高一数学答题卡(文)

合集下载

精品解析:2023年高考全国甲卷数学(文)真题(解析版)

精品解析:2023年高考全国甲卷数学(文)真题(解析版)

2023年普通高等学校招生全国统一考试(全国甲卷)文科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设全集,集合,则( )A. B. C. D. 【答案】A 【解析】【分析】利用集合的交并补运算即可得解.【详解】因为全集,集合,所以,又,所以,故选:A.2.( )A. B. 1C. D. 【答案】C 【解析】【分析】利用复数的四则运算求解即可.【详解】故选:C.3. 已知向量,则( ){}1,2,3,4,5U ={}{}1,4,2,5M N ==U N M = ð{}2,3,5{}1,3,4{}1,2,4,5{}2,3,4,5{1,2,3,4,5}U ={1,4}M ={}2,3,5U M =ð{2,5}N ={2,3,5}U N M = ð()()()351i 2i 2i +=+-1-1i-1i+()()351i 51i 1i(2i)(2i)5+-==-+-()()3,1,2,2a b ==cos ,a b a b +-=A.B.C.D.【答案】B 【解析】【分析】利用平面向量模与数量积的坐标表示分别求得,从而利用平面向量余弦的运算公式即可得解.【详解】因为,所以,则,所以.故选:B.4. 某校文艺部有4名学生,其中高一、高二年级各2名.从这4名学生中随机选2名组织校文艺汇演,则这2名学生来自不同年级的概率为( )A.B.C.D.【答案】D 【解析】【分析】利用古典概率的概率公式,结合组合的知识即可得解.【详解】依题意,从这4名学生中随机选2名组织校文艺汇演,总的基本事件有件,其中这2名学生来自不同年级的基本事件有,所以这2名学生来自不同年级的概率为.故选:D.5. 记为等差数列的前项和.若,则( )A. 25 B. 22C. 20D. 15【答案】C 【解析】【分析】方法一:根据题意直接求出等差数列的公差和首项,再根据前项和公式即可解出;方法二:根据等差数列的性质求出等差数列的公差,再根据前项和公式的性质即可解出.117()(),,a b a b a b a b +-+⋅-(3,1),(2,2)a b ==()()5,3,1,1a b a b +=-=- a b b +==== ()()()51312a b a b +⋅-=⨯+⨯-= ()()cos ,a b a b a b a b a b a b+⋅-+-===+- 1613122324C 6=1122C C 4=4263=n S {}n a n 264810,45a a a a +==5S ={}n a n {}n a n【详解】方法一:设等差数列的公差为,首项为,依题意可得,,即,又,解得:,所以.故选:C.方法二:,,所以,,从而,于是,所以.故选:C.6. 执行下边的程序框图,则输出的( )A. 21B. 34C. 55D. 89【答案】B 【解析】【分析】根据程序框图模拟运行即可解出.【详解】当时,判断框条件满足,第一次执行循环体,,,;当时,判断框条件满足,第二次执行循环体,,,;当时,判断框条件满足,第三次执行循环体,,,;{}n a d 1a 2611510a a a d a d +=+++=135a d +=()()48113745a a a d a d =++=11,2d a ==515455210202S a d ⨯=+⨯=⨯+=264210a a a +==4845a a =45a =89a =84184a a d -==-34514a a d =-=-=53520S a ==B =1k =123A =+=325B =+=112k =+=2k =358A =+=8513B =+=213k =+=3k =81321A =+=211334B =+=314k =+=当时,判断框条件不满足,跳出循环体,输出.故选:B.7. 设为椭圆的两个焦点,点在上,若,则( )A. 1B. 2C. 4D. 5【答案】B 【解析】【分析】方法一:根据焦点三角形面积公式求出的面积,即可解出;方法二:根据椭圆定义以及勾股定理即可解出.【详解】方法一:因为,所以,从而,所以.故选:B.方法二:因为,所以,由椭圆方程可知,,所以,又,平方得:,所以.故选:B.8. 曲线在点处的切线方程为( )A. B. C. D. 【答案】C 【解析】【分析】先由切点设切线方程,再求函数的导数,把切点的横坐标代入导数得到切线的斜率,代入所设方程即可求解.【详解】设曲线在点处的切线方程为,因为,的4k =34B =12,F F 22:15x C y +=P C 120PF PF ⋅= 12PF PF ⋅=12PF F △120PF PF ⋅= 1290FPF ∠=122121tan 4512FP F S b PF PF ===⨯⋅122PF PF ⋅=120PF PF ⋅= 1290FPF ∠= 25142c c =-=⇒=22221212416PF PF F F +===122PF PF a +==22121212216220PF PF PF PF PF PF ++=+=122PF PF ⋅=e 1=+x y x e 1,2⎛⎫ ⎪⎝⎭e 4y x =e 2y x =e e 44y x =+e 3e24y x =+e 1xy x =+e 1,2⎛⎫ ⎪⎝⎭()e 12y k x -=-e 1xy x =+所以,所以所以所以曲线在点处的切线方程为.故选:C9. 已知双曲线交于A ,B 两点,则( )A. B. C.D.【答案】D 【解析】【分析】根据离心率得出双曲线渐近线方程,再由圆心到直线的距离及圆半径可求弦长.【详解】由,则,解得,所以双曲线的一条渐近线不妨取,则圆心到渐近线的距离,所以弦长.故选:D10. 在三棱锥中,是边长为2的等边三角形,为( )A. 1 B.C. 2D. 3【答案】A()()()22e 1e e 11x xxx x y x x +-'==++1e|4x k y ='==()e e124y x -=-e 1xy x =+e 1,2⎛⎫ ⎪⎝⎭e e 44y x =+22221(0,0)x y a b a b -=>>22(2)(3)1x y -+-=||AB =e =222222215c a b b a a a+==+=2ba=2y x =(2,3)d ==||AB ===-P ABC ABC 2,PA PB PC ===【解析】【分析】证明平面,分割三棱锥为共底面两个小三棱锥,其高之和为AB 得解.【详解】取中点,连接,如图,是边长为2的等边三角形,,,又平面,,平面,又,,故,即,所以,故选:A11. 已知函数.记,则( )A. B. C. D. 【答案】A 【解析】【分析】利用作差法比较自变量大小,再根据指数函数的单调性及二次函数的性质判断即可.【详解】令,则开口向下,对称轴为,,而,由二次函数性质知,的AB ⊥PEC AB E ,PE CE ABC 2PA PB ==,PE AB CE AB ∴⊥⊥,PE CE ⊂PEC PE CE E = AB ∴⊥PEC 2PE CE ===PC =222PC PE CE =+PE CE ⊥11121332B PEC A PEC PEC V V V S AB --=+=⋅=⨯=△()2(1)e x f x --=,,a f b f c f ===b c a >>b a c>>c b a>>c a b>>2()(1)g x x =--()g x 1x =4112⎛---=- ⎝22491670-=+-=>41102⎛--=-> ⎝11->g g <,而,,所以,综上,,又为增函数,故,即.故选:A.12. 函数的图象由的图象向左平移个单位长度得到,则的图象与直线的交点个数为( )A. 1 B. 2C. 3D. 4【答案】C 【解析】【分析】先利用三角函数平移的性质求得,再作出与的部分大致图像,考虑特殊点处与的大小关系,从而精确图像,由此得解.【详解】因为向左平移个单位所得函数为,所以,而显然过与两点,作出与的部分大致图像如下,考虑,即处与的大小关系,4112⎛--=- ⎝22481682)0-=+=-=-<11-<-g g >g g g <<e x y =a c b <<b c a >>()y f x =cos 26y x π⎛⎫=+ ⎪⎝⎭6π()y f x =1122y x =-()sin 2f x x =-()f x 1122y x =-()f x 1122y x =-πcos 26y x ⎛⎫=+⎪⎝⎭π6πππcos 2cos 2sin 2662y x x x ⎡⎤⎛⎫⎛⎫=++=+=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦()sin 2f x x =-1122y x =-10,2⎛⎫- ⎪⎝⎭()1,0()f x 1122y x =-3π3π7π2,2,2222x x x =-==3π3π7π,,444x x x =-==()f x 1122y x =-当时,,;当时,,;当时,,;所以由图可知,与的交点个数为.故选:C.二、填空题:本大题共4小题,每小题5分,共20分.13. 记为等比数列的前项和.若,则的公比为________.【答案】【解析】【分析】先分析,再由等比数列的前项和公式和平方差公式化简即可求出公比.【详解】若,则由得,则,不合题意.所以.当时,因为,所以,即,即,即,解得.故答案为:14. 若偶函数,则________.【答案】2【解析】【分析】根据常见函数的奇偶性直接求解即可.为3π4x =-3π3πsin 142f ⎛⎫⎛⎫-=--=- ⎪ ⎪⎝⎭⎝⎭13π1π4284312y +⎛⎫=⨯--=-<- ⎪⎝⎭3π4x =3π3πsin 142f ⎛⎫=-= ⎪⎝⎭13π13π412428y -=⨯-=<7π4x =7π7πsin 142f ⎛⎫=-= ⎪⎝⎭17π17π412428y -=⨯-=>()f x 1122y x =-3n S {}n a n 6387S S ={}n a 12-1q ≠n q 1q =6387S S =118673a a ⋅=⋅10a =1q ≠1q ≠6387S S =()()6311118711a q a q qq--⋅=⋅--()()638171q q ⋅-=⋅-()()()33381171q q q ⋅+-=⋅-()3817q ⋅+=12q =-12-()2π(1)sin 2f x x ax x ⎛⎫=-+++ ⎪⎝⎭=a【详解】,且函数为偶函数,,解得,故答案为:215. 若x ,y 满足约束条件,则的最大值为________.【答案】15【解析】【分析】由约束条件作出可行域,根据线性规划求最值即可.【详解】作出可行域,如图,由图可知,当目标函数过点时,有最大值,由可得,即,所以.故答案为:1516. 在正方体中,为的中点,若该正方体的棱与球的球面有公共点,则球的半径的取值范围是________.【答案】【解析】【分析】当球是正方体的外接球时半径最大,当边长为的正方形是球的大圆的内接正方形时半径达到最小.【详解】设球的半径为.()()()222π1sin 1cos (2)1cos 2f x x ax x x ax x x a x x ⎛⎫=-+++=-++=+-++ ⎪⎝⎭20a ∴-=2a =323,2331,x y x y x y -≤⎧⎪-+≤⎨⎪+≥⎩32z x y =+322zy x =-+A z 233323x y x y -+=⎧⎨-=⎩33x y =⎧⎨=⎩(3,3)A max 332315z =⨯+⨯=1111ABCD A B C D -4,AB O =1AC OO 4R当球是正方体的外接球时,恰好经过正方体的每个顶点,所求的球的半径最大,若半径变得更大,球会包含正方体,导致球面和棱没有交点,正方体的外接球直径为体对角线长,即,故;分别取侧棱的中点,显然四边形是边长为的正方形,且为正方形的对角线交点,连接,则的外接圆,球的半径达到最小,即的最小值为综上,.故答案为:三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17. 记的内角的对边分别为,已知.(1)求;(2)若,求面积.【答案】(1) (2【解析】分析】(1)根据余弦定理即可解出;【2R '1AC ==2R R ''==max R =1111,,,AA BB CC DD ,,,M H G N MNGH 4O MNGH MG MG =MNGH R R ∈ABC ,,A B C ,,a b c 2222cos b c aA+-=bc cos cos 1cos cos a B b A ba Bb A c--=+ABC 1(2)由(1)可知,只需求出即可得到三角形面积,对等式恒等变换,即可解出.【小问1详解】因为,所以,解得:.【小问2详解】由正弦定理可得,变形可得:,即,而,所以,又,所以,故的面积为.18. 如图,在三棱柱中,平面.(1)证明:平面平面;(2)设,求四棱锥的高.【答案】(1)证明见解析. (2)【解析】【分析】(1)由平面得,又因为,可证平面,从而证得平面平面;(2) 过点作,可证四棱锥的高为,由三角形全等可证,从而证得为中点,设,由勾股定理可求出,再由勾股定理即可求.sin A 2222cos a b c bc A =+-2222cos 22cos cos b c a bc Abc A A+-===1bc =cos cos sin cos sin cos sin cos cos sin cos sin cos sin a B b A b A B B A B aB b A c A B B A C---=-++()()()()()sin sin sin sin 1sin sin sin A B A B B B A B A B A B ---=-==+++()()sin sin sin A B A B B --+=2cos sin sin A B B -=0sin 1B <≤1cos 2A =-0πA <<sin A =ABC 11sin 122ABC S bc A ==⨯=△111ABC A B C -1A C ⊥,90ABC ACB ∠=︒11ACC A ⊥11BB C C 11,2AB A B AA ==111A BB C C -11A C ⊥ABC 1A C BC ⊥AC BC ⊥BC ⊥11ACC A 11ACC A ⊥11BCC B 1A 11A O CC ⊥1AO 1A C AC =O 1CC 1A C AC x ==x 1AO【小问1详解】证明:因为平面,平面,所以,又因为,即,平面,,所以平面,又因为平面,所以平面平面.【小问2详解】如图,过点作,垂足为.因为平面平面,平面平面,平面,所以平面,所以四棱锥的高为.因为平面,平面,所以,,又因为,为公共边,所以与全等,所以.设,则,所以为中点,,1A C ⊥ABC BC ⊂ABC 1A C BC ⊥90ACB ∠= ACBC ⊥1,A C AC ⊂11ACC A 1AC AC C ⋂=BC⊥11ACC A BC ⊂11BCC B 11ACC A ⊥11BCC B 1A 11A O CC ⊥O 11ACC A ⊥11BCC B 11ACC A 111BCC B CC =1A O ⊂11ACC A 1A O ⊥11BCC B 111A BB C C -1AO 1A C ⊥ABC ,AC BC ⊂ABC 1A C BC ⊥1A C AC ⊥1A B AB =BC ABC 1A BC 1A C AC =1A C AC x ==11A C x =O 1CC 11112OC AA ==又因为,所以,即,解得,所以,所以四棱锥的高为.19. 一项试验旨在研究臭氧效应,试验方案如下:选40只小白鼠,随机地将其中20只分配到试验组,另外20只分配到对照组,试验组的小白鼠饲养在高浓度臭氧环境,对照组的小白鼠饲养在正常环境,一段时间后统计每只小白鼠体重的增加量(单位:g ).试验结果如下:对照组的小白鼠体重的增加量从小到大排序为15.2 18.8 20.2 21.3 22.5 23.2 25.8 26.5 27.5 30.132.6 34.3 34.8 35.6 35.6 35.8 36.2 37.3 40.5 43.2试验组的小白鼠体重的增加量从小到大排序为7.8 9.2 11.4 12.4 13.2 15.5 16.5 18.0 18.8 19.219.8 20.2 21.6 22.8 23.6 23.9 25.1 28.2 32.3 36.5(1)计算试验组的样本平均数;(2)(ⅰ)求40只小白鼠体重的增加量的中位数m ,再分别统计两样本中小于m 与不小于m 的数据的个数,完成如下列联表对照组试验组(ⅱ)根据(i )中的列联表,能否有95%的把握认为小白鼠在高浓度臭氧环境中与在正常环境中体重的增加量有差异?附:,0.1000.0500.0102.7063.8416.635【答案】(1)1A C AC ⊥22211AC AC AA +=2222x x +=x=11A O ===111A BB C C -1m<m≥()()()()22()n ad bc K a b c d a c b d -=++++()2P K k ≥k19.8(2)(i );列联表见解析,(ii )能【解析】【分析】(1)直接根据均值定义求解;(2)(i )根据中位数的定义即可求得,从而求得列联表;(ii )利用独立性检验的卡方计算进行检验,即可得解.【小问1详解】试验组样本平均数为:【小问2详解】(i )依题意,可知这40只小鼠体重的中位数是将两组数据合在一起,从小到大排后第20位与第21位数据的平均数,由原数据可得第11位数据为,后续依次为,故第20位为,第21位数据为,所以,故列联表为:合计对照组61420试验组14620合计202040(ii )由(i )可得,,所以能有的把握认为小白鼠在高浓度臭氧环境中与在正常环境中体重的增加量有差异.20. 已知函数.(1)当时,讨论的单调性;23.4m =23.4m =1(7.89.211.412.413.215.516.518.018.819.219.820.220+++++++++++39621.622.823.623.925.128.232.336.5)19.820++++++++==18.819.2,19.8,20.2,20.2,21.3,21.6,22.5,22.8,23.2,23.6, 23.223.623.223.623.42m +==m<m≥2240(661414) 6.400 3.84120202020K ⨯⨯-⨯==>⨯⨯⨯95%()2sin π,0,cos 2x f x ax x x ⎛⎫=-∈ ⎪⎝⎭1a =()f x(2)若,求的取值范围.【答案】(1)在上单调递减(2)【解析】【分析】(1)代入后,再对求导,同时利用三角函数的平方关系化简,再利用换元法判断得其分子与分母的正负情况,从而得解;(2)法一:构造函数,从而得到,注意到,从而得到,进而得到,再分类讨论与两种情况即可得解;法二:先化简并判断得恒成立,再分类讨论,与三种情况,利用零点存在定理与隐零点的知识判断得时不满足题意,从而得解.【小问1详解】因为,所以,则,令,由于,所以,所以,因为,,,所以在上恒成立,所以在上单调递减.【小问2详解】法一:()sin 0f x x +<a ()f x π0,2⎛⎫⎪⎝⎭0a ≤1a =()f x ()f x '()()sin g x f x x =+()0g x <()00g =()00g '≤0a ≤0a =a<02sin sin 0cos xx x-<0a =a<00a >0a >1a =()2sin π,0,cos 2x f x x x x ⎛⎫=-∈ ⎪⎝⎭()()22432cos cos 2cos sin sin cos 2sin 11cos cos x x x x xx xf x xx--+'=-=-()3333222cos cos 21cos coscos 2cos cos x x xx x xx---+-==cos t x =π0,2x ⎛⎫∈ ⎪⎝⎭()cos 0,1t x =∈()()()23233222cos cos 22221211x x t t t t t tt t t +-=+-=-+-=-++-()()2221t t t =++-()2222110t t t ++=++>10t -<33cos 0x t =>()233cos cos 20cos x x f x x +-'=<π0,2⎛⎫ ⎪⎝⎭()f x π0,2⎛⎫⎪⎝⎭构建,则,若,且,则,解得,当时,因为,又,所以,,则,所以,满足题意;当时,由于,显然,所以,满足题意;综上所述:若,等价于,所以的取值范围为.法二:因为,因为,所以,,故在上恒成立,所以当时,,满足题意;当时,由于,显然,所以,满足题意;()()2sin πsin sin 0cos 2x g x f x x ax x x x ⎛⎫=+=-+<< ⎪⎝⎭()231sin πcos 0cos 2x g x a x x x +⎛⎫'=-+<< ⎪⎝⎭()()sin 0g x f x x =+<()()00sin 00g f =+=()0110g a a '=-+=≤0a ≤0a =22sin 1sin sin 1cos cos x x x x x ⎛⎫-=- ⎪⎝⎭π0,2x ⎛⎫∈ ⎪⎝⎭0sin 1x <<0cos 1x <<211cos x>()2sin sin sin 0cos xf x x x x+=-<a<0π02x <<0ax <()22sin sin sin sin sin 0cos cos x xf x x ax x x x x+=-+<-<()sin 0f x x +<0a ≤a (],0-∞()2232222sin cos 1sin sin cos sin sin sin cos cos cos cos x x x x x x x x x x x x---===-π0,2x ⎛⎫∈ ⎪⎝⎭0sin 1x <<0cos 1x <<2sin sin 0cos x x x-<π0,2⎛⎫⎪⎝⎭0a =()2sin sin sin 0cos xf x x x x+=-<a<0π02x <<0ax <()22sin sin sin sin sin 0cos cos x xf x x ax x x x x+=-+<-<当时,因为,令,则,注意到,若,,则在上单调递增,注意到,所以,即,不满足题意;若,,则,所以在上最靠近处必存在零点,使得,此时在上有,所以在上单调递增,则在上有,即,不满足题意;综上:.【点睛】关键点睛:本题方法二第2小问讨论这种情况的关键是,注意到,从而分类讨论在上的正负情况,得到总存在靠近处的一个区间,使得,从而推得存在,由此得解.21. 已知直线与抛物线交于两点,.(1)求;(2)设为的焦点,为上两点,且,求面积的最小值.【答案】(1) (2)【解析】【分析】(1)利用直线与抛物线的位置关系,联立直线和抛物线方程求出弦长即可得出;(2)设直线:,利用,找到的关系,以及0a >()322sin sin sin sin cos cos x xf x x ax x ax x x+=-+=-()32sin π0cos 2x g x ax x x ⎛⎫=-<< ⎪⎝⎭()22433sin cos 2sin cos x x xg x a x+'=-()22433sin 0cos 02sin 000cos 0g a a +'=-=>π02x ∀<<()0g x '>()g x π0,2⎛⎫⎪⎝⎭()00g =()()00g x g >=()sin 0f x x +>0π02x ∃<<()00g x '<()()000g g x ''<π0,2⎛⎫⎪⎝⎭0x =1π20,x ⎛⎫∈ ⎪⎝⎭()10g x '=()g x '()10,x ()0g x '>()g x ()10,x ()10,x ()()00g x g >=()sin 0f x x +>0a ≤0a >()00g '>()g x 'π0,2⎛⎫⎪⎝⎭0x =()0g x '>()()00g x g >=210x y -+=2:2(0)C y px p =>,A B AB =p F C ,M N C 0FM FN ⋅=MFN △2p =12-p MN x my n =+()()1122,,,,M x y N x y 0MF NF ⋅=,m n MNF的面积表达式,再结合函数的性质即可求出其最小值.【小问1详解】设,由可得,,所以,所以即,因为,解得:.【小问2详解】因为,显然直线的斜率不可能为零,设直线:,,由可得,,所以,,,因为,所以,即,亦即,将代入得,,,所以,且,解得或.设点到直线的距离为,所以,所以的面积,而或,所以,()(),,,A A B B A x y B x y 22102x y y px-+=⎧⎨=⎩2420y py p -+=4,2A B A B y y p y y p +==B AB y ==-==2260p p --=0p >2p =()1,0F MN MN x my n =+()()1122,,,M x y N x y 24y x x my n⎧=⎨=+⎩2440y my n --=12124,4y y m y y n +==-22161600m n m n ∆=+>⇒+>0MF NF ⋅=()()1212110x x y y --+=()()1212110my n my n y y +-+-+=()()()()2212121110m y y m n y y n ++-++-=12124,4y y m y y n +==-22461m n n =-+()()22410m n n +=->1n ≠2610n n -+≥3n ≥+3n ≤-F MN d d 2MN y ==-=1==-MNF ()2111122S MN d n =⨯⨯=-=-3n ≥+3n ≤-当时,的面积【点睛】本题解题关键是根据向量的数量积为零找到的关系,一是为了减元,二是通过相互的制约关系找到各自的范围,为得到的三角形面积公式提供定义域支持,从而求出面积的最小值.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程](10分)22. 已知点,直线(为参数),为的倾斜角,与轴正半轴、轴正半轴分别交于,且.(1)求;(2)以坐标原点为极点,轴正半轴为极轴建立极坐标系,求的极坐标方程.【答案】(1)(2)【解析】【分析】(1)根据的几何意义即可解出;(2)求出直线的普通方程,再根据直角坐标和极坐标互化公式即可解出.【小问1详解】因为与轴,轴正半轴交于两点,所以,令,,令,,所以,所以,即,解得,因为,所以.【小问2详解】由(1)可知,直线的斜率为,且过点,所以直线的普通方程为:,即,由可得直线的极坐标方程为.3n =-MNF (2min 212S =-=-,m n ()2,1P 2cos ,:1sin x t l y t αα=+⎧⎨=+⎩t αl l x y ,A B 4PA PB ⋅=αx l 3π4cos sin 30ραρα+-=t l l x y ,A B ππ2α<<0x =12cos t α=-0y =21sin t α=-21244sin cos sin 2PA PB t t ααα====sin 21α=±π2π2k α=+π1π,42k k α=+∈Z ππ2α<<3π4α=l tan 1α=-()2,1l ()12y x -=--30x y +-=cos ,sin x y ραρα==l cos sin 30ραρα+-=[选修4-5:不等式选讲](10分)23. 已知.(1)求不等式的解集;(2)若曲线与坐标轴所围成的图形的面积为2,求.【答案】(1) (2【解析】【分析】(1)分和讨论即可;(2)写出分段函数,画出草图,表达面积解方程即可.【小问1详解】若,则,即,解得,即,若,则,解得,即,综上,不等式的解集为.【小问2详解】.画出的草图,则与坐标轴围成与的高为,所以所以解得,()2,0f x x a a a =-->()f x x <()y f x =a ,33a a ⎛⎫⎪⎝⎭x a ≤x a >x a ≤()22f x a x a x =--<3x a >3a x >3ax a <≤x a >()22f x x a a x =--<3x a <3a x a <<,33a a ⎛⎫ ⎪⎝⎭2,()23,x a x af x x a x a -+≤⎧=⎨->⎩()f x ()f x ADO △ABCABC 3,(0,),,0,,022a a a D a A B ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭||=AB a21132224OAD ABC S S OA a AB a a +=⋅+⋅== a =三人行教育资源。

贵溪市实验中学高中部2021届高三上学期第一次月考数学文试卷含答案

贵溪市实验中学高中部2021届高三上学期第一次月考数学文试卷含答案

江西省贵溪市实验中学高中部2021届高三上学期第一次月考数学文试卷含答案贵溪市实验中学高中部2019-2020学年第一学期第一次月考高三(文科)数学试卷考试时间:120分钟 总分:150 命题人:第Ⅰ卷(选择题 共60分)一、 选择题:本大题共12小题.每小题5分,共60分。

在每个小题给出的四个选项中 ,只有一项是符合题目要求的。

1.已知集合{}31|<<-=x x A ,(){}1lg |-==x y x B ,则()=⋂B C A R ( )A 。

()3,1B 。

()3,1- C.()1,1- D.(]1,1-2.已知命题:p x R ∀∈,1sin x e x ≥+。

则命题p ⌝为( ) A .x R ∀∈,1sin x e x <+ B .x R ∀∈,1sin x e x ≤+ C .0x R∃∈,001sin x e x ≤+D .0x R∃∈,001sin x e x <+3.下列哪一组函数相等( ) A 。

()()xx x g x x f 2==与B.()()()42x x g x x f ==与C.()()()2x x g x x f ==与D.()()362x x g x x f ==与 4. = 255tan ( )A .3-2- B .32-+C .3-2D .32+5.设a ,b 均为单位向量,则“33-=+a b a b ”是“a ⊥b ”的() A .充分而不必要条件 B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件6.()的图像为函数R x x y x ∈-=22( ) A.B.C 。

D 。

7.已知定义在R 上的函数f (x ),其导函数f ′(x )的大致图象如图所示,则下列叙述正确的是( )①f (b )>f (a )>f (c );②函数f (x )在x =c 处取得极小值在x =e 处取得极大值;③函数f (x )在x =c 处取得极大值在x =e 处取得极小值;④函数f (x )的最小值为f (d ).A.③ B 。

中职数学三角函数单元测试题

中职数学三角函数单元测试题

中职数学三角函数单元测试题 高一年级数学注意事项:1.本试卷共4页,满分共100分,考试时间为90分钟; 2.请将答案填写到答题卡上. 一、选择题(4×10=40分)1. 若角α的终边过点)34(-,P ,则αcos 的值为( )4.A 3.B - 54.C 53.D -2. 已知角α的终边上一点)43(,-P ,那么=+ααcos sin ( )51.A - 51.B 257.C - 257.D3. 若角α的终边过点)30cos 30(sin ︒-︒,,则αsin 等于( )21.A 21.B - 23.C - 33.D - 4. 若角α的终边上一点)43(--,P ,则=-)2cos(a π( )2524.A -257.B - 257.C 2524.D 5. 若0cos sin >⋅αα,则角α所在的象限为( ) 第一或第三象限角.A . 第一或第四象限角.B 第二或第三象限角.C 第二或第四象限角.D6. 求。

15sin -15cos 22的值( )21.A 21.B23.C 33.D - 7. 已知0tan cos >⋅θθ,那么角θ是( )0cos 0sin .A <>θθ且0cos sin .B <⋅θθ0tan 0cos .C >>θθ且0tan cos .D >⋅θθ8. )619sin(π-的值等于( ) 21.A 21.B - 23.C 23.D - 9. ︒+︒240tan 600sin 的值等于( )23.A -23.B 321.C +- 321.D + 10. 设)20(33tan παα<<=,,则α等于( ) 6.A π676.B ππ或3.C π 343.D ππ或 二、填空题(4×5=20分)11.已知α是第二象限角,则|sin |sin cos |cos |αααα+的值是__________.11. 若54sin -=θ,0tan >θ,则=θcos _________.13. 若=∈-=θππαα2tan )23(53cos ,则,,且__________.14. ____20s 80sin 20cos 80cos 。

高一数学试卷附答案解析

高一数学试卷附答案解析

高一数学试卷附答案解析考试范围:xxx ;考试时间:xxx 分钟;出题人:xxx 姓名:___________班级:___________考号:___________1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.某校高中生共有900人,其中高一年级300人,高二年级200人,高三年级400人,现采取分层抽样法抽取容量为45的样本,那么高一、高二、高三各年级抽取的人数分别为( ) A .15,5,25 B .15,15,15 C .10,5,30 D .15,10,202.已知全集,,,则( )A .B .C .D.3.下列函数中,既不是奇函数也不是偶函数的是( ) A .B .C .D .4.设全集则图中阴影部分表示的集合为 ( )A .B .C .D .5.在空间,下列命题错误的是( )A .一条直线与两个平行平面中的一个相交,则必与另一个相交B .一个平面与两个平行平面相交,交线平行C .平行于同一平面的两个平面平行D.平行于同一直线的两个平面平行6.在锐角三角形中,a、b、c分别是内角A、B、C的对边,设B=2A,则的取值范围是()A.(,)B.(-2,2)C.(,2)D.(0,2)7.已知单位向量、,则下列各式成立的是()A. B. C. D.8.化简的结果为 ( )A.5 B. C.- D.-59.在中,面积则的长为()A.75 B.51 C.49 D.10.如图在斜三棱柱中,,,则在底面上的射影必在A.直线上B.直线上C.直线上D.内部11.已知集合,则A. B. C. D.12.sin210°的值为()A. B.﹣ C. D.﹣13.先将函数图象向右平移个单位,再将所得的图象作关于y 轴的对称变换,所得图象的解析式是()A.B.C.D.14.现有数列满足:,且对任意的m,n∈N*都有:,则()A. B. C. D.15.不等式的解集是()A. B. C. D.16.已知四棱锥的三视图如图所示,则四棱锥的四个侧面中面积最大的是()A.3 B. C.6 D.817.从四个公司按分层抽样的方法抽取职工参加知识竞赛,其中甲公司共有职工96人.若从甲、乙、丙、丁四个公司抽取的职工人数分别为12,21,25,43,则这四个公司的总人数为A.101 B.808 C.1212 D.201218.函数的图象的一条对称轴是()A. B. C. D.19.在等比数列中,若,是方程的两根,则()A. B. C. D.20.化简[3]的结果为()A.5 B. C.- D.-5二、填空题21.设f:x→x2是从定义域A到值域B的函数,若A={1,2},则A∩B=________.22.函数的定义域为,且对其内任意实数均有:,则在上是23.已知集合,则24.已知等比数列的各项都为正数,它的前三项依次为1,,,则数列的通项公式是="_____________"25.过点(1,-1)的圆x+y=2的切线方程为________、过点(1,1)的圆(x-1) + (y-2) =1的切线方程为________26.函数恒过的定点坐标为.27.设时,函数的图象在直线的上方,则P的取值范围是____________28.若,则.29.已知方程组,则其增广矩阵为.30.函数的定义域________.三、解答题31.已知函数f(x)=2cos2x+sin 2x,(Ⅰ)求函数f(x)的单调递增区间;(Ⅱ)将函数f(x)图象上所有点的横坐标伸长为原来的2倍,纵坐标不变,得到函数h(x)的图象,再将函数h(x)的图象向右平移个单位后得到函数g(x)的图象,求函数g(x)的解析式,并求g(x)在[0,π]上的值域.32.已知集合A={-4,2-1, },B={-5,1-,9},分别求适合下列条件的的值.(1);(2).33.已知函数(1)当时,化简的解析式并求的对称轴和对称中心;(2)当时,求函数的值域.34.(本小题满分12分)如图(1),在直角梯形中,,,.将沿折起,使平面平面,得到几何体,如图(2)所示.(1)求证:平面;(2)求二面角的正切值.35.设a1,a2,…,an为正数,求证:++…++≥a1+a2+…+an.参考答案1 .D【解析】试题分析:按抽样比计算得高一、高二、高三各年级抽取的人数分别为15,10,20人,选D。

高一数学试卷附答案解析

高一数学试卷附答案解析

高一数学试卷附答案解析考试范围:xxx ;考试时间:xxx 分钟;出题人:xxx 姓名:___________班级:___________考号:___________1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.已知,则函数的最小值为( )A .1B .2C .3D .42.在△ABC 中,若a 2=b 2+c 2-bc ,则A 等于( ) A .120° B .60° C .45° D .30°3.已知,且,则函数与函数的图像可能是( )4.已知的值等于( )A .B .3C .-D .-3 5.函数f(x)=是( )A .偶函数,在(0,+∞)是增函数 B.奇函数,在(0,+∞)是增函数C .偶函数,在(0,+∞)是减函数D .奇函数,在(0,+∞)是减函数6.三点(3,10),(7,20),(11,24)的回归方程是( )A .B .C .D .7. 若,且,直线不通过( )A .第三象限B .第一象限C .第四象限D .第二象限 8.已知集合满足,则集合的个数为( )A .2B .4C .3D .5 9.在空间直角坐标系中,已知,,则,两点间的距离是 A .B .C .D .10.如右图,是由三个边长为1的正方形拼成的矩形,且,,则的值为 ( )A .B .C .D . 11.无论=(x 1,x 2,x 3),=(y 1,y 2,y 3),=(z 1,z 2,z 3),是否为非零向量,下列命题中恒成立的是( )A .cos <,>=B .若∥,∥,则∥C .()•=•()D .|||﹣|||≤|±|≤||+||12.函数f(x)=7+a x-3 (a>0,a≠1)的图象恒过定点P ,则定点P 的坐标为 A .(3,3) B .(3,2) C .(3,8) D .(3,7)13.某种商品,现在每件定价p 元,每月卖n 件。

云南省红河州屏边县第一中学2022-2023学年高一下学期第一次月考数学试卷

云南省红河州屏边县第一中学2022-2023学年高一下学期第一次月考数学试卷

屏边一中高一年级下学期第一次月考数学试卷考试时间:120分钟;总分:150分一、单选题(共40分)1.(本题5分)如图,在平行四边形ABCD 中,E 为DC 边的中点,且,A B a A D b==,则B E=( )A .12b a- B .12b a+C .12a b+D .12a b-2.(本题5分)已知全集{2U =-,1-,1,2,3,4},集合{2A =-,1,2,3},集合{1B=-,2-,2,4},则()U C A B =( )A .{1-,2-,2,4}B .{1,3}C .{2-,2}D .{1-,4}3.(本题5分)已知角α的终边经过点(3,4)P -,那么s in α=( ) A .35B .34C .34-D .45-4.(本题5分)已知向量(),2m a =,()1,1n a =+,若//m n,则实数a 的值为( )A .23-B .2-C .2或1-D .2-或15.(本题5分)在A B C ∆中,2A B =,3A C =,5A B A C ⋅=,则B C =( )ABC.D6.(本题5分)设13113211lo g 2,lo g ,32a b c ⎛⎫=== ⎪⎝⎭,则( )A .a b c <<B .a c b <<C .b <c <aD .b a c <<7.(本题5分)已知函数y =f (x )是定义域为R 的偶函数,且f (x )在[0,+∞)上单调递增,则不等式f (2x ﹣1)>f (x ﹣2)的解集为( ) A .(﹣1,1) B .(﹣∞,﹣1)∪(1,+∞) C .(1,+∞)D .(0,1)8.(本题5分)已知平面向量m 与n 之间的夹角为π3,3m=,2n=,则m 与2mn -之间夹角的余弦值为( )A .1213B .513C13D13二、多选题(共20分)9.(本题5分)下列函数中,在其定义域内既是奇函数又是增函数的是( ) A .2y x =-B .3y x =C .||y x =D .22x x y -=-10.(本题5分)(多选)下列说法中正确的是( ) A .若()()1122,,,a x y bx y →→==,且a →与b →共线,则1122x y xy =B .若()()1122,,,ax y bx y →→==,且1221x y x y ≠,则a →与b →不共线C .若A ,B ,C 三点共线.则向量,,A B B C C A →→→都是共线向量 D .若向量()()1,2,2,a b n →→==-,且//a b →→,则n =-411.(本题5分)在A B C ∆中,下列命题正确的是( ) A .AB>是s in s in A B >的充分不必要条件B .若c o s c o s a B b A =,则A BC ∆是等腰三角形 C .若60B =,2b a c=,则A B C ∆是等边三角形 D .若c o s s in =+ba C c A,则45A=o12.(本题5分)已知函数()c o s 1(0)3πf x x ωω⎛⎫=++> ⎪⎝⎭,π()3f x f ⎛⎫≥ ⎪⎝⎭在R 恒成立,且()f x 在π5π,26⎡⎤⎢⎥⎣⎦单调递增,则下列说法正确的是( )A .将函数()f x 的图象向左平移π3个单位所得图像关于y 轴对称B .()f x 的对称中心是ππ,0()26k k ⎛⎫-∈⎪⎝⎭ZC .若122π3x x +=,则()()12fx fx =D .()f x 在ππ,46⎡⎤-⎢⎥⎣⎦上的值域为1,22⎡⎤⎢⎥⎣⎦三、填空题(共20分)13.(本题5分)函数()f x =的定义域为___________.14.(本题5分)已知向量(3,1)a =,(1,1)b =-,若()a a b λ⊥+,则实数λ=___________.15.(本题5分)已知集合{}210P x x =-≤≤,非空集合{}11Sx m x m =-≤≤+,若x P ∈是x S ∈的必要条件,则实数m 的取值范围为______.16.(本题5分)当,22x ππ⎡⎤∈-⎢⎥⎣⎦时,函数c o s y x x =+的值域是___________.四、解答题(共70分)17.(本题12分)已知向量()1,2a =,()3,2b =-.(1)求a b -;(2)求向量a 与向量b 的夹角θ的余弦值;(3)若c =,且()2a c c +⊥,求向量a 与向量c 的夹角.18.(本题12分)在平面直角坐标系中,O 为坐标原点,向量()1,1O A =,()2,3O B =-,()6,O C k =-,(1)当29k =时,试判断A ,B ,C 三点是否共线,写出理由; (2)若A ,B ,C 三点构成直角三角形,求实数k 的值19.(本题10分)已知θ是第三象限角,且()3c o s 25πθ-=-.(1)求s in 2θ,c o s 2θ的值; (2)求s in 3θ的值.20.(本题12分)如图,在O A B ∆中,已知P 为线段A B 上一点,O P x O A y O B=+.(1)若2B P P A =,求实数x ,y 的值;(2)若3B P P A =,2O A =,4O B=,且O A与O B 的夹角为120°,求O P A B ⋅的值.21.(本题12分)已知函数()21m x n f x x+=+是定义在()2,3n n +上的偶函数.(1)求实数m 和n 的值;(2)判断函数()f x 在()0,23n +上的单调性,并用定义法证明你的结论.22.(本题12分)已知在A B C ∆中,角,,A B C 所对的边分别为,,a b c ,且满足sin co s sin co s co s 0a A C c A A A +-=.(1)求角A 的大小;(2)若A B C ∆的面积为,且2b a c =+,求A B C ∆的周长.屏边一中高一年级下学期第一次月考数学答题卡姓名班级考号考场座位号贴条形码区(正面朝上,请勿贴出虚线方框)注意事项1.选择题部分必须使用2B 铅笔填涂,非选择题部分必须使用0.5毫米的黑色签字笔书写,字体工整,笔迹清楚。

高一年级期末考试语文试题(含答案答题卡)2023

高一年级期末考试语文试题(含答案答题卡)2023

2022—2023学年度上学期期末检测高一语文一、现代文阅读(35分)(一)现代文阅读I(本题共5小题,17分)阅读下面的文字,完成下面小题。

材料一:古典小说以及“旧历史小说”常常体现单一的、线性的时间观念,归根结底与传统的历史时间观念及其深厚的文化内涵有关。

中国古代一贯奉行“天人合一”的思想总是使古人时刻牢记要把天道、时间、人心交融为一体。

自然,与此相应的是,时间观念上的整体性和生命感,使中国人采取独特的时间标示的表现形态。

它不同于西方主要语种按“日-月一年”的顺序标示时间,而是采取“年-月-日”的顺序。

人们对此也许习以为常;不过一种文化方式正是到了习以为常的境地,方能沉积为民族群体的潜意识。

中西文化之异,并不一定在于我有的你没有,而在于可以互相对应的时间标示采取了逆行的顺序,或者处于顺序构成的不同位置。

道理很明显,在“年-月-日”或“日-月-年”时序表述中,同样的组合因素以不同的结构组合,或以不同的顺序排列,是具有不同的意义的。

顺序也是一种意义,而且是精神深处反复估量和整理了的意义。

不同的顺序反映了二者的差异:一、它的第一关注点不同,是年还是日,是整体还是部分;二、它在第一关注以后的思维方向不同,是以大观小,还是以小观大;三、确定了思维方向以后,它的前后环节的衔接方式不同,是以前环节统率后环节,还是以前环节积累成后环节,是统观性的,还是分析性的。

在中国人的时间标示顺序中,总体先于部分,体现了其对时间整体性的重视,其统观性、整体性时间观念异于西方的积累性、分析性时间观念。

由此他们以时间整体性呼应着天地之道,并以天地之道赋予部分以意义。

时间的整体观是与天地之道的整体观相联系的,或者说,前者是后者的一部分或一种表现形式。

中国远古时代,人们观天以测岁时,依靠对日月星辰运行的轨道和位置来标示出年岁季节、月份和日子,以此指导自己的农业生产和社会生活。

因此远古人对天象运行位置比后人更关注、更熟悉,与天象的心离得也似乎比后人更近。

高一数学试卷附答案解析

高一数学试卷附答案解析

高一数学试卷附答案解析考试范围:xxx ;考试时间:xxx 分钟;出题人:xxx 姓名:___________班级:___________考号:___________1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.在直角坐标系中,已知A (-1,2),B (3,0),那么线段AB 中点的坐标为( ).A .(2,2)B .(1,1)C .(-2,-2)D .(-1,-1)2.用计算机随机模拟掷骰子的试验,估计出现2点的概率,则下列步骤中不正确的是( )A .用计算器的随机函数RANDI(1,7)或计算机的随机函数RANDBETWEEN(1,7)产生6个不同的1到6之间的取整数值的随机数x ,如果x =2,我们认为出现2点B .我们通常用计算器n 记录做了多少次掷骰子试验,用计数器m 记录其中有多少次出现2点,置n =0,m =0C .出现2点,则m 的值加1,即m =m +1;否则m 的值保持不变D .程序结束.出现2点的频率作为概率的近似值 3.数列满足,则( )A .B .C .D .4.(2014•宝山区一模)设a 和b 都是非零实数,则不等式a >b 和同时成立的充要条件是( )A .a > bB .a >b >0C .a >0> bD .0>a >b 5.如果,那么的值为( )A .-2B .2C .-D .6.已知函数,的值域是( )A .B .C .D .7.7.将下列不同进位制下的数转化为十进制,这些数中最小的数是( )A .(20)7B .(30)5C .(23)6D .(31)4 8.已知实数满足等式下列五个关系式①②③④⑤, 其中不可能成立的关系式有( ) A .1个 B .2个 C .3个 D .4个 9.下列各角中,与60°角终边相同的角是( ) A .﹣60° B .600° C .1020° D .﹣660° 10.化简等于A .B .零位移C .D .11.一枚硬币连掷3次,只有一次出现正面的概率是( ) A . B . C . D . 12.在等差数列中,若,则的值为 ( )A .14B .15C .16D .1713.长方体ABCD-A1B1C1D1中,AB=AD=2,AA1=4,E 是CC1中点,以A 为原点建立空间直角坐标系,如图,则点E 的 坐标为A .(1,1,2)B .(2,2,2)C .(0,2,2)D .(2,0,2)14.已知,那么的值是( )A .B .C .D .15.等边三角形ABC 的边长为1, ,那么等于( ) A .B .C .D .3 16.直线与直线互相平行,则的值是A .1B .-2C .1或-2D .-1或2 17. 对任意向量,下列关系式中不恒成立的是( )A .B .C.D.18.直线xsin α+y+2=0的倾斜角的取值范围是()A.B.C.D.19.已知函数y=f(x)的图象如图所示,则函数y=f sin x在[0,π]上的大致图象是()20.如图,AB为半圆O的直径,弦AD、BC相交于点P,若CD=3,AB=4,则tan∠BPD等于()A. B. C. D.二、填空题21.已知数列中,,,若2008,则=22.已知f(x)=x5+ax3+bx,f(-2)=10,则f(2)=___23.设是等差数列的前n项和,若,则24.幂函数的图象过点,则的解析式是___________________.25.(2分)圆的半径变为原来的3倍,而所对弧长不变,则该弧所对圆心角是原来圆弧所对圆心角的倍.26.矩阵,,则2A﹣3B= .27.经过直线2x+3y-7=0与7x+15y+1=0的交点,且平行于直线x+2y-3=0的直线方程是____________________28.函数的单调减区间为_______________.29.三角形ABC中,,且,则三角形ABC面积最大值为__________.30.已知扇形半径为8, 弧长为12, 则中心角为弧度, 扇形面积是三、解答题31.(本小题满分10分)已知:函数(1)若,求函数的最小正周期及图像的对称轴方程;(2)设,的最小值是-2,最大值是,求:实数的值。

甘肃省武威市第六中学2013-2014学年高一下学期期中考试数学(文)试题(必修4)

甘肃省武威市第六中学2013-2014学年高一下学期期中考试数学(文)试题(必修4)

甘肃省武威市第六中学2013-2014学年高一下学期期中考试数学(文)试题(必修4)1.tan 83π的值为( )A.33 B .-33C. 3 D .- 3 2.已知扇形的周长为8 cm ,圆心角为2弧度,则该扇形的面积为( ) A .4 cm 2 B .6 cm 2 C .8 cm 2 D .16 cm 2 3.下列程序执行后输出的结果是 ( ) A .110 B .990 C .99 D .90 4. 已知点A (1,3),B (4,-1),则与向量AB 同方向的单位向量为( ) A .(35,-45) B .(45,-35)C .(-35,45)D .(-45,35)5. =-+0000tan50tan703tan50tan70 ( )A. 3 B.33C. 33-D. 3-6.已知|a |=1,|b |=2,a 与b 的夹角为60°,c =2a +3b ,d =k a -b (k ∈R ),且c ⊥d ,那么k 的值为( ).A .-6B .6C .-145 D.1457.函数f (x )=2sin x4对于任意x ∈R 都有f (x 1)≤f (x )≤f (x 2),则|x 1-x 2|的最小值为( )A .πB .2πC .3πD .4π 8.514cos 4sin =⎪⎭⎫ ⎝⎛-+⎪⎭⎫⎝⎛-θπθπ,则θ2cos 的值为( ). A .-257 B .257 C. 2524- D. 25249.已知向量)4,2(-=a,)4,3(=b 则向量a 在b 方向上的投影为( ) A.558 B. 558- C. 2 D. 2-i=11S=1 DOS=S ﹡i i=i -1LOOP UNTIL i <9 PRINT S END10.如图所示的程序框图能判断任意输入的数x 的奇偶性, 其中判断框内的条件是( ) A.m =0? B.m =1? C.m >1? D.m <1? 11.已知2tan =-a )(π,则=ααcos sin 1( )A. 25 B .57 C. 25- D .57-12.函数x x y cos sin 3+=,]2,2[ππ-∈x 的最大值为( )A .1 B. 2 C. 3 D. 23二、填空题(每小题5分,共计20分)13 向量(2,3)a =,(1,2)b =-,若ma b +与2a b -平行,则m =________.14.如图,程序运行后输出的结果为_____.15.若(1,2),(2,3),(2,5)A B C -,试判断则△ABC 的形状_______ _16.在△ABC 中,已知AB =2,BC =3,∠ABC =60°,AH ⊥BC 于H ,M为AH 的中点,若AM →=λAB →+μBC →,则λ+μ=________.武威六中2013~2014学年度第二学期高一数学(文)《必修4》模块学习终结性检测试卷答题卡一、选择题(本题共12小题,每小题5分,共60分) 题号 123 4 5 6 7 8 9 10 11 12 答案二、填空题(每小题5分,共计20分).x=5y=-20IF x<0 THEN x=y -3 ELSE y=y+3 END IF PRINT x -y END座位号13. 14. . 15.16. .三、解答题(共70分).18.(本题满分12分)已知2sin cos5sin3cosθθθθ+=--,求下列各式的值:(1)sin cossin cosθθθθ+-; (2)3cos24sin2θθ+.19.(本题满分12分)已知向量a=3e1-2e2,b=4e1+e2,其中e1=(1,0),e2=(0,1),求:(1)a·b;|a+b|;(2)a与b的夹角的余弦值.20.(本题满分12分)若()()31sin sin cos cos =+++ββαββα,且⎪⎭⎫⎝⎛∈ππα223,,求 ⎪⎭⎫ ⎝⎛+42cos πα的值.21(本题满分12分)在平面直角坐标内,已知点A 、B 、C 的坐标分别为A (1,0)、B (0,1)、C (2,5),求(1);AC ,AB 的坐标; (2AC AB - (3)BAC ∠cos 的值.22(本题满分12分)已知函数()x x x x x f 44sin cos sin 2cos --= (1)求f(x)的最小正周期;(2)当⎥⎦⎤⎢⎣⎡∈20π,x 时,求f(x)的最小值以及取得最小值时x 的集合.。

太原市2022-2023上学期期中高一数学试卷+答案(含答题卡)

太原市2022-2023上学期期中高一数学试卷+答案(含答题卡)

2022-2023学年第一学期高一数学期中质量监测数学参考答案及评分建议一.选择题: 12 3 4 5 6 7 8 D C C B D C B A二.选择题:910 11 12 A CD BCD BC AD三.填空题:13.14 14.(]0,2 15.240 16.1,2 +∞四.解答题: 17.解(1)(2)18.解:(1)因为函数()2x fx a −=的图象经过点11,2, 所以12122a a −==,解得, ...........................................2分 所以()22x f x −=,所以 128t =, 解得3t =−.................................................. 5分011331133293113.223.2− ×−+ =+−=()()..........................................2分 (4)分1112212222221225,329,7,25,()5x x x x x x x x x x x x x x −−−−−−−+=++=∴+=∴++=+=∴+−=−=两边平方,得,...............................................5分得.................................6分即,...............................71x x −∴−=分..............................................8分(2).()10102x x x g x x +≤=−> 由(1)可知:,如图:................................... 8分单调增区间为�−1,0)和�0,+∞�. ............................. 10分19.解(1)由33x >,得1x >,所以(1,)A =+∞,则(]R ,1A =−∞ ............... 3分又{}{}2303B x x x x x =−=∣∣0 , 所以(){}R 3B A x x =≤ . ............................ 5分(2)由B C C = ,得C B ⊆, ........................ 6分 ①当12a a −>,即1a <−时,C =∅,满足题意; ..................... 7分 ②当12a a − ,即1a − 时,C ≠∅,因为C B ⊆,所以10,23,a a − 解得312a . ........................ 9分 综上,实数a 的取值范围是()3,11,2∞ −−∪. ........................ 10分20.(A )解(1)由题意知,当120x =时,0v =, 代入80150k v x=−−,解得2400k =, ........................ 2分 所以60,030240080,30120150x v x x <≤ = −<≤ −,, 当50x =时,解得56v =,所以车流密度为50辆/千米时,车流速度为56千米/小时. ..................... 5分 (2)由(1)知60,030,240080,30120,150x v x x <≤ = −<≤ −当030x <≤时,6040v =≥,符合题意; ........................ 6分当30120x <≤时,令24008040150x−≥−,解得90x ≤, ..................... 8分 所以3090x <≤. ........................ 9分 所以,若车流速度v 不小于40千米/小时,则车流密度x 的取值范围是(]0,90辆/千米......................... 10分20(B )解(1)由题意知,当120x =(辆/千米)时,0v =(千米/小时), 代入80150k v x=−−,解得2400k =, ........................ 2分 所以60,030240080,30120150x v x x <≤ = −<≤ −,, 当50x =时,解得56v =,所以车流密度为50辆/千米时,车流速度为56千米/小时. ................... 5分(2)由题意得60,030,240080,30120,150x x y x x x x <≤ = −<≤ −当030x <≤时,60y x =为增函数,所以1800y ≤,30x =时等号成立;......... 6分当30120x <≤时,240045008080180150150150x y x x x x =−=−−+ −−4800(33667≤≈. 当且仅当4500150150x x−=−,即30(583x =≈时等号成立. ................. 9分 所以,隧道内车流量的最大值约为3667辆/小时,此时车流密度约为83辆/千米........................... 10分21(A ).解(1)因为91()3x mx f x +=为偶函数, 所以()()f x f x −=,R x ∈, 所以919133x x mx mx −−++=,即239mx x =, ..................... 4分 解得1m =. ..................... 5分(2)由(1)知,91()333x x x x f x −+==+, 由2222()1y y f x −−+≥,得 222332x x y y −+−+≥,因为30x >,30x −>,所以332x x −+≥=,当且仅当33x x −=,即0x =时,33x x −+有最小值2. ..................... 8分 所以22222y y +−≥成立,即 2221y y +−≤恒成立,解得31y −, 所以y 的取值范围是[]31−,. .......................... 10分21.(B )解(1)因为91()3x mxf x +=为偶函数, 所以()()f x f x −=,R x ∈, 所以919133x x mx mx −−++=,即239mx x =, ..................... 3分 解得1m =. ..................... 4分(2)由(1)知,91()333x x x x f x −+==+, 将222()1y y n f x −−+≥变形为22332x x y y n −+−+≥,因为30x >,30x −>,所以332x x −+≥=,当且仅当33x x −=,即0x =时,33x x −+有最小值2. ..................... 6分 所以R y ∃∈,使得2222y y n +−≥成立,即221y y n +−≤成立,亦即221n y y ≥+−成立, ..................... 8分因为2221(1)22y y y +−=+−≥−,当且仅当1y =−时取等号,所以有2n ≥−, 所以n 的取值范围是[)2,−+∞. ..................... 10分 (注:以上各题,其他正确解法相应付分)。

高一数学试卷含答案解析

高一数学试卷含答案解析

2C.D .和的定义域和值域都是集合,其定义如下4.已知两个函数表:题号一二三总分得分注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上则方程的解集是()A.B.C.D .5.已知函数,那么在下列区间中含有函数零点的为()A.20B.60C.90D.1002.若A、B、C为三个集合,,则一定有()高一数学试卷含答案解析姓名:___________班级:___________考号:___________评卷人得分1.设等差数列{a}的前n项和为S,若a+a=10,则S等于()n n51418一、选择题(A)(B)(C)(D)3.已知,是平面内两个互相垂直的单位向量,若向量满足,则的最大值是()A.B.C.D.6.函数的图像大致是() A.1B.A .m =2B .m =-1C .m =2或m =-1D .11.10名工人某天生产同一零件,生产的件数是设其平均数为,中位数为,众数为,则有A .B .C .D .12.在中,若,则的形状是A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰或直角三角形A .1B .2C .3D .414.下列各组平面向量中,可以作为基底的是10.当时,幂函数为减函数,则实数()A .13.已知a 、b 为△ABC 的边,A 、B 分别是a 、b 的对角,且,则的值=().A.B.C.D.9.如图所示,E 是正方形ABCD 所在平面外一点,E 在面ABCD 上的正投影F 恰在AC 上,FG ∥BC ,AB=AE=2,∠EAB=60°.有以下四个命题:(1)CD ⊥面GEF ;(2)AG=1;(3)以AC ,AE 作为邻边的平行四边形面积是8;(4)∠EAD=60°.其中正确命题的个数为()7.若为第三象限角,则()A .B .C .D .8.已知圆C :(x -2)2+(y -3)2=1,圆C :(x -3)2+(y -4)2=9,M ,N 分12别是圆C ,C 上的动点,P 为x 轴上的动点,则|PM|+|PN|的最小值为12()A .5-4B .-1C .6-2D .15.函数的定义域是()A .3B .4C .6D .718.下列关于的不等式解集是实数集R 的为()A .B .C .D .19.已知锐角是的一个内角,是三角形中各角的对应边,若,则下列各式正确的是()A .B .C .D .20.不等式的解集为()A .(-5,1)B .(-1,5)C .(-∞,-5)U (1,+∞)D .(-∞,-1)U (5,+∞)评卷人得分二、填空题21.若,则,22.已知函数f (x )=mx 2-mx -1.若对于x ∈R ,f (x )<0恒成立,则实数m 的取值范围为。

高一文科数学-题目带答案

高一文科数学-题目带答案

7 2
【答 案】B 【命题意图】考查数列的递推,简单题 5. (解三角形)某人打算做一个三边之比为 4 : 5 : 7 的三角形,则( ▲ ) (A)他能做出一个锐角三角形 (B)他能做出一个直角三角形 (C)他能做出一个钝角三角形 (D)他无法做出这样的三角形 【答 案】C
【命题意图】考查余弦定理的应用,简单题
1 2
(B)
1 2
(C)
3 2
(D) 3
2
【答 案】A 【命题意图】考查两角和的正弦公式,简单题 2. (数列)数列 {an } 的前 n 项和 Sn 2n2 3n(n N*) ,则 a4 ( ▲ ) (A) 11 (B) 15 【答 案】A 【命题意图】考查数列的基本性质,简单题 (C) 17 (D) 20
【答 案】 7 【命题意图】考查余弦定理,简单题
2 4 3 15. (三角恒等变换)已知 sin( ) sin ,则 cos( ) ____▲____. 3 3 5 4 【答 案】 5
【命题意图】考查三角恒等变换,中等题 16. (解三角形)在 ABC 中,角 A, B, C 的对边分别为 a, b, c ,已知 4sin 2
3. (数列)已 知 等 比 数 列 {a n } 中 , a1 a2 1 , a5 a6 16 , 则 公 比 q ( ▲ ) (A) 2 (B) 2 (C)
1 2
(D) 2
【答 案】D 【命题意图】考查等比数列的性质,简单题 4. (数列)已知数列 {a n } 满足 an 2 an1 an ,若 a1 1 , a6 13 ,则 a3 ( ▲ ) (A) 2 (B) 3 (C) 5 (D)
1 1 ) (A) (1 2 2018 1 3 1 ) (C) ( 2 2 2018

【2019-2020高一数学试卷】人教A版必修4《三角函数》单元测试卷一 答题卡及答案解析

【2019-2020高一数学试卷】人教A版必修4《三角函数》单元测试卷一     答题卡及答案解析

必修4《三角函数》单元测试卷一(时间:120分钟 满分:150分)一、选择题:本大题共12小题,每小题5分,共60分.每一小题给出的四个选项中只有一项是符合题目要求的.1.若点(,)P x y 是330︒角终边上异于原点的一点,则yx的值为( )A B .C D . 2.已知角α的终边经过点(3,4)-,则cos α的值为( ) A .34-B .35C .45-D .43-3.若|cos |cos θθ=,|tan |tan θθ=-,则2θ的终边在( )A .第一、三象限B .第二、四象限C .第一、三象限或x 轴上D .第二、四象限或x 轴上4.如果函数()sin(2)(02)f x x πθθπ=+<<的最小正周期是T ,且当1x =时取得最大值,那么( ) A .1T =,2πθ=B .1T =,θπ=C .2T =,θπ=D .2T =,2πθ=5.若sin()2x π-=2x ππ<<,则x 等于( )A .43π B .76π C .53π D .116π6.已知a 是实数,则函数()1sin f x a ax =+的图象不可能是( )A .B .C .D .7.为得到函数sin()6y x π=+的图象,可将函数sin y x =的图象向左平移m 个单位长度,或向右平移n 个单位长度(m ,n 均为正数,则||m n -的最小值是( )A .3π B .23π C .π D .2π8.若tan 2θ=,则2sin cos sin 2cos θθθθ-+的值为( )A .0B .1C .34D .549.函数tan 1cos xy x=+的奇偶性是( )A .奇函数B .偶函数C .既是奇函数,又是偶函数D .既不是奇函数,也不是偶函数10.函数()cos f x x =在(0,)+∞内( ) A .没有零点 B .有且仅有一个零点C .有且仅有两个零点D .有无穷多个零点11.已知函数()sin(2)f x x ϕ=+,其中ϕ为实数,若()⎪⎭⎫⎝⎛≤6πf x f 对x R ∈恒成立,且()()2f f ππ>,则()f x 的单调递增区间是( ) A .[3k ππ-,]()6k k Z ππ+∈ B .[k π,]()2k k Z ππ+∈C .[6k ππ+,2]()3k k Z ππ+∈ D .[2k ππ-,]()k k Z π∈12.函数()3sin f x = (2)3x π- 的图象为C .①图象C 关于直线1112x π=对称; ②函数()f x 在区间(12π-,5)12π内是增函数; ③由3sin y = 2x 的图象向右平移3π个单位长度可以得到图象C . 以上三个论断中,正确论断的个数是( ) A .0个B .1个C .2个D .3个二、填空题:本大题共4小题,每小题5分,共20分.请将答案填写在答题卷相应位置上.13.已知2sin()sin()2παπα-=+,则tan()πα-的值是 .14.函数y =3cos x (0≤x ≤π)的图象与直线3y =-及y 轴围成的图形的面积为 . 15.已知函数f (x )=sin (ωx +φ)(ω>0,﹣π≤φ<π)的图象如图所示,则ϕ=16.给出下列命题:①函数2cos()32y x π=+是奇函数;②存在实数x ,使sin cos 2x x +=;③若α,β是第一象限角且αβ<,则tan tan αβ<;④8x π=是函数5sin(2)4y x π=+的一条对称轴; ⑤函数sin(2)3y x π=+的图象关于点(,0)12π成中心对称.其中正确命题的序号为 .三、解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤.17.(10分)已知sin α是方程25760x x --=的根,求333sin()sin()tan (2)22cos()cos()22αππαπαππαα-----+的值.18.(12分)已知函数()sin()(0f x A x A ωϕ=+>,0ω>,)x R ∈在一个周期内的图象如图所示,求直线y =()f x 图象的所有交点的坐标.19.(12分)已知3()sin(2)62f x x π=++,x R ∈(1)求函数()f x 的最小正周期; (2)求函数()f x 的单调减区间;(3)函数()f x 的图象可以由函数sin 2()y x x R =∈的图象经过怎样变换得到?20.(12分)已知函数sin()(0y A x A ωϕ=+>,0)ω>的图象过点(12P π,0),图象与P 点最近的一个最高点坐标为(3π,5).(1)求函数的解析式;(2)求函数的最大值,并写出相应的x 的值; (3)求使y ≤0时,x 的取值范围.21.(12分)已知cos()2sin()22ππαα+=-.(1)求4sin 2cos 3sin 5cos αααα-+的值.(2)求22111sin sin cos cos 432αααα++的值.22.(12分)函数()sin()f x A x ωϕ=+的图象如图所示,且过点(0,1),其中0A >,0ω>,||2πϕ<.(1)求函数的解析式.(2)若函数()f x 的图象向左平移m 个单位所对应的函数()h x 是奇函数,求满足条件的最小正实数m .(3)设函数()()1g x f x a =++,[0x ∈,]2π,若函数()g x 恰有两个零点,求a 的范围.必修4《三角函数》单元测试卷一答题卡成绩:一、选择题(本题满分60分)二、填空题(本题满分20分)13 . 14.15.16.三、解答题(本题满分70分)班级 姓名 座号密 封 装 订 线必修4《三角函数》单元测试卷一答案解析一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项符合题目要求的.1.若点P(x,y)是330°角终边上异于原点的一点,则的值为()A.B.C.D.【分析】由三角函数的定义知=tan330°,计算即可.【答案】解:由题意知,=tan330°=﹣tan30°=﹣.故选:D.【点睛】本题考查了三角函数的定义与应用问题,是基础题.2.已知角α的终边经过点(3,﹣4),则cosα的值为()A.﹣B.C.﹣D.﹣【分析】由条件利用本任意角的三角函数的定义,求得cosα的值.【答案】解:∵角α的终边经过点(3,﹣4),∴x=3,y=﹣4,r=5,则cosα==,故选:B.【点睛】本题主要考查任意角的三角函数的定义,属于基础题.3.若|cosθ|=cosθ,|tanθ|=﹣tanθ,则的终边在()A.第一、三象限B.第二、四象限C.第一、三象限或x轴上D.第二、四象限或x轴上【分析】利用已知条件,判断θ所在象限,然后求解即可.【答案】解:|cosθ|=cosθ,∴θ是第一、四象限或x轴正半轴;|tanθ|=﹣tanθ,说明θ是二.四象限或x轴;所以θ是第四象限或x轴正半轴,∴k•360°+270°<θ≤k•360°+360°,k∈Z,则k•180°+135°<≤k•180°+180°,k∈Z,令k=2n,n∈Z有n•360°+135°<≤n•360°+180°,n∈Z;在二象限或x轴负半轴;k=2n+1,n∈z,有n•360°+315°<≤n•360°+360°,n∈Z;在四象限或x轴正半轴;故选:D.【点睛】本题考查三角函数的符号,象限角的表示方法,不等式性质的应用,通过角满足的不等式,判断角的终边所在的象限.4.如果函数f(x)=sin(2πx+θ)(0<θ<2π)的最小正周期是T,且当x=1时取得最大值,那么()A.T=1,θ=B.T=1,θ=πC.T=2,θ=πD.T=2,θ=【分析】利用函数的周期公式求出T,通过当x=1时取得最大值求出θ判断即可.【答案】解:函数f(x)=sin(2πx+θ)(0<θ<2π)的最小正周期是T,可得T==1;当x=1时取得最大值,sin(2π+θ)=1,0<θ<2π,可得θ=.故选:A.【点睛】本题考查三角函数的周期以及三角函数的最值的求法,考查计算能力.5.若sin(﹣x)=且π<x<2π,则x等于()A.B.C.D.【分析】利用诱导公式求得cos x的值,结合角x的范围,以及特殊角的三角函数的值,求得x的值.【答案】解:sin(﹣x)==cos x,且π<x<2π,则x=,故选:D.【点睛】本题主要考查诱导公式,特殊角的三角函数的值,属于基础题.6.已知a是实数,则函数f(x)=1+a sin ax的图象不可能是()A.B.C.D.【分析】根据当a=0时,y=1,可判断图象哪个符合,当a≠0时,f(x)周期为,振幅a,分类讨论a>1时,T<2π;0<a≤1,T≥2π利用所给图象判断即可得出正确答案.【答案】解:∵函数f(x)=1+a sin ax(1)当a=0时,y=1,函数图象为:C故C正确(2)当a≠0时,f(x)=1+a sin ax周期为T=,振幅为a若a>1时,振幅为a>1,T<2π,当0<a≤1,T≥2π.∵D选项的图象,振幅与周期的范围矛盾故D错误,故选:D.【点睛】本题考察了三角函数的图象和性质,分类讨论的思想,属于中档题,关键是确定分类的标准,和函数图象的对应.7.为得到函数y=sin(x+)的图象,可将函数y=sin x的图象向左平移m个单位长度,或向右平移n个单位长度(m,n均为正数,则|m﹣n|的最小值是()A.B.C.πD.2π【分析】根据函数左右平移关系,求出m,n的表达式,然后根据绝对值的意义进行求解即可.【答案】解:y=sin x的图象向左平移+2kπ个单位长度,即可得到函数y=sin(x+)的图象,此时m=+2kπ,k∈Z,y=sin x的图象向右平移+2mπ个单位长度,即可得到函数y=sin(x+)的图象,此时n=+2mπ,m∈Z,即|m﹣n|=|+2kπ﹣﹣2mπ|=|2(k﹣m)π﹣|,∴当k﹣m=1时,|m﹣n|取得最小值为2π﹣=,故选:A.【点睛】本题考查函数y=A sin(ωx+φ)的图象变换,利用函数平移关系是解决本题的关键.8.若tanθ=2,则的值为()A.0 B.1 C.D.【分析】将所求分子分母同除cosθ,利用同角三角函数基本关系式化简,代入tanθ=2,即可得到选项.【答案】解:∵tanθ=2,∴===.故选:C.【点睛】本题是基础题,考查同角三角函数基本关系式的应用,已知函数值求表达式的其它函数值,考查计算能力,常考题型.9.函数的奇偶性是()A.奇函数B.偶函数C.既是奇函数,又是偶函数D.既不是奇函数,也不是偶函数【分析】先考虑函数的定义域关于原点对称,其次判定f(x)与f(﹣x)的关系即可.【答案】解:先考虑函数的定义域关于原点对称,其次,故选:A.【点睛】定义域关于原点对称是函数具有奇偶性的必要(但不充分)条件.判定函数奇偶性常见步骤:1、判定其定义域是否关于原点对称;2、判定f(x)与f(﹣x)的关系.10.函数f(x)=在(0,+∞)内()A.没有零点B.有且仅有一个零点C.有且仅有两个零点D.有无穷多个零点【分析】作函数y=与y=cos x的图象,从而利用数形结合的思想判断.【答案】解:作函数y=与y=cos x的图象如下,∵函数y=与y=cos x的图象有且只有一个交点,∴函数f(x)=在(0,+∞)内有且仅有一个零点,故选:B.【点睛】本题考查了数形结合的思想应用及函数的零点与函数的图象的关系应用.11.已知函数f(x)=sin(2x+φ),其中φ为实数,若f(x)≤|f()|对x∈R恒成立,且f()>f(π),则f(x)的单调递增区间是()A.[kπ﹣,kπ+](k∈Z)B.[kπ,kπ+](k∈Z)C.[kπ+,kπ+](k∈Z)D.[kπ﹣,kπ](k∈Z)【分析】由题意求得φ的值,利用正弦函数的性质,求得f(x)的单调递增区间.【答案】解:若f(x)≤|f()|对x∈R恒成立,则f()为函数的函数的最大值或最小值,即2×+φ=kπ+,k∈Z,则φ=kπ+,k∈Z,又f()>f(π),sin(π+φ)=﹣sinφ>sin(2π+φ)=sinφ,sinφ<0.令k=﹣1,此时φ=﹣,满足条件sinφ<0,令2x﹣∈[2kπ﹣,2kπ+],k∈Z,解得:x∈[kπ+,kπ+](k∈Z).则f(x)的单调递增区间是[kπ+,kπ+](k∈Z).故选:C.【点睛】本题考查的知识点是函数y=A sin(ωx+φ)的图象变换、三角函数的单调性,属于基础题.12.函数f(x)=3sin (2x﹣)的图象为C.①图象C关于直线x=π对称;②函数f(x)在区间(﹣,)内是增函数;③由y=3sin 2x的图象向右平移个单位长度可以得到图象C.以上三个论断中,正确论断的个数是()A.0个B.1个C.2个D.3个【分析】①②由三角函数图象的对称性和单调性判断即可;③根据图象的平移可得.【答案】解:函数f(x)=3sin (2x﹣)的图象为C.①f(π)=﹣3,故x=π是函数的一条称对称轴,故正确;②函数f(x)的增区间为[kπ﹣,kπ+],故在区间(﹣,)内是增函数,故正确;③由y=3sin 2x的图象向右平移个单位长度可以得到图象y=3sin2(x﹣)的图象,故错误.故选:C.【点睛】考查了三角函数图象的对称性,单调性和函数图象的平移.属于基础题型,应熟练掌握.二.填空题(共4小题,满分20分,每小题5分)13.已知,则tan(π﹣α)的值是﹣2 .【分析】由已知利用诱导公式可得﹣2cosα=﹣sinα,根据同角三角函数基本关系式可求tanα的值,利用诱导公式化简所求即可得解.【答案】解:∵,∴﹣2cosα=﹣sinα,可得tanα=2,∴tan(π﹣α)=﹣tanα=﹣2.故答案为:﹣2.【点睛】本题主要考查了诱导公式,同角三角函数基本关系式在三角函数化简求值中的应用,考查了转化思想,属于基础题.14.函数y=3cos x(0≤x≤π)的图象与直线y=﹣3及y轴围成的图形的面积为3π.【分析】由题意画出图形,利用定积分表示曲边梯形的面积,然后计算求值.【答案】解:函数y=3cos x(0≤x≤π)的图象与直线y=﹣3及y轴围成的图形如图:面积为=(3sin x+3x)=3π;故答案为:3π.【点睛】本题考查了定积分的应用;关键是利用定积分表示出所围成的图形面积.15.已知函数f(x)=sin(ωx+φ)(ω>0,﹣π≤φ<π)的图象如图所示,则φ=﹣【分析】根据三角函数图象和性质,求出函数的周期,即可求出ω和φ的值.【答案】解:由图象得==,则T==,即ω=,即f(x)=sin(x+φ),∵f()=sin(×+φ)=1,∴×+φ=+2kπ,即φ=﹣+2kπ,∵﹣π≤φ<π,∴当k=0时,φ=﹣,故答案为:﹣.【点睛】本题主要考查三角函数的图象和性质,根据条件求出ω和φ的值是解决本题的关键.16.给出下列命题:①函数是奇函数;②存在实数x,使sin x+cos x=2;③若α,β是第一象限角且α<β,则tanα<tanβ;④是函数的一条对称轴;⑤函数的图象关于点成中心对称.其中正确命题的序号为①④.【分析】利用诱导公式、正弦函数和余弦函数性质以及图象特征,逐一判断各个选项是否正确,从而得出结论.【答案】解:①函数=﹣sin x,而y=﹣sin x是奇函数,故函数是奇函数,故①正确;②因为sin x,cos x不能同时取最大值1,所以不存在实数x使sin x+cos x=2成立,故②错误.③令α=,β=,则tanα=,tanβ=tan=tan=,tanα>tanβ,故③不成立.④把x=代入函数y=sin(2x+),得y=﹣1,为函数的最小值,故是函数的一条对称轴,故④正确;⑤因为y=sin(2x+)图象的对称中心在图象上,而点不在图象上,所以⑤不成立.故答案为:①④.【点睛】本题主要考查诱导公式、正弦函数和余弦函数性质以及图象特征,属于基础题.三.解答题(共6小题,满分70分)17.(10分)已知sinα是方程5x2﹣7x﹣6=0的根,求的值.【分析】由已知求得sinα,然后利用三角函数的诱导公式化简求值.【答案】解:由sinα是方程5x2﹣7x﹣6=0的根,可得sinα=或sinα=2(舍),∴===﹣tanα.由sinα=﹣可知α是第三象限或者第四象限角.∴tanα=或﹣.即所求式子的值为.【点睛】本题考查一元二次方程根的求法,考查利用诱导公式化简求值,考查计算能力,是基础题.18.(12分)已知函数f(x)=A sin(ωx+φ)(A>0,ω>0,x∈R)在一个周期内的图象如图所示,求直线y=与函数f(x)图象的所有交点的坐标.【分析】根据函数的最大值,得到A=2.由函数的周期为4,算出ω=,再根据当x=时,函数f(x)有最大值为2,解出φ=.因此得到f(x)=2sin(x+),然后解方程2sin(x+)=,结合正弦函数的图象可得x=+4kπ或+4kπ(k∈Z),由此即可得到直线y=与函数f(x)图象的所有交点的坐标.【答案】解:根据题意,得A=2,T==4π,可得ω=∵当x=时,函数f(x)有最大值为2∴ω×+φ=×+φ=+2kπ(k∈Z),解之得φ=+2kπ(k∈Z),取k=0得φ=因此,函数表达式为f(x)=2sin(x+)当f(x)=时,即2sin(x+)=,可得sin(x+)=∴x+=+2kπ或x+=+2kπ(k∈Z),可得x=+4kπ或+4kπ(k∈Z)由此可得,直线y=与函数f(x)图象的所有交点的坐标为(+4kπ,)或(+4kπ,)(k∈Z).【点睛】本题给出函数y=A sin(ωx+φ)的部分图象,要我们确定其解析式并求函数图象与y=的交点坐标,着重考查了三角恒等变换和三角函数的图象与性质等知识点,属于基础题.19.(12分)已知f(x)=sin(2x+)+,x∈R(1)求函数f(x)的最小正周期;(2)求函数f(x)的单调减区间;(3)函数f(x)的图象可以由函数y=sin2x(x∈R)的图象经过怎样变换得到?【分析】由条件利用正弦函数的周期性、单调性,y=A sin(ωx+φ)的图象变换规律,得出结论.【答案】解:(1)对于f(x)=sin(2x+)+,x∈R,它的周期为T==π.(2)由2kπ+≤2x+≤2kπ+,k∈Z,得kπ+≤x≤kπ+,k∈Z,所以所求的单调减区间为[kπ+,kπ+],k∈Z.(3)把y=sin2x的图象上所有点向左平移个单位,可得y=sin(2x+)的图象;再向上平移个单位,即得函数f(x)=sin(2x+)+的图象.【点睛】本题主要考查正弦函数的周期性、单调性,y=A sin(ωx+φ)的图象变换规律,属于基础题.20.(12分)已知函数y=A sin(ωx+φ)(A>0,ω>0)的图象过点P(,0),图象与P点最近的一个最高点坐标为(,5).(1)求函数的解析式;(2)求函数的最大值,并写出相应的x的值;(3)求使y≤0时,x的取值范围.【分析】(1)由函数的最大值求A,由周期求出ω,由五点法作图求出φ的值,可得函数的解析式.(2)利用正弦函数取最大值的条件以及函数的最大值,得出结论.(3)由5sin(2x﹣)≤0,可得2kπ﹣π≤2x﹣≤2kπ(k∈Z),由此求得x的取值范围.【答案】解:(1)由题意知=﹣=,∴T=π.∴ω==2,由ω•+φ=0,得φ=﹣,又A=5,∴y=5sin(2x﹣).(2)函数的最大值为5,此时,2x﹣=2kπ+(k∈Z).∴x=kπ+(k∈Z).(3)∵5sin(2x﹣)≤0,∴2kπ﹣π≤2x﹣≤2kπ(k∈Z).∴x的取值范围是{x|kπ﹣≤x≤kπ+,(k∈Z)}.【点睛】本题主要考查由函数y=A sin(ωx+φ)的部分图象求解析式,正弦函数的值域,解三角不等式,属于基础题.21.(12分)已知cos(+α)=2sin(α﹣).(1)求的值.(2)求sin2α+sinαcosα+cos2α的值.【分析】(1)直接利用诱导公式化简已知条件,化简所求表达式为正切函数的形式,求解即可.(2)所求表达式的分母通过平方关系式代换,然后化简所求表达式为正切函数的形式,求解即可.【答案】解:cos(+α)=2sin(α﹣).可得﹣sinα=﹣2cosα,∴tanα=2(1)===.(2)sin2α+sinαcosα+cos2α====.【点睛】本题考查诱导公式的应用,三角函数的化简求值,考查计算能力.22.(12分)函数f(x)=A sin(ωx+φ)的图象如图所示,且过点(0,1),其中A>0,ω>0,|φ|<.(1)求函数的解析式.(2)若函数f(x)的图象向左平移m个单位所对应的函数h(x)是奇函数,求满足条件的最小正实数m.(3)设函数g(x)=f(x)+a+1,x∈[0,],若函数g(x)恰有两个零点,求a的范围.【分析】(1)由函数的图象可得T=(+)解得ω,图象经过(﹣,0),0=A sin(2×﹣+φ),|φ|<,解得φ,图象经过(0,1),1=A sin(2×0+),可得A,从而可求函数的解析式.(2)由条件根据函数y=A sin(ωx+φ)的图象变换规律,可得y=sin(2x+2m+)为奇函数,可得2m+=kπ,k∈z,由此求得m的最小值.(3)根据正弦函数的单调性,得到当t=sin(2x+)∈[,1)时,方程g(x)=0有两个零点,即2t+a+1=0,t∈[,1),由此建立关于a的不等式,解之即可得到实数a的取值范围.【答案】解:(1)由函数的图象可得T=(+)=π,T=,解得ω=2.图象经过(﹣,0),0=A sin(2×﹣+φ),|φ|<,解得φ=,图象经过(0,1),1=A sin(2×0+),可解得A=2,故f(x)的解析式为y=2sin(2x+).(2)把函数f(x)的图象向左平移m个单位所对应的函数的解析式为:y=sin[2(x+m)+]=sin(2x+2m+),再根据y=sin(2x+2m+)为奇函数,可得2m+=kπ,k∈z,故m的最小值为.(3)g(x)=f(x)+a+1=2sin(2x+)+a+1,∵当x∈[0,]时,且x≠时,存在两个自变量x对应同一个sin x(2x+),即当t=sin(2x+)∈[,1)时,方程g(x)=0有两个零点,∵g(x)=f(x)+a+1在x∈[0,]上有两个零点,即2t+a+1=0,t∈[,1),∴t =∈[,1),解之得a∈(﹣3,﹣2].【点睛】本题主要考查方程根的存在性以及个数判断,正弦函数的图象和性质,函数y=A sin(ωx+φ)的图象变换规律,体现了数形结合、转化的数学思想,属于中档题.21。

高一数学试题及答案

高一数学试题及答案

高一数学试题及答案一、选择题(本大题共12小题,每小题5分,共60分,每题有且只有一个选项是正确的,请把答案填在答题卡上)1.某中学有高一学生400人,高二学生300人,高三学生500人,现用分层抽样的方法在这三个年级中抽取120人进行体能测试,则从高三抽取的人数应为( ) A .40 B .48 C .50 D .80 【答案】 C2.同时掷两枚骰子,所得点数之和为5的概率为( ).A .14 B . 19 C .16 D .112【答案】 B3.从一批产品中取出三件产品,设A =“三件产品全不是次品”,B =“三件产品全是次品”,C =“三件产品不全是次品”,则下列结论正确的是( )A. A 与C 互斥B. B 与C 互斥C. 任何两个均互斥D. 任何两个均不互斥【答案】 B4.函数12sin[()]34y x π=+的周期、振幅、初相分别是()A .3π,2-,4πB .3π,2,12π C .6π,2,12π D .6π,2,4π 【答案】C5.下列角中终边与330°相同的角是( )A .30°B .-30°C .630°D .-630° 【答案】选B.6.设α是第二象限角,P (x,4)为其终边上的一点,且cos α=15x ,则tan α=( )A.43B.34 C .-34 D .-43【答案】 D【解析】 x <0,r =x 2+16,∴cos α=x x 2+16=15x ,∴x2=9,∴x =-3,∴tan α=-43.7.如果cos(π+A )=-12,那么sin(π2+A )=( )A .-12B.12 C .-32D.32【答案】 B解析:.cos(π+A )=-cos A =-12,则cos A =12,sin(π2+A )=cos A =12.8.若函数f (x )=sin x +φ3(φ∈[0,2π])是偶函数,则φ=( )A.π2B.2π3C.3π2D.5π3【答案】 C解析:.由已知f (x )=sin x +φ3是偶函数,可得φ3=k π+π2,即φ=3k π+3π2(k ∈Z ).又φ∈[0,2π],所以φ=3π2,故选C.9.已知函数sin()y A x B ωϕ=++的一部分图象 如右图所示,如果0,0,||2A πωϕ>><,则( )A.4=AB.1ω=C.6πϕ=D.4=B【答案】 C.10.甲、乙、丙三名运动员在某次测试中各射击20次,三人测试成绩的频率分布条形图分别如图,若s 甲,s 乙,s 丙分别表示他们测试成绩的标准差,则( ) A .s 甲<s 乙<s 丙 B .s 甲<s 丙<s 乙 C .s 乙<s 甲<s 丙 D .s 丙<s 甲<s 乙甲 乙 丙 【答案】 D11.已知1cos()63πα+=-,则sin()3πα-的值为( )A .13B .13-C .233D .233-【答案】 A12.将函数f (x )=sin ωx (其中ω>0)的图象向右平移π4个单位长度,所得图象经过点(3π4,0),则ω的最小值是( )A.13 B .1 C.53D .2 【答案】 D解析:选D.将函数f (x )=sin ωx 的图象向右平移π4个单位长度得到函数y =sin[ω(x -π4)]的图象,因为所得图象经过点(34π,0),则sin ω2π=0,所以ω2π=k π(k ∈t ),即ω=2k (k ∈t ),又ω>0,所以ωmin =2,故选D.二、填空题(本大题共4小题,每小题5分,共20分,请把答案填在答题卡上) 13. 已知样本9,10,11,,x y 的平均数是102,则xy =________________. 【答案】9614.袋中有除颜色外完全相同的红、黄、白三种颜色的球各一个,从中每次任取1个.有放回地抽取3次, 则3个球颜色全不相同的概率为_______________. 【答案】2/915.如果sin α-2cos α3sin α+5cos α=-5,那么tan α的值为_______________.【答案】 -2316.16.函数f(x )=sinx+2|sinx|,x∈[0,2π]的图象与直线y=k 有且仅有两个不同的交点,则k 的取值范围是_____________________.【答案】13k <<三、解答题(本大题共70分,解答应写出必要分文字说明、演算步骤或证明过程)17.(本小题满分10分) 已知α是第二象限角,sin()tan()()sin()cos(2)tan()f πααπαπαπαα---=+--.(1) 化简()f α; (2)若31sin()23πα-=-,求()f α的值. 【答案】17. 解析:(1)sin (tan )1()sin cos (tan )cos f ααααααα-==---;(2)若31sin()23πα-=-,则有1cos 3α=-,所以()f α=3。

高一数学试题及参考答案

高一数学试题及参考答案

第一学期期末学业质量监测 高一数学试题及参考答案时量:120分钟 分值:150分参考公式:球的表面积24R S π=,球的体积334R V π=, 圆锥侧面积RL S π=侧 一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.请在答题卡上填涂相应选项.1.(集合的运算)集合{}22A x x =-<<,}20{≤≤=x x B ,则A B =( )A .()0,2B .(]0,2C .[]0,2D .[)0,22.(函数的概念)下列四个函数中,与y x =表示同一函数的是( )A. 2()y x =B. 2x y x=C.2y x =D. 33y x =3.(直线的截距)直线52100x y --=在x 轴上的截距为a ,则( ) A. 5=a B. 5-=a C. 2=a D. 2-=a4.(函数的单调性)下列函数中,在区间()0,1上是增函数的是( ) A .x y = B .x y -=3 C .xy 1=D .42+-=x y 5.(直线平行)已知直线01=+-y x 和直线012=+-y x ,它们的交点坐标是( ) A .(0,1) B .(1,0) C .(-1,0) D .(-2,-1) 6.(函数的图像)当10<<a 时,在同一坐标系中,函数xay -=与x y a log =的图象是( )(A)(B) (C) (D)7.(异面直线所成的角)在右图的正方体中,,M N 分别为棱BC 和棱1CC 的中点,则异面直线1AA 和MN 所成的角为( )A .30oB .45oC .60oD .90o8.(函数的零点)已知函数()f x 的图像是连续不断的,有如下x ,()f x 对应值表:x1 2 3 4 5 6 ()f x132.5210.5-7.5611.5-53.76-126.8函数()f x 在区间[1,6]上有零点至少有( )A . 2个 B. 3个 C .4个 D. 5个9.(球的体积与表面积)已知正方体的内切球(球与正方体的六个面都相切)的体积是323π,那么球的表面积等于( )A .π4 B. π8 C. π12 D. π1610.(函数的奇偶性和单调性)若偶函数)(x f 在(]1,-∞-上是增函数,则下列关系式中成立的是( )A .)2()1()23(f f f <-<- B .)2()23()1(f f f <-<- C .)23()1()2(-<-<f f f D .)1()23()2(-<-<f f f11.(指对数的综合)三个数60.70.70.76log 6,,的大小关系为( )A. 60.70.70.7log 66<<B. 60.70.70.76log 6<< C .0.760.7log 660.7<< D. 60.70.7log 60.76<< 12.(函数综合) 对于函数)(x f 定义域中任意的)(,2121x x x x ≠有如下结论① )()()(2121x f x f x x f ⋅=+ ② )()()(2121x f x f x x f +=⋅ ③0)()(2121<--x x x f x f ④ 2)()()2(2121x f x f x x f +>+ 当3()log f x x =时,上述结论中正确的序号是( )A. ①②B. ②④C. ①③D. ③④ 二、填空题:本大题共8小题,每小题5分,满分40分.请将答案填在答题卡相应位置.13.(圆的标准方程)已知圆的方程为4)1()2(22=++-y x ,则圆心坐标14.(三视图)如果一个几何体的三视图如右图所示(单位长度:cm )15.(直线的斜率)直线0123=-+yx 16.(幂函数)幂函数nx x f =)(的图象过点)2,2(,则=)9(f ______3 17.(定义域)函数32lg -=x y 的定义域为 . 18.(分段函数与解不等式)已知函数3log ,0,()1,0,3x x x f x x >⎧⎪=⎨⎛⎫≤⎪⎪⎝⎭⎩则))2((-f f 的值 .219.(函数的奇偶性)已知函数()f x 错误!未找到引用源。

广西桂林市2023-2024学年高一下学期期末考试 数学含答案

广西桂林市2023-2024学年高一下学期期末考试 数学含答案

桂林市2023~2024学年度下学期期末质量检测高一年级数学(答案在最后)(考试用时120分钟,满分150分)注意事项:1.答卷前,考生务必用黑色字迹钢笔或签字笔将自己的校名、姓名、班级、学号和准考证号填写在答题卡上.将条形码横贴在答题卡的“条形码粘贴处”.2.作答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上.3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.考生必须保持答题卡的整洁.考试结束后,将答题卡交回.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数12i -+在复平面内对应的点所在的象限为()A.第一象限B.第二象限C.第三象限D.第四象限2.把2π3弧度化成角度是()A.30︒B.60︒C.90︒D.120︒3.已知向量(),1a m = ,()4,2b =- ,且2b a =-r r ,则m =()A .2B.2- C.12D.12-4.已知平面α,β和直线a ,b ,且αβ∥,a α⊂,b β⊂,则a 与b 的位置关系是()A.平行或异面B.平行C.异面D.相交5.已知3cos 5α=-,且α为第二象限角,则tan α=()A.34-B.34 C.43- D.436.已知圆锥的高为8,底面圆的半径为4,顶点与底面的圆周在同一个球的球面上,则该球的表面积为()A.100πB.68πC.52πD.50π7.“桂林山水甲天下”,如图,为测量桂林市某公园内一山的高MN ,选择公园内某点A 和另一座山的山顶C 为测量观测点.从A 点测得M 的仰角45MAN ∠=︒,C 点的仰角30CAB ∠=︒以及75MAC ∠=︒,从C点测得60MCA ∠=︒,已知山高50m BC =,则山高MN =()m .A. B. C.D.8.已知圆心角为30︒的扇形AOB 的半径为1,点C 是 AB 上的一点,点D 是线段OA 上的一点,点E 、F 是线段OB 上的两点,且四边形CDEF 为矩形,则该矩形的最大面积为()A.2B.2+C.12-D.12+二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知复数11i z =+,21i z =-,则下列说法正确的有()A .12z z = B.12=z z C.12i z z =- D.在复平面内1z ,2z 对应的点关于虚轴对称10.函数()()sin f x A x ωϕ=+(0A >,0ω>,π2ϕ<)在一个周期内的图象如图所示,则()A.2A =B.2ω=C.π6ϕ=-D.将函数()f x 图象上所有点的横坐标向右平移π3个单位(纵坐标不变)得到的函数图象关于y 轴对称11.如图,向透明塑料制成的长方体容器1111ABCD A B C D -内灌进一些水,水是定量的(定体积为V ).固定容器底面一边BC 于地面上,1BC =,再将容器倾斜,随着倾斜度的不同,有下面四个结论,其中正确的是()A.水面EFGH 所在四边形的面积为定值B.没有水的部分始终呈棱柱形C.棱11A D 一定与平面EFGH 平行D .当容器倾斜如图所示时,2BE BF V ⋅=(定值)三、填空题:本题共3小题,每小题5分,共15分.12.计算()()1i 2i +-=_________(其中i 为虚数单位).13.在正方体1111ABCD A B C D -中,M 为AB 的中点,则直线1AM 与CD 所成角的余弦值为_________.14.已知O 为ABC 内一点,且4850OA OB OC ++=,点M 在OBC △内(不含边界),若AM AB AC λμ=+,则λμ+的取值范围是_________.四、解答题:本题共5小题,共77分.解答应给出文字说明、证明过程及演算步骤.15.已知向量()1,3a =,()2,1b =- .(1)求向量a 与b夹角的余弦值;(2)若向量a b + 与a kb -互相垂直,求k 的值.16.已知函数()π3cos 23f x x ⎛⎫=+ ⎪⎝⎭.(1)求()f x 的最小正周期;(2)求()f x 的最大值以及取得最大值时x 的集合.(3)求()f x 的单调递减区间.17.已知正方体1111ABCD A B C D -的棱长为2.(1)证明:1AC BD ⊥.(2)求三棱锥1A C BD -的体积.18.在ABC 中,角,,A B C 的对边分别是,,a b c ,且sin cos sin cos 3cos a A B b A A a C +=.(1)求角C 的大小;(2)若3a =,且1AB AC ⋅=,求ABC 的面积.19.如图,已知直线12l l ∥,A 是1l ,2l 之间的一点,且1AE l ⊥于点E ,2AF l ⊥于点F ,AE m =,AF n=(m ,n 为常数),点B 、C 分别为直线1l 、2l 上的动点,且AB AC ⊥,设ACF α∠=.(1)若π3α=,求ABC 的面积;(2)当A 恰好EF 中点时,求ABC 的周长的最小值.桂林市2023~2024学年度下学期期末质量检测高一年级数学(考试用时120分钟,满分150分)注意事项:1.答卷前,考生务必用黑色字迹钢笔或签字笔将自己的校名、姓名、班级、学号和准考证号填写在答题卡上.将条形码横贴在答题卡的“条形码粘贴处”.2.作答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上.3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.考生必须保持答题卡的整洁.考试结束后,将答题卡交回.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数12i -+在复平面内对应的点所在的象限为()A.第一象限 B.第二象限C.第三象限D.第四象限【答案】B 【解析】【分析】由坐标判断象限即可.【详解】复数12i -+在复平面内对应的点的坐标为()1,2-,在第二象限.故选:B2.把2π3弧度化成角度是()A.30︒B.60︒C.90︒D.120︒【答案】D 【解析】【分析】利用弧度制与角度制的转化可得解.【详解】因为π180=︒,所以22π18012033=⨯︒=︒.故选:D.3.已知向量(),1a m = ,()4,2b =- ,且2b a =-r r ,则m =()A.2B.2- C.12D.12-【答案】B 【解析】【分析】将向量坐标代入等式,列出方程,求解即得.【详解】由2b a =-r r 可得(4,2)2(,1)m -=-,解得,2m =-.故选:B .4.已知平面α,β和直线a ,b ,且αβ∥,a α⊂,b β⊂,则a 与b 的位置关系是()A.平行或异面B.平行C.异面D.相交【答案】A 【解析】【分析】结合两平面平行的位置关系,判断两直线没有公共点即得.【详解】因αβ∥,a α⊂,b β⊂,则a 与b 没有公共点,即a 与b 平行或异面.故选:A .5.已知3cos 5α=-,且α为第二象限角,则tan α=()A.34-B.34 C.43- D.43【答案】C 【解析】【分析】应用同角三角函数关系计算求解即可.【详解】因为α为第二象限角,又因为3cos ,5α=-4sin 5α==,所以4sin 45tan 3cos 35ααα===--.故选:C.6.已知圆锥的高为8,底面圆的半径为4,顶点与底面的圆周在同一个球的球面上,则该球的表面积为()A.100πB.68πC.52πD.50π【答案】A 【解析】【分析】根据题意,由条件可得球的半径=5r ,再由球的表面积公式,即可得到结果.【详解】设球的半径为r ,则()22284r r =-+,解得=5r ,所以球的表面积为24π100πr =,故选:A.7.“桂林山水甲天下”,如图,为测量桂林市某公园内一山的高MN ,选择公园内某点A 和另一座山的山顶C 为测量观测点.从A 点测得M 的仰角45MAN ∠=︒,C 点的仰角30CAB ∠=︒以及75MAC ∠=︒,从C 点测得60MCA ∠=︒,已知山高50m BC =,则山高MN =()m .A. B. C.D.【答案】B 【解析】【分析】先由条件求得AC 长,再利用正弦定理求得MA 长,最后在Rt MAN 中求得MN .【详解】在Rt ABC △中,由sin CAB BCAC∠=可得;在MAC △中,由正弦定理,sin sin MA ACMCA AMC =∠∠,即得100sin 60sin(1807560)MA ⨯==--在Rt MAN 中,sin MNMAN AM=∠,则45MN == 故选:B .8.已知圆心角为30︒的扇形AOB 的半径为1,点C 是 AB 上的一点,点D 是线段OA 上的一点,点E 、F 是线段OB 上的两点,且四边形CDEF 为矩形,则该矩形的最大面积为()A.2B.2+C.312-D.12+【答案】C 【解析】【分析】结合图形,设COB θ∠=,将CF ,CD 用θ的三角函数式表示,利用三角恒等变换将矩形面积化成sin(260)2θ+-,利用θ的范围,结合正弦函数的图象特点即可求得其最大值.【详解】如图,设COB θ∠=,则30COA θ∠=- ,(0,30)θ∈ ,sin ,CF θ=由正弦定理,1sin(30)sin150CD θ=- ,解得2sin(30)CD θ=-,故矩形CDEF 的面积为:132sin(30)sin 2(cos sin )sin 22S θθθθθ=-=-213sin cos 3sin 2cos 2)22θθθθθ=-=--3sin(260)2θ=+-,因030θ<< ,则得60260120θ<+< ,故当26090θ+= 时,即15θ= 时,max 312S =-.故选:C.二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知复数11i z =+,21i z =-,则下列说法正确的有()A.12z z =B.12=z z C.12i z z =- D.在复平面内1z ,2z 对应的点关于虚轴对称【答案】AB 【解析】【分析】分别应用共轭复数、复数的模、复数的除法法则和复数的几何意义进行求解.【详解】对于选项A ,121i=z z =-,故选项A 正确;对于选项B ,1112z =+=,221(1)2z =+-=12=z z ,故选项B 正确;对于选项C ,2121i (1i)2i i 1i (1i)(1i)2z z ++====--+,故选项C 错误;对于选项D ,在复平面内1z 对应的点为1(1,1)Z ,2z 对应的点为2(1,1)Z -,点12,Z Z 关于实轴对称,故选项D 错误.故选:AB.10.函数()()sin f x A x ωϕ=+(0A >,0ω>,π2ϕ<)在一个周期内的图象如图所示,则()A.2A =B.2ω=C.π6ϕ=-D.将函数()f x 图象上所有点的横坐标向右平移π3个单位(纵坐标不变)得到的函数图象关于y 轴对称【答案】AC 【解析】【分析】对于A ,由图易得;对于B ,利用周期公式即可求得;对于C ,代入特殊点计算即得;对于D ,利用平移变换求得函数式,再利用函数奇偶性即可判定.【详解】对于A ,因()()sin f x A x ωϕ=+,由图知max min22y y A -==,故A 正确;对于B ,设函数的最小正周期为T ,由图知35πππ49182T =-=,解得2π3T =,则2π2π3ω=,解得3ω=,故B 错误;对于C ,由图知函数图象经过点π(,0)18,则得π2sin(3)018ϕ⨯+=,解得π2π,Z 6k k ϕ=-+∈,因π2ϕ<,故得π6ϕ=-,故C 正确;对于D ,将函数()π2sin(36f x x =-图象上所有点的横坐标向右平移π3个单位(纵坐标不变)得到函数为:ππ7ππ2sin[3(]2sin(3)2sin(33666y x x x =--=-=--,不是偶函数,故D 错误.故选:AC.11.如图,向透明塑料制成的长方体容器1111ABCD A B C D -内灌进一些水,水是定量的(定体积为V ).固定容器底面一边BC 于地面上,1BC =,再将容器倾斜,随着倾斜度的不同,有下面四个结论,其中正确的是()A.水面EFGH 所在四边形的面积为定值B.没有水的部分始终呈棱柱形C.棱11A D 一定与平面EFGH 平行D.当容器倾斜如图所示时,2BE BF V ⋅=(定值)【答案】BCD 【解析】【分析】画出随着倾斜度得到的图形,根据线面平行的性质及棱柱的定义判断A ,B ,C ,再根据柱体的体积公式判断D.【详解】依题意将容器倾斜,随着倾斜度的不同可得如下三种情形,对于A :水面EFGH 是矩形,线段FG 的长一定,从图1到图2,再到图3的过程中,线段EF 长逐渐增大,则水面EFGH 所在四边形的面积逐渐增大,故A 错误;对于B :依题意,//BC 水面EFGH ,而平面11BCC B 平面EFGH FG =,BC ⊂平面11BCC B ,则//BC FG ,同理//BC EH ,而//BC AD ,BC FG EH AD ===,又BC ⊥平面11ABB A ,平面11//ABB A 平面11CDD C ,因此有水的部分的几何体是直棱柱,长方体去掉有水部分的棱柱,没有水的部分始终呈棱柱形,故B 正确;对于C :因为11////A D BC FG ,FG ⊂平面EFGH ,11A D ⊄平面EFGH ,因此11//A D 平面EFGH ,即棱11A D 一定与平面EFGH 平行,故C 正确;对于D :当容器倾斜如图3所示时,有水部分的几何体是直三棱柱,其高为1BC =,体积为V ,又12BEF S BE BF =⋅ ,BEF V S BC =⋅ ,所以22V BE BF V BC ⋅==,故D 正确.故选:BCD三、填空题:本题共3小题,每小题5分,共15分.12.计算()()1i 2i +-=_________(其中i 为虚数单位).【答案】3i +##i 3+【解析】【分析】把复数应用乘法化简即可.【详解】()()21i 2i 2i 2i i 3i +-=-+-=+.故答案为:3i+13.在正方体1111ABCD A B C D -中,M 为AB 的中点,则直线1AM 与CD 所成角的余弦值为_________.【答案】5【解析】【分析】利用平移得到异面直线所成角,借助于直角三角形求解即得.【详解】在正方体1111ABCD A B C D -中,因//CD AB ,故直线1A M 与AB 所成角即直线1A M 与CD 所成角,即1AMA ∠.设正方体棱长为2,因M 为AB 的中点,则1A M =,于是1cos5AMA ∠==,即直线1A M 与CD 所成角的余弦值为5.故答案为:5.14.已知O 为ABC 内一点,且4850OA OB OC ++= ,点M 在OBC △内(不含边界),若AM AB AC λμ=+ ,则λμ+的取值范围是_________.【答案】13,117⎛⎫⎪⎝⎭【解析】【分析】设AO mAB nAC =+ ,根据题意结合平面向量基本定理可得851717AO AB AC =+uuu r uu u r uuu r ,设OM xOB yOC =+uuu r uu u r uuu r ,且0100x y x y <+<⎧⎪>⎨⎪>⎩,整理可得8985512171717171717AM x y AB x y AC ⎛⎫⎛⎫=+-+-+ ⎪ ⎪⎝⎭⎝⎭uuu r uu u r uuu r ,进而可得结果.【详解】设,,AO mAB nAC m n =+∈R uuu r uu u r uuu r ,即OA AO mAB nAC =-=--uu r uuu r uu u r uuu r ,可得()()1,1OB OA AB m AB nAC OC OA AC mAB n AC =+=--=+=-+-uu u r uu r uu u r uu u r uuu r uuu r uu r uuu r uu u r uuu r,因为4850OA OB OC ++=,即()()()481510mAB nAC m AB nAC mAB n AC ⎡⎤⎡⎤--+--+-+-=⎣⎦⎣⎦ ,整理可得()()8175170m AB n AC -+-= ,且,AB AC 不共线,则8175170m n -=-=,解得85,1717m n ==,即851717AO AB AC =+uuu r uu u r uuu r ,95812,17171717OB AB AC OC AB AC =-=-+uu u r uu u r uuu r uuu r uu u r uuu r ,又因为点M 在OBC △内(不含边界),设,,OM xOB yOC x y =+∈R ,且0100x y x y <+<⎧⎪>⎨⎪>⎩,可得9851217171717OM x y AB x y AC ⎛⎫⎛⎫=-+-+ ⎪ ⎪⎝⎭⎝⎭uuu r uu u r uuu r ,则8985512171717171717AM AO OM x y AB x y AC ⎛⎫⎛⎫=+=+-+-+ ⎪ ⎪⎝⎭⎝⎭uuu r uuu r uuu r uu u r uuu r ,可得8981717175512171717x y x y λμ⎧=+-⎪⎪⎨⎪=-+⎪⎩,可得()1341717x y λμ+=++,且01x y <+<,可得()13413,1171717x y λμ⎛⎫+=++∈ ⎪⎝⎭,所以λμ+的取值范围是13,117⎛⎫ ⎪⎝⎭.故答案为:13,117⎛⎫ ⎪⎝⎭.【点睛】关键点点睛:1.设AO mAB nAC =+ ,根据题意结合平面向量基本定理可得85,1717m n ==;2.根据三角形可设OM xOB yOC =+uuu r uu u r uuu r ,且0100x y x y <+<⎧⎪>⎨⎪>⎩,用,x y 表示,λμ,即可得结果.四、解答题:本题共5小题,共77分.解答应给出文字说明、证明过程及演算步骤.15.已知向量()1,3a = ,()2,1b =- .(1)求向量a 与b 夹角的余弦值;(2)若向量a b + 与a kb - 互相垂直,求k 的值.【答案】(1)10.(2)116k =.【解析】【分析】(1)利用平面向量的数量积即可求得结果.(2)利用两向量垂直的条件即可求得结果.【小问1详解】由()1,3a = ,()2,1b =- ,所以1(2)31231a b ⋅=⨯-+⨯=-+=,||a ==b == ,设向量a 与b 的夹角为θ,则cos 10||||a b a b θ⋅=== .【小问2详解】若向量a b + 与a kb - 互相垂直,则22()()(1)10510a b a kb a kb k a b k k +⋅-=-+-⋅=-+-=,所以116k =.16.已知函数()π3cos 23f x x ⎛⎫=+⎪⎝⎭.(1)求()f x 的最小正周期;(2)求()f x 的最大值以及取得最大值时x 的集合.(3)求()f x 的单调递减区间.【答案】(1)π;(2)最大值为3,π{|π,Z}6x x k k =-+∈;(3)πππ,π63k k ⎡⎤-++⎢⎥⎣⎦,k ∈Z .【解析】【分析】(1)利用周期公式计算即得;(2)将π23x +看成整体角,结合余弦函数的图象,即可求得;(3)将π23x +看成整体角,结合余弦函数的递减区间,计算即得.【小问1详解】2ππ2T ==,故()f x 的最小正周期为π;【小问2详解】当π22π3x k +=,k ∈Z 时,即ππ6x k =-+,k ∈Z 时,πcos 213x ⎛⎫+= ⎪⎝⎭,得()max 3f x =,即()f x 最大值为3.则()f x 的最大值为3,取得最大值时x 的集合为π{|π,Z}6x x k k =-+∈;【小问3详解】由ππ2π22π3k x k ≤+≤+,k ∈Z 得ππππ63k x k -+≤≤+,k ∈Z 所以函数()f x 的单调递减区间是πππ,π63k k ⎡⎤-++⎢⎥⎣⎦,k ∈Z .17.已知正方体1111ABCD A B C D -的棱长为2.(1)证明:1AC BD ⊥.(2)求三棱锥1A C BD -的体积.【答案】(1)证明见解析(2)43【解析】【分析】(1)先证BD ⊥平面1ACC ,则可得1AC BD ⊥;(2)利用等体积转化即可求得.【小问1详解】在正方体1111ABCD A B C D -中,BD AC ⊥,1C C ⊥Q 平面ABD ,BD ⊂平面ABD ,1C C BD ∴⊥.又1C C AC C = ,1C C 、AC ⊂平面1ACC ,BD ∴⊥平面1ACC .又1AC ⊂平面1ACC ,1AC BD ∴⊥.【小问2详解】在正方体1111ABCD A B C D -中,1C C ⊥平面ABD ,1111111332A C BD C ABD ABD V V S CC AD AB CC --∴==⨯=⨯⨯⨯⨯ 114222323=⨯⨯⨯⨯=.18.在ABC 中,角,,A B C 的对边分别是,,a b c ,且sin cos sin cos 3cos a A B b A A a C +=.(1)求角C 的大小;(2)若3a =,且1AB AC ⋅= ,求ABC 的面积.【答案】(1)π3(2)2【解析】【分析】(1)根据题意,由正弦定理边化角,代入计算,即可得到结果;(2)根据题意,由余弦定理结合三角形的面积公式代入计算,即可得到结果.【小问1详解】因为sin cos sin cos cos a A B b A A C +=,所以根据正弦定理得sin sin cos sin sin cos cos A A B A B A A C +=,因为sin 0A ≠,所以sin cos sin cos A B B A C +=,即()sin A B C +=,即sin C C =.因为cos 0C ≠,所以tan C =.因为0πC <<,所以π3C =.【小问2详解】cos 1AB AC bc A ⋅== .因为2222cos a b c bc A =+-,所以2292cos 11b c bc A +=+=①.因为2222cos c a b ab C =+-,所以2222π2cos 23cos 3393b c ab C a b b -=-=⨯⨯⨯-=-②.联立①②可得22320b b --=,解得2b =(负根舍去),故ABC 的面积为11333sin 322222ab C =⨯⨯⨯=.19.如图,已知直线12l l ∥,A 是1l ,2l 之间的一点,且1AE l ⊥于点E ,2AF l ⊥于点F ,AE m =,AF n=(m ,n 为常数),点B 、C 分别为直线1l 、2l 上的动点,且AB AC ⊥,设ACF α∠=.(1)若π3α=,求ABC 的面积;(2)当A 恰好EF 中点时,求ABC 的周长的最小值.【答案】(1)33mn (2))221m+.【解析】【分析】(1)由3πBAE α∠==,结合锐角三角函数求出,AB AC ,进而得出三角形面积;(2)由直角三角形的边角关系结合勾股定理得出BC ,进而表示周长,再利用sin cos αα+与sin cos αα的关系,换元并由反比例函数性质得出周长最小值.【小问1详解】由题意,易得3πBAE α∠==,1AE l ⊥ ,2AF l ⊥,且AE m =,AF n =,2co πs 3mAB m ∴==,33sin 3πnAC ==,又AB AC ⊥ ,11232322233ABC S AB AC m n mn ∴=⋅=⨯⨯=△.【小问2详解】由题意有0m n =>,sin m AB α=,cos m AC α=,22222211sin cos sin cos sin cos m m m BC αααααα=+=+,所以ABC 的周长()111sin cos 1sin cos sin cos sin cos f m m ααααααααα++⎛⎫⎛⎫=++= ⎪⎝⎭⎝⎭,其中π0,2α⎛⎫∈ ⎪⎝⎭.设sin cos t αα=+,则πsin cos 4t ααα⎛⎫=+=+ ⎪⎝⎭,ππ3,444πα⎛⎫+∈ ⎪⎝⎭,所以πsin ,142α⎛⎤⎛⎫+∈ ⎥ ⎪ ⎝⎭⎝⎦,即(π4t α⎛⎫=+∈ ⎪⎝⎭,所以21sin cos 2t αα-=.所以212112t m y m t t +=⋅=--,(t ∈,于是当t =时,())min 21f m α==+,因此,周长的最小值为)21m +.。

经典高一数学上册第一次月考测试题(含答案)推荐

经典高一数学上册第一次月考测试题(含答案)推荐

精心整理经典高一数学上册第一次月考测试题(含答案)推荐以下是为大家整理的关于《经典高一数学上册第一次月考测试题(含答案)推荐》的文章,供大家学习参考!1.A .B C .D2.A.f C.f3.A .B 4A .B .C .D .5.如果函数在区间上是减少的,那么实数的取值范围是()A 、B 、C 、D 、6.函数y=是()A.奇函数B.偶函数C.既是奇函数又是偶函数D.非奇非偶函数7.已知{1,2}M{1,2,3,4},则这样的集合M有()个A.8.A、B9A.B10A.B11.〉0A.(12.已知,则下列不等式中成立的一个是()A.B.C.D.二、填空题(每小题4分,共计16分,将答案填入答题卡内)13.已知集合A=-2,3,4-4,集合B=3,.若BA,则实数=.14.函数在上的值与最小值之和为15.奇函数定义域是,则16.题号答案15.______________________;16._____________________三、解答题:17、(本题满分10分)已知集合A={x|a≤x≤a+3},B={x|x5}.(1)若A∩B=Φ,求a的取值范围;(2)若A∪B=B,求a的取值范围.【解】18、(本题满分10分)设函数.(119、(1)(2)20、上的值21、(本题满分12分)已知奇函数在定义域上是减函数,满足f(1-a)+f(1-2a)〈0,求的取值范围。

【解】一、选择题BDCDABBDBADD二、填空题13:214:315:-116:,17:18:(219:20解得当0解得综上得a=21:解:∵f(1-a)+f(1-2a)〈0,∴f(1-a)〈-f(1-2a)∵是奇函数∴f(1-a)〈f(2a-1)又∵在定义域上是减函数∴1-a〉2a-1-1〈1-a〈1-1〈解得。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档