无机化学武汉大学第三版
武汉大学版无机化学课后习题答案(第三版)第13章 配位化学原理
配位化学基础1.某物质的实验式为PtCl 4・2NH 3,其水溶液不导电,加入AgNO 3亦不产生沉淀,以强碱处理并没有NH 3放出,写出它的配位化学式。
解[Pt(NH 3)2Cl 4]2. 下列化合物中哪些是配合物?哪些是螯合物?哪些是复盐?哪些是简单盐?(1)CuS0”・5HQ (2)KPtCl4226(3)Co(NH 3)6Cl 3(4)Ni(en)2Cl 2(5)(NH )o S0/FeS0/6HQ (6)Cu (NHCHCOO )o42442222(7)Cu (OOCCH 3)2(8)KClMgCl 2・6H 2O 解配合物:K 2PtCl 6,C O (NH 3)6C13,C U SO 4・5H 2O螯合物:Ni(en)2Cl 2,Cu(NH 2CH 2COO)2复盐:(NH 4)2SO 4・FeSO 4・6H 2OKClMgCl^^O 简单盐:Cu(OOCH 3)2(3) 三氯化三(乙二胺)合钻(III ) (4) 氯化二氯•四水合钻(III ) (5) 二水合溴化二溴•四水合钻(III ) (6) 羟・水•草酸根•乙二胺合铬(III ) (7) 六硝基合钻(III )配阴离子 (8) 氯•硝基•四氨合钻(III )配阳离子(9)三氯•水•二吡啶合铬(III )(10)二氨•草酸根合镍(II )3. 命名下列各配合物和配离子:(1)(NH 4)3[SbCl 6] (3)[Co (en )3]Cl 3(5)[Cr (H 2O )4Br 2]Br.2H 2O (7)Co (NO 2)6]3 (9)[Cr (Py )2(H 2O )Cl 3] 解(1)六氯合锑(III )酸铵(2)四氢合铝(III )酸锂(2)Li[AlH 4] (4)[Co (H 2O )4Cl 2]Cl6)[Cr (H 2O )(en )(C 2O 4)(OH )2248)[Co (NH 3)4(NO 2)C]+ 10)[Ni (NH 3)2(C 2O 4)]4. 指出下列配合物的空间构型并画出它们可能存在的立体异构体:1)[Pt (NH 3)2(NO 2)Cl] 3)Pt (NH 3)2(OH )2Cl 2] 5)[Co (NH 3)3(OH )3] 7)[Cr (en )2(SCN )2]SCN 9)[Co (NH 3)(en )Cl 3](2)Pt (Py )(NH 3)ClBr] (4)NH 4[Co (NH 3)2(NO 2)4] (6)[Ni (NH 3)2Cl 2] (8)[Co (en )3]Cl 310)[Co (en )2(NO 2)2]Cl 2解(1)[Pt (NH 3)2(NO 2)Cl]平面正方形2种异构体H 3NH 3N3)[Pt(NH 3)2(OH)2Cl 2]八面体5种异构体H 3N 2)OHHOHONH 3210)[Co(en)2(NO 2)2]Cl 2ClNH 3 HOOH八面体7) 8) [Co(NH 3)3(OH)3]八面体 H 3NOH[Ni(NH 3)2Cl 2] 无异构体[Cr(en)2(SCN)2]SCN[Cr(en)2(SCN)2]-八面体 [Co(en)3]Cl 3[Co(en)3]3+ 八面体2种异构体[Co(NH 3)(en)Cl 3]八面体2种异构体5) 4)[Co(NH 3)2(NO 2)4]-NH 32种异构体NO 2NH3四面体 2种异构体NH 3SCNNCS2种异构体en24.90B.M 。
武汉大学版无机化学课后习题答案(第三版)第15章p区元素
P区元素(1)1.试用分子轨道理论描述下列各物种中的键、键级和磁性(顺磁性、逆磁性)和相对稳定性。
(1)O2+(二氧基阳离子)(2)O2(3)O2-(超氧离子)(4)O22-(过氧离子)解:见下表物种分子轨道键键级磁性相对稳定性O2+KK(σ2s)2(σ2s*)2(σ2p)2(П2p)4(П2py*)11( П2pz*)0一个σ键一个二电子П键,一个三电子П键2.5 顺依次减小O2KK(σ2s)2(σ2s*)2(σ2p)2(П2p)4(П2py*)1( П2pz*)1一个σ键二个三电子П键2 顺O2-KK(σ2s)2(σ2s*)2(σ2p)2(П2p)4(П2py*)1( П2pz*)1一个σ键一个三电子П键1.5 顺O22-KK(σ2s)2(σ2s*)2(σ2p)2(П2p)4(П2py*)1( П2pz*)2一个σ键 1 逆2. 重水和重氧水有何差别?写出它们的分子式。
它们有何用途?如何制备?答:重水:D2O;重氧水: ;重水是核能工业常用的中子减速剂,重氧水是研究化学反应特别是水解反应机理的示踪剂。
3. 解释为什么O2分子具有顺磁性,O3具有反磁性?答:根据O2分子的分子轨道式KK(σ2s)2(σ2s*)2(σ2p)2(П2p) 4(П2py*)1( П2pz*)1分子中两个П2p反键轨道各有一单电子,因此它具有顺磁性。
在O3分子中,每个氧原子各用一个P轨道组成一个成键П轨道,一个反键П轨道,一个非键П轨道,其中4各P电子,两个进入成键П轨道,两个进入非键П轨道,П键键级为一,分子没有成单电子,所以分子具有反磁性。
4.在实验室怎样制备O3?它有什么重要性?5.答:在实验室里制备臭氧主要靠紫外光(<185nm)照射氧或使氧通过静电放电装置而获得臭氧与氧的混合物,含臭氧可达10%。
臭氧发生器的示意图见图13-10。
它是两根玻璃套管所组成的,中间玻璃管内壁镶有锡锚,外管外壁绕有铜线,当锡箔与铜线间接上高电压时,两管的管壁之间发生无声放电(没有火花的放电),02就部分转变成了036.7.油画放置久后为什么会发暗、发黑?为什么可用H2O2来处理?写出反应方程式。
武汉大学版无机化学课后习题答案(第三版)第09章 化学反应的速率
化学反应的速率1. 什么是化学反应的平均速率,瞬时速率?两种反应速率之间有何区别与联系?答:平均速率是指在时间间隔Δt 内,反应物或生成物浓度的变化量。
而瞬时速率是指某一时刻的反应速率;前者是一个平均概念,相对于一个时间段而言,而后者是一个瞬时概念,是相对于某一时刻而言。
2. 分别用反应物浓度和生成物浓度的变化表示下列各反应的平均速率和瞬时速率,并表示出用不同物质浓度变化所示的反应速率之间的关系。
这种关系对平均速率和瞬时速率是否均适用?(1) N 2 + 3H 2 → 2NH 3(2) 2SO 2 + O 2 →2SO 3(3) aA + Bb → gG + hH解 (1)V =tN △△][2= t H △△][2=t NH △△][3 V 瞬=0lim →t △t N △△][2 = 0lim →t △t H △△][2 =0lim →t △t NH △△][3 V 2N =31V 2H =21V 3NH 两种速率均适用。
(2)(3)同(1)。
3. 简述反应速率的碰撞理论的理论要点。
答:碰撞理论认为:(1)、反应物分子之间的相互碰撞是反应进行的先决条件,碰撞频率越高,反应速率越大。
(2)、碰撞中能发生反应的一组分子首先必须具备足够的能量,以克服分子无限接近时,电子云之间的斥力,从而导致分子中原子的重排,即发生化学反应。
(3)、能量是有效碰撞的一个必要条件,但不充分,只有当活化分子组中的各个分子采取合适的取向进行碰撞时,反应才能发生。
(4)、活化能:发生有效碰撞的最低能量。
4. 简述反应速率的过渡状态理论的理论要点。
答:过渡状态理论认为:(1)、当两个具有足够的平均能量的反应物分子相互接近时,分子中的化学键要经过重排,能量要重新分配。
在反应过程中,要经过中间的一个过渡状态,即反应物分子要先形成活化配合物。
(2)。
反应速率与下列三个因素有关:活化配合物的浓度,活化配合物分解的几率,活化配合物的分解速率。
武汉大学版无机化学课后习题答案(第三版)第19章f区元素
F区元素1.按照正确顺序写出镧系元素和锕系元素的名称和符号,并附列它们的原子顺序。
解:镧系:元素名称镧铈镨钕钷钐铕钆铽镝钬铒铥镱镥La Ce Pr Nb Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu5758 59 60 61 62 63 64 65 66 67 68 69 70 71锕系锕钍镤铀镎钚镅锔锫锎锿镄钔锘铑Ac Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr8990 91 92 93 94 95 96 97 98 99 100 101 102 1032.镧系元素的特征氧化态为+3,为什么铈、镨、铽、镝常呈现+4氧化态,而钐、铕、铥、镱却能呈现+2氧化态?答:镧系元素的特征氧化态都是+Ш ,这是由于镧系元素的原子第一、第二、第三电离势之和不是很大,成键时释放的能量足以弥补原子在电离时能量的消耗,因此它们的+Ш氧化态都是稳定的。
与+Ш特征氧化态发生差异的诸元素有规律的分布在La(+Ш)、Gd(+Ш)、Lu(+Ш)附近。
这可由原子结构规律变化得到解释。
La(+Ш)、Gd(+Ш)、Lu(+Ш)分别具有4f轨道全空、半满、全满的稳定电子层结构。
镧系元素的氧化态取决于其外围的6s电子,4f和5d电子数,当它们失去两个6s电子,进而再失去一个4f电子或一个5d电子时,所需的电离度不太高,因此表现出ШB族的特征氧化态(+3)。
铈、镨、铽、镝除了生成+3氧化态外,还可以再失去一个电子,4f轨道达到或接近全满或半满,成为稳定结构故它们也常出现+4氧化态。
而钐,铕,铥和镱,失去两个电子后,就可以使4f轨道达到或接近半满,或全满的稳定,而常呈现出+2氧化态。
3.解释镧系元素在化学性质上的相似性。
答:镧系元素的价电子层结构为4f1-145d0-16s2鉴于4f同5d的能量比较近,因此在失去3个电子形成特征的+3氧化态时所需要的能量相差不大,即使在水溶液中,由于它们的离子半径接近,使得离子的水合能也相差不大,因此无论是在电离能或电负性以及标准电极电势方面,镧系原素均较接近,说明它们的单质在任何状态下所表现出来的化学活性是相近的,在+3氧化态时,离子构型和离子半径也相近,所以Ln3+离子的性质也极为相似。
武汉大学、吉林大学《无机化学》(第3版)笔记和课后习题(含考研真题)详解-原子结构(圣才出品)
6 / 23
圣才电子书 十万种考研考证电子书、题库视频学习平台
随着原子序数的增大,原子轨道产生能级交错现象。
圣才电子书
十万种考研考证电子书、题库视频学习平台
第 3 章 原子结构
3.1 复习笔记
一、氢原子光谱的实验基础,原子光谱是线状光谱。
每种元素的原子辐射都是具有由一定频率成分构成的特征光谱,是一条条离散的谱线,
称为线状光谱。
每一种元素都有各自不同的原子光谱。
2.屏蔽效应
由于其它电子对某一电子的排斥作用而抵消了一部分核电荷,从而使有效核电荷降低,
削弱了核电荷对该电子的吸引,这种作用称为屏蔽作用或屏蔽效应。
多电子原子中每个电子的轨道能量为:
式中,σ 为屏蔽常数。
E
=
−
13.6(Z − n2
)2
eV
3.钻穿效应
5 / 23
圣才电子书 十万种考研考证电子书、题库视频学习平台
6.量子数 (1)主量子数 n:n=1,2,3,…,n 等正整数,它描述电子离核的远近,决定电子 层数。n 值越大电子的能量越高这句话只有在原子轨道或电子云的形状相同的条件下才成立。 (2)角量子数 l:l=0,1,2,3,…,(n-1),以 s,p,d,f 对应的能级表示亚层, 它决定原子轨道或电子云的形状。如果用主量子数 n 表示电子层时,角量子数 l 就表示同一 电子层中具有不同状态的分层。n 确定后,l 可取 n 个数值。多电子原子中电子能量决定于 n 和 l。 (3)磁量子数 m:原子轨道在空间的不同取向。在给定角量子数 l 的条件下,m=0, ±1,±2,±3…,±l,一种取向相当于一个轨道,共可取 2l+1 个数值。m 值反应了波函数 (原子轨道)或电子云在空间的伸展方向。 (4)自旋量子数 ms:ms=±(1/2),表示同一轨道中电子的两种自旋状态,取值
武汉大学版无机化学课后习题答案第三版分子结构
武汉大学版无机化学课后习题答案第三版分子结构Document number【SA80SAB-SAA9SYT-SAATC-SA6UT-SA18】分子结构1. 试用离子键理论说明由金属钾和单质氯反应,形成氯化钾的过程如何理解离子键没有方向性和饱和性答:KCl 的形成表示如下: K(s)?K +(g)+e12Cl 2?Cl(g)Cl (g) +e ? Cl -(g) K +(g) + Cl -(g) =KCl (s)离子键的本质是静电作用力,由于离子的电荷分布是球形对称的,因此它对异号离子的引力可以是任何方向,也就是没有方向性;一个离子的周围,能容纳多少个异离子,是随离子的半径变化而变化的,它没有固定的配位数,所以说离子键没有饱和性。
2.用下列数据求氢原子的电子亲和能。
答:电子亲和能为下列反应的焓变,它由(5)-(4)-(3)-(2)-(1)得到:3. ClF 的解离能为1246kJ mol -⋅,ClF 的生成热为-56kJ/mol-1,Cl 2的解离能为238kJ/mol -1,试计算F 2(g)的解离能。
解:据题意:(1) ClF(g) = Cl(g) +F(g) ΔH 1 = 246 kJ ·mol -1 (2)12Cl 2(g) +12F 2(g) = ClF(g) ΔH 2 = -56kJ/mol -1(3)Cl 2(g) = 2Cl(g) ΔH 3 = 238kJ/mol -12?(1)+2?(2)-(3)得F 2 (g) = 2 F (g) ΔH =2 ΔH 1+2ΔH 2-ΔH 3=2?246-2?56-238=142 kJ / mol -14. 试根据晶体的构型与半径比的关系,试判断下列AB 型离子化合物的晶体构型: BeO NaBr CaS RbI BeS CsBr AgCl 解:查表求各离子的Pauling 半径如下表: Pauling 半径(pm)计算各物质的正负离子半径比以及相应晶体构型如下表:5.试从电负性数据,计算下列化合物中单键的离子性百分数各为多少NaF AgBr RbF HI CuI HBr CsCl解:查表求出各元素的Pauling 电负性数据如下表: 各物质的电负性差和相应的离子性百分数如下表:6. 如何理解共价键具有方向性和饱和性解:共价键是指两个原子间的化学键力通过共享电子而达到的稳定饱和结构的结合力。
(完整word版)武汉大学版无机化学课后习题答案(第三版)第08章 原电池和氧化还原反应习题(wor
原电池和氧化还原反应1. 用离子电子法配平下列反应式:(1) PbO 2+ Cl - −→−Pb +2+ Cl 2 (酸性介质) (2) Br 2 −→−BrO -3+Br - (酸性介质) (3) HgS+2NO -3+Cl -−→−HgCl -24+2NO 2 (碱性介质) (4) CrO -24+HSnO -2 −→−HSnO -3+CrO -2 (碱性介质) (5) CuS +CN -+OH - −→−Cu(CN)-34+NCO -+S (碱性介质)解:(1)PbO 2+2Cl -+4H +=Pb 2++Cl 2+2H 2O(2)3Br 2+3H 2O=BrO 3-+5Br -+6H +(3)HgS+2NO 3-+4Cl -+4H +=HgCl 42-+2NO 2+S+2H 2O(4)2CrO 42-+3HSnO 2-+H 2O=2CrO 2-+3HSnO 3-+2OH -(5)2CuS +9CN -+2OH - =2Cu(CN)-34+NCO -+2S -2+H 2O2. 用离子电子法配平下列电极反应: (1)MnO -4−→−MnO 2 (碱性介质) (2)CrO -24−→−Cr(OH)3 (碱性介质) (3)H 2O 2−→−H 2O (酸性介质) (4)H 3AsO 4−→−H 3AsO 3 (酸性介质) (5)O 2−→−H 2O 2(aq) (酸性介质) 解:(1)MnO 4-+2H 2O+3e -=MnO 2+4OH -(2)CrO 42-+4H 2O+3e -=Cr(OH)3+5OH -(3)H 2O 2+2e -=2OH -(4)H 3AsO 4+2H ++2e -=H 3AsO 3+H 2O(5)O 2+2H ++2e -=H 2O 23. 现有下列物质:KMnO 4, K 2Cr 2O 7, CuCl 2, FeCl 2, I 2, Br 2, Cl 2, F 2在一定条件下它们都能作为氧化剂,试根据电极电势表,把这些物质按氧化本领的大小排列成顺序,并写出它们在酸性介质中的还原产物。
无机化学第三版课后习题答案(武汉大学版) 很全面哦
2.2
2.0
0.0
0.2
0.4
0.6
0.8
1.0
1.2
P (105pa)
解
可得出一氯甲烷的相对分子质量是 50.495
12.(1)用理想气体状态方程式证明阿佛加德罗定律;
(2)用表示摩尔分数,证明xi = ν i V总
(3)证明
μ2
3kT
=
M
证明:(1)PV=nRT
当 p 和 T 一定时,气体的 V 和 n 成正比
同?为什么愚人金有金的光泽?为什么 ZnS(闪锌矿)呈白色﹑ HgS(朱砂)呈红色而 PbS(方铅矿) 呈黑色?天然的金刚石为什么有蓝﹑红﹑黄﹑绿色而并非全呈无色?请阅读:拿骚.颜色的物理和化学. 科学出版社,1991,168~ 182(注:“费密能”的定义在 166 页上)。请通过阅读测试一下自己的知识和 能力,以调整自己的学习方法预定目标与学习计划安排。最好阅读后写一篇小文(主题任选)。 12、解:金属键的另一种理论是能带理论。能带理论是分子轨道理论的扩展,要点有: (1)能带中的分子轨道在能量上是连续的。 (2)按能带填充电子的情况不同,可把能带分为满带、空带和导带三类。 (3)能带和能带之间存在能量的间隙,简称带隙,又称禁带宽度。 (4)能带理论能够对金属导电进行解释。 (5)能带理论是一种既能解释导体,又能解释半导体和绝缘体性质的理论。 (6)由此可见,按照能带理论,带隙的大小对固体物质的性质至关重要。 3-13 二层﹑三层为一周期的金属原子二维密置层的三维垛积模型只是最简单的当然也就是最基本的金 属堆积模型。利用以下符号体系可以判断四层﹑五层为一周期的密置层垛积模型是二层垛积和三层垛积 的混合:当指定层上下层的符号(A﹑B﹑C)相同时,该指定层用 h 表示,当指定层上下层的符号不相 同时,该指定层用 c 表示。用此符号体系考察二层垛积,得到…hhhhhh …,可称为 垛积,用以考察 三层垛积时,得到…cccccc…,可称为 c 堆积。请问:四层﹑五层为一周期的垛积属于什么垛积型?为 什么说它们是二层垛积和三层垛积的混合?(注: h 是六方——hexagonal ——的第一个字母;c 是 立方——cubic ——的第一个字母。) 13﹑解:四面垛积是…hchchch…,即 hc 垛积型,说明六方垛积和立方垛积各占 50%;五 层垛积是…hhccchhccchhccc…,即 hhccc 垛积型,说明六方垛积和立方垛积分别占 2/5 和 3/5。 3-14 温度足够高时,某些合金晶体中的不同原子将变的不可区分,Cu3Au 晶体中各原子坐标上铜原子和 金原子可以随机地出现。问:此时,该合金晶胞是什么晶胞? 14﹑解:面心立方晶胞。 3-15 温度升得足够高时,会使某些分子晶体中原有一定取向的分子或者分子中的某些基团发生自由旋 转。假设干冰晶体中的二氧化碳分子能够无限制地以碳原子为中心自由旋转,问:原先的素立方晶胞将 转化为什么晶胞? 15﹑解:面心立方晶胞。 3-16 试在金属密堆积的面心立方晶胞的透视图上画出一个二维密堆积层,数一数,在该密堆积层上每个 原子周围有几个原子,在该原子的上下层又分别有几个原子?(参考 3-54) 16﹑解:6;3。参考图解如图 3-53。 3-17 找一找,在六方最密堆积的晶胞里,四面体空隙和八面体空隙在哪里?已知纤维锌矿(ZnS)的堆 积填隙模型为硫离子作六方最密堆积,锌离子作四面体填隙,请根据以上信息画出其晶胞。 17﹑解:见:周公度.结构和物性.高等教育出版社,1993,274~293 3-18 有一种典型离子晶体结构叫做ReO3 型,立方晶胞,Re6+ 的坐标为 0,0,0;O2- 的坐标为 0,1/2, 0;1/2,0,0;0,0,1/2。请问:这种晶体结构中,铼的配位数为多少?氧离子构成什么多面体?如何 连接? 18﹑解:Re 的配位数为 6;八面体;全部以顶角相连。 3-19 实验测得金属钛为六方最密堆积结构,晶胞参数为 a=295.0,c=468.6pm ,试求钛的原子半径和密 度。 19、解:晶胞体积:V=abcsin120°=295.0×295.0×468.6×0.866×10-24= 3.53×10-16
武汉大学、吉林大学《无机化学》(第3版)配套模拟试题及详解(圣才出品)
第四部分模拟试题武汉大学、吉林大学《无机化学》(第3版)配套模拟试题及详解一、填空题(20*1=20分)1.在中,具有顺磁性的是______。
【答案】【解析】当原子或离子核外轨道中有单电子时则具有顺磁性。
价电子结构式:的d 轨道中均有单电子。
2.BrF 3和XeOF 4分子的几何构型分别为______和______。
【答案】T 形;四方锥形【解析】根据价层电子对理论,前者有5对价层电子,3对共用电子对,两对孤对电子,sp 3d 杂化分子为T 形;后者有6对价层电子,5对共用电子对,一对孤对电子,本为八面体,但有一孤对电子从锥低伸向与锥体相反的方向,使其变形。
3.已知226Ra 的半衰期为1590年,则此一级反应的速率常数为______。
【答案】6-11.1910d -⨯【解析】一级反应的半衰期为:1/21ln 2t =k ,故6-111/2ln 2ln 2= 1.1910d t 1590365k -==⨯⨯。
4.已知K (HAc)=1.75×10-5,K (HNO 2)=7.2×10-4;K (HOCl)=2.8×10-8;在相同浓度的HAc、HNO 2、HOCl、HBr 溶液中,c (H +)由大到小的顺序是______;pOH 由大到小的顺序是______。
【答案】HBr>HNO 2>HAc>HOCl;HOCl>HAc>HNO 2>HBr【解析】HAc 在水中的解离平衡为:HAc Ac H -++ ;HNO 2在水中的解离平衡为:22HNO NO H -++ ;HBr 是强酸,在水中完全电离:HBr Br H -+→+,酸性最强,H +浓度最高;HOCl 在水中的解离平衡为:HOCl ClO H -++ ;根据解离平衡常数K (HNO 2)>K (HAc)>K (HOCl)的关系可知,三者溶液中H +浓度由大到小顺序为HNO 2>HAc>HOCl。
溶液中OH -的浓度与H +浓度相反。
武汉大学版无机化学课后习题答案第三版分子结构
分子结构1. 试用离子键理论说明由金属钾和单质氯反应,形成氯化钾的过程如何理解离子键没有方向性和饱和性 答:KCl 的形成表示如下: K(s)?K +(g)+e12Cl 2?Cl(g)Cl (g) +e ? Cl -(g) K +(g) + Cl -(g) =KCl (s)离子键的本质是静电作用力,由于离子的电荷分布是球形对称的,因此它对异号离子的引力可以是任何方向,也就是没有方向性;一个离子的周围,能容纳多少个异离子,是随离子的半径变化而变化的,它没有固定的配位数,所以说离子键没有饱和性。
2.用下列数据求氢原子的电子亲和能。
答:电子亲和能为下列反应的焓变,它由(5)-(4)-(3)-(2)-(1)得到: 3. ClF 的解离能为1246kJ mol -⋅,ClF 的生成热为-56kJ/mol-1,Cl 2的解离能为238kJ/mol -1,试计算F 2(g)的解离能。
解:据题意:(1) ClF(g) = Cl(g) +F(g) ΔH 1 = 246 kJ ·mol -1 (2)12Cl 2(g) +12F 2(g) = ClF(g) ΔH 2 = -56kJ/mol -1(3)Cl 2(g) = 2Cl(g) ΔH 3 = 238kJ/mol -12?(1)+2?(2)-(3)得F 2 (g) = 2 F (g) ΔH =2 ΔH 1+2ΔH 2-ΔH 3=2?246-2?56-238=142 kJ / mol -14. 试根据晶体的构型与半径比的关系,试判断下列AB 型离子化合物的晶体构型: BeO NaBr CaS RbI BeS CsBr AgCl 解:查表求各离子的Pauling 半径如下表: Pauling 半径(pm)计算各物质的正负离子半径比以及相应晶体构型如下表:5.试从电负性数据,计算下列化合物中单键的离子性百分数各为多少 NaF AgBr RbF HI CuI HBrCsCl解:查表求出各元素的Pauling 电负性数据如下表: 各物质的电负性差和相应的离子性百分数如下表:6. 如何理解共价键具有方向性和饱和性解:共价键是指两个原子间的化学键力通过共享电子而达到的稳定饱和结构的结合力。
武汉大学版无机化学课后习题答案(第三版)第05章 化学平衡
化学平衡1. 怎样正确理解化学反应的平衡状态?答 :化学平衡状态就是在可逆反应中正反应和负反应的速率相等时反应物和生成物的浓度不再随时间而改变的状态。
2. 如何正确书写经验平衡常数和标准平衡常数的表达式?答 :经验平衡常数,在一定温度下,可逆反应平衡时,生成物的浓度以反应方程式中计量系数为指数的幂的乘积与反应物的浓度以反应方程式中计量系数的幂的乘积之比是一个常数。
经验平衡常数K 一般有单位,只有当反应物的计量系数之和与生成物的计量系数之和相等,K 才是无量纲量。
aA +bB ⇔ gG +hHK =bah g B A H G ][][][][而标准平衡常数中的浓度,压强均为一个相对值,都是相对于一个标准值C Θ ,标准压强P Θ 而言,不论是气相,液相还是固相反应,K Θ 均为无量纲量。
aA (aq )+bB (aq ) ⇔ gG (aq )+hH (aq ) K Θ =bahgCBCAC H G ][][][]C [θθθθaA (q )+bB (q ) ⇔ gG (q )+hH (q ) K Θ =bBaAhHgGPPPP P pp][][][]P [θθθθ3. 写出下列可逆反应的平衡常数K c 、K p 或K 的表达式(1)2NOCl(g)⇔ 2NO(g) + Cl 2(g) (2) Zn(s) + CO 2(g)ZnO(s) + CO(g)(3) MgSO4(s) MgO(s) + SO3(g)(4) Zn(s) + 2H+(aq)Zn2+(aq) + H2(g)(5) NH4Cl(s) NH3(g) + HCl(g)答:(1) K P = P NO2·P Cl2/PNOCl2(2)K P = P CO / P CO2(3) K = P SO3(4) K = a Zn2+·a H2 /a H+2(5)K = P NH3·P HCl4.已知下列反应的平衡常数:HCN H+ + CN-NH3 + H2O NH++ OH-4H2O H++ OH-试计算下面反应的平衡常数:NH3 + HCN NH++ CN-4答:K = K1ΘK2Θ / KWΘ= 4.9×10-10×1.8×10-5/(1.0×10-14)= 0.8825.平衡常数能否代表转化率?如何正确认识两者之间的关系?答:平衡常数是指在一定温度下达到平衡时体系中各物质的浓度关系,而转化率是某物质的转化率,它等于转化的量除于原来的量。
无机化学 武汉大学 第三版
h E2 E1 E
E2 E1 E
h
h
E:轨道能量 h:Planck常数
可以定量解释氢原子光谱的不连续性
氢原子光谱的能量关系式
氢原子光谱的能量关系式
v
3.289
1015
(
1 n12
1 n22
)s-1
n2 6.626
10 34 J s 3.289
n1= 5,Pfund线系;
量子和量子化
式中 2,n,3.289×1015各代表什么意义?
为什么激发的原子会发光?如何解释氢原子光谱?
经典电磁理论遇到的难题:
按经典电磁学理论,电子绕核作 圆周运动,原子不断发射连续的电磁 波,原子光谱应是连续的;而且由此 电子的能量逐渐降低,最后坠入原子 核,使原子不复存在。实际上原子既 没有湮灭,其谱线也不是连续的而是 线状的。
1.氢原子光谱
Hδ Hγ 410.2 434.0 7.31 6.91
Hβ 486.1 6.07
Hα 656.3 4.57
c 光速 c 2.998108 m s1
/nm ( 1014 ) /s1
(a) The visible spectrum. (b) The complete spectrum of atomic hy drogen. 特征与规律
量子和量子化
◆1900年,M.Plank[德国]提出量子论 普朗克认为能量是不连续的,具有微小的分立 的能量单位——量子;
玻尔理论
物质吸收或放出能量是不连续的,是量子能量 的整数倍——量子化;
能量以光的形式传播时,其最小单位又称光量子 或光子;
光子能量 E h h 6.6261034 J s
武汉大学版无机化学课后习题答案第三版下册
16. 完成并配平下列反应式:(1)H2S+H2O2→(2)H2S+Br2→(3)H2S+I2→(4)H2S+O2→+H+→(5)H2S+ClO-3(6)Na2S+Na2SO3+H+→(7)Na2S2O3+I2→(8)Na2S2O3+Cl2→(9)SO2+H2O+Cl2→(10)H2O2+KMnO4+H+→(11)Na2O2+CO2→(12)KO2+H2O→(13)Fe(OH)2+O2+OH-→→(14)K2S2O8+Mn2++H++NO-3(15)H2SeO3+H2O2→答:(1)H2S+H2O2=S+2H2OH2S+4H2O2(过量)=H2SO4+4H2O(2)H2S+Br2=2HBr+SH2S+4Br2(过量)+4H2O=8HBr+H2SO4(1)H2S+I2=2I-+S+2H+(2)2H2S+O2=2S+2H2O(3)3H2S+ClO3-=3S+Cl-+3H2O(4)2S2-+SO32-+6H+=3S+3H2O(5)2Na2S2O3+I2=Na2S4O6+2NaI(6)Na2S2O3+4Cl2+5H2O=Na2SO4+H2SO4+8HCl(7)SO2+Cl2+2H2O=H2SO4+2HCl(8)5H2O2+2MnO4-+6H+=2Mn2++5O2+8H2O(9)2Na2O2+2CO2=2Na2CO3+O2(10)2KO2+2H2O=2KOH+O2+H2O2(11)4Fe(OH)2+O2+2H2O=4Fe(OH)3(12)5S2O82-+2Mn2++8H2O=10SO42-+2MnO4-+16H+(13)H2SeO3+H2O2=H2SeO4+H2O17.在标准状况下,50cm 3含有O 3的氧气,若其中所含O 3完全分解后,体积增加到52 cm 3。
如将分解前的混合气体通入KI 溶液中,能析出多少克碘分解前的混合气体中O 3的体积分数是多少解: ,%18.每升含克Na 2S 2O 3·5 H 2O 的溶液 cm 3,恰好使 cm 3的I -3溶液退色,求碘溶液的浓度解:I 3-+2S 2O 32-=S 4O 62-+3I -×10-2mol/L19.下述反应在298K 时的△H θm 为·mol -13O 22O 3已知此反应平衡常数为10-54,试计算该反应的△G θm 和△S θm 。
武汉大学版无机化学课后习题答案第三版第章 分子结构
分子结构1. 试用离子键理论说明由金属钾和单质氯反应,形成氯化钾的过程如何理解离子键没有方向性和饱和性 答:KCl 的形成表示如下: K(s)?K +(g)+e12Cl 2?Cl(g)Cl (g) +e ? Cl -(g) K +(g) + Cl -(g) =KCl (s)离子键的本质是静电作用力,由于离子的电荷分布是球形对称的,因此它对异号离子的引力可以是任何方向,也就是没有方向性;一个离子的周围,能容纳多少个异离子,是随离子的半径变化而变化的,它没有固定的配位数,所以说离子键没有饱和性。
2.用下列数据求氢原子的电子亲和能。
答:电子亲和能为下列反应的焓变,它由(5)-(4)-(3)-(2)-(1)得到:3. ClF 的解离能为1246kJ mol -⋅,ClF 的生成热为-56kJ/mol-1,Cl 2的解离能为238kJ/mol -1,试计算F 2(g)的解离能。
解:据题意:(1) ClF(g) = Cl(g) +F(g) ΔH 1 = 246 kJ ·mol -1 (2)12Cl 2(g) +12F 2(g) = ClF(g) ΔH 2 = -56kJ/mol -1(3)Cl 2(g) = 2Cl(g) ΔH 3 = 238kJ/mol -12?(1)+2?(2)-(3)得F 2 (g) = 2 F (g)ΔH =2 ΔH 1+2ΔH 2-ΔH 3=2?246-2?56-238=142 kJ / mol -14. 试根据晶体的构型与半径比的关系,试判断下列AB 型离子化合物的晶体构型: BeO NaBr CaS RbI BeS CsBr AgCl 解:查表求各离子的Pauling 半径如下表: Pauling 半径(pm)计算各物质的正负离子半径比以及相应晶体构型如下表:5.试从电负性数据,计算下列化合物中单键的离子性百分数各为多少 NaF AgBr RbF HI CuI HBr CsCl解:查表求出各元素的Pauling 电负性数据如下表: 各物质的电负性差和相应的离子性百分数如下表:6. 如何理解共价键具有方向性和饱和性解:共价键是指两个原子间的化学键力通过共享电子而达到的稳定饱和结构的结合力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
波粒二象性
Bohr 氢原子理论局限性
◇只能解释氢原子及一些单电子离子(或称类氢离子,如 He+、Li2+、Be2+等)的光谱,而对于这些光谱的精细结构根 本无能为力;对于多电子原子,哪怕只有两个电子的He原 子,其光谱的计算值与实验结果也有很大出入。说明从宏 观到微观物质的运动规律发生了深刻变化,原来适用于宏 观物体的运动规律用于微观物体已经失效.
Rutherford模型的问题
• 根据经典电磁理论,在原子核外作加速运动的电子会 不断辐射出能量,最终将完全丧失能量坠入原子核中 去。于是,原子不可能是稳定体系,必将崩溃且不可 能长期存在。
• 但是,在现实世界里原子是稳定的…。科学遇到了一 个难题…
8.1 氢原子结构
8.1.1 氢原子光谱与Bohr理论 8.1.2 电子的波粒二象性 8.1.3 SchrÖdinger方程与量子数 8.1.4 氢原子的基态 8.1.5 氢原子的激发态
原子中含有带负电的电子,意味着必然还有带正电的部分。
1911年Rutherford和助手Hans Geiger通过α粒子(He2+)散射
实验证明了原子核的存在,提出了核型原子模型。
原子中的正电荷集中在很小的区 域,原子的质量主要来自于正电 荷部分即原子核,而质量很小的 电子则围绕原子核作旋转运动。 就像行星绕太阳运转一样。
◇人们开始认识到,从Planck发展到Bohr的这种旧量子论都 是在经典物理的基础上加进一些与经典物理不相容的量子化 条件,它本身就存在不能自圆其说的内在矛盾。出路在于彻 底抛弃经典理论的体系,建立新的理论————量子力学。
微观粒子的特性及其运动规律
光的波粒二象性:
光的干涉、衍射—— 波动性 光具有能量、与实物相互作用—— 粒子性
◆Millikan油滴实验(1909)
汤姆生Sir Joseph John Thomson(1856-1940) 英国物理学家 获1906年Nobel物理奖
Plum Pudding Model 在原子中,电子分布在 均匀的正电荷背景里。
◆Millikan油滴实验(1909)
密里根
Robert Andrews Millikan 1869-1953 美国物理学家 获1923年Nobel物理奖 1909年,Millikan通过油滴实验测出电子的电量,借助荷质比得到电子的质量
用位置和动量来描述微观粒子的运动时,所测位置的 准确度愈高,则其动量准确度愈低,反之亦然。 即不可能同时准确测定微粒的空间位置和动量。 反映了微观粒子的运动特征,但对宏观物体不起作用。
统计性
■对于m=10g的子弹,若能准确测到△x=0.01cm,则
所以,宏观物体的位置和动量能同时准确测定。
■对于电子,m=9.11×10-31kg,原子半径数量级为10-10m 若能准确测到△x=10-11m,则
量子和量子化
式中 2,n,3.289×1015各代表什么意义?
为什么激发的原子会发光?如何解释氢原子光谱?
经典电磁理论遇到的难题:
按经典电磁学理论,电子绕核作 圆周运动,原子不断发射连续的电磁 波,原子光谱应是连续的;而且由此 电子的能量逐渐降低,最后坠入原子 核,使原子不复存在。实际上原子既 没有湮灭,其谱线也不是连续的而是 线状的。
8.1.1 氢原子光谱与Bohr理论
红
橙
黄绿
青蓝
紫
连续光谱:太阳光、白炽灯光等,光谱间没有明显的分界线。
线状光谱:分立的、有明显界线的谱线,不连续,又称原子光谱
气体经高温火焰、电火花、电弧等作用产生
演示
原子的光谱 在抽成真空的放电管中充入少量气体(如氢气) ,通过高压放电,可观测到原子的发光现象。将碱 金属化合物在火焰上加热,也会观测到碱金属的发 光现象。
E = 1.60217710-19 C;me = 9.10939010-28 g
◆Rutherford原子行星模型(1911)
◆Rutherford原子行星模型(1911)
卢瑟福(1871-1937)
Sir Ernest Rutherford 新西兰裔英国化学家 获1908年Nobel化学奖
Rutherford -粒子散射实验(1906)
借助于氢原子光谱的能量关系式可定出氢原子各能级的能量:
电离能
可见,n1,n2为能级代号
原子能级图
原子能级
Balmer线系
巴尔麦线系
Balmer线系
n = 3 红(Hα) n = 4 青(Hβ ) n = 5 蓝紫 ( Hγ ) n = 6 紫(Hδ )
如何计算 ?
当电子从n=3→n=2能级时
某些物理量变化的不连续性(量子化)实际上是自然界的普遍规律,由于 每一种量子的量值都非常小,所以在宏观物体中量子化不明显,尤如连 续变化一样。但在微观世界却是微观粒子运动的重要特征。
玻尔(Bohr)理论
1913年,丹麦青年物理学家Bohr在Rutherford核原子模型基础上, 根据当时刚刚萌芽的Planck 量子论和Einstein 光子学说,提出了自己 的原子结构理论,从理论上解释了氢原子光谱的规律
(a) The visible spectrum. (b) The complete spectrum of atomic hy drogen. 特征与规律
氢原子光谱特征: •不连续光谱,即线状光谱
•其频率具有一定的规律
氢原子光谱谱线的规律性:
• 1885年,Johann J. Balmer(瑞士)提出 氢原子的可见线状光谱的经验公式:
考察电子衍射实验,设想 ●若电子流很强,则很快得到明暗相间 的衍射环纹—显示波动性; ●若电子流强度很小,电子一个一个从 阴极灯丝飞出,底片上会出现一个一 个的点—显示电子具有粒子性。经一 定时间同样得到明暗相间的衍射环纹。
电子通过石墨的衍射图
●亮环纹处,衍射强度大,电子出现的机会多,即几率大; 暗环纹处则相反。
量子力学认为,原子中核外电子的运动不象经典力学 认为的那样有确定的轨道,但具有按几率分布的统计 性规律。
应如何正确描述微观粒子的运动?
薛定谔方程
8.1.3 SchrÖdinger方程与量子数
1.SchrÖdinger方程 (二阶偏微分方程) (是空间坐标x,y,z 的函数)
END 联系了微观粒子的波动性和粒子性
无机化学武汉大念 ◆掌握四个量子数的物理意义和合理取值 ◆能写出元素的核外电子排布和价电子层构型 ◆了解周期的划分,确定元素在周期表中的位置 ◆了解原子半径、电离能、电子亲合能、电负
性的周期性变化规律
STM利用隧道电流来描绘物质表面的轮廓图
STM-扫描隧道显微镜(Scanning Tunneling Microscope)
同理当电子从n=4→n=2能级时,得到Hβ谱线 从n=5→n=2能级时,得到Hγ谱线 从n=6→n=2能级时,得到Hδ谱线 从n=7→n=2能级时,得到Hε谱线
当电子从n=2,3,4,5,6→n=1能级时,产生赖曼线系(紫外区); 当电子从n=4,5,6…→n=3能级时,产生帕邢线系(红外区);
激发与发射图示
历史的回顾
经典核原子模型的建立
◆原子的概念及原子论
古希腊元素说
世界上任何东西都是由原子组 成的(包括物质和灵魂)。原 子是不可分割的。
Democritus,公元前440年, BC460-370,古希腊哲学家
德谟克利特
◆Dalton原子论
1808年,英国科学家道尔顿提出了原子学说:元素是由非常微小的、看不 见的、不可再分割的原子组成,原子既不能创造,不能毁灭,也不能转变 ,所以在一切化学反应中都保持自己原有的性质;同一种元素的原子其形 状、质量及各种性质都相同,不同元素的原子的形状、质量及各种性质则 不相同。不同元素的原子以简单的数目比例相结合,形成化合物
大约两个世纪以来,原子与分子是理论科学家想象中的 世界,它们是“任何人始终无法看到的”(Robinson, 1984) 。STM的发明使科学家能够适时地观察到原子在物质表面的排 列状态,得知与表面电子行为有关的物理、化学性质,它对 表面科学、材料科学、生物科学和信息科学的研究有着重大 意义并具有广阔的应用前景。
所以,微观粒子的位置和速度不能同时准确测定。
电子的速度不确定程度既然如此之大,就意味着电 子运动轨道不复存在。(揭示了Bohr理论的缺陷)
●量子力学理论认为,微观粒子在极小的空间运动都如此
,它们没有固定的轨道,只有统计分布规律,即只能用概
率不能用轨道来描述它们的运动状态。
统计性
微观粒子运动的统计性:
量子和量子化
◆1900年,M.Plank[德国]提出量子论
玻尔理论
普朗克认为能量是不连续的,具有微小的分立 的能量单位——量子;
物质吸收或放出能量是不连续的,是量子能量 的整数倍——量子化;
能量以光的形式传播时,其最小单位又称光量子 或光子;
光子能量 量子化特征——表征微观粒子运动状态的某些物 理量具有不连续变化的特征。
n = 3,4,5,6
• 1913年, Janne Rydberg(瑞典) 提出更为普遍的经验公式:
或
式中n1、n2为正整数,且n2> > n1
其中,RH = 1.097 107 m-1,即Rydberg常数。
n1= 1,Lyman线系; n1= 2,Balmer线系; n1= 3,Paschen线系; n1= 4,Bracket线系; n1= 5,Pfund线系;
Bohr理论的两个基本假设: 假设1:核外电子只能在有确定半径和能量的特定轨道上运动, 电子在这些轨道上运动时并不辐射出能量;而且每一个稳定的
轨道的角动量(L)是量子化的,它等于h/2π的整数倍,即
n称为量子数, h 是Planck常数。
根据这个轨道角动量量子化条件,结合物体运动的经 典力学公式,即可计算出氢原子中电子运动的速度、轨道 半径和能量。