八年级数学下册 18_2_1 第1课时 矩形的性质学案 (新版)新人教版

合集下载

人教版数学八年级下册18.2.1第1课时《 矩形的性质》教学设计

人教版数学八年级下册18.2.1第1课时《 矩形的性质》教学设计

人教版数学八年级下册18.2.1第1课时《矩形的性质》教学设计一. 教材分析人教版数学八年级下册18.2.1第1课时《矩形的性质》是本册内容的一个重要组成部分。

本节课主要让学生掌握矩形的性质,包括矩形的定义、矩形的对角线性质、矩形的四边性质等。

通过本节课的学习,为学生后续学习平行四边形的性质和其他几何图形奠定基础。

二. 学情分析学生在七年级已经学习了矩形的定义和一些基本性质,对本节课的内容有一定的了解。

但学生在理解矩形的对角线性质和四边性质方面可能会遇到困难。

因此,在教学过程中,需要关注学生的认知基础,通过引导、讲解、实践等方式,帮助学生深入理解矩形的性质。

三. 教学目标1.知识与技能:掌握矩形的性质,包括矩形的定义、矩形的对角线性质、矩形的四边性质等。

2.过程与方法:通过观察、操作、推理等方法,培养学生的空间想象能力和逻辑思维能力。

3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作意识,使学生体验成功。

四. 教学重难点1.重点:矩形的性质及应用。

2.难点:矩形的对角线性质和四边性质的证明。

五. 教学方法1.引导法:教师通过提问、引导,激发学生的思考,帮助学生建立知识体系。

2.实践法:学生通过观察、操作、实践,加深对矩形性质的理解。

3.合作学习法:学生分组讨论,共同完成任务,培养团队合作意识。

六. 教学准备1.教师准备:教材、PPT、黑板、粉笔、矩形模型等。

2.学生准备:笔记本、尺子、圆规、三角板等。

七. 教学过程1.导入(5分钟)教师通过PPT展示矩形图片,引导学生回顾矩形的定义和性质。

提问:你们已经掌握了哪些关于矩形的基本性质?2.呈现(10分钟)教师通过PPT展示矩形的对角线性质和四边性质,引导学生观察、思考。

提问:你们认为矩形的对角线有什么性质?矩形的四边有什么性质?3.操练(10分钟)教师引导学生分组讨论,每组选择一个矩形,用尺子、圆规、三角板等工具,验证矩形的对角线性质和四边性质。

人教版八年级数学下册18.2 特殊的 平行四边形第二课时 矩形的性质课件

人教版八年级数学下册18.2  特殊的   平行四边形第二课时  矩形的性质课件

(1)证明:∵AO=OC, BO=OD, ∴四边形ABCD是平行四边形. 又∵∠AOB=2∠OAD,∠AOB=∠OAD+∠ADO, ∴∠OAD=∠ADO,∴AO=OD. ∵AC=AO+OC=2AO,BD=BO+OD=2OD, ∴AC=BD,∴四边形ABCD是矩形.
(2)解:设∠AOB=4x,∠ODC=3x, 则∠OCD=∠ODC=3x. ∵∠DOC+∠OCD+∠CDO=180°, ∴4x+3x+3x=180°,解得x=18°, ∴∠ODC=3×18°=54°, ∴∠ADO=90°-∠ODC=90°-54°=36°.
(1)证明:方法一 ∵四边形ABCD是平行四边形, ∴AD∥BC,AD=BC,AB=DC. ∵CE=BC,∴AD=CE. 又∵AD∥CE,∴四边形ACED是平 行四边形. ∵AB=AE,∴DC=AE, ∴四边形ACED是矩形.
证明:方法二 ∵四边形ABCD是平行四边形, ∴AD∥BC,AD=BC,AB=DC. ∵CE=BC,∴AD=CE. 又∵AD∥CE, ∴四边形ACED是平行四边形. ∵AB=AE,BC=CE, ∴AC⊥BE,∴∠ACE=90°, ∴四边形ACED是矩形.
几何语言
∵四边形ABCD是平行四边形 且AC=BD ∴四边形ABCD是矩形
A
D
O
B
C
小试牛刀
1.如图,下列条件不能判定四边形ABCD是矩形的是( C )
A.∠DAB=∠ABC=∠BCD=90° B.AB∥CD,AB=CD,AB⊥AD C.AO=BO,CO=DO D.AO=BO=CO=DO
2.如图 ABCD 中, ∠1= ∠2中.此时四边形ABCD是矩
解:∵四边形ABCD是平行四边形,
∴OA=OC=
1 2
AC,OB=OD= 1

人教版初中数学八年级下册18.2.1《矩形的判定》教案设计

人教版初中数学八年级下册18.2.1《矩形的判定》教案设计

18.2.1 矩形的判定教学设计一、教学目标知识与技能:1. 学生理解并掌握矩形的判定方法2. 学生能应用矩形的定义、判定等知识,解决简单的证明题和算题,进一步培养学生的分析能力。

过程与方法:1.能运用矩形的判定定理证明一个四边形是矩形2.通过对命题的猜想,验证,逻辑推理,体现数学研究和发展的过程,学会数学思考的方法.情感、态度和价值观:1.经历观察,操作,概括等探究过程,体验数学活动中既需要观察和操作,也需要进行合情的推理.2.让学生在探索过程中加深对矩形的理解,激发他们的求知欲望3.培养学生逆向思维的能力.二、重点:矩形的判定方法三.难点:合理应用矩形的判定定理解决问题四、教学过程:1. 复习回顾定义:有一个角是直角的平行四边形叫做矩形。

矩形的性质: (1)矩形对边平行且相等;(2)矩形的四个角都是直角;(3)矩形的对角线相等且互相平分;2.课堂练习已知:矩形ABCD的对角线交于的O.(1)若AB=8㎝,AD=6㎝,则AC=____㎝,Array OB=____㎝(2)若∠DOC=120°,AC=8㎝,则AD=____cm,AB= ____cm3.你知道如何判定一个平行四边形是矩形吗?矩形的定义:有一个角是直角的平行四边形是矩形。

你还有其它的判定方法吗?问题:有一个角是直角的四边形是矩形吗?有两个角是直角的四边形是矩形吗?有三个角是直角的四边形是矩形吗?猜想:有三个角是直角的四边形是矩形你能证明上述结论吗?归纳:矩形的判定方法2有三个角是直角的四边形是矩形 。

几何语言:∵ ∠A=∠B=∠C=90° ∴四边形ABCD 是矩形情景: 木工朋友在制作窗框后,需要检测所制作的窗框是否是矩形,那么他需要测量哪些数据,其根据又是什么呢?你有办法帮他吗?情境:如果工人师傅已经量得窗框的两组对边相等,接着量一量这个窗框的两条对角线长度,如果对角线长相等,则窗框一定是矩形,你知道为什么吗?猜想:对角线相等的平行四边形是矩形 。

矩形的性质教学设计

矩形的性质教学设计

矩形的性质教学设计教材:人教版八年级数学(下)教师:厦门市杏南中学中学缪静二零一二年二月[课题]19.2.1矩形的性质[教材] 义务教育课程标准人教版八年级下册第19章第2节[授课教师]厦门市杏南中学缪静[教材概述]本节课是人教版八年级下册第19章《四边形》第2节《特殊四边形》的第1课时。

本节内容分两课时,第1课时主要是矩形的定义和性质的探究和应用,第2课时主要是矩形的判定方法的探究。

矩形是特殊的平行四边形,而后继要学习的正方形又是特殊的矩形,因此它既是前面所学知识的应用,也是后继正方形知识的基础,具有承上启下的作用。

[教学目标]知识与技能1.掌握矩形的定义及性质2.能应用逻辑推理对矩形的性质进行推理证明,并应用.过程与方法 1.利用课件演示引导观察猜想矩形的定义,并证明,使学生经历知识的形成过程.2.通过探索和交流使学生逐步得出矩形的性质,使学生亲身经历知识发生发展过程,并会用所学的结论解决相关问题。

3.通过探究过程中的猜想、分析、类比、观察、交流、展示等手段,让学生充分体会应用矩形性质的过程,培养学生合情推理能力和逻辑思维能力,使学生在学习中学会学习。

情感态度价值观使学生经历探究矩形性质的探究和应用过程,体会探索研究问题的方法,使学生在数学活动中获取成功的体验,增强自信心。

[学习者特征分析]通过平时对学生的观察、了解,我认为学生的学习知识的准备情况如下:1.学生已在小学或前期的学习中认识了矩形,已知道矩形的四个角为直角,对边相等的特征,但学生的认识还是停留在合情推理的前提下,进一步进入逻辑推理还需要在本节课进行引导.2.学习矩形是学生在熟练掌握平行四边形基础上,进一步学习特殊平行四边形的需要,要求学生课前复习平行四边形性质,熟读教材,记录疑难问题.3.本节课小组合作是学习的主要方式,所以学生必须事先分组,并布置制作矩形图片的任务.[教学策略的选择与设计](见教学过程设计意图说明)教学重点:矩形的性质教学难点:矩形性质的逻辑推理以及利用矩形的性质进行证明和计算[教学资源和工具]多媒体课件,自制教具.学生的学案,学生的小组互助习惯。

2020-2021学年八年级数学人教版下册第十八章 18.2.1矩形 同步练习题

2020-2021学年八年级数学人教版下册第十八章 18.2.1矩形 同步练习题

18.3矩形【知识点】1 矩形的定义:有一个角是____________的____________叫做矩形.2 矩形的性质:(1)矩形的四个角都是____________.(2)矩形的对角线____________.3 直角三角形的一个性质:直角三角形斜边上的中线等于_________的一半.4 矩形的判定:(1)有一个角是____________________的平行四边形是矩形;(2)____________________的平行四边形是矩形;(3)____________________都是直角的四边形是矩形.【例题讲解】例1 如图,在矩形ABCD中,点E,点F分别为边BC,DA延长线上的点,且CE=AF,连接AE,DE,BF.(1)求证:四边形BEDF是平行四边形;(2)若AF=1,AB=2,AD=5,求证:AE平分∠DEB.例2 如图,在△ABC中,∠ACB=90°,CD为AB边上的高,CE为AB边上的中线,AD=2,CE=5,求CD的长.例3 如图,在ABCD中,AE⊥BD于点E,CF⊥BD于点F,延长AE至点G,使EG=AE,连接CG.(1)求证:△ABE≌△CDF;(2)求证:四边形EGCF是矩形.【举一反三】1 如图,在平行四边形ABCD中,对角线AC与BD相交于点E,点G为AD的中点,连接CG,CG的延长线交BA的延长线于点F,连接FD.(1)求证:AB=AF;(2)若AG=AB,四边形ACDF为矩形,试求出∠BCD的度数.2 如图,△ABC中,AB=AC,AD,CE是高,连接DE.(1)求证:BC=2DE;(2)若∠BAC=50°,求∠ADE的度数.3 如图,在四边形ABCD中,AB=CD,AD=BC,对角线AC,BD相交于点O,且OA=OD. 求证:四边形ABCD是矩形.【知识操练】中位线定理1 如图18-16-8,矩形ABCD 的对角线AC =8 cm ,∠BOC =120°,则BC 的长为( ) A.32cm B. 4 cm C.34cm D. 8 cm2 如图18-16-9,在矩形ABCD 中,对角线AC,BD 相交于点O ,∠ACB=30°,则∠AOB 的大小为( )A.30°B.60°C.90°D.120°3 如图,在Rt △ABC 中,∠ACB=90°,AB=8,CD 是AB 边上的中线,则CD 的长是( )A. 2B. 4C. 8D. 164 如图,四边形ABCD 为平行四边形,延长AD 到点E ,使DE=AD ,连接EB ,EC ,DB ,添加一个条件,不能使四边形DBCE 成为矩形的是( )A. AB=BEB. BE ⊥DCC. ∠ADB=90°D. CE ⊥DE5 如图,要使平行四边形ABCD 成为矩形,需添加的条件是( )A. ∠1=∠2B. ∠ABC =90°C. AC ⊥BDD. AB =BC6 如图18-17-6,在△ABC 中,AC 的中垂线分别交AC ,AB 于点D ,F ,BE ⊥DF 交DF 的延长线于点E. 若∠A=30°,BC=2,AF=BF ,则四边形BCDE 的面积是( ) A.32 B. 22 C. 33 D. 237 如图,BD 是矩形ABCD 的一条对角线,点E ,F 分别是BD ,DC 的中点,若AB =8,BC =6,则AE+EF 的长为____________.8 如图,在四边形ABCD 中,对角线AC ,BD 交于点O ,OA =OC ,OB =OD ,试添加一个条件:_________________________,使四边形ABCD 为矩形.9 如图18-16-12,四边形ABCD 为矩形,AE ⊥EG ,已知∠1=25°,则∠2=____________________10 工人师傅常常通过测量平行四边形零件的对角线是否相等来检验零件是否为矩形,请问工人师傅此种检验方法依据的道理是__________________________________.11 如图,在Rt △ABC 中,∠ACB =90°,CD 是斜边AB 上的中线,AC =4,CD =3. 求直角边BC 的长.12 如图,矩形OABC的顶点A,C分别在坐标轴上,B(8,7),D(5,0),点P沿A→B→C→O运动,连接OP,DP,当△ODP为等腰三角形时,点P的坐标为_________________________.13 如图,在矩形OABC中,点B的坐标是(1,3),则矩形OABC的对角线AC长是________.14 如图,矩形ABCD的对角线AC,BD相交于点O,且DE∥AC,CE∥BD,OE交CD于点F. 求证:AD=2EF.15 如图,AB丄AC于点A,BD丄CD于点D,O是BC的中点,若BC=6 cm,∠AOD=60°,求AD的长.16 如图,在矩形ABCD中,EF经过对角线BD的中点O,分别交AD,BC于点E,F.(1)求证:△BOF≌△DOE;(2)若AB=4 cm,AD=5 cm,当EF⊥BD时,求四边形ABFE的面积.17 如图,E是矩形ABCD的边AD上一点,且BE=ED,P是对角线BD上任一点,PF⊥BE,PG⊥AD,垂足分别为点F,G. 求证:PF+PG=AB.18 如图,在☐ABCD中,E为BC的中点,连接AE并延长交DC的延长线于点F,连接BF,AC,若AD=AF,求证:四边形ABFC是矩形.19 在平面直角坐标系中,A(-2,-2),B(2,2),C(0,4),当点D的坐标为__________________时,四边形ABCD是矩形.20 如图,在△ABC中,AB=AC,AD是BC边上的高,AE是∠CAF的平分线且∠CAF是△ABC的一个外角,若DE∥BA,四边形ADCE是矩形吗?为什么?20如图,在平行四边形ABCD中,对角线AC,BD相交于点O,延长OA到点N,使ON=OB,再延长OC至点M,使CM=AN.求证:四边形NDMB为矩形.21 如图,☐ABCD的对角线AC,BD相交于点O,将△ABO平移到△DCE的位置,已知AO=1,BO=2,AB=5. 求证:四边形OCED是矩形.22 如图,在△ABC中,点O是边AC上一个动点,过O作直线MN∥BC. 设MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F,连接AE,AF. (1)求证:OE=OF;(2)若CE=12,CF=5,求OC的长;(3)当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由.。

18_2_1 矩形(第1课时 矩形的性质)【2022春人教八下数学同步精品变式练习】(原卷版)

18_2_1 矩形(第1课时 矩形的性质)【2022春人教八下数学同步精品变式练习】(原卷版)

第十八章平行四边形18.2.1 矩形(第一课时矩形的性质)精选练习一.选择题(共10小题)1.如图,点P是矩形ABCD的对角线上一点,过点P作EF∥BC,分别交AB,CD于E,F,连接PB,PD,若AE=1,PF=3,则图中阴影部分的面积为()A.3 B.6 C.9 D.122.如图所示,在矩形ABCD中,已知AE⊥BD于E,∠DBC=30°,BE=1cm,则AE的长为()A.3cm B.2cm C.2cm D.cm3.如图,四边形ABCD和四边形AEFG都是矩形.若∠BAG=20°,则∠DGF等于()A.70°B.60°C.80°D.45°4.一个矩形的两条对角线的一个夹角为60°,对角线长为16cm,则这个矩形较短边的长为()A.2cm B.4cm C.8cm D.16cm5.如图,平面直角坐标系中,长方形OABC的顶点O为坐标原点,顶点A的坐标为(0,2),顶点B在第二象限.若长方形OABC的面积为6,则点B的坐标为()A.(﹣3,2)B.(﹣2,3)C.(3,2)D.(﹣3,﹣2)6.如图,O是矩形ABCD的对角线AC的中点,M是AD的中点.若AB=5,AD=12,则四边形ABOM的周长为()A.16 B.20 C.29 D.347.如图,矩形ABCD的对角线AC与BD相交点O,AC=10,P、Q分别为AO、AD的中点,则PQ的长度为()A.10 B.5 C.2.5 D.2.258.如图,在长方形ABCD中,AB=3,BC=6,对角线AC的垂直平分线分别交AD、AC于点M,N,连接CM,则CM的长为()A.B.C.﹣D.﹣9.如图,在Rt△ABC中,∠ACB=90°,如果CD、CM分别是斜边上的高和中线,那么下列结论不一定成立的是()A.∠ACM=∠BCD B.∠ACD=∠B C.∠ACD=∠BCM D.∠ACD=∠MCD 10.直角三角形的两条直角边分别为5和12,那么这个三角形的斜边上的中线长为()A.6 B.6.5 C.10 D.13二.填空题(共5小题)11.如图,点E是矩形ABCD边AD上一点,点F,G,H分别是BE,BC,CE的中点,AF =6,则GH的长为.12.如图,在矩形ABCD中,DE⊥CE,AE<BE,AD=4,AB=10,则DE长为________.13.如图,矩形ABCD的两条对角线相交于点O,已知∠AOD=120°,AB=2.5cm,则矩形对角线BD的长为cm.14.如图,在矩形ABCD中,AD=10,AB=6,E为BC上一点,ED平分∠AEC,则DE 长为.15.矩形ABCD中,横向阴影部分是长方形,另一部分是平行四边形,依照图中标注的数据,图中空白部分的面积为.三.解答题(共2小题)16.如图,矩形ABCD的对角线AC与BD相交点O,AC=12,P,Q分别为AO,AD的中点,求PQ的长度.17.如图,在矩形ABCD中,O为对角线AC的中点,过点O作直线分别与矩形的边AD,BC交于M,N两点,连接CM,AN.(1)求证:四边形ANCM为平行四边形.(2)若AD=4,AB=2,且MN⊥AC,则DM的长为.。

18.2.1矩形的性质与判定 导学案 应用

18.2.1矩形的性质与判定  导学案  应用
(5)对角线相等且互相垂直的四边形是矩形;()
(6)对角线互相平分且相等的四边形是矩形;()
(7)对角线相等,且有一个角是直角的四边形是矩形;()
(8)一组邻边垂直,一组对边平行且相等的四边形是矩形;()
(9)两组对边分别平行,且对角线相等的四边形是矩形.( )
例题:例1.:已知□ABCD的对角线AC、BD相交于点O,△AOB是等边三角形,AB=4cm,求这个平行交于点O,且AC=2AB。
求证:△AOB是等边三角形。(注意表达格式完整性与逻辑性)
拓展与延伸:本题若将“AC=2AB”改为“∠BOC=120°”,你能获得有关这个矩形的哪些结论?
五、畅谈收获(理一理)
六、堂清:
1.在矩形ABCD中,若AD=1,AB=,则该矩形的两条对角线所成的锐角是()
A.对角线相等B.四个角都相等
C.是轴对称图形D.对角线垂直
5、已知:如图,E为矩形ABCD内一点,且EB=EC。求证:EA=ED.
6、如图在矩形ABCD中,AE平分∠BAD,∠1=15度.
(1)求∠2的度数。(2)试说明:BO=BE。
七、作业(必做)课本60页练习第1题(选做)课本60页拓广探索第4题
探究二:1、除了上面制作矩形的方法外,还有其他的方法吗?请你画一个矩形;
2.交流画矩形的方法,得到矩形的判定方法;
3.证明矩形的判定方法:
已知:如图,
求证:
证明:
4.归纳:矩形判定方法:______________________________
_______________________________
练习:已知:如图,□ABCD的四个内角的平分线分别相交于点E、F、G、H.
求证:四边形EFGH是矩形.

《矩形》基础学案

《矩形》基础学案

数学学科辅导讲义学生姓名教师姓名班主任上课日期时间段年级初二课时 3 教学内容教学目标理解矩形的概念,掌握矩形的性质;教学重点经历探索矩形的概念与性质的过程,在直观操作活动和简单的说理过程中发展学生的合能力,主观探索习惯,逐步掌握说理的基本方法。

教学难点并在探索过程中理解特殊与一般的关系。

教学过程知识详解1.矩形的定义:_________________平行四边形是矩形2.矩形的性质:矩形是特殊的____________,所以它不但具有一般________的性质,而且还具有特殊的性质:(1)_________;(2)___________.3.矩形的判定:(1)有一个角是_____的平行四边形。

(2)对角线_________的平行四边形。

(3)有_________________的四边形。

4.矩形的对称性:矩形是________图形,___________是它的对称中心;矩形是________图形,对称轴有__条,是经过对角线的交点且垂直于矩形一边的直线。

5.矩形的周长和面积:矩形的周长=__________ 矩形的面积=___________典型例题题型一、矩形的基本性质例1:已知:如图,在△ABC中,∠ACB=90°,D是AB的中点,DE、DF分别是△BDC、△ADC 的角平分线.求证:四边形DECF是矩形.ADBCFE例2:如图,在矩形ABCD 中,AB =3, BC = 4, BE ⊥AC 于E .试求出AC 、BE 的长。

练1、矩形的定义中有两个条件:一是 ____________,二是 _________________。

练2、判断:(1)有一个角是直角的四边形是矩形。

( ) (2)矩形的对角线互相平分。

( )(3)矩形是轴对称图形,对角线是它的对称轴。

( ) (4)平行四边形既是中心对称图形,也是轴对称图形。

( )(5)AD 是直角三角形ABC 的中线,那么AD 就等于BC 边的一半。

人教版八下数学18.2.1矩 形 课时2 矩形的判定教案+学案

人教版八下数学18.2.1矩 形  课时2 矩形的判定教案+学案

人教版八年级下册数学第18章平行四边形18.2 特殊的平行四边形18.2.1 矩形课时2矩形的判定教案【教学目标】知识与技能目标1.理解并掌握矩形的判定方法.2.使学生能应用矩形的定义、判定等知识,解决简单的证明题和计算题,进一步培养学生的分析能力.过程与方法目标1.从矩形性质定理的逆命题出发,提出猜想,发现结论,然后给出证明,进一步理解互逆命题的意义,体会矩形的性质与判定的区别与联系.2.让学生经历探索矩形判定定理的过程,理解并掌握矩形的判定方法,积累几何学习的经验,发展合情推理和演绎推理的能力.情感、态度与价值观目标在课堂活动中,通过观察、思考、猜想、证明,培养学生主动参与、乐于探究、勤于动手的学习习惯.【教学重点】矩形判定定理的运用.【教学难点】矩形判定方法的理解及应用.【教学准备】教师准备:教学中出示的教学插图和例题.学生准备:复习矩形的定义及其性质.【教学过程设计】一、情境导入我们已经知道,有一个角是直角的平行四边形是矩形.这是矩形的定义,我们可以依此判定一个四边形是矩形.除此之外,我们能否找到其他的判定矩形的方法呢?矩形是一个中心对称图形,也是一个轴对称图形,具有如下的性质:1.两条对角线相等且互相平分;2.四个内角都是直角.这些性质,对我们寻找判定矩形的方法有什么启示?二、合作探究知识点一:有一个角是直角的平行四边形是矩形例1如图,在△ABC中,AB=AC,AD是BC边上的高,AE是△BAC的外角平分线,DE∥AB交AE于点E.求证:四边形ADCE是矩形.解析:首先利用外角性质得出∠B=∠ACB=∠F AE=∠EAC,进而得到AE∥BC,即可得出四边形AEDB是平行四边形,再利用平行四边形的性质得出四边形ADCE是平行四边形,再根据AD是高即可得出四边形ADCE是矩形.证明:∵AB=AC,∴∠B=∠ACB.∵AE是△BAC的外角平分线,∴∠F AE =∠EAC.∵∠B+∠ACB=∠F AE+∠EAC,∴∠B=∠ACB=∠F AE=∠EAC,∴AE∥BC.又∵DE∥AB,∴四边形AEDB是平行四边形,∴AE平行且等于BD.又∵AB=AC,AD⊥BC,∴BD=DC,∴AE平行且等于DC,故四边形ADCE 是平行四边形.又∵∠ADC=90°,∴平行四边形ADCE是矩形.方法总结:平行四边形的判定与性质以及矩形的判定常综合运用,解题时利用平行四边形的判定得出四边形是平行四边形再证明其中一角为直角即可.知识点二:对角线相等的平行四边形是矩形例2如图,在平行四边形ABCD中,对角线AC、BD相交于点O,延长OA 到N,ON=OB,再延长OC至M,使CM=AN.求证:四边形NDMB为矩形.解析:首先由平行四边形ABCD可得OA=OC,OB=OD.若ON=OB,那么ON=OD.而CM=AN,即ON=OM.由此可证得四边形NDMB的对角线相等且互相平分,即可得证.证明:∵四边形ABCD为平行四边形,∴AO=OC,OD=OB.∵AN=CM,ON=OB,∴ON=OM=OD=OB,∴MN=BD,∴四边形NDMB为矩形.方法总结:证明一个四边形是矩形,若题设条件与这个四边形的对角线有关,通常证这个四边形的对角线相等.知识点三:有三个角是直角的四边形是矩形例3如图,▱ABCD各内角的平分线分别相交于点E,F,G,H.求证:四边形EFGH是矩形.解析:利用“有三个内角是直角的四边形是矩形”证明四边形EFGH是矩形.证明:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAB+∠ABC=180°.∵AH,BH分别平分∠DAB与∠ABC,∴∠HAB=12∠DAB,∠HBA=12∠ABC,∴∠HAB+∠HBA=12(∠DAB+∠ABC)=12×180°=90°,∴∠H=90°.同理∠HEF=∠F=90°,∴四边形EFGH是矩形.方法总结:题设中隐含多个直角或垂直时,常采用“三个角是直角的四边形是矩形”来判定矩形.探究点四:矩形的性质和判定的综合运用【类型一】矩形的性质和判定的运用例4如图,O是矩形ABCD的对角线的交点,E、F、G、H分别是OA、OB、OC、OD上的点,且AE=BF=CG=DH.(1)求证:四边形EFGH是矩形;(2)若E、F、G、H分别是OA、OB、OC、OD的中点,且DG⊥AC,OF=2cm,求矩形ABCD的面积.解析:(1)证明四边形EFGH对角线相等且互相平分;(2)根据题设求出矩形的边长CD和BC,然后根据矩形面积公式求得.(1)证明:∵四边形ABCD是矩形,∴OA=OB=OC=OD.∵AE=BF=CG=DH,∴AO-AE=OB-BF=CO-CG=DO-DH,即OE=OF=OG=OH,∴四边形EFGH是矩形;(2)解:∵G是OC的中点,∴GO=GC.∵DG⊥AC,∴∠DGO=∠DGC=90°.又∵DG=DG,∴△DGC≌△DGO,∴CD=OD.∵F是BO中点,OF=2cm,∴BO=4cm.∵四边形ABCD是矩形,∴DO=BO=4cm,∴DC=4cm,DB=8cm,∴CB=DB2-DC2=43cm,∴S矩形ABCD=4×43=163(cm2).方法总结:若题设条件与这个四边形的对角线有关,要证明一个四边形是矩形,通常证这个四边形的对角线相等且互相平分.【类型二】矩形的性质和判定与动点问题例5如图所示,在梯形ABCD中,AD∥BC,∠B=90°,AD=24cm,BC=26cm,动点P从点A出发沿AD方向向点D以1cm/s的速度运动,动点Q从点C开始沿着CB方向向点B以3cm/s的速度运动.点P、Q分别从点A和点C同时出发,当其中一点到达端点时,另一点随之停止运动.(1)经过多长时间,四边形PQCD是平行四边形?(2)经过多长时间,四边形PQBA是矩形?解析:(1)设经过t s时,四边形PQCD是平行四边形,根据DP=CQ,代入后求出即可;(2)设经过t′s时,四边形PQBA是矩形,根据AP=BQ,代入后求出即可.解:(1)设经过t s,四边形PQCD为平行四边形,即PD=CQ,所以24-t =3t,解得t=6;(2)设经过t′s,四边形PQBA为矩形,即AP=BQ,所以t′=26-3t′,解得t′=13 2.方法总结:①证明一个四边形是平行四边形,若题设条件与这个四边形的边有关,通常证这个四边形的一组对边平行且相等;②题设中出现一个直角时,常采用“有一角是直角的平行四边形是矩形”来判定矩形.三、教学小结师生一起归纳总结:矩形的判定方法分两类:从四边形来判定和从平行四边形来判定.常用的判定方法有三种:①矩形的定义:有一个角是直角的平行四边形是矩形;②矩形的判定定理:对角线相等的平行四边形是矩形;③矩形的判定定理:三个角都是直角的四边形是矩形.四、学习检测1.如图,四边形ABCD为平行四边形,延长AD到E,使DE=AD,连接EB,EC,DB,添加一个条件,不能使四边形DBCE成为矩形的是()A.AB=BEB.DE⊥DCC.∠ADB=90°D.CE⊥DE 解析:∵四边形ABCD为平行四边形,∴AD∥BC,且AD=BC,AB=CD,又∵AD=DE,∴DE∥BC,且DE=BC,∴四边形BCED为平行四边形.A.∵AB=BE,AB=CD,∴BE=CD,∴平行四边形DBCE为矩形,故本选项错误;B.∵DE⊥DC,∴∠EDB=90°+∠CDB>90°,∴四边形DBCE不可能是矩形,故本选项正确;C.∵∠ADB=90°,∴∠EDB=90°,∴平行四边形DBCE为矩形,故本选项错误;D.∵CE⊥DE,∴∠CED=90°,∴平行四边形DBCE为矩形,故本选项错误.故选B.2.工人师傅在做门框或矩形零件时,常用测量平行四边形两条对角线是否相等来检测直角的精度,工人师傅依据的几何道理是.解析:工人师傅根据“对角线相等的平行四边形是矩形”,通过测量平行四边形两条对角线是否相等可判断做的门框或零件是否为矩形,进而判断直角的精度.故填对角线相等的平行四边形是矩形.3.如图,要使平行四边形ABCD成为矩形,应添加的条件是(只填一个). 解析:∵有一个角是直角的平行四边形叫做矩形,∴可填∠ABC=90°(或其余三个内角中的一个为90°);又∵对角线相等的平行四边形是矩形,∴可填“AC=BD”.故可填∠ABC=90°(答案不唯一).4.如图所示,矩形ABCD的对角线AC,BD相交于O,E,F,G,H分别是OA,OB,OC,OD 的中点.求证:四边形EFGH是矩形.证明:∵矩形ABCD的对角线AC,BD相交于O,∴AO=BO=CO=DO.又∵E,F,G,H分别是OA,OB,OC,OD的中点,∴EO=FO=GO=HO.∴四边形EFGH为平行四边形,EG=HF,∴四边形EFGH是矩形.【板书设计】18.2 特殊的平行四边形 18.2.1 矩形课时2 矩形的判定1.矩形的判定有一角是直角的平行四边形是矩形;对角线相等的平行四边形是矩形;有三个角是直角的四边形是矩形.2.矩形的性质和判定的综合运用3.学习检测【教学反思】在本节数学课的教学中,不仅要让学生掌握矩形判定的几种方法,更要注重学生在学习的过程中是否真正掌握了探究问题的基本思路和方法.教师在例题练习的教学中,若能适当地引导学生多做一些变式练习,类比、迁移地思考、做题,就能进一步拓展学生的思维,提高课堂教学的效率.人教版八年级下册数学第18章平行四边形18.2 特殊的平行四边形18.2.1 矩形课时2矩形的判定学案【学习目标】1.经历矩形判定定理的猜想与证明过程,理解并掌握矩形的判定定理;2.能应用矩形的判定解决简单的证明题和计算题.【学习重点】经历矩形判定定理的猜想与证明过程,理解并掌握矩形的判定定理.【学习难点】能应用矩形的判定解决简单的证明题和计算题.【自主学习】一、知识回顾1.矩形的定义是什么?2.矩形有哪些性质?二、新知探究知识点1:二次根式的乘法想一想 1.类比平行四边形的定义也是判定平行四边形的一种方法,那么矩形的定义也是判定矩形的一种方法.除了定义以外,判定矩形的方法还有没有呢?2.上节课我们已经知道“矩形的对角线相等”,反过来,小明猜想对角线相等的四边形是矩形,你觉得对吗?如果不对,你的猜想是什么?对角线_______的__________________是矩形.证一证已知:如图,在□ABCD中,AC,DB是它的两条对角线, AC=DB.求证:□ABCD是矩形.证明:∵AB = DC,BC = CB,AC = DB,∴△ABC______△DCB ,∴∠ABC______∠DCB.∵AB∥CD,∴∠ABC + ∠DCB =______°,∴∠ABC = _______°,∴□ ABCD是__________.思考数学来源于生活,事实上工人师傅为了检验两组对边相等的四边形窗框是否成矩形,一种方法是量一量这个四边形的两条对角线长度,如果对角线长相等,窗框一定是矩形,你现在知道为什么了吗?要点归纳:矩形的判定定理:对角线相等的平行四边形是矩形.几何语言描述:在平行四边形ABCD中,∵AC=BD,∴平行四边形ABCD是矩形.【典例探究】例1如图,矩形ABCD的对角线AC、BD相交于点O,E、F、G、H分别是AO、BO、CO、DO上的一点,且AE=BF=CG=DH.求证:四边形EFGH是矩形.【跟踪练习】1.如图,在▱ABCD中,AC和BD相交于点O,则下面条件能判定▱ABCD是矩形的是( )A.AC=BDB.AC=BCC.AD=BCD.AB=AD2.如图,在平行四边形ABCD中, ∠1= ∠2中.此时四边形ABCD是矩形吗?为什么?知识点2:有三个角是直角的四边形是矩形想一想 1.上节课我们研究了矩形的四个角,知道它们都是直角,它的逆命题是什么?成立吗?2.至少有几个角是直角的四边形是矩形?猜测:有_____个角是直角的四边形是矩形.证一证已知:如图,在四边形ABCD中,∠A=∠B=∠C=90°.求证:四边形ABCD是矩形.证明:∵∠A=∠B=∠C=90°,∴∠A+∠B=_______°,∠B+∠C=_______°,∴AD_____BC,AB_____CD.∴四边形ABCD是______________,∴四边形ABCD是________.思考一个木匠要制作矩形的踏板.他在一个对边平行的长木板上分别沿与长边垂直的方向锯了两次,就能得到矩形踏板.为什么?要点归纳:矩形的判定定理:有三个角是直角的四边形是矩形.几何语言描述:在四边形ABCD中,∵∠A=∠B=∠C=90°,∴四边形ABCD是矩形.【典例探究】例3如图,□ ABCD的四个内角的平分线分别相交于E、F、G、H,求证:四边形EFGH为矩形.例4 如图,在△ABC中,AB=AC,AD⊥BC,垂足为D,AN是△ABC外角∠CAM的平分线,CE⊥AN,垂足为E,求证:四边形ADCE为矩形.【跟踪练习】在判断“一个四边形门框是否为矩形”的数学活动课上,一个合作学习小组的4位同学分别拟定了如下的方案,其中正确的是( )A.测量对角线是否相等B.测量两组对边是否分别相等C.测量一组对角是否都为直角D.测量其中三个角是否都为直角三、知识梳理内容矩形的判定定义:有一个角是直角的平行四边形是矩形.判定定理:对角线相等的平行四边形是矩形.有三个角是直角的四边形是矩形.四、学习过程中我产生的疑惑【学习检测】1.下列说法错误的是( )A.对角线相等的四边形是矩形B.对角线相等的平行四边形是矩形C.有一个角是直角的平行四边形是矩形D.有三个角是直角的四边形是矩形A(解析:根据矩形的判定方法进行判断.)2.在四边形ABCD中,AC和BD的交点为O,则下列条件中不能判定四边形ABCD是矩形的是( )A.AB=CD,AD=BC,AC=BDB.AO=CO,BO=DO,∠BAD=90°C.∠BAD=∠BCD,∠ABC+∠ADC=180°,∠AOB=∠BOCD.AB∥CD,AB=CD,∠BAD=90°C(解析:AB=CD,AD=BC,由两组对边分别相等的四边形是平行四边形,知四边形ABCD是平行四边形,又AC=BD,由对角线相等的平行四边形是矩形知▱ABCD是矩形,故A正确;AO=CO,BO=DO,故四边形ABCD是平行四边形,又∠BAD=90°,故平行四边形ABCD是矩形,故B正确;AB∥CD,AB=CD,故四边形ABCD是平行四边形,又∠BAD=90°,故平行四边形ABCD是矩形,故D正确.故选C.)3.如果平行四边形各内角的平分线能够围成一个四边形,则这个四边形是( )A.正方形B.矩形C.梯形D.平行四边形B(解析:平行四边形相邻两角的平分线相交成直角,根据有三个角是直角的四边形是矩形可判断.故选B.)4.如图所示,E,F,G,H分别是四边形ABCD的四边中点,要使四边形EFGH为矩形,则四边形ABCD应具备的条件是( )A.一组对边平行而另一组对边不平行B.对角线相等C.对角线互相垂直D.对角线互相平分C(解析:由三角形的中位线平行于第三边并且等于第三边的一半知四边形EFGH 是平行四边形,由四边形ABCD的对角线互相垂直可得∠EFG=90°,根据有一个角是直角的平行四边形是矩形可解答.故选C.)5.要从一张长40 cm,宽20 cm的矩形纸片中剪出长为18 cm,宽为12 cm的矩形纸片,则最多能剪出( )A.1个B.2个C.3个D.4个C(解析:在矩形纸片的长上依次截取三个12 cm,再在纸片的宽上截取一个18 cm,可知共3个.故选C.)6.下列各句判定矩形的说法是否正确?(1)对角线相等的四边形是矩形;(2)对角线互相平分且相等的四边形是矩形;(3)有一个角是直角的四边形是矩形;(4)有三个角都相等的四边形是矩形;(5)有三个角是直角的四边形是矩形;(6)四个角都相等的四边形是矩形;(7)对角线相等,且有一个角是直角的四边形是矩形;(8)一组对角互补的平行四边形是矩形.7.如图,在四边形ABCD中,AB∥CD,∠BAD=90°,AB=5,BC=12,AC=13.求证:四边形ABCD是矩形.8.如图,在△ABC中,∠ACB=90°,CD为AB边上的中线,延长CD到点E,使得DE=CD.连接AE,BE,求证四边形ACBE为矩形.证明:∵在△ABC中,∠ACB=90°,CD为AB边上的中线,∴AD=BD.∵DE=CD,∴四边形ACBE为平行四边形,又∵∠ACB=90°,∴四边形ACBE为矩形.9.如图,平行四边形ABCD中,对角线AC、BD相交于点O,延长OA到N,使ON=OB,再延长OC至M,使CM=AN.求证:四边形NDMB为矩形.10.如图,将▱ABCD的边AB延长至点E,使AB=BE,连接DE,EC,BD,DE交BC于点O.(1)求证△ABD≌△BEC;(2)若∠BOD=2∠A,求证四边形BECD是矩形.证明:(1)在平行四边形ABCD中,AD=BC,AB=CD,BE∥CD.又∵AB=BE,∴BE=DC,∴四边形BECD为平行四边形,∴BD=EC.在△ABD与△BEC中,∴△ABD≌△BEC(SSS).(2)由(1)知四边形BECD为平行四边形,则OD=OE,OC=OB.∵四边形ABCD为平行四边形,∴∠A=∠BCD,即∠A=∠OCD.又∵∠BOD=2∠A,∠BOD=∠OCD+∠ODC,∴∠OCD=∠ODC,∴OC=OD,∴OC+OB=OD+OE,即BC=ED,∴平行四边形BECD为矩形.11. 如图,△ABC中,AB=AC,AD是BC边上的高,AE是△BAC的外角平分线,DE∥AB交AE于点E,求证:四边形ADCE是矩形.12.如图,直线MN经过线段AC的端点A,点B,D分别在∠NAC和∠MAC的平分线AE,AF上,BD交AC于点O,如果O是BD的中点,当点O在AC的什么位置时,四边形ABCD是矩形?并说明理由.解:O是AC的中点时,四边形ABCD是矩形.理由如下:因为AO=CO,BO=DO,所以四边形ABCD是平行四边形,又∠F AC=∠MAC,∠CAE=∠CAN,所以∠F AE=∠F AC+∠CAE=(∠MAC+∠CAN)=×180°=90°,所以四边形ABCD是矩形.13. 如图,在梯形ABCD中,AD∥BC,∠B=90°,AD=24cm,BC=26cm,动点P从A出发沿A方向向点D以1cm/s的速度运动,动点Q从点C开始沿着CB方向向点B以3cm/s的速度运动.点P、Q分别从点A和点C同时出发,当其中一点到达端点时,另一点随之停止运动.(1)经过多长时间,四边形PQCD是平行四边形?(2)经过多长时间,四边形PQBA是矩形?14.如图,△ABC中,点O是AC边上的一个动点,过点O作直线MN∥BC,设MN交∠BCA的平分线于点E,交∠ACD的平分线于点F.(1)求证OE=OF;(2)当点O运动到何处时,四边形AECF是矩形?说明理由.(1)证明:∵MN∥BC,∴∠OEC=∠BCE.∵CE平分∠BCA,∴∠BCE=∠OCE,∴∠OEC=∠OCE.∴OC=OE.同理可证OC=OF.∴OE=OF.(2)解:当点O运动到AC中点时,四边形AECF是矩形.理由如下:∵OA=OC,OE=OF,∴四边形AECF是平行四边形,又∠ACF=∠ACD,∠ACE=∠ACB,所以∠ECF=∠ACF+∠ACE=(∠ACD+∠ACB)=×180°=90°.∴四边形AECF是矩形.。

2020-2021学年人教版八年级下册数学 18.2.1矩形 同步习题(含解析)

2020-2021学年人教版八年级下册数学 18.2.1矩形 同步习题(含解析)

18.2.1矩形同步习题一.选择题1.矩形具有而一般平行四边形不具有的性质是()A.对角线互相平分B.对角相等C.对边相等D.对角线相等2.如图,在矩形ABCD中,两条对角线AC与BD相交于点O,AB=3,OA=2,则AD的长为()A.5B.C.D.3.若直角三角形斜边上的高和中线长分别是4cm,6cm,则它的面积是()A.12cm2B.24cm2C.15cm2D.48cm24.如图,在矩形ABCD中,AD=6,对角线AC与BD相交于点O,AE⊥BD,垂足为E,DE=3BE.求AE的长()A.B.3C.D.5.如图,矩形ABCD的对角线AC、BD交于点O,M、N分别为BC、OC的中点,AB=6,∠ACB=30°则MN的长为()A.3B.4C.5D.66.如图所示,矩形ABCD中,BC=2AB,E为BC上的一点,且AE=AD,则∠EDC的度数是()A.30°B.75°C.45°D.15°7.如图,矩形ABCD的对角线AC、BD相交于点O,E是边BC的中点,AO=,AD=4,则OE的长为()A.1B.C.2D.8.如图,四边形ABCD是矩形,∠BDC的平分线交AB的延长线于点E,若AD=4,AE=10,则AB的长为()A.4.2B.4.5C.5.2D.5.59.如图,长方形ABCD中,F是BC上(不与B、C重合)的任意一点,图中面积相等的三角形有()A.3对B.4对C.5对D.6对10.如图,矩形ABCD中,∠BOC=120°,BD=12,点P是AD边上一动点,则OP的最小值为()A.3B.4C.5D.6二.填空题11.如图,在矩形ABCD中,对角线AC、BD相交于点O,∠OAD=55°,则∠OBA的度数为.12.如图,在矩形ABCD中,AC,BD交于点O,M,N分别为AB,OA的中点.若MN=2,CD=4,则∠ACB的度数为.13.如图,四边形OABC是矩形,点A的坐标为(4,0),点C的坐标为(0,2),把矩形OABC 沿OB折叠,点C落在点D处,则点D的坐标为.14.如图,点E是矩形ABCD内任一点,若AB=4,BC=7.则图中阴影部分的面积为.15.如图所示,在矩形ABCD中,AB=6,AD=8,P是AD上的动点,PE⊥AC,PF⊥BD 于F,则PE+PF的值为_____.三.解答题16.如图,在矩形ABCD中,点F是BC边上一点,DE⊥AF于E,且DE=DC,求证:△ABF ≌△DEA.17.如图,矩形ABCD中,AB=1,BC=2,点E在AD上,点F在BC边上,FE平分∠DFB.(1)判断△DEF的形状,并说明理由;(2)若点F是BC的中点,求AE的长.18.如图,已知E是矩形ABCD一边AD的中点,延长AB至点F,连接CE,EF,CF,得到△CEF.且CD=1,AF=2,CF=3.(1)求BC的长;(2)求证:CE⊥EF.参考答案一.选择题1.解:A、矩形、平行四边形的对角线都是互相平分的.,故本选项不符合;B、矩形、平行四边形的对角都是相等的,故本选项不符合;C、矩形、平行四边形的对边都是相等的,故本选项不符合;D、矩形的对角线相等,平行四边形的对角线不一定相等,故本选项符合;故选:D.2.解:∵矩形ABCD中,两条对角线AC与BD相交于点O,OA=2,∴AC=2AO=4,又∵AB=3,∠ABC=90°,∴BC==,∴AD=BC=,故选:D.3.解:∵直角三角形斜边上中线长6cm,∴斜边=2×6=12(cm),∴面积=×12×4=24(cm2).故选:B.4.解:∵DE=3BE,∴BD=4BE,∵四边形ABCD是矩形,∴BO=DO=BD=2BE,∴BE=EO,又∵AE⊥BO,∴AB=AO,∴AB=AO=BO,∴△ABO是等边三角形,∴∠ABO=60°,∴∠ADB=30°,又∵AE⊥BD,∴AE=AD=3,故选:B.5.解:∵四边形ABCD是矩形,∴AO=CO=BO=DO,∠ABC=90°,∵∠ACB=30°,∴∠BAC=60°,∴△ABO是等边三角形,∴BO=AB=6,∵M、N分别为BC、OC的中点,∴MN=BO=3,故选:A.6.解:∵四边形ABCD是矩形,∴AD∥BC,AD=BC,∠B=∠ADC=90°,∵BC=2AB,AE=AD,∴AE=2AB,∴∠AEB=30°,∵AD∥BC,∴∠DAE=∠AEB=30°,∵AD=AE,∴∠ADE=75°,∴∠EDC=15°,故选:D.7.解:∵四边形ABCD是矩形,∴AO=CO,AC=2AO=2,∠ADC=90°,∴CD===2,∵E是边BC的中点,∴OE是△BCD的中位线,∴OE=CD=1,故选:A.8.解:如图,∵四边形ABCD是矩形,∴CD∥AB,∴∠1=∠E.又∵∠BDC的平分线交AB的延长线于点E,∴∠1=∠2,∴∠2=∠E.∴BE=BD.∵AE=10,∴BD=BE=10﹣AB.在直角△ABD中,AD=4,BD=10﹣AB,则由勾股定理知:AB==.∴AB=4.2.故选:A.9.解:∵四边形ABCD是矩形,∴AD∥BC,S△ABD=S△BCD=S矩形ABCD,∴S△ABD=S△AFD=S矩形ABCD,S△ABF=S△BFD,∴S△ADF=S△BCD,S△ABE=S△DEF,故选:C.10.解:∵四边形ABCD是矩形,∴OA=OB=OC=OD=BD=6,∵∠BOC=120°=∠AOD,∴∠OAD=∠ODA=30°,当OP⊥AD时,OP有最小值,∴OP=OD=3,故选:A.二.填空题11.解:∵矩形ABCD中,对角线AC,BD相交于点O,∴∠DAB=90°,DB=AC,OD=OB=OA=OC,∵∠OAD=55°,∴∠ODA=∠OAD=55°,∴∠OBA=90°﹣∠ADB=90°﹣55°=35°,故答案为:35°.12.解:∵四边形ABCD是矩形,∴AB=CD=4,AO=CO,BO=DO,AC=BD,∴AO=BO,∵M,N分别为AB,OA的中点,∴BO=2MN=4,∴AO=BO=AB=4,∴△ABO是等边三角形,∴∠BAC=60°,∴∠ACB=30°,故答案为:30°.13.解:设BD与OA交于点E,作DF⊥OA于点F,∵点A的坐标为(4,0),点C的坐标为(0,2),∴OC=2,OA=4,∵四边形ABCD是矩形,∴BC∥OA,∴∠CBO=∠AOB,由翻折变换的性质可知,∠DBO=∠CBO,∴∠OBD=∠AOB,∴BE=OE,在Rt△EAB中,设BE=OE=x,则AE=4﹣x,由勾股定理得22+(4﹣x)2=x2,解得x=,即BE=,∴OE=BE=,在Rt△ODE中,OD=OC=2,DE=BD﹣BE=4﹣=,由OE•DF=OD•DE得וDF=×2×,∴DF=,在Rt△ODF中,由勾股定理得OF2=OD2﹣DF2=22﹣()2=,∴OF=,∴点D的坐标为(,﹣),故答案为:(,﹣).14.解:∵四边形ABCD是矩形,∴AD=BC=7,设两个阴影部分三角形的底为AD,BC,高分别为h1,h2,则h1+h2=AB,∴S△EAB+S△ECD=AD•h1+BC•h2=AD(h1+h2)=AD•AB=矩形ABCD的面积=×7×4=14;故答案为:14.15.解:连接OP,∵四边形ABCD是矩形,∴∠DAB=90°,AC=2AO=2OC,BD=2BO=2DO,AC=BD,∴OA=OD=OC=OB,∴S△AOD=S△DOC=S△AOB=S△BOC=14S矩形ABCD=14×6×8=12,在Rt△BAD中,由勾股定理得:BD=22226810 AB AD+=+=,∴AO=OD=5,∵S△APO+S△DPO=S△AOD,∴×AO×PE+×DO×PF=12,∴5PE+5PF=24,PE+PF=24 5,故答案为:24 5.三.解答题16.证明:如图,连接DF,∵四边形ABCD是矩形,∴DC⊥CF,又∵DE=DC,DE⊥AF,∴DF平分∠CFE,∴∠CFD=∠DFE,∵CB∥AD,∴∠CFD=∠ADF,∠AFB=∠DAE,∴∠DF A=∠ADF,∴AF=AD,在△ABF和△DEA中,,∴△ABF≌△DEA(ASA).17.解:(1)△DEF是等腰三角形,理由如下:∵四边形ABCD是矩形,∴AB=CD,AD=BC,AD∥BC,∠C=90°,∴∠BFE=∠DEF,∵FE平分∠DFB,∴∠BFE=∠DFE,∴∠DEF=∠DFE,∴DE=DF,∴△DEF是等腰三角形;(2)∵AB=1,BC=2,∴CD=1,AD=2,∵点F是BC的中点,∴FC==1,Rt△DCF中,∠C=90°,∴DF=,∴DE=DF=,∴AE=AD﹣DE=2﹣.18.(1)解:∵四边形ABCD是矩形,CD=1,∴AB=1,∠ABC=∠FBC=90°,∵AF=2,∴BF=1,∵Rt△CBF中,∠FBC=90°,BF=1,CF=3,∴根据勾股定理得CF2=BC2+BF2,∴BC===,∴BC的长是;(2)证明:矩形ABCD中,AD=BC=,∵E是AD的中点,∴AE=DE=,∵Rt△AEF中,∠A=90°,AE=1,AF=2,∴根据勾股定理得,EF==,∵Rt△CDE中,∠D=90°,CD=1,DE=1,∴根据勾股定理得,EC==,∵△CEF中,EC=,EF=,CF=3,∴CE2+EF2=CF2,∴△CEF是直角三角形,∴CE⊥EF.。

人教版数学八年级下《18.2.1矩形》课时练习含答案

人教版数学八年级下《18.2.1矩形》课时练习含答案

八年级下册18.2.1矩形课时练习一.选择题(共15小题)1.一个长方形在平面直角坐标系中三个顶点的坐标为(﹣1,﹣1),(﹣1,2),(3,﹣1),则第四个顶点的坐标为()A.(2,2)B.(3,2)C.(3,3)D.(2,3)答案:B知识点:坐标与图形性质;矩形的性质解析:解答:解:如图可知第四个顶点为:即:(3,2).故选B.分析:本题可在画出图后,根据矩形的性质,得知第四个顶点的横坐标应为3,纵坐标应为2.本题考查学生的动手能力,画出图后可很快得到答案.2.如图,矩形ABCD中,AB=1,AD=2,M是CD的中点,点P在矩形的边上沿A⇒B⇒C⇒M 运动,则△APM的面积y与点P经过的路程x之间的函数关系用图象表示大致是下图中的()A. B.C. D.答案:A知识点:函数的图像;分段函数;矩形的性质解析:解答:解:点P由A到B这一段中,三角形的AP边上的高不变,因而面积是路程x的正比例函数,当P到达B点时,面积达到最大,值是1.在P由B到C这一段,面积随着路程的增大而减小;到达C点,即路程是3时,最小是;由C到M这一段,面积越来越小;当P到达M时,面积最小变成0.因而应选第一个选项.故选A.分析:根据每一段函数的性质,确定其解析式,特别注意根据函数的增减性,以及几个最值点,确定选项比较简单.本题考查了分段函数的画法,是难点,要细心认真.3.如图,矩形ABCD中,AB=3,BC=5.过对角线交点O作OE⊥AC交AD于E,则AE 的长是()A.1.6B.2.5C.3D.3.4答案:D知识点:线段垂直平分线的性质;勾股定理;矩形的性质解析:解答:解:连接EC,由矩形的性质可得AO=CO,又因EO⊥AC,则由线段的垂直平分线的性质可得EC=AE,设AE=x,则ED=AD﹣AE=5﹣x,在Rt△EDC中,根据勾股定理可得EC2=DE2+DC2,即x2=(5﹣x)2+32,解得x=3.4.故选D.分析:利用线段的垂直平分线的性质,得到EC与AE的关系,再由勾股定理计算出AE的长.本题考查了利用线段的垂直平分线的性质.矩形的性质及勾股定理综合解答问题的能力,在解上面关于x的方程时有时出现错误,而误选其它选项.4.一次数学课上,老师请同学们在一张长为18厘米,宽为16厘米的矩形纸板上,剪下一个腰长为10厘米的等腰三角形,且要求等腰三角形的一个顶点与矩形的一个顶点重合,其它两个顶点在矩形的边上,则剪下的等腰三角形的面积为多少平方厘米()A.50B.50或40C.50或40或30D.50或30或20答案:C知识点:等腰三角形的性质;勾股定理;矩形的性质解析:解答:解:如图四边形ABCD是矩形,AD=18cm,AB=16cm;本题可分三种情况:①如图(1):△AEF中,AE=AF=10cm;S△AEF=•AE•AF=50cm2;②如图(2):△AGH中,AG=GH=10cm;在Rt△BGH中,BG=AB﹣AG=16﹣10=6cm;根据勾股定理有:BH=8cm;∴S△AGH=AG•BH=×8×10=40cm2;③如图(3):△AMN中,AM=MN=10cm;在Rt△DMN中,MD=AD﹣AM=18﹣10=8cm;根据勾股定理有DN=6cm;∴S△AMN=AM•DN=×10×6=30cm2.故选C.分析:本题中由于等腰三角形的位置不确定,因此要分三种情况进行讨论求解,①如图(1),②如图(2),③如图(3),分别求得三角形的面积.题主要考查了等腰三角形的性质.矩形的性质.勾股定理等知识,解题的关键在于能够进行正确的讨论.5.菱形具有而矩形不具有性质是()A.对角线相等B.对角线互相平分C.对角线互相垂直D.对角线平分且相等答案:C知识点:菱形的性质;矩形的性质解析:解答:解:A.菱形的对角线不一定相等,矩形的对角线一定相等,故本选项错误;B.菱形和矩形的对角线均互相平分,故本选项错误;C.菱形的对角线互相垂直,而矩形的对角线不一定互相垂直(互相垂直时是正方形),故本选项正确;D.菱形和矩形的对角线均互相平分且相等,故本选项错误.故选C.分析:由于菱形的对角线互相垂直平分,矩形的对角线互相平分且相等,据此进行比较从而得到答案.本题考查矩形与菱形的性质的区别:矩形的对角线互相平分且相等,菱形的对角线互相平分.垂直且平分每一组对角.6.在矩形ABCD中,AB=1,AD=3,AF平分∠DAB,过C点作CE⊥BD于E,延长AF.EC交于点H,下列结论中:①AF=FH;②BO=BF;③CA=CH;④BE=3ED.正确的是()A.②③B.③④C.①②④D.②③④答案:D知识点:矩形的性质;角平分线的性质;等腰三角形的性质;等边三角形的性质。

18.2.1矩形的判定教案

18.2.1矩形的判定教案
教学环节
教师活动
学生活动
设计意图
随堂练习
布置课本练习,并对学困生进,体会数学知识与实际生活的联系。
课堂小结
1.矩形的判定方法有哪些?
2.本节课你有何感受?
教师对学生的总结进行评价
学生回顾知识点,并谈谈对矩形的认识和本节课的感受。
进一步强化知识体系。
作业布置
学情分析
八年级学生已掌握了四边形、平行四边形概念、性质以及判定,矩形的概念、性质等知识。并且积累了学习特殊四边形性质的方法,即按“角、边、对角线”的思路有条理地进行学习。但是学生思维还依赖于具体、形象、易模仿特点,因此逻辑思维能力需要加强。
八二班学生无论是在知识方面还是数学思维方法上面都有所欠缺,需要进一步的加强。本课通过类比平行四边形的性质和判定方法老师引导学生得出矩形的判定方法,并且通过所得结论解决矩形的判定问题,题目一定要基础,通过学生对问题的解决体会知识,增加学习数学的自信心。
课本P60页2、3
板书设计
18.2.1矩形(判定)
PPT展示区
回顾
性质:
判定方法:
数学语言表示
例题展示:
课后反思
1.制订切实可行的学习目标,使学生的学习具有明确的方向。
2.逆向思维;说理的条理性;综合概括能力;发散思维;也是前面两种判定方法的及时运用。
3.利用情景问题激发学生探究矩形判定方法的积极性;通过猜测——验证——证明——总结——运用等一系列活动学习体会矩形的判定方法;构建矩形的判定这一知识体系。
活动二
2.完成矩形性质的习题
知识复习与习题解决结合进一步强化学生对矩形性质的认识,为新课学习打下基础。
教学环节二
教师活动
学生活动
设计意图

18-2-1 矩形(含2个课时)(课件)八年级数学下册同步精品课堂(人教版)

18-2-1 矩形(含2个课时)(课件)八年级数学下册同步精品课堂(人教版)

为F.求证:DF=DC.
A
D
证明:连接DE.
∵AD =AE,∴∠AED =∠ADE.
∵四边形ABCD是矩形,
B
∴AD∥BC,∠C=90°.
ห้องสมุดไป่ตู้
F
C
E
∴∠ADE=∠DEC,
∴∠DEC=∠AED.
又∵DF⊥AE,
∴DF=DC.
典型例题
例题3 如图,将矩形ABCD沿着直线BD折叠,使点C落在C′ 处,BC′交AD于点E,AD=8,AB=4,求△BED的面积.
AB=CD;AD=BC ∠A=∠C;∠B=∠D
对角线互相平分. OA=OC;OB=OD
探究新知
观察平行四边形的变化过程,当它的一个角变为直角时,
会产生什么特殊的图形?
A
D
A
D
B
C
特殊的平行四边形
探究新知
观察平行四边形的变化过程,当它的一个角变为直角时,
会产生什么特殊的图形?
A
D
A
D
B
C
特殊的平行四边形
(1)若AB=10,AC=8,求四边形AEDF的周长;
解:∵AD是△ABC的高,E、F分别是AB、AC的中点,
∴DE=AE= 1 AB= 1 ×10=5,
DF=AF=
2 1
AC=
21
×8=4,
∴四边形AED2F的周长2=AE+DE+DF+AF=5+5+4+4=18 .
典型例题 (2)求证:EF垂直平分AD.
证明:∵DE=AE,DF=AF, ∴E、F在线段AD的垂直平分线上, ∴EF垂直平分AD. 归纳:当已知条件含有线段的中点、直角三角形的条件时, 可联想直角三角形斜边上的中线的性质进行求解.

人教版数学八年级下册第十八章18.2.1 矩形的判定

人教版数学八年级下册第十八章18.2.1 矩形的判定

A
证明:∵四边形ABCD是平行四边形
O
D
∴AC = 2OA,BD = 2OB
∵△AOB是等边三角形
B
C
∴OA = OB
∴AC =BD
∴□ABCD是矩形
畅所欲言
今天的收获…… 你还有什么困惑……
作业布置
完成导学案 ——“ ” 五、过关检测
人教版数学八年级下册
18.2.1 矩形(长方形)
复习巩固
有一个角 是直角
矩形
矩形是特殊的平行四边形
矩形的一般性质:
具备平行四边形所有的性质
A
D
O
B
C
边 对边平行且相等 角 对角相等 ,邻角互补 对角线 对角线互相平分
探索发现 数学活动
活动材料:矩形纸片 A
D
活动步骤1:
B
C
折叠矩形纸片,能否让矩形的两部分
完全重合吗?由此你能得出矩形是轴
对称图形吗?如果是,有几条对称轴?
1、如图 ,在△ABC中,∠ACB=90°,CD为中线, 延长CD到点E,使 DE=CD.连结AE,BE。 求证:四边形ACBE为矩形.
证明:∵CD是△ABC的中线 ∴AD=BD
又∵DE=CD ∴四边形ACBE是平行四边形
又∵∠ACB=90°
∴□ACBE是矩形
2、如图,已知□ABCD 的对角线AC、BD相交于点O, △AOB是等边三角形,求证:□ABCD是矩形.
例2、如图,已知BD,BE分别是∠ABC与它的邻补角
∠CBP的平分线,CE⊥BE,CD⊥BD,E,D为垂足,
求证:四边形BECD是矩形.
C
证明:∵ BD,BE分别是∠ABC与 它的邻补角∠CBP的平分线,

矩形(第一课时学案)

矩形(第一课时学案)

1、矩形定义:有一个角是直角的平行四边形叫做矩形(通常也叫长方形).2、矩形性质:具备平行四边形的所有性质特性①矩形的四个角都是直角.性质②矩形的对角线相等.推论:直角三角形斜边上的中线等于斜边的一半.Rt△中30°角性质与推论异同随堂练习:1.(填空)(1)矩形的定义中有两个条件:一是,二是.(2)已知矩形的一条对角线与一边的夹角为30°,则矩形两条对角线相交所得的四个角的度数分别为、、、.(3)已知矩形的一条对角线长为10cm,两条对角线的一个交角为120°,则矩形的边长分别为cm,cm,cm,cm.2.(选择)(1)下列说法错误的是().(A)矩形的对角线互相平分(B)矩形的对角线相等(C)有一个角是直角的四边形是矩形(D)有一个角是直角的平行四边形叫做矩形(2)矩形的对角线把矩形分成的三角形中全等三角形一共有().(A)2对(B)4对(C)6对(D)8对3.已知:如图,O是矩形ABCD对角线的交点,AE平分∠BAD,∠AOD=120°,求∠AEO的度数.课后练习:1.(选择)矩形的两条对角线的夹角为60°,对角线长为15cm,较短边的长为().(A)12cm (B)10cm (C)7.5cm (D)5cm2.在直角三角形ABC中,∠C=90°,AB=2AC,求∠A、∠B的度数.3.已知:矩形ABCD中,BC=2AB,E是BC的中点,求证:EA⊥ED.4.如图,矩形ABCD中,AB=2BC,且AB=AE,求证:∠CBE的度数.矩形判定方法:①定义判定:有一个角是直角的平行四边形是做矩形。

(有三个角是直角的四边形是矩形.②对角钱相等的平行四边形是矩形(对角线相等且互相平分的四边形是矩形).随堂练习1、下列各句判定矩形的说法是否正确?为什么?(1)有一个角是直角的四边形是矩形;()(2)有四个角是直角的四边形是矩形;()(3)四个角都相等的四边形是矩形;()(4)对角线相等的四边形是矩形;()(5)对角线相等且互相垂直的四边形是矩形;()(6)对角线互相平分且相等的四边形是矩形;()(7)对角线相等,且有一个角是直角的四边形是矩形;()(8)一组邻边垂直,一组对边平行且相等的四边形是矩形;()(9)两组对边分别平行,且对角线相等的四边形是矩形.( )指出:所给四边形添加的条件是三个独立条件,但若与判定方法不同,则需要利用定义和判定方法证明或举反例,才能下结论.2.(选择)下列说法正确的是().(A)有一组对角是直角的四边形一定是矩形(B)有一组邻角是直角的四边形一定是矩形(C)对角线互相平分的四边形是矩形(D)对角互补的平行四边形是矩形3.已知:如图,在△ABC中,∠C=90°, CD为中线,延长CD到点E,使得DE=CD.连结AE,BE,则四边形ACBE为矩形.课后练习1.工人师傅做铝合金窗框分下面三个步骤进行:⑴先截出两对符合规格的铝合金窗料(如图①),使AB=CD,EF=GH;⑵摆放成如图②的四边形,则这时窗框的形状是形,根据的数学道理是:;⑶将直角尺靠紧窗框的一个角(如图③),调整窗框的边框,当直角尺的两条直角边与窗框无缝隙时(如图④),说明窗框合格,这时窗框是形,根据的数学道理是:;2.在Rt△ABC中,∠C=90°,AB=2AC,求∠A、∠B的度数..菱形性质(第一课时学案)菱形定义:有一组邻边相等的平行四边形叫做菱形.菱形的性质:具备平行四边形的所有性质特性:①菱形的四条边都相等②菱形的对角线互相垂直,并且每条对角线平分一组对角③4个≌的直角三角形④菱形面积=两条对角线乘积的一半六、随堂练习1.若菱形的边长等于一条对角线的长,则它的一组邻角的度数分别为.2.已知菱形的两条对角线分别是6cm和8cm ,求菱形的周长和面积.3.已知菱形ABCD的周长为20cm,且相邻两内角之比是1∶2,求菱形的对角线的长和面积.4.已知:如图,菱形ABCD中,E、F分别是CB、CD上的点,且BE=DF.求证:∠AEF=∠AFE.七、课后练习1.菱形ABCD中,∠D∶∠A=3∶1,菱形的周长为8cm,求菱形的高.2.如图,四边形ABCD是边长为13cm的菱形,其中对角线BD长10cm,求(1)对角线AC 的长度;(2)菱形ABCD的面积..菱形判定(第二课时学案)菱形判定:①定义:有一组邻边相等的平行四边形是做菱形②四边都相等的四边形是菱形.③对角线互相垂直的平行四边形是菱形(对角线互相垂直且相等的四边形是菱形)六、随堂练习1、:填空。

矩形性质教案文档

矩形性质教案文档

初中新人教版数学学科导学案教材信息:八年级数学学科下册课题: 19.2.1 矩形(一)课型:新授课备课组:数学组教师引导教师出示教具:“一个活动的平行四边形木框”,•用两根橡皮筋分别套在相对的两个顶点上.拉动一对不相邻的顶点A、C,立即改变平行四边形的形状,如图所示.学生思考并回答如下问题。

引导得出概念,引入课题。

举出生活中的矩形图。

问题导学展示交流思考:拿一个活动的平行四边形教具,轻轻拉动一个点,观察不管怎么拉,它还是一个平行四边形吗?为什么?(动画演示拉动过程如图)(1)无论∠α如何变化,四边形ABCD还是平行四边形吗?(2)随着∠α的变化,两条对角线长度有没有变化?随着∠α由锐角变成钝角时,过∠α顶角的对角线由长变短,而另一条对角线由短变长.当∠α是锐角时,学生可以用刻度尺量出两条对角线的长度,•你可判别它们数量之间的关系吗?当∠α是钝角时,学生也可以用同样办法,得到两对角线的数量关系.当∠α为直角时,这个时候平行四边形就变成一个特殊的平行四边形──矩形.矩形定义:有一个角是直角的平行四边形叫做矩形。

举例:矩形是我们最常见的图形之一,例如书桌面、教科书的封面等都有矩形形象.1、矩形与平行四边形的关系。

1、矩形是中心对称图形吗?是轴对称图形吗?合作探究矩形就具有平行四边形的一切特征2、矩形除了以上特征外,还有它的特有的性质吗?3、知识延伸:直角三角形斜边上的中线等于斜边的一半。

小组合作探究讨论展示交流2、探究矩形具有什么性质?(1)、画一个矩形ABCD。

(2)、从边、角、对角线三方面进行考虑,你能发现矩形有什么特有的性质吗?请以小组的形式讨论总结。

(3)、证明你的结论。

小结:(1)矩形具有平行四边形的一切性质.(2)矩形是轴对称图形.(3)矩形的对角线相等.(4)矩形的四个角都是直角点拨升华例1 (教材P95例1)已知:如图,矩形ABCD的两条对角线相交于点O,∠AOB=60°,AB=4cm,求矩形对角线的长.当堂达标1,、教材P95练习。

矩形的性质学案(精华)

矩形的性质学案(精华)

20.3矩形 菱形 正方形----矩形的性质一、学习准备1、复习平行四边形定义: 叫平行四边形。

23、平行四边形是 对称图形。

二、问题探究4、矩形定义:有一个角为 的 叫矩形。

5、矩形是特殊的平行四边形,因此矩形具有 的所有性质。

矩形特有的性质:① ②6、证明矩形对角线的特性。

已知: 证明:【知识延展】:(1)、由矩形性质有OA=OC=21AC OB=OD=21BD 且AC=BD 得OA= = =∴矩形对角线的交点O 到各顶点的距离 。

(2)、由图可知,在矩形中有 个直角三角形,它们分别是有 个等腰三角形,它们分别是 。

∴我们通常在直角三角形、等腰三角形中求有关边与角。

(3)、由矩形性质有∠ABC=900,OA=OB=OC这说明:Rt △ABC 中,若OB 是斜边AC 的 ,则OB= AC ∴直角三角形斜边上的中线等于斜边长的(4)、∵矩形是平行四边形,∴矩形是 对称图形。

思考:矩形是轴对称图形吗?将矩形作业纸对折,我们发现:矩形是 图形,有 条对称轴。

对称轴是对边 点所确定两条直线。

∴矩形既是 对称图形,又是 对称图形,对称轴为 三、反思小结1、 的平行四边形是矩形。

2、矩形性质3、矩形性质延伸 (1)矩形对角线交点到各顶点的距离 (2)直角三角形斜边上的 等于斜边的 四、典例解析例1、如图矩形ABCD ,AB=6cm ,BC=8cm ,求AC,AD,BD,CD 的长。

变式1、如图矩形ABCD ,对角线AC=5cm ,BC=4cm ,就OD,CD 的长。

变式2、如图矩形ABCD ,∠AOD=1200,,证明△ABO 为等边三角形。

变式3、如图矩形ABCD ,∠AOD=1200,,AB=4cm ,求矩形对角线长。

变式4、如图矩形ABCD ,∠AOD=1200,,证明AC=2AB.变式5、已知矩形ABCD 的两条对角线夹角为60°,一边长为矩形对角线长。

例2、如图,矩形ABCD 中,AC 与BD 交于O 点,BE⊥AC 于E ,CF⊥BD 于F. 求证:BE=CF.变式:如图,矩形ABCD 中,对角线AC 与BD 交于点O,点E 、F 分别在OA 、OD 上,且OA OE31=,OD OF 31=求证:BE=CF.例3如图,矩形ABCD 中,AC 、BD 相交于O 点,AE 平分∠BAD ,交BC 于E 点,若∠CAE=15°,求∠BOE例4. 如图:AD 是△ABC 的高,M 、N 、E 分别是AB 、AC 、BC 边上的中点.(1)求证:ME=DN ;(2)若BC=AD=12,AC=13,求四边形DEMN 的面积.例5矩形ABCD 中,1=AB ,3=AD ,AF 平分DAB ∠,过C点作BD CE ⊥于E ,延长AF 、EC 交于点H 。

人教版八下数学18.2.3正方形 课时1 正方形的性质教案+学案

人教版八下数学18.2.3正方形  课时1 正方形的性质教案+学案

人教版八年级下册数学第18章平行四边形18.2 特殊的平行四边形18.2.3 正方形课时1正方形的性质教案【教学目标】知识与技能目标1.理解并运用正方形的定义计算和证明;2.理解并运用正方形的性质进行计算和证明;3.体会正方形与平行四边形、矩形、菱形的区别与联系,理解一般与特殊的关系.过程与方法目标经历正方形的定义及其性质的探究过程,丰富认识图形的经验,进一步发展学生的逻辑推理能力和表达能力.情感、态度与价值观目标让学生在发现、归纳、概括中逐步提高思维能力,培养用数学的思想和方法来思考和分析问题的习惯.【教学重点】正方形性质定理的运用.【教学难点】正方形与平行四边形、矩形、菱形的区别与联系.【教学准备】教师准备:教学中出示的教学插图、问题和例题.学生准备:复习平行四边形、矩形、菱形的定义、性质和判定.【教学过程设计】一、情境导入做一做:用一张长方形的纸片(如图所示)折出一个正方形.学生在动手中对正方形产生感性认识,并感知正方形与矩形的关系.问题:什么样的四边形是正方形?二、合作探究知识点一:正方形的性质【类型一】特殊平行四边形的性质的综合例1菱形,矩形,正方形都具有的性质是()A.对角线相等且互相平分B.对角线相等且互相垂直平分C.对角线互相平分D.四条边相等,四个角相等解析:选项A不正确,菱形的对角线不相等;选项B不正确,菱形的对角线不相等,矩形的对角线不互相垂直;选项C正确,三者均具有此性质;选项D 不正确,矩形的四条边不相等,菱形的四个角不相等.故选C.方法总结:正方形具有四边形、平行四边形、矩形、菱形的所有性质.【类型二】利用正方形的性质解决线段的计算或证明问题例2如图所示,正方形ABCD的边长为1,AC是对角线,AE平分∠BAC,EF⊥AC于点F.(1)求证:BE=CF;(2)求BE的长.解析:(1)由角平分线的性质可得到BE=EF,再证明△CEF为等腰直角三角形,即可证BE=CF;(2)设BE=x,在△CEF中可表示出CE.由BC=1,可列出方程,即可求得BE.(1)证明:∵四边形ABCD为正方形,∴∠B=90°.∵EF⊥AC,∴∠EF A=90°.∵AE平分∠BAC,∴BE=EF.又∵AC是正方形ABCD的对角线,∴AC平分∠BCD,∴∠ACB=45°,∴∠FEC=∠FCE=45°,∴EF=FC,∴BE=CF;(2)解:设BE=x,则EF=CF=x,CE=1-x.在Rt△CEF中,由勾股定理可得CE=2x.∴2x=1-x,解得x=2-1,即BE的长为2-1.方法总结:正方形被每条对角线分成两个直角三角形,被两条对角线分成四个等腰直角三角形,因此正方形的计算问题可以转化到直角三角形和等腰直角三角形中去解决.【类型三】利用正方形的性质解决角的计算或证明问题例3 在正方形ABCD 中,点F 是边AB 上一点,连接DF ,点E 为DF 的中点.连接BE 、CE 、AE .(1)求证:△AEB ≌△DEC ;(2)当EB =BC 时,求∠AFD 的度数.解析:(1)根据“正方形的四条边都相等”可得AB =CD ,根据“正方形每一个角都是直角”可得∠BAD =∠ADC =90°,再根据“直角三角形斜边上的中线等于斜边的一半”可得AE =EF =DE =12DF ,根据“等边对等角”可得∠EAD =∠EDA ,再得出∠BAE =∠CDE ,然后利用“SAS ”证明即可;(2)根据“全等三角形对应边相等”可得EB =EC ,再得出△BCE 是等边三角形.根据等边三角形的性质可得∠EBC =60°,然后求出∠ABE =30°.再根据“等腰三角形两底角相等”求出∠BAE ,然后根据“等边对等角”可得∠AFD =∠BAE .(1)证明:在正方形ABCD 中,AB =CD ,∠BAD =∠ADC =90°.∵点E 为DF中点,∴AE =EF =DE =12DF ,∴∠EAD =∠EDA .∵∠BAE =∠BAD -∠EAD ,∠CDE =∠ADC -∠EDA ,∴∠BAE =∠CDE .在△AEB 和△DEC 中,⎩⎨⎧AB =CD ,∠BAE =∠CDE ,AE =DE ,∴△AEB ≌△DEC (SAS);(2)解:∵△AEB ≌△DEC ,∴EB =EC .∵EB =BC ,∴EB =BC =EC ,∴△BCE 是等边三角形,∴∠EBC =60°,∴∠ABE =90°-60°=30°.∵EB =BC =AB ,∴∠BAE =12×(180°-30°)=75°.又∵AE =EF ,∴∠AFD =∠BAE =75°.方法总结:正方形是最特殊的平行四边形,在正方形中进行计算时,要注意计算出相关的角的度数,要注意分析图形中有哪些相等的线段等.探究点二:正方形性质的综合应用【类型一】 利用正方形的性质解决线段的倍、分、和、差关系例4 如图,AE 是正方形ABCD 中∠BAC 的平分线,AE 分别交BD 、BC 于F 、E ,AC 、BD 相交于O .求证:(1)BE =BF ;(2)OF =12CE . 解析:(1)根据正方形的性质可求得∠ABE =∠AOF =90°.由于AE 是正方形ABCD 中∠BAC 的平分线,根据“等角的余角相等”即可求得∠AFO =∠AEB .根据“对顶角相等”即可求得∠BFE =∠AEB ,BE =BF ;(2)连接O 和AE 的中点G .根据三角形的中位线的性质即可证得OG ∥BC ,OG =12CE .根据平行线的性质即可求得∠OGF =∠FEB ,从而证得∠OGF =∠AFO ,OG =OF ,进而证得OF =12CE .证明:(1)∵四边形ABCD 是正方形,∴AC ⊥BD ,∴∠ABE =∠AOF =90°,∴∠BAE +∠AEB =∠CAE +∠AFO =90°.∵AE 是∠BAC 的平分线,∴∠CAE =∠BAE ,∴∠AFO =∠AEB .又∵∠AFO =∠BFE ,∴∠BFE =∠AEB ,∴BE =BF ;(2)连接O 和AE 的中点G .∵AO =CO ,AG =EG ,∴OG ∥BC ,OG =12CE ,∴∠OGF =∠FEB .∵∠AFO =∠AEB ,∴∠OGF =∠AFO ,∴OG =OF ,∴OF =12CE .方法总结:在正方形的条件下证明线段的关系,通常的方法是连接对角线构造垂直平分线,利用垂直平分线的性质、中位线定理、角平分线、等腰三角形等知识来证明,有时也利用全等三角形来解决.【类型二】 有关正方形性质的综合应用题例5 如图,正方形AFCE 中,D 是边CE 上一点,B 是CF 延长线上一点,且AB =AD ,若四边形ABCD 的面积是24cm 2.则AC 长是________cm.解析:∵四边形AFCE 是正方形,∴AF =AE ,∠E =∠AFC =∠AFB =90°.在Rt △AED 和Rt △AFB 中,⎩⎨⎧AD =AB ,AE =AF ,∴Rt △AED ≌Rt △AFB (HL),∴S △AED =S△AFB.∵S四边形ABCD=24cm2,∴S正方形AFCE=24cm2,∴AE=EC=26cm.根据勾股定理得AC=(26)2+(26)2=43(cm).故答案为4 3.方法总结:在解决与面积相关的问题时,可通过证三角形全等实现转化,使不规则图形的面积转变成我们熟悉的图形面积,从而解决问题.三、教学小结师生共同归纳小结.1.本节课,我们学习了正方形的性质和判定,弄清了正方形、平行四边形、矩形、菱形的关系:2.分小组进行讨论,整理所学的性质:正方形是特殊的平行四边形,它也是特殊的矩形、特殊的菱形,因此它具有平行四边形、矩形、菱形的所有性质.请回忆学过的内容,回答下面的问题(从边、角、对角线、轴对称性四方面考虑):(1)平行四边形有哪些性质?(2)矩形有哪些性质?(3)菱形有哪些性质?(4)正方形有哪些性质?图形对边对角对角线对称性平行四边形平行、相等相等互相平分不是轴对称图形矩形平行、相等四个角都是直角互相平分且相等轴对称图形,有两条对称轴菱形平行、四条边都相等相等互相垂直且平分,每条对角线平分一组对角轴对称图形,有两条对称轴正方形平行、四条边四个角都是直互相垂直、平分且相轴对称图形,有四条对称都相等角等,每条对角线平分一轴组对角四、学习检测1.下列命题是真命题的是( )A.矩形的对角线互相垂直B.菱形的对角线相等C.正方形的对角线相等且互相垂直D.四边形的对角线互相平分解析:根据矩形的对角线相等,可判断选项A错;根据菱形的对角线互相垂直,可判断选项B错;根据正方形的对角线互相垂直、平分且相等,可判断选项C正确;四边形的对角线无特性,可判断选项D错.故选C.2.如图所示,E是正方形ABCD的边AD上任意一点,EF⊥BD于点F,EG⊥AC于点G,若AB=10 cm,则四边形EFOG的周长是.解析:先由题意证明四边形EFOG是矩形,进而可知矩形EFOG的周长为OD 的长的2倍,然后根据勾股定理得OD的长为5 cm.故填10 cm.3.如图,四边形ABCD是正方形,BE⊥BF,BE=BF,EF与BC交于点G.(1)求证AE=CF.(2)若∠ABE=55°,求∠EGC的大小.【解析】本题考查了等腰直角三角形、正方形的性质,“三角形的一个外角等于与它不相邻的两个内角之和”,全等三角形的性质与判定,解题的关键是证明△ABE≌△CBF.(1)用SAS证明△ABE≌△CBF.(2)∠EGC=∠EBG+∠BEF,而∠EBG=90°-∠ABE,△BEF是等腰直角三角形,从而可求∠EGC的度数.证明:(1)∵四边形ABCD是正方形,∴AB=BC,∠ABC=90°.∵BE⊥BF,∴∠EBF=90°,从而可知∠ABE=∠CBF.∵AB=BC,∠ABE=∠CBF,BE=BF,∴△ABE≌△CBF,∴AE=CF.解:(2)∵BE=BF,∠EBF=90°,∴∠BEF=45°,∵∠ABC=90°,∠ABE=55°,∴∠GBE=35°,∴∠EGC=∠EBG+∠BEG=80°.[归纳总结]证明线段相等,通常转化成证明这两条线段所在的三角形全等得到对应线段相等.本题要充分利用正方形的性质“四条边相等;四个内角都等于90°;对角线互相垂直平分且相等,每一条对角线平分一组对角;正方形既是轴对称图形,又是中心对称图形等”,并根据题意选取合适的性质加以运用.等腰直角三角形的两锐角相等,为45°,底边上的高、中线、顶角的平分线重合.三角形全等的判定方法:SAS,ASA,AAS,SSS,HL(只适用于直角三角形),根据图中的条件选取合适的方法证明三角形全等是关键.【板书设计】18.2 特殊的平行四边形 18.2.3 正方形课时1 正方形的性质1.正方形的定义和性质四条边都相等,四个角都是直角的四边形是正方形.对边平行,四条边都相等;四个角都是直角;对角线互相垂直、平分且相等,并且每一条对角线平分一组对角.2.正方形性质的综合应用3.学习检测【教学反思】在本节数学课的教学中,通过学生动手操作得出的结论归纳矩形和菱形的性质,继而得到正方形的性质,激起了学生的学习热情和兴趣.创设有意义的数学活动,使枯燥乏味的数学变得生动活泼.让学生觉得学习数学是快乐的,使学生保持一颗健康、好学、进取的心及一份浓厚的学习兴趣.人教版八年级下册数学第18章平行四边形18.2 特殊的平行四边形18.2.3 正方形课时1正方形的性质学案【学习目标】1.理解正方形的概念;2.探索并证明正方形的性质,并了解平行四边形、矩形、菱形之间的联系和区别;3.会应用正方形的性质解决相关证明及计算问题.【学习重点】探索并证明正方形的性质,并了解平行四边形、矩形、菱形之间的联系和区别.【学习难点】会应用正方形的性质解决相关证明及计算问题.【自主学习】一、知识回顾1.你还记得长方形有哪些性质吗?2.菱形的性质又有哪些?二、新知探究知识点1:正方形的性质想一想 1.矩形怎样变化后就成了正方形呢?你有什么发现?邻边_____2.菱形怎样变化后就成了正方形呢?你有什么发现?一个角是_____要点归纳:正方形定义:有一组邻边_____并且有一个角是_____的__________叫正方形.想一想正方形是特殊的矩形,也是特殊的菱形.所以矩形、菱形有的性质,正方形都有.那你能说出正方形的性质吗?1.正方形的四个角都是_________,四条边_________.2.正方形的对角线________且互相______________.证一证已知:如图,四边形ABCD是正方形.求证:正方形ABCD四边相等,四个角都是直角.证明:∵四边形ABCD是正方形.∴∠A=____°, AB_____AC.又∵正方形是平行四边形.∴正方形是______,亦是______.∴∠A___∠B___∠C___∠D =____°,AB___BC___CD___AD.已知:如图,四边形ABCD是正方形.对角线AC、BD相交于点O.求证:AO=BO=CO=DO,AC⊥BD.证明:∵正方形ABCD是矩形,∴AO___BO___CO___DO.∵正方形ABCD是菱形.∴AC___BD.想一想请同学们拿出准备好的正方形纸片,折一折,观察并思考.正方形是不是轴对称图形?如果是,那么对称轴有几条?要点归纳:平行四边形、矩形、菱形、正方形之间关系:正方形的性质:1.正方形的四个角都是直角,四条边相等.2.正方形的对角线相等且互相垂直平分. 【典例探究】例1如图,在正方形ABCD中,ΔBEC是等边三角形.求证:∠EAD=∠EDA=15°.DAB CE变式题 1 四边形ABCD是正方形,以正方形ABCD的一边作等边△ADE,求∠BEC的大小.易错提醒:因为等边△ADE与正方形ABCD有一条公共边,所以边相等.本题分两种情况:等边△ADE在正方形的外部或在正方形的内部.变式题2 如图,在正方形ABCD内有一点P满足AP=AB,PB=PC,连接AC、PD.(1)求证:△APB≌△DPC;(2)求证:∠BAP=2∠PAC.例3 如图,在正方形ABCD中,P为BD上一点,PE⊥BC于E,PF⊥DC于F.试说明:AP=EF.方法总结:在正方形的条件下证明两条线段相等:通常连接对角线构造垂直平分的模型,利用垂直平分线性质,角平分线性质,等腰三角形等来说明.【跟踪练习】1.正方形具有而矩形不一定具有的性质是( )A.四个角相等B.对角线互相垂直平分C.对角互补D.对角线相等2.正方形具有而菱形不一定具有的性质()A.四条边相等B.对角线互相垂直平分C.对角线平分一组对角D.对角线相等3.如图,四边形ABCD是正方形,对角线AC与BD相交于点O,AO=2,求正方形的周长与面积.三、知识梳理内容正方形的性质定义:有一组邻相等,并且有一个角是直角的平行四边形叫做正方形.性质:1.四个角都是直角2.四条边都相等3.对角线相等且互相垂直平分四、学习过程中我产生的疑惑【学习检测】1.平行四边形、矩形、菱形、正方形都具有的是()A.对角线互相平分B.对角线互相垂直C.对角线相等D.对角线互相垂直且相等2.如图,正方形ABCD中,CE⊥MN,∠MCE=35°,那么∠ANM是()A.45°B.55°C.65°D.75°B(解析:因为CE⊥MN,所以∠MCE+∠NMC=90°.所以∠NMC=90°-∠MCE=55°.由题意得AD∥BC,所以∠ANM=∠NMC=55°.故选B.)3.一个正方形的对角线长为2cm,则它的面积是()A.2cm2B.4cm2C.6cm2D.8cm24. 在正方形ABC中,∠ADB=________,∠DAC=_________, ∠BOC=__________.5. 在正方形ABCD中,E是对角线AC上一点,且AE=AB,则∠EBC的度数是___________.6.如图,正方形ABCD中,AC是对角线,E是BC延长线上一点,CE=AC,则∠E=度.22.5(解析:由正方形的性质得∠ACB=45°,又CE=AC,所以∠E=∠EAC,因为∠E+∠EAC=45°,所以∠E=∠EAC=22.5°.)第4题图第5题图7.如图,正方形ABCD的边长为1cm,AC为对角线,AE平分∠BAC,EF⊥AC,求BE的长.8. 如图,正方形ABCD的对角线AC,BD交于点O,∠OCF=∠OBE.试猜想OE与OF的大小关系,并说明理由.解:OE=OF.理由如下:∵四边形ABCD是正方形,∴AC⊥BD,OB=OC,∴∠AOB=∠BOC=90°.又∵∠OCF=∠OBE,∴△OCF≌△OBE,∴OE=OF.9. 如图在正方形ABCD中,E为CD上一点,F为BC边延长线上一点,且CE=CF. BE与DF之间有怎样的关系?请说明理由.10.如左下图,正方形ABCD中,M是BC上任意一点,E在BC的延长线上,MN⊥AM,MN交∠DCE的平分线于N,试猜想AM与MN有怎样的数量关系,并说明理由.【解析】猜想AM=MN,要证AM=MN,如右上图,只需构造并证明△APM≌△MCN即可.解:AM=MN.理由如下:在AB上取一点P,使BP=BM,连接PM,如右上图.∵AB=BC,BP=BM,∴AP=MC,∠BPM=45°,∴∠APM=135°.∵CN平分∠DCE,∴∠MCN=∠APM=135°.∵MN⊥AM,∴∠AMB+∠CMN=90°.∵∠AMB+∠BAM=90°,∴∠BAM=∠CMN.∴△APM≌△MCN.∴AM=MN.。

矩形的性质和判定学案(基础)

矩形的性质和判定学案(基础)

18.2.1 矩形第1课时矩形的性质01 课前预习要点感知1有一个角是直角的平行四边形叫做矩形.要点感知2矩形的对边平行且相等;矩形的四个角都是直角;矩形的对角线互相平分且相等.预习练习2-1在矩形ABCD中,∠A=90°,∠B=90°,∠C=90°,∠D=90°.2-2 如图,在矩形ABCD中,对角线AC、BD相交于点O,若OA=2,则BD的长为() A.4 B.3 C.2 D.1要点感知3 直角三角形斜边上的中线.预习练习3-1 如图,在Rt△ABC中,∠C=90°,AB=10 cm,D为AB的中点,则CD=cm.02 当堂训练知识点1 矩形的性质1.下列性质中,矩形具有但平行四边形不一定具有的是()A.对边相等B.对角相等C.对角线相等D.对边平行2.(宜昌中考)如图,在矩形ABCD中,AB<BC,AC,BD相交于点O,则图中等腰三角形的个数是() A.8 B.6 C.4 D.23.(重庆中考)如图,在矩形ABCD中,对角线AC、BD相交于点O,∠ACB=30°,则∠AOB的大小为(A.30°B.60°C.90°D.120°4.如图,矩形ABCD的对角线AC=8,∠AOD=120°,则AD的长为(A.2 3 B.4 C.4 2 D.4 35.如果矩形的一边长为6,一条对角线的长为10,那么这个矩形的另一边长是6.(无锡中考)如图,已知矩形ABCD的对角线长为8 cm,E、F、G、H分别是AB、BC、CD、DA的中点,则四边形EFGH的周长等于7.“保护环境,利国利民”.某市工业园内矩形区域的四个顶点A、B、C、D处各建一个工厂,现要建一个污水处理厂到四个工厂的距离相等,则污水处理厂应建在何处?试在图中确定.知识点2 直角三角形斜边上的中线等于斜边的一半8.如图,在Rt△ABC中,∠ACB=90°,D、E、F分别是AB、BC、CA的中点,若CD=5 cm,则EF =9.直角三角形斜边上的高与中线分别是5 cm和6 cm,则它的面积是03 课后作业10.(益阳中考)如图,在矩形ABCD中,对角线AC、BD交于点O,以下说法错误的是() A.∠ABC=90°B.AC=BD C.OA=OB D.O A=AD11.如图,在矩形ABCD中,对角线AC,BD交于点O.已知∠AOB=60°,AC=16,则图中长度为8的线段有()A.2条B.4条C.5条D.6条12.如图,已知在矩形ABCD中,对角线AC、BD相交于O,AE⊥BD于E,若∠DAE∶∠BAE=3∶1,则∠EAC的度数是()A.18°B.36°C.45°D.72°13.(黔南中考)如图,矩形ABCD的对角线AC的中点为O,过点O作OE⊥BC于点E,连接OD,已知AB=6,BC=8,则四边形OECD的周长为 .14.(岳阳中考)已知:如图,在矩形ABCD中,点E在边AB上,点F在边BC上,且BE=CF,EF⊥DF.求证:BF=CD.15.(沈阳中考)如图,在矩形ABCD中,对角线AC,BD相交于点O,点E,F分别在边AD,BC上,且DE=CF,连接OE,OF.求证:OE=OF.挑战自我16.如图所示,在矩形ABCD中,M是AD的中点.(1)求证:△ABM≌△DCM;(2)请你探索,当矩形ABCD的一组邻边满足何种数量关系时,BM⊥CM成立?说明你的理由.第2课时矩形的判定01 课前预习要点感知矩形的判定:①有一个角是直角的平行四边形是矩形;②对角线相等的平行四边形是矩形;③有三个角是直角的四边形是矩形.预习练习如图所示,已知▱ABCD,下列条件:①AC=BD,②AB=AD,③∠1=∠2,④AB⊥BC中,能说明▱ABCD是矩形的有①④(填写序号).02 当堂训练知识点1 有一个角是直角的平行四边形是矩形1.如图,在四边形ABCD中,AD∥BC,∠D=90°,若再添加一个条件,就能推出四边形ABCD是矩形,你所添加的条件是 (写出一种情况即可)2.如图,在△ABC中,AB=AC,AD是BC边上的中线,四边形ADBE是平行四边形.求证:四边形ADBE是矩形.知识点2 对角线相等的平行四边形是矩形3.能判断四边形是矩形的条件是()A.两条对角线互相平分B.两条对角线相等C.两条对角线互相平分且相等D.两条对角线互相垂直4.如图所示,矩形ABCD的对角线相交于点O,E、F、G、H分别是AO、BO、CO、DO的中点,请问四边形EFGH是矩形吗?请说明理由.知识点3 有三个角是直角的四边形是矩形5.如图,直角∠AOB内的任意一点P到这个角的两边的距离之和为6,则图中四边形的周长为 .6.已知:如图,在▱ABCD中,AF,BH,CH,DF分别是∠BAD,∠ABC,∠BCD,∠ADC的平分线.求证:四边形EFGH为矩形.03 课后作业7.已知O为四边形ABCD对角线的交点,下列条件能使四边形ABCD成为矩形的是() A.OA=OC,OB=ODB.AC=BDC.AC⊥BDD.∠ABC=∠BCD=∠CDA=90°8.下面命题正确的个数是()(1)矩形是轴对称图形;(2)矩形的对角线不小于夹在两对边间的任意线段;(3)两条对角线相等的四边形是矩形;(4)有两个角相等的平行四边形是矩形;(5)两条对角线相等且互相平分的四边形是矩形.A.5个B.4个C.3个D.2个9.(呼和浩特中考)如图,在四边形ABCD中,对角线AC⊥BD,垂足为O,点E,F,G,H分别为边AD,AB,BC,CD的中点.若AC=8,BD=6,则四边形EFGH的面积为.10.(聊城中考)如图,在△ABC中,AB=BC,BD平分∠ABC,四边形ABED是平行四边形,DE交BC 于点F,连接CE.求证:四边形BECD是矩形.11.(百色中考)如图,已知点E,F在四边形ABCD的对角线延长线上,AE=CF,DE∥BF,∠1=∠2(1)求证:△AED≌△CFB;(2)若AD⊥CD,四边形ABCD是什么特殊四边形?请说明理由.挑战自我12.(张家界中考)如图,在△ABC中,点O是边AC上一个动点,过O作直线MN∥BC.设MN交∠ACB 的平分线于点E,交∠ACB的外角平分线于点F.(1)求证:OE=OF;(2)若CE=12,CF=5,求OC的长;(3)当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

18.2 特殊的平行四边形
18.2.1 矩形 第1课时 矩形的性质
【学习目标】
1.掌握矩形的概念和性质,理解矩形与平行四边形的区别与联系. 2.掌握矩形的性质及其推论,会进行有关的计算与证明. 【学习重点】 矩形的性质及其推论. 【学习难点】 矩形性质的灵活应用.
情景导入 生成问题
旧知回顾:
1.平行四边形的性质:对角相等,对边相等且平行,对角线互相平分.
2.平行四边形的判定方法:两组对边分别平行,两组对角分别相等,一组对边平行且相等,对角线互相平分.
3.猜想:有一个角是直角的平行四边形是矩形.
自学互研 生成能力
知识模块一 矩形的性质 【自主探究】
阅读教材P 52,完成下面的内容:
1.有一个角是直角的平行四边形叫做矩形.
2.在▱ABCD 中,若∠A =∠B ,则四边形ABCD 是矩形. 3.矩形的四个角都是直角. 4.矩形的对角线相等且互相平分. 【合作探究】
1.在矩形ABCD 中,O 是BC 的中点,∠AOD =90°,矩形ABCD 的周长为24 cm ,则AB 长为( D )
A .1 cm
B .2 cm
C .2.5 cm
D .4 cm
2.如图,矩形ABCD 的对角线的交点为O ,EF 过点O 且分别交AB ,CD 于点E 、F ,则图中阴影部分的面积是矩形ABCD 的面积的( B )
A .15
B .14
C .13
D .310
知识模块二 矩形性质的运用 【自主探究】
如图,在矩形ABCD 中,以顶点B 为圆心,边BC 长为半径作弧,交AD 边于点E ,连接BE ,过C 点作CF ⊥BE 于点F ,求证:BF =AE.
证明:在矩形ABCD 中,AD ∥BC ,∠A =90°,∴∠AEB =∠FBC.∵CF ⊥BE ,∴∠BFC =∠A =90°,由作图可
知,BC =BE.在△BFC 和△EAB 中,⎩⎨⎧∠A =∠CFB ,
∠AEB =∠FBC ,EB =BC ,
∴△BFC ≌△EAB(AAS ),∴BF =AE.
【合作探究】
如图,在矩形ABCD 中,E ,F 分别是边BC ,AB 上的点,且EF =ED ,EF ⊥ED.求证:AE 平分∠BAD. 证明:∵四边形ABCD 是矩形,
∴∠B =∠C =∠BAD =90°,AB =CD ,∴∠BEF +∠BFE =90°. ∵EF ⊥ED ,∴∠BEF +∠CED =90°. ∴∠BFE =∠CED ,∴∠BEF =∠EDC. 在△EBF 与△DCE 中,
⎩⎨⎧∠BFE =∠CED ,
EF =ED ,
∠BEF =∠EDC ,
∴△EBF ≌△DCE(ASA ).
∴BE =CD.∴BE =AB ,∴∠BAE =∠BEA =45°, ∴∠EAD =45°,∴∠BAE =∠EAD ,∴AE 平分∠BAD. 知识模块三 直角三角形斜边上的中线的性质 【自主探究】
阅读教材P 53,完成下面的内容:.
1.直角三角形斜边上的中线等于斜边的一半.
2.在Rt △ABC 中,∠ABC =90°,AC =10 cm ,点D 为AC 的中点,则BD =5 cm . 【合作探究】
如图,在△ABC 中,AD 是高,E ,F 分别是AB ,AC 的中点. (1)若AB =10,AC =8,求四边形AEDF 的周长; (2)求证:EF 垂直平分AD.
解:(1)∵AD 是△ABC 的高,E ,F 分别是AB ,AC 的中点, ∴DE =AE =12AB =12×10=5,DF =AF =12AC =1
2×8=4,
∴四边形AEDF 的周长=AE +DE +DF +AF =5+5+4+4=18; (2)∵DE =AE ,DF =AF ,∴E ,F 在线段AD 的垂直平分线上, ∴EF 垂直平分AD.
交流展示 生成新知
【交流预展】
1.将阅读教材时“生成的问题”和通过“自主研究、合作探究”得出的“结论”展示在各小组的小黑板上,并将疑难问题也板演到小黑板上,再一次通过小组间就上述疑难问题相互解疑.
2.各小组由小组长统一分配展示任务,由代表将“问题和结论”展示黑板上,通过交流“生成新知”. 【展示提升】
知识模块一 矩形的性质 知识模块二 矩形性质的应用
知识模块三 直角三角形斜边上的中线的性质
检测反馈 达成目标
【当堂检测】
1.在矩形ABCD 的边AB 上有一点E ,且CE =DE ,若AB =2AD ,则∠ADE 等于( A )
A .45°
B .30°
C .60°
D .75°
2.如图,将矩形纸片ABCD 沿EF 折叠,使得点C 落在边AB 上的点H 处,点D 落在点G 处,若∠AHG =40°,则∠GEF 的度数为( B )
A .100°
B .110°
C .120°
D .135°
3.在Rt △ABC 中,∠ACB =90°,点D ,E ,F 分别是AB ,AC ,BC 的中点,若CD =5,则EF 的长为5.
【课后检测】见学生用书
课后反思查漏补缺
1.收获:________________________________________________________________________
2.存在困惑:________________________________________________________________________
感谢下载
资料仅供参考!。

相关文档
最新文档