热力发电厂动力循环及其热经济性分析

合集下载

热力发电厂动力循环和热经济性分析

热力发电厂动力循环和热经济性分析

热力发电厂动力循环和热经济性分析热力发电厂是利用燃料燃烧产生的热能,通过动力循环转化为机械能,再经由发电机转化为电能的设备。

热力发电厂的动力循环系统是其核心部分,直接影响发电厂的发电效率和热经济性。

本文将对热力发电厂的动力循环和热经济性进行分析,探讨其影响因素和优化策略。

一、热力发电厂动力循环热力发电厂的动力循环通常采用蒸汽动力循环,其基本流程包括燃料燃烧产生热能、锅炉产生高温高压蒸汽、蒸汽推动汽轮机做功、汽轮机驱动发电机发电、冷凝器冷却蒸汽成为凝水、给水加热再进入锅炉循环。

这一循环过程中,热能不断转化为机械能和电能,完成能量转换的功能。

常见的动力循环系统有单回路、双回路和再热再生等不同种类,每种系统都有其特点和应用场景。

热力发电厂动力循环系统的性能主要取决于压力、温度和流量等参数。

为了提高发电效率和减少燃料消耗,热力发电厂通常会采用高参数化设计,提高锅炉出口蒸汽参数和汽轮机进汽参数,增大机组容量和提高透平效率。

优化循环方式、改进设备结构和提高系统运行稳定性也是提高动力循环效率的重要途径。

二、热力发电厂热经济性分析热力发电厂的热经济性是评价其综合能源利用效果的重要指标,也是节能减排的关键环节。

热力发电厂的热经济性主要包括锅炉燃烧效率、汽轮机汽耗、热力发电厂热力循环的热力损失等因素。

首先是锅炉燃烧效率。

锅炉是热力发电厂的关键设备,其燃烧效率直接影响热能利用程度和二氧化碳排放量。

提高锅炉燃烧效率是节能减排的重要途径,可以采用提高燃烧温度、改进燃烧器结构和优化燃料供给等技术手段进行改进。

其次是汽轮机汽耗。

汽轮机是热力发电厂的关键设备之一,其汽耗直接影响发电效率和热经济性。

提高汽轮机汽耗是提高热力发电厂综合能源利用效率的关键,可以采用提高汽轮机进汽参数、减少内发热损失和提高汽轮机效率等措施进行改进。

为了提高热力发电厂动力循环效率和热经济性,可以采取以下优化策略:1、采用高参数化设计。

提高锅炉出口蒸汽参数和汽轮机进汽参数,增大机组容量和提高透平效率,提高热力发电厂的动力循环效率。

热力发电厂动力循环和热经济性分析

热力发电厂动力循环和热经济性分析

热力发电厂动力循环和热经济性分析1. 引言1.1 热力发电厂动力循环和热经济性分析热力发电厂动力循环和热经济性分析是热力发电领域中的重要内容,通过对发电厂的动力循环和热经济性进行分析,可以帮助优化能源利用和提升发电效率。

动力循环是指热力发电厂中燃料燃烧产生热能,通过锅炉产生高温高压蒸汽驱动汽轮机发电的过程。

热力发电厂的动力循环过程是实现能源转换和电力输出的核心环节,其效率和运行稳定性直接影响发电厂的经济性和环保性能。

热经济性分析则是评价热力发电厂能源利用的经济效益和环保效益,主要包括能源消耗、电力输出、燃料成本、发电效率等指标。

了解热力发电厂的动力循环和热经济性分析方法,可以为发电厂的运行管理和优化提供科学依据,促进发电行业的可持续发展。

在未来,随着绿色能源发展的不断推进,热力发电厂动力循环和热经济性分析将成为发电行业的重要研究方向,对环境和经济的影响也将更加凸显,因此这一领域的研究具有重要意义。

【内容结束】.2. 正文2.1 热力发电厂动力循环的意义热力发电厂的动力循环是指利用燃料燃烧产生热量,通过汽轮机转换为机械能,然后再通过发电机转换为电能的过程。

这一循环过程在能源转换中起着至关重要的作用,具有以下几点重要意义:1. 能源转化效率高:热力发电厂的动力循环过程在提高能源的利用效率方面具有重要作用。

通过不断优化动力循环系统的设计和运行参数,可以最大程度地提高燃料的利用率,降低能源浪费。

2. 提高电网稳定性:热力发电厂动力循环的稳定运行对于电网的稳定性至关重要。

通过合理设计循环系统,并采用先进的监测和控制技术,可以确保电力系统的稳定供应,避免因电力波动而引起的网络故障。

3. 减少对环境的影响:优化热力发电厂的动力循环系统可以减少燃烧排放物的排放,减少对环境的污染。

通过清洁能源的利用和废热回收利用,可以实现绿色发电,降低温室气体排放。

热力发电厂动力循环的意义在于提高能源利用效率,保障电网的稳定运行,减少环境污染,推动能源转型发展。

01 热力发电厂动力循环及其热经济性解读

01 热力发电厂动力循环及其热经济性解读
第一章
总结
1 热量法与作功能力法计算的全厂总效率相同; 2 损失分析不同: 热量法:从热损失的角度分析 作功能力法:从做功能力损失的角度分析 3 用途: 热量法:定量分析,指导工程实际 作功能力法: 定性分析,指导技术革新
热力发电厂-Page 13
日期:2019年2月18日星期一
第二节 凝汽式发电厂的主要热经济性指标
热力发电厂-Page 17 日期:2019年2月18日星期一
第二节 凝汽式发电厂的主要热经济性指标
第一章
发电厂热耗量: Qcp Bqnet
3600 P e
cp
e 发电厂煤耗量: B 3600 P cp qnetcp
汽轮发电机组热耗量: Q0 3600 Pe
e
汽轮发电机组汽耗量: D 3600 Pe 0 wi m g 提示
热力发电厂-Page 5 日期:2019年2月18日星期一
凝汽式燃煤电厂生产过程
图0-14 凝汽式电厂生产过程示意图 热力发电厂-Page 6 日期:2019年2月18日星期一
燃料、燃烧系统 输煤及燃运系统 运输→卸煤装置→煤场→碎煤机→皮带→原煤仓 制粉系统 原煤仓→给煤机→磨煤机→粗粉分离器→细粉分离器→煤粉仓→ 给粉机→燃烧器→炉膛 风烟系统 (风)吸风口→冷风道→送风机→空预器→热风道→磨煤机→粗粉 分离器→细粉分离器→排粉机→燃烧器→炉膛 (烟)炉膛→屏过→对流过热器→省煤器→空预器→除尘器→引风 机→烟囱→大气 除尘除渣系统 (炉渣)炉膛冷灰斗→除渣装置→冲灰沟→灰渣泵→输灰管→灰场 (飞灰)除尘器→集灰斗→除灰装置→冲灰沟→灰渣泵→输灰管→ 灰场
2
热力发电厂-Page 10
日期:2019年2月18日星期一

热力发电厂动力循环及其热经济性

热力发电厂动力循环及其热经济性
工作原理
热力发电厂的工作原理主要是基于热力学的基本定律,通过燃烧过程将化学能 转化为热能,然后利用热能驱动汽轮机或燃气轮机转动,从而带动发电机发电 。
热力发电厂的重要性
能源供应
热力发电厂是全球能源供应的主 要来源之一,为工业、商业和居
民提供可靠的电力供应。
经济发展
热力发电厂的建设和维护为经济发 展提供了大量的就业机会,促进了 相关产业链的发展。
创新材料与工艺
采用新型耐高温、高压的材料 和工艺,提高设备的安全性和 可靠性。
智能化控制
引入先进的控制系统,实现动 力循环系统的智能化运行,提
高运行效率和稳定性。
03
热力发电厂的热经济性分 析
热经济性的定义与评价指标
热经济性定义
热力发电厂在生产电能过程中,利用 燃料所释放的热量与消耗的燃料之间 的效率关系。
04
热力发电厂的实际运行与 案例分析
实际运行中的问题与挑战
01
02
03
04
燃料消耗大
为了维持发电效率,需要大量 的燃料供应,增加了运行成本

排放问题
发电过程中产生的废气、废水 和废渣等污染物,对环境造成
压力。
设备老化与维护
长时间运行的设备容易出现磨 损和老化,影响发电效率和安
全性。
热能利用率低
部分热能未被充分利用而浪费 ,降低了热经济性。
环境保护
随着技术的发展和环保要求的提高 ,现代热力发电厂注重减少污染物 排放,对环境保护起到积极作用。
热力发电厂的发展历程与趋势
发展历程
自19世纪工业革命以来,热力发电 厂经历了从简单蒸汽机到现代燃气蒸汽联合循环发电厂的演变。
发展趋势
随着可再生能源的发展和环保要求的 提高,热力发电厂正朝着高效、清洁 和可持续的方向发展。未来将更加注 重能源多元化、智能化和灵活性。

热力发电厂动力循环和热经济性分析

热力发电厂动力循环和热经济性分析

热力发电厂动力循环和热经济性分析一、动力循环及其优化方法热力发电厂的动力循环包括汽轮机和发电机。

汽轮机是利用蒸汽推动旋转叶片以产生动力的原理,发电机则利用发动机驱动的发电机产生电能。

热力发电厂的动力循环主要分为三个部分:热力循环、汽轮机和发电机。

1.热力循环热力循环是将化石燃料燃烧产生的热能转化成蒸汽能的过程,其过程包括锅炉、汽轮机和凝汽器。

锅炉的主要功能是利用发动机燃烧化石燃料产生高温高压蒸汽,蒸汽经过汽轮机驱动旋转叶片,将热能转化成机械能。

凝汽器的主要功能是将排出的低温蒸汽凝结成水再次送入锅炉循环,以达到节能的目的。

2.汽轮机汽轮机是将热能转换成机械能的关键环节。

汽轮机主要由旋转叶片、定子、固定叶片和旋转轴等组成。

当高温高压蒸汽通过固定叶片和旋转叶片时,叶片将产生一个静压力和动压力的作用力,从而驱动汽轮机旋转。

汽轮机的转速、功率和效率都是与进口蒸汽温度、压力、出口蒸汽湿度以及转速等相关。

3.发电机发电机是将机械能转换成电能的部件。

发电机的主要组成部件包括转子和定子。

当汽轮机的旋转叶片驱动转子旋转时,定子将因转子的旋转而产生的磁场发生变化而感应出电动势,从而产生电能。

热力发电厂的发电量主要取决于汽轮机的性能和发电机的质量。

为了提高热力发电厂的性能,可以从以下几个方面对动力循环进行优化:1.提高燃烧效率。

燃烧效率的高低直接关系到热力循环的效率。

为了提高燃烧效率,可以利用更先进的燃烧技术,通过追求更高的燃烧温度和压力来提高效率。

2.提高汽轮机效率。

汽轮机的效率受进口蒸汽温度、压力、出口蒸汽湿度以及转速等多种因素影响。

通过优化汽轮机叶片的形状、材料以及加工技术,可以提高汽轮机效率。

3.提高发电机效率。

发电机是将机械能转换成电能的部件,其效率直接关系到热力发电厂的发电量。

通过采用新型导线材料并优化其线圈的布局,可以提高发电机的效率。

二、热经济性的分析方法和提高措施热经济性是评价热力发电厂性能的重要指标之一。

浅谈热力发电厂动力循环和热经济性-论文.doc

浅谈热力发电厂动力循环和热经济性-论文.doc

摘要:在我国伴随着能源的需求越来越大,开发新型能源的技术和经济投入比较庞大,所以开发新能源的可能性比较小,所以充分的提高能源的利用率才是最根本的方法,电力能源作为各行各业生产生活的基本能源,要充分的去保证电力资源的充足,在我国当前,热力发电厂是电能的主要来源,面对严峻的能源危机,努力提高热力发电厂的热经济性是未来热力发电厂的必然发展方向,本文就当前热力发电厂的循环系统进行研究分析,并对现在的热力发电厂的热经济性进行评价,提出相应的改善措施,最终提高能源的利用效率。

关键词:热力发电厂热经济性动力循环热力发电厂的热经济性分析是热力发电厂进行节能降低能耗的基础研究,它能够对热力系统进行设计、改造,目前我国的热力发电厂还存在着较严重的能源损耗现象,能源的利用率十分地低下,使用了热力发电厂的循环系统能够有效地提高热力发电厂的能源利用效率,节省了大量的能源,本文从热力发电厂的选址、人员选配、技术革新等方面对热力发电厂的热经济性的提高提出科学的改善措施,更好地服务于人民大众。

1.热力发电厂循环系统首先了解一下热力发电厂的发电原理,发电的实质就是能量的转换,通过化石燃料的燃烧产生的热能,转换为蒸汽热能,推动蒸汽转子的旋转变为机械能,最后通过热力发电厂的发电设备转变成电能,这就是过去热力发电厂的发电原理,现代的热力发电厂增加了动力循环系统,就是将热力发电第一次产生的热量进行发电之后,再将余热用于发电厂的动力循环系统中,再次发出相应的电能,热力发电厂的循环系统相对于以往的发电系统有着很大的优势,它能够降低能源的使用,增加资源的再次利用,能够产生的电力资源,循环系统的建造还能够节省很多的发电厂的建设面积,热力发电厂产生的尾气还能够收集起来,将尾气中的热量再次利用起来,能够高效的保护生态环境。

热力发电厂的主要化石能源就是煤炭资源,将煤炭通过传送给煤机,经过碾磨形成煤粉,再将煤粉送入锅炉燃烧,燃烧产生大量的热量,将锅炉管内的水进行加热,随之产生大量的高温蒸汽,这些高温蒸汽推动着汽轮机高速运转,汽轮机通过外部的转轴带动发电机进行发电,最后经过最后的变压器处理接入电网中,这是一个明显的热能转化为机械能最后转化为电能的过程,但是过去的热力发电的能量转换率十分低下,只有少量的能源才能够被转换为电能,大量的热量的没有很好地被充分利用起来,比如锅炉燃烧过程中热量的损失、一些管道的热量损失等等,所以要想真正的提高热力发电厂的能源利用效率,就必须解决好热能损耗的问题,采取相应的措施去解决相关问题。

热力发电厂的热经济性分析

热力发电厂的热经济性分析

热力发电厂的热经济性一、热力发电厂动力循环系统热力发电厂动力循环系统是根据能源在燃烧使用时的梯级原理,首先将煤炭和天然气等在锅炉中充分燃烧,第一次产生热能进行发电,再将发电后产生的余热用于发电厂的动力循环装置中,再次发出相应的电能。

使用这种动力循环系统相比以往的发电系统有很大的优势。

主要表现在:能源使用上相比过去大大降低,而且可以将资源再次利用;增加了电力的供应,在原有的基础上电能的输出有了本质的提升;循环系统的建造可以节省发电厂的用地面积,在最小的范围内,完成发电的任务;集中收集尾气,将尾气的热量再次利用,有效地保护了环境,减少了有害气体的排放量;发电的效率和质量有所提高;有利于企业对发电厂的综合治理,在很大程度上减低了事故发生的概率,保障了生产的安全。

二、热力发电厂动力循环的热经济性在了解动力循环系统的原理后,需要对该系统的相关参数进行深入的研究。

1.锅炉效率。

在锅炉中燃烧存在一个公式:输入燃料热量=锅炉热负荷+锅炉热损失。

在燃烧后会产生热能的损失,排烟损失、未完全燃烧损失、排污损失。

而使用动力循环系统可以有效地降低烟雾造成的污染,改善不完全燃烧的现象,以及减少了热量的逐渐耗损,不但如此,还可以收集热量进行二次发电,这些都很大程度地提高了经济性,减少了因排污治理所产生的二次费用。

2.管道效率。

管道的能量平衡关系为锅炉热负荷=汽轮机热耗量+管道热损失。

在气体在传输的过程中,会因为管道的不平整或是有裂缝出现气体的排除,这些也都会对发电效率产生一定的影响,使用循环系统,就可以很大程度上收集浪费的气体,使其再次得到充分的利用。

考虑到汽轮机也会有热消耗量,把气体在回收时的热量和热耗量加在一起,对整个机组产生更大的能量。

这样减少了在收集尾气上的经济消耗,还能提高效率.将浪费的资源再次转化为经济效益。

3.全厂能量效率。

全厂能量平衡关系为全厂热耗量=发电机输出功率+全厂能量损失。

在整个系统中还要考虑整体的热能损失,其中也包括发电机输出功率的损失、机械磨损造成的热能损失,将这些都考虑在内,使用循环系统都能在很大程度上增加能源的使用率,从根本上降低了全厂的经济成本,提升了热经济性。

热力发电厂动力循环和热经济性分析

热力发电厂动力循环和热经济性分析

热力发电厂动力循环和热经济性分析热力发电厂是一种将热能转化为电能的设备,它通过燃烧燃料产生热能,然后利用热能驱动涡轮机,最终产生电能。

在热力发电厂中,动力循环和热经济性是关键的考虑因素。

动力循环是指热力发电厂内部的能量转换过程。

常见的动力循环包括汽轮机循环和透平循环。

汽轮机循环是最常用的动力循环,它利用蒸汽驱动汽轮机转动发电机,产生电能。

透平循环则利用高压蒸汽驱动涡轮机转动发电机,然后将蒸汽排放到下一个级别的透平机中,继续产生电能。

动力循环不仅影响发电厂的发电效率,还影响其运行成本和环境影响。

热经济性是指热力发电厂的热能利用效率和经济性。

热能利用效率是指在能源转换过程中消耗的热能与转化为电能的热能之比。

热能利用效率越高,意味着燃料的能源利用率越高,减少了能源的浪费和环境污染。

经济性则是指热力发电厂的经济效益,包括发电成本和发电收入。

发电成本包括燃料成本、设备运行成本、维护成本等,而发电收入则取决于电力市场的价格和需求。

要提高热力发电厂的热经济性,可以从以下几个方面入手。

优化燃烧技术,提高燃烧效率。

燃烧技术的改进可以减少燃料的消耗量和减少废气的排放,从而提高热能利用效率和减少环境污染。

提高热能回收利用率。

热力发电厂在产生电能的过程中会产生大量的余热,可以利用余热进行蒸汽再加热、空气预加热等,提高热能的利用效率。

采用先进的设备和技术,降低能源消耗和运行成本。

通过引进新的发电设备和优化运行方式,可以提高动力循环的效率,降低发电成本。

动力循环和热经济性是热力发电厂中需要重点考虑的因素。

通过优化燃烧技术、提高热能回收利用率和采用先进的设备和技术,可以提高热力发电厂的热经济性,减少能源的浪费和环境污染。

这对于实现可持续发展和建设清洁能源体系具有重要意义。

动力循环及其热经济性分析ppt课件

动力循环及其热经济性分析ppt课件

作功能力法:
tfw ↑→
锅炉换热温差↓→ΔEb↓→↑ B↓→↑
2.采用回热对热经济指标的影响
(1)采用回热提高i
Wi Wic Wir Wir没有 Qcr Qc
Q0 Wi Qc,在Wi const时, Q 0
i

Wi Q0

z
z

r i

wi q0
(h1在变)
则:
hw1 1qb0qb0b0b0q1qq11
j 1qjq1j1j1j1qqqj jj kJ/kg
根据通式,忽略一些变化,可得几种近似分配方法: (1) 焓降分配法
在蒸汽初参数不太高时,忽略q
随τ的变化,即
q
' j

0
(2) 平均分配法
若再忽略 q j 间的微小不同,即
q1q2,qz
zz1L21hb z' 1 hc'
即:每一级加热器内水的焓升相等。
(3) 等焓降分配法
z hz
zz 1L21
h z h (z 1 ) h 2 h 1

z
jhj achc
1
jhj ac(h0 hc qrh)
1
(2)回热使D0(d0)增加
回热产生作功不足,为了使Wi一定,势必增加 D0,即
wi wic D0 D0c d0 d0c
D03 w 6i0m 0P gew 36 ic 00 m Peg1z1jYj D0c

chc cq0c
j h j wic
1 z

jhj cq0c
j wij
1 z
j wij

热力发电厂动力循环和热经济性分析

热力发电厂动力循环和热经济性分析

热力发电厂动力循环和热经济性分析热力发电厂是一种通过燃烧燃料产生热能,并利用其驱动蒸汽涡轮机发电的设备。

热力发电厂的动力循环和热经济性分析是对其操作和性能进行评估的重要工作。

热力发电厂的动力循环主要分为热力循环和动力循环两个部分。

热力循环是将燃烧产生的热能转化为蒸汽的过程,而动力循环则是利用蒸汽驱动涡轮机产生动力的过程。

热力循环中,首先将燃料燃烧产生的热能转移到锅炉中的水中,使其蒸发转化为高温高压蒸汽。

然后,高温高压蒸汽通过管道输送到涡轮机中,驱动涡轮机旋转。

涡轮机通过轴传动将旋转动能转化为电能,同时将蒸汽排出。

已排出的低温低压蒸汽再经过凝汽器冷却、液化为水,然后再回到锅炉中进行循环使用。

热力循环的目标是提高燃料的利用率和系统的热效率。

为了实现这一目标,需要优化燃烧过程、提高锅炉的热交换效率、减少管道的能量损失等。

热力循环的性能评估主要通过计算热效率、汽轮机效率、锅炉效率等指标来进行。

热经济性分析是对热力发电厂进行经济性评价的重要方法。

热经济性分析主要包括成本分析、收益分析和敏感性分析。

成本分析主要是对热力发电厂的运营成本进行评估。

热力发电厂的运营成本主要包括燃料成本、维护成本、设备购置成本等。

通过成本分析可以为热力发电厂的运营提供经济参考,并进行成本控制和优化决策。

收益分析主要是评估热力发电厂的收益情况。

热力发电厂的收益主要来自发电收入,通过分析发电产量、电价、发电效益等因素,可以对热力发电厂的收益进行评估和预测。

敏感性分析是对热力发电厂在不同条件下的经济影响进行评估。

敏感性分析可以分析不同因素对热力发电厂经济性指标的影响程度,并进行风险评估和优化决策。

热力发电厂动力循环和热经济性分析

热力发电厂动力循环和热经济性分析

热力发电厂动力循环和热经济性分析
热力发电厂是一种能够将热能转化为电能的设备。

在热力发电厂中,热能由燃烧、核
能或其他方式产生,然后通过动力循环转化为机械能,最终由发电机将机械能转化为电
能。

动力循环是热力发电厂的核心部分,它利用各种工质在高温高压和低温低压之间的热
力转换,实现了能量的连续转换。

常见的动力循环有蒸汽动力循环和气体动力循环。

蒸汽动力循环是热力发电厂中最常用的动力循环之一。

在蒸汽动力循环中,燃料燃烧
产生高温高压的蒸汽,然后通过蒸汽轮机将蒸汽的热能转化为机械能。

蒸汽轮机输出的机
械能驱动发电机发电,最后将机械能转化为电能。

蒸汽在蒸汽轮机中释放了大量的热能后,进入冷凝器被冷却,然后再次回到锅炉进行加热。

热经济性分析是评估热力发电厂的热能利用效率的一种方法。

它计算了热能输入和输
出之间的比值,用于评估热能利用的效率和经济性。

热经济性分析可以帮助热力发电厂优
化能源利用和提高经济效益。

在热经济性分析中,常用的指标有热耗比、能源利用效率和热经济性指标等。

热耗比
是指单位发电量所需要的热能输入量。

能源利用效率是指热能转化为电能的效率。

热经济
性指标是综合考虑了能源利用效率、热耗比和成本等因素的指标,用于评估热力发电厂的
经济性。

通过热经济性分析,可以找出热力发电厂中能源利用不足的环节,并采取相应的措施
进行优化。

可以采用余热发电技术,将废热转化为电能,提高热能的利用效率。

还可以改
进动力循环系统,减少能量损失,提高能源利用效率。

热力发电厂动力循环及其热经济性

热力发电厂动力循环及其热经济性

热力发电厂动力循环及其热经济性一、热力发电厂动力循环简介热力发电厂是一种利用化石燃料或核能等能源转换为电能的设施。

其动力循环是指在热力发电厂中用于产生电能的能量转化过程。

热力发电厂常用的动力循环有常压循环、压力循环以及复杂的混合循环等。

常压循环是一种简单的热力发电厂动力循环,其基本原理是通过水的蒸发与冷凝来实现能量转换。

常压循环包括锅炉、汽轮机和凝汽器三个主要部件。

在锅炉中,燃料燃烧产生高温烟气,使水变为蒸汽。

蒸汽进入汽轮机,驱动汽轮机旋转并带动发电机发电。

蒸汽在汽轮机中释放出能量后,进入凝汽器冷凝为水,再次回到锅炉进行循环利用。

压力循环是一种更高效的热力发电厂动力循环。

与常压循环不同的是,压力循环中的蒸汽在汽轮机中不完全膨胀,而是在一定压力下排出一部分蒸汽,再回到锅炉中再次加热。

这一过程被称为再热,可以提高系统的热效率。

混合循环是一种将常压循环和压力循环相结合的复杂循环方式。

混合循环的核心思想是利用高温蒸汽在汽轮机中释放能量后,再进行再热和再膨胀。

混合循环具有更高的热效率和更低的排放。

目前,混合循环在大型热力发电厂中得到了广泛应用。

二、热力发电厂动力循环与热经济性热力发电厂的热经济性指的是在能源转换过程中能够充分利用能量并最大限度地提高热能利用率的能力。

热经济性的好坏直接关系到热力发电厂的能源利用效率和经济效益。

从热力发电厂动力循环的角度来看,影响热经济性的因素主要包括以下几个方面:1. 燃料热值和燃烧效率燃料的热值和燃烧效率是决定热力发电厂能量转换效率的重要因素。

燃料的热值越高,单位燃料的能量转化为电能的效率就越高。

而燃烧效率则决定了能源消耗的大小。

通过提高燃料热值和改善燃烧效率,可以提高热力发电厂的热经济性。

2. 动力循环中的能量损失动力循环中的能量损失是热力发电厂热经济性的另一个重要影响因素。

在常压循环中,能量损失主要发生在锅炉和凝汽器中,例如烟气冷却和冷凝过程中的热量损失。

在压力循环和混合循环中,由于有再热和再冷凝的过程,能量损失相对较少。

热力发电厂动力循环和热经济性分析

热力发电厂动力循环和热经济性分析

河南科技2012.12上在我国,能源的需求日益增长,开发新能源的可能性比较小,提升能源的利用率才是最根本的方式。

据此,本文,笔者在热力发电厂的技术引进了动力循环系统,用该系统可以有效地改善先阶段我国能源的使用情况。

一、热力发电厂动力循环系统热力发电厂动力循环系统是根据能源在燃烧使用时的梯级原理,首先将煤炭和天然气等在锅炉中充分燃烧,第一次产生热能进行发电,再将发电后产生的余热用于发电厂的动力循环装置中,再次发出相应的电能。

使用这种动力循环系统相比以往的发电系统有很大的优势。

主要表现在:能源使用上相比过去大大降低,而且可以将资源再次利用;增加了电力的供应,在原有的基础上电能的输出有了本质的提升;循环系统的建造可以节省发电厂的用地面积,在最小的范围内,完成发电的任务;集中收集尾气,将尾气的热量再次利用,有效地保护了环境,减少了有害气体的排放量;发电的效率和质量有所提高;有利于企业对发电厂的综合治理,在很大程度上减低了事故发生的概率,保障了生产的安全。

二、热力发电厂动力循环的热经济性在了解动力循环系统的原理后,需要对该系统的相关参数进行深入的研究。

1.锅炉效率。

在锅炉中燃烧存在一个公式:输入燃料热量=锅炉热负荷+锅炉热损失。

在燃烧后会产生热能的损失,排烟损失、未完全燃烧损失、排污损失。

而使用动力循环系统可以有效地降低烟雾造成的污染,改善不完全燃烧的现象,以及减少了热量的逐渐耗损,不但如此,还可以收集热量进行二次发电,这些都很大程度地提高了经济性,减少了因排污治理所产生的二次费用。

2.管道效率。

管道的能量平衡关系为锅炉热负荷=汽轮机热耗量+管道热损失。

在气体在传输的过程中,会因为管道的不平整或是有裂缝出现气体的排除,这些也都会对发电效率产生一定的影响,使用循环系统,就可以很大程度上收集浪费的气体,使其再次得到充分的利用。

考虑到汽轮机也会有热消耗量,把气体在回收时的热量和热耗量加在一起,对整个机组产生更大的能量。

热力发电厂动力循环和热经济性分析

热力发电厂动力循环和热经济性分析

热力发电厂动力循环和热经济性分析热力发电厂是一种重要的能源生产设施,它通过将燃料燃烧产生的热能转化为电能,以满足人们的用电需求。

热力发电厂的运行原理是,将燃料燃烧后的烟气送至锅炉中,通过锅炉中的水蒸气增压,使其在高压下旋转汽轮机,从而带动发电机发电的轮回循环。

动力循环是热力发电厂的核心,主要包括锅炉、汽轮机、再热器、凝汽器和泵等设备。

锅炉是热力发电厂最重要的设备之一,其主要作用是将燃料燃烧产生的热能传递给锅炉水,使其蒸发成为高温高压蒸汽,并向汽轮机提供动力。

汽轮机是将高压高温蒸汽中的能量转化为旋转能的设备,它将蒸汽中的能量变成轴功,推动轮子旋转。

再热器是将汽轮机排出的低温低压干蒸汽再加热为高温高压蒸汽的设备,以增加汽轮机的输出功率。

凝汽器则是将汽轮机排出的低压湿蒸汽冷凝为水的设备,它将利用完毕的蒸汽排放到大气中。

热力发电厂的热经济性是指其能源输入与电能输出之间的比例,也就是其运行效率。

热力发电厂的热经济性取决于多个因素,如锅炉效率、汽轮机效率、再热器效率和凝汽器效率等。

这些因素的提高可以更好地发挥燃料的能量,从而提高发电厂的经济性。

锅炉效率是热力发电厂的关键因素之一,它反映了锅炉所能吸收燃料中化学能的能力。

提高锅炉效率有很多方法,如提高锅炉的烟气回收率、增加锅炉水循环流量、改善燃烧条件等。

这些措施可以使锅炉更充分地利用燃料中的能量,从而提高锅炉的效率。

汽轮机效率是指汽轮机将蒸汽的能量转化为电能的能力。

提高汽轮机效率可以通过改进汽轮机设计和技术、提高蒸汽温度和压力等方法实现。

同时,为了更好地利用汽轮机排出的低温低压干蒸汽的能量,热力发电厂引入了再热器设备,这可以增加汽轮机的输出功率。

凝汽器效率是指凝汽器将排出的低压湿蒸汽冷凝为水的能力。

凝汽器效率的提高可以通过改进凝汽器设计、优化循环水冷却系统等措施实现。

同时,凝汽器效率的升高还有助于提高循环水冷却系统的效率,减少对环境的影响。

综上所述,动力循环的优化以及热经济性的提高是热力发电厂的重要技术措施。

热力发电厂动力循环和热经济性分析

热力发电厂动力循环和热经济性分析

热力发电厂动力循环和热经济性分析热力发电厂是一种将热能转化为电能的工业设备。

它通过燃烧燃料产生高温高压的蒸汽,然后将蒸汽驱动汽轮机旋转,最终产生电能。

热力发电厂的动力循环和热经济性分析是评估其性能和效益的重要方法。

热力发电厂的动力循环是描述其工作原理和能量转换过程的数学模型。

最常用的动力循环是典型的朗肯循环,也称为蒸汽动力循环。

这种循环包括燃料燃烧系统、锅炉、汽轮机和凝汽器四个主要组件。

燃料在燃烧系统中燃烧产生高温高压的蒸汽,然后蒸汽通过锅炉中的热交换器加热,放置一部分能量给蒸汽,同时部分蒸汽凝结为液态水,这时的蒸汽已经成为高温高压的饱和态蒸汽。

接下来,高温高压的蒸汽通过汽轮机,将其内部的同轴转子旋转,进而带动发电机转动,并产生电能。

蒸汽通过汽轮机后,温度下降,需要通过凝汽器进行冷却,将其冷凝为液态水,形成循环。

这样,蒸汽的热能就转化为了电能。

热力发电厂的热经济性分析是指通过对其能量转换效率和经济效益进行分析,评估其热能利用的程度和经济性。

热力发电厂的热经济性可以通过以下指标来评估:1. 热效率:即厂内的热能利用率,可以用总输出功率除以总供热能量来计算。

热效率越高,说明热力发电厂的能量转换效率越高。

2. 电力效率:即厂内的电能利用率,可以用总输出电能除以总输入热能来计算。

电力效率越高,说明热力发电厂的能源利用效益越高。

3. 经济效益:即热力发电厂的产出价值与投入成本之间的比例,可以通过计算发电厂的成本效益比来评估。

成本效益比越高,说明热力发电厂的经济性越高。

4. 环境影响:考虑到热力发电厂的燃料燃烧会产生大量的二氧化碳和污染物,评估其环境影响,可以通过计算单位发电量的碳排放量和污染物排放量来评估。

通过对热力发电厂的动力循环和热经济性的分析,可以评估其性能和效益,并为优化设计和改善运营提供参考。

可以通过改进燃烧系统和锅炉的热交换效率,提高热效率和电力效率;可以通过降低燃料成本和运营成本,提高经济效益;可以通过采用清洁燃料和净化技术,减少环境影响。

热力发电厂动力循环及其热经济性

热力发电厂动力循环及其热经济性

2
pc
1
p0
p1
It Ten Dstu
第十六页,共78页。
2
2a
Ten
s Δstu
不可逆绝热膨胀
1
2
(3)不可逆绝热压缩过程
——水泵(shuǐbèng) T
2
做功损失:
It Ten Ds
1
Δs
p2 p1
Ten s
不可逆绝热压缩
第十七页,共78页。
1
(4)节流过程
T
—汽轮机进汽调节结构 (jiégòu)
厂用电率(平均为8.2%)
300MW及以上机组(jīzǔ)电厂: 4.7%—5.5%;
125—200MW机组(jīzǔ)电厂: 8.5%;
中小容量机组(jīzǔ)电厂: 9%—12%。
第三十四页,共78页。
三 发电厂的动力(dònglì)循环
(一)朗肯循环(xú nhuá n)及其热经济性
1
1
T
TG
汽轮机内功率Wi=
发电机轴端功率Pax +机械损失△Qm
Wi Pax
G
△Qm
hm 3600Pax 1 DQm
Wi
Wi
0.965 ~ 0.99
zm
DQm Qcp
hh
b
h
pi
(1
hm
)
第九页,共78页。
(5)发电机
Pax G Pe
发电机能量平衡关系:
发电机输入(shūrù)功率Pax =发电机输出功率Pe+能量损失△Qg
I = Ten △s
第十四页,共78页。
典型不可逆过程的做功(zuògōng)能力 损失
(1)有温差的换热过程(guò—ch—én锅g) 炉、冷凝器、加热器
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档