体中的扩散和铁素体向奥氏体转变;为了相平衡,奥氏体的两个相界面自然地向铁素体和渗碳体两个方向推移,奥氏体便不断长大;3残余渗碳体的溶解;铁素体消失后,随着保温时间的延长,通过碳原子扩散,残余渗碳体逐渐溶入奥氏体;4奥氏体的均匀化;残余渗碳体完全溶解后,奥氏体中碳浓度仍是不均匀的;只有经长时间的保温或继续加热,让碳原子进行充分地扩散才能得到成分均匀的奥氏体;2 奥氏体晶粒大小对冷却转变后钢的组织和性能有何影响简述影响奥氏体晶粒大小的因素;答:1、奥氏体晶粒度大小对钢冷却后的组织和性能有很大影响;奥氏体晶粒度越细小,冷却后的组织转变产物也越细小,其强度也越高,此外塑性,韧性也较好;但奥氏体化温度过高或在高温下保持时间过长会显着降低钢的冲击韧度、减少裂纹扩展功和提高脆性转变温度;2、奥氏体晶粒大小是影响使用性能的重要指标,主要有下列因素影响奥氏体晶粒大小;1加热温度和保温时间的影响加热温度越高,保温时间越长,奥氏体晶粒越粗大;2加热速度的影响加热速度越快,奥氏体的实际形成温度越高,形核率和长大速度越大,则奥氏体的起始晶粒越细小,但快速加热时,保温时间不能过长,否则晶粒反而更加粗大;3钢的化学成分的影响在一定含碳量范围内,随着奥氏体中含碳量的增加,碳在奥氏体中的扩散速度及铁的自扩散速度增大,晶粒长大倾向增加,但当含碳量超过一定限度后,碳能以未溶碳化物的形式存在,阻碍奥氏体晶粒长大,使奥氏体晶粒长大倾向减小;4钢的原始组织的影响钢的原始组织越细,碳化物弥散速度越大,奥氏体的起始晶粒越细小,相同的加热条件下奥氏体晶粒越细小;3 简述影响过冷奥氏体等温转变的因素;答:奥氏体成分含碳量、合金元素、奥氏体状态钢的原始组织、奥氏体化的温度和保温时间及应力和塑性变形;1、含碳量的影响亚共析钢随奥氏体含碳量增加,使C曲线右移,Ms和Mf点降低;过共析钢随含碳量的增加,使C曲线向左移,Ms和Mf点降低;2、合金元素的影响除Co、AlWAl>%外,所有合金元素的溶解到奥氏体中后,都增大过冷奥氏体的稳定性,使C曲线右移,Ms和Mf点降低;3、奥氏体状态的影响奥氏体化温度越低,保温时间越短,奥氏体晶粒越细小,C曲线左移;4、应力和塑性变形的影响在奥氏体状态下承受拉应力会加速奥氏体的等温转变,承受压应力则会阻碍这种转变;对奥氏体进行塑性变形有加速奥氏体转变的作用,C曲线左移;4简述片状珠光体和粒状珠光体的组织和性能;答:1、片状珠光体组织:WC=%的奥氏体在近于平衡的缓慢冷却条件下形成的珠光体是由铁素体和渗碳体组成的片层相间的组织;性能:主要决定于片间距;片间距越小,钢的断裂强度和硬度均随片间距的缩小而增大;随片间距减小,钢的塑性显着增加;片间距减小,塑性变形抗力增大,故强度;硬度提高;2、粒状珠光体组织:渗碳体呈颗粒状分布在连续的铁素体基体中的组织性能:主要取决于渗碳体颗粒的大小,形态与分布;钢的成分一定时,渗碳体颗粒越细,相界面越多,则刚的硬度和强度越高;碳化物越接近等轴状、分布越均匀,则钢的韧性越好;粒状珠光体的硬度和强度较低,塑性和韧性较好,冷变形性能,可加工性能以及淬火工艺性能都比珠光体好;5何为马氏体简述马氏体的晶体结构、组织形态、性能及转变特点;答:是碳在α-Fe中过饱和的间隙固溶体;2、马氏体的晶体结构在钢中有两种:体心正方结构WC<%,c/a=1;体心正方结构WC>%,c/a>1;组织形态:板条马氏体、片状马氏体200℃以上,WC<%,完全形成板条马氏体,因其体内含有大量位错又称位错马氏体;特点强而韧%<WC<1%,为板条马氏体和片状马氏体的混合物;200℃以下,WC>%,完全形成片状马氏体,因其亚结构主要为孪晶又称孪晶马氏体;特点硬而脆4、1马氏体的显着特点是高硬度和高强度,原因包括固溶强化、相变强化、时效强化、原始奥氏体晶粒大小及板条马氏体束大小;马氏体的硬度主要取决于马氏体的含碳量;合金元素对马氏体的硬度影响不大,但可以提高其强度;2马氏体的塑性和韧性主要取决于马氏体的亚结构;5、1无扩散性;奥氏体成分保留在马氏体中2马氏体转变的切变共格性3马氏体转变具有特定的惯习面和位向关系4马氏体转变是在一定温度范围内进行的6 简述淬火钢的回火转变、组织及淬火钢在回火时的性能变化;答:1、钢的回火转变包括五个方面180℃-100℃以下温度回火,马氏体中碳的偏聚,组织是马氏体马氏体:碳溶于α-Fe的过饱和的固溶体280℃-100℃回火,马氏体开始分解,组织是回火马氏体回火马氏体:低碳马氏体和ε碳化物组成的混合物,称为回火马氏体;3200℃-300℃回火,残余奥氏体开始转变,组织是回火马氏体4200℃-400℃回火,碳化物的转变为Fe3C,组织是回火托氏体回火托氏体:由针状α相和无共格联系的细粒状渗碳体组成的机械混合物;5500℃-650℃渗碳体的聚集长大和α相回复或再结晶,组织是回火索氏体回火索氏体:回复或再结晶的铁素体和粗粒状渗碳体的机械混合物;2、回火时力学性能变化总的趋势是随回火温度提高,钢的抗拉强度、屈服强度和硬度下降,塑性、韧性提高;7 简述回火脆性的分类、特点及如何消除;答:1分类:第一类回火脆性低温回火脆性250℃-400℃和第二类回火脆性高温回火脆性450℃-650℃2特点第一类回火脆性:1具有不可逆性第二类回火脆性:1具有可逆性;2与后的有关3与组织状态无关,但以M的脆化倾向3如何消除第一类回火脆性:无法消除,合金元素会提高脆化温度;第二类回火脆性:1选择含杂质元素极少的优质钢材以及采用形变热处理;2加入适量的Mo、W等合金元素阻碍杂质元素在晶界上便聚;3对亚共析钢在A1~A3临界区可采用4采用高温回火后快冷的方法可抑制回火脆性,但不适用于对回火脆性敏感的较大工件;8 叙述淬透性和淬硬性及淬透性和实际条件下淬透层深度的区别;答:1、淬透性:是指奥氏体化后的钢在淬火时获得马氏体的能力,它反映过冷奥氏体的稳定性,与钢的临界冷却速度有关;临界冷却速度越慢,淬透性越大;其大小以钢在一定条件下淬火获得的淬透层深度和硬度分布来表示;2、淬硬性:是指奥氏体化后的钢在淬火时硬化的能力,主要取决于马氏体中的含碳量,含碳量越高,淬硬性越大;用淬火马氏体可能达到的最高硬度来表示;3、实际条件下的淬透层深度:是指具体条件下测定的半马氏体区至表面的深度;4、区别:1同一材料的淬透层深度与工件尺寸、冷却介质有关.工件尺寸小、介质冷却能力强,淬透层深;2淬透性与工件尺寸、冷却介质无关,它是钢的一种属性;相同奥氏体化温度下的同一钢种,其淬透性是确定不不变的;9 何谓淬火热应力、组织应力影响因素都是什么简述热应力和组织应力造成的变形规律;答:1、淬火热应力:工件在加热或冷却时由于内外的温度差异导致热涨或冷缩的不一致所引起的内应力;2、组织应力:工件在冷却过程中,由于内外温差造成组织转变不同时,引起内外比体积的不同变化而引起的内应力;3、影响因素:1含碳量的影响:随着含碳量的增加热应力作用逐渐减弱组织应力逐渐增强;2合金元素的影响:加入合金元素热应力和组织应力增加;3工件尺寸的影响:a.在完全淬透的情况下随着工件直径的增大淬火后残余应力将由组织应力性逐渐变成热应力性;b.在未完全淬透的情况下所产生的应力特性是与热应力相似的,工件直径越大淬硬层越薄,热应力特性越明显;4淬火介质和冷却方法的影响:如果在高于Ms点以上的温度区域冷却速度快而在温度低于Ms点区域冷却速度慢则为热应力性,反之则为组织应力型;4、变形规律:1热应力引起的变形①沿最大尺寸方向收缩,沿最小尺寸方向伸长;②平面凸起,直角变钝,趋于球形;③外径胀大,内径缩小;2组织应力引起变形与热应力相反;10 何谓回火叙述回火工艺的分类,得到的组织,性能特点及应用;答:1、回火:回火是指将淬火钢加热到A1以下的某温度保温后冷却的工艺;2、分类: 低温回火:1得到回火马氏体;2在保留高硬度、高强度及良好的耐磨性的同时又适当提高了韧性,降低内应力;3适用于刀具、量具、滚动轴承、渗碳件及高频表面淬火件;中温回火:1得到回火托氏体;2基本消除了淬火应力,具有高的弹性极限,较高的强度和硬度,良好的塑性和韧性;3适用于弹簧热处理及热锻模具;高温回火:1得到回火索氏体;2获得良好的综合力学性能,即在保持较高的强度同时,具有良好的塑性和韧性;3广泛用于各种结构件如轴、齿轮等热处理;也可作为要求较高精密件、量具等预备热处理;11 简述化学热处理的一般过程;渗碳的工艺、渗层深度、渗碳后表层含碳量、用钢、热处理、组织和应用;答:1、过程:1介质渗剂的分解2工件表面的吸收3原子向内部扩散;2、渗碳工艺:气体渗碳法,固体渗碳,离子渗碳3、渗碳层厚度由表面到过度层一半处的厚度:一般为-2mm;4、渗碳层表面含碳量:以%%为最好;5、用刚:为含的低碳钢和低碳合金钢;碳高则心部韧性降低;6、热处理:常用方法是渗碳缓冷后,重新加热到Ac1+30-50℃淬火分三类:遇冷直接淬火、一次淬火、二次淬火+低温回火;7、组织:表层:高碳M回+颗粒状碳化物+A少量心部:低碳M回+铁素体淬透时、铁素体+索氏体8、应用:拖拉机履带板,坦克履带板。
金属材料与热处理基本知识
一、金属材料的力学性能金属材料的力学性能是指金属材料在外力作用下所反映出来的性能。
金属常用的力学性能有:1.弹性金属材料在受到外力作用时发生变形,外力消除后其变形逐渐消失的性质称为弹性。
①刚性是指材料或构件在外力作用下抵抗弹性变形的能力。
②刚度:k=F/y2.塑性金属材料在受到外力作用时,产生显著的变形而不断裂的性能称为塑性。
①伸长率δ②断面收缩率ψ3.强度金属材料在外力作用下,抵抗变形和破坏的能力称为强度。
由于各种机器零件或构件因载荷作用形式和作用性质不同,金属材料所表现出的强度大小也不同。
金属材料的强度指标:(1)屈服强度σs 在拉伸试验中,载荷不增加而试样仍能继续伸长时的应力称为屈服强度。
(2)抗拉强度σb 材料在拉断前所能承受的最大应力称为抗拉强度。
(3)疲劳强度σ-1 材料试样在疲劳试验过程中,在承受无数次(或给定次)对称循环应力作用仍不断裂的最大应力称为疲劳强度。
4.硬度金属表面抵抗硬物压入的能力称为硬度。
最常用的硬度指标:(1)布氏硬度HBS(HBW) 布氏硬度是使用一定直径的球体(淬火钢球或硬质合金球),以规定的试验力压入试样表面,经规定保持时间后卸除试验力,然后用测量表面压痕直径来计算硬度。
使用淬火钢球作硬度试验得到的硬度用HBS表示;使用硬质合金球作硬度试验得到的硬度用HBW表示。
(2)洛氏硬度HRC 洛氏硬度C标尺试验采用120°金刚石圆锥体加1471N总试验力测量的硬度值。
5.冲击韧性金属材料抵抗冲击载荷而不破坏的能力称为冲击韧性,其大小用冲击韧度αK表示。
二、钢的分类、用途与牌号(一)钢的分类1.按是否特意加入合金元素分类:(1)碳素钢不含有特意加入合金元素的钢,称为碳素钢。
(2)合金钢在碳素钢的基础上,为改善钢的性能,在冶炼时有目的地加入一种或数种合金元素的钢,称为合金钢。
2.按含碳量分类(1)低碳钢C ≤0.25%;(2)中碳钢0.25%<C <0.60%;(3)高碳钢C ≥0.60%;3.按质量分类(1)普通钢S ≤0.050%,P ≤0.045%(2)优质钢S ≤0.035%,P ≤0.035%(3)高级优质钢S ≤0.025%,P ≤0.025%4.按合金元素总量分类(1)低合金钢合金元素总含量<5%(2)中合金钢合金元素总含量5%~10%(3)高合金钢合金元素总含量>10%5.按用途分类(1)结构钢主要用于制造各种机械零件和工程构件的钢。
金属热处理基础入门必须了解的二十个知识点
金属热处理基础入门必须了解的二十个知识点1、什么是热处理将固态金属或合金采取适当方式进行加热,保温一定的时间,以一定的冷却速度冷却以改变其组织,从而获得所需性能的一种工艺方法。
2、热处理的目的是什么通过适当的热处理工艺改变钢的内部组织结构,来控制相变过程中组织转变的程度和转变产物的形态,从而改善钢的性能。
3、热处理的条件是什么必须有固态相变转变的合金才可以进行热处理。
4、热处理的工艺过程是什么(1)加热:临界点+△T值(2)保温(3)冷却:临界点- △T值一定冷却速度5、主要参数有哪些(1)加热温度T(2)保温时间 t(3)冷却速度V,冷却介质决定冷却速度,如:水、盐水、碱水、空气6、按处理阶段及目的可分为哪几种(1)预处理目的是消除偏析、内应力,为最终热处理或后续的加工获得平衡组织。
(2)最终处理作为工件处理的最后工序,获得最终组织。
7、按热处理工艺参数可分为哪几种(1)普通热处理这是生产中最常用的热处理工艺,如退火、正火、淬火、回火等。
这类的热处理一般不会额外的加入其他元素,主要是通过自身组织转变来得到所需要的性能。
(2)化学热处理这类在热处理在齿轮、轴等耐磨件上会经常用到。
工件进行化学热处理时,会在表面一层渗入其他的元素,而对心部的成分不会产生什么影响。
一般渗入什么元素,我们就称为渗×处理,如表面渗C、渗N,C、N共渗等。
(3)表面热处理综合了上述两类热处理的特点,即热处理时不加入其他元素,而且只是针对表面进行的热处理,不影响心部的组织,如表面淬火,但其要求工件的含碳量较高。
8、什么是退火退火是将金属和合金加热到适当温度,保持一定时间,然后缓慢冷却的热处理工艺。
退火后组织亚共析钢是铁素体加片状珠光体;共析钢或过共析钢则是粒状珠光体。
总之退火组织是接近平衡状态的组织。
9、退火的目的是什么(1)降低钢的硬度,提高塑性,以利于切削加工及冷变形加工。
(2)细化晶粒,消除因铸、锻、焊引起的组织缺陷,均匀钢的组织和成分,改善钢的性能或为以后的热处理作组织准备。
金属热处理知识点讲诉
家具陈设设计知识点家具陈设设计是家居装饰中非常重要的一环,它直接关系到空间布局的合理性、功能性和美观性。
本文将介绍一些家具陈设设计的知识点,帮助您打造舒适、实用又具有个性化特色的家居空间。
1. 空间规划与布局家具陈设设计的首要任务是进行空间规划和布局。
在设计之前,需要充分了解家居空间的具体尺寸、功能需求以及家居风格。
根据这些信息,可以合理规划家具的位置和大小,确保空间的利用率最大化。
同时也要考虑适当的通道和活动空间,保证舒适的行走和使用体验。
2. 家具选择与搭配选择合适的家具是家具陈设设计中至关重要的一环。
首先要考虑家具的功能需求,例如客厅需要有舒适的沙发和储物柜,卧室需要有柔软的床垫和衣柜等。
其次要根据整体风格和色彩搭配的原则,选择与之相适应的家具。
对于小空间,可以选择多功能家具来节省空间。
3. 空间层次与错落家具陈设设计中,通过合理的空间层次和错落安排,可以增加空间的变化和趣味性。
例如,在客厅中可以设置一个装饰架,将书籍、摆件等放置其中,既起到装饰作用,又增加了空间层次感。
同时,也可以利用空间的错落安排,让家具的摆放显得更加有序和美观。
4. 色彩与材质搭配家具的色彩和材质搭配对于整体效果有着重要的影响。
在选择色彩时,可以根据整体风格和个人喜好来决定,但要注意色彩之间的搭配和协调。
对于材质的选择也要考虑到实用性和美观性,不同材质的家具可以带来不同的触感和质感。
5. 灯光与空间氛围合理的灯光设计可以改变空间的氛围和效果。
通过选择不同类型的灯具,如吊灯、壁灯和台灯等,可以有针对性地调整空间的光线亮度和方向,达到突出重点、烘托氛围的效果。
此外,还可以运用镜面反射和投光等技巧,扩大空间的视觉感受。
6. 个性化装饰与陈设家具陈设的最后一步是进行个性化的装饰和陈设。
可以根据自己的兴趣爱好和家庭特点,选择画作、照片、植物等进行装饰,打造独特的家居风格。
同时也要注意不要过度装饰,保持空间的整洁和舒适度。
总结:家具陈设设计是家居装饰的重要环节,通过合理的空间规划与布局、家具选择与搭配、空间层次与错落、色彩与材质搭配、灯光与空间氛围以及个性化装饰与陈设等知识点的运用,可以打造出兼具实用性和美观性的家居空间。
金属学与热处理知识点总结
金属学与热处理总结一、金属的晶体结构重点内容:面心立方、体心立方金属晶体结构的配位数、致密度、原子半径,八面体、四面体间隙个数;晶向指数、晶面指数的标定;柏氏矢量具的特性、晶界具的特性。
基本内容:密排六方金属晶体结构的配位数、致密度、原子半径,密排面上原子的堆垛顺序、晶胞:在晶格中选取一个能够完全反映晶格特征的最小的几何单元,用来分析原子排列的规律性,这个最小的几何单元称为晶胞。
金属键:失去外层价电子的正离子与弥漫其间的自由电子的静电作用而结合起来,这种结合方式称为金属键。
位错:晶体中原子的排列在一定范围内发生有规律错动的一种特殊结构组态。
位错的柏氏矢量具有的一些特性:①用位错的柏氏矢量可以判断位错的类型;②柏氏矢量的守恒性,即柏氏矢量与回路起点及回路途径无关;③位错的柏氏矢量个部分均相同。
刃型位错的柏氏矢量与位错线垂直;螺型平行;混合型呈任意角度。
晶界具有的一些特性:①晶界的能量较高,具有自发长大和使界面平直化,以减少晶界总面积的趋势;②原子在晶界上的扩散速度高于晶内,熔点较低;③相变时新相优先在晶界出形核;④晶界处易于发生杂质或溶质原子的富集或偏聚;⑤晶界易于腐蚀和氧化;⑥常温下晶界可以阻止位错的运动,提高材料的强度.二、纯金属的结晶重点内容:均匀形核时过冷度与临界晶核半径、临界形核功之间的关系;细化晶粒的方法,铸锭三晶区的形成机制。
基本内容:结晶过程、阻力、动力,过冷度、变质处理的概念。
铸锭的缺陷;结晶的热力学条件和结构条件,非均匀形核的临界晶核半径、临界形核功。
相起伏:液态金属中,时聚时散,起伏不定,不断变化着的近程规则排列的原子集团。
过冷度:理论结晶温度与实际结晶温度的差称为过冷度。
变质处理:在浇铸前往液态金属中加入形核剂,促使形成大量的非均匀晶核,以细化晶粒的方法。
过冷度与液态金属结晶的关系:液态金属结晶的过程是形核与晶核的长大过程。
从热力学的角度上看,没有过冷度结晶就没有趋动力。
根据可知当过冷度为零时临界晶核半径R k为无穷大,临界形核功()也为无穷大。
金属热处理基础知识
金属热处理基础知识金属热处理是通过控制金属材料在高温下的加热、保温和冷却过程,以调整其组织和性能的一种工艺。
在金属热处理过程中,我们需要了解一些基础知识,包括常见的热处理工艺、影响金属性能的因素以及常见的热处理设备。
一、常见的热处理工艺1. 固溶处理固溶处理是指将固溶体加热至高温,使其中存在的合金元素完全溶解,然后在适当的温度下保温一段时间,最后通过快速冷却来获得均匀的组织。
固溶处理通常用于合金强化、改善材料的韧性和疲劳性能等方面。
2. 然后冷却处理淬火是一种快速冷却工艺,通过将金属材料迅速从高温加热状态冷却至室温或低温,以使金属材料的组织发生相变,从而获得所需的性能。
淬火可以有效提高金属材料的硬度、抗拉强度和磨损性能。
3. 回火处理回火是指在淬火后,将材料重新加热到较低的温度,保温一段时间后冷却,以减轻淬火带来的材料脆性和应力。
回火可以降低材料的硬度,提高其韧性和可加工性。
二、影响金属性能的因素1. 温度温度是热处理过程中最重要的因素之一。
不同的金属和热处理工艺需要不同的温度范围,过高或过低的温度都会对金属的性能产生负面影响。
2. 时间保温时间是指在加热过程中保持金属材料在一定温度范围内的时间。
适当的保温时间可以使金属内部的相变和晶粒生长完成,从而得到所需的性能。
3. 冷却速度冷却速度会影响金属的组织和性能。
快速冷却可以获得细小且均匀的组织,从而提高金属的强度和硬度。
相反,缓慢冷却则可以使金属的组织更加柔韧。
三、常见的热处理设备1. 炉子炉子是最常见的热处理设备之一,在炉子内加热金属材料可以实现固溶、淬火和回火等工艺。
2. 水槽水槽是用于淬火的设备,在高温加热后,将金属迅速浸入冷却介质(通常是水或油)中,以实现材料的淬火工艺。
3. 回火炉回火炉用于回火处理工艺,将经过淬火处理的材料加热到适当的温度,保温一段时间后进行冷却。
4. 空气冷却器空气冷却器通常用于对材料进行较慢的冷却过程,可以通过控制冷却速度来调整材料的性能。
金属热处理知识
目的:消除成份偏析。
●去应力退火
将工件加热到 Ac1以下某一温度,保温后随炉冷却
某一温度保温,然后出
炉空冷。如图是高速钢
等温退火与普通退火的
比较
图3 高速钢等温退火与普通退火的比较
精选
10
● 球化退火 将共析钢或过共析钢加热到 Ac1 +20~30℃,保温
适当时间后缓慢冷却的热处理工艺称为球化退火。
目的:降低硬度,改善切削加工性能;形成球状
珠光体,为后面的淬火作组织准备。
● 扩散退火
精选
3
1 金属热处理工艺基本知识
●都应包括 四个重要因素:
(1)加热速度V; (2)最高加热温度T; (3)保温时间h; (4)冷却速度Vt.
图1 热处理规范示意图
(a)简单的热处理规范精选 (b)复杂的热处理规范 4
2 钢的组织
六种组织(相) (1)铁素体(ferrite,缩写:FN)
即α-Fe和以它为基础的固溶体,具有体心立方点阵。 纯铁在912℃以下为具有体心立方晶格(注1)的α-Fe。碳溶于α-Fe中的 间隙固溶体称为铁素体,以符号F表示。由于α-Fe是体心立方晶格结构,它 的晶格间隙很小,因而溶碳能力极差,在727℃时溶碳量最大,可达0.0218 %,随着温度的下降溶碳量逐渐减小,在600℃时溶碳量约为0.0057%,在室 温时溶碳量几乎等于零。因此其性能几乎和纯铁相同,其数值如下: 抗拉强度 180—280MN/平方米 、延伸率 30--50% 、硬度 HB 50—80 由此可见,铁素体的强度、硬度不高,但具有良好的塑性与韧性。 (2)渗碳体(cementite)——铁碳合金按亚稳定平衡系统凝固和冷却转变 时析出的Fe3C型碳化物。 渗碳体是碳钢中主要的强化相,它的形状与分布 对钢的性能有很大的影响。同时 Fe3C 又是一种介(亚)稳定相,在一定条 件下会发生分解。
金属热处理知识汇总
热处理就是将固态金属或合金采用适当的方式进行加热、保温和冷却以获得所需组织结构的工艺。
所以热处理的过程就是按加热→保温→冷却这三阶段进行,这三个阶段可用冷却曲线来表示(如图所示)。
不管是那种热处理,都是分这三个阶段,不同的是加热温度、保温时间和冷却速度不同。
热处理工艺的特点是不改变金属零件的外形尺寸,只改变材料内部的组织与零件的性能。
所以钢的热处理目的是消除材料的组织结构上的某些缺陷,更重要的是改善和提高钢的性能,充分发挥钢的性能潜力,这对提高产品质量和延长使用寿命有重要的意义。
钢的热处理种类分为整体热处理和表面热处理两大类。
常用的整体热处理有退火,正火、淬火和回火;1.退火把钢加热到一定温度并在此温度下保温,然后缓慢冷却到室温.退火有完全退火、球化退火、去应力退火等几种。
a将钢加热到预定温度,保温一段时间,然后随炉缓慢冷却称为完全退火.目的是降低钢的硬度,消除钢中不均匀组织和内应力.b,把钢加热到750度,保温一段时间,缓慢冷却至500度下,最后在空气中冷却叫球化退火.目的是降低钢的硬度,改善切削性能,主要用于高碳钢.c,去应力退火又叫低温退火,把钢加热到500~600度,保温一段时间,随炉缓冷到300度以下,再室温冷却.退火过程中组织不发生变化,主要消除金属的内应力.2.正火将钢件加热到临界温度以上30-50℃,保温适当时间后,在静止的空气中冷却的热处理工艺称为正火。
正火的主要目的是细化组织,改善钢的性能,获得接近平衡状态的组织。
正火与退火工艺相比,其主要区别是正火的冷却速度稍快,所以正火热处理的生产周期短。
故退火与正火同样能达到零件性能要求时,尽可能选用正火。
3.淬火将钢件加热到临界点以上某一温度(45号钢淬火温度为840-860℃,碳素工具钢的淬火温度为760~780℃),保持一定的时间,然后以适当速度在水(油)中冷却以获得马氏体或贝氏体组织的热处理工艺称为淬火。
淬火与退火、正火处理在工艺上的主要区别是冷却速度快,目的是为了获得马氏体组织。
金属热处理方法知识
金属热处理原理一、热处理的作用机床、汽车、摩托车、火车、矿山、石油、化工、航空、航天等用的大量零部件需要通过热处理工艺改善其性能。
拒初步统计,在机床制造中,约60%~70%的零件要经过热处理,在汽车、拖拉机制造中,需要热处理的零件多达70%~80%,而工模具及滚动轴承,则要100%进行热处理。
总之,凡重要的零件都必须进行适当的热处理才能使用。
材料的热处理通常指的是将材料加热到相变温度以上发生相变,再施以冷却再发生相变的工艺过程。
通过这个相变与再相变,材料的内部组织发生了变化,因而性能变化。
例如碳素工具钢T8在市面上购回的经球化退火的材料其硬度仅为20HRC,作为工具需经淬火并低温回火使硬度提高到60~63HRC,这是因为内部组织由淬火之前的粒状珠光体转变为淬火加低温回火后的回火马氏体。
同一种材料热处理工艺不一样其性能差别很大。
表6-1列出45钢制直径为F15mm的均匀园棒材料经退火、正火、淬火加低温回火以及淬火加高温回火的不同热处理后的机械性能,导致性能差别如此大的原因是不同的热处理后内部组织截然不同。
同类型热处理(例如淬火)的加热温度与冷却条件要由材料成分确定。
这些表明,热处理工艺(或制度)选择要根据材料的成份,材料内部组织的变化依赖于材料热处理及其它热加工工艺,材料性能的变化又取决于材料的内部组织变化,材料成份-加工工艺-组织结构-材料性能这四者相互依成的关系贯穿在材料加工的全过程之中。
二、热处理的基本要素热处理工艺中有三大基本要素:加热、保温、冷却。
这三大基本要素决定了材料热处理后的组织和性能。
加热是热处理的第一道工序。
不同的材料,其加热工艺和加热温度都不同。
加热分为两种,一种是在临界点A1以下的加热,此时不发生组织变化。
另一种是在A1以上的加热,目的是为了获得均匀的奥氏体组织,这一过程称为奥氏体化。
保温的目的是要保证工件烧透,防止脱碳、氧化等。
保温时间和介质的选择与工件的尺寸和材质有直接的关系。
金属热处理知识点要点(良心出品必属精品)
1 热处理的目的、分类、条件;定义:通过加热、保温和冷却的方法,使金属的内部组织结构发生变化,从而获得所要求的性能的一种工艺方法。
目的: 1、消除毛坯中的缺陷,改善工艺性能,为切削加工或热处理做组织和性能上的准备。
2、提高金属材料的力学性能,充分发挥材料的潜力,节约材料延长零件使用寿命。
分类:特点:热处理区别于其他加工工艺如铸造、压力加工等的特点是只通过改变工件的组织来改变性能,而不改变其形状。
热处理条件:(1)有固态相变发生的金属或合金(2)加热时溶解度有显著变化的合金热处理过程中四个重要因素:(1)加热速度V; (2)最高加热温度T;(3)保温时间h; (4)冷却速度Vt.2 什么是铁素体、奥氏体、渗碳体?其结构与性能; Ac1、Ar1、Ac3、Ar3、Accm、Arcm临界温度的意义;奥氏体的形成条件;奥氏体界面形核的原因/条件;以共析钢为例,详细分析奥氏体的形成机理;影响奥氏体转变速度的因素;影响奥氏体晶粒长大的因素;铁素体:碳溶于α-Fe中形成的间隙固溶体,以F或α表示;结构:体心立方结构;组织:多边形晶粒性能:铁素体的塑性、韧性很好(δ=30~50%、aKU=160~200J/cm2),但强度、硬度较低(σb=180~280MPa、σs=100~170MPa、硬度为50~80HBS)。
其力学性能几乎与纯铁相同。
奥氏体:碳溶于γ-Fe中的间隙固溶体;用A或γ表示结构:面心立方晶格性能:奥氏体常存在于727℃以上,是铁碳合金中重要的高温相,强度和硬度不高,但塑性和韧性很好(σb≈400 MPa、δ≈40~50%、硬度为160~200HBS),易锻压成形。
钢材热加工都在γ区进行。
组织:多边形等轴晶粒,在晶粒内部往往存在孪晶亚结构渗碳体:铁与碳形成的金属化合物,是钢铁中的强化相,高温下可分解, Fe3C →3Fe+C(石墨) 。
结构:复杂斜方性能:渗碳体中碳的质量分数为6.69%,熔点为1227℃,硬度很高(800HBW),塑性和韧性极低(δ≈0、aKU≈0),脆性大。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(一)淬火--将钢加热到Ac3或Ac1以上,保温一段时间,使之奥氏体化后,以大于临界冷速的速度冷却的一种热处理工艺。
淬火目的:提高强度、硬度和耐磨性。
结构钢通过淬火和高温回火后,可以获得较好的强度和塑韧性的配合;弹簧钢通过淬火和中温回火后,可以获得很高的弹性极限;工具钢、轴承钢通过淬火和低温回火后,可以获得高硬度和高耐磨性;对某些特殊合金淬火还会显著提高某些物理性能(如高的铁磁性、热弹性即形状记忆特性等)。
表面淬火--表面淬火是将钢件的表面层淬透到一定的深度,而心部分仍保持未淬火状态的一种局部淬火的方法。
分类——感应加热表面淬火、火焰加热表面淬火、电接触加热表面淬火、电解液加热表面淬火、激光加热表面淬火、电子束加热表面淬火、离子束加热表面淬火、盐浴加热表面淬火、红外线聚焦加热表面淬火、高频脉冲电流感应加热表面淬火和太阳能加热表面淬火。
单液淬火——将奥氏体化后的钢件投入一种淬火介质中,使之连续冷却至室温(图9-1a线)。
淬火介质可以是水、油、空气(静止空气或风)或喷雾等。
双液淬火——双液淬火方法是将奥氏体化后的钢件先投人水中快冷至接近MS点,然后立即转移至油中较慢冷却(图9-1b线)。
分级淬火——将奥氏体化后的钢件先投入温度约为MS点的熔盐或熔碱中等温保持一定时间,待钢件内外温度一致后再移置于空气或油中冷却,这就是分级淬火等温淬火--奥氏体化后淬入温度稍高于Ms点的冷却介质中等温保持使钢发生下贝氏体相变的淬火硬化热处理工艺。
等温淬火与分级淬火的区别是:分级淬火的最后组织中没有贝氏体而等温淬火组织中有贝氏体。
根据等温温度不同,等温淬火得到的组织是下贝氏体、下贝氏体+马氏体以及残余奥氏体等混合组织。
(二)回火--将淬火后的钢/铁,在AC1以下加热、保温后冷却下来的金属热处理工艺。
回火的目的:为了稳定组织,减小或消除淬火应力,提高钢的塑性和韧性,获得强度、硬度和塑性、韧性的适当配合,以满足不同工件的性能要求。
第一类回火脆性:①淬火钢在250~400℃回火后出现韧性降低的现象称为第一类回火脆性,又称为低温回火脆性。
几乎所有工业用钢都在一定程度上具有这类回火脆件,而且脆性的出现与回火时冷却速度的快慢无关。
第二类回火脆性:①指合金钢(含有Cr、Ni、Mn、Si等元素的合金钢)淬火并在450~650℃回火后产生低韧性的现象,也称为高温回火脆性。
回火后缓冷促进回火脆性,而快冷抑制回火脆性。
(三)正火--是将工件加热至Ac3或Acm以上40~60℃,保温一段时间后,从炉中取出在空气中或喷水、喷雾或吹风冷却的金属热处理工艺。
目的:——如果终锻温度比较高和锻造后冷却速度比较慢,会出现网状碳化物的缺陷。
这种网状碳化物在球化退火时不易被消除,需要在球化退火前用正火工艺进行消除。
(四)退火——将钢加热到临界温度Ac1以上或以下温度,保温一定时间,然后缓慢冷却(如炉冷、坑冷、灰冷等)获得接近平衡组织的热处理工艺称为退火退火作用——退火过程使组织由非平衡向平衡过度,它可以均匀钢的化学成分及组织,消除铸造偏析,细化晶粒;消除内应力,稳定工件尺寸,减小变形,防止开裂;降低硬度,提高切削加工性能,一般硬度的最佳切削范围为170~230HB;提高塑性,便于冷变形加工;消除淬火后的过热组织以便再进行重新淬火;脱氢,防止白点等。
6.5.3 退火工艺的分类⑴去氢退火——溶解于固溶体中的氢,容易造成钢中出现白点缺陷。
为了消除大型锻钢件中出现白点缺陷而进行的退火,称为去氢退火(又称为消除白点退火)。
⑵再结晶退火:将冷变形后的金属加热到再结晶温度以上保持适当的时间,使变形晶粒重新形核,转变为均匀细小的等轴晶粒,同时消除加工硬化的热处理工艺称为再结晶退火⑶等温退火——将亚共析钢工件加热到高于A c3的温度,待奥氏体转变完成并基本均匀后,较快地冷却到低于A r1以下的某个温度,等温保持足够长时间,使珠光体转变完全,然后出炉空冷(或油冷、水冷)的热处理工艺称为等温退火。
⑺球化退火——:使钢获得弥散分布于铁素体基体上的颗粒状碳化物组织(粒状珠光体)的热处理工艺称为球化退火。
目的:1. 便于切削加工:207~229HBS2.为淬火作组织准备:粒状珠光体在加热时渗碳体不容易溶解,得到含碳量为0.45%~0.6%左右的A+未溶渗碳体,渗碳体呈细小球状均匀分布在奥氏体基体上,奥氏体晶粒非常细小,淬火后得到隐针M和均匀分布在M上的未溶碳化物,硬度、接触疲劳强度和耐磨性都很高。
⑷低温球化退火——:将钢材或工件加热到A c1以下10~30℃左右,长时间保温(一般90~100h)后缓冷至450~550℃后出炉空冷,以获得粒状珠光体的热处理工艺,称为低温球化退火。
⑸一次球化退火——将钢加热到A cl与A ccm(或A c3)之间,一般稍稍高于A c1温度,充分保温一定时间(2~6h),然后缓慢冷却至500~650℃出炉冷却,称为一次球化退火。
⑹等温球化退火——将共析钢或过共析钢加热到A c1+(20~30℃)保温,接着冷却到略低于A r1以下的温度保持一段时间,然后炉冷或空冷到室温的球化退火工艺,称为等温球化退火退火与正火的区别①二者的加热温度相同,但正火的冷却速度较快,转变温度较低。
②对于亚共析钢来说,相同钢正火后组织中析出的铁素体数量减少,珠光体数量增多,且珠光体的片间距减小;对于过共析钢来说,正火可以抑制先共析网状渗碳体的析出,钢的强度、硬度和韧性也比较高。
(五)固溶强化——当溶质原子溶入溶剂原子而形成固溶体时,都能提高强度、硬度,而塑性、韧性有所下降,这种现象称为固溶强化。
合金元素的作用(1)固溶强化和韧化(2)形成碳化物提高强度和耐磨性(3)细化晶粒:W、Mo、V、Ti等与C形成特殊碳化物→奥氏体晶界起钉扎作用,强烈阻碍奥氏体晶粒长大→细小的奥氏体晶粒+未溶的碳化物质点(4)提高钢的淬透性:除Co以外的合金元素都能提高钢的淬透性,并且合金元素含量越高,淬透性越好。
(5)提高回火稳定性推迟回火过程中的马氏体分解和残奥的转变,↑铁素体的再结晶温度,使碳化物不易聚集长大。
惯习面:固态相变时,新相与母相往往存在一定的取向关系,而且新相往往又是在其母相一定的晶面族上形成。
组织应力——由于不同组织的密度不同,当发生相变时密度也发生变化。
因为在加热或冷却过程中温度场的存在,使各点组织也不相同,这就产生了应力,这种应力称为组织应力。
时效——对过饱和固溶体在适当温度(如图3-1中的虚线所示)下进行加热保温,析出第二相,使强度、硬度升高的热处理工艺称为时效。
魏氏组织:工业上将先共析片状铁素体和先共析针(片)状渗碳体称为魏氏组织。
(六)奥氏体——是碳溶于γ-Fe中形成的间隙固溶体。
奥氏体晶粒度小于4级为粗晶粒,5~8级为细晶粒,8级以上的晶粒称为超细晶粒。
起始晶粒度——就是珠光体刚完全转变成奥氏体时的奥氏体晶粒度。
实际晶粒度——钢在某一具体的加热条件下获得的奥氏体的实际晶粒大小称为奥氏体的实际晶粒度。
本质晶粒度本质晶粒度表示钢在一定条件下的奥氏体晶粒长大的倾向性。
需要强调的是本质晶粒度并不是指具体的晶粒大小。
影响珠光体转变为奥氏体的因素(1)温度的影响(2)原始组织的影响(3)合金元素1)合金元素一般将改变珠光体向奥氏体转变的临界点2)合金元素影响碳在奥氏体中的扩散速率,因而也影响奥氏体的形成速率3)合金元素在铁素体与碳化物中的分布是不均匀的(4)含碳量影响珠光体转变动力学的因素1.合金元素的影响2.加热温度和保温时间的影响3.原始组织的影响4.应力的影响5.塑性变形(七)马氏体的形态板条状马氏体和透镜片状马氏体影响马氏体形态的因素(1)碳含量:随着含碳量的增加,板条马氏体数量相对减少,片状马氏体的数量相对增加,残余奥氏体量增加(2)一般认为板条马氏体大多在200℃以上形成,片状马氏体主要在200℃以下形成(3)合金元素:溶入奥氏体中的合金元素除Co、A1外,大多数都使M S点下降,因而都促进片状马氏体的形成。
(4)形变:如果在M S点以上不太高的温度下进行塑性变形,将会显著增加板条马氏体的数量。
提高亚共析钢奥氏体形成温度也提高板条马氏体量。
马氏体转变主要特征:1’马氏体转变的非恒温性2马氏体转变的表面浮凸现象和共格性3马氏体转变的无扩散性4马氏体转变的位向关系及惯习面5马氏体转变的可逆性影响M S点的因素1.奥氏体化学成分的影响⑴碳的影响随碳含量增加M f及M S均不断下降(2)合金元素的影响一般规律:钢中常见的合金元素,除Al和Co可以提高M S外,其它合金元素均使Ms降低(如图5-10所示)。
2. 奥氏体化条件对M S的影响在完全奥氏体化条件下,温度高时间长,将使M S有所提高(约在几度到几十度范围内)。
3. 冷却速度的影响。
在高速淬火时,M S随冷却速度的增大而升高。
(八)上贝氏体(1)形成温度:中、高碳钢大约在350~550℃之间形成。
(2)形状特点:具有羽毛状特征上贝氏体中铁素体的亚结构是位错成束分布、平行排列的铁素体和夹于其间的断续的条状渗碳体的混合物。
下贝氏体(1)转变温度:中、高碳钢约为350℃~Ms之间。
(2)组成:由含碳过饱和的片状铁素体和其内部沉淀的碳化物组成的机械混合物。
(3)组织特点:①下贝氏体的空间形态呈双凸透镜状,与试样磨面相交呈片状或针状。
②在奥氏体晶界上形成,但更多的是在奥氏体晶粒内部形成。
③下贝氏体中铁素体的亚结构为位错,其位错密度比上贝氏体中铁素体的高粒状贝氏体(1)形成:粒状贝氏体形成于上贝氏体转变区上限温度范围内。
(2)组织特征:在粗大的块状或针状铁素体内或晶界上分布着一些孤立的小岛,小岛形态呈粒状或长条状等,很不规则。
粒状贝氏体中铁素体的亚结构为位错。
贝氏体的强度影响因素有(1)贝氏体铁素体片或条的大小主要取决于贝氏体形成温度.形成温度越低,贝氏体的强度越高。
(2)弥散碳化物质点一般说,贝氏体的形成温度越低,碳化物颗粒越小、越多。
所以贝氏体的形成温度越低,强度越高,其中也有碳化物的作用(3)其他因素的强化作用对于贝氏体的强化,上述铁素体晶粒的细晶强化和碳化物的弥散强化是主要的。
其他如碳和合金元素的固溶强化和位错亚结构的强化,无疑也有一定的作用。
影响贝氏体转变动力学的因素1.碳含量的影响随奥氏体中碳含量的增加,贝氏体转变速度下降。
2.合金元素的影响除Al与Co外,其他合金元素都或多或少地降低贝氏体转变速度,同时也使贝氏体转变的温度范围下降,从而使珠光体与贝氏体转变的C曲线分开。
3.奥氏体晶粒大小和奥氏体化温度的影响4.应力的影响5.塑性变形的影响6.冷却时在不同温度下停留的时间(九)过热——加热转变终了时所得奥氏体晶粒一般均较细小。
但如果在转变终了继续升高温度,则奥氏体晶粒将继续长大。