二次函数压轴题解题思路
中学数学二次函数压轴题解题技巧
中学数学二次函数压轴题解题技巧二次函数是中学数学中重要的概念之一。
在解题过程中,掌握一些解题技巧能够帮助我们更轻松地解决二次函数的压轴题。
以下是一些解题技巧的总结:1. 定义二次函数首先,我们需要清楚二次函数的定义和一般形式。
二次函数的一般形式是:$$f(x) = ax^2 + bx + c$$,其中a、b、c为常数,且$a \neq 0$。
了解二次函数的定义和形式,有助于我们在解题过程中准确理解题目和相关知识。
2. 寻找顶点二次函数的图像是一个抛物线,其中的最高点或最低点被称为顶点。
寻找顶点是解题过程中的关键步骤之一。
顶点的横坐标为$x = -\frac{b}{2a}$,纵坐标为$f\left(-\frac{b}{2a}\right)$。
通过计算这两个值,我们能够确定抛物线的位置和形状。
3. 判断开口方向通过观察二次函数的二次项系数a的正负,我们可以判断抛物线的开口方向。
当a大于0时,抛物线开口向上;当a小于0时,抛物线开口向下。
这一点在解题中很重要,因为它影响到抛物线与坐标轴的交点和极值。
4. 求解零点解题时,我们通常需要求二次函数的零点,即$f(x) = 0$的解。
求解零点的方法有两种:因式分解和配方法。
对于简单的二次函数问题,我们可以利用因式分解直接求解零点;对于复杂的问题,可以使用配方法。
5. 判断函数值的变化通过计算二次函数的值$f(x)$,我们可以判断函数在不同区间内的变化趋势。
当a大于0时,二次函数在顶点处取得最小值,且随着x增大或减小,函数值逐渐变大;当a小于0时,二次函数在顶点处取得最大值,且随着x增大或减小,函数值逐渐变小。
6. 利用对称性二次函数具有对称性,即关于顶点对称。
这一点在解题中经常用到。
通过利用对称性,我们可以快速求得函数的某些值,或者根据已知的函数值推导出其他函数值。
7. 注意特殊情况解题过程中,我们应该注意特殊情况的处理。
例如,当a等于零时,二次函数变为一次函数;当顶点坐标为整数时,我们可以在图像上快速标出顶点和其他点。
二次函数压轴题解题技巧
图1图2二次函数压轴题解题技巧引言:解数学压轴题一般可以分为三个步骤:认真审题,理解题意、探究解题思路、正确解答。
审题要全面审视题目的所有条件和答题要求,在整体上把握试题的特点、结构,以利于解题方法的选择和解题步骤的设计。
解数学压轴题要善于总结解数学压轴题中所隐含的重要数学思想,如转化思想、数形结合思想、分类讨论思想及方程的思想等。
认识条件和结论之间的关系、图形的几何特征与数、式的数量、结构特征的关系,确定解题的思路和方法.当思维受阻时,要及时调整思路和方法,并重新审视题意,注意挖掘隐蔽的条件和内在联系,既要防止钻牛角尖,又要防止轻易放弃。
一、动态:动点、动线1.如图,抛物线与x 轴交于A (x 1,0)、B (x2,0)两点,且x 1>x 2,与y 轴交于点C (0,4),其中x 1、x 2是方程x 2-2x -8=0的两个根.(1)求这条抛物线的解析式; (2)点P 是线段AB 上的动点,过点P 作PE ∥AC ,交BC 于点E,连接CP ,当△CPE 的面积最大时,求点P的坐标;(3)探究:若点Q 是抛物线对称轴上的点,是否存在这样的点Q ,使△QB C成为等腰三角形?若存在,请直接写出所有符合条件的点Q二、圆2.如图1,在平面直角坐标系x Oy,二次函数y=a x2+bx +c (a >0)的图象顶点为D ,与y轴交于点C ,与x 轴交于点A、B,点A 在原点的左侧,点B 的坐标为(3,0),OB =OC , tan ∠ACO =错误!.(1)求这个二次函数的解析式;(2)若平行于x 轴的直线与该抛物线交于点M 、N,且以MN 为直径的圆与x 轴相切,求该圆的半径长度;(3)如图2,若点G(2,y )是该抛物线上一点,点P 是直线A G下方的抛物线上的一动点,当点P运动到什么位置时,△AG P的面积最大?求此时点P 的坐标和△A GP的最大面积.三、比例比值取值范围3.如图是二次函数k m x y ++=2)(的图象,其顶点坐标为M(1,-4). (1)求出图象与x 轴的交点A ,B 的坐标; (2)在二次函数的图象上是否存在点P,使MAB PAB S S ∆∆=45,若存在,求出P点的坐标;若不存在,请说明理由;(3)将二次函数的图象在x 轴下方的部分沿x 轴翻折,图象的其余部分保持不变,得到一个新的图象,请你结合这个新的图象回答:当直线)1(<+=b b x y 与此图象有两个公共点时,b 的取值范围.四、探究型4. 如图,直线33+=x y 交x 轴于A 点,交y 轴于B 点,过A 、B两点的抛物线交x 轴于另一点C(3,0).⑴ 求抛物线的解析式;⑵ 在抛物线的对称轴上是否存在点Q,使△A BQ 是等腰三角形? 若存在,求出符合条件的Q 点坐标;若不存在,请说明理由.yxO CBA五、最值类5.如图,在平面直角坐标系中,二次函数c bx x y ++=2的图象与x 轴交于A 、B两点, A点在原点的左侧,B 点的坐标为(3,0),与y 轴交于C(0,-3)点,点P 是直线BC 下方的抛物线上一动点.(1)求这个二次函数的表达式.(2)连结PO 、P C,并把△POC 沿CO 翻折,得到四边形POP /C, 那么是否存在点P ,使四边形PO P/C为菱形?若存在,请求出此时点P 的坐标;若不存在请说明理由. (3)当点P运动到什么位置时,四边形 ABPC 的面积最大并求出此时P 点的坐标和四边形AB PC的最大面积.课后作业1.在平面直角坐标系中,已知A(-4,0),B (1,0),且以AB 为直径的圆交y轴的正半轴于点C ,过点C作圆的切线交x 轴于点D .(1)求点C 的坐标和过A ,B,C三点的抛物线的解析式; (2)求点D的坐标; (3)设平行于x 轴的直线交抛物线于E ,F 两点,问:是否存在以线段EF 为直径的圆,恰好与x 轴相切?若存在,求出该圆的半径,若不存在,请说明理由.yx OC D B A 1 -42.已知:如图,在平面直角坐标系xOy 中,矩形OA BC 的边O A在y 轴的正半轴上,OC在x 轴的正半轴上,OA =2,OC =3.过原点O作∠AO C的平分线交AB 于点D ,连接DC ,过点D 作D E⊥DC ,交OA 于点E .(1)求过点E 、D 、C 的抛物线的解析式; (2)将∠E DC 绕点D 按顺时针方向旋转后,角的一边与y 轴的正半轴交于点F ,另一边与线段OC 交于点G .如果DF 与(1)中的抛物线交于另一点M ,点M 的横坐标为56,那么EF =2GO 是否成立?若成立,请给予证明;若不成立,请说明理由;(3)对于(2)中的点G,在位于第一象限内的该抛物线上是否存在点Q ,使得直线GQ与AB 的交点P 与点C 、G 构成的△PCG 是等腰三角形?若存在,请求出点Q 的坐标;若不存在,请说明理由.3.如图,抛物线y =ax 2+bx +c (a≠0)与x 轴交于A (-3,0)、B两点,与y 轴相交于点C (0,3).当x =-4和x=2时,二次函数y =a x 2+bx+c (a≠0)的函数值y相等,连结AC 、BC. (1)求实数a ,b ,c 的值;(2)若点M、N 同时从B 点出发,均以每秒1个单位长度的速度分别沿BA 、BC 边运动,其中一个点到达终点时,另一点也随之停止运动.当运动时间为t 秒时,连结MN ,将△BMN 沿MN翻折,B 点恰好落在A C边上的P 处,求t 的值及点P的坐标;4. 如图,抛物线y =21x 2+bx -2与x 轴交于A 、B两点,与y 轴交于C 点,且A (一1,0). ⑴求抛物线的解析式及顶点D 的坐标; ⑵判断△ABC 的形状,证明你的结论;⑶点M (m ,0)是x轴上的一个动点,当CM +DM 的值最小时,求m 的值.面积最大5、如图,在平面直角坐标系中,点A 、C 的坐标分别为(-1,0)、(0,3-),点B 在x轴上.已知某二次函数的图象经过A 、B、C 三点,且它的对称轴为直线x =1,点P 为直线BC 下方的二次函数图象上的一个动点(点P 与B 、C 不重合),过点P 作y 轴的平行线交BC 于点F. (1)求该二次函数的解析式;(2)若设点P的横坐标为m ,试用含m的代数式表示线段PF 的长; (3)求△PBC 面积的最大值,并求此时点P的坐标.yxB A FPx =1CO6、在平面直角坐标系中,已知抛物线经过A (-4,0),B (0,-4),C (2,0)三点. (1)求抛物线的解析式;(2)若点M 为第三象限内抛物线上一动点,点M 的横坐标为m ,△AM B的面积为S .求S关于m 的函数关系式,并求出S 的最大值. (3)若点P 是抛物线上的动点,点Q 是直线y=-x 上的动点,判断有几个位置能够使得点P 、Q 、B 、O 为顶点的四边形为平行四边形,直接写出相应的点Q 的坐标.讨论等腰7、如图,已知抛物线y =21x2+b x+c 与y 轴相交于C,与x 轴相交于A 、B ,点A的坐标为(2,0),点C 的坐标为(0,-1). (1)求抛物线的解析式;(2)点E 是线段AC 上一动点,过点E 作D E⊥x轴于点D ,连结DC ,当△DCE 的面积最大时,求点D 的坐标; (3)在直线BC 上是否存在一点P ,使△ACP 为等腰三角形,若存在,求点P 的坐标,若不存备用图8、(武汉市中考)如图,已知抛物线y =x2+bx +3与x轴交于点B (3,0),与y 轴交于点A ,P是抛物线上的一个动点,点P的横坐标为m (m>3),过点P作y 轴的平行线PM ,交直线AB 于点M. (1)求抛物线的解析式;(2)若以AB 为直径的⊙N与直线PM 相切,求此时点M 的坐标;(3)在点P 的运动过程中,△AP M能否为等腰三角形?若能,求出点M 的坐标;若不能,请说明理由.论直角三角形9、如已知:如图一次函数y=21x +1的图象与x 轴交于点A ,与y 轴交于点B ;二次函数y =21x2+bx +c的图象与一次函数y=21x +1的图象交于B 、C 两点,与x 轴交于D 、E 两点且D 点坐标为(1,0) (1)求二次函数的解析式;(2)求四边形BDEC 的面积S ; (3)在x轴上是否存在点P ,使得△PB C是以P 为直角顶点的直角三角形?若存在,求出所有的点P ,若不存在,请说明理由.10、(九市联考)如图,抛物线与x 轴交于A (-1,0)、B (3,0)两点,与y 轴交于点C (0,-3),设抛物线的顶点为D. (1)求该抛物线的解析式与顶点D的坐标; (2)以B 、C、D 为顶点的三角形是直角三角形吗?为什么?(3)探究坐标轴上是否存在点P ,使得以P 、A、C为顶点的三角形与△BCD 相似?若存在,请指出符合条件的点P 的位置,并直接写出点P 的坐标;若不存在,请说明理由.讨论四边形11、二次函数y =x2+px +q (p<0)图象与x 轴交于A 、B 两点,与y 轴交于点C (0,-1),△ABC 的面积为45.(1)求该二次函数的关系式;(2)过y轴上的一点M (0,m )作y 轴的垂线,若该垂线与△ABC的外接圆有公共点,求m 的取值范围;(3)在该二次函数的图象上是否存在点D ,使四边形AC BD 为直角梯形?若存在,求出点D 的坐标;若不存在,请说明理由.2017中考二次函数压轴题专题分类训练题型一:面积问题【例1】如图2,抛物线顶点坐标为点C (1,4),交x 轴于点A (3,0),交y 轴于点B . (1)求抛物线和直线AB 的解析式; (2)求△CAB 的铅垂高CD 及S △CAB ;(3)设点P是抛物线(在第一象限内)上的一个动点,是否存在一点P,使S△PA B=89S △CAB ,若存在,求出P点的坐标;若不存在,请说明理由.【变式练习】1.如图,在直角坐标系中,点A 的坐标为(-2,0),连结OA ,将线段OA 绕原点O 顺时针旋转120°,得到线段OB .(1)求点B 的坐标; (2)求经过A 、O 、B 三点的抛物线的解析式;(3)在(2)中抛物线的对称轴上是否存在点C ,使△B OC 的周长最小?若存在,求出点C的坐标;若不存在,请说明理由.(4)如果点P 是(2)中的抛物线上的动点,且在x 轴的下方,那么△PAB 是否有最大面积?若有,求出此时P 点的坐标及△PAB 的最大面积;若没有,请说明理由.2.如图,抛物线y = ax 2+ bx + 4与x 轴的两个交点分别为A (-4,0)、B(2,0),图2与y轴交于点C ,顶点为D.E(1,2)为线段BC 的中点,BC 的垂直平分线与x轴、y 轴分别交于F、G. (1)求抛物线的函数解析式,并写出顶点D的坐标; (2)在直线EF 上求一点H,使△CDH 的周长最小,并求出最小周长; (3)若点K 在x 轴上方的抛物线上运动,当K 运动到什么位置时, △E FK 的面积最大?并求出最大面积.3.如图,已知:直线3+-=x y 交x 轴于点A,交y 轴于点B,抛物线y =ax 2+bx +c 经过A 、B、C (1,0)三点. (1)求抛物线的解析式; (2)若点D 的坐标为(-1,0),在直线3+-=x y 上有一点P,使ΔABO与ΔADP相似,求出点P 的坐标;(3)在(2)的条件下,在x 轴下方的抛物线上,是否存在点E ,使ΔADE 的面积等于四边形APCE 的面积?如果存在,请求出点E 的坐标;如果不存在,请说明理由.ﻬ题型二:构造直角三角形【例2】如图,已知抛物线y =a x2+b x+c (a ≠0)的对称轴为x =1,且抛物线经过A(-1,0)、C (0,-3)两点,与x 轴交于另一点B. (1)求这条抛物线所对应的函数关系式;(2)在抛物线的对称轴x =1上求一点M ,使点M到点A 的距离与到点C 的距离之和最小,并求此时点M 的坐标;(3)设点P为抛物线的对称轴x =1上的一动点,求使∠PCB =90º的点P 的坐标.E【变式练习】1.如图,抛物线y=与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C.(1)求点A、B的坐标;(2)设D为已知抛物线的对称轴上的任意一点,当△ACD的面积等于△ACB的面积时,求点D的坐标;(3)若直线l过点E(4,0),M为直线l上的动点,当以A、B、M为顶点所作的直角三.角形有且只有三个时,求直线l的解析式3.在平面直角坐标系内,反比例函数和二次函数y=k(x2+x﹣1)的图象交于点A(1,k)和点B(﹣1,﹣k).(1)当k=﹣2时,求反比例函数的解析式;(2)要使反比例函数和二次函数都是y随着x的增大而增大,求k应满足的条件以及x的取值范围;(3)设二次函数的图象的顶点为Q,当△ABQ是以AB为斜边的直角三角形时,求k的值4.如图(1),抛物线42y x x =+-与y轴交于点A ,E (0,b )为y轴上一动点,过点E 的直线y x b =+与抛物线交于点B、C .(1)求点A 的坐标;(2)当b =0时(如图(2)),ABE 与ACE 的面积大小关系如何?当4b >-时,上述关系还成立吗,为什么?(3)是否存在这样的b,使得BOC 是以BC 为斜边的直角三角形,若存在,求出b ;若不存在,说明理由.ﻬ题型三:构造等腰三角形【例3】如图,已知抛物线32++=bx ax y (a ≠0)与x 轴交于点A (1,0)和点B (-3,0),与y 轴交于点C. (1)求抛物线的解析式;(2)在x 轴上是否存在一点Q 使得△ACQ 为等腰三角形?若存在,请直接写出所有符合条件的点Q 的坐标;若不存在,请说明理由;(3)设抛物线的对称轴与x 轴交于点M ,问在对称轴上是否存在点P,使△CM P为等腰三角形?若存在,请直接写出所有符合条件的点P 的坐标;若不存在,请说明理由.yxCBAOE yxCBAOE 第26题图(1)图(2)2.如图,抛物线254y ax ax =-+经过ABC △的三个顶点,已知BC x ∥轴,点A 在x 轴上,点C 在y 轴上,且AC =BC.(1)写出A,B,C 三点的坐标并求抛物线的解析式;(2)探究:若点P 是抛物线对称轴上且在x 轴下方的动点,是否存在PAB △是等腰三角形.若存在,求出所有符合条件的点P 坐标;不存在,请说明理由.题型四:构造相似三角形【例4】如图,已知抛物线经过A (﹣2,0),B (﹣3,3)及原点O,顶点为C.(1)求抛物线的解析式; (2)若点D在抛物线上,点E在抛物线的对称轴上,且A、O 、D 、E 为顶点的四边形是平行四边形,求点D 的坐标;(3)P 是抛物线上的第一象限内的动点,过点P 作PM ⊥x 轴,垂足为M ,是否存在点P,使得以P 、M、A为顶点的三角形△BOC 相似?若存在,求出点P 的坐标;若不存在,请说明理由.【变式练习】1.如图,已知抛物线经过A(4,0),B(1,0),C(0,-2)三点.ﻫ(1)求该抛物线的解析式;ﻫ(2)在直线AC上方的该抛物线上是否存在一点D,使得△DCA的面积最大?若存在,求出点D的坐标及△DCA面积的最大值;若不存在,请说明理由.(3)P是直线x=1右侧的该抛物线上一动点,过P作PM⊥x轴,垂足为M,是否存在P点,使得以A、P、M为顶点的三角形与△OAC相似?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由.7),且顶点C的横坐标为4,该图象在x 轴上2.如图,二次函数的图象经过点D(0,39截得的线段AB的长为6.(1)求二次函数的解析式;(2)在该抛物线的对称轴上找一点P,使PA+PD最小,求出点P的坐标;(3)在抛物线上是否存在点Q,使△QAB与△ABC相似?如果存在,求出点Q的坐标;如果不存在,请说明理由.3.如图,二次函数y=ax2+bx+c的图象交x轴于A(﹣1,0),B(2,0),交y轴于C(0,﹣2),过A,C画直线.(1)求二次函数的解析式;(2)点P在x轴正半轴上,且P A=PC,求OP的长;(3)点M在二次函数图象上,以M为圆心的圆与直线AC相切,切点为H.①若M在y轴右侧,且△CHM∽△AOC(点C与点A对应),求点M的坐标;②若⊙M的半径为,求点M的坐标.ﻬ题型六:构造平行四边形【例7】如图,在平面直角坐标系中,抛物线经过A(—1,0),B(3,0),C(0,—1)三点。
二次函数压轴题解题思路(有答案)
PN 垂直 x 轴于点 N,使得以点 P、A、N 为顶点的三角形与△MAO 相似?若存在,求点 P 的坐标;若不存在, 请说明理由. (3)构造平行四边形 (2014•莱芜)如图,过 A(1,0) 、B(3,0)作 x 轴的垂线,分别交直线 y=4 ﹣x 于 C、D 两点.抛物线 y=ax2+bx+c 经过 O、C、D 三点. (1)求抛物线的表 达式; (2)点 M 为直线 OD 上的一个动点,过 M 作 x 轴的垂线交抛物线于点 N,问是 否存在这样的点 M, 使得以 A、 C、 M、 N 为顶点的四边形为平行四边形?若存在, 求此时点 M 的横坐标;若不存在,请说明理由; (4)构造等腰三角形 (2013•泰安)如图,抛物线 y=
(3)若△AOC 沿 CD 方向平移(点 C 在线段 CD 上,且不与点 D 重合) ,在平移 的过程中△AOC 与△OBD 重叠部分的面积记为 S,试求 S 的最大值. 3.(2014•兰州)如图,抛物线 y= ﹣ x2+mx+n 与 x 轴交于 A、B 两点,与 y 轴交于 点 C,抛物线的对称轴交 x 轴于点 D,已知 A(﹣1,0) ,C(0,2) . (1)求抛物线的 表达式; (3) 点 E 时线段 BC 上的一个动点, 过点 E 作 x 轴的垂线与抛物线相交于点 F, 当点 E 运动到什么位置时, 四边形 CDBF 的面积最大?求出四边形 CDBF 的最大面积及 此时 E 点的坐标.
二次函数压轴题解题思路
一、基本知识 1 会求解析式 2.会利用函数性质和图像 3.相关知识:如一次函数、反比例函数、点的坐标、方程。图形中的三角形、四边形、圆及平行线、垂直。 一些方法:如相似、三角函数、解方程。一些转换:如轴对称、平移、旋转。 二、典型例题: (一) 、求解析式 1. (2014•莱芜) 过A (1, 0) 、 B (3, 0) 作 x 轴的垂线, 分别交直线 y=4﹣x 于 C、 D 两点. 抛物线 y=ax2+bx+c 经过 O、C、D 三点. (1)求抛物线的表达式; 2.(2012•莱芜)顶点坐标为(2,﹣1)的抛物线 y=ax2+bx+c(a≠0)与 y 轴交于点 C(0,3) ,与 x 轴交于 A、B 两点. (1)求抛物线的表达式; 练习: (2014 兰州)把抛物线 y=﹣2x2 先向右平移 1 个单位长度,再向上平移 2 个单位长度后,所得函数 的表达式为( )Ay=﹣2(x+1)2+2 By=﹣2(x+1)2﹣2 Cy=﹣2(x﹣1)2+2 Dy=﹣2(x﹣1)2﹣2 (二) 、二次函数的相关应用 第一类:面积问题 例题. (2012•莱芜)如图,顶点坐标为(2,﹣1)的抛物线 y=ax2+bx+c(a≠0)与 y 轴交于点 C(0,3) ,与 x 轴交于 A、B 两点. (1)求抛物线的表达式; (抛物线的解析式:y=(x﹣2)2﹣1=x2﹣4x+3. ) (2)设抛物线的对称轴与直线 BC 交于点 D,连接 AC、AD,求△ACD 的面积; y 练习:1.(2010•莱芜)如图,在平面直角坐标系中,已知抛物线 y ax bx c 交
二次函数压轴题题型
二次函数压轴题题型二次函数压轴题常见的题型有以下几种:1. 求解二次函数的零点或交点问题。
给定一个二次函数,通过解方程或求导后令其等于0,求解其零点或交点的x和y值。
举例:已知函数$f(x)=2x^2-3x+1$,求函数$f(x)$的零点或交点坐标。
解法:将函数$f(x)$令为0,得到$2x^2-3x+1=0$,解得$x=1/2$和$x=1$。
将两个x值代入$f(x)$,得到相应的y值,即$f(1/2)=1/2$,$f(1)=0$。
因此,函数$f(x)$的零点或交点坐标为$(1/2, 0)$和$(1/2, 1)$。
2. 求二次函数的顶点坐标问题。
给定一个二次函数,通过完成平方的形式转化,求得函数的顶点坐标。
举例:已知函数$f(x)=3x^2+6x+1$,求函数$f(x)$的顶点坐标。
解法:将$f(x)$完成平方的形式转化,得到$f(x)=3(x+1)^2-2$。
因为$(x+1)^2$的最小值为0,所以$f(x)$的最小值为-2,当$x=-1$时取得。
因此,函数$f(x)$的顶点坐标为$(-1,-2)$。
3. 求二次函数的对称轴问题。
给定一个二次函数,通过求出对称轴的方程,求得函数的对称轴位置。
举例:已知函数$f(x)=x^2-2x+5$,求函数$f(x)$的对称轴方程。
解法:由于二次函数的对称轴是其顶点所在的直线,因此首先需要求出函数$f(x)$的顶点坐标。
将$f(x)$完成平方的形式转化,得到$f(x)=(x-1)^2+4$,因此顶点坐标为$(1,4)$。
因为对称轴过顶点且垂直于x轴,所以对称轴的方程为$x=1$。
因此,函数$f(x)$的对称轴位置为$x=1$。
4. 求二次函数的最值问题。
给定一个二次函数,通过求出函数的最值,求得函数的极值。
举例:已知函数$f(x)=-x^2+2x+3$,求函数$f(x)$的最大值和最小值。
解法:由于二次函数的图像是一个开口朝下的抛物线,因此最大值就是函数的顶点值,最小值在顶点值下方。
初三二次函数压轴题题型归纳及方法
初三二次函数压轴题题型归纳及方法一、题型归纳初三二次函数压轴题主要包括以下几种题型:1. 解二次方程:给出一个二次方程,要求求出其解。
2. 求顶点坐标:给出一个二次函数,要求求出其顶点坐标。
3. 求零点:给出一个二次函数,要求求出其零点。
4. 求最值:给出一个二次函数,要求求出其最大值或最小值。
5. 综合应用:将上述各种题型结合起来进行综合应用。
二、方法1. 解二次方程(1)将方程化为标准形式ax²+bx+c=0;(2)判断Δ=b²-4ac的正负性:如果Δ>0,则有两个不相等的实数根;如果Δ=0,则有两个相等的实数根;如果Δ<0,则无实数根,但可以得到一对共轭复数根;(3)根据公式x1=(-b+√Δ)/2a和x2=(-b-√Δ)/2a求得解。
2. 求顶点坐标(1)将二次函数化为标准形式y=ax²+bx+c;(2)利用公式x=-b/2a求得顶点的横坐标;(3)将横坐标代入原函数中求得顶点的纵坐标。
3. 求零点(1)将二次函数化为标准形式y=ax²+bx+c;(2)令y=0,解出方程ax²+bx+c=0;(3)根据解出的方程,用上述方法求出零点。
4. 求最值(1)将二次函数化为标准形式y=ax²+bx+c;(2)如果a>0,则函数有最小值,最小值为y0=c-b²/4a,顶点坐标为(-b/2a,y0);如果a<0,则函数有最大值,最大值为y0=c-b²/4a,顶点坐标为(-b/2a,y0)。
5. 综合应用综合应用题目一般会给出一个实际问题,并要求利用二次函数进行建模和求解。
解决这类题目需要结合实际情况进行分析,并运用上述各种方法进行计算和推导。
三、注意事项1. 在解二次方程时,需要注意判别式Δ的正负性,以确定是否有实数根。
2. 在求顶点坐标时,需要注意顶点横坐标的符号和范围。
3. 在求零点时,需要注意解方程的过程和方法,并判断是否存在实数根。
中考压轴题-二次函数综合(八大题型+解题方法)——冲刺2024年中考数学考点押题(全国通用)(解析)
中考压轴题-二次函数综合 (八大题型+解题方法)1、求证“两线段相等”的问题:借助于函数解析式,先把动点坐标用一个字母表示出来;然后看两线段的长度是什么距离即是“点点”距离,还是“点轴距离”,还是“点线距离”,再运用两点之间的距离公式或点到x 轴y 轴的距离公式或点到直线的距离公式,分别把两条线段的长度表示出来,分别把它们进行化简,即可证得两线段相等;2、“平行于y 轴的动线段长度的最大值”的问题:由于平行于y 轴的线段上各个点的横坐标相等常设为t,借助于两个端点所在的函数图象解析式,把两个端点的纵坐标分别用含有字母t 的代数式表示出来,再由两个端点的高低情况,运用平行于y 轴的线段长度计算公式-y y 下上,把动线段的长度就表示成为一个自变量为t,且开口向下的二次函数解析式,利用二次函数的性质,即可求得动线段长度的最大值及端点坐标;3、求一个已知点关于一条已知直线的对称点的坐标问题:先用点斜式或称K ,且与已知直线垂直的直线解析式,再求出两直线的交点坐标,最后用中点坐标公式即可;4、“抛物线上是否存在一点,使之到定直线的距离最大”的问题:方法1先求出定直线的斜率,由此可设出与定直线平行且与抛物线相切的直线的解析式注意该直线与定直线的斜率相等,因为平行直线斜率k 相等,再由该直线与抛物线的解析式组成方程组,用代入法把字母y 消掉,得到一个关于x 的的一元二次方程,由题有△=2b -4ac=0因为该直线与抛物线相切,只有一个交点,所以2b -4ac=0从而就可求出该切线的解析式,再把该切线解析式与抛物线的解析式组成方程组,求出x 、y 的值,即为切点坐标,然后再利用点到直线的距离公式,计算该切点到定直线的距离,即为最大距离; 方法2该问题等价于相应动三角形的面积最大问题,从而可先求出该三角形取得最大面积时,动点的坐标,再用点到直线的距离公式,求出其最大距离;方法3先把抛物线的方程对自变量求导,运用导数的几何意义,当该导数等于定直线的斜率时,求出的点的坐标即为符合题意的点,其最大距离运用点到直线的距离公式可以轻松求出;5、常数问题:1点到直线的距离中的常数问题:“抛物线上是否存在一点,使之到定直线的距离等于一个 固定常数”的问题:先借助于抛物线的解析式,把动点坐标用一个字母表示出来,再利用点到直线的距离公式建立一个方程,解此方程,即可求出动点的横坐标,进而利用抛物线解析式,求出动点的纵坐标,从而抛物线上的动点坐标就求出来了;2三角形面积中的常数问题:“抛物线上是否存在一点,使之与定线段构成的动三角形的面积等于一个定常数”的问题:先求出定线段的长度,再表示出动点其坐标需用一个字母表示到定直线的距离,再运用三角形的面积公式建立方程,解此方程,即可求出动点的横坐标,再利用抛物线的解析式,可求出动点纵坐标,从而抛物线上的动点坐标就求出来了;3几条线段的齐次幂的商为常数的问题:用K 点法设出直线方程,求出与抛物线或其它直线的交点坐标,再运用两点间的距离公式和根与系数的关系,把问题中的所有线段表示出来,并化解即可;6、“在定直线常为抛物线的对称轴,或x 轴或y 轴或其它的定直线上是否存在一点,使之到两定点的距离之和最小”的问题:先求出两个定点中的任一个定点关于定直线的对称点的坐标,再把该对称点和另一个定点连结得到一条线段,该线段的长度〈应用两点间的距离公式计算〉即为符合题中要求的最小距离,而该线段与定直线的交点就是符合距离之和最小的点,其坐标很易求出利用求交点坐标的方法;7、三角形周长的“最值最大值或最小值”问题:① “在定直线上是否存在一点,使之和两个定点构成的三角形周长最小”的问题简称“一边固定两边动的问题:由于有两个定点,所以该三角形有一定边其长度可利用两点间距离公式计算,只需另两边的和最小即可;② “在抛物线上是否存在一点,使之到定直线的垂线,与y 轴的平行线和定直线,这三线构成的动直角三角形的周长最大”的问题简称“三边均动的问题:在图中寻找一个和动直角三角形相似的定直角三角形,在动点坐标一母示后,运用=C C 动动定定斜边斜边,把动三角形的周长转化为一个开口向下的抛物线来破解;8、三角形面积的最大值问题:① “抛物线上是否存在一点,使之和一条定线段构成的三角形面积最大”的问题简称“一边固定两边动的问题”:方法1:先利用两点间的距离公式求出定线段的长度;然后再利用上面3的方法,求出抛物线上的动点到该定直线的最大距离;最后利用三角形的面积公式= 12底×高;即可求出该三角形面积的最大值,同时在求解过程中,切点即为符合题意要求的点;方法2:过动点向y 轴作平行线找到与定线段或所在直线的交点,从而把动三角形分割成两个基本模型的三角形,动点坐标一母示后,进一步可得到)()(左(定)右(定)下(动)上(动)动三角形x x y y 21−⋅−=S ,转化为一个开口向下的二次函数问题来求出最大值;②“三边均动的动三角形面积最大”的问题简称“三边均动”的问题:先把动三角形分割成两个基本模型的三角形有一边在x 轴或y 轴上的三角形,或者有一边平行于x 轴或y 轴的三角形,称为基本模型的三角形面积之差,设出动点在x 轴或y 轴上的点的坐标,而此类题型,题中一定含有一组平行线,从而可以得出分割后的一个三角形与图中另一个三角形相似常为图中最大的那一个三角形;利用相似三角形的性质对应边的比等于对应高的比可表示出分割后的一个三角形的高;从而可以表示出动三角形的面积的一个开口向下的二次函数关系式,相应问题也就轻松解决了;9、“一抛物线上是否存在一点,使之和另外三个定点构成的四边形面积最大的问题”:由于该四边形有三个定点,,即可得到一个定三角形的面积之和,所以只需动三角形的面积最大,就会使动四边形的面积最大,而动三角形面积最大值的求法及抛物线上动点坐标求法与7相同;10、“定四边形面积的求解”问题: 有两种常见解决的方案:方案一:连接一条对角线,分成两个三角形面积之和;方案二:过不在x 轴或y 轴上的四边形的一个顶点,向x 轴或y 轴作垂线,或者把该点与原点连结起来,分割成一个梯形常为直角梯形和一些三角形的面积之和或差,或几个基本模型的三角形面积的和差11、“两个三角形相似”的问题: 两个定三角形是否相似:(1)已知有一个角相等的情形:运用两点间的距离公式求出已知角的两条夹边,看看是否成比例 若成比例,则相似;否则不相似;(2)不知道是否有一个角相等的情形:运用两点间的距离公式求出两个三角形各边的长,看看是否成比例若成比例,则相似;否则不相似;一个定三角形和动三角形相似:(1)已知有一个角相等的情形:先借助于相应的函数关系式,把动点坐标表示出来一母示,然后把两个目标三角形题中要相似的那两个三角形中相等的那个已知角作为夹角,分别计算或表示出夹角的两边,让形成相等的夹角的那两边对应成比例要注意是否有两种情况,列出方程,解此方程即可求出动点的横坐标,进而求出纵坐标,注意去掉不合题意的点;2不知道是否有一个角相等的情形:这种情形在相似性中属于高端问题,破解方法是,在定三角形中,由各个顶点坐标求出定三角形三边的长度,用观察法得出某一个角可能是特殊角,再为该角寻找一个直角三角形,用三角函数的方法得出特殊角的度数,在动点坐标“一母示”后,分析在动三角形中哪个角可以和定三角形中的那个特殊角相等,借助于特殊角,为动点寻找一个直角三角形,求出动点坐标,从而转化为已知有一个角相等的两个定三角形是否相似的问题了,只需再验证已知角的两边是否成比例若成比例,则所求动点坐标符合题意,否则这样的点不存在;简称“找特角,求动点标,再验证”;或称为“一找角,二求标,三验证”;12、“某函数图象上是否存在一点,使之与另两个定点构成等腰三角形”的问题:首先弄清题中是否规定了哪个点为等腰三角形的顶点;若某边底,则只有一种情况;若某边为腰,有两种情况;若只说该三点构成等腰三角形则有三种情况;先借助于动点所在图象的解析式,表示出动点的坐标一母示,按分类的情况,分别利用相应类别下两腰相等,使用两点间的距离公式,建立方程;解出此方程,即可求出动点的横坐标,再借助动点所在图象的函数关系式,可求出动点纵坐标,注意去掉不合题意的点就是不能构成三角形这个题意;13、“某图象上是否存在一点,使之与另外三个点构成平行四边形”问题:这类问题,在题中的四个点中,至少有两个定点,用动点坐标“一母示”分别设出余下所有动点的坐标若有两个动点,显然每个动点应各选用一个参数字母来“一母示”出动点坐标,任选一个已知点作为对角线的起点,列出所有可能的对角线显然最多有3条,此时与之对应的另一条对角线也就确定了,然后运用中点坐标公式,求出每一种情况两条对角线的中点坐标,由平行四边形的判定定理可知,两中点重合,其坐标对应相等,列出两个方程,求解即可;进一步有:①若是否存在这样的动点构成矩形呢先让动点构成平行四边形,再验证两条对角线相等否若相等,则所求动点能构成矩形,否则这样的动点不存在;②若是否存在这样的动点构成棱形呢先让动点构成平行四边形,再验证任意一组邻边相等否若相等,则所求动点能构成棱形,否则这样的动点不存在;③若是否存在这样的动点构成正方形呢先让动点构成平行四边形,再验证任意一组邻边是否相等和两条对角线是否相等若都相等,则所求动点能构成正方形,否则这样的动点不存在;14、“抛物线上是否存在一点,使两个图形的面积之间存在和差倍分关系”的问题:此为“单动问题”〈即定解析式和动图形相结合的问题〉,后面的19实为本类型的特殊情形;先用动点坐标“一母示”的方法设出直接动点坐标,分别表示如果图形是动图形就只能表示出其面积或计算如果图形是定图形就计算出它的具体面积,然后由题意建立两个图形面积关系的一个方程,解之即可;注意去掉不合题意的点,如果问题中求的是间接动点坐标,那么在求出直接动点坐标后,再往下继续求解即可;15、“某图形〈直线或抛物线〉上是否存在一点,使之与另两定点构成直角三角形”的问题:若夹直角的两边与y轴都不平行:先设出动点坐标一母示,视题目分类的情况,分别用斜率公式算出夹直角的两边的斜率,再运用两直线没有与y轴平行的直线垂直的斜率结论两直线的斜率相乘等于-1,得到一个方程,解之即可;若夹直角的两边中有一边与y 轴平行,此时不能使用斜率公式;补救措施是:过余下的那一个点没在平行于y轴的那条直线上的点直接向平行于y的直线作垂线或过直角点作平行于y轴的直线的垂线与另一相关图象相交,则相关点的坐标可轻松搞定;16、“某图象上是否存在一点,使之与另两定点构成等腰直角三角形”的问题;①若定点为直角顶点,先用k点法求出另一直角边所在直线的解析式如斜率不存在,根据定直角点,可以直接写出另一直角边所在直线的方程,利用该解析式与所求点所在的图象的解析式组成方程组,求出交点坐标,再用两点间的距离公式计算出两条直角边等否若等,该交点合题,反之不合题,舍去;②若动点为直角顶点:先利用k点法求出定线段的中垂线的解析式,再把该解析式与所求点所在图象的解析式组成方程组,求出交点坐标,再分别计算出该点与两定点所在的两条直线的斜率,把这两个斜率相乘,看其结果是否为-1 若为-1,则就说明所求交点合题;反之,舍去;17、“题中含有两角相等,求相关点的坐标或线段长度”等的问题:题中含有两角相等,则意味着应该运用三角形相似来解决,此时寻找三角形相似中的基本模型“A”或“X”是关键和突破口;18、“在相关函数的解析式已知或易求出的情况下,题中又含有某动图形常为动三角形或动四边形的面积为定常数,求相关点的坐标或线段长”的问题:此为“单动问题”〈即定解析式和动图形相结合的问题〉,本类型实际上是前面14的特殊情形;先把动图形化为一些直角梯形或基本模型的三角形有一边在x 轴或y轴上,或者有一边平行于x 轴或y 轴面积的和或差,设出相关点的坐标一母示,按化分后的图形建立一个面积关系的方程,解之即可;一句话,该问题简称“单动问题”,解题方法是“设点动点标,图形转化分割,列出面积方程”;19、“在相关函数解析式不确定系数中还含有某一个参数字母的情况下,题中又含有动图形常为动三角形或动四边形的面积为定常数,求相关点的坐标或参数的值”的问题:此为“双动问题”即动解析式和动图形相结合的问题;如果动图形不是基本模型,就先把动图形的面积进行转化或分割转化或分割后的图形须为基本模型,设出动点坐标一母示,利用转化或分割后的图形建立面积关系的方程或方程组;解此方程,求出相应点的横坐标,再利用该点所在函数图象的解析式,表示出该点的纵坐标注意,此时,一定不能把该点坐标再代入对应函数图象的解析式,这样会把所有字母消掉;再注意图中另一个点与该点的位置关系或其它关系,方法是常由已知或利用2问的结论,从几何知识的角度进行判断,表示出另一个点的坐标,最后把刚表示出来的这个点的坐标再代入相应解析式,得到仅含一个字母的方程,解之即可;如果动图形是基本模型,就无须分割或转化了,直接先设出动点坐标一母式,然后列出面积方程,往下操作方式就与不是基本模型的情况完全相同;一句话,该问题简称“双动问题”,解题方法是“转化分割,设点标,建方程,再代入,得结论”;常用公式或结论:1横线段的长 = 横标之差的绝对值 =-x x 大小=-x x 右左纵线段的长=纵标之差的绝对值=-y y 大小=-y y 下上 2点轴距离:点P 0x ,0y 到X 轴的距离为0y ,到Y 轴的距离为o x ; 3两点间的距离公式:若A 11,x y ,B 2,2x y , 则AB=目录:题型1:存在性问题 题型2:最值问题 题型3:定值问题 题型4:定点问题题型5:动点问题综合 题型6:对称问题 题型7:新定义题 题型8:二次函数与圆题型1:存在性问题1.(2024·四川广安·二模)如图,抛物线2y x bx c =−++交x 轴于()4,0A −,B 两点,交y 轴于点()0,4C .(1)求抛物线的函数解析式.(2)点D 在线段OA 上运动,过点D 作x 轴的垂线,与AC 交于点Q ,与抛物线交于点P ,连接AP 、CP ,求四边形AOCP 的面积的最大值.(3)在抛物线的对称轴上是否存在点M ,使得以点A 、C 、M 为顶点的三角形是直角三角形?若存在,请求出点M【答案】(1)234y x x =−−+;(2)四边形AOCP 的面积最大为16;(3)点M 的坐标为35,22⎛⎫−− ⎪⎝⎭或311,22⎛⎫− ⎪⎝⎭.【分析】本题主要考查了二次函数综合,熟练掌握用待定系数法求解函数解析式的方法和步骤,以及二次函数的图象和性质,是解题的关键. (1)把()4,0A −,()0,4C 代入2y x bx c =−++,求出b 和c 的值,即可得出函数解析式; (2)易得182AOCSOA OC =⋅=,设()2,34P t t t −−+,则(),4Q t t +,求出24PQ t t =−−,则()()212282ACP C A S PQ x x t =⋅−=−++,根据四边形AOCP 的面积()22216ACP AOCS St =+=−++,结合二次函数的增减性,即可解答;(3)设3,2M m ⎛⎫− ⎪⎝⎭,根据两点之间距离公式得出232AC =,22254AM m =+,229(4)4CM m =+−,然后分情况根据勾股定理列出方程求解即可.【解析】(1)解:把()4,0A −,()0,4C 代入2y x bx c =−++得:01644b c c =−−+⎧⎨=⎩,解得:34b c =−⎧⎨=⎩,∴该二次函数的解析式234y x x =−−+;(2)解:∵()4,0A −,()0,4C ,∴4,4OA OC ==,∴1144822AOC S OA OC =⋅=⨯⨯=△,设直线AC 的解析式为4y kx =+, 代入()4,0A −得,044k =−+,解得1k =,∴直线AC 的解析式为4y x =+, 设()2,34P t t t −−+,则(),4Q t t +,∴()223444PQ t t t t t=−−+−+=−−∴()()()22114422822ACPC A SPQ x x t t t =⋅−=−−⨯=−++,∴四边形AOCP 的面积()22216ACP AOCSSt =+=−++,∵20−<,∴当2t =−时,四边形AOCP 的面积最大为16; (3)解:设3,2M m ⎛⎫− ⎪⎝⎭,∵()4,0A −,()0,4C ,∴2224432AC =+=,2222325424AM m m ⎛⎫=−++=+ ⎪⎝⎭,()()2222394424CM m m ⎛⎫=−+−=+− ⎪⎝⎭,当斜边为AC 时,AM CM AC 222+=,即()2225943244m m +++−=,整理得:24150m m ++=,无解;当斜边为AM 时,222AC CM AM +=,即2292532(4)44m m ++−=+,解得:112m =;∴311,22M ⎛⎫− ⎪⎝⎭当斜边为CM 时,222AC AM CM +=,即2225932(4)44m m ++=+−, 解得:52m =−;∴35,22M ⎛⎫−− ⎪⎝⎭综上:点M 的坐标为35,22⎛⎫−− ⎪⎝⎭或311,22⎛⎫− ⎪⎝⎭.2.(2024·内蒙古乌海·模拟预测)如图(1),在平面直角坐标系中,抛物线()240y ax bx a =+−≠与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C ,点A 的坐标为()1,0−,且OC OB =,点D 和点C 关于抛物线的对称轴对称.(1)分别求出a ,b 的值和直线AD 的解析式;(2)直线AD 下方的抛物线上有一点P ,过点P 作PH AD ⊥于点H ,作PM 平行于y 轴交直线AD 于点M ,交x 轴于点E ,求PHM 的周长的最大值;(3)在(2)的条件下,如图2,在直线EP 的右侧、x 轴下方的抛物线上是否存在点N ,过点N 作NG x ⊥轴交x 轴于点G ,使得以点E 、N 、G 为顶点的三角形与AOC 相似?如果存在,请直接写出点G 的坐标;如果不存在,请说明理由.【答案】(1)1a =,3b =−,=1y x −−(2)4+(3)存在,点G的坐标为⎫⎪⎪⎝⎭或⎫⎪⎪⎝⎭【分析】本题主要考查的是二次函数的综合应用,掌握二次函数的交点式、配方法求二次函数的最值、相似三角形的判定、等腰直角三角形的判定、一元二次方程的求根公式,列出PM 的长与a 的函数关系式是解题的关键.(1)先求得C 的坐标,从而得到点B 的坐标,设抛物线的解析式为()()14y a x x =+−,将点C 的坐标代入求解即可;先求得抛物线的对称轴,从而得到点()3,4D −,然后可求得直线AD 的解析式=1y x −−;(2)求得45BAD ∠=︒,接下来证明PMD △为等腰直角三角形,所当PM 有最大值时三角形的周长最大,设()2,34P a a a −−,()1M a −−,则223PM aa =−++,然后利用配方可求得PM 的最大值,最后根据MPH△的周长(1PM=求解即可;(3)当90EGN ∠=︒时,如果OA EG OC GN = 或OA GNOC EN =时,则AOC ∽EGN △,设点G 的坐标为(),0a ,则()2,34N a a a −−,则1EG a =−,234NG aa =−++,然后根据题意列方程求解即可.【解析】(1)点A 的坐标为()1,0−,1OA ∴=.令0x =,则4y =−,()0,4C ∴−,4OC =,OC OB =Q , 4OB ∴=,()4,0B ∴,设抛物线的解析式为()()14y a x x =+−,将0x =,4y =−代入得:44a −=−,解得1a =,∴抛物线的解析式为234y x x =−−;1a ∴=,3b =−; 抛物线的对称轴为33212x −=−=⨯,()0,4C −,点D 和点C 关于抛物线的对称轴对称,()3,4D ∴−;设直线AD 的解析式为y kx b =+.将()1,0A −、()3,4D −代入得:034k b k b −+=⎧⎨+=−⎩,解得1k =−,1b =-,∴直线AD 的解析式=1y x −−;(2)直线AD 的解析式=1y x −−,∴直线AD 的一次项系数1k =−,45BAD ∴∠=︒. PM 平行于y 轴,90AEP ∴∠=︒,45PMH AME ∴∠=∠=︒.MPH ∴的周长(122PM MH PH PM MP PM PM =++=++=. 设()2,34P a a a −−,则(),1M a a −−, 则()22213423(1)4PM a a a a a a =−−−−−=−++=−−+.∴当1a =时,PM 有最大值,最大值为4.MPH ∴的周长的最大值(414=⨯=+(3)在直线EP 的右侧、x 轴下方的抛物线上存在点N ,过点N 作NG x ⊥轴交x 轴于点G ,使得以点E 、N 、G 为顶点的三角形与AOC 相似;理由如下:设点G 的坐标为(),0a ,则()2,34N a a a −−①如图2.1,若OA EG OC GN = 时,AOC ∽EGN △. 则 211344a a a −=−++,整理得:280a a +−=.得:a =负值舍去),∴点G为⎫⎪⎪⎝⎭; ②如图2.2,若OA GN OC EN =时,AOC ∽NGE ,则21434a a a −=−++,整理得:2411170a a −−=,得:a =负值舍去),∴点G为⎫⎪⎪⎝⎭, 综上所述,点G的坐标为⎫⎪⎪⎝⎭或⎫⎪⎪⎝⎭. 3.(2024·重庆·一模)如图,在平面直角坐标系中,抛物线2y ax bx =+x 轴交于点()1,0A −,()5,0B ,与y 轴交于点C ,连接BC ,AC .(1)求抛物线的表达式;(2)P 为直线BC 上方抛物线上一点,过点P 作PD BC ⊥于点D ,过点P 作PE x 轴交抛物线于点E,求4+PD PE 的最大值及此时点P 的坐标; (3)点C 关于抛物线对称轴对称的点为Q ,将抛物线沿射线CAy ',新抛物线y '与y 轴交于点M ,新抛物线y '的对称轴与x 轴交于点N ,连接AM ,MN ,点R 在直线BC 上,连接QR .当QR 与AMN 一边平行时,直接写出点R 的坐标,并写出其中一种符合条件的解答过程.【答案】(1)2y x x =++(2)当154t =时,PE的最大值,15,416P ⎛ ⎝⎭, (3)R点的坐标为⎛ ⎝⎭或6,⎛ ⎝⎭或(.【分析】(1)利用待定系数法求抛物线解析式即可;(2)先求得2y x =2x =,过点P 作PG x ⊥轴交BC 于点F ,利用勾股定理求得BC ==DPF OBC ∽,得PF DP BC OB =即PF PD=,从而得PF =,求出设直线BC的解析式后,设2,P t ⎛+ ⎝,则,F t ⎛+ ⎝,从而2PF =+,当点P在E 点右侧时()424PE t t t =−−=−,从而得2154t ⎫=−⎪⎝⎭,利用二次函数的性质即可求解;当点P 在E 点左侧时:442PE t t t =−−=−时,同理可求.然后比较4+PE 的最大值即可得出答案. (3)先求得1OA=,OC AC =设抛物线2y =H ⎛ ⎝⎭平移后为P ,过点P 作PW ⊥直线2x =,则AOC PWH ∽,得1OA OC AC WP HW PH ====,进而得平移后的抛物线2y x +'=,从而求得()1,0N,M ⎛ ⎝⎭,然后分QR AM ∥,QR MN ∥,QR AN ∥三种情况,利用二次函数的性质及一次函数的与二元一次方程的关系求解即可得解.【解析】(1)解:∵抛物线2y ax bx =+x 轴交于点()1,0A −,()5,0B 两点,代入坐标得:02550a b a b ⎧−=⎪⎨+=⎪⎩,解得:a b ⎧=⎪⎪⎨⎪=⎪⎩,∴抛物线的函数表达式为255y x x =−++(2)解:∵)2225555y x x x =−+=−−+,∴2y x =2x=,顶点为⎛ ⎝⎭ 过点P 作PG x ⊥轴交BC 于点F ,当0x =时,200y =∴(C ∵()5,0B ∴BC ==∵PG x ⊥轴,PD BC ⊥,x 轴y ⊥轴,∴909090CBO BFG DPF PFD PDF BOC ∠∠∠∠∠∠+=︒+=︒==︒,,∵PFD BFG ∠∠=∴DPF CBO ∠∠=∴DPF OBC ∽,∴PF DP BC OB =即PF PD =,∴PF PD =∴44+PD PE =PF +PE ,设直线BC :y kx b =+,把(C ,()5,0B 代入得:05k b b =+⎧⎪=,解得5k b ⎧=−⎪⎨⎪=⎩, ∴直线BC:y =设2,P t ⎛ ⎝,则,F t ⎛+ ⎝,∴22PF ⎛⎛=−+=+ ⎝⎝,∵2y x =2x =,PE x 轴,∴24,E t ⎛−+ ⎝当点P 在E 点右侧时:()424PE t t t =−−=−,当24PE t =−时:∴+PD PE =PF +()221524545416t t ⎛⎫=−+−=−−+ ⎪⎝⎭ ∴当154t =时,的最大值∴2151544⎛⎫= ⎪⎝⎭,∴154P ⎛ ⎝⎭; 当点P 在E 点左侧时:442PE t t t =−−=−时,∴+PD PE =PF +()225424t t ⎫=−=−⎪⎝⎭, ∴当54t =时,的最大值.2,55P t ⎛−+ ⎝∴25544⎛⎫ ⎪⎝⎭∴5,416P ⎛ ⎝⎭,∵> 综上所诉,当点P 在E 点右侧时:即154t =时,的最大值,154P ⎛ ⎝⎭, (3)解:设直线AC :y mx n =+,把()1,0A −,(C , ∴1OA =,OC =∴AC ==设抛物线2y x =H ⎛ ⎝⎭平移后为P , 过点P 作PW ⊥直线2x =,则AOC PWH ∽,∴1OA OC AC WP HW PH ====∴1PW =,HW=∴21,5P ⎛−⎝即1,5P ⎛ ⎝⎭,∴平移后的抛物线)22155555y x x x =−−+=−++', ∴()1,0N令0x =,y '=,∴M ⎛ ⎝⎭ 如图,当QR AM ∥时,设直线AM 的解析式为:y px q =+,把M ⎛ ⎝⎭,()1,0A −代入得:0p q q =−+⎧=解得p q ⎧=⎪⎪⎨⎪=⎪⎩, ∴直线AM的解析式为:y =, ∴设直线QR的解析式为:y x n =∵(C ,Q 和C 关于2x =对称,∴(Q把(Q代入5y x n =+45n +,解得n =,∴直线QR的解析式为:y = 联立直线QR的解析式y =与直线BC:y x =+55y x y x ⎧=−⎪⎪⎨⎪=⎪⎩,解得3x y =⎧⎪⎨=⎪⎩,∴R ⎛ ⎝⎭ 同理可得:当QR MN ∥时,6,5R ⎛− ⎝⎭ 当QR AN ∥时,(R所有符合条件的R点的坐标为⎛ ⎝⎭或6,⎛ ⎝⎭或(. 【点睛】本题考查待定系数法求抛物线解析式,勾股定理,抛物线的性质,抛物线平移,一次函数的平移,相似三角形的判定及性质,图形与坐标,掌握待定系数法求抛物线解析式,抛物线的性质,抛物线平移,相似三角形的判定及性质,图形与坐标,利用辅助线画出准确图形是解题关键.题型2:最值问题4.(2024·安徽合肥·二模)在平面直角坐标系中,O 为坐标原点,抛物线23y ax bx =+−与x 轴交于()1,0A −,()3,0B 两点,与y 轴交于点C ,连接BC .(1)求a ,b 的值;(2)点M 为线段BC 上一动点(不与B ,C 重合),过点M 作MP x ⊥轴于点P ,交抛物线于点N . (ⅰ)如图1,当3PA PB=时,求线段MN 的长; (ⅱ)如图2,在抛物线上找一点Q ,连接AM ,QN ,QP ,使得PQN V 与APM △的面积相等,当线段NQ 的长度最小时,求点M 的横坐标m 的值.【答案】(1)1a =,2b =−(2)(ⅰ)2MN =;(ⅱ)m 的值为32或12【分析】本题考查诶粗函数的图象和性质,掌握待定系数法和利用函数性质求面积是解题的关键.(1)运用待定系数法求函数解析式即可;(2)(ⅰ)先计算BC 的解析式,然后设(),3M m m −,则3PM PB m ==−,1PA m =+,根据题意得到方程133m m +=−求出m 值,即可求出MN 的长;(ⅱ)作QR PN ⊥于点R ,由(ⅰ)可得1PA m =+,3PB PM m =−−,223PN m m =−++,然后分为点Q 在PN 的左侧和点Q 在PN 的右侧两种情况,根据勾股定理解题即可.【解析】(1)由题意得309330a b a b −−=⎧⎨+−=⎩,解得12a b =⎧⎨=−⎩;(2)(ⅰ)当0x =时,3y =−,∴()0,3C −,设直线BC 为3y kx =−,∵点()3,0B ,∴330k −=,解得1k =,∴直线BC 为3y x =−,设(),3M m m −,则3PM PB m ==−,1PA m =+, ∵3PA PB =, ∴133m m +=−,解得2m =,经检验2m =符合题意,当2m =时,222233y =−⨯−=−, ∴3PN =,31PM PB m ==−=,∴2MN =;(ⅱ)作QR PN ⊥于点R ,由(ⅰ)可得1PA m =+,3PB PM m =−−,223PN m m =−++,PQN V 的面积为()21232m m QR −++⋅,APM △的面积为()()1312m m −+,∴()()()211233122m m QR m m −++⋅=−+,解得1QR =;当点Q 在PN 的左侧时,如图1,Q 点的横坐标为1m QR m −=−,纵坐标为()()2212134m m m m −−⨯−−=−,∴R 点的坐标为()2,4m mm−,∵N 点坐标为()2,23m mm −−,∴32RN m =−,∴()22231NQ m =−+,∴当32m =时,NQ 取最小值;当点Q 在PN 的右侧时,如图2,Q 点的横坐标为1m QR m +=+,纵坐标为()()2212134m m m +−⨯+−=−,∴R 点的坐标为()2,4m m−,∵N 点的坐标为()2,23m mm −−,∴21RN m =−, ∴()222211NQ m =−+,∴当12m =时,NQ 取最小值.综上,m 的值为32或12.。
二次函数综合题专项讲解(经典)
初中二次函数综合题专项讲解引言:二次函数综合题题目难度较大,也称压轴题。
解压轴题有三个步骤:认真审题;理解题意、探究解题思路;正确解答。
审题要全面审视题目的所有条件和答题要求,在整体上把握试题的特点、结构,以利于解题方法的选择和解题步骤的设计。
二次函数一般会出现在选择题(或填空题)、解答题的倒数几个题目中。
选择题和填空题时易时难。
解答题较难,一般有2—3小题。
第 1 小题通常是求解析式:这一小题简单,直接找出坐标或者用线段长度而确定坐标,进而用待定系数法求出解析式即可。
第2—3 小题通常是以动点为切入口,结合三角形、四边形、圆、平移、对称、解方程(组)与不等式(组)等知识呈现,知识面广,难度大;解这类题要善于运用转化、数形结合、分类讨论等数学思想,认真分析条件和结论、图形的几何特征与代数式的数量结构特征的关系,确定解题的思路和方法;同时需要心态平和,切记急躁:当思维受阻时,要及时调整思路和方法,并重新审视题意,注意挖掘隐蔽的条件和在联系;既要防止钻牛角尖,又要防止轻易放弃。
一、一中13—14 学年度上期半期考试二次函数习题212.如图,直线y kx c 与抛物线y ax2bx c 的图象都经过y 轴上的 D点,抛物线与x轴交于A、B 两点,其对称轴为直线x 1 ,且OA OD.直线y kx c与x轴交于点C(点C在点B的右侧).则下列命题中正确命题的个数是().①abc 0; ② 3a b 0; ③ 1 k 0;④k a b; ⑤ ac k 0A .1 B.2 C.3 D.416.如右图是二次函数y ax2bx c 的部分图象,由图象可知ax2bx c 0时x的取值围是_______________________________________________ .1218.已知抛物线y x22x 的图象如左图所示,点N 为抛物线2的顶点,直线ON 上有两个动点P和Q,且满足PQ 2 2 ,在直线ON 下方的抛物线上存在点M ,使PQM 为等腰直角三角形,则点M 的坐标为_______________________________________________125.如图,在平面直角坐标系中,直线y x 2 与坐标轴分别交于 A 、B 两点,过 A 、B22两点的抛物线为y x2bx c ,点 E 为第二象限抛物线上一动点,连接AE,BE.1)求抛物线的解析式;2)当ABE 面积最大时,求点E的坐标,并求出此时ABE 的面积;3)当EAB OAB 时,求点E的坐标.二、二次函数基础2(一)概念:一般地,形如y ax2bx c(a,b,c是常数, a 0 )的函数,叫做二次函数。
二次函数压轴题基本方法和结构
二次函数压轴基本结构和解题方法一、线1、线段与距离 (1)改“斜”归正已知:A(x 1,y 1),B(x 2,y 2),直线AB :y =kx +b ,AB ⊥BC 水平线段:AC =|x 1−x 2| 铅垂线段:AC =|y 1−y 2|斜线段: AB =√(x 1−x 2)2+(y 1−y 2)2=√k 2+1|x 1−x 2|(2)点到直线距离公式:d =PH =|km +b −n|√k 2+1(3)于涵定理 一般位置:条件:直线AB 交抛物线(二次项系数为a )于AB 两点,铅垂线PQ 交抛物线于P ,交直线AB 于P ,AE ⊥PQ ,BF ⊥PQ 结论:①PQ =|a|∙AE ∙BF ;S △PAB =12PQ ∙(AE +BF )=12|a |∙AE ∙BF ∙(AE +BF )=12|a (x A −x P )(x P −x B )(x A −x B )|特殊位置① 若AB 为水平直线: PQ =|a|∙AQ ∙BQ ② 若AB 为水平直线,且AP ⊥BP : PQ =1|a|(PQ =|a|∙AQ ∙BQ ,且PQ 2=AQ ∙BQ )③ 若AB 为水平直线,且P 为抛物线顶点(类似于圆中的垂径结构)AB =√4PQ|a|④ 若AB 为x 轴,且P 为抛物线顶点:AB =√∆|a|(4)焦点准线焦点准线的定义:将抛物线的顶点向上/下平移14|a|个单位,就得到焦点和准线的位置。
焦点:F(−b2a ,14a);准线:直线y=−14a条件:点P是抛物线上任意一点,过P点的直线(非铅垂线)与抛物线有位移公共点(“切线”),与对称轴交于S,与过顶点的水平线交于A,PM⊥准线于M;PQ过焦点F,过P、Q 的切线交于T结论:①PF=PM,DE=DF②PF=FS③FA⊥PS,PA=SA④当直线PQ绕焦点F转动时候,T点在准线上移动(阿基米德三角形特殊情况)⑤TP⊥TQ,TM=TN⑥以MN为直径的圆切PQ于F,以PQ为直径的圆切MN于T准线2、平行“弦”条件:AB//CD//l P结论:x A+x B=x C+x D=2x P变式一:若CE和DF为铅垂线,则AE=BF变式二:若将抛物线向下平移交直线AB于E、F,则AE=BF变式三:将抛物线沿着PQ方向平移,若AB//PQ,则AB=EF,AE=BF3、线段相等和比值(1)左右对称(纵向角平分线)特殊情况:条件:P为抛物线(顶点为M)对称轴上一点,过P点的直线PA交抛物线于C,过C作水平直线BC交抛物线于B点,连接AB交对称轴于Q,连接PB交抛物线于D;结论:①k PA+k PB=0;②PM=QM一般情况:条件:过抛物线内一点T作铅垂、水平直线,交抛物线于M、B、C,在铅垂线上取一点P,连接PC交抛物线于A,连接AB交铅垂线于Q结论:TBTC =QMPM(2)上下对称条件:水平直线与抛物线交于P、Q两点,直线PA、PB分别交抛物线于A、B,且∠APQ=∠BPQ,连接AB,过Q点的直线作抛物线的切线。
初中数学二次函数解题方法与技巧
2024年4月下半月㊀解法探究㊀㊀㊀㊀初中数学二次函数解题方法与技巧◉宁夏回族自治区固原市西吉县兴平乡中心小学㊀王建勤㊀㊀基于中考数学试题的研究可以发现,二次函数的知识点在初中数学试卷中所占比例较大,内容较多,题目较复杂,考题难度较大.特别是二次函数问题经常会在中考压轴题中出现.下面对有关二次函数的常见题型及解题方法进行总结.1解析式问题找㊁代㊁解在求解二次函数解析式的问题中,教师可以引导学生遵循 找㊁代㊁解 的解题思路,解决与二次函数有关的实际问题.图1例1㊀如图1所示,对称轴为直线x =12的抛物线经过B (2,0),C (0,4)两点,抛物线与x 轴的另一为点A ,求抛物线的解析式.找:找出题目中抛物线上的相应坐标信息.如B (2,0),C (0,4),对称轴直线x =12.代:代入到二次函数y =a x 2+b x +c (a ʂ0).解:进一步求解二次函数解析式.注:解析式问题需要学生具有较为扎实的二次函数学习基础.为此,在开展解析式问题教学前,教师可以利用对分课堂教学模式,引导学生梳理二次函数基本知识,提高学生的做题效果和课堂教学效率.2动点问题设㊁找㊁论有关动点问题,主要有x 轴上的动点问题㊁二次函数对称轴上的动点问题以及抛物线上的动点问题三种情况.求解时,首先假设出动点的坐标,由题干中的隐藏关系找出相应的等式,最后根据情况分类讨论,并根据合理性解出正确的结果.例2㊀已知抛物线y =-2x 2+2x +4与x 轴交于A ,B 两点,与y 轴交于点C ,若P 为抛物线第一象限内的一点,设四边形C O B P 的面积为S ,求S 的最大值.设:设P (n ,-2n 2+2n +4)(0<n <2).找:如图2,过点P 作x 轴㊁y 轴的垂线,垂足分别为F ,E ,连接O P .由此可知S =S әC O P +S әP O B =12O C n +12O B (-2n 2+2n +4)=-2(n -1)2+6.图2论:当且仅当n =1时,S 取得最大值,且最大值为6.注:动点问题需要学生耐心思考,找出题干中的关系式,这也是二次函数动点问题的重难点所在.为此,教师要引导学生克服解决动点问题时的恐惧心理,运用二次函数动点问题的三部解题法加强训练.3面积问题找㊁拆㊁设面积问题常以求解三角形面积或四边形面积的形式出现,主要考查求解三角形面积㊁求解两个三角形交点的坐标位置㊁求解三角形或四边形面积最大时的动点坐标这三大问题.图3例3㊀如图3所示,在平面直角坐标系中,抛物线y =-x 2+5x +6与x 轴相交于A ,B 两点,与y 轴相交于点C ,且直线y =x -6过点B ,与y 轴交于点D ,点C 与点D 关于x 轴对称,已知P 是线段O B 上的一个动点,过点P 作x 轴的垂线交抛物线于点M ,交直线B D 于点N .当әMD B 的面积最大时,求点P 的坐标.根据题干,可以发现本道题在考查面积的基础上,进一步提出了求点P 的坐标.但仍需先求出әMD B 面积的最大值,再从中寻找答案.找:找出әMD B 的面积关系.已知在әMD B 中,B 和D 是定点,M 是抛物线上的一个动点,可以使用铅垂模型求解,即线段MN 将әMD B 分割为有公共底边的两个三角形әMN D 和әMN B .拆:根据上述陈述,可以得到S әM D B =S әMN D +S әMN B =12MN |x B -x D |.设:设点P 坐标为(m ,0),则M (m ,-m 2+5m +6),N (m ,m -6),于是MN =-m 2+4m +12,所以S әM D B =12MN |x B -x D |=-3m 2+12m +36=-3(m -2)2+48,当且仅当m =2时,S әM D B 有最大值,且最大值为48,此时点P 的坐标为(2,0).注:教师在开展有关二次函数面积问题题型训练17解法探究2024年4月下半月㊀㊀㊀时,首先要引导学生学习如何找出面积关系.教师可以引导学生复习求面积的方法,如割补法㊁铅垂法等,从而提高学生的学习效率[1].其次,利用面积求解方法引导学生灵活解决面积问题.4几何图形存在性问题找㊁解㊁论中考有关二次函数几何图形存在性问题,主要考查三角形和四边形的存在性,且以考查特殊三角形和四边形居多.通常几何图形会与面积最值或动点问题搭配考查,灵活性较高,难度较大.图4例4㊀如图4所示,已知二次函数y =x 2+2x -3的图象与x 轴相交于点A 和B ,其中点A 的坐标为(-3,0),且过点B 作一条直线与抛物线相交于点D (-2,-3).过x 轴上的点E (a ,0)(点E 在点B 的右侧)作直线E F ʊB D ,且与该抛物线相交于点F ,试分析是否存在实数a ,使得四边形B D F E 为平行四边形若存在,请求出满足条件的实数a ;若不存在,请说明理由.找:根据题干内容,学生能够轻松求出直线B D 的解析式为y =x -1,则直线E F 的解析式为y =x -a .根据 两组对边分别平行的四边形是平行四边形 这一定理可知,若想四边形B D F E 为平行四边形,只需满足D F 与x 轴平行即可.解:若D F 与x 轴平行,则点D 和点F 的纵坐标相等,即点F 的纵坐标为-3.而F 为直线E F 与抛物线的交点,设F 的横坐标为m ,根据B E =D F ,可得a -1=m +2,即m =a -3,则F (a -3,-3).论:将F (a -3,-3)代入y =x 2+2x -3,可以解出a 1=1,a 2=3.当a =1时,点E (1,0)与点B 重合,不符合题意,舍去;当a =3时,点E (3,0)符合题意.所以,当且仅当a =3时,四边形B D F E 为平行四边形.注:关于二次函数几何图形存在性问题的内容较为丰富,出题方式较为灵活,因此,学生需要加强训练,把握解决二次函数几何图形存在性问题的解题思路,提高解题效率和解题质量.5最值问题设㊁找㊁论最值问题是二次函数的常考题型,最值问题通常与面积问题一同出现.因此,在面对这一问题时,教师可以引导学生运用割补法或铅垂(铅垂高,水平宽)法求出几何图形的面积,再通过数式关系求出最大值或最小值.例5㊀如图5,已知抛物y =a x 2-2a x +c 经过点C (1,2),与x 轴交于A ,B 两点,其中A 点坐标图5为(-1,0).(1)求抛物线的解析式;(2)直线y =34x 交抛物线于S ,T 两点,M 为抛物线上A ,T 之间的一个动点,过M 作M E 垂直x 轴于点E ,M F ʅS T 于点F ,求M E +M F 的最大值.本题根据解决解析式问题的步骤,可以很快得出抛物线y =-12x 2+x +32.对于第(2)问,可以通过设㊁找㊁论的步骤求解.设:设点M 的坐标为(t ,-12t 2+t +32),直线O T 交M E 于G ,则G (t ,34t ).找:找出M E +M F 的表达式.M E =-12t 2+t +32,O G =54t ,M G =-12t 2+14t +32.由s i n øO G E =s i n øM G F =45,得M F =45M G =-25t 2+15t +65.所以,可得M E +M F =-910t 2+65t +2710=-910(t -23)2+3110.论:当且仅当t =23时,M E +M F 有最大值,且最大值为3110.注:最值问题首先需要学生找到目标函数的表达式,然后化简等式.其次,最值问题需要学生正确计算出数式的答案,保证运算的准确率[2].综上所述,初中对二次函数的考查内容虽然灵活复杂[3],但是若学生能够利用解析式问题㊁动点问题㊁面积问题㊁几何图形存在性问题和最值问题的解题方法与解题技巧,并进行适当的训练,就能提高有关二次函数的解题能力.参考文献:[1]陆立明.二次函数综合题解题分析与备考策略 以南宁市中考数学二次函数题型为例[J ].中学教学参考,2022(17):22G24.[2]陈丽黎.类比探究透本质,数形结合双翼飞 二次函数的图象与性质(3) 的教学设计与反思[J ].中学数学,2022(12):45G46.[3]王国强,华云锋.慢教学:初中生数感培养的课堂新样态 以 二次函数 单元起始课教学为例[J ].中学数学,2022(10):7G10.Z27。
压轴题二次函数解题技巧
压轴题二次函数解题技巧
压轴题是数学考试中考察学生综合能力的一道难题,其中二次函数题目尤其考验学生的解题技巧。
以下为二次函数解题的几种技巧: 1. 求解二次函数的根,可以使用求根公式。
当方程有两个实根时,根据大小关系可以确定函数的开口方向;当有一个实根时,函数与x轴相切;当没有实根但有复根时,函数与x轴没有交点,且开口向上或向下。
2. 判断二次函数的最值,可以使用顶点公式。
当二次项系数为正数时,函数的最小值为顶点的y坐标;当二次项系数为负数时,函数的最大值为顶点的y坐标。
3. 根据函数图像确定函数表达式,可以根据函数的开口方向、顶点坐标、以及过已知点的信息来确定函数的表达式。
4. 根据函数表达式确定函数图像,可以通过分析函数的一、二阶导数来确定函数的开口方向、顶点坐标、以及拐点的位置。
掌握这些二次函数的解题技巧,可以帮助学生在考试中更加轻松地解决压轴题。
- 1 -。
二次函数压轴题的常用解题思路
二次函数压轴题例题:如图,已知抛物线y=x2+bx+c(b,c是常数,且c<0)与x轴分别交于点A、B(点A位于点B的左侧),与y轴的负半轴交于点C,点A的坐标为(﹣1,0).(1)b=,点B的横坐标为(上述结果均用含c的代数式表示);(2)连接BC,过点A作直线AE∥BC,与抛物线y=x2+bx+c交于点E,点D是x轴上的一点,其坐标为(2,0).当C,D,E三点在同一直线上时,求抛物线的解析式;(3)在(2)条件下,点P是x轴下方的抛物线上的一个动点,连接PB,PC,设所得△PBC的面积为S.①求S的取值范围;②若△PBC的面积S为整数,则这样的△PBC共有个.分析:(1)将A(﹣1,0)代入y=x2+bx+c,可以得出b=+c;根据一元二次方程根与系数的关系,得出﹣1•x B=,即x B=﹣2c;(2)由y=x2+bx+c,求出此抛物线与y轴的交点C的坐标为(0,c),则可设直线BC的解析式为y=kx+c,将B点坐标代入,运用待定系数法求出直线BC的解析式为y=x+c;由AE∥BC,设直线AE得到解析式为y=x+m,将点A的坐标代入,运用待定系数法求出直线AE得到解析式为y=x+;解方程组,求出点E坐标为(1﹣2c ,1﹣c ),将点E 坐标代入直线CD 的解析式y =﹣x +c ,求出c =﹣2,进而得到抛物线的解析式为y =x 2﹣x ﹣2;(3)①分两种情况进行讨论:(Ⅰ)当﹣1<x <0时,由0<S <S △ACB ,易求0<S <5;(Ⅱ)当0<x <4时,过点P 作PG ⊥x 轴于点G ,交CB 于点F .设点P 坐标为(x ,x 2﹣x ﹣2),则点F 坐标为(x ,x ﹣2),PF =PG ﹣GF =﹣x 2+2x ,S =PF •OB =﹣x 2+4x =﹣(x ﹣2)2+4,根据二次函数的性质求出S 最大值=4,即0<S ≤4.则0<S <5;②由0<S <5,S 为整数,得出S =1,2,3,4.分两种情况进行讨论:(Ⅰ)当﹣1<x <0时,根据△PBC 中BC 边上的高h 小于△ABC 中BC 边上的高AC =,得出满足条件的△PBC 共有4个;(Ⅱ)当0<x <4时,由于S =﹣x 2+4x ,根据一元二次方程根的判别式,得出满足条件的△PBC 共有7个;则满足条件的△PBC 共有4+7=11个.解答过程略。
二次函数压轴题题型
二次函数压轴题题型一、题型简介二次函数压轴题是高中数学中比较常见的一种题型,通常考察学生对于二次函数的基本概念、性质和应用的掌握情况。
该题型主要涉及到二次函数的图像、参数、零点、顶点等方面内容,需要学生具备较强的代数计算能力和几何直观感受能力。
二、基本知识点1. 二次函数的标准式:$y=ax^2+bx+c$2. 二次函数图像的基本形态:开口向上或向下的抛物线3. 二次函数顶点坐标公式:$x_0=-\frac{b}{2a}$,$y_0=c-\frac{b^2}{4a}$4. 二次函数零点公式:$\Delta=b^2-4ac$,$x_{1,2}=\frac{-b\pm\sqrt{\Delta}}{2a}$三、解题步骤1. 确定二次函数参数$a,b,c$2. 计算顶点坐标$(x_0,y_0)$3. 判断抛物线开口方向,并绘制图像4. 求解零点并给出答案四、例题分析已知二次函数$f(x)=ax^2+bx+c$在$x=1$处有极值,且$f(2)=0$,$f(3)=-1$,求该函数的解析式。
解:根据题意可得:$$\begin{cases}f(2)=0\\f(3)=-1\end{cases}$$代入二次函数的标准式可得:$$\begin{cases}4a+2b+c=0\\9a+3b+c=-1\end{cases}$$解得:$$\begin{cases}a=-\frac{1}{2}\\b=\frac{5}{2}\\c=-3\end{cases}$$因此,该二次函数的解析式为$f(x)=-\frac{1}{2}x^2+\frac{5}{2}x-3$。
五、完整代码实现```pythondef quadratic_function(a, b, c):"""计算二次函数的顶点坐标和零点,并绘制图像。
:param a: 二次项系数:param b: 一次项系数:param c: 常数项系数:return: None"""# 计算顶点坐标和判别式值x0 = -b / (2 * a)y0 = c - (b ** 2) / (4 * a)delta = b ** 2 - 4 * a * c# 判断抛物线开口方向并绘制图像if a > 0:x = np.linspace(x0 - 5, x0 + 5, 1000)y = a * (x - x0) ** 2 + y0plt.plot(x, y)plt.axvline(x=x0, color='r', linestyle='--')plt.text(x0 + 0.1, y0 + 1, '(%s, %s)' % (round(x0, 2),round(y0, 2)), fontsize=12)plt.xlabel('x')plt.ylabel('y')plt.title('$y=%sx^2+%sx+%s$' % (a, b, c))else:x = np.linspace(x0 - 5, x0 + 5, 1000)y = a * (x - x0) ** 2 + y0plt.plot(x, y)plt.axvline(x=x0, color='r', linestyle='--')plt.text(x0 + 0.1, y0 - 1, '(%s, %s)' % (round(x0, 2), round(y0, 2)), fontsize=12)plt.xlabel('x')plt.ylabel('y')plt.title('$y=%sx^2+%sx+%s$' % (a, b, c))# 求解零点并给出答案if delta > 0:x1 = (-b + math.sqrt(delta)) / (2 * a)x2 = (-b - math.sqrt(delta)) / (2 * a)print('该二次函数有两个零点:x1=%s,x2=%s' % (round(x1, 2), round(x2)))elif delta == 0:print('该二次函数有一个零点:x=%s' % round(x0, 2))else:print('该二次函数无实数解。
初中数学二次函数(压轴题)的最佳的4种解法
初中数学二次函数(压轴题)的最佳的4种解法
在这里以一道中考题为例,介绍几种不同的解题方法,供同学们参考,都掌握了之后一定会在压轴题上有一个大的提升。
ps.因格式问题,部分上标未能正常显示,望知悉。
1题目
如图1,抛物线y=-x2+bx+c与x轴交于A(1,0),B(-3,0)两点。
(1)求该抛物线的解析式;
(2)设(1)中的抛物线交y轴于C点,在该抛物线的对称轴上是否存在点Q,使得△QAC的周长最小?若存在,求出Q点的坐标;若不存在,请说明理由;(3)如图2,在(1)中的抛物线上的第二象限上是否存在一点P,使△PBC的面积最大?若存在,求出点P的坐标及△PBC的面积最大值;若没有,请说明理由。
解答:
(1)抛物线解析式为y=-x2-2x+3;
(2)Q(-1,2);
下面着重探讨求第(3)小题中面积最大值的几种方法.
解法1补形、割形法
几何图形中常见的处理方式有分割、补形等,此类方法的要点在于把所求图形的面积进行适当的补或割,变成有利于表示面积的图形。
方法一
如图3,设P点(x,-x2-2x+3)(-3<x<0).。
中考二次函数压轴题解题技巧
中考二次函数压轴题解题技巧在解题过程中,我们需要借助函数解析式来表示动点坐标。
首先,我们可以设定动点P在某条直线上,其坐标为(t,f(t))。
然后,我们可以通过计算两个线段的长度,利用代数式证明它们相等。
这种方法适用于各种类型的线段相等问题,如求证两个三角形的周长相等等。
2.求解“定三角形内一点到三边距离之和〞的问题:对于定三角形内的一个点P,我们可以利用动点的方法来求解其到三边距离之和。
具体来说,我们可以将点P的坐标表示为(x,y),然后通过计算P到三条边的距离,再将它们相加,得到定理的结论。
这种方法适用于各种类型的定三角形内点距离之和问题。
3.求解“定直线与定点之间的距离〞的问题:对于一个定点A和一条定直线L,我们可以利用点到直线的距离公式来求解它们之间的距离。
具体来说,我们可以设定一个动点P在直线L上,然后计算点P到点A的距离,即可得到定点与定直线之间的距离。
这种方法适用于各种类型的定直线与定点之间的距离问题。
4.求解“定点到定线段的最短距离〞的问题:对于一个定点A和一条定线段BC,我们可以利用点到线段的最短距离公式来求解它们之间的最短距离。
具体来说,我们可以设定一个动点P在线段BC上,然后计算点A到线段BP和线段CP的距离,取其中较小值即可得到定点到定线段的最短距离。
这种方法适用于各种类型的定点到定线段的最短距离问题。
5.求解“动三角形内一点到三边距离之和〞的问题:对于一个动三角形ABC内的一个点P,我们可以利用动点的方法来求解其到三边距离之和。
具体来说,我们可以将点P的坐标表示为(x,y),然后通过计算P到三条边的距离,再将它们相加,得到结论。
这种方法适用于各种类型的动三角形内点距离之和问题。
1.证明两线段相等的方法:首先确定两线段的距离类型(点点距离、点轴距离或点线距离),然后利用距离公式计算出两线段的长度,并进行化简,从而证明它们相等。
2.平行于y轴的动线段长度的最大值问题:对于平行于y轴的线段,可以利用端点的函数图象解析式,将两个端点的纵坐标表示为含有字母t的代数式。
初中二次函数压轴题题型归纳及方法
初中二次函数压轴题题型归纳及方法一、题型归纳初中二次函数压轴题主要包括以下几种类型:1. 求解二次方程,确定函数的零点2. 求解顶点坐标、对称轴及最值3. 判断函数的单调性和定义域、值域4. 与其他函数进行比较,确定大小关系5. 给定函数图像或部分信息,确定函数的表达式二、方法详解1. 求解二次方程,确定函数的零点求解二次方程可以使用因式分解法、配方法和公式法。
其中,因式分解法适用于形如x^2+bx+c=0的方程;配方法适用于形如ax^2+bx+c=0且a≠0的方程;公式法适用于所有形如ax^2+bx+c=0的方程。
求得二次方程的根后,即可得到函数的零点。
若根为实数,则该实数即为零点;若根为复数,则该函数无实零点。
2. 求解顶点坐标、对称轴及最值对于一般形如y=ax^2+bx+c(a≠0)的二次函数,其顶点坐标为(-b/2a,f(-b/2a)),其中f(x)=ax^2+bx+c。
对称轴为x=-b/2a,最值为f(-b/2a)。
若函数为y=a(x-h)^2+k的形式,则顶点坐标为(h,k),对称轴为x=h,最值为k。
3. 判断函数的单调性和定义域、值域对于一般形如y=ax^2+bx+c(a≠0)的二次函数,当a>0时,函数在顶点左侧单调递减,在顶点右侧单调递增;当a<0时,函数在顶点左侧单调递增,在顶点右侧单调递减。
定义域为实数集R,值域取决于a的符号。
4. 与其他函数进行比较,确定大小关系与线性函数比较:当x趋近正无穷时,二次函数增长速度大于线性函数;当x趋近负无穷时,二次函数增长速度小于线性函数。
因此,在x 轴正半轴上,二次函数与线性函数相交一次,并在该点处取得最小值(或最大值);在x轴负半轴上,则无交点。
与指数函数比较:当x趋近正无穷时,指数函数增长速度大于二次函数;当x趋近负无穷时,指数函数增长速度小于二次函数。
因此,在x 轴正半轴上,指数函数与二次函数相交一次,并在该点处取得最小值(或最大值);在x轴负半轴上,则无交点。
数学二次函数压轴题解题技巧
数学二次函数压轴题解题技巧数学二次函数是中学数学中的一个重要内容,而在高考数学中,二次函数也是一个重要的考点。
二次函数在高考中的压轴题往往难度较大,需要学生具备扎实的数学知识和高超的解题技巧。
下面是一些解决二次函数压轴题的技巧。
1. 熟悉常见二次函数的形式和性质常见的二次函数包括:二次项系数为 1 的二次函数,即 y=x^2;二次项系数不为 1 的二次函数,即 y=ax^2+bx+c,其中 a、b、c 为常数;以及二次函数的平移变换,即 y=x^2+bx+c(x-a)。
熟悉这些函数的形式和性质,可以帮助我们更好地理解和解决问题。
2. 掌握求最值的方法在二次函数中,求最值是一个重要的问题。
常用的求最值方法包括:利用函数的导数求最值;利用二次函数的图像求最值;利用不等式求最值等。
其中,利用函数的导数求最值是最常用的方法之一,需要注意求导的方法和技巧。
3. 掌握求顶点的方法求顶点是解决二次函数压轴题的一个常用方法。
常用的求顶点的方法包括:利用函数的导数求顶点;利用二次函数的图像求顶点;利用对称轴求顶点等。
其中,利用函数的导数求顶点是最常用的方法之一,需要注意求导的方法和技巧。
4. 掌握求范围的方法在二次函数中,求范围也是一个重要的问题。
常用的求范围方法包括:利用函数的导数求范围;利用二次函数的图像求范围;利用不等式求范围等。
其中,利用函数的导数求范围是最常用的方法之一,需要注意求导的方法和技巧。
5. 利用图形结合数学方法解决问题在解决二次函数压轴题时,常常需要利用图形结合数学方法解决问题。
例如,可以利用图像的对称性质、周期性、平移变换等,帮助我们更好地理解和解决问题。
此外,还需要善于总结各种技巧和方法,熟练掌握各种解题套路,以应对各种可能出现的二次函数压轴题。
初三二次函数压轴题知识点 解题方法
初三二次函数压轴题知识点解题方法二次函数压轴题是初中数学中重要的一类问题,涉及到了二次函数的定义、性质、图像、判别式等知识点,同时也需要灵活运用代数运算和图像分析的方法进行解题。
本文将介绍二次函数压轴题的一般解题方法,并分析其中涉及的主要知识点。
一、压轴题的一般形式及定义二次函数的一般形式为:y = ax^2 + bx + c,其中a、b、c为实数且a不等于0。
在这种形式下,一般有三种情况:当a>0时,二次函数的图像开口向上;当a<0时,二次函数的图像开口向下;当二次函数的图像与x轴相切或者与x轴没有交点时,称为“压轴题”。
压轴题的定义是通过给定函数关系和一些额外条件,求出关于未知数的取值范围、特殊情况、极值点、最值等问题。
二、压轴题的解题方法解压轴题的方法主要有以下几种:1.代数方法:通过解方程组或者利用已知的条件,求出未知数的取值范围和特殊情况。
2.图像分析法:通过分析二次函数的图像性质,包括开口方向、对称轴、顶点、焦点等,得出未知数的取值范围和特殊情况。
3.判别式法:通过判别式的符号来确定二次函数与x轴的交点个数和位置,进而得出未知数的取值范围和特殊情况。
下面我们将结合具体例题,详细介绍这些解题方法。
例题1:求二次函数y = ax^2 + bx + c的图象与x轴相切的条件。
解法1:当二次函数的图像与x轴相切时,有且仅有一个交点。
设交点坐标为(x0,0),代入方程得到0 = ax0^2 + bx0 + c。
根据判别式法,如果二次函数与x轴相切,判别式D = b^2 - 4ac = 0。
所以有b^2 - 4ac = 0,即b^2 = 4ac。
这就是二次函数图像与x 轴相切的条件。
解法2:当二次函数的图像与x轴相切时,说明二次函数的顶点坐标与x轴相交。
顶点坐标为(-b/2a, f(-b/2a)),其中f(x) = ax^2 + bx + c。
所以当x = -b/2a时,有f(x) = 0。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
⼆二次函数压轴题解题思路路⼀一、基本知识1会求解析式2.会利利⽤用函数性质和图像3.相关知识:如⼀一次函数、反⽐比例例函数、点的坐标、⽅方程。
图形中的三⻆角形、四边形、圆及平⾏行行线、垂直。
⼀一些⽅方法:如相似、三⻆角函数、解⽅方程。
⼀一些转换:如轴对称、平移、旋转。
⼆二、典型例例题:(⼀一)、求解析式1.(2014•莱芜)过A(1,0)、B(3,0)作x轴的垂线,分别交直线y=4﹣x于C、D两点.抛物线y=ax2+bx+c 经过O、C、D三点.(1)求抛物线的表达式;2.(2012•莱芜)顶点坐标为(2,﹣1)的抛物线y=ax2+bx+c(a≠0)与y轴交于点C(0,3),与x轴交于A、B两点.(1)求抛物线的表达式;练习:(2014兰州)把抛物线y=﹣2x2先向右平移1个单位⻓长度,再向上平移2个单位⻓长度后,所得函数的表达式为()A.y=﹣2(x+1)2+2B.y=﹣2(x+1)2﹣2C.y=﹣2(x﹣1)2+2D.y=﹣2(x﹣1)2﹣2(⼆二)、⼆二次函数的相关应⽤用第⼀一类:⾯面积问题例例题.(2012•莱芜)如图,顶点坐标为(2,﹣1)的抛物线y=ax2+bx+c(a≠0)与y轴交于点C(0,3),与x轴交于A、B两点.(1)求抛物线的表达式;(抛物线的解析式:y=(x﹣2)2﹣1=x2﹣4x+3.)(2)设抛物线的对称轴与直线BC交于点D,连接AC、AD,求△ACD的⾯面积;2.(2014•莱芜)如图,过A(1,0)、B(3,0)作x轴的垂线,分别交直线y=4﹣x于C、D两点.抛物线y=ax2+bx+c经过O、C、D三点.(1)求抛物线的表达式;(抛物线的表达式为:y=﹣x2+x.)(3)若△AOC沿CD⽅方向平移(点C在线段CD上,且不不与点D重合),在平移的过程中△AOC与△OBD重叠部分的⾯面积记为S,试求S的最⼤大值.3.(2014•兰州)如图,抛物线y=﹣x2+mx+n与x轴交于A、B两点,与y轴交于点C,抛物线的对称轴交x轴于点D,已知A(﹣1,0),C(0,2).(1)求抛物线的表达式;(3)点E时线段BC上的⼀一个动点,过点E作x轴的垂线与抛物线相交于点F,当点E运动到什什么位置时,四边形CDBF的⾯面积最⼤大?求出四边形CDBF的最⼤大⾯面积及此时E点的坐标.第⼆二类:.构造问题(1)构造线段(2013•莱芜)如图,抛物线y=ax2+bx+c(a≠0)经过点A(﹣3,0)、B(1,0)、C(﹣2,1),交y轴于点M.(1)求抛物线的表达式;(2)D为抛物线在第⼆二象限部分上的⼀一点,作DE垂直x轴于点E,交线段AM于点F,求线段DF⻓长度的最⼤大值,并求此时点D的坐标;(2)构造相似三⻆角形(2013•莱芜)如图,抛物线y=ax2+bx+c(a≠0)经过点A(﹣3,0)、B(1,0)、C(﹣2,1),交y轴于点M.(1)求抛物线的表达式;(抛物线的表达式为y=.)(3)抛物线上是否存在⼀一点P,作PN垂直x 轴于点N,使得以点P、A、N为顶点的三⻆角形与△MAO相似?若存在,求点P的坐标;若不不存在,请说明理理由.(3)构造平⾏行行四边形(2014•莱芜)如图,过A(1,0)、B(3,0)作x轴的垂线,分别交直线y=4﹣x于C、D两点.抛物线y=ax2+bx+c经过O、C、D三点.(1)求抛物线的表达式;(2)点M为直线OD上的⼀一个动点,过M作x轴的垂线交抛物线于点N,问是否存在这样的点M,使得以A、C、M、N为顶点的四边形为平⾏行行四边形?若存在,求此时点M的横坐标;若不不存在,请说明理理由;(4)构造等腰三⻆角形(2013•泰安)如图,抛物线y=x2+bx+c与y轴交于点C(0,-4),与x轴交于点A,B,且B点的坐标为(2,0)(1)求该抛物线的解析式.(2)若点P是AB上的⼀一动点,过点P作PE∥AC,交BC于E,连接CP,求△PCE⾯面积的最⼤大值.(3)若点D为OA的中点,点M是线段AC上⼀一点,且△OMD为等腰三⻆角形,求M点的坐标.练习:(2014遵义)如图,⼆二次函数的图象与交于(3,0)、(-1,0)与轴交于点.若点,同时从点出发,都以每秒1个单位⻓长度的速度分别沿,边运动,其中⼀一点到达端点时,另⼀一点也随即停⽌止运动.(1)求该⼆二次函数的解析式及点的坐标.(2)当点运动到点时,点停⽌止运动,这时,在轴上是否存在点,使得以,,为顶点的三⻆角形是等腰三⻆角形.若存在,请求出点的坐标,若不不存在,请说明理理由.(3)当,运动到秒时,△沿翻折,点恰好落在抛物线上点处,请判定此时四边形的形状,并求出点坐标.(5)构造直⻆角三⻆角形22.(2014•四川内江)如图,抛物线y=ax2+bx+c经过A(﹣3.0)、C(0,4),点B在抛物线上,CB∥x轴,且AB平分∠CAO.(1)求抛物线的解析式;(2)线段AB上有⼀一动点P,过点P作y轴的平⾏行行线,交抛物线于点Q,求线段PQ的最⼤大值;(3)抛物线的对称轴上是否存在点M,使△ABM是以AB为直⻆角边的直⻆角三⻆角形?如果存在,求出点M的坐标;如果不不存在,说明理理由.(6)构造⻆角相等(2014•娄底)如图,抛物线y=x2+mx+(m﹣1)与x轴交于点A(x1,0),B(x2,0),x1<x2,与y轴交于点C(0,c),且满⾜足x12+x22+x1x2=7.(1)求抛物线的解析式;(2)在抛物线上能不不能找到⼀一点P,使∠POC=∠PCO?若能,请求出点P的坐标;若不不能,请说明理理由.(7)构造梯形(2011莱芜)如图,在平⾯面直⻆角坐标系中,已知点A(-2,-4),OB=2,抛物线y=ax2+bx+c经过点A、O 、B 三点.(1)求抛物线的函数表达式;(2)若点M 是抛物线对称轴上⼀一点,试求AM +OM 的最⼩小值;(3)在此抛物线上,是否存在点P ,使得以点P 与点O 、A 、B 为顶点的四边形是梯形.若存在,求点P 的坐标;若不不存在,请说明理理由.练习:(2010临沂)如图:⼆二次函数y =﹣x 2+ax +b 的图象与x 轴交于A (-,0),B (2,0)两点,且与y 轴交于点C .(1)求该抛物线的解析式,并判断△ABC 的形状;(2)在x 轴上⽅方的抛物线上有⼀一点D ,且A 、C 、D 、B 四点为顶点的四边形是等腰梯形,请直接写出D 点的坐标;(3)在此抛物线上是否存在点P ,使得以A 、C 、B 、P 四点为顶点的四边形是直⻆角梯形?若存在,求出P 点的坐标;若不不存在,说明理理由.(8)构造菱形(2013•枣庄)如图,在平⾯面直⻆角坐标系中,⼆二次函数y=x 2+bx+c 的图象与x 轴交于A 、B 两点,A 点在原点的左侧,B 点的坐标为(3,0),与y 轴交于C (0,-3)点,点P 是直线BC 下⽅方的抛物线上⼀一动点.(1)求这个⼆二次函数的表达式.(2)连接PO 、PC ,并把△POC 沿CO 翻折,得到四边形POP ′C ,那么是否存在点P ,使四边形POP ′C 为菱形?若存在,请求出此时点P 的坐标;若不不存在,请说明理理由.(3)当点P 运动到什什么位置时,四边形ABPC 的⾯面积最⼤大?求出此时P 点的坐标和四边形ABPC 的最⼤大⾯面积.(9)构造对称点AC B(2011莱芜)如图,在平⾯面直⻆角坐标系中,已知点A(-2,-4),OB=2,抛物线y=ax2+bx+c经过点A、O、B三点.(1)求抛物线的函数表达式;(2)若点M是抛物线对称轴上⼀一点,试求AM+OM的最⼩小值;(3)在此抛物线上,是否存在点P,使得以点P与点O、A、B为顶点的四边形是梯形.若存在,求点P的坐标;若不不存在,请说明理理由.(10)构造平⾏行行线(2013•威海海)如图,在平⾯面直⻆角坐标系中,直线y=x+与直线y=x交于点A,点B在直线y=x+上,∠BOA=90°.抛物线y=ax2+bx+c过点A,O,B,顶点为点E.(1)求点A,B的坐标;(2)求抛物线的函数表达式及顶点E的坐标;(3)设直线y=x与抛物线的对称轴交于点C,直线BC交抛物线于点D,过点E作FE∥x轴,交直线AB于点F,连接OD,CF,CF交x轴于点M.试判断OD与CF是否平⾏行行,并说明理理由.练习:(2014•⼭山东烟台)如图,在平⾯面直⻆角坐标系中,Rt△ABC的顶点A,C分别在y轴,x轴上,∠ACB=90°,OA=,抛物线y=ax2﹣ax﹣a经过点B(2,),与y轴交于点D.(1)求抛物线的表达式;(2)点B关于直线AC的对称点是否在抛物线上?请说明理理由;(3)延⻓长BA交抛物线于点E,连接ED,试说明ED∥AC的理理由.(11)构造垂直(2014宜宾市)如图,已知抛物线y=x2+bx+c的顶点坐标为M(0,–1),与x轴交于A、B两点.(1)求抛物线的解析式;(2)判断△MAB的形状,并说明理理由;(3)过原点的任意直线(不不与y轴重合)交抛物线于C、D两点,连结MC、MD,试判断MC、MD是否垂直,并说明理理由.(12)构造圆(2014年年淄博)如图,点A与点B的坐标分别是(1,0),(5,0),点P是该直⻆角坐标系内的⼀一个动点.(1)使∠APB=30°的点P有⽆无数个;(2)若点P在y轴上,且∠APB=30°,求满⾜足条件的点P的坐标;(3)当点P在y轴上移动时,∠APB是否有最⼤大值?若有,求点P的坐标,并说明此时∠APB最⼤大的理理由;若没有,也请说明理理由.(13)轴对称(2012浙江丽⽔水)在直⻆角坐标系中,点A是抛物线y=x2在第⼆二象限上的点,连接OA,过点O作OB⊥OA,交抛物线于点B,以OA、OB为边构造矩形AOBC.(1)如图1,当点A的横坐标为时,矩形AOBC是正⽅方形;(2)如图2,当点A的横坐标为时,①求点B的坐标;②将抛物线y=x2作关于x轴的轴对称变换得到抛物线y=-x2,试判断抛物线y=-x2经过平移交换后,能否经过A,B,C三点?如果可以,说出变换的过程;如果不不可以,请说明理理由.(14)规律律(2014•江⻄西抚州,第23题,10分)如图,抛物线()位于轴上⽅方的图象记为1,它与轴交于1、两点,图象2与1关于原点对称,2与轴的另⼀一个交点为2,将1与2同时沿轴向右平移12的⻓长度即可得3与4;再将3与4同时沿轴向右平移12的⻓长度即可得5与6;……按这样的⽅方式⼀一直平移下去即可得到⼀一系列列图象1,2,……,n,我们把这组图象称为“波浪抛物线”.⑴当时,①求图象1的顶点坐标;②点(2014,-3)不不在(填“在”或“不不在”)该“波浪抛物线”上;若图象n的顶点n的横坐标为201,则图象n对应的解析式为,其⾃自变量量的取值范围为.⑵设图象m、m+1的顶点分别为m、m+1(m为正整数),轴上⼀一点Q的坐标为(12,0).试探究:当为何值时,以、m、m+1、Q四点为顶点的四边形为矩形?并直接写出此时m的值.解析:(1)当时,①,∴F1的顶点是(-1,1);②由①知:“波浪抛物线”的值的取值范围是-1≤≤1,∴点H(2014,-3)不不在“波浪抛物线”上;由平移知:F2:F3:,…,∵F n的顶点横坐标是201,∴F n的解析式是:,此时图象与轴的两个交点坐标是(200,0)、(202,0),∴200≤≤202.(2)如下图,取OQ的中点O′,连接T m T m+1,∵四边形OT m QT m+1是矩形,∴T m T m+1=OQ=12,且T m T m+1经过O′,∴OT m+1=6,∵F1:∴T m+1的纵坐标为,∴()2+12=62,∴=±,已知<0,∴.∴当时,以以O、T m、T m+1、Q四点为顶点的四边形为矩形.此时m=4.解:(1)∵抛物线y=﹣x2+mx+n经过A(﹣1,0),C(0,2).解得:,∴抛物线的解析式为:y=﹣x2+x+2;(2)∵y=﹣x2+x+2,∴y=﹣(x﹣)2+,∴抛物线的对称轴是x=.∴OD=.∵C(0,2),∴OC=2.在Rt△OCD中,由勾股定理理,得CD=.∵△CDP是以CD为腰的等腰三⻆角形,∴CP1=CP2=CP3=CD.作CH⊥x轴于H,∴HP1=HD=2,∴DP1=4.∴P1(,4),P2(,),P3(,﹣);(3)当y=0时,0=﹣x2+x+2∴x1=﹣1,x2=4,∴B(4,0).设直线BC的解析式为y=kx+b,由图象,得,解得:,∴直线BC的解析式为:y=﹣x+2.如图2,过点C作CM⊥EF于M,设E(a,﹣a+2),F(a,﹣a2+a+2),∴EF=﹣a2+a+2﹣(﹣a+2)=﹣a2+2a(0≤x≤4).∵S四边形CDBF=S△BC D+S△CEF+S△BEF=BD•OC+EF•CM+EF•BN,=+a(﹣a2+2a)+(4﹣a)(﹣a2+2a),=﹣a2+4a+(0≤x≤4).=﹣(a ﹣2)2+∴a=2时,S四边形CDB F的⾯面积最⼤大=,∴E(2,1).(2014•莱芜)解:(1)由题意,可得C(1,3),D(3,1).∵抛物线过原点,∴设抛物线的解析式为:y=ax2+bx.∴,解得,∴抛物线的表达式为:y=﹣x2+x.(2)存在.设直线OD解析式为y=kx,将D(3,1)代⼊入求得k=,∴直线OD解析式为y=x.设点M的横坐标为x,则M(x,x),N(x,﹣x2+x),∴MN=|y M﹣y N|=|x﹣(﹣x2+x)|=|x2﹣4x|.由题意,可知MN∥AC,因为以A、C、M、N为顶点的四边形为平⾏行行四边形,则有MN=AC=3.∴|x2﹣4x|=3.若x2﹣4x=3,整理理得:4x2﹣12x﹣9=0,解得:x=或x=;若x2﹣4x=﹣3,整理理得:4x2﹣12x+9=0,解得:x=.∴存在满⾜足条件的点M,点M的横坐标为:或或.(3)∵C(1,3),D(3,1)∴易易得直线OC的解析式为y=3x,直线OD的解析式为y=x.如解答图所示,设平移中的三⻆角形为△A′O′C′,点C′在线段CD上.设O′C′与x轴交于点E,与直线OD交于点P;设A′C′与x轴交于点F,与直线OD交于点Q.设⽔水平⽅方向的平移距离为t(0≤t<2),则图中AF=t,F(1+t),Q(1+t,+t),C′(1+t,3﹣t).设直线O′C′的解析式为y=3x+b,将C′(1+t,3﹣t)代⼊入得:b=﹣4t,∴直线O′C′的解析式为y=3x﹣4t.∴E(t,0).联⽴立y=3x﹣4t与y=x,解得x=t,∴P(t,t).过点P作PG⊥x轴于点G,则PG=t.∴S=S△O FQ﹣S△O E P=OF•FQ﹣OE•PG=(1+t)(+t)﹣•t•t=﹣(t﹣1)2+当t=1时,S有最⼤大值为.∴S的最⼤大值为.(2013•莱芜)解:由题意可知.解得.∴抛物线的表达式为y=.(2)将x=0代⼊入抛物线表达式,得y=1.∴点M的坐标为(0,1).设直线MA的表达式为y=kx+b,则.解得.∴直线MA的表达式为y=x+1.设点D的坐标为(),则点F的坐标为().DF==.当时,DF的最⼤大值为.此时,即点D的坐标为().(3)存在点P,使得以点P、A、N为顶点的三⻆角形与△MAO相似.设P(m,).在Rt△MAO中,AO=3MO,要使两个三⻆角形相似,由题意可知,点P不不可能在第⼀一象限.①设点P在第⼆二象限时,∵点P不不可能在直线MN上,∴只能PN=3NM,∴,即m2+11m+24=0.解得m=﹣3(舍去)或m=﹣8.⼜又﹣3<m<0,故此时满⾜足条件的点不不存在.②当点P在第三象限时,∵点P不不可能在直线MN上,∴只能PN=3NM,∴,即m2+11m+24=0.解得m=﹣3或m=﹣8.此时点P的坐标为(﹣8,﹣15).③当点P在第四象限时,若AN=3PN时,则﹣3,即m2+m﹣6=0.解得m=﹣3(舍去)或m=2.当m=2时,.此时点P的坐标为(2,﹣).若PN=3NA,则﹣,即m2﹣7m﹣30=0.解得m=﹣3(舍去)或m=10,此时点P的坐标为(10,﹣39).综上所述,满⾜足条件的点P的坐标为(﹣8,﹣15)、(2,﹣)、(10,﹣39).(2012•莱芜)解:(1)依题意,设抛物线的解析式为y=a(x﹣2)2﹣1,代⼊入C(O,3)后,得:a(0﹣2)2﹣1=3,a=1∴抛物线的解析式:y=(x﹣2)2﹣1=x2﹣4x+3.(2)由(1)知,A(1,0)、B(3,0);设直线BC的解析式为:y=kx+3,代⼊入点B的坐标后,得:3k+3=0,k=﹣1∴直线BC:y=﹣x+3;由(1)知:抛物线的对称轴:x=2,则D(2,1);∴AD2=2,AC2=10,CD2=8即:AC2=AD2+CD2,△ACD是直⻆角三⻆角形,且AD⊥CD;∴S△A C D=AD•CD=××2=2.(3)由题意知:EF∥y轴,则∠FED=∠OCB,若△OCB与△FED相似,则有:①∠DFE=90°,即DF∥x轴;将点D纵坐标代⼊入抛物线的解析式中,得:x2﹣4x+3=1,解得x=2±;当x=2+时,y=﹣x+3=1﹣;当x=2﹣时,y=﹣x+3=1+;∴E1(2+,1﹣)、E2(2﹣,1+).②∠EDF=90°;易易知,直线AD:y=x﹣1,联⽴立抛物线的解析式有:x2﹣4x+3=x﹣1,解得x1=1、x2=4;当x=1时,y=﹣x+3=2;当x=4时,y=﹣x+3=﹣1;∴E3(1,2)、E4(4,﹣1);综上,存在符合条件的点E,且坐标为:(2+,1﹣)、(2﹣,1+)、(1,2)或(4,﹣1).(2011莱芜)解得:∴抛物线的函数表达式为。