飞行原理简介4
飞行器工作原理

飞行器工作原理飞行器是一种能够在大气层中飞行的交通工具,它的工作原理是基于物理学和工程学的原理,包括空气动力学、力学和控制系统等多个方面。
本文将从这些方面详细介绍飞行器的工作原理。
一、空气动力学空气动力学是研究空气在物体表面上所产生的力学效应的学科。
在飞行器中,空气动力学起着重要的作用。
首先,飞行器受到气流的阻力,这个阻力的大小与飞行器的形状、速度和空气密度等因素有关。
其次,通过调整飞行器的控制面,如副翼、升降舵和方向舵等,可以改变飞行器所受到的气流的力的方向和大小,从而控制飞行器的飞行状态。
二、力学力学是研究物体运动和受力的学科。
在飞行器中,力学对于解释和分析飞行器的运动和受力状态至关重要。
需要考虑的力包括重力、升力、推力和阻力。
首先,重力是指地球对飞行器的吸引力,它的大小与飞行器和地球的质量有关。
其次,升力是指垂直向上的力,它可以通过产生气流上升的形式来支撑飞行器。
第三,推力是指飞行器发动机产生的作用力,它可以使飞行器前进或加速。
最后,阻力是指飞行器在飞行中所受到的阻碍力,它的大小与飞行器速度和空气密度等因素有关。
三、控制系统飞行器的控制系统用来操控和控制飞行器的飞行姿态和航向。
一般而言,飞行器的控制系统包括姿态控制和导航控制两个部分。
姿态控制是指控制飞行器在飞行中的旋转、俯仰和滚转等动作,这可以通过调整飞行器的控制面来实现。
导航控制是指控制飞行器的航向和飞行路径,这可以通过使用惯性导航系统、GPS和雷达等设备来实现。
四、飞行器类型根据不同的工作原理和应用范围,飞行器可以分为多种类型,包括飞机、直升机、无人机等。
飞机是一种固定翼的飞行器,它通过机翼产生升力和推力来进行飞行。
直升机是一种以旋翼产生升力和推力的飞行器,它可以在空中悬停和垂直起降。
无人机是指没有人员搭乘的飞行器,它可以通过遥控或预设程序进行飞行任务。
总结:飞行器的工作原理基于空气动力学、力学和控制系统等多个学科的原理。
通过调整飞行器的形状、控制面和飞行状态,可以实现飞行器的升力、推力和控制。
飞机飞行原理和安全常识简介

飞机飞行原理和安全常识简介飞机飞行原理简介要了解飞机的飞行原理就必须先知道飞机的组成以及功用,飞机的升力是如何产生的等问题。
这些问题将分成几个部分简要讲解。
一、飞行的主要组成部分及功用到目前为止,除了少数特殊形式的飞机外,大多数飞机都由机翼、机身、尾翼、起落装置和动力装置五个主要部分组成1. 机翼——机翼的主要功用是产生升力,以支持飞机在空中飞行,同时也起到一定的稳定和操作作用。
在机翼上一般安装有副翼和襟翼,操纵副翼可使飞机滚转,放下襟翼可使升力增大。
机翼上还可安装发动机、起落架和油箱等。
不同用途的飞机其机翼形状、大小也各有不同。
2. 机身——机身的主要功用是装载乘员、旅客、武器、货物和各种设备,将飞机的其他部件如:机翼、尾翼及发动机等连接成一个整体。
3. 尾翼——尾翼包括水平尾翼和垂直尾翼。
水平尾翼由固定的水平安定面和可动的升降舵组成,有的高速飞机将水平安定面和升降舵合为一体成为全动平尾。
垂直尾翼包括固定的垂直安定面和可动的方向舵。
尾翼的作用是操纵飞机俯仰和偏转,保证飞机能平稳飞行。
4.起落装置——飞机的起落架大都由减震支柱和机轮组成,作用是起飞、着陆滑跑,地面滑行和停放时支撑飞机。
5.动力装置——动力装置主要用来产生拉力和推力,使飞机前进。
其次还可为飞机上的其他用电设备提供电源等。
现在飞机动力装置应用较广泛的有:航空活塞式发动机加螺旋桨推进器、涡轮喷气发动机、涡轮螺旋桨发动机和涡轮风扇发动机。
除了发动机本身,动力装置还包括一系列保证发动机正常工作的系统。
飞机上除了这五个主要部分外,根据飞机操作和执行任务的需要,还装有各种仪表、通讯设备、领航设备、安全设备等其他设备。
二、飞机的升力和阻力飞机是重于空气的飞行器,当飞机飞行在空中,就会产生作用于飞机的空气动力,飞机就是靠空气动力升空飞行的。
在了解飞机升力和阻力的产生之前,我们还要认识空气流动的特性,即空气流动的基本规律。
流动的空气就是气流,一种流体,这里我们要引用两个流体定理:连续性定理和伯努利定理:流体的连续性定理:当流体连续不断而稳定地流过一个粗细不等的管道时,由于管道中任何一部分的流体都不能中断或挤压起来,因此在同一时间内,流进任一切面的流体的质量和从另一切面流出的流体质量是相等的。
飞行原理4

一、几个基本概念 二、飞机的平衡 三、飞机的稳定性 四、飞机的操纵性
一、几个基本概念
(一)、飞机的重心
1、飞机重心的概念 飞机的各部件(机身、机翼、尾翼、发动机… 等)、燃料、乘员、货物等重力(重量)的合力叫做 飞机的重力。飞机重力的着力点叫做飞机的重心, 重力着力点的位置叫重心位置,用“ O ”表示。
(四)、飞机的焦点--空气动力中心
1、机翼的焦点 当机翼迎角改变时,机翼的升力也要变化。假定 机冀原来升力为Y0,迎角改变后的升力为Y,则升力 改变量(∆Y)为两者之差,即:∆ Y=Y—Y0,通常把因 迎角变化而引起的升力改变量(∆Y)叫做附加升力或升 力增量,
焦点就是当迎角改变时,机翼附加升力 (∆Y)的作用点,实验表明:在一定飞行M数下, 在小于临界迎角的范围内,不论迎角如何变化, 焦点位置基本不变。 对称形冀型,焦点位置与压力中心位置是 重合的。这是因为对称翼型当迎角α=0时,翼 型的升力Y=0,当α增大时,它所产生的总升 力就是附加升力,其作用点既是压力中心,又 是附加升力的作用点——焦点。 非对称翼型,其焦点和压力中心不重合, 焦点正常位于压力中心前面。
(一)、飞机的俯仰平衡
飞机俯仰平衡,是指飞机作等速直线运动,并且 不绕横轴转动的飞行状态。保持飞机俯仰平衡的条件 是作用于飞机的各俯仰力矩之和为零,飞机取得俯仰 平横后,不绕横轴转动,迎角保持不变。 飞机俯仰平衡 的主要是机翼俯仰力矩和水平尾 翼俯仰力矩。机翼俯仰力矩为:
水平尾翼俯仰力矩为:
俯仰力矩的平衡:
(二)、飞机的方向稳定性
飞机在飞行中,受扰动作用后会偏离方向 平横状态,绕立轴转动进入侧滑,在扰动消夫 后,飞机能自动恢复原来平衡状态的特性叫飞 机的方向稳定性。 对于具有方向稳定性的飞机来说,一旦出 现侧滑,就会产生方向稳定力矩,使飞机具有 自动消除侧滑的趋势,而且在消除侧滑的摆动 过程中,还会产生方向阻尼力矩,使方向摆动 逐濒减弱,直至消失为止。
飞行原理简介

1.摩擦阻力——空气的物理特性之一就是粘性。当空气流过飞机表面时,由于粘性,空气同飞机表面发生摩擦,产生一个阻止飞机前进的力,这个力就是摩擦阻力。摩擦阻力的大小,决定于空气的粘性,飞机的表面状况,以及同空气相接触的飞机表面积。空气粘性越大、飞机表面越粗糙、飞机表面积越大,摩擦阻力就越大。
2.压差阻力——人在逆风中行走,会感到阻力的作用,这就是一种压差阻力。这种由前后压力差形成的阻力叫压差阻力。飞机的机身、尾翼等部件都会产生压差阻力。
②飞机的方向操纵性,就是在飞行员操纵方向舵后,飞机绕立轴偏转而改变其侧滑角等飞行特性。与俯仰角相似,在直线飞行中,每一个脚蹬位置,对应着一个侧滑角,蹬右舵,飞机产生左侧滑;蹬左舵,飞机产生右侧滑。
方向舵偏转后,同样产生方向舵枢轴力矩,飞行员需要用力蹬舵才能保持方向舵偏转角不变。方向舵偏转角越大,气动动压越大,蹬舵力越大。
4.起落装置——飞机的起落架大都由减震支柱和机轮组成,作用是起飞、着陆滑跑,地面滑行和停放时支撑飞机。
5.动力装置——动力装置主要用来产生拉力和推力,使飞机前进。其次还可为飞机上的其他用电设备提供电源等。现在飞机动力装置应用较广泛的有:航空活塞式发动机加螺旋桨推进器、涡轮喷气发动机、涡轮螺旋桨发动机和涡轮风扇发动机。除了发动机本身,动力装置还包括一系列保证发动机正常工作的系统。
①飞机的俯仰平衡是指作用于飞机的各俯仰力矩之和为零。飞机取得平衡后,不绕纵轴转动,迎角保持不变。作用于飞机的俯仰力矩很多,主要有:机翼力矩、水平尾翼力矩及拉力(推力)力矩。
影响俯仰平衡的因素:加减油门,收放襟翼、收放起落架和重心变化等。飞行中,影响飞机俯仰的因素是经常存在的。为了保持飞机的俯仰平衡,飞行员可前后移动驾驶杆偏转升降舵或使用调整片,产生操纵力矩,来保持力矩的平衡。
第三章-飞行理论

第三章-飞行理论第三章:飞行理论1. 引言飞行是一项人类梦寐以求的技术和运动,飞行理论是研究飞行的基础。
本章将介绍飞行的基本原理、飞行力学和飞行稳定性的相关知识。
2. 飞行的基本原理飞行的基本原理是依靠气流对物体的支持力。
根据等速飞行原理,当飞机的前进速度恒定时,飞机所受合外力为零,飞机将保持飞行状态。
飞机的支持力、阻力、重力和动力之间存在着复杂的相互作用关系。
其中,支持力是飞机产生升力的力量,也是飞机保持飞行的关键。
阻力是空气阻力对飞机运动的阻碍,必须通过动力来克服。
重力是飞机受到的地心引力,必须通过升力来平衡。
动力是飞机产生推力的力量。
3. 飞行力学飞行力学是研究飞机在飞行过程中力的作用和变化的科学。
它主要包括静力学和动力学两个方面。
静力学研究静止或匀速直线飞行时的力学现象。
由于静态平衡,飞机在水平飞行或急流中飞行时,支持力等于重力,推力等于阻力。
动力学研究飞机在加速、转弯、起降等动态过程中的力学现象。
由于动态平衡,飞机在这些过程中需要调整支持力、阻力和推力的分配。
飞行稳定性是指飞机在各种飞行状态下维持平衡的能力。
飞行稳定性与飞机的稳定性设计密切相关,包括静态稳定性和动态稳定性。
静态稳定性是指当飞机受到外界干扰时,回到平衡飞行状态的能力。
动态稳定性是指当飞机在飞行姿态变化时,能够平稳地恢复到稳定飞行状态。
4. 飞行稳定性的保持为了保持飞行稳定性,飞机采用了多种设计和控制手段。
飞机的稳定性设计包括飞机的几何形状、重心位置和机翼安装角度等因素。
合适的几何形状和重心位置可以使飞机具有良好的静态稳定性。
机翼安装角度的调整可以改变飞机的升力和阻力特性,从而调整飞机的动态稳定性。
飞机控制系统通过控制飞机的姿态和飞行状态来维持飞行稳定性。
常见的控制系统包括方向舵、升降舵、副翼和扰流板等。
这些控制面可以通过飞行员的操纵来调整飞机的姿态和飞行状态,并保持飞行稳定性。
5. 飞行稳定性的挑战尽管飞行稳定性的设计和控制手段已经非常成熟,但飞行稳定性依然是飞行的永恒挑战。
飞机飞行的基本原理

飞机飞行的基本原理飞机飞行的基本原理主要包括三个方面:升力、阻力和重力。
1.升力:升力是由空气动力学原理产生的,它是由翼面上的气流产生的。
当翼面运动时,空气会在翼面上形成高压区和低压区,高压区下方产生升力,使飞机向上升。
2.阻力:阻力是飞机穿过空气时产生的阻碍力,包括空气阻力和摩擦阻力。
空气阻力是由飞机前进时空气对飞机表面的摩擦产生的,而摩擦阻力则是由飞机表面摩擦空气产生的。
3.重力:重力是由地球对物体产生的向下的引力。
飞机在飞行过程中需要不断产生升力来抵消重力的作用,以维持飞行。
当飞机的升力大于阻力和重力的总和时,飞机就会上升,而当升力小于阻力和重力的总和时,飞机就会下降。
飞机的驾驶员通过调整飞机的姿态和动力系统来控制飞机的升降和飞行速度。
除了升力、阻力和重力这三个基本原理之外,飞机飞行还需要考虑其他因素。
4.气流:空气的流动对飞机的飞行有重要影响。
飞机在飞行中会遇到不同类型的气流,如下推气流、上升气流和下沉气流等。
飞机的驾驶员需要根据气流的类型和强度来调整飞机的姿态和动力系统,以确保飞机的安全飞行。
5.气压: 气压的变化会对飞机的飞行产生影响。
飞机在飞行中会经历高气压和低气压,高气压会使飞机升高,而低气压则会降低飞机。
飞机的驾驶员需要根据气压的变化来调整飞机的姿态和动力系统。
6.温度:温度的变化也会对飞机的飞行产生影响。
高温会使飞机升高,而低温则会降低飞机。
飞机的驾驶员需要根据温度的变化来调整飞机的姿态和动力系统。
7.风:风的方向和强度会对飞机的飞行产生影响。
飞机的驾驶员需要根据风的方向和强度来调整飞机的姿态和动力系统,以确保飞机的安全飞行。
这些因素都需要飞行员经过严格的训练和经验积累来掌握,并在飞行过程中不断监测和调整,以确保飞机的安全飞行。
另外,飞机的结构和控制系统也对飞行有重要影响。
飞机的翼和机尾设计会影响飞机的升降和飞行速度,而飞机的动力系统会影响飞机的推进力和油耗。
总之,飞机飞行的基本原理需要结合空气动力学、气象学、航空工程等多个领域的知识来理解和掌握。
简述飞机飞行的基本原理

简述飞机飞行的基本原理
飞机飞行的基本原理是利用流体力学中的力学原理,以及液体流动和腔体发动机的性能,来实现水平飞行和升降。
首先,飞机机翼应用升力原理,利用动量定律和能量定律,形成“升力翼”,充分利
用空气运动把飞机抬升到空中,且平衡在平衡面之上稳定飞行,升力是由空气运动产生的,接着飞行控制系统将调整翼面形状,实现空中存在的飞行保证,升力的大小直接关系到飞
机的高度和速度。
其次,飞机的推进力也是飞行的基础。
推进力是发动机和机翼滑翔所需要的。
它包括
推回爆射力和抵抗力。
发动机产生的是抵抗力,使机翼运动发生抵抗作用;机翼则通过升
力克服抵抗力,使机身可以有效地向前运动,从而实现飞行的推进。
最后,在飞行过程中,飞机的重力会降低它的高度和推进力,这则要求飞行控制人员
及时调整推进量和调整机翼升力,以调整飞机的实际飞行行程和高度,使其按照预定的路
线稳定、安全地飞行。
飞机飞行的基本原理,就是将升力、推进力,以及飞行控制系统有效而协调地配合使用,让飞机可以稳定、安全、有效地飞行,实现它所要达到的目的。
航空知识大普及之飞行的基本原理

航空知识大普及之飞行的基本原理一飞机之所以能飞,是因为它受到了空气动力的作用,而升力便是空气动力的一个向上的分力。
飞行的梦想,便从升力开始。
飞机飞行时,有些气流经过机翼上部,有些要经过下部。
机翼的上缘弧度比下缘弧度要大,即气流经过上缘的路程比下缘要长。
这样一来,机翼上部气流流速较快,压力较小;下部气流流速较慢,压力较大。
正是由于这种上下的压力差,升力和空气动力便产生了。
所以飞机起飞前所做的高速滑跑就是为了加快机翼表面的气流流速,以提供压力差。
飞机起飞时,大多是逆风起飞,这样与气流的相对速度会增大,升力也会增大。
而如果顺风起飞的话,风的气流会与滑行时所产生的气流相抵消,飞机一起飞便会失去升力,从而进入失速状态。
失速是航空器的一种极其危险的状态。
失速并不是指飞机失去速度,而是指升力小于飞机重力时产生急速下降的情况。
飞机飞行时,机翼与气流会形成一个夹角,称为攻角(又称迎角)。
飞机当前攻角大于临界攻角(一般为18~20度)时,高速气流就不再稳定,逐渐与机翼相分离,升力也就逐渐消失。
飞机在高空失去升力后,速度下降,高度也会因自重而下降,此时如果能冷静地控制住飞机,飞机则会在坠落时重新获得与气流的相对速度,从而恢复平飞。
这种摆脱失速状态的行为,称为改出。
战斗机在某些情况下失速后会以螺旋形轨迹坠向地面,又称尾旋。
只有在两机翼于不同时间失速后,才会进入尾旋。
飞机失速进入尾旋时,迎角为20~75度,且不断做滚转和俯仰运动。
在尾旋状态下,飞机的旋转半径仅为10米左右。
尾旋状态下飞机的坠落速度极快,通常只要几秒钟就能坠落几千米。
在这种情况下改出就变得极为困难。
上述的失速情况为大迎角失速。
第二种失速情况为飞机当前速度大于速度上限,翼面气流流速已无法提供升力。
减小飞机迎角后,可重新获得升力,继续保持平飞。
军用飞机失速导致的事故很常见。
但是,现在的战机随着性能的提升,改出失速也较为容易。
人们已研究出多种过失速机动,在航展上也专门有改出尾旋的表演。
飞行原理

键入文档标题]關十言2013/8/111)流体力学基础对于亚音速气流,若流管面积减小,则流速增大,而超音速则刚好相反。
流体的伯努利原理表明,不管是超音速还是亚音速气流,只要流速增加,则压强就会减小。
由于飞机的翼型上表面向上弯曲的稍多一些,因此从整体上来说飞机下表面的流管截面积要大于上表面,使得亚音速飞机的下表面气流流动比上表面慢,压强则比上表面大,从而产生升力。
音速是微弱扰动的传播速度,与气体的种类和温度有关,随温度的升高而增加。
飞机的飞行马赫数是飞机真空速大小与飞行高度上音速之比,飞机的临界马赫数是当机翼上翼面低压力点的局部速度达到音速时的来流马赫数。
超音速气流流过外折角,则会在折点处形成膨胀波,使得气流经过膨胀波后的速度增加、压强减小;流过一个折角很小的二维内折翼面,会在折点处形成斜激波,如果折角比较大,则会形成曲面激波或者正激波。
超音速气流经过激波后压强、温度和密度会突然增大,速度会突然减小。
从飞机阻力增加的程度来讲,三种激波的影响从大到小依次是正激波、曲面激波和斜激波。
静止的流体中不会产生摩擦力(粘性力),只有运动的实际流体才会产生粘性力。
物体在流体中运动时所受的惯性力与粘性力之比就是雷诺数,雷诺数越大,说明粘性对飞机的影响就越小。
机翼表面受粘性影响比较大的区域叫做附面层,在附面层边界上,粘性使得该处的局部速度受到1%的影响,在附面层内需要考虑粘性的影响,之外则可以不考虑。
2)飞机的升阻力特性飞机的定常飞行中,升力等于重力,推力等于阻力。
飞机的升力与速度、大气密度、机翼面积、升力系数等有关。
升力系数随着飞机迎角的增大,起初会线性增加,达到斗振升力后,开始曲线增加,一直到最大升力系数(临界迎角),然后开始减小。
在其他条件一定时,飞机的升力系数随粘性增大而减小,随后掠角增大而减小。
临界迎角对应飞机的失速速度。
飞机在转弯时,升力的垂直分量需要平衡重力,使得飞机的升力随转弯坡度增加而增加,因此大坡度转弯时飞机的升力系数(迎角)较大,可能会引起飞机的抖动。
飞行原理

飞行原理飞行原理:要在空中飞行,需要考虑的不外乎空力的问题,要制造具有优越的空力的飞机就必须考虑到重量、升力、阻力、推力四个基本要素。
◆谈重量除去机体重量、燃料乘坐的人之外还包括货物的撘载量。
◆升力就是飞机胜过重量的力量。
◆阻力就是种种气流交织在一起把飞机引向后方的力量。
◆推力就是胜过抗力在空气中使飞机前进的力量。
鸟类和飞机的升力,主要是借着气流流过机翼表面的气流所造成的。
航空界以前有句俗语说: 只要有强力的引擎即使是门板也一定能飞。
这句话虽然是夸张了点,但并非不切实际,因为只要给予螺旋桨强大的马力,任何笨拙的机翼也能强拉飞起来。
但是要在空中飞的更有效率分法是调整机体的形状。
换句话说,要最大限度的发挥升力,最小限度的抑制阻力。
飞机在前进的时候,机翼上面的气流比机翼下面低,也就是说,飞行中的飞机就是在空气中气流插进去的异物,促使气流把飞机往上推挤。
升力大小因为种种的因素而被决定。
其中之一就是机翼的面积,被气流吹打的面积越大,产生的升力越大。
第二个要素是速度,流经过机翼的的空气越快,上下的压力差也就越大。
第三个要素是冲角,也就是说,对气流的机翼的倾斜度在某一定界线内,使得机翼上面的气流通路较长,速度便增加,与机翼下的流速差增加,升力也就变大,因此冲角越大升力也越大。
随着升力的作用与飞机的前进便产生了所谓的阻力,阻力主要有三种,那就是摩擦力、形状阻力和诱导阻力,前两种是因为飞机通过空气发生的,可以借着航空科学的进步和机体流线形调整而减小,我们可以想象一个方盒子跟一个圆球在空气中前进的阻力差别。
诱导阻力则是机翼所产生的升力的副产物,可以说这是发生升力必然引起的代价。
因为升力是由于气压差所产生,但是同时也发生吹下或伴流之类的情势。
这主要是在翼的尖端引起的,随着飞机的前进,机翼尖端便会产生螺旋状的气尾,将飞机拉向后,这就是所谓的诱导阻力。
一个机翼不可能无限长,一定有端点,我们现在知道翼端是很多问题的根源,翼前缘有点后掠的飞机,因几何形状的关系,翼前缘的气流不但往后走而且往外流,使翼端气流更复杂。
飞机能飞的原理是什么

飞机能飞的原理是什么
飞机能够飞行的原理是基于伯努利定律和牛顿第三定律。
飞机在飞行过程中,通过产生气动力和推力来克服重力,从而保持在空中飞行。
首先说说伯努利定律,该定律认为在流体中,当速度增加时,压力会减小。
在飞机的机翼上方,空气流速较快,而在机翼下方,空气流速较慢。
根据伯努利定律,机翼上方的低压区域将产生向上的升力,而机翼下方的高压区域将产生向下的压力。
这个升力力量可以对抗飞机的重力。
其次是牛顿第三定律,该定律认为对于任何物体的作用力和反作用力,其大小相等、方向相反。
在飞机的飞行中,引擎向后喷出高速喷气,就像是给飞机一个向前的推力。
根据牛顿第三定律,飞机受到向后的推力时,会产生一个与推力大小相等的向前的反作用力,从而使飞机前进。
飞机的飞行还涉及到其他一些关键要素,比如起飞和着陆时的动力和控制、方向舵和升降舵的调整,以及飞行员的操作等。
但总的来说,飞机能够飞行的原理是基于气动力和推力来克服重力的。
飞行器的工作原理

飞行器的工作原理
飞行器的工作原理是基于动力学和气体力学原理的。
飞行器的动力学原理主要包括牛顿第二定律和质量守恒定律。
根据牛顿第二定律,飞行器在外力作用下会产生加速度,而加速度则决定了飞行器的速度和方向变化。
质量守恒定律指出,飞行器的质量不会随着运动发生变化,因此可以通过加入或消耗燃料来改变飞行器的速度。
另外,飞行器的气体力学原理主要涉及到气动力学和空气动力学。
气动力学研究了空气在运动物体表面产生的力和阻力,而空气动力学研究了飞行器在空气中运动时所受到的各种力的作用。
飞行器通常利用空气动力学原理来实现升力和推力的产生。
具体而言,飞行器产生升力的过程中,利用了翼面的形状和空气流动间的压差。
通过翼面的上表面和下表面之间的压力差,使得飞行器的上方产生低压区域,下方产生高压区域,从而实现了向上的升力。
而产生推力的过程中,通常通过喷射气体或者旋转螺旋桨来推动飞行器前进。
总之,飞行器的工作原理是通过动力学和气体力学原理来实现的。
通过利用这些原理,飞行器可以产生升力和推力,从而实现飞行。
飞行原理简介

该系统主要负责控制飞行器的爬升、下降和巡航等飞行速 度,通过调节发动机的油门和推力,实现对飞行速度的控 制。
自动驾驶仪与制导系统
自动驾驶仪
该系统可以自动控制飞行器的飞行姿态和轨迹,通过传感器获取飞行器的状态 信息,结合预设的航线和目标,实现对飞行器的自动控制。
制导系统
该系统主要用于导弹和无人机等制导武器,通过接收来自雷达、红外、图像等 传感器的信息,结合预设的制导规律,实现对目标的自动跟踪和打击。
飞行原理简介
汇报人: 日期:
目录
• 飞行器概述 • 飞行原理基础 • 飞行器动力系统 • 飞行器控制系统 • 飞行器设计考虑因素 • 飞行器应用与发展趋势
01
飞行器概述
飞行器的定义与分类
飞行器定义
飞行器是指在大气层中或太空中的任何具有可操纵的、重于 空气的物体,通过其自身的动力或外力,能够实现起飞、巡 航、降落等飞行运动。
感谢您的观看
THANKS
描述飞行器的位置和姿态变化,包括 高度、速度、航向、俯仰、滚转和偏 航。
飞行器操纵原理
01
02
03
飞行操纵机构
飞行器的操纵系统,包括 驾驶杆、脚蹬、控制面板 等。
操纵指令传递
飞行操纵指令通过机械、 液压或电子方式传递到飞 行器的舵面。
舵面工作原理
描述舵面如何通过改变飞 行姿态和航向。
03
飞行器动力系统
混合动力系统
结合多种动力源,如燃料电池和电动机等,以实 现更高效和可持续的飞行。
04
飞行器控制系统
飞行控制系统简介
飞行姿态控制系统
该系统主要负责控制飞行器的俯仰、滚转和偏航等运动, 通过调节飞机的攻角、迎角和舵偏角等参数,实现对飞行 姿态的控制。
无人机往前后左右的飞行原理

无人机往前后左右的飞行原理
摘要:
一、无人机飞行原理简介
二、无人机往前后左右的飞行原理
1.往前的飞行原理
2.向后的飞行原理
3.向左的飞行原理
4.向右的飞行原理
三、无人机飞行控制系统的关键作用
四、总结
正文:
无人机是一种以无线电遥控器或自主计算机程序控制的无人飞行器。
近年来,无人机在航拍、监测、物流、农业、军事等领域得到了广泛应用。
无人机能够实现往前后左右的飞行,主要依赖于其飞行原理和控制系统的调节。
首先,无人机往前的飞行原理主要通过向前推动螺旋桨来产生向前的推力。
螺旋桨在高速旋转时,会产生一个向后的力量,从而推动无人机向前飞行。
同时,通过调整螺旋桨的转速和角度,可以控制无人机的飞行速度和方向。
其次,无人机向后的飞行原理则是通过向后拉动机身或者反向旋转螺旋桨来产生向后的推力。
这种飞行方式通常用于减速和降低高度。
通过控制拉杆的力度和时间,可以实现对无人机飞行速度和高度的精确控制。
再者,无人机向左的飞行原理主要是通过向左旋转螺旋桨或者向右旋转螺旋桨来产生侧向推力。
这种飞行方式需要无人机具有较好的稳定性和操纵性,以防止螺旋桨产生的侧向力量使无人机失去平衡。
最后,无人机向右的飞行原理与向左飞行原理类似,主要是通过向右旋转螺旋桨或者向左旋转螺旋桨来产生侧向推力。
通过合理调整螺旋桨的旋转方向和速度,可以实现无人机在空中的灵活转向。
总之,无人机能够实现往前后左右的飞行,主要依赖于其飞行原理和控制系统。
通过对螺旋桨的转速、角度和方向的调整,可以实现对无人机飞行速度、高度和方向的精准控制。
了解飞行器的工作原理

了解飞行器的工作原理飞行器是人类创造的一种重要交通工具,它能够在大气层中自由飞行,将人们从一个地方带到另一个地方。
从古代的热气球到现代的喷气式飞机,飞行器的工作原理经历了漫长的发展过程。
本文将介绍飞行器的工作原理,从空气动力学到发动机推力,带您深入了解这一奇妙的科技。
首先,我们来谈谈飞行器的空气动力学原理。
飞行器能够在大气中飞行,离不开空气动力学的支持。
空气动力学研究了空气在物体表面上产生的力和物体在空气中运动时所受到的阻力。
飞行器的翅膀或机翼是实现飞行的关键部分。
机翼的形状和倾斜角度能够产生升力,使飞行器能够克服重力并保持在空中飞行。
当飞行器在空中飞行时,空气流经机翼的上表面和下表面,由于上表面的弯曲和下表面的平直,使得上表面的气流速度较快,压力较低,而下表面的气流速度较慢,压力较高。
这种压力差会产生一个向上的力,即升力。
升力的大小取决于机翼的形状、倾斜角度以及飞行器的速度。
通过调整这些参数,飞行器可以控制升力的大小,实现起飞、飞行和降落。
除了升力,飞行器还需要克服阻力才能在空中飞行。
阻力是飞行器在空气中运动时所受到的阻碍力,它与飞行器的速度和形状有关。
为了减小阻力,飞行器的外形通常设计得流线型,以减少空气的阻碍。
此外,飞行器还会利用一些技术手段来降低阻力,比如使用涂层减少空气摩擦、采用可变形翼面减小湍流等。
飞行器的工作原理还涉及到推力的产生。
推力是指飞行器向前推进的力,它能够克服阻力,使飞行器能够加速和保持飞行速度。
飞行器的推力主要由发动机产生。
不同类型的飞行器使用不同的发动机,比如喷气式发动机、螺旋桨发动机等。
喷气式发动机通过燃烧燃料产生高温高压气体,并将其喷出,产生反作用力推动飞行器向前。
螺旋桨发动机则通过旋转螺旋桨产生气流,推动飞行器前进。
除了发动机,飞行器还可以利用其他推进方式,比如火箭推进、电动推进等。
飞行器的操纵也是其工作原理的重要组成部分。
飞行器的操纵主要通过控制机翼、尾翼、襟翼等来实现。
飞行原理简介

2019/11/22
第四节、飞机的操纵性
动。(3)立轴:通过飞机重心并垂直于纵轴和横轴 的轴线,叫飞机的立铀。飞机绕立轴的转动,叫
方向偏转。
2019/11/22
第二节、飞机的平衡
飞机处于平衡状态时,飞行速度的大小和 方向都保持不变,也不绕重心转
动。飞机平衡包括以下两种平衡:
2019/11/22
1、作用力平衡 包括升力和重力平衡、拉力和阻力平衡。
后缘重新汇合向后流去。因机翼表面突起的影响,上表面
流线密集,流管细,其气流流速快、压力小;而下表面流
线较稀疏,流管粗, 其气流流速慢,压力较大。因此,
产生了上下压力差。这个压力差就是空气动力(R), 它垂
直流速方向的分力就是升力(Y)。升力维持飞机在空中飞
行。
机翼升力的着力点,即升力作用线与翼弦的交点叫压
2019/11/22
第四节 飞机的增升装置原理
飞机的增升装置主要有前缘缝翼、前缘襟 翼、后缘襟翼,增升原理主要是三条:增 大机翼弯度、增加机翼面积、增加机翼上 表面附面层能量,延缓上表面气流分离。 缝翼和襟翼开缝的主要作用就是延缓机翼 表面的气流分离,襟翼的作用主要是增加 机翼弯度和面积。
2019/11/22
2019/11/22
第三节 影响升力和阻力的因素
1.机翼迎角的影响 (1)在一定范围内,机翼迎角增加,升力则增大。因为机翼迎角增加后,
机翼上表面气流的流线更加密集,流速更块,压力更小(吸力更大),压差 更大。 (2)机翼迎角增加,阻力随之增大。因为随着机翼迎角的增加,机翼后部 的涡流区也不断扩大,压力减小;而机翼前部气流压力增大,前后压力差( 阻力)增大。机翼升力增加诱导阻力页随之增加。 2.速度的影响 相对气流的速度越大,升力和阻力就越大。实验证明:升力和阻力与速 度的平方成正比。 (1)根据柏努利定理,机翼上表面的相对气流流速越快,静压越小,上下 压力差则越大,升力就越大。 (2)气流流速越快,机翼前部的气流动压越大,受档后转换成的静压也就 越大,前后压力差也越大。压差阻力越大.另外由于相对速度大摩擦阻力 也随之增大。 。
为什么飞机可以在空中飞行?

为什么飞机可以在空中飞行?
飞机可以在空中飞行是因为它利用了一系列物理原理和工程设计来
产生升力和推进力。
首先,飞机的机翼设计利用了伯努利定律和牛顿第三定律。
机翼上
表面的气流流速比下表面快,根据伯努利定律,气流速度增加时气
压降低。
因此,机翼上表面的气压比下表面低,从而产生了向上的
升力。
这使得飞机可以在空中飞行。
其次,飞机的推进力是由发动机产生的。
发动机燃烧燃料产生推进
气流,根据牛顿第三定律,产生的推进气流会产生一个相等大小的
反作用力,推动飞机向前飞行。
此外,飞机的结构设计也起到了至关重要的作用。
飞机的机身和机
翼都经过精密设计和计算,以确保在飞行时能够承受各种力的作用,并保持稳定飞行。
综上所述,飞机可以在空中飞行是因为它利用了伯努利定律和牛顿
第三定律产生升力和推进力,同时经过精密的工程设计确保飞行的
稳定性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
飞行原理简介(四)飞机的每次飞行,不论飞什么课目,也不论飞多高、飞多久,总是以起飞开始以着陆结束。
起飞和着陆是每次飞行中的两个重要环节。
所以,我们首先需要掌握好起飞和着陆的技术。
一. 滑行飞机不超过规定的速度,在地面所作的直线或曲线运动叫滑行。
对滑行的基本要求是:飞机平稳地开始滑行,滑行中保持好速度和方向,并使飞机能停止在预定的位置。
飞机从静止开始移动,拉力或推力必须大于最大静摩擦力,故飞机开始滑行时应适当加大油门。
飞机开始移动后,摩擦力减小,则应酌量减小油门,以防加速太快,保持起滑平稳。
滑行中,如果要增大滑行速度,应柔和加大油门,使拉力或推力大于摩擦力,产生加速度,使速度增大,要减小滑行速度,则应收小油门,必要时,可使用刹车。
二. 起飞飞机从开始滑跑到离开地面,并升到一定高度的运动过程,叫做起飞。
飞机起飞的操纵原理飞机从地面滑跑到离地升空,是由于升力不断增大,直到大于飞机重力的结果。
而只有当飞机速度增大到一定时,才可能产生足以支持飞机重力的升力。
可见飞机的起飞是一个速度不断增加的加速过程。
;剩余拉力较小的活塞式螺旋桨飞机的起飞过程,一般可分为起飞滑跑、离地、小角度上升(或一段平飞)、上升四个阶段。
对有足够剩余拉力的螺旋桨飞机,或有足够剩余推力的喷气式飞机,因可使飞机加速并上升,故起飞一般只分三个阶段,即起滑跑、离地和上升。
(一)起飞滑跑的目的是为了增大飞机的速度,直到获得离地速度。
拉力或推力愈大,剩余拉力或剩余推力也愈大,飞机增速就愈快。
起飞中,为尽快地增速,应把油门推到最大位置。
1.抬前轮或抬尾轮* 前三点飞机为什么要太前轮?前三点飞机的停机角比较小,如果在整个起飞滑跑阶段都保持三点姿态滑跑,则迎角和升力系数较小,必然要将速度增大到很大才能产生足够的升力使飞机离地,这样,滑咆距离势必很长。
因此,为了减小离地速度,缩短滑跑距离,当速度增大到一定程度时就需要抬起前轮作两点姿态滑跑,以增大迎角和升力系数。
* 抬前轮的时机和高度抬前轮的时机不宜过早或过晚。
抬前轮过早,速度还小,升力和阻力都小,形成的上仰力矩也小。
要拾起前轮,必须使水平尾翼产生较大的上仰力矩,但在小速度情况下,水平尾翼产生的附加空气动力也小,要产主足够的上仰力矩就需要多拉杆。
结果,随着滑跑速度增大,上仰力矩又将迅速增大,飞行员要保持抬前伦的平衡状态,势必又要用较大的操纵量进行往复修正,给操纵带来困难。
同时,抬前轮过旱,使飞机阻力增大而增长起飞距离。
如果抬前轮过晚,不仅使滑跑距离增长,而且还由于拉杆抬前轮到离地的时间很短,飞行员不易修正前轮抬起的高度而保持适当的离地迎角。
甚至容易使升力突增很多而造成飞机猛然离地。
各型飞机抬前轮的速度均有其具体规定。
前轮抬起高度应正好保持飞机离地所需的迎角,前轮抬起过低,势必使迎角和升力系数过小,离地速度增大,滑跑距离增长,前轮抬起过高,滑跑距离虽可缩短,但因飞机阻力大,起飞距离将增长,而且迎角和升力系数过大,又势必造成大迎角小速度离地,离地后,飞机的安定住差操纵性也不好。
仰角过大,还可能造成机尾擦地。
从既要保证安全又要缩短滑跑距离的要求出发,各型飞机前轮抬起高度都有其具体规定。
飞行员可从飞机上的俯仰指示器或从机头与天地线的关系位置来判断前轮抬起的高度是否适当。
* 后三点飞机为什么要抬尾轮后三点飞机与前三点飞机相比,停机角比较大,因此三点滑跑中迎角较大,接近其临界迎角,如果整个滑跑阶段都保持三点滑跑,升力系数比较大,飞机在较小的速度下即能产生足够的升力使飞机离地。
此时滑跑距离虽然很短,但大迎角小速度离地后,飞机安定性操纵性都差,甚至可能失速。
因此后三点飞机,当滑跑速度增大到一定时,飞行员应前推驾驶杆,抬起机尾作两点滑跑,以减小迎角。
与前三点飞机抬前轮一样,为了既保证安全,又缩短滑跑距离,必须适时正确地抬机尾。
抬机尾过早或过晚,过高或过低,不仅会增长滑跑距离,起飞距离,而且会危及飞行安全。
各型飞机抬机尾的速度和高度也都有其具体规定。
2. 保持滑跑方向对螺旋桨飞机而言,起飞滑跑中引起飞机偏转的主要原因是螺旋桨的副作用。
起飞滑跑中,螺旋桨的反作用力矩力图使飞机向螺旋桨旋转的反方向倾斜,造成两主轮对地面的作用力不等,从而使两主轮的摩擦力不等,两主轮摩擦力之差对重心形成偏转力矩。
螺旋桨滑流作用在垂直尾翼上也产主偏转力矩。
前三点飞机抬前轮时和后三点飞机抬尾轮时,螺旋桨的进动作用也会使飞机产生偏转。
加减油门和推拉笃驶杆的动作愈粗猛,螺旋桨副作用影响愈大。
为减轻螺旋桨副作用的影响,加油门和推拉驾驶杆的动作应柔和适当。
滑跑前段,因舵的效用差,一般可用偏转前轮和刹车的方法来保持滑跑方向。
滑跑后段应用舵来保持滑跑方向。
随着滑跑速度的不断增大,方向舵的效用不断提高,就应当回舵,以保持滑跑方向。
喷气飞机起飞滑跑方向容易保持,其原因是;一是喷气飞机都是前三点飞机,而前三点飞机在滑跑中具有较好的方向安定住,二是没有螺旋桨副作用的影响,所以在加油门和抬前轮时,飞机不会产主偏转。
(二)当速度增大到一定,升力稍大于重力,飞机即可离地。
离地时作用于飞机的力。
此时升力大于重力,拉力或推力大于阻力。
离地时的操纵动作,前三点飞机和后三点是不同的。
前三点飞机是因飞行员拉杆产生上仰操纵力矩,而使飞机作两点滑跑的。
随着滑跑速度的增大、上仰力矩增大,迎角将会增大。
虽然飞行员不断向前推杆以保持两点滑跑姿态,但原来的俯仰力矩平衡总是随速度的增大而不断被破坏,在到达离地速度时,迎角仍会有自动增大的趋势。
所以,前三点飞机一般都是等其自动离地。
后三点飞机则不然,飞机到达离地速度时,一般都需带杆增大迎角而后离地。
这是因为后三点飞机在两点滑跑中,飞行员是前推杆,下偏升降舵来保持的,随着速度增大,下俯操纵力矩增大,将使迎角减小,飞行员虽不断带杆以保持两点滑跑,但在到达离地速度时,迎角仍会有减小的趋势。
所以,必须向后带杆增大迎角飞机才能离地。
后三点飞机,正确掌握离地时机是很重要的。
离地过早或过晚,都将给飞行带来不利。
机轮离地后,机轮摩擦力消失,飞机有上仰趋势,应向前迎杆制止。
对螺旋浆飞机,机轮摩擦力矩也消失,飞机有向螺旋桨旋转方向偏转的趋势,应用舵制止。
(三)一段平飞或小角度上升对剩余拉力比较小的活塞式螺旋浆飞机,飞机离地还尚未达到所需的上升速度,故需作一段平飞或小角度上升来积累速度。
飞机离地后在12米高度向前迎杆,减小迎角,使飞机平飞加速或作小角度上升加速。
飞机刚离地时,不宜用较大的上升角上升。
上升角过大,这会影响飞机增速,甚至危及安全。
为了减小阻力,便于增速,飞机高地后,一般不低于5米高度收起落架。
收起落架时机不可过早或过晚。
过早,飞机离地大近,如果飞机有下俯,就可能重新接地,危及安全;过晚,速度大大,起落架产生的阻力很大,不易增速,还可能造成起落架收下好。
在一段平飞或小角度上升中,特别要防止出现坡度,因为这时飞行高度低,飞机如有坡度,就会向下侧滑而可能使飞机撞地。
因此发现飞机有坡度应及时纠正。
(四)当速度增加到规定时,应柔和带杆使飞机转入稳定上升,上升到规定高度起飞阶段结束。
***影响起飞滑跑距离的因素影响起飞滑跑距离的困素有油门位置、离地迎角、襟翼反置、起飞重量、机场标高与气温、跑道表面质量、风向风速、跑道坡度等。
这些因素一般都是通过影响离地速度或起飞滑跑的平均加速度来影响起飞滑跑距离的。
* 油门位置油门越大,螺旋桨拉力或喷气推力越大,飞机增速快,起飞滑跑距离就短。
所以,一般应用最大功率或最大油门状态起飞。
* 离地迎角离地迎角的大小决定于抬前轮或抬机尾的高度。
离地迎角大,离地速度小,起飞滑跑距离短。
但离地迎角又不可过大,离地迎角过大,下仅会因飞机阻力大而使飞机增速慢延长滑跑距离,而且会直接危及飞行安全因此从既要保证飞行安全又要使滑跑距离短出发,各型飞机一般都规定有最有利的离地迎角值。
* 襟翼位置放下襟翼,可增大升力系数,减小离地速度,因而能缩短起飞滑跑距离。
* 起飞重量起飞重量增大,不仅使飞机离地速度增大,而且会引起机轮摩擦力增加,使飞机不易加速。
因此,起飞重量增大,起飞滑跑距离增长。
* 机场标高与气温机场标高或气温升高都会引起空气密度减小,一放面使拉力或推力减小,飞机加速慢;另一方面,离地速度增大,因此起飞滑跑距离必然增长。
所以在炎热的高原机场起飞,滑跑距离显著增长。
* 跑道表面质量不同跑道表面质量的摩擦系数,滑跑距离也就不同。
跑道表面如果光滑平坦而坚实,则摩擦系数小,摩擦力小,飞机增速快,起飞滑跑距离短。
反之跑道表面粗糙不平或松软,起飞滑跑距离就长。
* 风向风速起飞滑跑时,为了产生足够的升力使飞机离地,不论有风或无风,离地空速是一定的。
但滑跑距离只与地速有关,逆风滑跑时,离地地速小,所以起飞滑跑距离比无风时短。
反之则长。
* 滑跑坡度跑道有坡度,会使飞机加速力增大或减小。
三. 着陆飞机从一定高度下滑,井降落地面滑跑直至完全停止运动的整个过程,叫着陆。
飞机着陆的操纵原理与起飞相反,着陆是飞机高度下断降低、速度不断减小的运动过程。
飞机从一定高度作着陆下降时,发动机处于慢车工作状态,即一般采用带小油门下滑的方法下降。
飞行高度降低到接近地面时,必须在一定高度上开始后拉驾驶杆,使飞机由下滑转入平飘这就是所谓“拉平”。
机拉平后,飞机速度仍然较大,不能立即接地.需要在离地0.5~1米高度上继续减小速度,这个拉平后继续减小速度的过程,就是平飘。
在这个过程中,随着飞行速度的不断减小,飞行员不断后拉驾驶杆以保持升力等于重力。
在离地0.15~0.25米时,将飞机拉成接地所需的迎角,升力稍小于重力,飞机轻柔飘落接地飞机接地后,还需要滑跑减速直至停止,这个滑跑减速过程就是着陆滑跑。
由上可见,飞机着陆过程一般可分为五个阶段:下滑段、拉平段、平飘段、接地和着陆滑跑段。
(一)拉平拉平是飞机由下滑转入平飘的曲线运动过程,即飞机由下滑状态转入近似平飞状态的过程。
为完成这个过程,飞行员应拉杆增加迎角:使升力大于重力第一分力,此两力之差为向心力,促进飞机向上作曲线运动,减小下滑角。
对某些飞机,因放襟翼后,上仰力矩较大,下滑中通常是向下顶杆以保持飞机的平衡,所以开始拉平时只需松杆,后再逐渐转为拉杆。
拉杆或松杆增大迎角,阻力也同时增大,且因下滑角不断减小,重力也跟着减小,所以阻力大于重力飞行速度不断减小。
可见飞机在拉平阶段中,下滑角和下滑速度都逐渐减小,同时高度不断降低。
飞行员应根据飞机的离地和下沉接近地面的情况,掌握好拉杆的分量和快慢,使之符合客观实际,才能做到正确的拉平。
如高度高、下沉慢、俯角小,拉杆的动作应适当慢一些;反之,高度低、下沉快、俯角大,拉杆的动作应适当快一些。
(二)平飘飞机转入平飘后,在阻力的作用下,速度逐渐减小,升力不断降低。