七年级数学上册期末试卷 (4)

合集下载

苏教版七年级上册数学期末试卷【含答案】

苏教版七年级上册数学期末试卷【含答案】

苏教版七年级上册数学期末试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个数是质数?A. 21B. 23C. 27D. 302. 如果一个三角形的两边长分别是8厘米和15厘米,那么第三边的长度可能是多少厘米?A. 3厘米B. 23厘米C. 17厘米D. 27厘米3. 下列哪个数是偶数?A. 101B. 102C. 103D. 1044. 一个等腰三角形的底边长为10厘米,腰长为12厘米,那么这个三角形的周长是多少厘米?A. 10厘米B. 22厘米C. 32厘米D. 44厘米5. 下列哪个数是立方数?A. 729B. 810C. 900D. 961二、判断题(每题1分,共5分)1. 任何两个奇数相加的和都是偶数。

()2. 一个三角形的两个内角分别为45度和45度,那么这个三角形是等腰直角三角形。

()3. 任何偶数乘以任何偶数的积都是偶数。

()4. 一个数的平方根有两个,它们互为相反数。

()5. 一个数的立方根只有一个。

()三、填空题(每题1分,共5分)1. 1的立方根是______。

2. 一个三角形的两个内角分别为30度和60度,那么这个三角形的第三个内角是______度。

3. 如果一个数的平方是64,那么这个数可能是______。

4. 下列各数中,______是4的倍数。

5. 一个等腰三角形的底边长为10厘米,腰长为12厘米,那么这个三角形的周长是______厘米。

四、简答题(每题2分,共10分)1. 简述质数的定义。

2. 简述偶数和奇数的定义。

3. 简述等腰三角形的定义。

4. 简述立方根的定义。

5. 简述勾股定理的定义。

五、应用题(每题2分,共10分)1. 一个正方形的边长是6厘米,求这个正方形的面积。

2. 一个等腰三角形的底边长为10厘米,腰长为12厘米,求这个三角形的面积。

3. 一个数的平方是81,求这个数的立方根。

4. 一个数的立方是27,求这个数的平方根。

5. 一个等腰直角三角形的斜边长为10厘米,求这个三角形的面积。

沪科版七年级上册数学期末考试试卷附答案

沪科版七年级上册数学期末考试试卷附答案

沪科版七年级上册数学期末考试试题一、单选题1.若方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解是34x y =⎧⎨=⎩,则方程组111222327327a x b y c a x b y c +=⎧⎨+=⎩的解是()A .2128x y =⎧⎨=⎩B .98x y =⎧⎨=⎩C .714x y =⎧⎨=⎩D .9787x y ⎧=⎪⎪⎨⎪=⎪⎩2.若盈余2万元记作2+万元,则2-万元表示()A .盈余2万元B .亏损2万元C .亏损2-万元D .不盈余也不亏损3.数据274.8万用科学记数法表示为()A .22.74810⨯B .4274.810⨯C .52.74810⨯D .62.74810⨯4.数轴上表示数m 和2m +的点到原点的距离相等,则m 为()A .2-B .2C .1D .1-5.已知23120x x --=,则代数式2395x x -++的值是()A .31B .31-C .41D .41-6.下列计算结果正确的是()A .22321x x -=B .235325x x x +=C .22330x y yx -=D .44x y xy+=7.星期天,小明一家从家里出发去爷爷家,妈妈骑自行车先走,速度为10千米/时,40分钟后爸爸开车和小明一起出发,速度为60千米/时,结果3人同时到达爷爷家,则小明家距爷爷家的路程为()A .8千米B .10千米C .12千米D .15千米8.在数轴上,点A 对应的数为a ,点B 对应的数为b ,且a ,b 满足()2530a b ++-=.点P 为直线AB 上点B 右边的一点,且3AP PB =,点Q 为PB 中点,则线段AQ 的长为()A .6B .8C .10D .159.对x ,y 定义一种新运算“※”,规定:x y mx ny =+※(其中m ,n 均为非零常数),若114=※,123=※,则21※的值为()A .4B .9C .10D .1210.一组有规律的图案如图所示,它们由边长相等的等边三角形组合而成,第一个图案有4个等边三角形,第二个图案有7个等边三角形,第三个图案有10个等边三角形……按此规律摆下去,则第n 个图案中等边三角形的个数为()A .31n +B .3n +C .33n +D .34n +二、填空题11.﹣2的相反数的值等于_____.12.一个锐角的补角比这个角的余角的3倍还大10︒,则这个锐角的度数是______.13.有理数a 、b 、c 在数轴上的位置如图所示,则化简11a b b a c c +------得到的结果是____.14.化简:()()423a b a b ---=_________.15.如图,°2918BOC '∠=,则AOC ∠的度数为__________.16.请写出一个解为2x =的一元一次方程:______.17.如图是一个简单的数值运算程序,若开始输入x 的值为5,则最后输出的结果为_____.三、解答题18.计算:(1)()()13271545-+---+;(2)()411582733-+-+÷-⨯19.解方程(组):(1)121134x x ++=-(2)27320x y x y -=⎧⎨+=⎩20.先化简,再求值:()()22221132542a a a a a a ⎡⎤-----⎣⎦,其中4a =-.21.如图,OA ⊥OB 于点O ,∠AOD :∠BOD =7:2,点D 、O 、E 在同一条直线上,OC 平分∠BOE ,求∠COD 的度数.22.已知关于x ,y 的方程组27134x y m x y m +=+⎧⎨+=⎩的解也是二元一次方程3x y -=的解,请求出方程组的解及m 的值.23.甲超市在端午节这天进行苹果优惠促销活动,苹果的标价为10元/kg ,一次性购买4kg 以上的苹果,超过4kg 的部分按标价的6折出售.(1)文文购买3kg 的苹果需付款______元;购买5kg 的苹果需付款______元;(2)若文文一次性购买()4x x >kg 的苹果,需付款多少元?(用含x 的代数式表示)(3)当天,隔壁的乙超市也在进行苹果优惠促销活动,同样的苹果的标价也为10元/kg ,且全部按标价的8折销售,文文如果要购买10kg苹果,请问她在哪个超市购买更划算?24.某校开展“每日健身操”活动,为了解学生对“每日健身操”活动的喜欢程度,随机抽取了部分学生进行调查,将调查信息结果绘制成如下尚不完整的统计图表:抽样调查各类喜欢程度人数分布扇形统计图A.非常喜欢B.比较喜欢C.无所谓D.不喜欢抽样调查各类喜欢程度人数统计表喜欢程度人数A.非常喜欢50人B.比较喜欢m人C.无所谓n人D.不喜欢16人根据以上信息,回答下列问题:(1)本次调查的样本容量是______;(2)扇形统计图中表示A程度的扇形圆心角为_____︒,统计表中m=______;(3)根据抽样调查的结果,请你估计该校2000名学生中大约有多少名学生喜欢“每日健身操”活动(包含非常喜欢和比较喜欢).25.在手工制作课上,老师组织班级同学用硬纸制作圆柱形茶叶筒.全班共有学生50人,其中男生x人,女生y人,男生人数比女生人数少2人.已知每名同学每小时剪筒身40个或剪筒底120个.(1)求这个班男生、女生各有多少人?(2)原计划男生负责剪筒底,女生负责剪筒身,若要求一个筒身配两个筒底,请说明每小时剪出的筒身与筒底能否配套?如果不配套,请说明如何调配人员,才能使每小时剪出的筒身与筒底刚好配套?26.将一副三角板如图1摆放,60AOB ∠=︒,45COD ∠=︒,OM 平分AOD ∠,ON 平分COB ∠.(1)MON ∠=______;(2)将图1中的三角板OCD 绕点O 旋转到图2的位置,求MON ∠;(3)将图1中的三角板OCD 绕点O 旋转到图3的位置,求MON ∠.参考答案1.C2.B3.D4.D5.B6.C7.A8.C9.B10.A11.212.50︒13.-214.2a-b .15.15042'16.x-2=0(答案不唯一)17.65618.(1)20(2)-1【分析】(1)先把减法变成加法,再按照加法法则进行计算即可;(2)先算乘方,再算乘除,最后算加法;同级运算,应按从左到右的顺序进行计算;如果有绝对值,要先做绝对值内的运算.(1)解:()()13271545-+---+()13271545=-+-++=4060-+20=(2)解:()411582733-+-+÷-⨯11132733⎛⎫=-++⨯-⨯ ⎪⎝⎭()133=-++-1=-19.(1)12x =(2)23x y =⎧⎨=-⎩【分析】(1)按照去分母、去括号、移项、合并同类项、系数化为1的步骤解方程即可;(2)用加减消元法解方程组即可.(1)解:121134x x ++=-去分母得:()()4112321x x +=-+去括号得:441263x x +=--移项得:461234x x +=--合并同类项得:105x =两边同除以10得:12x =(2)解:27320x y x y -=⎧⎨+=⎩①②2⨯+①②得714x =解得2x =把2x =代入①得47y -=解得3y =-∴原方程组的解为23x y =⎧⎨=-⎩【点睛】本题考查了一元一次方程和二元一次方程组的解法,熟练掌握解题步骤是关键.20.22a a --;-8【分析】原式先去小括号,再去中括号,最后合并同类项即可得到答案.【详解】解:原式()22221161548a a a a a a =--+-+()2211122a a a =-+,2211122a a a =--,22a a =--,当4a =-时,原式()()24241688---⨯-=-+=-.21.100°【分析】由垂直的定义结合两角的比值可求解∠BOD 的度数,即可求得∠BOE 的度数,再利用角平分线的定义可求得∠BOC 的度数,进而可求解∠COD 的度数.【详解】解:∵OA ⊥OB ,∴∠AOB =90°,∵∠AOD :∠BOD =7:2,∴∠BOD =29∠AOB =20°,∴∠BOE =180°﹣∠BOD =160°.∵OC 平分∠BOE ,∴∠BOC =12∠BOE =80°,∴∠COD =∠BOC+∠BOD =80°+20°=100°.【点睛】本题考查了角度的计算,垂直的定义,角平分线的定义,结合垂直的定义和两角的比值求出∠BOD 的度数是解题的关键.22.52x y =⎧⎨=⎩;23.【分析】此题可先将方程组的m 消去,然后与x−y =3联立,根据二元一次方程组的解法来求出x ,y ,将其代入②,可得出m .【详解】解27134x y m x y m +=+⎧⎨+=⎩①②②-①得x−3y =−1③联立x−y =3得消去m 得方程组为331x y x y -=⎧⎨-=-⎩解这个方程组,得52x y =⎧⎨=⎩,代入②,得:m =15+8=23.【点睛】此题考查的是对二元一次方程组的解的计算,通过代入x 、y 的值即可得出答案.23.(1)30,46(2)她一次性购买()4x x >kg 苹果需付款()616x +元.(3)她在甲超市购买更划算.【分析】(1)根据题意直接写出购买3kg 和5kg 苹果所需付款;(2)4kg 苹果按照原价付款,超过4kg 的部分按标价的6折付款列出代数式即可;(3)计算出两种付款方式的结果,通过两种付款比较那个超市便宜即可(1)解:由题意可知:文文购买3kg 苹果,不优惠,∴文文购买3kg 苹果需付款:3×10=30(元),购买5kg 苹果,4kg 不优惠,1kg 优惠,∴购买5kg 苹果需付款:4×10+1×10×0.6=46(元),故答案为:30,46;(2)解:文文一次性购买()4x x >kg 的苹果,需付款4×10+(x -4)×10×0.6=(6x +16)元;答:她一次性购买()4x x >kg 苹果需付款()616x +元.(3)解:∵当x =10时,6x +16=6×10+16=76(元),∴文文在甲超市购买10kg 苹果需付费76元;∵10×10×0.8=80(元),∴文文在乙超市购买10kg 苹果需付费80元;∴文文应该在甲超市购买更划算.【点睛】本题主要考查列代数式、求代数式的值、有理数的混合运算、整式的加减等知识,关键是读懂题意,列出正确的代数式.24.(1)200;(2)90,94;(3)1440名【分析】(1)用D 程度人数除以对应百分比即可;(2)用A 程度的人数与样本人数的比值乘以360°即可得到对应圆心角,算出B 等级对应百分比,乘以样本容量可得m 值;(3)用样本中A 、B 程度的人数之和所占样本的比例,乘以全校总人数即可.【详解】解:(1)16÷8%=200,则样本容量是200;(2)50200×360°=90°,则表示A程度的扇形圆心角为90°;200×(1-8%-20%-50200×100%)=94,则m=94;(3)50942000200+⨯=1440名,∴该校2000名学生中大约有1440名学生喜欢“每日健身操”活动.【点睛】本题考查了扇形统计图,统计表,样本估计总体等知识,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键,扇形统计图直接反映部分占总体的百分比大小.25.(1)这个班有男生有24人,女生有26人;(2)原计划男生负责剪筒底,女生负责剪筒身,每小时剪出的筒身与筒底不能配套;男生应向女生支援4人时,才能使每小时剪出的筒身与筒底配套.【分析】(1)由题意列出方程组,解方程组解可;(2)分别计算出24名男生和26名女生剪出的筒底和筒身的数量,可得不配套;设男生应向女生支援y人,根据制作筒底的数量=筒身的数量×2,根据等量关系列出方程,再解即可.【详解】解:(1)由题意得:502 x yx y+=⎧⎨=-⎩,解得:2426 xy=⎧⎨=⎩,答:这个班有男生有24人,女生有26人;(2)男生剪筒底的数量:24×120=2880(个),女生剪筒身的数量:26×40=1040(个),因为一个筒身配两个筒底,2880:1040≠2:1,所以原计划男生负责剪筒底,女生负责剪筒身,每小时剪出的筒身与筒底不能配套,设男生应向女生支援a人,由题意得:120(24-a)=(26+a)×40×2,解得:a=4,答:原计划男生负责剪筒底,女生负责剪筒身,每小时剪出的筒身与筒底不能配套;男生应向女生支援4人时,才能使每小时剪出的筒身与筒底配套.【点睛】本题考查了二元一次方程组的应用、一元一次方程的应用,解题的关键是正确理解题意,找出题目中的等量关系,列出方程或方程组.26.(1)52.5MON ∠=︒;(2)052.5MON ∠=;(3)052.5MON ∠=.【分析】(1)利用角平分线的性质,分别求出∠NOB 和∠MOB,相加即可求得∠MON,(2)由角平分线分别表示出∠MOD 和∠NOB ,则1122MON AOD COB ∠=∠+∠+BOD ∠,将式子变形为∠MON=12()AOD BOD COB BOD ∠+∠+∠+∠=()12AOB COD ∠+∠,代值计算即可,(3)同(2)由角平分线分别表示出∠MOD 和∠NOB ,则1122MON AOD COB ∠=∠+∠-BOD ∠,将式子变形为∠MON=12()AOD BOD COB BOD ∠+∠-∠-∠()12AOD BOD =∠-∠()12COB BOD +∠-∠()12AOB COD =∠+∠,代值计算即可,【详解】(1)∵OM 平分AOD ∠,ON 平分COB ∠.∴∠NOB=12∠COB=22.5°,∠MOB=12∠AOD=30°,∴MON ∠=∠NOB+∠MOB=22.5°+30°=52.5°,(2)∵OM 平分AOD ∠,ON 平分COB ∠.∴∠MOD=12∠AOD,∠NOB 12∠COB ,∴1122MON AOD COB BOD ∠=∠+∠+∠,()122AOD COB BOD =∠+∠+∠,()()()1211604552.522AOD BOD COB BOD AOB COD =∠+∠+∠+∠=∠+∠=︒+︒=︒,,(3)∵OM 平分AOD ∠,ON 平分COB ∠.∴∠MOD=12∠AOD,∠NOB=12∠COB ,∴1122MON AOD COB BOD ∠=∠+∠-∠,()122AOD COB BOD =∠+∠-∠,()()1122AOD BOD COB BOD =∠-∠+∠-∠,()12AOB COD =∠+∠()160452=⨯︒+︒52.5=︒.。

初中七年级数学上册期末专项复习4套含答案

初中七年级数学上册期末专项复习4套含答案

A. 2.2 104
B. 22 103
C. 2.2 103
8.对于用四舍五入法得到的近似数4.609万,下列说法正确的是( )
D. 0.22 105
A.它精确到千分位
B.它精确到0.01
C.它精确到万位
D.它精确到十位
9. 1 3 5 2 013 2 015 2 4 6 2 014 2 016 = ( )
么位置时,他们两家相距最远,最远是多少?处在什么位置时,他们两家相距最近,最近是多少?
23.(6分)草履虫可以吞食细菌使污水得到净化.1个草履虫每小时大约能形成60个食物泡,每个食物泡大 约吞食30个细菌,那么1个草履虫每天(以24小时计算)大约能吞食多少个细菌?100个草履虫呢?(用科 学记数法表示)
【解析】1 3 5 2013 2015 2 4 6 2014 2016 1 2 3 4 2015 2016
1 1 1 1008 .故选D.
10.【答案】B
二、
11.【答案】 7 或 9 12.【答案】713.【答案】 2 , 4 2 , 0.83 3.7 , 2
(2)计算:①
1 1 2
2
1
3
1 3
4
2
019
1
2
020

② 1 1 1
1

13 35 5 7
2 017 2 019
期末专项复习—有理数
答案解析
一、
1.【答案】C 【解析】由题意,得 8℃ 表示下降 8℃ .故选C.
2.【答案】A【解析】 1 的相反数是 1 .故选A.
2020
2020
(3)若巡逻车每一百千米耗油12升,求该晚巡逻车共耗油多少升.

七年级数学上册期末试题4

七年级数学上册期末试题4

七年级数学期末检测试卷四一、选择题:本大题共10小题,每小题2分,共20分.在每小题给出的四个选项中,恰有一项....是符合题目要求的,请将正确选项的代号填入题后括号内. 1.如果+20%表示增加20%,那么-6%表示( ). A .增加14% B .增加6% C .减少6% D .减少26%2.如果2()13⨯-=,则“”内应填的实数是( )A .32B .23C .23-D .32-3. 实数a ,b 在数轴上的对应点如图所示,则下列不等式中错误..的是( )A .0ab >B .0a b +<C .1a b <D .0a b -<4. 下面说法中错误的是( ).A .368万精确到万位B .2.58精确到百分位C .0.0450有4个有效数字D .10000保留3个有效数字为1.00×104 5. 如图,是一个几何体从正面、左面、上面看得到的平面图形,下列说法错误的是( )A .这是一个棱锥B .这个几何体有4个面C .这个几何体有5个顶点D .这个几何体有8条棱6. 如果a <0,-1<b <0,则a ,ab ,2ab 按由小到大的顺序排列为( )A .a <ab <2abB .a <2ab <abC .ab <2ab <aD .2ab <a <ab7.在解方程5113--=x x 时,去分母后正确的是( )A .5x =15-3(x -1)B .x =1-(3 x -1)C .5x =1-3(x -1)D .5 x =3-3(x -1) 8.如果x y 3=,)1(2-=y z ,那么x -y +z 等于( )A .4x -1B .4x -2C .5x -1D .5x -29.如图1,把一个长为m 、宽为n 的长方形(m n >)沿虚线剪开,拼接成图2,成为在一角去掉一个小正方形后的一个大正方形,则去掉的小正方形的边长为( ) A .2m n - B .m n - C .2m D .2n图1 图2 从正南方向看 从正西方向看 第7题 第8题10.若干个相同的正方体组成一个几何体,从不同方向看可以得到如图所示的形状,则这个几何体最多可由多少个这样的正方体组成?( )A .12个B .13个C .14个D .18个 二、填空题:本大题共10小题,每小题3分,共30分. 11.多项式132223-+--x xy y x x 是_______次_______项式12.三视图都是同一平面图形的几何体有 、 .(写两种即可) 13.若ab ≠0,则等式a b a b +=+成立的条件是______________. 14.若2320a a --=,则2526a a +-= .15.多项式223368x kxy y xy --+-不含xy 项,则k = ;16.如图,点A ,B 在数轴上对应的实数分别为m ,n ,则A ,B 间的距离是 . (用含m ,n 的式子表示)17.有理数a 、b 、c 在数轴上的位置如图所示,化简c b c a b a -+--+的结果是________________.18.一个角的余角比它的补角的32还少40°,则这个角为 度.19.某商品的进价是200元,标价为300元,商店要求以利润不低于5%的售价打折出售,售货员最低可以打___________折出售此商品20.把一张纸片剪成4块,再从所得的纸片中任取若干块,每块又剪成4块,像这样依次地进行下去,到剪完某一次为止。

七年级上册数学期末测试卷【含答案】

七年级上册数学期末测试卷【含答案】

七年级上册数学期末测试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 如果一个正方形的边长是4厘米,那么它的面积是:A. 16平方厘米B. 8平方厘米C. 12平方厘米D. 4平方厘米2. 下列哪个数是素数?A. 21B. 23C. 25D. 273. 下列哪个图形不是平行四边形?A. 矩形B. 菱形C. 正方形D. 直角三角形4. 如果一个三角形的两边分别是3厘米和4厘米,那么第三边的长度可能是:A. 1厘米B. 6厘米C. 7厘米D. 8厘米5. 下列哪个数是负数?A. -5B. 0C. 3D. 8二、判断题(每题1分,共5分)1. 两个负数相乘的结果是正数。

()2. 所有的偶数都是2的倍数。

()3. 1千克等于1000克。

()4. 三角形的内角和等于180度。

()5. 任何数乘以0都等于0。

()三、填空题(每题1分,共5分)1. 如果一个圆的半径是5厘米,那么它的直径是______厘米。

2. 5的平方是______,5的立方是______。

3. 如果一个等腰三角形的底边是8厘米,腰是5厘米,那么这个三角形的周长是______厘米。

4. 1千米等于______米。

5. 如果一个数的倒数是3,那么这个数是______。

四、简答题(每题2分,共10分)1. 解释什么是素数。

2. 简述等腰三角形的性质。

3. 解释什么是比例。

4. 简述平行四边形的性质。

5. 解释什么是算术平均数。

五、应用题(每题2分,共10分)1. 一个长方形的长是10厘米,宽是5厘米,求这个长方形的面积。

2. 一个等边三角形的边长是6厘米,求这个三角形的周长。

3. 如果一个数的2倍加上3等于11,求这个数。

4. 一个圆的直径是14厘米,求这个圆的面积。

5. 如果一个数的3倍减去5等于7,求这个数。

六、分析题(每题5分,共10分)1. 有一个长方形的长是8厘米,宽是4厘米,求这个长方形的对角线长度。

2. 有一个等腰直角三角形,直角边的长度是6厘米,求这个三角形的周长。

湘教版七年级上册数学期末考试试卷含答案

湘教版七年级上册数学期末考试试卷含答案

湘教版七年级上册数学期末考试试题一、单选题1.-3的倒数的相反数是()A .13-B .13C .3D .92.下列各式中运算正确的是()A .336235x x x +=B .220a b ab -=C .(-18)÷(-9)=-2D .3(2)8-=-3.以下四个图中有直线、射线、线段,其中能相交的是()A .①②③④B .①③C .②③④D .①4.有理数a ,b 在数轴上的位置如图所示,那么下列式子中不一定成立的是()A .a >bB .b ﹣a <0C .ab <0D .|a|≥|b|5.若1a b -=-则223a b --等于()A .1-B .2-C .5-D .56.下列方程的变形中,正确的是()A .方程3221x x +=-移项得3212x -=-+B .方程625(1)x x -=--,去括号得6251x x -=--C .方程2332x =,方程两边都乘以32,得1x =D .方程1125x x--=可化为5(1)210x x --=7.若关于x 的方程230m mx m --+=是一元一次方程,则这个方程的解是()A .0x =B .3x =C .3x =-D .2x =8.下列调查中,最适合采用抽样调查的是()A .对旅客上飞机前的安检B .了解全班同学每周锻炼的时间C .企业招聘,对应聘人员面试D .对某水域的水质情况进行调查9.如图,线段15AB cm =,点C 在AB 上,23BC AC =,D 为BC 的中点,则线段AD 的长为()A .10cmB .13cmC .12cmD .9cm10.某种商品因换季准备打折出售.如果按定价的七五折出售将亏25元,而按定价的打九折出售,将赚20元,这种商品的定价为()A .250元B .300元C .280元D .285元11.如图,四个图形都是由6个大小相同的正方形组成,其中是正方体展开图的是()A .①②④B .①②③C .②④D .②③④12.如图所示,点O 在直线AB 上,∠EOD =90°,∠COB =90°,那么下列说法错误的是A .∠1与∠2相等B .∠AOE 与∠2互余C .∠AOE 与∠COD 互余D .∠AOC 与∠COB 互补二、填空题13.已知∠α=36°36′36″,则∠α的余角等于_____.14.如果单项式28m x y 和32n x y -是同类项则m n +=_________.15.若|m ﹣2|+(n+2)2=0,则m+2n 的值为______.16.修路时,通常把弯曲的公路改直,这样可以缩短路程,其根据的数学道理是______.17.将数据47050000用科学记数法表示为__________.18.观察下列单项式:3572,6,12,20,x x x x ……按此规律写出第n 个单项式________.三、解答题19.计算:(1)5-7+(-1)(2)43111(2)356()23-+-+--⨯-||20.解下列方程:(1)5(1)2(12)0x x --+=(2)12124x x +-=+21.先化简,再求值:222212[2()2]42m n m n mn m n mn mn ---++,其中3m =,12n =.22.如图,OC 是∠AOD 的平分线,OE 是∠BOD 的平分线.(1)若∠AOB=140°,求∠COE 的度数;(2)若∠COE=65°,∠COA=20°,求∠BOE 的度数.23.列方程解应用题:甲乙两位同学制作黑板报,甲单独制作需要4小时,乙单独制作需要2小时;(1)如果甲乙一起制作,多长时间能做完?(2)如果甲先制作3小时,剩下的由乙来制作,乙要用多少时间才能制作完?24.解答下列两题:(1)某新冠疫苗接种点,每天接种人数在500人左右,工作人员统计时,超过500人的人数记为正,不足500人的人数记为负.以下是10天内的记录数据:-10+8+10-6-2+15-7+3-20+7计算该接种点10天内接种的总人数.(2)已知A=2423x x +-,B=232x x --.计算A -2B .25.学习了统计知识后,王老师请班长就本班同学的上学方式进行了一次调查统计,图(1)和图(2)是班长和同学们通过收集和整理数据后,绘制的两幅不完整的统计图,请你根据图中提供的信息,解答一下问题:(1)计算出扇形统计图中“步行”部分所对应的圆心角的度数;(2)求该班共有多少名学生;(3)在图(1)中,将表示“乘车”与“步行”的部分补充完整.26.某蔬菜基地今年收获大白菜24000千克,在收获前期共投入9000元的成本,今年大白菜的销售行情如下:方式一:直接在蔬菜基地销售,每千克为m 元:方式二:在市场上每千克为n 元,但平均每天只出售2000千克,且每天需人工费300元,每天还需缴纳管理费等其它费用100元.(1)分别用m .n 表示两种方式出售大白菜的纯收入:(2)若2m =元, 2.5n =元,选择怎样方式出售获利较多?说明你的理由:(3)当3n =元,m 为何值时,两种方式获利一样.27.数形结合是数学解题中的一种重要思想,利用数轴可以将数与形完美结合.一般地,数轴上表示数m 和数n 的两点之间的距离等于|m ﹣n|,如:数轴上表示4和1的两点之间的距离是|4﹣1|=3;表示﹣3和2两点之间的距离是|﹣3﹣2|=5.根据以上材料,结合数轴与绝对值的知识回答下列问题:(1)将数﹣5,﹣32,0,2.5在数轴上表示出来.(2)若数轴上表示数a 的点位于﹣3与2之间,那么|a+3|+|a ﹣2|的值是多少?(3)若A 是数轴上的一个点,它表示数a ,则|a+5|+|a ﹣3|的最小值是多少?当a 取多少时|a+5|+|a ﹣1|+|a ﹣3|有最小值?最小值是多少?参考答案1.B 【分析】根据倒数及相反数的定义解答即可.【详解】∵﹣3的倒数是﹣13,∴﹣3的倒数的相反数是13,故选B .【点睛】本题考查了倒数及相反数的定义,熟知倒数及相反数的定义是解决问题的关键.2.D 【分析】根据合并同类项,有理数的除法及乘方分析各选项即可.【详解】解:A 选项,333235x x x +=,故该选项计算错误,不符合题意;B 选项,2a b 与2ab 不是同类项,故该选项计算错误,不符合题意;C 选项,(-18)÷(-9)=2,故该选项计算错误,不符合题意;D 选项,3(2)8-=-,故该选项计算正确,符合题意;故选∶D【点睛】本题考查了合并同类项,有理数的除法及乘方,熟记乘方的意义是解题的关键.3.B 【分析】根据直线可以沿着两个方向延伸,射线可以沿着一个方向延伸,线段不能延伸依次判断即可.【详解】解:①射线和直线延伸后可以相交,符合题意;②线段不能向两端延伸,不能相交,不符合题意;③两条直线延伸后可以相交,符合题意;④射线和直线延伸后不能相交,不符合题意;故选:B .【点睛】题目主要考查直线、线段及射线的知识,掌握直线可以沿着两个方向延伸,射线可以沿着一个方向延伸,线段不能延伸是解题关键.4.D 【详解】试题分析:观察数轴可得:b <0<1<a ,∴a >b ,b ﹣a <0,a b<0,根据已知数轴不能判断|a|和|b|的大小.故选D .考点:1.有理数大小比较;2.数轴.5.C 【分析】将223a b --变形为2()3a b --,再将a-b=-1整体代入即可求解.【详解】∵a-b=-1,∴223a b --2()3a b =--2(1)3=⨯--5=-.故选:A .【点睛】本题考查了已知式子的值求代数式的值,注重整体代入的思想是解答本题的关键.6.D 【分析】解一元一次方程的步骤:去分母,去括号,移项,合并同类项,化系数为1.移项要变号;去括号时若括号前是负号,括号里面要变号;去分母时等式左右两边每一项都要乘以分母的最小公倍数.【详解】A :程3221x x +=-移项得3212x x -=--,故A 错误;B :方程625(1)x x -=--,去括号得6255x x -=-+,故B 错误;C ∶方程2332x =,方程两边都乘以32,得94x =D ∶正确故选:D【点睛】本题主要考查了解一元一次方程的步骤,熟练的掌握等式的性质,能够根据等式的性质正确的解一元一次方程是解题的关键.7.A【详解】解:由方程为一元一次方程得,m﹣2=1,即m=3,则这个方程是3x=0,解得:x=0.故选A.8.D【分析】根据普查及抽样调查的的适用范围(一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查)依次判断即可.【详解】解:A.∵对旅客上飞机前的安检非常重要,故宜采用普查;B.了解全班同学每周体育锻炼的时间工作量比较小,故宜采用普查;C.企业招聘,对应聘人员的面试工作量比较小,故宜采用普查;D.对某水域的水质情况进行调查,宜采用抽样调查;故选D.【点睛】题目主要考查抽样调查及普查的适用范围,理解抽样调查及普查的适用范围是解题关键.9.C【分析】直接根据题意表示出各线段长,进而得出答案.【详解】解:∵23BC AC,∴设BC=2x,则AC=3x,∵D为BC的中点,∴CD=BD=x,∵线段AB=15cm,∴AC+BC=5x=15,解得:x=3(cm),∴AD=3x+x=4x=12(cm).故选:C.【点睛】此题主要考查了两点之间的距离,正确表示出各线段长是解题关键.10.B【分析】七五折是定价的75%,九折是定价的90%,设定价为x元,则根据两种情况下的进价相等列方程,再解方程可得答案.【详解】解:设定价为x元,则0.75250.920,x x +=-解得:300,x =答:这种商品的定价为300元.故选B【点睛】本题关键是理解打折的含义,一元一次方程的应用,理解题意,确定相等关系是解本题的关键.11.A 【分析】由平面图形的折叠及正方体的展开图解题.【详解】由四棱柱四个侧面和上下两个底面的特征可知,①,②,④选项可以拼成一个正方体,而③选项,上底面不可能有两个,故不是正方体的展开图.故选A .【点睛】本题考查了几何体的展开图,解题时勿忘记四棱柱的特征及正方体展开图的各种情形.12.C 【分析】根据垂直的定义和互余解答即可.【详解】解:∵∠EOD =90°,∠COB =90°,∴∠1+∠DOC =∠2+∠DOC =90°,∴∠1=∠2,∴∠AOE+∠2=90°,∵∠1+∠AOE =∠1+∠COD ,∴∠AOE =∠COD ,故选:C .【点睛】本题考查了垂线的定义,关键是熟悉当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直;平角的度数是180°.13.532324︒'''【分析】根据互为余角的两个角的和为90度,列出算式,再根据度分秒的换算即可得出答案.【详解】解:α∠的余角是:90363636532324︒-︒'''=︒''',故答案为:532324︒'''.【点睛】此题主要考查了余角和度分秒的换算,解题的关键是主要记住互为余角的两个角的和为90度.14.5【分析】根据同类项的定义(所含字母相同,相同字母的指数相同)列出方程,求出n ,m 的值,再代入代数式计算即可.【详解】解:因为单项式8xmy 2和-2x 3yn 是同类项,所以m=3,n=2,所以m+n=3+2=5.故答案为:5.【点睛】本题考查了同类项的定义,熟记同类项定义是解答本题的关键.15.2-【分析】根据非负数的性质列式求出m 、n 的值,然后代入代数式进行计算即可求解.【详解】解:∵|m ﹣2|+(n+2)2=0,∴m ﹣2=0,n+2=0,解得m =2,n =﹣2,则m+2n =2+2×(﹣2)=2﹣4=﹣2.故答案为:﹣2.【点睛】本题考查了非负数的性质∶几个非负数的和为0时,这几个非负数都为0,掌握非负数的性质是解题的关键.16.两点之间线段最短【分析】根据“两点之间线段最短”解答即可.【详解】解:修路时,通常把弯曲的公路改直,这样可以缩短路程,其根据的数学道理是:两点之间线段最短.故答案为:两点之间线段最短.【点睛】本题考查了线段的性质,熟练掌握熟练掌握两点之间线段最短是解答本题的关键.17.4.705×710【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】解:47050000=4.705×107,故答案为:4.705×107.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.18.21(1)n n n x -+【分析】观察发现,单项式的指数部分为2n-1,系数部分为n (n+1),据此即可求解.【详解】解:∵2x=1×(1+1)x2×1-1,6x3=2×(2+1)x2×2-1,12x5=3×(3+1)x2×3-1,20x7=4×(4+1)x2×4-1,…,∴第n个单项式为:n(n+1)x2n-1.故答案为:n(n+1)x2n-1.【点睛】本题主要考查了单项式规律,解答的关键是由所给的单项式的总结出变化的规律.19.(1)-3(2)-8【分析】(1)原式利用减法法则变形,计算即可得到结果;(2)原式先算乘方及绝对值,再算乘法分配律,最后算加减即可得到结果.(1)解:原式=5-7-1=-2-1=-3;(2)解:原式=-1-8+2-6×12-6×(-13)=-1-8+2-3+2=-8.【点睛】此题考查了有理数的混合运算,其运算顺序为:先乘方,再乘除,最后加减,有括号先算括号里边的,同级运算从左到右依次进行.20.(1)x=7(2)x=0【分析】(1)方程去括号,移项,合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项,合并,把x系数化为1,即可求出解.(1)解:去括号得:5x-5-2-4x=0,移项得:5x-4x=5+2,合并得:x=7;(2)解:去分母得:2(x+1)=4+(x-2),去括号得:2x+2=4+x-2,移项得:2x-x=4-2-2,合并得:x=0.【点睛】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项,合并同类项,未知数系数化为1.21.24mn ,3【分析】根据整式的运算顺序:先算小括号里面的,再算中括号里面的,最后算括号在面的;进行计算即可.【详解】解:原式=22222[22]4mn m n mn m n mn mn --+++=222224m n m n mn -+=24mn 当13,2m n ==时221443(32mn =⨯⨯=【点睛】本题主要考查了整式的加减法,按照运算顺序,同一级运算从左到右一次计算,有括号先算小括号里面的,再算中括号里面的,最后算大括号里面的进行计算是解题的关键.22.(1)70°(2)45°【分析】(1)直接根据角平分线的定义进行解答即可;(2)先根据(1)中所得结论∠COE=12∠AOB 求出∠AOB 的度数,再利用角的和差关系即可得出结论.(1)解:∵OC 是∠AOD 的平分线,OE 是∠BOD 的平分线,∠AOB=140°,∴∠COE=12∠BOD+12∠AOD =12(∠BOD+∠AOD )=12∠AOB=70°;(2)由(1)知∠COE=12∠AOB ,∵∠COE=65°,∴∠AOB=130°,∵∠COA=20°,∴∠BOE=∠AOB-∠AOC-∠COE=130°-20°-65°=45°.【点睛】本题考查的是角平分线的定义,几何图形中角度的计算,数形结合是解答此题的关键.23.(1)43(2)12【分析】(1)根据题意可得,甲的工作效率为14,乙的工作效率为12,利用工作总量除以总工作效率即可得出结果;(2)先求出甲完成的工作量,确定剩余工作量,然后除以乙的工作效率即可.(1)解:根据题意可得,甲的工作效率为14,乙的工作效率为12,∴1141423⎛⎫÷+= ⎪⎝⎭小时,故甲乙合作需要43小时完成;(2)甲先制作3小时,完成了13344⨯=,剩余工作量为:1-3144=,需要乙工作的时间为:111422÷=,故乙要用12小时才能制作完.24.(1)4998人(2)2281x x ++【分析】(1)先计算出超过或不足500人的数据的总数,然后再进行计算即可;(2)将代数式直接代入计算,然后合并同类项求解即可.(1)解:-10+8+10-6-2+15-7+3-20+7=-2,∴500×10-2=4998,∴该接种点10天内接种的总人数为4998人;(2)解:A=4x2+2x−3,B=x2−3x−2.A-2B=4x2+2x−3-2(x2−3x−2)=4x2+2x−3-2x2+6x+4=2x2+8x+1.25.(1)108°;(2)60(人);(3)见解析【分析】(1)扇形统计图中“步行”部分所对应的圆心角的度数=360°×对应的百分比;(2)总人数=骑车的人数是30人÷所占的百分比是50%;(3)分别分别求出乘车的人数和步行的人数,即可补全统计图.【详解】解:(1)扇形统计图中“步行”部分所对应的圆心角的度数是360°×(1﹣50%﹣20%)=108°;(2)该班学生数是:30÷50%=60(人);(3)乘车的人数是:60×20%=12(人),步行的人数是:60﹣30﹣12=18(人).26.(1)方式一:(24000m-9000)元,方式二:(24000n-13800)元(2)方式二的出售获利较多,理由见解析(3)m=2.8元【分析】(1)根据利润=总额-成本列出代数式;(2)把m=2,n=2.5代入(1)中所列的代数式并解答,然后比较即可;(3)根据题意列出关于m的方程,通过解方程得到m的值.(1)方式一:出售苹果的纯收入为(24000m-9000)元,方式二:24000÷2000=12天,12(300100)4800⨯+=,则出售苹果的纯收入为24000n-4800-9000=(24000n-13800)元,故方式一的纯收入为(24000m-9000)元,方式二的纯收入为(24000n-13800)元;(2)方式二的出售获利较多,理由如下:方式一:把m=2元代入24000m-9000,得到24000×2-9000=39000(元)方式二:把n=2.5元代入24000n-13800,得到24000×2.5-13800=46200(元)因为39000<46200,所以方式二的出售获利较多;(3)依题意得:24000m-9000=24000n-13800整理,得:5n-5m=1,把n=3代入,得:15-5m=1,解得:m=2.8,答:当n=3元,m=2.8元时,两种获利一样.【点睛】本题考查了列代数式,代数式求值,以及一元一次方程的应用,解题的关键是读懂题目意思,根据题目所给出的条件找到合适的等量关系再求解.27.(1)详见解析;(2)5;(3)8;a=1;8.【分析】(1)在数轴上标示出﹣5,﹣32,0,2.5即可求解;(2)由图可得﹣3<a<2,然后根据绝对值的意义对|a+3|+|a-2|进行化简,即可求解;(3)根据|a+5|+|a-1|+|a-3|表示A点到-5,1,3三点的距离的和确定当﹣5<a<3时,|a+5|+|a ﹣3|的值最小,然后根据绝对值的意义进行化简.【详解】解:(1)如图所示:(2)①∵﹣3<a<2,∴|a+3|+|a﹣2|=a+3+2-a=5;(3)∵|a+5|+|a-1|+|a-3|表示A点到-5,1,3三点的距离的和∴当﹣5<a<3时,|a+5|+|a﹣3|的值最小,且为a+5+3-a=8,是定值,∴a=1时,|a﹣1|最小为0,∴a=1时,|a+5|+|a﹣1|+|a﹣3|的最小值等于8.。

七年级数学上册期末考试试题4

七年级数学上册期末考试试题4

七年级数学上册期末考试试题(四)(时间:90分钟,满分100分)一、认真填一填(每题3分,共30分)1.实施西部大开发是党中央面向21世纪的重大战略决策,我国西部地区的面积为6400000平方千米,可用科学记数法将这个数字表示为 平方千米.2.下表是我国几个城市某年一月份的平均气温: 城市北京 武汉 广州 哈尔滨 南京平均气温 -4.6°C 3.8°C13.1°C -19.4°C 2.4°C 把它们的平均气温按从高到低的顺序排列为: .3.绝对值大于1而小于4的整数有 .4.9时45分时,时钟的时针与分针的夹角是 .5.如下图已知线段AD=16cm,线段AC=BD=10cm,E,F 分别是AB,CD 的中点,则EF 长为 .6.如果x=2是方程mx-1=2的解,那么m= .7.如下图,从点A 到B 有a ,b ,c 三条通道,最近的一条通道是 ,这是因为 .F E B C DAc b a A B8. 某校女生占全体学生会数的52%,比男生多80人。

若设这个学校的学生数为x ,那么可出列方程 .9. 202135,3o αα'''∠=∠=则 .10. 若=+=++-b a b a 那么,02)1(2 .二、仔细选一选(每题3分,共15分)请将正确答案的代号字母填入题后的括号内.11.是左下图所示的正立方体的展开图的是( )A B C D12.有下列四种说法:①锐角的补角一定是钝角;②一个角的补角一定大于这个角;③如果两个角是同一个角的补角,那么它们相等;④锐角和钝角互补.其中正确的是( )A .①② B. ①③ C. ①②③ D. ①②③④13. 如果n 是正整数,那么])1(1[n n --的值( )A .一定是零 B.一定是偶数 C.一定是奇数 D.是零或偶数14.如果a,b 互为相反数,x,y 互为倒数,则()1742a b xy ++的值是( ) A .2 B. 3 C. 3.5 D. 415.下图反映的是地球上七大洲的面积占陆地总面积的百分比,某同学根据下图得出下列四个结论:①七大洲中面积最大的是亚洲;②南美洲、北美洲、非洲三大州面积的和约占陆地总面积的50%;③非洲约占陆地总面积的20%;④南美洲面积是大洋洲面积的2倍.你认为上述四个结论中正确的为( )A .①② B. ①④ C. ①②④ D. ①②③④三、用心做一做16.(6分)22138(3)2()42()423-÷⨯-++÷-17.(6分)解方程2151136x x +--=18.(8分)请你来做主:小明家搬了新居要购买新冰箱,小明和妈妈在商场看中了甲、乙两种冰箱.其中,甲冰箱的价格为2100元,日耗电量为1度;乙冰箱是节能型新产品,价格为2220元,日耗电量为0.5度,并且两种冰箱的效果是相同的.老板说甲冰箱可以打折,但是乙冰箱不能打折,请你就价格方面计算说明,甲冰箱至少打几折时购买甲冰箱比较合算?(每度电0.5元,两种冰箱的使用寿命均为10年,平均每年使用300天)亚洲29.3%非洲20.2%北美洲16.1%南美洲12%南极洲9.3%欧洲7.1%大洋洲6%19.(10分)画图说明题(1)作∠AOB=90;(2)在∠AOB内部任意画一条射线OP;(3)画∠AOP的平分线OM,∠BOP的平分线ON;(4)用量角器量得∠MON= .试用几何方法说明你所得结果的正确性.20.(8分)一鞋店销售一种新款女鞋,10天内共售出这种款式的女鞋46双,下面是售货员按卖出的顺序记录的上述46双鞋的鞋号:23.5,23.5,23,23.5,24,23.5,22,24.5,23.5,23.5,25,24,23.5,23,23,24.5,23,23.5,23.5,22.5,22.5,23.5,23.5,,23.5,23.5,24,23,22.5,24,23.5,23.5,25,22,22.5,24,22.5,23,24,23,23,24,23,23,24,22,24.5(1)你能设法将上述数据整理得较为清楚吗?(2)请画出各种鞋号销售情况的条形统计图。

人教版2022-2023学年七年级数学上册期末测试卷(附答案)

人教版2022-2023学年七年级数学上册期末测试卷(附答案)

2022-2023学年七年级数学上册期末测试卷(附答案)一、选择题(共48分)1.某商场要检测4颗大白菜的质量,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数,从质量角度看,最接近标准的是()A.B.C.D.2.2021年2月10日19时52分,中国首次火星探测任务“天问一号”探测器成功“刹车”被火星“捕获”.在制动捕获过程中,探测器距离地球的距离为192000000公里.数字192000000用科学记数法表示为()A.19.2×107B.19.2×108C.1.92×108D.1.92×1093.已知一个单项式的系数为﹣3,次数为4,这个单项式可以是()A.3xy B.3x2y2C.﹣3x2y2D.4x34.下列方程中,解为x=2的是()A.2x=6B.(x﹣3)(x+2)=0C.x2=3D.3x﹣6=05.下列各式错误的是()A.﹣4>﹣5B.﹣(﹣3)=3C.﹣|﹣4|=4D.16÷(﹣4)2=1 6.如图所示,几何体由6个大小相同的立方体组成,其俯视图是()A.B.C.D.7.下列计算正确的是()A.3a+2b=5ab B.5ab2﹣5a2b=0C.7a+a=7a2D.﹣ab+3ba=2ab8.如图,在不完整的数轴上有A,B两点,它们所表示的两个有理数互为相反数,则关于原点位置的描述正确的是()A.在点A的左侧B.与线段AB的中点重合C.在点B的右侧D.与点A或点B重合9.下列方程变形中,正确的是()A.方程=1,去分母得5(x﹣1)﹣2x=10B.方程3﹣x=2﹣5(x﹣1),去括号得3﹣x=2﹣5x﹣1C.方程t=,系数化为1得t=1D.方程3x﹣2=2x+1,移项得3x﹣2x=﹣1+210.下面是两位同学的对话,根据对话内容,可求出这位同学的年龄是()A.11岁B.12岁C.13岁D.14岁11.如图,AB=12cm,C为AB的中点,点D在线段AC上,且CD:CB=2:3,则DB的长度为()A.4cm B.6cm C.8cm D.10cm12.将边长为1的正方形纸片如图1所示的方法进行对折,记第一次对折后得到的图形面积为S1,第2次对折后得到的图形面积为S2…,第n次对折后得到的图形面积为S n,请根据图2化简S1+S2+S3…S2024=()A .1﹣202521 B .20252024C .1﹣202421 D .20242023二、填空题(共16分)13.在1,0,﹣2,﹣1这四个数中,最小的数是 . 14.如图,射线OA 的方向是北偏东26°38',那么∠α= .15.用代数式表示“a 的两倍与b 的平方的和”: .16.定义:对于任意两个有理数a ,b ,可以组成一个有理数对(a ,b ),我们规定(a ,b )=a +b ﹣1.例如(﹣2,5)=﹣2+5﹣1=2. 根据上述规定解决下列问题: (1)有理数对(2,﹣1)= ;(2)当满足等式(﹣5,3x +2m )=5的x 是正整数时,则m 的正整数值为 . 三、解答题(共86分) 17.计算:(1)﹣×(12﹣);(2)﹣24+|﹣5|﹣[﹣(﹣3)÷+2]. 18.解方程:(1)2x ﹣3=4(x ﹣1); (2)﹣=1.19.小明化简(4a 2﹣2a ﹣6)﹣2(2a 2﹣2a ﹣5)的过程如下,请指出他化简过程中的错误,写出对应的序号,并写出正确的化简过程: 解:(4a 2﹣2a ﹣6)﹣2(2a 2﹣2a ﹣5) =4a 2﹣2a ﹣6﹣4a 2+4a +5 ①=(4﹣4)a 2+(﹣2+4)a +(﹣6+5)②=2a﹣1 ③他化简过程中出错的是第步(填序号);正确的解答是:20.请用下列工具按要求画图,并标出相应的字母.已知:点P在直线a上,点Q在直线a外.(1)画线段PQ;(2)画线段PQ的中点M;(3)画直线b,使b⊥PQ于点M;(4)直线b与直线a交于点N;(5)利用半圆仪测量出∠PNM≈°(精确到1°).21.2月,市城区公交车施行全程免费乘坐政策,标志着我市公共交通建设迈进了一个新的时代.如图为某一条东西方向直线上的公交线路,东起职教园区站,西至富士康站,途中共设12个上下车站点,如图所示:某天,小王从电业局站出发,始终在该线路的公交站点做志愿者服务,到A站下车时,本次志愿者服务活动结束,如果规定向东为正,向西为负,当天的乘车站数按先后顺序依次记录如下(单位:站):+5,﹣2,+6,﹣11,+8,+1,﹣3,﹣2,﹣4,+7;(1)请通过计算说明A站是哪一站?(2)若相邻两站之间的平均距离为12千米,求这次小王志愿服务期间乘坐公交车行进的总路程是多少千米?22.如图是一个长方形游乐场,其宽是4a米,长是6a米.其中半圆形休息区和长方形游泳区以外的地方都是绿地.已知半圆形休息区的直径和长方形游泳区的宽是2a米,游泳区的长是3a米.(1)该游乐场休息区的面积为m2,游泳区的面积为m2.(用含有a的式子表示)(2)若长方形游乐场的宽为40米,绿化草地每平方米需要费用30元,求这个游乐场中绿化草地的费用.23.阅读材料并回答问题:数学课上,老师提出了如下问题:已知点O在直线AB上,∠COE=90°,在同一平面内,过点O作射线OD,满足∠AOC =2∠AOD.当∠BOC=40°时,如图1所示,求∠DOE的度数.甲同学:以下是我的解答过程(部分空缺)解:如图2,∵点O在直线AB上,∴∠AOB=180°.∵∠BOC=40°,∴∠AOC=°.∵∠AOC=2∠AOD,∴OD平分∠AOC.∴∠COD=∠AOC=°.∵∠DOE=∠COD+∠COE,∠COE=90°,∴∠DOE=°.乙同学:“我认为还有一种情况.”请完成以下问题:(1)请将甲同学解答过程中空缺的部分补充完整.(2)判断乙同学的说法是否正确,若正确,请在图1中画出另一种情况对应的图形,并求∠DOE的度数,写出解答过程;若不正确,请说明理由.(3)将题目中“∠BOC=40°”的条件改成“∠BOC=α”,其余条件不变,当α在90°到180°之间变化时,如图3所示,α为何值时,∠COD=∠BOE成立?请直接写出此时α的值.24.为了鼓励市民节约用水,某市居民生活用水按阶梯式水价计费.下表是该市民“一户一表”生活用水阶梯式计费价格表的部分信息:自来水销售价格污水处理价格每户每月用水量单价:元/吨单价:元/吨17吨及以下a0.90超过17吨但不超过30吨的部分b0.90超过30吨的部分 6.000.90(说明:①每户生产的污水量等于该户自来水用量;②水费=自来水费用+污水处理费)已知小王家2018年7月用水16吨,交水费43.2元.8月份用水25吨,交水费75.5元.(1)求a、b的值;(2)如果小王家9月份上交水费156.1元,则小王家这个月用水多少吨?(3)小王家10月份忘记了去交水费,当他11月去交水费时发现两个月一共用水50吨,其中10月份用水超过30吨,一共交水费215.8元,其中包含30元滞纳金,求小王家11月份用水多少吨?(滞纳金:因未能按期缴纳水费,逾期要缴纳的“罚款金额”)参考答案一、选择题(共48分)1.解:∵|﹣0.6|<|+0.7|<|+2.5|<|﹣3.5|,∴从轻重的角度看,最接近标准的是:选项C.故选:C.2.解:192000000=1.92×108,故选:C.3.解:A、3xy,单项式的系数是3,次数是2,不符合题意;B、3x2y2,单项式的系数是3,次数是4,不符合题意;C、﹣3x2y2,单项式的系数是﹣3,次数是4,符合题意;D、4x3的系数是4,次数是3,不符合题意.故选:C.4.解:A、把x=2代入,左边=4≠右边,则不是方程的解,选项错误;B、把x=2代入方程,左边=﹣4≠右边,则不是方程的解,选项错误;C、把x=2代入方程,左边=4≠右边,则不是方程的解,选项错误;D、把x=2代入方程,左边=0=右边,则是方程的解,选项正确.故选:D.5.解:A、﹣4>﹣5,本选项不符合题意;B、﹣(﹣3)=3,本选项不符合题意;C、﹣|﹣4|=﹣4≠4,本选项符合题意;D、16÷(﹣4)2=1,本选项不符合题意.故选:C.6.解:从上边看,底层是一个小正方形,上层是四个小正方形.故选:C.7.解:A、3a与2b不是同类项,所以不能合并,故本选项不合题意;B、5ab2与﹣5a2b不是同类项,所以不能合并,故本选项不合题意;C、7a+a=8a,故本选项不合题意;D、﹣ab+3ba=2ab,故本选项符合题意.故选:D.8.解:∵A,B两点所表示的两个有理数互为相反数,∴点A 表示的数为负数,点B 表示的数为正数,且它们到原点的距离相等, ∴原点为线段AB 的中点. 故选:B . 9.解:∵方程=1,去分母得5(x ﹣1)﹣2x =10,∴选项A 符合题意;∵方程3﹣x =2﹣5(x ﹣1),去括号得3﹣x =2﹣5x +5, ∴选项B 不符合题意;∵方程t =,系数化为1得t =, ∴选项C 不符合题意;∵方程3x ﹣2=2x +1,移项得3x ﹣2x =1+2, ∴选项D 不符合题意. 故选:A .10.解:设这位同学的年龄是x 岁, 依题意,得:2(x ﹣4)+8=26, 解得:x =13. 故选:C .11.解:∵AB =12cm ,C 为AB 的中点, ∴AC =BC =AB =6cm , ∵CD :CB =2:3, ∴AD :CB =1:3, ∴AD =2cm ,∴DC =AC ﹣AD =4(cm ), ∴DB =DC +BC =10(cm ), 故选:D .12.解:观察发现S 1+S 2+S 3+…+S 2024=+++…+202421=1﹣202421,故选:C .二、填空题(共16分) 13.解:∵﹣2<﹣1<0<1,∴在1,0,﹣2,﹣1这四个数中,最小的数是﹣2.故答案为:﹣2.14.解:由题意得:∠α=90°﹣26°38′=89°60′﹣26°38′=63°22′,故答案为:63°22′.15.解:a的两倍与b的平方的和用代数式可以表示为:2a+b2,故答案为:2a+b2.16.解:(1)根据题中的新定义得:原式=2+(﹣1)﹣1=1﹣1=0.故答案为:0;(2)已知等式化简得:﹣5+3x+2m﹣1=5,解得:x=,由x、m都是正整数,得到11﹣2m=9或11﹣2m=3,解得:m=1或4.故答案为:1或4.三、解答题(共86分)17.解:(1)原式=﹣×12+×=﹣9+=﹣8;(2)原式=﹣16+5﹣(18+2)=﹣16+5﹣18﹣2=﹣31.18.解:(1)2x﹣3=4(x﹣1),2x﹣3=4x﹣4,2x﹣4x=﹣4+3,﹣2x=﹣1,x=;(2)﹣=1,3x﹣5﹣2(x﹣2)=6,3x﹣5﹣2x+4=6,3x﹣2x=6+5﹣4,x=7.19.解:他化简过程中出错的是第①步.正确解答是:(4a2﹣2a﹣6)﹣2(2a2﹣2a﹣5)=4a2﹣2a﹣6﹣4a2+4a+10=(4﹣4)a2+(﹣2+4)a+(﹣6+10)=2a+4.故答案为:①.20.解:(1)如图,线段PQ即为所求;(2)如图,点M即为所求;(3)如图,直线b,点M即为所求;(4)如图,点N即为所求;(5)∠PNM≈50°.故答案为:50.21.解:(1)由题意得:+5﹣2+6﹣11+8+1﹣3﹣2﹣4+7=+5+6+8+1+7﹣2﹣11﹣3﹣2﹣4=27﹣22=5,在电业局东第5站是市政府,答:A站是市政府站;(2)由题意得:(|+5|+|﹣2|+|+6|+|﹣11|+|+8|+|+1|+|﹣3|+|﹣2|+|﹣4|+|+7|)×1.2=(5+2+6+11+8+1+3+2+4+7)×1.2=49×1.2=58.8(千米).答:小王志愿服务期间乘坐公交车行进的路程是58.8千米.22.解:(1)休息区的面积为:×π×a2=a2(m2);游泳区的面积为:3a×2a=6a2(m2).故答案为:a2,6a2;(2)∵长方形游乐场的宽为40米,∴a=10米.所以(6a×4a﹣6a2﹣a2)×30≈(24a2﹣6a2﹣1.57a2)×30=16.43a2×30=492.9a2.当a=10时,原式=49290(元).答:游乐场中绿化草地的费用为49290元.23.解:(1)如图2,∵点O在直线AB上,∴∠AOB=180°.∵∠BOC=40°,∴∠AOC=140°.∵∠AOC=2∠AOD,∴OD平分∠AOC.∴∠COD=∠AOC=70°.∵∠DOE=∠COD+∠COE,∠COE=90°,∴∠DOE=160°.故答案为:140,70,160;(2)当OD在CAOC外部时,如图2﹣1所示,∵点O在直线AB上∴∠AOB=180°,∵∠BOC=40°,∴∠AOC=140°,∵∠AOC=2∠AOD,∴∠AOD=70°,∵∠COE=90°,∴∠BOE=50°,∴∠DOE=∠AOB﹣∠AOD﹣∠BOE=60°,综上所述,∠DOE=160°或60°.(3)如图3中,当OD在AB的上方时,由题意,(180°﹣α)=α﹣90°,解得α=120°,当OD在AB的下方时,则有180°﹣α+(180°﹣α)=α﹣90°,解得α=144°.综上所述,α的值为120°或144°.24.解:(1)由题意得:解①,得a=1.8,将a=1.8代入②,解得b=2.8∴a=1.8,b=2.8.(2)1.8+0.9=2.7,2.8+0.9=3.7,6.00+0.9=6.9设小王家这个月用水x吨,由题意得:2.7×17+3.7×13+(x﹣30)×6.9=156.1解得:x=39∴小王家这个月用水39吨.(3)设小王家11月份用水y吨,当y≤17时,2.7y+2.7×17+3.7×13+(50﹣30﹣y)×6.9=215.8﹣30解得y=11当17<y<30时,17×2.7+(y﹣17)×3.7+2.7×17+3.7×13+(50﹣30﹣y)×6.9=215.8﹣30解得y=9.125(舍去)∴小王家11月份用水11吨.。

华师大版七年级(上)数学期末试题(4)

华师大版七年级(上)数学期末试题(4)

华师大版2012—2013学年(上期)七年级数学试题姓名一、选择题(每小题给出的四个选项中只有一个正确答案,请把表示正确答案的字母填在下列对应题号的表格内;本题10个小题,每小题2分,共20分). 1. 3-的绝对值是( ) A.13- B.13 C.3 D.3-2.今年国庆节期间,全国高速公路7座以下小车免费通行.国庆节期间峨眉山共接待游客人数大约63.9万人次,较去年同期增长32.15%. 63.9万人次用科学记数法表示为( ) A. 639000 B. 6.39×105 C. 63.9×105 D. 63.9×104 3.圆柱的表面展开图可能是下列的( )4.下列说法中,正确的是( )A.任何有理数的平方都是正数B.任何一个整数都有倒数C.一个正数与一个负数互为相反数D.零是自然数,但不是正整数 5.某粮店出售的三种品牌的面粉,袋上分别标有质量为(250.2)kg ±、(250.3)kg ±、(250.5)kg ±的字样,从中任意拿出两袋,它们的质量最多..相差( ) A.1kg B.0.8kg C.0.7kg D.0.5kg 6.下列各式与a b c --的值不等..的是( ) A. ()a b c -+ B. ()a b c --+ C. ()()a b c +-+- D. ()()a b c -++-7.如果A 和B 都是四次多项式,则A B +一定是( )A.八次多项式B.四次多项式C.次数不低于4次的多项式D.次数不高于4次的多项式 8.如图(1),C 、D 为线段AB 上的两点,M 是AC 的中点,N 是BD 的中点,如果MN x =,•CD y =,那么线段AB 的长为( ) A. 2()x y - B. 2x y - C. 2()x y + D.2x y +9.已知c b a 、、三个数在数轴上对应点的位置如图(2)所示,下列几个判断:①b c a <<, ②b a <-,③0>+b a ,④0<-a c ,⑤()()0b c a c -⨯->中,正确的个数是( ) A. 1个 B.2个 C. 3个 D.4个10.若238x y -=,6419x y +=,则162x y +的值为( )A.54B.27C.11-D.22-二、填空题(本大题8个小题,每小题2分,共16分.请把答案填在题中的横线上). 11.请写出一个三次二项式:___________________________________.12.“一个数a 与5的和的平方”,用代数式表示为:___________________________.AB C D ABCDMN图(1)13.如果42y x n 与my x 33-的和是单项式,则n m -=_____________.14.如图(3),直线a 、b 被c 所截,若∠1=50°,那么∠2=____︒时,a ∥b. 15.数轴上到原点的距离等于2.5的点表示的有理数是__________________.16.下列结论:①一个角一定比它的补角小;②等角的余角相等;③两点之间线段最短;④相等的角是对顶角;其中正确的有________________(只填番号). 17.钟表上1点20分,时针与分针的夹角为_____________.18.图(4)是一个电子青蛙游戏盘,已知:7AB =,6BC =,5AC =;电子青蛙在AB 边上的0P 处,03BP =.第一步从0P 跳到1P 处,使10BP BP =,第二步从1P 跳到2P 处,使21CP CP =,第三步从2P 跳到3P 处,使32AP AP =第2013步落点为2013P ,则A 与2013P 之间的距离为_______. 三、(本题3个小题,每小题6分,共18分).19.计算:123(2)-⨯-. 20.计算:2232512323⎛⎫⎛⎫-÷-⨯--- ⎪ ⎪⎝⎭⎝⎭.21.化简:222232(5)7a b a b ab ab ---. 四、(本大题2个小题,每小题7分,共14分).22.先化简,再求值:22225(1)(135)x y xy xy x y ---+-,其中14x =,1y =-.P 03 图(4)1 2图(3)23. 如图(5)所示,O 是直线AB 上一点,OC 为任一条射线,OD 平分∠AOC ,OE 平分∠BOC . (1)图中∠BOE 的补角是___________(只需直接填写出一个即可).(2)若∠50AOD =︒,求∠EOC 的度数.五、(本大题2个小题,每小题8分,共16分). 24.一组数,124-;0.5-;1;2-; (1)请画出数轴,并把表示各数的点在数轴上表示出来.(2)求这组数中最大数与最小数的差.25.阅读下题,并在括号内填写适当的结论或理由.如图(6)所示,AB ∥CD ,155∠=︒,2125∠=︒,求证:AF ∥CE . 证明:∵AB ∥______,∠1=55°(已知),∴ ∠AMC=∠1( ),∴∠AMC=55°(等量代换)又∵∠2=125°(已知)∴∠2 + = ° ∴ ∥CE ( ). 六、(本大题2个小题,每小题8分,共16分).26.图(7)是一个由若干个小正方体组成的立体图形,请你画出该图形的三视图.主视图 左视图 俯视图A O D CB E图(5) A B C D EF M 12图(6)正面图(7)27.已知,AB ∥CD .设M 、N 分别是AB 和CD 上的动点,P 为平面上一点(不在直线AB 、CD上),连结PM 、PN ,已知PM ⊥PN .(1)当P 在AB 与CD 之间,如图(8)甲,探究∠AMP 与∠CNP 之间的关系,并说明理由. (2)当P 在AB 与CD 之外,利用图(8)乙,探究∠AMP 与∠CNP 之间的关系(只写出结论即可).附加题、(本大题2个小题,1小题6分,2小题4分,共10分)友情提示:请同学们在解答上面的考题后估计一下你的得分情况,如果你全卷得分低于60分(及格线),则本题得分计入全卷总分,但计入总分后,全 卷得分不得超过60分;如果你全卷得分已达到或超过60分,则本题得分不计入全卷总分.1.(1)计算:3(2)+-. (2)把多项式23253y y y +--按字母降幂排列.2.如图(9),若OD 平分∠AOB , 且∠AOB =54°, 求∠BOD 的度数.BC MNA 图(8)乙 AOBD图(9)B CN图(8)甲。

七年级数学上册期末试卷【含答案】

七年级数学上册期末试卷【含答案】

七年级数学上册期末试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个数是质数?A. 21B. 23C. 27D. 302. 一个等腰三角形的底边长为10厘米,腰长为12厘米,则该三角形的周长是?A. 22厘米B. 32厘米C. 42厘米D. 52厘米3. 下列哪个数是偶数?A. 101B. 111C. 121D. 1314. 一个长方体的长、宽、高分别是8厘米、6厘米和4厘米,则该长方体的体积是?A. 192立方厘米B. 200立方厘米C. 208立方厘米D. 216立方厘米5. 下列哪个分数是最简分数?A. 2/4B. 3/6C. 4/8D. 5/10二、判断题(每题1分,共5分)1. 两个质数相乘,其积一定是合数。

()2. 等边三角形的三条边都相等。

()3. 一个数的倍数一定比这个数大。

()4. 两个长方体的体积相等,则它们的长、宽、高一定相等。

()5. 分子和分母相同的分数是最简分数。

()三、填空题(每题1分,共5分)1. 1千米等于______米。

2. 一个等腰三角形的底边长为10厘米,腰长为12厘米,则该三角形的周长是______厘米。

3. 下列哪个数是偶数?______4. 一个长方体的长、宽、高分别是8厘米、6厘米和4厘米,则该长方体的体积是______立方厘米。

5. 下列哪个分数是最简分数?______四、简答题(每题2分,共10分)1. 请简述质数的定义。

2. 请简述等腰三角形的性质。

3. 请简述偶数的定义。

4. 请简述长方体的体积公式。

5. 请简述最简分数的定义。

五、应用题(每题2分,共10分)1. 一个长方形的长是10厘米,宽是5厘米,求该长方形的面积。

2. 一个等边三角形的边长是12厘米,求该三角形的周长。

3. 两个质数相乘,其积一定是合数。

请举例说明。

4. 一个数的倍数一定比这个数大。

请举例说明。

5. 分子和分母相同的分数是最简分数。

请举例说明。

七年级数学上册期末试卷(附含答案)

七年级数学上册期末试卷(附含答案)

七年级数学上册期末试卷(附含答案)(满分: 120分考试时间: 120分)一选择题(本题共计10 小题每题3 分共计30分)1. 下列各数: 0 −5 −(−7) −|−8| (−4)2中负数有()A.1个B.2个C.3个D.4个2. 若a+a<0 aa<0 则()A.a>0B.a<0C.a b两数一正一负且正数的绝对值大于负数的绝对值D.a b两数一正一负且负数的绝对值大于正数的绝对值3. 2018年上半年长沙市实现农林牧渔业总产值1958000万元数据1958000用科学记数法表示()A.19.58×104B.0.1958×107C.1.958×106D.1.958×10104. 如果水位升高6a时水位变化记为+6a 那么水位下降6a时水位变化记为()A.−3 mB.3 mC.6 mD.−6 m5. 下列说法错误的是()A.−2的相反数是2B.3的倒数是13C.(−3)−(−5)=2D.−1104这三个数中最小的数是06. 有理数−1 −2 0 3中最小的数是()A.−1B.−2C.0D.37. 若a和a都是4次多项式则a+a一定是()A.8次多项式B.4次多项式C.次数不高于4次的整式D.次数不低于4次的整式8. 数轴上表示整数的点称为整点某数轴的单位长度是1厘米若在这个数轴上随意画一条长15厘米的线段aa 则aa盖住的整数点的个数共有()个.A.13或14个B.14或15个C.15或16个D.16或17个9. 如图下列式子成立的是()/A.a−b>0B.a+b<0C.a−b<0D.b−1<010. 已知表示实数a a的点在数轴上的位置如图所示下列结论错误的是()/A.|a|<1<|b|B.1<−a<bC.1<|a|<bD.−b<a<−1二填空题(本题共计4 小题每题3 分共计12分)11. 8的相反数是________ −112的倒数是________ ________的绝对值是1 ________的立方是8.12. 在月球表面白天阳光垂直照射的地方温度高达+127∘a 夜晚温度可降至−183∘a.则月球表面昼夜的温差为________∘a.13. 若|a|=5 a=−2 且aa>0 则a+a=________.14. 某公交车原坐有22人经过4个站点时上下车情况如下(上车为正下车为负): (+4, −8) (−5, +6) (−3, +2) (+1, −7) 则车上还有________人.三解答题(本题共计8 小题共计78分)15.(8分) 某班抽查了10名同学的期末成绩以80分为基准超出的记作为正数不足的记为负数记录的结果如下: +8 −3 +12 −7 −10 −3 −8 +1 0 +10.1这10名同学中最高分数是多少?最低分数是多少?2这10名同学的平均成绩是多少.(1)根据记录的数据可知该店前三天共销售该品牌儿童滑板车________辆(2)根据记录的数据可知销售量最多的一天比销售量最少的一天多销售________辆3本周实际销售总量达到了计划数量没有?4该店实行每日计件工资制每销售一辆车可得40元若超额完成任务则超过部分每辆另奖15元少销售一辆扣20元那么该店铺的销售人员这一周的工资总额是多少元?17.(10分) 中国渔政船在小岛附近东西航向上巡航从小岛出发如果规定向东航行为正巡航记录为: (单位: 海里)+80 −40 +60 +75 −65 −80 此时(1)渔政船在出发点哪个方向?你知道它离出发点有多远?(2)如果轮船巡航每海里耗油0.2吨请你替船长算一算一共耗多少吨油?18.(10分)请画一条数轴然后在数轴上把下列各数表示出来: 312−4 −2120 −1 1 并把这些数用“<”号连接.19.(10分) 计算:(1)|−0.75|−(−0.25)+|−18|+78(2)−23−2×(−3)+2÷5−(−1)2019.20.(10分)某人用460元购买8套不同的儿童服装再以一定的价格出售如果每套儿童服装以65元的价格为标准超出的记作正数不足的记为负数那么售价(单位: 元)分别为+2 −3 +2 +1 −2 −1 0 −2. 当卖完这8套服装后此人是盈利还是亏损?盈利或亏损多少元?21.(10分) 如图在平面直角坐标中直线aa分别交a轴a轴于点aa,0和点a0,a且a a满足a2+4a+4+|2a+a|=0./(1)a=________ a=________.(2)点a在直线aa的右侧且∠aaa=45∘:①若点a在a轴上则点a的坐标为_________②若△aaa为直角三角形求点a的坐标.22.(10分)问: 该服装店在售完这30件a恤后赚了多少钱?参考答案一选择题(本题共计10 小题每题 3 分共计30分)1.【答案】B【考点】正数和负数的识别【解析】先化简各数再根据小于0的数是负数求解.【解答】解: ∵0既不是正数也不是负数−5<0−(−7)=7>0−|−8|=−8<0(−4)2=16>0∴负数共有2个.故选a.2.【答案】D【考点】有理数的乘法有理数的加法【解析】先根据aa<0 结合乘法法则易知a a异号而a+a<0 根据加法法则可知负数的绝对值大于正数的绝对值解可确定答案.【解答】解: ∵aa<0a a b异号又a a+b<0∴负数的绝对值大于正数的绝对值.故选a.【答案】C【考点】科学记数法--表示较大的数【解析】此题暂无解析【解答】解: 1958000用科学记数法可表示为1.958×106.故选a.4.【答案】D【考点】正数和负数的识别【解析】首先审清题意明确“正”和“负”所表示的意义再根据题意作答.【解答】因为上升记为+ 所以下降记为-所以水位下降6a时水位变化记作−6a.5.【答案】D【考点】倒数有理数的减法有理数大小比较相反数【解析】根据相反数的概念倒数的概念有理数的减法法则和有理数的大小比较进行判断即可.【解答】解:−2的相反数是2 a正确3的倒数是3a正确(−3)−(−5)=−3+5=2 a正确−11 0 4这三个数中最小的数是−11 a错误.故选a.6.【答案】B【考点】有理数大小比较有理数的概念及分类【解析】先求出|−1|=1 |−2|=2 根据负数的绝对值越大这个数就越小得到−2<−1 而0大于任何负数小于任何正数则有理数−1 −2 0 3的大小关系为−2<−1<0<3.【解答】解: ∵|−1|=1 |−2|=2a −2<−1∴有理数−1 −2 0 3的大小关系为−2<−1<0<3.故选a.7.【答案】C【考点】多项式的项与次数【解析】若a和a都是4次多项式通过合并同类项求和时结果的次数定小于或等于原多项式的最高次数.【解答】解: 若a和a都是4次多项式则a+a的结果的次数一定是次数不高于4次的整式.故选a.8.【答案】C【考点】数轴【解析】某数轴的单位长度是1厘米若在这个数轴上随意画出一条长为15厘米的线段aa 则线段aa盖住的整点的个数可能正好是16个也可能不是整数而是有两个半数那就是15个.【解答】解:依题意得:①当线段aa起点在整点时覆盖16个数②当线段aa起点不在整点即在两个整点之间时覆盖15个数.故选a.9.【答案】C【考点】有理数大小比较数轴【解析】根据a a两点在数轴上的位置判断出其取值范围再对各选项进行逐一分析即可.【解答】解: ∵a a两点在数轴上的位置可知: −1<a<0 a>1 |a|<|a|a a−b<0a+b>0b−1>0故a a a错误故a正确.故选a.10.【答案】A【考点】数轴【解析】首先根据数轴的特征判断出a −1 0 1 a的大小关系然后根据正实数都大于0 负实数都小于0 正实数大于一切负实数两个负实数绝对值大的反而小逐一判断每个选项的正确性即可.【解答】解: 根据实数a a在数轴上的位置可得a<−1<0<1<aa 1<|a|<|b|a 选项A错误a 1<−a<ba 选项B正确a 1<|a|<ba 选项C正确a −b<a<−1∴选项D正确.故选D.二填空题(本题共计4 小题每题3 分共计12分)11.【答案】−8,−2,±1,23【考点】立方根的实际应用相反数绝对值倒数【解析】分别根据相反数绝对值倒数立方的概念即可求解. 【解答】解:8的相反数是−8−112的倒数是−23±1的绝对值是12的立方是8.12.【答案】310【考点】正数和负数的识别【解析】首先审清题意明确“正”和“负”所表示的意义再根据题意作答.【解答】解: 白天阳光垂直照射的地方温度高达+127∘a 夜晚温度可降至−183∘a所以月球表面昼夜的温差为:127∘a−(−183∘a)=310∘a.故答案为:310.13.【答案】−7【考点】绝对值【解析】考查绝对值的意义及有理数的运算根据|a|=5 a=−2 且aa>0 可知a=−5 代入原式计算即可.【解答】解: ∵|a|=5 a=−2 且aa>0∴a+a=−5−2=−7.故答案为: −7.14.【答案】12【考点】有理数的加法正数和负数的识别【解析】根据有理数的加法可得答案.【解答】解: 由题意得22+4+(−8)+6+(−5)+2+(−3)+1+(−7)=12(人)故答案为: 12.三解答题(本题共计8 小题共计78分)15.【答案】解:1最高分为: 80+12=92(分)最低分为: 80−10=70(分)(2)8−3+12−7−10−3−8+1+0+10=8+12+1+10+0−3−7−10−3−8=31−31=0所以10名同学的平均成绩80+0=80(分).【考点】算术平均数正数和负数的识别【解析】(1)根据正负数的意义解答即可(2)求出所有记录的和的平均数再加上基准分即可.1最高分为: 80+12=92(分)最低分为: 80−10=70(分)(2)8−3+12−7−10−3−8+1+0+10=8+12+1+10+0−3−7−10−3−8=31−31=0所以10名同学的平均成绩80+0=80(分).16.【答案】29629(3)+4−3−5+14−8+21−6=17>0∴本周实际销量达到了计划数量.(4)(17+100×7)×40+(4+14+21)×15+(−3−5−8−6)×20=28825(元).答:该店铺的销售人员这一周的工资总额是28825元.【考点】整式的混合运算正数和负数的识别【解析】(1)根据前三天销售量相加计算即可(2)将销售量最多的一天与销售量最少的一天相减计算即可(3)将总数量乘以价格解答即可.【解答】解:14−3−5+300=296.故答案为: 296.221+8=29.故答案为:29.(3)+4−3−5+14−8+21−6=17>0∴本周实际销量达到了计划数量.(4)(17+100×7)×40+(4+14+21)×15+(−3−5−8−6)×20=28825(元).答:该店铺的销售人员这一周的工资总额是28825元.17.【答案】解: (1)80+(−40)+60+75+(−65)+(−80)=30(海里).答: 渔政船在出发点东方向它离出发点有30海里.(2)(80+|−40|+60+75+|−65|+|−80|)×0.2=80(吨).答:一共耗80吨油.【考点】有理数的混合运算绝对值正数和负数的识别【解析】(1)根据有理数的加法可得答案(2)根据行车就耗油可得耗油量.【解答】解: (1)80+(−40)+60+75+(−65)+(−80)=30(海里).答: 渔政船在出发点东方向它离出发点有30海里.(2)(80+|−40|+60+75+|−65|+|−80|)×0.2=80(吨).答:一共耗80吨油.18.【答案】解: 如图:/用“<”号连接为−4<−212<−1<0<12<1<3.【考点】有理数大小比较数轴【解析】再在数轴上表示出来数轴左边的数比右边的数小.【解答】解:如图:/用“<”号连接为−4<−212<−1<0<12<1<3.19.【答案】解: (1)原式=0.75+0.25+18+78=1+1=2. (2)原式=−8+6+2+15=−1+2 5=−35.【考点】有理数的混合运算有理数的加减混合运算绝对值【解析】此题暂无解析【解答】解: (1)原式=0.75+0.25+18+78=1+1=2.(2)原式=−8+6+25+1=−1+2 5=−35.20.【答案】解: (+2−3+2+1−2−1+0−2)+65×8−460=517−460=57(元)∵57>0∴当卖完这8套服装后此人是盈利盈利57元.【解析】有理数的加法: 同号取相同符号并把绝对值相加异号两数相加取绝对值较大的数的符号用较大绝对值减去较小绝对值. 相反数相加和为零.【解答】解:(+2−3+2+1−2−1+0−2)+65×8−460=517−460=57(元)∵57>0∴当卖完这8套服装后此人是盈利盈利57元.21.【答案】−2,4(2)①(4,0)a 点P在x轴上则OP=OB=4a 点P的坐标为(4,0).②∠BAP=90∘时过点P作PH⊥x轴于点H则∠HAP+∠BAH=90∘,∠OBA+∠BAH=90∘∴∠aaa=∠aaa.又∵∠aaa=45∘, ∠aaa=90∘a ∠APB=∠ABP=45∘a AP=AB又a ∠BOA=∠AHP=90∘a △AOB≅△PHA(AAS)a PH=AO=2,AH=OB=4∴aa=aa−aa=2.故点a的坐标为(2,−2)当∠ABP=90∘时作BM//x轴PM⊥BM于点M可证△AOB≅△PMB(AAS)∴aa=aa=2, aa=aa=4a 点P的坐标为(4,2)故点a的坐标为(2,−2)或(4,2).【考点】全等三角形的性质与判定非负数的性质: 偶次方非负数的性质: 绝对值【解析】解: (1)由题意得得a2+4a+4+|2a+a|=a+22+|2a+a|=0所以a+2=02a+a=0解得a=−2 a=4. 故答案为:−2 4.【解答】解:(1)由题意得a2+4a+4+|2a+a|=a+22+|2a+a|=0所以a+2=02a+b=0解得a=−2 a=4.故答案为: −2 4.(2)①(4,0)a 点P在x轴上则OP=OB=4a 点P的坐标为(4,0).②∠BAP=90∘时过点P作PH⊥x轴于点H则∠HAP+∠BAH=90∘,∠OBA+∠BAH=90∘∴∠aaa=∠aaa.又∵∠aaa=45∘, ∠aaa=90∘a ∠APB=∠ABP=45∘a AP=AB又a ∠BOA=∠AHP=90∘a △AOB≅△PHA(AAS)a PH=AO=2,AH=OB=4∴aa=aa−aa=2.故点a的坐标为(2,−2)当∠ABP=90∘时作BM//x轴PM⊥BM于点M可证△AOB≅△PMB(AAS)∴aa=aa=2, aa=aa=4a 点P的坐标为(4,2)故点a的坐标为(2,−2)或(4,2).22.【答案】解: 该服装店卖出货物所得钱数为:47×30+[(+3)×7+(+2)×6+(+1)×3+0×5+(−1)×4+(−2)×5] =1410+22=1432(元)1432−32×30=1432−960=472(元).答: 该服装店赚472元.【考点】有理数的混合运算正数和负数的识别【解答】解: 该服装店卖出货物所得钱数为:47×30+[(+3)×7+(+2)×6+(+1)×3+0×5+(−1)×4+(−2)×5] =1410+22=1432(元)1432−32×30=1432−960=472(元).答:该服装店赚472元.。

七年级(上)期末目标检测数学试卷(4套)及答案

七年级(上)期末目标检测数学试卷(4套)及答案

D.C.B.A.七年级(上)期末目标检测数学试卷(一)一、精心选一选(每题2分,共20分)1.在跳远测试中,及格的标准是4.00米,王菲跳出了4.12米,记为+0.12米,何叶跳出了3.95米,记作( )A.+0.05米B.-0.05米C.+3.95米D.-3.95米 2.用大小一样的正方体搭一几何体(左图), 该几何体的左视图是右图中的( )3.小红家分了一套住房,她想在自己的房间的墙上钉一根细木条,挂上自己喜欢的装饰物,那么小红至少需要几根钉子使细木条固定( )A.1根B.2根C.3根D.4根 4.下列各式中运算正确的是( )A.156=-a aB.422a a a =+C.532523a a a =+D.b a ba b a 22243-=-5.我国是一个严重缺水的国家,大家应倍加珍惜水资源,节约用水。

据测试,拧不紧的水龙头每秒钟会滴下2滴水,每滴水约0.05毫升。

若每天用水时间按2小时计算,那么一天中的另外22小时水龙头都在不断的滴水. 请计算,一个拧不紧的水龙头,一个月(按30天计算)浪费水( ) A. 23760毫升B. 2.376×105毫升C. 23.8×104毫升D. 237.6×103毫升6.某同学解方程5x -1 +3时,把 处数字看错得=x ,他把 处看成了( )A.3 B.-9 C.8 D.-8 7.下列展开图中,不能围成几何体的是( )8.关于x 的方程m x 342=-和m x =+2有相同的解,则m 的值是( ) A. -8B. 10C. -10D. 89.某商场有两件进价不同上衣均卖了80元,一件盈利60%,另一件亏本20%,这次买卖中商家( ) A.不赔不赚 B.赚了8元 C.赚了10元 D.赚了32元10.一列数:0,1,2,3,6,7,14,15,30,__ __,_____,____这串数是由小明按照一定规则写下来的,他第一次写下“0,1”,第二次按着写“2,3”,第三次接着写“6,7”第四次接着写“14,15”,就这样一直接43-着往下写,那么这串数的最后三个数应该是下面的( )A .31,32,64B .31,62,63C .31,32,33D .31,45,46 二、细心填一填(每题3分,共30分)11.我市12月中旬的一天中午气温为5℃,晚6时气温下降了8℃,则晚6时气温为______。

最新七年级上学期期末数学试卷 (4)

最新七年级上学期期末数学试卷 (4)

2012——2013学年度第一学期期末试卷初 一 数 学(时间:120分钟 总分:120分)一、选择题(每小题3分,共30分)1、某市2013年元旦的最高气温为2℃,最低气温为-8℃,那么这天的最高气温 比最低气温高 ( )A .-10℃B .-6℃C .6℃D .10℃ 2.-6的相反数为( ) A .6 B .16C .-16D .-63.“把弯曲的河道改直,就能缩短路程”,其中蕴含的数学道理是( )A .两点之间线段最短B .直线比曲线短C .两点之间直线最短D .两点确定一条直线4. 过度包装既浪费资源又污染环境.据测算,如果全国每年减少10%的过度包装纸用量,那么可减排二氧化碳3120000吨.把数3120000用科学记数法表示为( )A.3.12×105 B.3.12×106 C.31.2×105 D .0.312×1075.若是方程260x m +-=的解,则m 的值是A .-4B .4C .-8D .86.下列计算正确的是( ) A .277a a a =+ B .235=-yy C .y x y x y x 22223=- D.ab b a 523=+7. 如图,将长方形纸片ABCD 的角C 沿着GF 折叠(点F 在BC 上,不与B ,C 重合),使点C 落在长方形内部点E 处,若FH 平分∠BFE , 则∠GFH 的度数α是 ( ) A .90180α<<B.090α<<C .90α=D .α随折痕GF 位置的变化而变化8. 图1是一个正方体的表面展开图,则原正方体中与“建”字所在的面相对的面上标的字是( )A .美B .丽C .北D .京 9. 实数a 、b 在数轴上的位置如图所示,则化简a b a +-的结果为( ) A. -b a +2 B. b - C. b D. b a --2BAA______________________学校 班级__________________姓名__________________学号_____________________ _______________________________________________________________________________________________________________________ ………………………………○………………○…密…………○………○…封……○………○…线……○………○………………………… __________________________________________________密 封 线 内 不 得 答 题______________________________________________DCB OA10. A 、B 两地相距450千米,甲、乙两车分别从A 、B 两地同时出发,相向而行,已知甲车速度为120千米/时,乙车速度为80千米/时,经过t 小时两车相距50千米,则t 的值是 ( )A. 2B. 2或2.25C. 2.5D. 2或2.5 二、填空题:(每小题3分,共30分) 11. 比较大小:32-________ 3.4- 12.某商店上月收入为a 元,本月的收入比上月的2倍还多10元,本月的收入是_____ ___元. 13. 若单项式2mxy 与212x y -是同类项,则m =________.14.如图,∠AOC 和∠DOB 都是直角,如果∠DOC =35°,那么∠AOB 的补角= .15. 若23(2)0,yy x x -++=则的值为 .16. 若数轴上点A 表示的数是-3,则与点A 相距2个单位长度的点B 表示的数是17. 已知48AOB ∠=︒,以OB 为一边画一个20BOC ∠=︒,则AOC ∠= . 18. 若记号“*”表示以下运算:a*b=2a b +,则(1*2)*(-3)=____19、计算48°39′+67°31′=20、近似数4.52万精确_________位, 0.01259精确到0.001的近似数是_________ 三、解答题:(本大题共16分) 21. 计算:(每小题4分,共8分)(1)2)4(2)3(32÷--⨯-. (2)313(-+)(24)468-⨯-22. 解方程:(每小题4分,共8分)(1)2(1)(25)x x x +=-- (2)321223x x +--=四、解答题: 23. 如果方程42832x x -+-=-的解与方程4(31)621x a x a -+=+-的解相同,求式子1a a-的值 .(本题4分)24. 先化简,再求值:(本题4分))3(2)52(4222xy x y xy x xy ++-+-其中 x =-2,y =125. 已知线段AB ,反向延长AB 到点C ,使12AC AB =.若点D 是BC 中点,3CD cm =,求AB 、AD 的长.(要求:正确画图给2分)(本题6分)26. 甲乙两人承包铺地砖任务,若甲单独做需20小时完成,乙单独做需要12小时完成.甲乙二人合做6小时后,乙有事离开,剩下的由甲单独完成.问甲还要几个小时才可完成任务? (本题10分)27、(本题9分)如图,AC是∠BAD的角平分线,∠BAD=120°;点C是线段BD的中点,且CD=3cm;又知道∠1与∠3互余,请根据以上条件计算:(本题10分)求(1)、∠1的度数,∠3的度数(2)、线段BD的长。

期末达标测试卷(含答案)人教版(2024)数学七年级上册

期末达标测试卷(含答案)人教版(2024)数学七年级上册

人教版(2024)数学七年级上册期末达标测试卷(本试卷满分120分)一、选择题(本大题共10小题,每小题3分,共30分)1.《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是:今有两数若其意义相反,则分别叫做正数和负数.如果收入3元记作+3元,那么支出5元,记作( ) A. -5元B. -3元C. +5元D. +3元2. 中国空间站俯瞰地球的高度约为400 000米,将400 000用科学记数法表示应为( ) A. 4×105B. 4×106C. 40×104D. 0.4×1063. 如图1,用圆规比较两条线段的大小,下列结论正确的是( ) A. AB >AC B. AB =ACC. AB <ACD. 没有刻度尺,无法确定4. 下列运算正确的是( ) A. 2+(-3)=5B. 2a +3b =5abC. 5--=5D. -xy +yx =05. 下列利用等式的性质变形正确的是( ) A. 若3x =4,则x =12 B. 若14x =12,则x =3 C. 若x -y =0,则x =-yD. 若-2x -6=0,则-2x =66. 若锐角α的补角是140°,则锐角α的余角是( ) A. 30°B. 40°C. 50°D. 60°7. 已知线段AB =3 cm ,BC =1 cm ,且A ,B ,C 三点共线,则线段AC 的长度是( ) A. 2 cmB. 4 cmC. 2 cm 或4 cmD. 不能确定8. 若x -3y =-4,则(x -3y )2+2x -6y -10的值为( ) A. 14B. -2C. -18D. 29. 如图2是一个无盖的正方体纸盒,它的下底面标有字母“M ”,沿图中的粗线将其剪开展成平面图形,则这个平面展开图是( )ABCD图1图2 图310. 已知有理数a,b,c在数轴上对应点的位置如图3所示,化简a c a b b c-++--的结果为()A. 2bB. -2aC. 2a-2cD. -2b-2c二、填空题(本大题共6小题,每小题4分,共24分)11. 比较大小:45-_________34-.(填“(”“(”或“=”(12. 装电线杆时只要确定两根电线杆,就能确定同一行的电线杆所在的直线,理由是________________.13. 分别从正面、左面、上面观察图4所示的立体图形,得到的平面图形完全相同的是(填序号).图414. 若2a2b m与12-a n b3是同类项,则n m=.15. 某商场购进一批服装,每件服装销售的标价为400元,由于换季滞销,商场决定将这种服装按标价的六折销售.若打折后每件服装仍能获利20%16. 如图5所示的运算程序中,若开始输入的x值为5,则第1次输出的结果为8,第2次输出的结果为4,…,第2023图5三、解答题(本大题共7小题,共66分)17. (每小题4分,共8分)计算:(2(2(2a2+9b(-(-4a2+9b(.18. (6分19. (8分20. (10分)((6(B(C两点把线段AD分成2∶3∶4三部分,且CD=20.(1)求线段AD的长;(2)若P是AD的中点,Q是CD的中点,求线段PQ的长.图621. (10分)(((((((((((((a(((((((((((3((1(((((((((((5.(1(((a(((((这个(((((2((((((((((((((((((((((((((((((((((((((((22.(12分)甲、乙两班学生到集市上购买苹果,苹果的价格如下表:甲班分两次共购买苹果80千克(第二次多于第一次),共付185元,乙班则一次购买苹果80千克.(1)乙班比甲班少付多少元?(2)甲班第一次、第二次分别购买苹果多少千克?23. (12分)如图7-①,把一副三角板拼在一起,边OA,OC与直线EF重合,其中∠AOB=45°,∠COD=60°.此时易得∠BOD=75°.(1)如图7-②,三角板COD固定不动,将三角板AOB绕点O以每秒5°的速度顺时针开始旋转,在转动过程中,三角板AOB一直在∠EOD的内部,设三角板AOB运动时间为t秒.①当t=2时,∠BOD=°;②当t为何值时,∠AOE=2∠BOD?(2)如图7-③,在(1)的条件下,若OM平分∠BOE,ON平分∠AOD.①当∠AOE=20°时,∠MON=°;②请问在三角板AOB的旋转过程中,∠MON的度数是否会发生变化?如果发生变化,请说明理由;如果不发生变化,请求出∠MON的度数.①②③图7期末自我评估参考答案答案速览一、1. A 2. A 3. C 4. D 5. D 6. C 7. C 8. B 9. C 10. B二、11. ( 12. 两点确定一条直线13. ③14. 8 15. 200 16. 1三、17. 解:(2)原式=4a2+18b+4a2-9b=8a2+9b.18. 解:((=4m-6mn-n2+6mn=4m-n2.(m=1(n=-3((((=4×1-(-3(2=4-9=-5.19.把x=1代入方程x-2m=3x+4,得1-2m=3+4.解得m=-3.20. 解:(1)因为B(C两点把线段AD分成2∶3∶4三部分,所以AB∶BC∶CD=2∶3∶4. 设AB=2x,则BC=3x,CD=4x,AD=9x.因为CD=4x=20,所以x=5.所以AD=9x=45.21. 解:(1(由题意,得这个三位数的(((((a,(((((3a-1((((((a+5,所以这个((((100(a+5(+10(3a-1(+a=100a+500+30a-10+a=131a+490.(2((((((((为100a+10(3a-1(+a+5=100a+30a-10+a+5=131a-5.(((((((((((((((((131a+490-(131a-5(=131a+490-131a+5=495.22. 解:(1(185-2×80=25(元)(答:((比甲班((25(.(2(若甲班((购买苹果((30~50(((((185÷2.5=74≠80,不符合题意.(甲班(((购买苹果x(x<30)(((((((购买苹果(80-x(((.根据题意,得3x+2(80-x(=185.解得x=25. 80-x=55.因为0<25<30(55>50,所以符合题意.((甲班(((购买苹果25((((((购买苹果55((.23. 解:(1)①6550=10.5所以当t为10时,∠AOE=2∠BOD.(2)①37.5②∠MON的度数不发生变化.(∠AOB+∠BOD)因为∠AOE+∠BOD=75°,所以∠MON=37.5°.。

七年级数学上册期末考试试卷【含答案】

七年级数学上册期末考试试卷【含答案】

七年级数学上册期末考试试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个数是质数?A. 21B. 23C. 27D. 302. 如果一个三角形的两边长分别是8厘米和15厘米,那么第三边的长度可能是多少?A. 3厘米B. 10厘米C. 23厘米D. 17厘米3. 一个长方体的长、宽、高分别是10厘米、6厘米和4厘米,那么它的体积是多少?A. 240立方厘米B. 120立方厘米C. 60立方厘米D. 48立方厘米4. 下列哪个数是偶数?A. 101B. 102C. 103D. 1045. 一个等腰三角形的底边长是10厘米,腰长是12厘米,那么这个三角形的周长是多少?A. 22厘米B. 34厘米C. 44厘米D. 54厘米二、判断题(每题1分,共5分)1. 任何两个奇数相加的和都是偶数。

()2. 一个正方形的对角线长度等于它的边长。

()3. 0.3333……是一个无限循环小数。

()4. 一个等边三角形的三个角都是60度。

()5. 一个数的立方根只有一个。

()三、填空题(每题1分,共5分)1. 1千米等于______米。

2. 一个正方形的周长是24厘米,那么它的边长是______厘米。

3. 5的平方是______,5的立方是______。

4. 如果一个数的平方是49,那么这个数可能是______或______。

5. 两个质数相乘得到的数一定是______。

四、简答题(每题2分,共10分)1. 解释什么是素数。

2. 简述平行四边形的性质。

3. 什么是算术平均数?如何计算?4. 请解释概率的基本概念。

5. 什么是勾股定理?请简要说明。

五、应用题(每题2分,共10分)1. 一个长方形的长是15厘米,宽是8厘米,求这个长方形的面积。

2. 一个等腰三角形的底边长是10厘米,高是12厘米,求这个三角形的面积。

3. 一个数的平方是36,求这个数。

4. 计算下列分数的和:1/3 + 1/4 + 1/6。

2024年上海市宝山区七年级上学期数学期末试卷含详解

2024年上海市宝山区七年级上学期数学期末试卷含详解

上海市宝山区 2023-2024 学年七年级上学期数学期末考试试卷
一、选择题(本大题共 6 题,每题分.满分 12 分)
5 1. 在 1、 x2 、 b c 、 a 中,单项式的个数有( )
A. 1 个
B. 2 个
C. 3 个
D. 4 个
【答案】B
【分析】本题考查单项式的识别,由数与字母的乘积组成的代数式是单项式,单独一个数或一个字母也是单项式,
边形的面积 S (用 x 的代数式表示),并写出 x 的取值范围.
(3)在第(2)小题中,记 S△MBG S1 , S正方形MHNA S2 , S△NDE S3 ,如果六边形 BCDEFG 的面积等于长方形 ABCD 面积的两倍,求 S1 、 S2 、 S3 之间存在什么数量关系?并说明理由.
所以旋转中心有 3 个.
故选:C.
二、填空题(本大题共 12 题,每题 3 分,满分 36 分)
7. 多项式 2 ab2 4 a3b 1 的次数是___________.
3
3
3
【答案】4
【分析】本题主要考查了多项式的次数,几个单项式的和的形式叫做多项式,每个单项式叫做多项式的项,不含字
母的项叫做常数项,多项式里,次数最高项的次数叫做多项式的次数,据此可得答案.
【详解】解:将 a 和 b 都扩大为原来的 2 倍,得 2a2 2b 2
2a 2b 4a2 4b2
1 ab 2 a2 b2

故分式的值缩小为原来的 1 ,
2
故选:A.
6. 如图,正方形 CDEF 旋转后能与正方形 ABCD 重合,那么图形所在的平面内可以作为旋转中心的点的个数是
()
A. 1 个
【点睛】本题考查了列代数式,解决问题的关键是读懂题意,找到所求的量的等量关系.注意根据题中的关键词来

2022-2023年北师大版初中数学七年级上册期末考试检测试卷及答案(共五套)

2022-2023年北师大版初中数学七年级上册期末考试检测试卷及答案(共五套)

2022-2023年北师大版数学七年级上册期末考试测试卷及答案(一)一、选择题(本大题共10个小题,每小题3分,共30分)1.(3分)已知2x3y2与﹣x3m y2的和是单项式,则式子4m﹣24的值是()A.20B.﹣20C.28D.﹣22.(3分)﹣的相反数是()A.﹣2B.2C.﹣D.3.(3分)下列运算正确的是()A.2a+3b=5a+b B.2a﹣3b=﹣(a﹣b)C.2a2b﹣2ab2=0D.3ab﹣3ba=0 4.(3分)若2(a+3)的值与4互为相反数,则a的值为()A.﹣1B.﹣C.﹣5D.5.(3分)解方程4(x﹣1)﹣x=2(x+)步骤如下:①去括号,得4x﹣4﹣x=2x+1;②移项,得4x+x﹣2x=4+1;③合并同类项,得3x=5;④化系数为1,x=.从哪一步开始出现错误()A.①B.②C.③D.④6.(3分)由若干个相同的小正方体组合而成的一个几何体的三视图如图所示,则组成这个几何体的小正方形个数是()A.3B.4C.5D.67.(3分)下列画图的语句中,正确的为()A.画直线AB=10cmB.画射线OB=10cmC.延长射线BA到C,使BA=BCD.过直线AB外一点画一条直线和直线AB相交8.(3分)有理数,a、b在数轴上的位置如图所示,则a、b、﹣b、﹣a的大小关系是()A.b<﹣a<a<﹣b B.b<a<﹣b<﹣aC.b<﹣b<﹣a<a D.b<a<﹣a<﹣b9.(3分)儿子今年12岁,父亲今年39岁,()父亲的年龄是儿子的年龄的2倍.()A.5年后B.9年后C.12年后D.15年后10.(3分)已知:点A,B,C在同一条直线上,点M、N分别是AB、AC的中点,如果AB=10cm,AC=8cm,那么线段MN的长度为()A.6cm B.9cm C.3cm或6cm D.1cm或9cm二、填空题(本大题共10个小题,每小题3分,共30分)11.(3分)若一个角的余角是它的2倍,这个角的补角为.12.(3分)若关于x的方程3x+2b+1=x﹣(3b+2)的解是1,则b=.13.(3分)如果(a﹣2)x a﹣2+6=0是关于x的一元一次方程,那么a=.14.(3分)如图,用灰白两色正方形瓷砖铺设地面,第n个图案中白色瓷砖块数为.(用含n的代数式表示)15.(3分)单项式﹣的系数是,次数是.16.(3分)有理数a、b、c在数轴上的对应点如图所示,化简:|b|﹣|c+b|+|b ﹣a|=.17.(3分)如图,圈中有6个数按一定的规律填入,后因不慎,一滴墨水涂掉了一个数,你认为这个数可能是.18.(3分)如图,C,D,E是线段AB上的三个点,下面关于线段CE的表示:①CE=CD+DE;②CE=BC﹣EB;③CE=CD+BD﹣AC;④CE=AE+BC﹣AB.其中正确的是(填序号).三、解答题(共40分)19.(8分)计算(1)(﹣)×(﹣30);(2)1÷(﹣1)+0÷4﹣5×0.1×(﹣2)3.20.(8分)解方程(1)3(x+2)﹣1=x﹣3;(2)﹣1=.21.(8分)先化简,再求值:(4x2﹣4y2)﹣3(x2y2+x2)+3(x2y2+y2),其中x=﹣1,y=2.22.(8分)用大小两台拖拉机耕地,每小时共耕地30亩.已知大拖拉机的效率是小拖拉机的1.5倍,问小拖拉机每小时耕地多少亩?23.(14分)如图,P是线段AB上一点,AB=12cm,C、D两点分别从P、B出发以1cm/s、2cm/s的速度沿直线AB向左运动(C在线段AP上,D在线段BP上),运动的时间为ts.(1)当t=1时,PD=2AC,请求出AP的长;(2)当t=2时,PD=2AC,请求出AP的长;(3)若C、D运动到任一时刻时,总有PD=2AC,请求出AP的长;(4)在(3)的条件下,Q是直线AB上一点,且AQ﹣BQ=PQ,求PQ的长.参考答案:一、选择题(本大题共10个小题,每小题3分,共30分)1.(3分)下列运算正确的是()A.2a+3b=5a+b B.2a﹣3b=﹣(a﹣b)C.2a2b﹣2ab2=0D.3ab﹣3ba=0【解答】解:A、2a、3b不是同类项,不能合并,此选项错误;B、2a﹣3b=﹣(a﹣b),此选项错误;C、2a2b、﹣2ab2不是同类项,不能合并,此选项错误;D、3ab﹣3ba=0,此选项正确;故选:D2.(3分)已知2x3y2与﹣x3m y2的和是单项式,则式子4m﹣24的值是()A.20B.﹣20C.28D.﹣2【解答】解:由题意可知:2x3y2与﹣x3m y2是同类项,∴3=3m,∴m=1,∴4m﹣24=4﹣24=﹣20,故选(B)3.(3分)﹣的相反数是()A.﹣2B.2C.﹣D.【解答】解:根据相反数的含义,可得﹣的相反数是:﹣(﹣)=.故选:D.4.(3分)若2(a+3)的值与4互为相反数,则a的值为()A.﹣1B.﹣C.﹣5D.【解答】解:∵2(a+3)的值与4互为相反数,∴2(a+3)+4=0,∴a=﹣5,故选C5.(3分)解方程4(x﹣1)﹣x=2(x+)步骤如下:①去括号,得4x﹣4﹣x=2x+1;②移项,得4x+x﹣2x=4+1;③合并同类项,得3x=5;④化系数为1,x=.从哪一步开始出现错误()A.①B.②C.③D.④【解答】解:方程4(x﹣1)﹣x=2(x+)步骤如下:①去括号,得4x﹣4﹣x=2x+1;②移项,得4x﹣x﹣2x=4+1;③合并同类项,得x=5;④化系数为1,x=5.其中错误的一步是②.故选B.6.(3分)由若干个相同的小正方体组合而成的一个几何体的三视图如图所示,则组成这个几何体的小正方形个数是()A.3B.4C.5D.6【解答】解:综合三视图,我们可以得出,这个几何模型的底层有3+1=4个小正方体,第二有1个小正方体,因此搭成这个几何体模型所用的小正方体的个数是4+1=5个.故选:C.7.(3分)下列画图的语句中,正确的为()A.画直线AB=10cmB.画射线OB=10cmC.延长射线BA到C,使BA=BCD.过直线AB外一点画一条直线和直线AB相交【解答】解:A、错误.直线没有长度;B、错误.射线没有长度;C、错误.射线有无限延伸性,不需要延长;D、正确.故选D.8.(3分)有理数,a、b在数轴上的位置如图所示,则a、b、﹣b、﹣a的大小关系是()A.b<﹣a<a<﹣b B.b<a<﹣b<﹣a C.b<﹣b<﹣a<a D.b<a<﹣a<﹣b 【解答】解:根据图示,可得b<﹣a<a<﹣b.故选:A.9.(3分)儿子今年12岁,父亲今年39岁,()父亲的年龄是儿子的年龄的2倍.()A.5年后B.9年后C.12年后D.15年后【解答】解:设x年后父亲的年龄是儿子的年龄的2倍,根据题意得:39+x=2(12+x),解得:x=15.答:15年后父亲的年龄是儿子的年龄的2倍.故选D.10.(3分)已知:点A,B,C在同一条直线上,点M、N分别是AB、AC的中点,如果AB=10cm,AC=8cm,那么线段MN的长度为()A.6cm B.9cm C.3cm或6cm D.1cm或9cm【解答】解:(1)点C在线段AB上,如:点M是线段AB的中点,点N是线段BC的中点,MB=AB=5,BN=CB=4,MN=BM﹣BN=5﹣4=1cm;(2)点C在线段AB的延长线上,如:点M是线段AB的中点,点N是线段BC的中点,MB=AB=5,BN=CB=4,MN=MB+BN=5+4=9cm,故选:D.二、填空题(本大题共10个小题,每小题3分,共30分)11.(3分)若一个角的余角是它的2倍,这个角的补角为150°.【解答】解:设这个角为x°,则它的余角为(90﹣x)°,90﹣x=2x解得:x=30,180°﹣30°=150°,答:这个角的补角为150°,故答案为:150°.12.(3分)若关于x的方程3x+2b+1=x﹣(3b+2)的解是1,则b=﹣1.【解答】解:把x=1代入方程3x+2b+1=x﹣(3b+2)得:3+2b+1=1﹣(3b+2),解得:b=﹣1,故答案为:﹣1.13.(3分)如果(a﹣2)x a﹣2+6=0是关于x的一元一次方程,那么a=3.【解答】解:∵(a﹣2)x a﹣2+6=0是关于x的一元一次方程,∴a﹣2=1,解得:a=3,故答案为:3.14.(3分)如图,用灰白两色正方形瓷砖铺设地面,第n个图案中白色瓷砖块数为2+3n.(用含n的代数式表示)【解答】解:观察图形发现:第1个图案中有白色瓷砖5块,第2个图案中白色瓷砖多了3块,依此类推,第n个图案中,白色瓷砖是5+3(n﹣1)=3n+2.15.(3分)单项式﹣的系数是﹣,次数是3.【解答】解:∵单项式﹣的数字因数是﹣,所有字母指数的和=2+1=3,∴此单项式的系数是﹣,次数是3.故答案为:﹣,3.16.(3分)有理数a、b、c在数轴上的对应点如图所示,化简:|b|﹣|c+b|+|b ﹣a|=﹣b+c+a.【解答】解:由数轴可知:c<b<0<a,∴b<0,c+b<0,b﹣a<0,∴原式=﹣b+(c+b)﹣(b﹣a)=﹣b+c+b﹣b+a=﹣b+c+a,故答案为:﹣b+c+a17.(3分)如图,圈中有6个数按一定的规律填入,后因不慎,一滴墨水涂掉了一个数,你认为这个数可能是26或5.【解答】解:∵按逆时针方向有8﹣6=2;11﹣8=3;15﹣11=4;∴这个数可能是20+6=26或6﹣1=5.18.(3分)如图,C,D,E是线段AB上的三个点,下面关于线段CE的表示:①CE=CD+DE;②CE=BC﹣EB;③CE=CD+BD﹣AC;④CE=AE+BC﹣AB.其中正确的是①②④(填序号).【解答】解:如图,①CE=CD+DE,故①正确;②CE=BC﹣EB,故②正确;③CE=CD+BD﹣BE,故③错误;④∵AE+BC=AB+CE,∴CE=AE+BC﹣AB=AB+CE﹣AB=CE,故④正确;故答案是:①②④.三、解答题(共40分)19.(8分)计算(1)(﹣)×(﹣30);(2)1÷(﹣1)+0÷4﹣5×0.1×(﹣2)3.【解答】解:(1)原式=﹣10+2=﹣8;(2)原式=﹣1+0﹣0.5×(﹣8)=﹣1+4=3.20.(8分)解方程(1)3(x+2)﹣1=x﹣3;(2)﹣1=.【解答】解:(1)去括号,得:3x+6﹣1=x﹣3,移项,得:3x﹣x=﹣3﹣6+1,合并同类项,得:2x=﹣8,系数化为1,得:x=﹣4;(2)去分母,得:3(x+1)﹣6=2(2﹣x),去括号,得:3x+3﹣6=4﹣2x,移项,得:3x+2x=4+6﹣3,合并同类项,得:5x=7,系数化为1,得:x=.21.(8分)先化简,再求值:(4x2﹣4y2)﹣3(x2y2+x2)+3(x2y2+y2),其中x=﹣1,y=2.【解答】解:(4x2﹣4y2)﹣3(x2y2+x2)+3(x2y2+y2)=4x2﹣4y2﹣3x2y2﹣3x2+3x2y2+3y2=x2﹣y2,当x=﹣1,y=2时,原式=(﹣1)2﹣22=﹣3.22.(8分)用大小两台拖拉机耕地,每小时共耕地30亩.已知大拖拉机的效率是小拖拉机的1.5倍,问小拖拉机每小时耕地多少亩?【解答】解:设小拖拉机每小时耕地x亩,则大拖拉机每小时耕地(30﹣x)亩,根据题意得:30﹣x=1.5x,解得:x=12.答:小拖拉机每小时耕地12亩.23.(14分)如图,P是线段AB上一点,AB=12cm,C、D两点分别从P、B出发以1cm/s、2cm/s的速度沿直线AB向左运动(C在线段AP上,D在线段BP上),运动的时间为ts.(1)当t=1时,PD=2AC,请求出AP的长;(2)当t=2时,PD=2AC,请求出AP的长;(3)若C、D运动到任一时刻时,总有PD=2AC,请求出AP的长;(4)在(3)的条件下,Q是直线AB上一点,且AQ﹣BQ=PQ,求PQ的长.【解答】解:(1)根据C、D的运动速度知:BD=2,PC=1,则BD=2PC,∵PD=2AC,∴BD+PD=2(PC+AC),即PB=2AP,∵AB=12cm,AB=AP+PB,∴12=3AP,则AP=4cm;(2)根据C、D的运动速度知:BD=4,PC=2,则BD=2PC,∵PD=2AC,∴BD+PD=2(PC+AC),即PB=2AP,∵AB=12cm,AB=AP+PB,∴12=3AP,则AP=4cm;(3)根据C、D的运动速度知:BD=2PC∵PD=2AC,∴BD+PD=2(PC+AC),即PB=2AP,∴点P在线段AB上的处,即AP=4cm;(4)如图:∵AQ ﹣BQ=PQ ,∴AQ=PQ +BQ ;又∵AQ=AP +PQ ,∴AP=BQ ,∴PQ=AB=4cm ;当点Q'在AB 的延长线上时,AQ′﹣AP=PQ′,所以AQ′﹣BQ′=PQ=AB=12cm .综上所述,PQ=4cm 或12cm .2022-2023年北师大版数学七年级上册期末考试测试卷及答案(二)一.选择题(每小题3分)1.下列选项中,比3-小的数是()A.1- B.0 C.21 D.5-2.第14届中国(深圳)国际茶产业博览会在深圳会展中心展出一只如图所示的紫砂壶,从不同方向看这只紫砂壶,你认为是从上面看到的效果图是()3.下列各式符合代数式书写规范的是()A.a b B.7⨯a C.12-m 元 D.x 2134.2017年12月11日,深圳证券交易所成功招标发行深圳轨道交通专项债劵,用来建设地铁14号线,该项目估算资金总额约为39500000000元,将39500000000元用科学计数法表示为()A.1110395.0⨯元B.101095.3⨯元C.91095.3⨯元D.9105.39⨯元5.下列计算正确的是()A.2624a a a =+ B.ab ba ab =-67 C.ab b a 624=+ D.325=-a a 6.如图所示,能用∠AOB,∠O,∠1三种方法表示同一个角的图形的是()7.现实生活中“为何有人乱穿马路,却不愿从天桥或斑马线通过?”,请用数学知识解释图中这一现象,其原因为()A.两点之间线段的长度,叫做这两点之间的距离B.过一点有无数条直线C.两点确定一条直线D.两点之间,线段最短8.深圳市12月上旬每天平均空气质量指数(AQI)分别为:35,42,55,78,57,64,58,69,74,82,为了描述这十天空气质量的变化情况,最适合用的统计图是()A.折线统计图B.频数直方图C.条形统计图D.扇形统计图9.如图,AB=24,点C 为AB 的中点,点D 在线段AC 上,且AD:CB=1:3,则DB 的长度为()A.12B.18C.16D.2010.若2=x 是方程01424=-+m x 的解,则m 的值为()A.10B.4C.3D.-311.在如图所示的2018年元月份的月历表中,任意框出表中竖列上四个数,这四个数的和可能是()A.86B.78C.60D.10112.下列叙述:①最小的正整数是0;②36x π的系数是π6;③用一个平面去截正方体,截面不可能是六边形;④若AC=BC,则点C 是线段AB 的中点;⑤三角形是多边形;⑥绝对值等于本身的数是正数,其中正确的个数有()A.2B.3C.4D.5二、填空题(每小题3分)13.已知323y x m 和n y x 22-是同类项,则式子n m +的值是.14.在数轴上,与表示数1-的点的距离是三个单位长度的点表示的数是.15.某书店把一本新书按标价的八折出售,仍获利30%,若该书的进价为40元,则标价为元.16.如图所示的运算程序中,若开始输入的x 值为96,我们发现第1次输出的结果为48,第2次输出的结果为24,……,第2018次输出的结果为.三、解答题17.(本题15分)计算:(1);15)9()18(16--+--(2)-(;5324)8312761-⨯-+(3).6)5()2(322---⨯-+-18.(本题4分)先化简,再求值:),244(21)53(22----a a a a 其中a=31.19.(本题8分)解方程(1));3(1)2(2+-=+x x21.(本题5分):如图,∠AOC=21∠BOC=50°,OD 平分∠AOB,求∠AOB 和∠COD 的度数.22.(本题5分)深圳某小区停车场的收费标准如下:中型汽车的停车费为15元/辆,小型汽车的停车费为10元/辆.现在停车场有50辆中、小型汽车,期中中型汽车有x辆.(1)则小型汽车的车辆数为(用含x的代数式表示)(2)这些车共缴纳停车费580元,求中、小型汽车各有多少辆?23.(本题8分)如图,在数轴上点A表示的数a、点B表示数b,a、b满足|a-30|+(b+6)2=0.点O是数轴原点.(1)点A表示的数为__,点B表示的数为,线段AB的长为.(2)若点A与点C之间的距离表示为AC,点B与点C之间的距离表示为BC,请在数轴上找一点C,使AC=2BC,则点C在数轴上表示的数为.(3)现有动点P、Q都从B点出发,点P以每秒1个单位长度的速度向终点A移动;当点P移动到O点时,点Q才从B点出发,并以每秒3个单位长度的速度向右移动,且当点P到达A点时,点Q就停止移动,设点P移动的时间为t秒,问:当t为多少时,P、Q两点相距4个单位长度?参考答案2022-2023年北师大版数学七年级上册期末考试测试卷及答案(三)一、选择题(每题3分,共30分)1.在0,-2,1,5这四个数中,最小的数是()A.0B.-2C.1D.52.下列调查中,适宜采用抽样调查方式的是()A.调查奥运会上女子铅球参赛运动员兴奋剂的使用情况B.调查某校某班学生的体育锻炼情况C.调查一批灯泡的使用寿命D.调查游乐园中一辆过山车上共40个座位的稳固情况3.下列运算正确的是()A.6a2-a2=5B.2a+b=2abC.4ba2-3a2b=a2b D.2a2+3a4=5a64.如图,若A是有理数a在数轴上对应的点,则关于a,-a,1的大小关系表示正确的是()A.a<1<-a B.a<-a<1C.1<-a<a D.-a<a<15.如图,两块三角尺的直角顶点O重合在一起,且OB平分∠COD,则∠AOD 的度数为()A.45°B.120°C.135°D.150°6.某市获“全国文明城市”提名,为此小王特制了一个正方体玩具,其表面展开图如图所示,正方体中与“全”字相对的字是()A.文B.明C.城D.市7.有一篮苹果平均分给若干人,若每人分2个,则还余下2个苹果,若每人分3个,则少7个苹果,设有x人分苹果,则可列方程为()A.3x+2=2x+7B.2x-2=3x+7C.3x-2=2x-7D.2x+2=3x-78.如图,把一根绳子对折成线段AB,从P处把绳子剪断,已知PB=2P A,若剪断后的各段绳子中最长的一段为40cm,则绳子的原长为()A.30cmB.60cmC.120cmD.60cm或120cm9.小王去早市为餐馆选购蔬菜,他指着标价为每千克3元的豆角问摊主:“这豆角能便宜吗?”摊主说:“多买按八折,你要多少千克?”小王报了质量后,摊主同意按八折卖给小王,并说:“之前有一人只比你少买5kg就是按标价,还比你多花了3元呢!”小王购买豆角的质量是()A.25kg B.20kgC.30kg D.15kg10.如图所示的图案均是由长度相同的木棒按一定规律拼搭而成的,第1个图案需7根木棒,第2个图案需13根木棒,…以此规律,第11个图案需要木棒的根数是()A.156B.157C.158D.159二、填空题(每题3分,共24分)11.22.5°=________°________′;12°24′=________°.12.某中学要了解七年级学生的视力情况,在全校七年级学生中抽取了25名学生进行检查,在这个问题中,总体是________________________,样本是________________________.13.我国“南仓”级远洋综合补给舰满载排水量为37000t ,把数37000用科学记数法表示为_______________________________________.14.若a +b =2,则代数式3-2a -2b =________.15.从中午12时开始,时钟的时针转过了80°的角,则此时的时间是________.16.一位美术老师在课堂上进行立体模型素描教学时,把14个棱长为1dm 的正方体摆放在课桌上,如图所示,然后他把露出的表面都涂上不同的颜色,则被他涂上颜色部分的面积为________.17.如图,O 是直线AC 上一点,OB 是一条射线,OD 平分∠AOB ,OE 在∠BOC内,且∠BOE =13∠EOC ,∠DOE =60°,则∠EOC =________.18.某市为提倡节约用水,采取分段收费.若每户每月用水量不超过20m 3,每立方米收费2元;若用水量超过20m 3,超过的部分每立方米加收1元.小明家5月份缴水费64元,则他家该月用水________.三、解答题(19~23题每题6分,24~26题每题12分,共66分)19.计算:(1)-32-(-17)-|-23|+(-15);÷9121-+23--24).20.解方程:(1)3x+7=32-2x;(2)x-1-x3=x+5 6.21.化简求值:已知|2x+1|+=0,求4x2y-[6xy-3(4xy-2)-x2y]+1的值.22.如图是由小立方块搭成的几何体,请画出从正面、左面和上面看到的平面图形.23.如图,OC是∠AOD的平分线,∠BOC=12∠COD,那么∠BOC是∠AOD 的几分之几?说明你的理由.24.为弘扬中华传统文化,我市某中学决定根据学生的兴趣爱好组建课外兴趣小组,因此学校随机抽取了部分学生的兴趣爱好进行调查,将收集的数据整理并绘制成如图所示的两幅统计图.请根据图中的信息,完成下列问题:(1)学校这次调查共抽取了________名学生;(2)补全条形统计图;(3)在扇形统计图中,“戏曲”所在扇形的圆心角度数为________.25.某班计划购买一些乒乓球和乒乓球拍,现了解到的情况如下:甲、乙两家店出售同样品牌同种型号的乒乓球和乒乓球拍,乒乓球拍每副定价100元,乒乓球每盒定价25元.经洽谈后,甲店每买一副乒乓球拍赠一盒乒乓球,乙店全部按定价的9折优惠.该班需乒乓球拍5副,乒乓球若干盒(不少于5盒).问:(1)当购买乒乓球多少盒时,两种优惠办法付款一样?(2)当购买20盒、40盒乒乓球时,去哪家店购买更合算?26.在数轴上,表示数m与n的点之间的距离可以表示为|m-n|.例如:在数轴上,表示数-3与2的点之间的距离是5=|-3-2|,表示数-4与-1的点之间的距离是3=|-4-(-1)|.利用上述结论解决如下问题:(1)若|x-5|=3,求x的值;(2)点A,B为数轴上的两个动点,点A表示的数是a,点B表示的数是b,且|a-b|=6(b>a),点C表示的数为-2.若A,B,C三个点中的某一个点是另两个点所连线段的中点,求a,b的值.参考答案:一、1.B2.C3.C4.A5.C6.B7.D8.D9.C点拨:设小王购买豆角的质量是x kg,则3×80%x=3(x-5)-3,整理得2.4x=3x-18,解得x=30.所以小王购买豆角的质量是30kg.10.B点拨:第1个图案需7根木棒,7=1×(1+3)+3,第2个图案需13根木棒,13=2×(2+3)+3,第3个图案需21根木棒,21=3×(3+3)+3,……第n个图案需[n(n+3)+3]根木棒,所以第11个图案需11×(11+3)+3=157(根)木棒.故选B.二、11.22;30;12.412.该中学七年级学生的视力情况;抽取的25名学生的视力情况13.3.7×10414.-115.14时40分16.33dm217.90°点拨:设∠BOE=x°,则∠EOC=3x°,∠DOB=60°-x°.由OD平分∠AOB,得∠AOB=2∠DOB,故3x+x+2(60-x)=180,解方程得x=30,所以∠EOC=90°,故答案为90°.18.28m3点拨:设小明家5月份用水x m3,因为20×2=40(元),64>40,所以x>20.根据题意可得2×20+(2+1)(x-20)=64,解得x=28.三、19.解:(1)原式=-32+17-23-15=-53.(2)原式=-11-[12×(-24)+23×(-24)-34×(-24)]=-11-(-12-16+18)=-1.20.解:(1)移项,得3x+2x=32-7.合并同类项,得5x=25.系数化为1,得x=5.(2)去分母,得6x-2(1-x)=x+5,去括号,得6x-2+2x=x+5,移项、合并同类项,得7x=7,系数化为1,得x=1.21.解:由|2x+1|+=0得2x+1=0,y-14=0,即x=-12,y=14.原式=4x2y-6xy+12xy-6+x2y+1=5x2y+6xy-5.当x=-12,y=14时,原式=5x2y+6xy-5=516-34-5=-5716.22.解:如图.23.解:∠BOC是∠AOD的四分之一.理由如下:因为OC是∠AOD的平分线,所以∠COD=12∠AOD.因为∠BOC=12∠COD,所以∠BOC=12×12∠AOD=14∠AOD.24.解:(1)100(2)喜欢民乐的人数为100×20%=20(人),补全条形统计图如图所示.(3)36°25.解:(1)设该班购买乒乓球x盒,则在甲店付款:100×5+(x-5)×25=(25x+375)元,在乙店付款:0.9×100×5+25×0.9×x=(22.5x+450)元,由25x+375=22.5x+450,解得x=30.答:当购买乒乓球30盒时,两种优惠办法付款一样.(2)当购买20盒乒乓球时,在甲店付款:25×20+375=875(元),在乙店付款:22.5×20+450=900(元),875<900,故在甲店购买更合算;当购买40盒乒乓球时,在甲店付款:25×40+375=1375(元),在乙店付款:22.5×40+450=1350(元),1350<1375,故在乙店购买更合算.答:购买20盒时,去甲店购买更合算;购买40盒时,去乙店购买更合算。

2020年七年级上册数学期末试卷(含答案) (4)

2020年七年级上册数学期末试卷(含答案) (4)

2020年七年级上册数学期末试卷一.选择题(共10小题)1.在﹣4,0,﹣1,3这四个数中,最小的数是()A.﹣4 B.2 C.﹣1 D.32.下列各数:,,2π,0.333333,,1.21221222122221(每两个1之间依次多一个2)中,无理数有()A.2个B.3个C.4个D.5个3.北京大兴国际机场,是我国新建的超大型国际航空综合交通枢纽,于今年9月25日正式投入运营.8个巨大的C形柱撑起了70万平方米航站楼的楼顶,形如展翅腾飞的凤凰,蔚为壮观.把数据70万用科学记数法应记为()A.7×104B.7×105C.70×104D.0.7×1064.估计48的立方根的大小在()A.2与3之间B.3与4之间C.4与5之间D.5与6之间5.如图,用剪刀沿直线将一片平整的树叶剪掉一部分,则剩下的树叶周长小于原树叶的周长,能解释这一现象的数学道理是()A.垂线段最短B.两点之间线段最短C.两点确定一条直线D.经过一点有无数条直线6.的平方根是多少()A.±9 B.9 C.±3 D.37.若+(b﹣3)2=0,则a b=()A.B.C.8 D.8.如图,已知直线AB、CD相交于点O,OE平分∠COB,若∠EOB=50°,则∠BOD的度数是()A.50°B.60°C.80°D.70°9.如图1,将一张长方形纸板四角各切去一个同样的正方形,制成如图2的无盖纸盒,若该纸盒的容积为4a2b,则图2中纸盒底部长方形的周长为()A.4ab B.8ab C.4a+b D.8a+2b10.如图,在2020个“□”中依次填入一列数字m1,m2,m3,……,m2020,使得其中任意四个相邻的“□”中所填的数字之和都等于13.已知m3=0,m6=﹣7,则m1+m2020的值为()0 ﹣7 …A.0 B.﹣7 C.6 D.20二.填空题(共8小题)11.2019年女排世界杯共12支队伍参赛.东道主日本11场比赛中输5场记为﹣5,那么夺得本届世界杯冠军的中国女排11战全胜可记为.12.若∠β=110°,则它的补角是,它的补角的余角是.13.一个实数的两个平方根分别是a+3和2a﹣9,则这个实数是.14.用四舍五入法得到的近似数14.0精确到位,它表示原数大于或等于,而小于.15.用度、分、秒表示:(35)°=;用度表示:38°24′=.16.对于任意四个有理数a,b,c,d,可以组成两个有理数对(a,b)与(c,d).我们规定:(a,b)※(c,d)=ac﹣bd.例如:(1,2)※(3,4)=1×3﹣2×4=﹣5.若有理数对(2x,﹣3)※(1,x+1)=8,则x=.17.已知多项式ax5+bx3+cx+9,当x=﹣1时,多项式的值为17.则该多项式当x=1时的值是.18.某校为适应电化教学的需要新建阶梯教室,教室的第一排有a个座位,后面每一排都比前一排多一个座位,若第n排有m个座位,则a、n和m之间的关系为m=.三.解答题(共6小题)19.(1)计算:(﹣+)÷(﹣)(2)解方程:5(x﹣1)﹣3=2﹣2x20.已知代数式(3a2﹣ab+2b2)﹣(a2﹣5ab+b2)﹣2(a2+2ab+b2).(1)试说明这个代数式的值与a的取值无关;(2)若b=﹣2,求这个代数式的值.21.如图为4×4的网格(每个小正方形的边长均为1),请画两个格点正方形(顶点在小正方形顶点处)要求:其中一个边长是有理数,另一个边长是大于3的无理数,并写出其边长,∴边长为.∴边长为.22.如图,已知∠BOC=2∠AOC,OD平分∠AOB,且∠COD=20°,求∠AOB的度数.23.某工厂第一车间有x人,第二车间比第一车间人数的少30人,从第二车间调出y人到第一车间,那么:(1)调动后,第一车间的人数为人;第二车间的人数为人.(用x,y 的代数式表示);(2)求调动后,第一车间的人数比第二车间的人数多几人(用x,y的代数式表示)?(3)如果第一车间从第二车间调入的人数,是原来调入的10倍,则第一车间人数将达到360人,求实际调动后,(2)题中的具体人数.24.【背景知识】数轴是初中数学的一个重要工具,利用数轴可以将数与形完美地结合.研究数轴我们发现了许多重要的规律:若数轴上点A、点B表示的数分别为a、b,则A,B 两点之间的距离AB=|a﹣b|,线段AB的中点表示的数为.【问题情境】如图,数轴上点A表示的数为﹣2,点B表示的数为8,点P从点A出发,以每秒3个单位长度的速度沿数轴向右匀速运动,同时点Q从点B出发,以每秒2个单位长度的速度向左匀速运动.设运动时间为t秒(t>0).【综合运用】(1)填空:①A、B两点间的距离AB=,线段AB的中点表示的数为;②用含t的代数式表示:t秒后,点P表示的数为;点Q表示的数为.(2)求当t为何值时,P、Q两点相遇,并写出相遇点所表示的数;(3)求当t为何值时,PQ=AB;(4)若点M为PA的中点,点N为PB的中点,点P在运动过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请求出线段MN的长.参考答案与试题解析一.选择题(共10小题)1.在﹣4,0,﹣1,3这四个数中,最小的数是()A.﹣4 B.2 C.﹣1 D.3【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【解答】解:根据有理数比较大小的方法,可得﹣4<﹣1<0<3,在﹣4,0,﹣1,3这四个数中,最小的数是﹣4.故选:A.2.下列各数:,,2π,0.333333,,1.21221222122221(每两个1之间依次多一个2)中,无理数有()A.2个B.3个C.4个D.5个【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:是分数,属于有理数;0.333333是有限小数,属于有理数;=4,是整数,属于有理数;无理数有:,2π,1.21221222122221(每两个1之间依次多一个2)共3个.故选:B.3.北京大兴国际机场,是我国新建的超大型国际航空综合交通枢纽,于今年9月25日正式投入运营.8个巨大的C形柱撑起了70万平方米航站楼的楼顶,形如展翅腾飞的凤凰,蔚为壮观.把数据70万用科学记数法应记为()A.7×104B.7×105C.70×104D.0.7×106【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:70万用科学记数法表示应记为7×105,故选:B.4.估计48的立方根的大小在()A.2与3之间B.3与4之间C.4与5之间D.5与6之间【分析】根据<<即可得出答案.【解答】解:∵<<,∴3<<4,即48的立方根的大小在3与4之间,故选:B.5.如图,用剪刀沿直线将一片平整的树叶剪掉一部分,则剩下的树叶周长小于原树叶的周长,能解释这一现象的数学道理是()A.垂线段最短B.两点之间线段最短C.两点确定一条直线D.经过一点有无数条直线【分析】根据线段的性质解答即可.【解答】解:用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是两点之间,线段最短,故选:B.6.的平方根是多少()A.±9 B.9 C.±3 D.3【分析】利用平方根和算术平方根的定义求解即可.【解答】解:的平方根是±3,故选:C.7.若+(b﹣3)2=0,则a b=()A.B.C.8 D.【分析】根据非负数的性质列式分别求出a、b,根据有理数的乘方法则计算,得到答案.【解答】解:由题意得,2a+1=0,b﹣3=0,解得,a=﹣,b=3,则a b=﹣,故选:B.8.如图,已知直线AB、CD相交于点O,OE平分∠COB,若∠EOB=50°,则∠BOD的度数是()A.50°B.60°C.80°D.70°【分析】首先根据角平分线的性质可得∠EOB=∠COE,进而得到∠COB的度数,再根据邻补角互补可算出∠BOD的度数.【解答】解:∵OE平分∠COB,∴∠EOB=∠COE,∵∠EOB=50°,∴∠COB=100°,∴∠BOD=180°﹣100°=80°.故选:C.9.如图1,将一张长方形纸板四角各切去一个同样的正方形,制成如图2的无盖纸盒,若该纸盒的容积为4a2b,则图2中纸盒底部长方形的周长为()A.4ab B.8ab C.4a+b D.8a+2b【分析】根据长方体纸盒的容积等于底面积乘以高,底面积等于底面长方形的长与宽的乘积可以先求出宽,再计算纸盒底部长方形的周长即可.【解答】解:根据题意,得纸盒底部长方形的宽为=4a,∴纸盒底部长方形的周长为:2(4a+b)=8a+2b.故选:D.10.如图,在2020个“□”中依次填入一列数字m1,m2,m3,……,m2020,使得其中任意四个相邻的“□”中所填的数字之和都等于13.已知m3=0,m6=﹣7,则m1+m2020的值为()0 ﹣7 …A.0 B.﹣7 C.6 D.20【分析】根据任意四个相邻“□”中,所填数字之和都等于13,可以发现题目中数字的变化规律,从而可以求得x的值,本题得以解决.【解答】解:∵任意四个相邻“□”中,所填数字之和都等于13,∴m1+m2+m3+m4=m2+m3+m4+m5,m2+m3+m4+m5=m3+m4+m5+m6,m3+m4+m5+m6=m4+m5+m6+m7,m4+m5+m6+m7=m5+m6+m7+m8,∴m1=m5,m2=m6,m3=m7,m4=m8,同理可得,m1=m5=m9=…,m2=m6=m10=…,m3=m7=m11=…,m4=m8=m12=…,∵2020÷4=505,∴m2020=m4,∵m3=0,m6=﹣7,∴m2=﹣7,∴m1+m4=13﹣m2﹣m3=13﹣(﹣7)﹣0=20,∴m1+m2020=20,故选:D.二.填空题(共8小题)11.2019年女排世界杯共12支队伍参赛.东道主日本11场比赛中输5场记为﹣5,那么夺得本届世界杯冠军的中国女排11战全胜可记为+11 .【分析】根据题意输掉1场比赛记为﹣1,那么赢1场比赛应记为+1,据此分析即可.【解答】解:在比赛中输5场记为﹣5,那么输1场记为﹣1.则赢1场比赛应记为+1,所以11战全胜应记为+11.故答案为+11.12.若∠β=110°,则它的补角是70°,它的补角的余角是20°.【分析】根据余角:如果两个角的和等于90°(直角),就说这两个角互为余角.即其中一个角是另一个角的余角.补角:如果两个角的和等于180°(平角),就说这两个角互为补角.即其中一个角是另一个角的补角进行计算.【解答】解:若∠β=110°,则它的补角为:180°﹣110°=70°;它的补角的余角为:90°﹣70°=20°.故答案为:70°;20°.13.一个实数的两个平方根分别是a+3和2a﹣9,则这个实数是25 .【分析】根据题意列出方程即可求出答案.【解答】解:由题意可知:a+3+2a﹣9=0,∴a=2,∴a+3=5,∴这个是数为25,故答案为:25.14.用四舍五入法得到的近似数14.0精确到十分位,它表示原数大于或等于13.95 ,而小于14.05 .【分析】根据近似数的精确度求解.【解答】解:用四舍五入法得到的近似数14.0精确到十分位,它表示原数大于或等于13.95,而小于14.05.故答案为:十分,13.95,14.05.15.用度、分、秒表示:(35)°=35°20′;用度表示:38°24′=38.4°.【分析】根据1°=60′,进行计算即可.【解答】解:(35)°=35°20′;38°24′=38.4°,故答案为:35°20′;38.4°.16.对于任意四个有理数a,b,c,d,可以组成两个有理数对(a,b)与(c,d).我们规定:(a,b)※(c,d)=ac﹣bd.例如:(1,2)※(3,4)=1×3﹣2×4=﹣5.若有理数对(2x,﹣3)※(1,x+1)=8,则x= 1 .【分析】根据题中的新定义化简已知等式,求出解即可得到x的值.【解答】解:根据题中的新定义得:2x+3(x+1)=8,去括号得:2x+3x+3=8,解得:x=1,故答案为:117.已知多项式ax5+bx3+cx+9,当x=﹣1时,多项式的值为17.则该多项式当x=1时的值是 1 .【分析】可以先整体求出(a+b+c)的值,再代入多项式ax5+bx3+cx+9,求得当x=1时多项式的值.【解答】解:∵当x=﹣1时,多项式的值为17,∴ax5+bx3+cx+9=17,即a•(﹣1)5+b•(﹣1)3+c•(﹣1)+9=17,整理得a+b+c=﹣8,当x=1时,ax5+bx3+cx+9=a•15+b•13+c•1+9=(a+b+c)+9=﹣8+9=1.18.某校为适应电化教学的需要新建阶梯教室,教室的第一排有a个座位,后面每一排都比前一排多一个座位,若第n排有m个座位,则a、n和m之间的关系为m=a+n﹣1 .【分析】因为后面每一排都比前一排多一个座位及第一排有a个座位可得出第n排的座位数,再由第n排有m个座位可得出a、n和m之间的关系.【解答】解:由题意得:后面每一排都比前一排多一个座位及第一排有a个座位可得出第n排的座位数第n排的座位数:a+(n﹣1)又第n排有m个座位故a、n和m之间的关系为m=a+n﹣1.三.解答题(共6小题)19.(1)计算:(﹣+)÷(﹣)(2)解方程:5(x﹣1)﹣3=2﹣2x【分析】(1)原式利用除法法则变形,再利用乘法分配律计算即可求出值;(2)方程去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)原式=(﹣+)×(﹣36)=﹣8+9﹣2=﹣1;(2)去括号得:5x﹣5﹣3=2﹣2x,移项合并得:7x=10,解得:x=.20.已知代数式(3a2﹣ab+2b2)﹣(a2﹣5ab+b2)﹣2(a2+2ab+b2).(1)试说明这个代数式的值与a的取值无关;(2)若b=﹣2,求这个代数式的值.【分析】本题应先去括号,然后合并同类项,结果为﹣b2,然后将b=﹣2即可求出这个代数式的值.【解答】解:(1)(3a2﹣ab+2b2)﹣(a2﹣5ab+b2)﹣2(a2+2ab+b2)=3a2﹣ab+2b2﹣a2+5ab﹣b2﹣2a2﹣4ab﹣2b2=3a2﹣a2﹣2a2﹣ab+5ab﹣4ab+2b2﹣b2﹣2b2=﹣b2;因为原代数式化简后的值为﹣b2,不含字母a,所以这个代数式的值与a的取值无关.(2)当b=﹣2时,原式=﹣b2=﹣(﹣2)2=﹣4.21.如图为4×4的网格(每个小正方形的边长均为1),请画两个格点正方形(顶点在小正方形顶点处)要求:其中一个边长是有理数,另一个边长是大于3的无理数,并写出其边长,∴边长为 2 .∴边长为.【分析】利用勾股定理分别画出边长为无理数和有理数的正方形即可.【解答】解:如图所示:边长为2,边长为=,故答案为:2;.22.如图,已知∠BOC=2∠AOC,OD平分∠AOB,且∠COD=20°,求∠AOB的度数.【分析】此题可以设∠AOC=x,进一步根据角之间的关系用未知数表示其它角,再根据已知的角列方程即可进行计算.【解答】解:设∠AOC=x,则∠BOC=2x.∴∠AOB=3x.又OD平分∠AOB,∴∠AOD=1.5x.∴∠COD=∠AOD﹣∠AOC=1.5x﹣x=20°.∴x=40°∴∠AOB=120°.故答案为120°.23.某工厂第一车间有x人,第二车间比第一车间人数的少30人,从第二车间调出y人到第一车间,那么:(1)调动后,第一车间的人数为x+y人;第二车间的人数为x﹣y﹣30 人.(用x,y的代数式表示);(2)求调动后,第一车间的人数比第二车间的人数多几人(用x,y的代数式表示)?(3)如果第一车间从第二车间调入的人数,是原来调入的10倍,则第一车间人数将达到360人,求实际调动后,(2)题中的具体人数.【分析】(1)表示出调动后两车间的人数即可;(2)根据题意列出算式,计算即可得到结果;(3)根据题意得到:x+10y=360,整理后x=360﹣10y,将其代入(2)中求值.【解答】解:(1)根据题意得调动后,第一车间的人数为(x+y)人;第二车间的人数为(x﹣y﹣30)人.故答案是:(x+y);(x﹣y﹣30);(2)根据题意,得(x+y)﹣(x﹣y﹣30)=x+2y+30;(3)根据题意,得x+10y=360.则x=360﹣10y,所以x+2y+30=(360﹣10y)+2y+30=102.即实际调动后,(2)题中的具体人数是102人.24.【背景知识】数轴是初中数学的一个重要工具,利用数轴可以将数与形完美地结合.研究数轴我们发现了许多重要的规律:若数轴上点A、点B表示的数分别为a、b,则A,B 两点之间的距离AB=|a﹣b|,线段AB的中点表示的数为.【问题情境】如图,数轴上点A表示的数为﹣2,点B表示的数为8,点P从点A出发,以每秒3个单位长度的速度沿数轴向右匀速运动,同时点Q从点B出发,以每秒2个单位长度的速度向左匀速运动.设运动时间为t秒(t>0).【综合运用】(1)填空:①A、B两点间的距离AB=10 ,线段AB的中点表示的数为 3 ;②用含t的代数式表示:t秒后,点P表示的数为﹣2+3t;点Q表示的数为8﹣2t.(2)求当t为何值时,P、Q两点相遇,并写出相遇点所表示的数;(3)求当t为何值时,PQ=AB;(4)若点M为PA的中点,点N为PB的中点,点P在运动过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请求出线段MN的长.【分析】(1)根据题意即可得到结论;(2)当P、Q两点相遇时,P、Q表示的数相等列方程得到t=2,于是得到当t=2时,P、Q相遇,即可得到结论;(3)由t秒后,点P表示的数﹣2+3t,点Q表示的数为8﹣2t,于是得到PQ=|(﹣2+3t)﹣(8﹣2t)|=|5t﹣10|,列方程即可得到结论;(4)由点M表示的数为=﹣2,点N表示的数为=+3,即可得到结论.【解答】解:(1)①10,3;②﹣2+3t,8﹣2t;(2)∵当P、Q两点相遇时,P、Q表示的数相等∴﹣2+3t=8﹣2t,解得:t=2,∴当t=2时,P、Q相遇,此时,﹣2+3t=﹣2+3×2=4,∴相遇点表示的数为4;(3)∵t秒后,点P表示的数﹣2+3t,点Q表示的数为8﹣2t,∴PQ=|(﹣2+3t)﹣(8﹣2t)|=|5t﹣10|,又PQ=AB=×10=5,∴|5t﹣10|=5,解得:t=1或3,∴当:t=1或3时,PQ=AB;(4)∵点M表示的数为=﹣2,点N表示的数为=+3,∴MN=|(﹣2)﹣(+3)|=|﹣2﹣﹣3|=5.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

6
5
42
31
七年级数学上册期末试卷(4)
(满分:150分;考试时间:120分钟)
班级: 座号: 姓名: 一、填空题(每小题3分,共30分)
1.-3
1
的相反数是 .
2.若李白出生于公元701年用+701表示,则韩非子生于公年前206年表示为 .
3.如图,将硬纸片沿虚线折起来,便可做成一个正方体,这个正方体的3号面的对面是 号面.
4.翻开数学书,连续看了3页,页码的和为363,则这3页的页码分别是
第 页,第 页,第 页.
5.将596000保留两个有效数字,其结果为 .
6.写出一个解是-3的一元一次方程,如 .
7.有一个两位数,个位数字是十位数字的一半,将两个数字位置交换后,所得的新数比原数小36,则原数是 .
8.平面上有A 、B 、C 三点,过其中的每两点画直线,最多可画 条直线,最少可以画 条直线.
9.时钟上8点15分时,时针与分针所夹的角度是 ° ′. 梯形的个数为 .
二、选择题:(每小题4分,共28分)
11.将多项式 3x 3 -2x 2+4x-5添括号后正确的是 ( )
(A) 3x 3-(2x 2+4x-5 ) (B)(3x 3+4x )-(2x 2+5) (C)(3x 3-5)+(-2x 2-4x ) (D) 2x 2+(3x 3+4x-5)
12.若|x-1
2
|+(2y-1)2=0,则22
x y
+的值是()
(A)3
8
(B)1
2
(C)-1
8
(D)-3
8
13.观察图形,下列说法正确的个数是()(1)直线BA和直线AB是同一条直线;
(2)射线AC和射线AD是同一条射线;
(3)AB + BD >AD;(4)三条直线两两相交时,一定有三个交点;
(A)1个(B)2个(C)3个(D)4个
14.如图,将长方形ABCD沿AE折叠,使点D落在BC边上
的点F,若∠BAF = 60°,则∠DAE = ()
)30°(C)
(第13题图)(第14题图)
15.下列图形中,不是正方体表面展开图的图形的个数是()
(A)1个(B)2个(C)3个(D)4个
16.在下列方程中是一元一次方程的为()
(A)0
1
2=
-
x(B)2
3=
-y
x(C)2
3
1
=
-
x
(D)1
1
=
x 17.为了节约用水,某市规定:每户居民每月用水不超过15立方米,按每立方米1.6元收费,超过15立方米,则超过部分按每立方米2.4元收费。

小明家六月份交水费33. 6元,则小明家六月份实际用水()立方米
(A)21 (B)20 (C)19 (D)18
三、解答题(共92分)
18.计算题(每题5分,共10分)
(1)(-2)3 +(-3)⨯[(-4)2+2]-(-3)2÷(-2)
(2)()().12475.23
1
18
1
200
-+-⨯⎪⎭
⎫ ⎝⎛-+
19.解方程(每题6分,共12分) (1)()()().2518324---=+x x x
(2)12 1.20.3
0.5
x x -+-=
20. (10分)如图,已知C 是AB 的中点,D 是AC 的中点,E 是BC 的中点. (1)若DE=9cm,求AB 的长;
(2)若CE=5cm,求DB 的长.
21.(12分)某校科技小组的学生在3名教师带领下,准备前往国家森林公园考察标本.当地有甲、乙两家旅行社,其定价都一样,但表示对师生都有优惠,甲旅行社表示带队老师免费,学生按8折收费;乙旅行社表示师生一律按7折收费.经核算,甲、乙两旅行社的实际收费正好相同。

问科技小组共有多少学生?
22.化简求值(每题6分,共12分)
(1)3ab 2 -5ab 3+0.5 ba 3-3ab 2+5ab 3-4.5 ba 3 其中a=-2, b=-121
(2)已知2222
335432A x y xy B x y xy
=+-=-+, 当x=3,y=-
3
1时,计
算2A-3B 的值
23.(12分)如图2,已知O 为A D 上一点,A O C ∠与A O B ∠互补,O M ,
O N
分别为A O C ∠,A O B ∠的平分线,若40MON = ∠,试求A O C ∠与A O B ∠的
度数.
24.(12分)粮库3天内发生粮食进出库的吨数如下(“+”表示进库“—”表示出库)+26、-32、-15、+34、-38、-20。

(1)经过这3天,库里的粮食是增多还是减少了。

(2)经过这3天,仓库管理员结算发现库里还存480吨粮,那么3天前库里存粮多少吨?
(3)如果进出的装御费都是每吨5元,那么这3天要付多少装卸费?
25.(12分)有一商场计划用7万元从厂家购进60台电视机,已知该厂家生产三种不同型号的电视机,出厂价分别为:甲种每台1100元,乙种每台1300元,丙种每台2100元。

(1)若商场同时购进其中两种不同型号的电视机共60台,用去7万元,请你研究一下商场的进货方案。

(2)若商场销售一台甲种电视机可获利200元,销售一台乙种电视机可获利300元,销售一台丙种电视机可获利400元,在同时购进两种不同型号电视机方案中,为使销售时获利最多,你选择哪种进货方案?
参考答案
一、填空题 (本大题共10小题,每小题3分,共30分)
1.31
2.-206 3.5 4.120,121,122 5.55.9610⨯
6.答案不唯一,如:x+3=0 7.84 8.三,一 9.157,30 10.20 二、选择题(本大题共7小题,每小题4分,共28分) 11.B
12.B 13.C 14.B
15.B 16.C 17.C
三、解答题(共90分) 18.(1)-2
115 (2)32
19.(1)
7
2
(2)x=5.9
20.(1) DE=12 (2) DB =18
21.解:设科技小组共有x 个学生,根据题意,得
()0
070
380
⨯+=x x ,()378+=x x 2178+=x x , 21=x .
答:科技小组共有2个学生. 22.(1)原式=-4ba 3=-48 (2)-3
109
23.50AOB = ∠,130AOC = ∠.
(提示:设AOB x = ∠,则180AOC x =- ∠.由题意,得18040
2
2x
x --=.
解得50x =)
24.(1)263215343820+
-+-++-+-()()()()=-45 (2)480-(-45)=525
(3)
2632153438205825+++++⨯=() 25.(1) 甲种40台,乙种20台或甲种56台,乙种4台
(2) 甲种40台,乙种20台。

相关文档
最新文档