浙江省温州市2018年中考六校联考数学试题及答案
【推荐】浙江省温州市2018年中考数学试题(含解析)
浙江省温州市2018年中考数学试卷(解析版)一、选择题1. ( 2分 ) 给出四个实数,2,0,-1,其中负数是()A.B.2C.0D.-1【答案】D【考点】正数和负数的认识及应用【解析】【解答】解根据题意:负数是-1,故答案为:D。
【分析】根据负数的定义,负数小于0 即可得出答案。
2. ( 2分 ) 移动台阶如图所示,它的主视图是()A.B.C.D.【答案】B【考点】简单组合体的三视图【解析】【解答】解:A、是其俯视图,故不符合题意;B是其主视图,故符合题意;C是右视图,故不符合题意;D是其左视图,故不符合题意。
故答案为:B。
【分析】根据三视图的定义,其主视图,就是从前向后看得到的正投影,根据看的情况一一判断即可。
3. ( 2分 ) 计算的结果是()A. B.C.D.【答案】C【考点】同底数幂的乘法【解析】【解答】解: a 6· a 2=a8故答案为:C。
【分析】根据同底数幂的乘法,底数不变,指数相加即可得出答案。
4. ( 2分 ) 某校九年级“诗歌大会”比赛中,各班代表队得分如下(单位:分):9,7,8,7,9,7,6,则各代表队得分的中位数是()A. 9分B. 8分C. 7分 D. 6分【答案】C【考点】中位数【解析】【解答】解:将这组数据按从小到大排列为:6<7<7<7<8<9<9,故中位数为:7分,故答案为:C。
【分析】根据中位数的定义,首先将这组数据按从小到大的顺序排列起来,由于这组数据共有7个,故处于最中间位置的数就是第四个,从而得出答案。
5. ( 2分 ) 在一个不透明的袋中装有10个只有颜色不同的球,其中5个红球、3个黄球和2个白球.从袋中任意摸出一个球,是白球的概率为()A. B.C.D.【答案】D【考点】概率公式【解析】【解答】解:根据题意:从袋中任意摸出一个球,是白球的概率为=故答案为:D。
【分析】一个不透明的袋中装有10个只有颜色不同的球,其中5个红球、3个黄球和2个白球.从袋中任意摸出一个球,共有10种等可能的结果,其中摸出白球的所有等可能结果共有2种,根据概率公式即可得出答案。
浙江省学考选考2018年度第二学期温州市初中学校六校联考一模数学卷及参考答案附答题卡
2018年度第二学期温州市初中学校六校联考一模数学试题卷亲爱的同学:欢迎参加考试!请你认真审题,积极思考,细心答题,发挥最佳水平.答题时,请注意以下几点:1.全卷共4页,有三大题,24小题.全卷满分150分.考试时间120分钟.2.答案必须写在答题纸相应的位置上,写在试题卷、草稿纸上均无效.3.答题前,认真阅读答题纸上的《注意事项》,按规定答题.祝你成功!卷Ⅰ一、选择题(本题有10小题,每小题4分,共40分.每小题只有一个选项是正确的,不选、多选、错选,均不给分)1.给出四个数0,3,2,-1(▲)A .0B .3C .2D .-12.如图所示,该圆柱体的主.视图..是(▲)A BCD3.计算32()a -的正确结果是(▲)A .6a -B .6a C .5a -D .5a 4.小红同学5月份各项消费情况的扇形统计图如图所示,其中小红在学习用品上共支出100元,则她在午餐上共支出(▲)A .50元B .100元C .150元D .200元5.如图,△ABC 内接于⊙O ,∠A =68°,则∠OBC 等于(▲)A .22°B .26°C .32°D .34°6.从长度分别为2,4,6,8的四条线段中任选三条作边,能构成三角形的概率为(▲)A .21B .31C .41D .347.一元二次方程24x x =的解为(▲)A .4x =B .10x =,24x =C .12x =,22x =-D .10x =,24x =-8.已知点(-2,1y ),(1,0),(3,2y )都在二次函数23y x bx =+-的图象上,则1y ,0,2y 的大小关系是(▲)A .120y y <<B .210y y <<C .120y y <<D .120y y <<主视方向(第5题)(第4题)小红5月份消费情况扇形统计图车费10%午餐40%其他30%学习用品20%(第16题)9.如图,在△ABC 中,∠ACB =90°,∠A =20°.将△ABC 绕点C 按逆时针方向旋转得△A ′B ′C ,且点B 在A ′B ′上,CA ′交AB 于点D ,则∠BDC 的度数为(▲)A .40°B .50°C .60°D .70°10.如图,直角坐标系中,A 是反比例函数12y x=(x >0)图象上一点,B 是y 轴正半轴上一点,以OA ,AB 为邻边作□ABCO .若点C 及BC 中点D 都在反比例函数ky x=(k <0,x <0)图象上,则k 的值为(▲)A .-3B .-4C .-6D .-8卷Ⅱ二、填空题(本题有6题,每小题5分,共30分)11.计算:()2a a -=▲.12.一个不透明的盒子里有n 个除颜色外其它完全相同的小球,其中有9个黄球.每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后再放回盒子,通过大量重复摸球实验后发现,摸到黄球的频率稳定在30%,那么估计盒子中小球的个数n 为▲个.13.已知一扇形的半径长是4,圆心角为60°,则这个扇形的面积为▲.14.七巧板是我们祖先的一项卓越创造,被西方人誉为“东方魔板”.下面的两幅图正方形(如图1)、“风车型”(如图2)都是由同一副七巧板拼成的,则图中正方形ABCD ,EFGH 的面积比为▲.15.对非负实数x “四舍五入”到个位的值记为<x >,即已知n 为正整数,如果n -21≤x <n +21,那么<x >=n .例如:<0>=<0.48>=0,<0.64>=<1.493>=1,<2>=2,<3.5>=<4.12>=4,…则满足方程<x >=11.62x +的非负实数x 的值为▲.16.如图,矩形ABCD 中,点E ,F 分别在边AD ,CD 上,且EF ⊥BE ,EF =BE ,△DEF 的外接圆⊙O 恰好切BC 于点G ,BF 交⊙O 于点H ,连结DH .若AB =8,则DH =.三、解答题(本题有8小题,共80分,解答需写出必要的文字说明、演算步骤或证明过程)17.(本题10分)(1)计算:()212019824⎛⎫⨯-- ⎝-⎪⎭+.(2)先化简,再求值:222xx x x ⎛⎫-⎪-+⎝⎭÷24x x -,其中x =-1.(第10题)(第14题)图2图1(第15题)18.(本题8分))如图,在四边形ABCD中,AD=BC,∠A=∠B,E为AB的中点,连结CE,DE.(1)求证:△ADE≌△BCE.(2)若∠A=70°,∠BCE=60°,求∠CDE的度数.(第18题)19.(本题8分)各顶点都在方格纸格点(横竖格子线的交错点)上的多边形称为格点多边形.线段AB在6×6的正方形方格纸中(如图所示),点A,B均为格点,按下列要求画格点多边形.(1)请在图甲中画一个五边形ABCDE,且是轴对称图形.(2)请在图乙中画一个六边形ABCDEF,且是中心对称图形.(注:图甲、图乙在答题纸上)(第19题)20.(本题8分))某公司销售部有营业员16人,销售部为了制定某种商品的月销售定额,统计了这16人某月的销售量如下:每人销售件数101112131415人数134332(1)这16位销售员该月销售量的众数是▲,中位数是▲,平均数是▲.(2)若要使75%的营业员都能完成任务,应选什么统计量(平均数、中位数和众数)作为月销售件数的定额?请说明理由.21.(本题10分)如图,△ABC内接于⊙O,AB=AC,CF垂直直径BD于点E,交边AB于点F.(1)求证:∠BFC=∠ABC.(2)若⊙O的半径为5,CF=6,求AF长.(第21题)22.(本题10分)某茶叶销售商计划将m罐茶叶按甲、乙两种礼品盒包装出售,其中甲种礼品盒每盒装4罐,每盒售价240元;乙种礼品盒每盒装6罐,每盒售价300元,恰好全部装完.已知每罐茶叶的成本价为30元,设甲种礼品盒的数量为x盒,乙种礼品盒的数量为y盒.(1)当m=120时.①求y关于x的函数关系式.②若120罐茶叶全部售出后的总利润不低于3000元,则甲种礼品盒的数量至少要多少盒?(2)若m罐茶叶全部售出后平均每罐的利润恰好为24元,且甲、乙两种礼品盒的数量和不超过69盒,求m的最大值.(备用图)(第23题)23.(本题12分)如图,直角坐标系中,抛物线y =a (x -4)2-16(a >0)交x 轴于点E ,F (E 在F 的左边),交y 轴于点C ,对称轴MN 交x 轴于点H ;直线y =13x+b 分别交x ,y 轴于点A ,B .(1)写出该抛物线顶点D 的坐标及点C 的纵坐标(用含a 的代数式表示).(2)若AF =AH =OH ,求证:∠CEO =∠ABO.(3)当b >-4时,以AB 为边作正方形,使正方形的另外两个顶点一个落在抛物线上,一个落在抛物线的对称轴上,求所有满足条件的a 及相应b 的值.(直接写出答案即可)24.(本题14分)如图,直角坐标系中,直线y kx b =+分别交x ,y 轴于点A (-8,0),B (0,6),C(m ,0)是射线AO 上一动点,⊙P 过B ,O ,C 三点,交直线AB 于点D (B ,D 不重合).(1)求直线AB 的函数表达式.(2)若点D 在第一象限,且tan ∠ODC =53,求点D 的坐标.(3)当△ODC 为等腰三角形时,求出所有符合条件的m 的值.(4)点P ,Q 关于OD 成轴对称,当点Q 恰好落在直线AB 上时,直接写出此时BQ 的长.(第24题)(备用图)********+请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答题无效请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答题无效请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答题无效请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答题无效请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答题无效条形码粘贴处班级准考证号学校名字正确填涂错误填涂缺考标记由监考负责填涂。
2018年浙江省温州市中考数学试卷-答案
浙江省温州市2018年初中学业水平考试数学答案解析第Ⅰ卷一、选择题1.【答案】D2,0,1-,其中负数是:1-.【考点】实数2.【答案】B【解析】从正面看是三个台阶,【考点】简单组合体的三视图3.【答案】C【解析】628a a a =g ,【考点】同底数幂的乘法4.【答案】C【解析】将数据重新排列为6、7、7、7、8、9、9,所以各代表队得分的中位数是7分,故选:C .【考点】中位数5.【答案】D【考点】概率公式【解析】Q 袋子中共有10个小球,其中白球有2个,∴摸出一个球是白球的概率是21105=, 6.【答案】A【解析】解:由题意,得20x -=,解得,2x =.经检验,当2x =时,205x x -=+.故选:A .【考点】分式的值为零的条件7.【答案】C【解析】因为点A 与点O 对应,点(1,0)A -,点(0,0)O ,所以图形向右平移1个单位长度,所以点B 的对应点B '的坐标为(0+,即,【考点】坐标与图形变化——平移8.【答案】A【解析】解:设49座客车x 辆,37座客车y 辆,根据题意可列出方程组104937466x y x y +=⎧⎨+=⎩. 【考点】由实际问题抽象出二元一次方程组9.【答案】B【解析】Q 点A ,B 在反比例函数1(0)y x x=>的图象上,点A ,B 的横坐标分别为1,2, ∴点A 的坐标为(1,1),点B 的坐标为1(2,)2, AC BD y Q ∥∥轴,∴点C ,D 的横坐标分别为1,2,Q 点C ,D 在反比例函数(0)k y k x=>的图象上, ∴点C 的坐标为(1,)k ,点D 的坐标为(2,)2k , 1AC k ∴=-,11222k k BD -=-=, 11(1)122OAC k S k -∴=-⨯=△,111(21)224ABD k k S --=⨯-=g △, OAC Q △与ABD △的面积之和为32, ∴113242k k --+=, 解得:3k =.【考点】反比例函数系数k 的几何意义,反比例函数图象上点的坐标特征10.【答案】B【解析】设小正方形的边长为x ,3a =Q ,4b =,347AB ∴=+=,在Rt ABC △中,222AC BC AB +=,即222(3)(4)7x x +++=,整理得,27120x x +-=,解得x =或x =(舍去),∴该矩形的面积77(3)(4)2422--=++=, 【考点】数学常识,勾股定理的证明第Ⅱ卷二、填空题11.【答案】(5)a a -【解析】25(5)a a a a -=-.【考点】因式分解——提公因式法12.【答案】6【解析】设半径为r ,602180r ππ=g , 解得:6r =,【考点】弧长的计算13.【答案】3 【解析】根据题意知13272337x ++++++=, 解得:3x =,则数据为1、2、2、3、3、3、7,所以众数为3,故答案为:3.【考点】算术平均数,众数14.【答案】4x > 【解析】解:20262x x ->⎧⎨->⎩①②,解①得2x >,解②得4x >.故不等式组的解集是4x >.【考点】解一元一次不等式组15.【答案】【解析】延长DE 交OA 于F ,如图,当0x =时,44y x =+=,则(0,4)B ,当0y =时,40x +=,解得x =A ,0),在Rt AOB △中,tan 4OBA ∠=, 60OBA ∴∠=︒,C Q 是OB 的中点,2OC CB ∴==,Q 四边形OEDC 是菱形,2CD BC DE CE ∴====,CD OE ∥,BCD ∴△为等边三角形,60BCD ∴∠=︒,60COE ∴∠=︒,30EOF ∴∠=︒,112EF OE ∴==,OAE △的面积112=⨯=故答案为【考点】一次函数图象上点的坐标特征,菱形的性质16.【答案】8【解析】设两个正六边形的中心为O ,连接OP ,OB ,过O 作OG PM ⊥,OH AB ⊥, 由题意得:60MNP NMP MPN ∠=∠=∠=︒,Q 2,∴,即PM =,24MPN S ∴=△, OG PM ⊥Q ,且O 为正六边形的中心,12PG PM ∴==,72OG =,在Rt OPG △中,根据勾股定理得:7OP cm ==, 设OB xcm =,OH AB ⊥Q ,且O 为正六边形的中心,12BH x ∴=,2OH x =, 1(5)2PH x cm ∴=-,在Rt PHO △中,根据勾股定理得:2221)(5)492OP x =+-=, 解得:8x =(负值舍去),则该圆的半径为8cm .故答案为:8【考点】正多边形和圆三、解答题17.【答案】(1)5-(2)212m +【解析】(1)20(2)1)-41=-5=-(2)2(2)4(2)m m ++-24484m m m =+++-212m =+.【考点】实数的运算,去括号与添括号,完全平方公式,零指数幂18.【答案】(1)证明:AD EC Q ∥,A BEC ∴∠=∠,E Q 是AB 中点,AE EB ∴=,AED B ∠=∠Q ,AED EBC ∴△≌△.(2)解:AED EBC Q △≌△,AD EC ∴=,AD EC Q ∥,∴四边形AECD 是平行四边形,CD AE ∴=,6AB =Q ,132CD AB ∴==. 【考点】全等三角形的判定与性质19.【答案】(1)100(2)25【解析】解:(1)该市蛋糕店的总数为90150600360÷=家, 甲公司经营的蛋糕店数量为60600100360⨯=家; (2)设甲公司增设x 家蛋糕店,由题意得:20%(600)100x x ⨯+=+,解得:25x =,答:甲公司需要增设25家蛋糕店.【考点】扇形统计图20.【答案】(1)(2)【解析】解:(1)如图①所示:(2)如图②所示:【考点】作图——轴对称变换,作图——旋转变换21.【答案】(1)14a b =-⎧⎨=⎩(2)02K <<【解析】解:(1)将2x =代入2y x =,得:4y =,∴点(2,4)M , 由题意,得:22424b a a b ⎧-=⎪⎨⎪+=⎩,∴14a b =-⎧⎨=⎩;(2)如图,过点P 作PH x ⊥轴于点H ,Q 点P 的横坐标为m ,抛物线的解析式为24y x x =-+,24PH m m ∴=-+,(2,0)B Q ,2OB ∴=,12S OB PH ∴=g 212(4)2m m =⨯⨯-+ 24m m =-+,4S K m m∴==-+, 由题意得(4,0)A ,(2,4)M Q ,24m ∴<<,K Q 随着m 的增大而减小,02K ∴<<.【考点】一次函数图象上点的坐标特征,二次函数的性质,二次函数图象上点的坐标特征,待定系数法求二次函数解析式,抛物线与x 轴的交点22.【答案】(1)由折叠的性质可知,ADE ADC △≌△,AED ACD ∴∠=∠,AE AC =,ABD AED ∠=∠Q ,ABD ACD ∴∠=∠,AB AC ∴=,AE AB ∴=;(2)如图,过A 作AH BE ⊥于点H ,AB AE =Q ,2BE =,1BH EH ∴==,ABE AEB ADB ∠=∠=∠Q ,1cos 3ADB ∠=, 1cos cos 3ABE ADB ∴∠=∠=, ∴13BH AB =. 3AC AB ∴==,90BAC ∠=︒Q ,AC AB =,BC ∴=【考点】三角形的外接圆与外心,翻折变换(折叠问题),解直角三角形23.【答案】(1)65x -1302x -1302x -(2)110元(3)安排26人生产乙产品时,可获得的最大利润为3198元【解析】(1)由已知,每天安排x 人生产乙产品时,生产甲产品的有(65)x -人,共生产甲产品2(65)1302x x --件.在乙每件120元获利的基础上,增加x 人,利润减少2x 元每件,则乙产品的每件利润为1202(5)1302x x --=-.故答案为:65x -;1302x -;1302x -;(2)由题意152(65)(1302)550x x x ⨯-=-+2807000x x ∴-+=解得110x =,270x =(不合题意,舍去)1302110x ∴-=(元)答:每件乙产品可获得的利润是110元.(3)设生产甲产品m 人(1302)15230(65)W x x m x m =-+⨯+--22(25)3200x =--+265m x m =--Q653x m -∴= x Q 、m 都是非负整数∴取26x =时,13m =,6526x m --=即当26x =时,3198W =最大值答:安排26人生产乙产品时,可获得的最大利润为3198元.【考点】一元二次方程的应用,二次函数的应用24.【答案】(1)PB AM ⊥Q 、PC AN ⊥,90ABP ACP ∴∠=∠=︒,180BAC BPC ∴∠+∠=︒,又180BPD BPC ∠+∠=︒,BPD BAC ∴∠=∠;(2)①如图1,45APB BDE ∠=∠=︒Q ,90ABP ∠=︒,BP AB ∴==BPD BAC ∠=∠Q ,tan tan BPD BAC ∴∠=∠,DPBP ∴=,2PD ∴=;②当BD BE =时,BED BDE ∠=∠,BPD BPE BAC ∴∠=∠=∠,tan 2BPE ∴∠=,AB =Q ,BP ∴=2BD ∴=;当BE DE =时,EBD EDB ∠=∠,APB BDE ∠=∠Q 、DBE APC ∠=∠,APB APC ∴∠=∠,AC AB ∴==过点B 作BG AC ⊥于点G ,得四边形BGCD 是矩形,AB =Q 、tan 2BAC ∠=,2AG ∴=,2BD CG ∴==;当BD DE =时,DEB DBE APC ∠=∠=∠,DEB DPB BAC ∠=∠=∠Q ,APC BAC ∴∠=∠,设PD x =,则2BD x =,PC∴2224x x+=-, 32x ∴=, 23BD x ∴==,综上所述,当2BD =、3或2时,BDE △为等腰三角形;(3)如图3,过点O 作OH DC ⊥于点H ,tan tan 1BPD MAN ∠=∠=Q ,BD PD ∴=,设2BD PD a ==、2PC b =,则OH a =、2CH a b =+、42AC a b =+,OC BE Q ∥且90BEP ∠=︒,90PFC ∴∠=︒,90PAC APC OCH APC ∴∠+∠=∠+∠=︒,OCH PAC ∴∠=∠,ACP CHO ∴△∽△, ∴OH PC CH AC=,即OH AC CH PC =g g , (42)2(2)a a b b a b ∴+=+,a b ∴=,即2CP a =、3CH a =,则OC =,CPF COH Q △∽△,∴CF CPCH OC=,即3CFa=则CF=,OF OC CF=-=,BE OCQ∥且BO PO=,OF∴为PBE△的中位线,EF PF∴=,∴122 3S OFS CF==.【考点】圆的综合题。
浙江省温州市2018年中考数学真题试题(含扫描答案)
浙江省温州市2018年中考数学真题试题卷I一、选择题(本题有10小题,每小题4分,共40分.每小题只有一个选项是正确的,不选、多选、错选,均不给分)1.2,0,1-,其中负数是( )B. 2C. 0D. 1-2.移动台阶如图所示,它的主视图是( )3.计算62a a 的结果是( )A. 3aB. 4aC. 8aD. 12a 4.某校九年级“诗歌大会”比赛中,各班代表队得分如下(单位:分):9,7,8,7,9,7,6,则各代表队得分的中位数是( )A. 9分B. 8分C. 7分D. 6分5.在一个不透明的袋中装有10个只有颜色不同的球,其中5个红球、3个黄球和2个白球.从袋中任意摸出一个球,是白球的概率为( ) A. 12 B. 13 C. 310 D. 156.若分式25x x -+的值为0,则x 的值是( ) A. 2 B. 0 C. 2- D. 5-7.如图,已知一个直角三角板的直角顶点与原点重合,另两个顶点A ,B 的坐标分别为(1-,0),(0.现将该三角板向右平移使点A 与点O 重合,得到△OCB ’,则点B 的对应点B ’的坐标是( )A.(1,0)B.C.(1D.(1-8.学校八年级师生共466人准备参加社会实践活动,现已预备了49座和37座两种客车共10辆,刚好坐满.设49座客车x 辆,37座客车y 辆,根据题意可列出方程组( ) A. B. C. D.A.104937466x y x y +=⎧⎨+=⎩B.103749466x y x y +=⎧⎨+=⎩C.466493710x y x y +=⎧⎨+=⎩ D.466374910x y x y +=⎧⎨+=⎩9.如图,点A ,B 在反比例函数1(0)y x x=>的图象上,点C ,D 在反比例函数(0)k y k x=>的图象上,AC//BD//y 轴,已知点A ,B 的横坐标分别为1,2,△OAC 与△ABD 的面积之和为32,则k 的值为( ) A. 4 B. 3 C. 2 D. 32 10.我国古代伟大的数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的直角三角形,得到一个恒等式.后人借助这种分割方法所得的图形证明了勾股定理,如图所示的矩形由两个这样的图形拼成,若3a =,4b =,则该矩形的面积为( )A. 20B. 24C.994 D. 532卷II二、填空题(本题有6小题,每小题5分,共30分.)11.分解因式:25a a -= .12.已知扇形的弧长为2π,圆心角为60°,则它的半径为 .13.一组数据1,3,2,7,x ,2,3的平均数是3,则该组数据的众数为 . 14.不等式组20262x x ->⎧⎨->⎩的解是 . 15.如图,直线43y x =-+与x 轴、y 轴分别交于A ,B 两点,C 是OB 的中点,D 是AB 上一点,四边形OEDC 是菱形,则△OAE 的面积为 .16.小明发现相机快门打开过程中,光圈大小变化如图1所示,于是他绘制了如图2所示的图形.图2中留个形状大小都相同的四边形围成一个圆的内接六边形和一个小正六边形,若PQ 所在的直线经过点M ,PB=5cm,小正六边形的面积为2cm 2,则该圆的半径为 cm. 三、解答题(本题有8小题,共80分.解答需写出必要的文字说明、演算步骤或证明过程)17.(本题10分)(1)计算:20(2)1)-(2)化简:2(2)4(2)m m ++-18.(本题8分)如图,在四边形ABCD 中,E 是AB 的中点,AD//EC ,∠AED=∠B.(1)求证:△AED ≌△EBC.(2)当AB=6时,求CD 的长.19.(本题8分)现有甲、乙、丙等多家食品公司在某市开设蛋糕店,该市蛋糕店数量的扇形统计图如图所示,其中统计图中没有标注相应公司数量的百分比.已知乙公司经营150家蛋糕店,请根据该统计图回答下列问题:(1)求甲公司经营的蛋糕店数量和该市蛋糕店的总数.(2)甲公司为了扩大市场占有率,决定在该市增设蛋糕店数量达到全市的20%,求甲公司需要增设的蛋糕店数量.20.(本题8分)如图,P ,Q 是方格纸中的两格点,请按要求画出以PQ 为对角线的格点四边形.(1)在图1中画出一个面积最小的 PAQB.(2)在图2中画出一个四边形PCQD ,使其是轴对称图形而不是中心对称图形,且另一条对角线CD 由线段PQ 以某一格点为旋转中心旋转得到.注:图1,图2在答题纸上.21.(本题10分)如图,抛物线2(0)y ax bx a =+≠交x 轴正半轴于点A ,直线2y x =经过抛物线的顶点M.已知该抛物线的对称轴为直线2x =,交x 轴于点B.(1)求a ,b 的值.(2)P 是第一象限内抛物线上的一点,且在对称轴的右侧,连接OP ,BP.设点P 的横坐标为m ,△OBP 的面积为S ,记S K m=.求K 关于m 的函数表达式及K 的范围.22.(本题10分)如图,D 是△ABC 的BC 边上一点,连接AD ,作△ABD 的外接圆,将△ADC 沿直线AD 折叠,点C 的对应点E 落在上.(1)求证:AE=AB.(2)若∠CAB=90°,cos∠ADB=13,BE=2,求BC的长.23.(本题12分)温州某企业安排65名工人生产甲、乙两种产品,每人每天生产2件甲或1件乙,甲产品每件可获利15元.根据市场需求和生产经验,乙产品每天产量不少于5件,当每天生产5件时,每件可获利120元,每增加1件,当天平均每件获利减少2元.设每天安排x人生产乙产品.(1)根据信息填表(2)若每天生产甲产品可获得的利润比生产乙产品可获得的利润多550元,求每件乙产品可获得的利润.(3)该企业在不增加工人的情况下,增加生产丙产品,要求每天甲、丙两种产品的产量相等.已知每人每天可生产1件丙(每人每天只能生产一件产品),丙产品每件可获利30元,求每天生产三种产品可获得的总利润W(元)的最大值及相应的x值.24.(本题14分)如图,已知P为锐角∠MAN内部一点,过点P作PB⊥AM于点B,PC⊥AN 于点C,以PB为直径作⊙O,交直线CP于点D,连接AP,BD,AP交⊙O于点E.(1)求证:∠BPD=∠BAC.(2)连接EB,ED,,当tan∠MAN=2,AB=时,在点P的整个运动过程中.①若∠BDE=45°,求PD的长.②若△BED 为等腰三角形,求所有满足条件的BD 的长.(2)连接OC ,EC ,OC 交AP 于点F ,当tan ∠MAN=1,OC//BE 时,记△OFP 的面积为S 1,△CFE 的面积为S 2,请写出12S S 的值.。
2018浙江温州中考数学试卷(含解析)
2018年浙江省温州市初中毕业、升学考试数学学科(满分150分,考试时间120分钟)一、选择题:本大题共10小题,每小题4分,共40分.不需写出解答过程,请把最后结果填在题后括号内.1.(2018浙江温州,1,4分)2,0,1-,其中负数是()A. B.2 C.0 D.1-【答案】D【解析】本题考查了实数的分类,实数分为正实数和负实数和0,负实数是比0小的数,或者理解为正数前加上负号便成了负数。
因为在四个数中,只有-1有负号。
故选D【知识点】实数的分类,负数2.(2018浙江温州,,4)移动台阶如图所示,它的主视图是()A. B. C. D.【答案】B【解析】根据从正面看得到的图形是主视图,注意看到的线是实线看不到的线画虚线。
可得答案选B.【知识点】三视图,简单组合体的三视图3.(2018浙江温州,3,4)计算a6·a2的结果是()A. a3B. a4C. a8D. a12【答案】C【解析】利用同底数幂相乘底数不变指数相加, 得a6a2=a6+2=a8答案选C【知识点】同底数幂乘法法则4.(2018浙江温州,4,4)某校九年级“诗歌大会”比赛中,各班代表队得分如下(单位:分):9,7,8,7,9,7,6,则各代表队得分的中位数是()A. 9分B. 8分C. 7分D. 6分【答案】C【解析】利用中位数的定义,中位数是一组数据从小到大或从大到小排列后中间位置的数(当数的个数为偶数个时为中间两个数的平均数)。
这道题的数据从小到大排列后得6,7,7,7,8,9,9所以中间位置的数就是7故选C【知识点】中位数5.(2018浙江温州,5,4)在一个不透明的袋中装有10个只有颜色不同的球,其中5个红球、3个黄球和2个白球.从袋中任意摸出一个球,是白球的概率为()A. 12B.13C.310D.15【答案】D【解析】利用概率的求法公式,事件发生的概率P(A)=事件发生的结果数所以可能出现的结果数A 所以从袋中任意摸出一个球,是白球的概率为21=105,故选D 【知识点】随机事件概率的公式求法6.(2018浙江温州,6,4)若分式25x x -+的值为0,则的值是() A. 2 B. 0 C. -2 D. -5【答案】A【解析】本题考查了分式值为零的条件分式值为零必须满足两个条件分母为0和分子不为0,所以由x-2=0得x=2 显然当x=2时分母为7不为0,所以选A【知识点】分式值为零的条件7.(2018浙江温州,7,4)如图,已知一个直角三角板的直角顶点与原点重合,另两个顶点A ,B 的坐标分别为(-1,0),(0.现将该三角板向右平移使点A 与点O 重合,得到△OCB’,则点B 的对应点B’的坐标是()A.(1,0)B.) C.(1) D.(-1)【答案】C【解析】本题考查了平移的性质和在平面直角坐标系的点的坐标的表示法。
浙江省温州市2018年中考数学试题及答案(Word版)
浙江省温州市2018年中考数学试题及答案(Word版)
预览说明:预览图片所展示的格式为文档的源格式展示,下载源文件没有水印,内容可编辑和复制
1 浙江省温州市2018年中考数学试题及答案
(Word 版)
卷I
一、选择题(本题有10小题,每小题4分,共40分.每小题只有一个选项是正确的,不选、多选、错选,均不给分)
1.
2,0,1-,其中负数是()
2. 移动台阶如图所示,它的主视图是()
A. B. C. D. 3. 计算62a a 的结果是()
A. 3a
B. 4a
C. 8a
D. 12
a
4. 某校九年级“诗歌大会”比赛中,各班代表队得分如下(单位:分):9,7,8,7,9,7,6,则各代表队得分的中位数是()
A. 9分
B. 8分
C. 7分
D. 6分
5. 在一个不透明的袋中装有10个只有颜色不同的球,其中5个红球、3个黄球和2个白球.从袋中任意摸出一个球,是白球的概率为()
A.
12 B. 13 C. 310 D. 15
6. 若分式25x x -+的值为0,则x 的值是() A. 2 B. 0 C. 2- D.
5-
7. 如图,已知一个直角三角板的直角顶点与原点重合,另两个顶点A ,
B 的坐标分别为(1-,0),(0
.现将该三角板向右平移使点
A 与点O 重合,得到△OC
B ’,则点B 的对应点B ’的坐标是()。
【2018中考数学真题】浙江温州市试题及解析【2018数学中考真题解析系列】
浙江省温州市2018年中考数学真题试题一、选择题1. ( 2分 ) 给出四个实数,2,0,-1,其中负数是()A.B.2C.0D.-1【答案】D【考点】正数和负数的认识及应用【解析】【解答】解根据题意:负数是-1,故答案为:D。
【分析】根据负数的定义,负数小于0 即可得出答案。
2. ( 2分 ) 移动台阶如图所示,它的主视图是()A.B.C.D.【答案】B【考点】简单组合体的三视图【解析】【解答】解:A、是其俯视图,故不符合题意;B是其主视图,故符合题意;C是右视图,故不符合题意;D是其左视图,故不符合题意。
故答案为:B。
【分析】根据三视图的定义,其主视图,就是从前向后看得到的正投影,根据看的情况一一判断即可。
3. ( 2分 ) 计算的结果是()A.B.C.【考点】同底数幂的乘法【解析】【解答】解: a 6· a 2=a8故答案为:C。
【分析】根据同底数幂的乘法,底数不变,指数相加即可得出答案。
4. ( 2分 ) 某校九年级“诗歌大会”比赛中,各班代表队得分如下(单位:分):9,7,8,7,9,7,6,则各代表队得分的中位数是()A. 9分B. 8分C. 7分D. 6分【答案】C【考点】中位数【解析】【解答】解:将这组数据按从小到大排列为:6<7<7<7<8<9<9,故中位数为:7分,故答案为:C。
【分析】根据中位数的定义,首先将这组数据按从小到大的顺序排列起来,由于这组数据共有7个,故处于最中间位置的数就是第四个,从而得出答案。
5. ( 2分 ) 在一个不透明的袋中装有10个只有颜色不同的球,其中5个红球、3个黄球和2个白球.从袋中任意摸出一个球,是白球的概率为()A.B.C.D.【答案】D【考点】概率公式【解析】【解答】解:根据题意:从袋中任意摸出一个球,是白球的概率为=故答案为:D。
【分析】一个不透明的袋中装有10个只有颜色不同的球,其中5个红球、3个黄球和2个白球.从袋中任意摸出一个球,共有10种等可能的结果,其中摸出白球的所有等可能结果共有2种,根据概率公式即可得出答案。
浙江省温州市2018年中考数学试题及答案(Word版)
浙江省温州市2018年中考数学试题及答案(Word 版)卷I一、选择题(本题有10小题,每小题4分,共40分.每小题只有一个选项是正确的,不选、多选、错选,均不给分)1. 给出四个实数5,2,0,1-,其中负数是( )A.5B.2C. 0D.-12. 移动台阶如图所示,它的主视图是( )A.B. C. D. 3. 计算62a a 的结果是( )A. 3aB. 4aC. 8aD. 12a4. 某校九年级“诗歌大会”比赛中,各班代表队得分如下(单位:分):9,7,8,7,9,7,6,则各代表队得分的中位数是( )A. 9分B. 8分C. 7分D. 6分5. 在一个不透明的袋中装有10个只有颜色不同的球,其中5个红球、3个黄球和2个白球.从袋中任意摸出一个球,是白球的概率为( ) A.12 B. 13 C. 310 D. 156. 若分式25x x -+的值为0,则x 的值是( ) A. 2 B. 0 C. 2- D. 5-7. 如图,已知一个直角三角板的直角顶点与原点重合,另两个顶点A ,B 的坐标分别为(1-,0),(0,3).现将该三角板向右平移使点A 与点O 重合,得到△OCB ’,则点B 的对应点B ’的坐标是( )A.(1,0)B.(3,3)C.(1,3)D.(1-,3)8. 学校八年级师生共466人准备参加社会实践活动,现已预备了49座和37座两种客车共10辆,刚好坐满.设49座客车x 辆,37座客车y 辆,根据题意可列出方程组( )A.104937466x y x y +=⎧⎨+=⎩B.103749466x y x y +=⎧⎨+=⎩C.466493710x y x y +=⎧⎨+=⎩D.466374910x y x y +=⎧⎨+=⎩9. 如图,点A ,B 在反比例函数1(0)y x x =>的图象上,点C ,D 在反比 例函数(0)k y k x=>的图象上,AC//BD//y 轴,已知点A ,B 的横坐 标分别为1,2,△OAC 与△ABD 的面积之和为32,则k 的值为( ) A. 4 B. 3 C. 2 D. 3210.我国古代伟大的数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的直角三角形,得到一个恒等式.后人借助这种分割方法所得的图形证明了勾股定理,如图所示的矩形由两个这样的图形拼成,若3a =,4b =,则该矩形的面积为( )A. 20B. 24C. 994D. 532卷II二、填空题(本题有6小题,每小题5分,共30分.)11.分解因式:25a a -= .12.已知扇形的弧长为2π,圆心角为60°,则它的半径为 .13.一组数据1,3,2,7,x ,2,3的平均数是3,则该组数据的众数为 .14.不等式组20262x x ->⎧⎨->⎩的解是 .15.如图,直线343y x =-+与x 轴、y 轴分别交于A ,B 两点, C 是OB 的中点,D 是AB 上一点,四边形OEDC 是菱形,则△OAE的面积为 .16.小明发现相机快门打开过程中,光圈大小变化如图1所示,于是他绘制了如图2所示的图形.图2中留个形状大小都相同的四边形围成一个圆的内接六边形和一个小正六边形,若PQ 所在的直线经面积为4932cm 2,则该圆的半径为 过点M ,PB=5cm ,小正六边形的cm.三、解答题(本题有8小题,共80分.解答需写出必要的文字说明、演算步骤或证明过程)17.(本题10分)(1)计算:20(2)27(21)--+- (2)化简:2(2)4(2)m m ++-18.(本题8分)如图,在四边形ABCD 中,E 是AB 的中点,AD//EC ,∠AED=∠B.(1)求证:△AED ≌△EBC.(2)当AB=6时,求CD 的长.19.(本题8分)现有甲、乙、丙等多家食品公司在某市开设蛋糕店,该市蛋糕店数量的扇形统计图如图所示,其中统计图中没有标注相应公司数量的百分比.已知乙公司经营150家蛋糕店,请根据该统计图回答下列问题:(1)求甲公司经营的蛋糕店数量和该市蛋糕店的总数.(2)甲公司为了扩大市场占有率,决定在该市增设蛋糕店数量达到全市的20%,求甲公司需要增设的蛋糕店数量.20.(本题8分)如图,P ,Q 是方格纸中的两格点,请按要求画出以PQ 为对角线的格点四边形.(1)在图1中画出一个面积最小的 PAQB.(2)在图2中画出一个四边形PCQD ,使其是轴对称图形而不是中心对称图形,且另一条对角线CD 由线段PQ 以某一格点为旋转中心旋转得到.注:图1,图2在答题纸上.21.(本题10分)如图,抛物线2(0)y ax bx a =+≠交x 轴正半轴于点A ,直线2y x =经过抛物线的顶点M.已知该抛物线的对称轴为直线2x =,交x 轴于点B.(1)求a ,b 的值.(2)P 是第一象限内抛物线上的一点,且在对称轴的右侧,连接OP ,BP.设点P 的横坐标为m ,△OBP 的面积为S ,记S K m =. 求K 关于m 的函数表达式及K 的范围.22.(本题10分)如图,D 是△ABC 的BC 边上一点,连接AD ,作△ABD 的外接圆,将△ADC 沿直线AD 折叠,点C 的对应点E 落在上.(1)求证:AE=AB.(2)若∠CAB=90°,cos ∠ADB=13,BE=2,求BC 的长.23.(本题12分)温州某企业安排65名工人生产甲、乙两种产品,每人每天生产2件甲或1件乙,甲产品每件可获利15元.根据市场需求和生产经验,乙产品每天产量不少于5件,当每天生产5件时,每件可获利120元,每增加1件,当天平均每件获利减少2元.设每天安排x 人生产乙产品.(1)根据信息填表产品种类每天工人数(人) 每天产量(件) 每件产品可获利润(元) 甲15 乙 x x(2)若每天生产甲产品可获得的利润比生产乙产品可获得的利润多550元,求每件乙产品可获得的利润.(3)该企业在不增加工人的情况下,增加生产丙产品,要求每天甲、丙两种产品的产量相等.已知每人每天可生产1件丙(每人每天只能生产一件产品),丙产品每件可获利30元,求每天生产三种产品可获得的总利润W (元)的最大值及相应的x 值.24. (本题14分)如图,已知P 为锐角∠MAN 内部一点,过点P 作PB ⊥AM 于点B ,PC ⊥AN 于点C ,以PB 为直径作⊙O ,交直线CP 于点D ,连接AP ,BD ,AP 交⊙O 于点E.(1)求证:∠BPD=∠BAC.(2)连接EB ,ED ,,当tan ∠MAN=2,AB=时,在点P 的整个运动过程中.①若∠BDE=45°,求PD 的长.②若△BED 为等腰三角形,求所有满足条件的BD 的长.(2)连接OC ,EC ,OC 交AP 于点F ,当tan ∠MAN=1,OC//BE 时,记△OFP 的面积为S 1,△CFE 的面积为S 2,请写出12SS 的值.。
2018年浙江省温州市中考数学试卷-答案
浙江省温州市2018年初中学业水平考试数学答案解析第Ⅰ卷一、选择题1.【答案】D,2,0,,其中负数是:.1-1-【考点】实数2.【答案】B【解析】从正面看是三个台阶,【考点】简单组合体的三视图3.【答案】C【解析】,628a a a = 【考点】同底数幂的乘法4.【答案】C【解析】将数据重新排列为6、7、7、7、8、9、9,所以各代表队得分的中位数是7分,故选:C .【考点】中位数5.【答案】D【考点】概率公式 【解析】袋子中共有10个小球,其中白球有2个,摸出一个球是白球的概率是, ∴21105=6.【答案】A【解析】解:由题意,得 ,20x -=解得,.2x =经检验,当时,. 2x =205x x -=+故选:A .【考点】分式的值为零的条件7.【答案】C【解析】因为点与点对应,点,点,A O (1,0)A -(0,0)O 所以图形向右平移1个单位长度,所以点的对应点的坐标为,即,B B '(0+【考点】坐标与图形变化——平移8.【答案】A【解析】解:设49座客车辆,37座客车辆,根据题意可列出方程组. x y 104937466x y x y +=⎧⎨+=⎩【考点】由实际问题抽象出二元一次方程组9.【答案】B【解析】点,在反比例函数的图象上,点,的横坐标分别为1,2, A B 1(0)y x x=>A B 点的坐标为,点的坐标为, ∴A (1,1)B 1(2,)2轴,AC BD y ∥∥点,的横坐标分别为1,2,∴C D 点,在反比例函数的图象上, C D (0)k y k x=>点的坐标为,点的坐标为, ∴C (1,)k D (2,)2k ,, 1AC k ∴=-11222k k BD -=-=,, 11(1)122OAC k S k -∴=-⨯=△111(21)224ABD k k S --=⨯-= △与的面积之和为, OAC △ABD △32, ∴113242k k --+=解得:.3k =【考点】反比例函数系数的几何意义,反比例函数图象上点的坐标特征k 10.【答案】B【解析】设小正方形的边长为,x,,3a = 4b =,347AB ∴=+=在中,,Rt ABC △222AC BC AB +=即,222(3)(4)7x x +++=整理得,,27120x x +-=解得或(舍去), x =x =该矩形的面积, ∴4)24==【考点】数学常识,勾股定理的证明第Ⅱ卷二、填空题11.【答案】(5)a a -【解析】.25(5)a a a a -=-【考点】因式分解——提公因式法12.【答案】6【解析】设半径为,r , 602180r ππ= 解得:,6r =【考点】弧长的计算13.【答案】3 【解析】根据题意知, 13272337x ++++++=解得:,3x =则数据为1、2、2、3、3、3、7,所以众数为3,故答案为:3.【考点】算术平均数,众数14.【答案】 4x >【解析】解:, 20262x x ->⎧⎨->⎩①②解①得,2x >解②得.4x >故不等式组的解集是.4x >【考点】解一元一次不等式组15.【答案】【解析】延长交于,如图,DE OA F当时,,则, 0x =44y =+=(0,4)B当时,,解得,, 0y =40x +=x =A 0)在中,, Rt AOB △tan OBA ∠=,60OBA ∴∠=︒是的中点,C OB ,2OC CB ∴==四边形是菱形,OEDC ,,2CD BC DE CE ∴====CD OE ∥为等边三角形,BCD ∴△,60BCD ∴∠=︒,60COE ∴∠=︒,30EOF ∴∠=︒, 112EF OE ∴==的面积. OAE △112=⨯=故答案为.【考点】一次函数图象上点的坐标特征,菱形的性质16.【答案】8【解析】设两个正六边形的中心为,连接,,过作,, O OP OB O OG PM ⊥OH AB ⊥由题意得:,60MNP NMP MPN ∠=∠=∠=︒, 2,即, ∴PM =, 2MPN S ∴=△,且为正六边形的中心,OG PM ⊥ O,, 12PG PM ∴==72OG PM ==在中,根据勾股定理得:, Rt OPG △7OP cm ==设,OB xcm =,且为正六边形的中心,OH AB ⊥ O,, 12BH x ∴=OH =, 1(5)2PH x cm ∴=-在中,根据勾股定理得:, Rt PHO △2221)(5)492OP x =+-=解得:(负值舍去),8x =则该圆的半径为.8cm 故答案为:8。
2018年浙江省温州市六校八年级下学期期末联考数学试卷(浙教版)word版含答案
2018年浙江省温州市六校八年级下学期期末联考数学试卷1、在下列方程中,是一元二次方程的是()A.x+y=0 B.x+5=0 C.x2-2014=0 D.【答案】C.【解析】试题分析:一元二次方程必须满足四个条件:(1)未知数的最高次数是2;(2)二次项系数不为0;(3)是整式方程;(4)含有一个未知数.由这四个条件对四个选项进行验证,满足这四个条件者为正确答案.因此,A、方程含有两个未知数,故不是;B、方程的二次项系数为0,故不是;C、符合一元二次方程的定义;D、不是整式方程.故选C.考点:一元二次方程的定义.2、下列计算正确的是()A.B.C.D.【答案】B.【解析】试题分析:根据二次根式的运算法则计算即可:A.和不是同类根式,不可合并,选项错误;B.,选项正确;C.,选项错误;D.,选项错误.故选B.考点:二次根式的运算.3、一组数据2,2,2,4,4,7的中位数是()A.2 B.3 C.4D.7【答案】B.【解析】试题分析:中位数是一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数). ∴中位数是按从小到大排列后第3,4个数的平均数,为:3. 故选B. 考点:中位数.4、若二次根式有意义,则x的取值范围是()A.x≥2B.x>2C.x≤2D.x<2 【答案】C.【解析】试题分析:根据二次根式被开方数必须是非负数的条件,要使在实数范围内有意义,必须. 故选C.考点:二次根式有意义的条件.5、王老师对甲、乙两人五次数学成绩进行统计,两人平均成绩均为90分,方差S甲2=12,S乙2=51,则下列说法正确的是()A.甲同学的成绩更稳定B.乙同学的成绩更稳定C.甲、乙两位同学的成绩一样稳定D.不能确定【答案】A.【解析】试题分析:方差就是和中心偏离的程度,用来衡量一批数据的波动大小(即这批数据偏离平均数的大小)在样本容量相同的情况下,方差越小,说明数据的波动越小,越稳定. 因此,∵12<51,∴甲同学的成绩更稳定. 故选A.考点:方差.6、如图所示,O为ABCD两对角线的交点,图中全等的三角形有()A.1对B.2对C.3对D.4对【答案】D.【解析】试题分析:∵四边形ABCD是平行四边形,∴AD=BC,AB=CD,OA=OC,OB=OD,∠ABC=∠ADC,在△ABC和△CDA中,AB=CD,∠ABC=∠ADC,BC=DA,∴△ABC≌△CDA(SAS).同理:△ABD≌△CDB.在△AOD和△COB中,OA=OC,∠AOD=∠BOC,OB=OD,∴△AOD≌△COB(SAS).同理:△AOB≌△COD.∴图中全等的三角形有4对.故选D.考点:1.平行四边形的性质;2.全等三角形的判定.7、将化简,正确的结果是()A.B.C.D.【答案】A.【解析】试题分析:.故选A.考点:二次根式化简8、如图,在四边形ABCD中,AB⊥BC,∠A=∠C=100°,则∠D的度数是()A.60°B.70°C.90°D.100°【答案】B.【解析】试题分析:根据多边形的内角和定理即可求出答案:∵AB⊥BC,∴∠B=90°.∵∠A=∠C=100,∴∠D=360°-100°-100°-90°=70°.故选B.考点:多边形内角与外角.9、小明同学上学期的5科期末成绩,语文、数学、英语每科成绩均为90分,科学、社会每科成绩均80分,则他5科成绩的平均分是()A.84 B.85 C.86 D.87【答案】C.【解析】试题分析:根据加权平均数的计算公式,先求出5科成绩的总分,再除以5即可:∵语文、数学、英语每科成绩均为90分,科学、社会每科成绩均80分,∴则他5科成绩的平均分是(90×3+80×2)÷5=86(分).故选C.考点:加权平均数.10、如图,在ABCD中,AB=6,AD=9,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG⊥AE于G,BG=,则梯形AECD的周长为()A.22B.23C.24D.25【答案】A.【解析】试题分析:由在?ABCD中,AB=6,AD=9,∠BAD的平分线交BC于点E,易得△ABE是等腰三角形,继而求得BE与CE的长,又由BG⊥AE于G,BG=,即可求得AE的长,继而求得答案:∵四边形ABCD是平行四边形,∴BC=AD=9,CD=AB=6,AD∥BC. ∴∠DAE=∠AEB.∵AE平分∠BAD,∴∠DAE=∠BAE. ∴∠BAE=∠BEA. ∴BE="AB=6." ∴EC=BC-BE=3.∵BG⊥AE,∴.∴AE=AG+EG=4.∴梯形AECD的周长为:AD+CD+CE+AE=9+6+3+4=22.故选A.考点:1.平行四边形的性质;2.等腰三角形的判定和性质;勾股定理.11、已知一组数据:3,3,4,5,5,6,6,6,这组数据的众数是_____ .【答案】6.【解析】试题分析:众数是在一组数据中,出现次数最多的数据,这组数据中6出现三次,出现的次数最多,故这组数据的众数为6.考点:众数.12、如图,已知直线AB∥CD,AB与CD之间的距离为,∠BAC=60°,则AC=______.【答案】2.【解析】试题分析:如图,过点C作CE⊥AB于E,∵AB∥CD,AB与CD之间的距离为,∴CE=.∵∠BAC=60°,∴∠ACE=30°.∴AE=AC.在Rt△ACE中,,即,解得AC=2.考点:1.平行线之间的距离;2.含30度角的直角三角形的性质;3.勾股定理.13、同学们对公园的滑梯很熟悉吧!如图是某公园新增设的一台滑梯,该滑梯高度AC=2米,滑梯AB的坡比是1:2(即AC:BC=1:2),则滑梯AB的长是_____ 米.【答案】.【解析】试题分析:根据坡比求出BC,在Rt△ABC中,根据勾股定理可求出斜边AB的长度:由题意知,AC:BC=1;2,且AC=2,故BC=4.在Rt△ABC中,,即滑梯AB的长度为米.考点:解直角三角形的应用-坡度坡角问题.14、已知关于x的方程x2+kx+3=0的一个根为x=3,则方程的另一个根为_____ .【答案】1.【解析】试题分析:设另一根为x1,则3?x1=3,解得x1=1,考点:根与系数的关系.15、某种产品原来售价为200元,经过连续两次大幅度降价处理,现按72元的售价销售.设平均每次降价的百分率为x,列出方程:.【答案】200(1-x)2=72.【解析】试题分析:设降价的百分率为x,则第一次降价后的价格为:200(1-x),第二次降价后的价格为:200(1-x)2=72;所以,可列方程:200(1-x)2=72.考点:由实际问题抽象出一元二次方程(增长率问题).16、小丽为校合唱队购买某种服装时,商店经理给出了如下优惠条件:如果一次性购买不超过10件,单价为80元;如果一次性购买多于10件,那么每增加1件,购买的所有服装的单价降低2元,但单价不得低于50元.设小丽一次性购买x(10<;x<;25)件这种服装,按此优惠条件,服装单价是_____ 元.(用含x的代数式表示)【答案】100-2x.【解析】试题分析:根据一次性购买多于10件,那么每增加1件,购买的所有服装的单价降低2元,表示出每件服装的单价:(100-2x)元考点:列代数式.17、如图,在□ABCD中,对角线AC,BD交于点E,AC⊥BC,若BC=6,AB=10,则BD的长是_____ .【答案】.【解析】试题分析:∵四边形ABCD是平行四边形,∴AC=CE,BE=DE.∵在△ABC中,AC⊥BC, BC=6,AB=10,∴由勾股定理,得AC="8." ∴CE=4.∵在△BCE中,AC⊥BC,BC=6,CE=4,∴由勾股定理,得BE=.∴BD=.考点:1.平行四边形的性质;2.勾股定理.18、在△ABC中,已知两边a=3,b=4,第三边为c.若关于x的方程有两个相等的实数根,则该三角形的面积是_____ .【答案】6或.【解析】试题分析:根据根的判别式求出c的值,分为两种情况,一个是直角三角形,一个是等腰三角形,根据面积公式求出即可:∵关于x的方程有两个相等的实数根,∴,解得:c=5或3.当c=5时,∵a=3,b=4,∴a2+b2=c2. ∴∠ACB=90°.∴△ABC的面积是×3×4=6.当c=3时,如图,AB=BC=3,过B作BD⊥AC于D,则AD=DC=2,∵由勾股定理得:BD=,∴△ABC的面积是.综上所述,该三角形的面积是6或.考点:1.勾股定理的逆定理;2.根的判别式;3.分类思想的应用.19、计算:(1);(2)【答案】(1)4;(2).【解析】试题分析:(1)根据二次根式的性质化简计算.(2)根据分配律和完全平方公式展开后合并同类根式即可.(1)原式=.(2)原式=考点:二次根式的计算.20、解方程:(1).(2)【答案】(1);(2).【解析】试题分析:(1)应用因式分解法解方程即可.(2)应用开方法解方程即可.(1)由左边因式分解得,即或∴原方程的解为.(2)由得或,解得.∴原方程的解为.考点:解一元二次方程.21、已知如图所示的图形的面积为24,根据图中的条件,求出x的值.【答案】4.【解析】试题分析:此图形的面积等于两个正方形的面积的差,据此可以列出方程求解.由题意得(x+1)2-1=24,整理得:(x+1)2=25即:x+1=5或 x+1=-5,∴x=4或 x=-6.∵x>0,∴x=-6不合题意,舍去.∴x的值是4.考点:一元二次方程的应用(几何问题).22、为了了解某校学生的身高情况,随机抽取该校男生、女生进行抽样调查.已知抽取的样本中,男生、女生的人数相同,利用所得数据绘制如下统计图表:根据图表提供的信息,回答下列问题:(1)样本中,男生的身高中位数在组;(2)样本中,女生身高在E组的人数有人;(3)已知该校共有男生800人,女生760人,请估计身高在之间的学生约有多少人?【答案】(1)C;(2)2;(3)664.【解析】试题分析:(1)中位数是40人中处在中间的是第20和21人身高的平均数,而第20和21人身高的数据都在C组,故中位数在C 组.(2)从扇形统计图可知,样本中,女生身高在E组人数的频率是1-17.5%-37.5%-25%-15%=5%,因为样本中,男生、女生人数相同,所以女生身高在E组的人数有40×5%=2(人). (3)用样本估计总体即可.(1) 按照从低到高的顺序,第20、21两人都在C组,∴中位数在C组.(2)女生身高在E组的百分比为:1﹣17.5%﹣37.5%﹣25%﹣15%=5%,∵抽取的样本中,男生、女生的人数相同,∴样本中,女生身高在E组的人数有40×5%=2人.(3)800×+760×(25%+15%)=360+304=664(人).答:估计该校身高在160≤x<170之间的学生约有664人.考点:1.直方图;2.扇形统计图;3.频数、频率和总量的关系;.用样本估计总体.23、已知:如图,□ABCD中,点E在BC的延长线上,且DE∥AC.请写出BE与BC的数量关系,并证明你的结论.【答案】BE=2BC,证明见解析.【解析】试题分析:根据一组对边平行且相等的四边形是平行四边形,可以证明四边形ACED是平行四边形,则AD=CE,则AD=CE=BC,从而解答.结论:BE=2BC,证明如下:□ABCD中,有AD=BC,AD∥BC即AD∥CE,∵AD∥CE,DE∥AC,∴四边形ACED是平行四边形.∴AD="CE" .∴AD=CE=BC.∴BE=2BC.考点:平行四边形的判定与性质.24、如图,在△ABC中,∠B=90°,AB=BC=10cm,点P从A出发沿射线AB 以1cm/s的速度作直线运动,点Q从C出发沿边BC的延长线以2cm/s的速度作直线运动.如果P,Q分别从A,B同时出发,经过几秒,△PCQ的面积为24cm2 ?【答案】4、6或12.【解析】试题分析:分两种情况:P在线段AB上;P在线段AB的延长线上;进行讨论即可求得P运动的时间.设当点P运动x秒时,△PCQ的面积为24cm2,①P在线段AB上,此时CQ=2x,PB=10-x,S△PCQ=?2x?(10-x)=24,化简得 x2-10 x+24=0,解得x=6或4;②P在线段AB的延长线上,此时CQ=2x,PB=x-10S△PCQ=?2x?(x-10)=24 ,化简得 x2-10 x-24=0,解得x=12或-2,负根不符合题意,舍去.所以当点P运动4秒、6秒或12秒时△PCQ的面积为24cm2.考点:1.双动点问题;2.一元二次方程的应用;3.分类思想的应用.。
浙江省温州市2018年中考六校联考数学试题(含答案)
卷Ⅰ
一、选择题(本题有10小题,每小题4分,共40分.每小题只有一个选项是正确的,不选、多选、错选,均不给分)
1. ﹣5的绝对值是( ▲ )
A.5 B.1
C.0 D.﹣5
2.右图是七(1)班40名同学在校午餐所需时间的频数直
方图(每组含前一个边界值,不含后一个边界值).
由图可知,人数最多的一组是( ▲ )
则点H为AE的中点.
∴P(2,2),H(4,0)
∴
则
解得: (舍去)
∴
∴M .(3分)
(3)①如图2,过点M作MK⊥x轴交于点K.
∵点P在线段DE上运动,则t > 0.
P(2,t),PE=EH=t.
由MK//EF,
得:
∴MK=HK=3t,OK=3t-(2+t)=2t-2.
即M(2-2t,3t)
化简:
∴DF‖AC∴∠FDB=∠AED(4分)
(2)连结AD∵点D是弧AC的中点
∴弧AD=弧CD∴∠FBD=∠ABD=∠DAC(1分)
∴tan∠FBD=tan∠ABD=tan∠DAC=
在RT△ABD中,AB=2×5=10, tan∠ABD=
设AD=3x,则BD=4x∴ 解得x=2
∴AD=6(3分)
在RT△ADG中,AD=6, tan∠DAC=
▲平方米.
三、解答题(本题有8小题,共80分,解答需写出必要的文字说明、演算步骤或证明过程)
17.(本题10分)(1)计算: . (2)化简: .
18. (本题8分)如图,在△ABC中,AD是BC边上的中线,
点E是AD的中点,过点A作AF∥BC交BE的延长线于F.
(1)求证:△AEF≌△DEB;
高三数学-2018年温州六校联合考试数学参考答案 精品
温州市部分省重点中学高三第二次阶段性联合考试参考答案(文科)2018.10一、选择题(每小题5分,共50分)11、 -2 。
12、 121+-x 13、 185 。
14、____ _(-2, 3)___ 。
三、解答题:本大题共6小题,每小题14分,共84分。
解答应写出文字说明,证明过程或演算步骤。
15、已知三个集合A={x| x 2-ax+a 2-19=0},B={x| log 2(x 2-5x+8)=1},C={x| 8222-+x x =1},若A ∩B ∅≠,A ∩C ∅=,求实数a 的值和集合A 。
解:由log 2(x 2-5x+8)=1,∴x 2-5x+8=2即x 2-5x+6=0 ∴x=2或x=3 ∴B={2,3}…………………………………..2分由8222-+x x =1得x 2+2x -8=0 ∴x=2或x= -4 ∴C={2, -4}……………………....4分 若A ∩B ∅≠,A ∩C ∅=,则3∈A , ∴9-3a+a 2—19=0即a 2-3a -10=0∴a=5或a=-2 ................................................................................................................... 7分 当a=5时代入x 2-ax+a 2-19=0得x 2-5x+6=0 ∴x=2或x=3∴集合A={2,3} 则 A ∩C={2}∅≠ 不合题意(舍去)........................................10分 当a=-2代入x 2-ax+a 2-19=0得x 2+2x -15=0 ∴x=3或x= -5∴集合A={3,-5} 符合A ∩B ∅≠,A ∩C ∅=,..................................................13分 综上:a=-2,集合A={3,-5}........................................................................................14分16.已知f (x )=xxa-+11log (a >0, a ≠1), (1)求f (x )的定义域; (2) 判断f (x )的奇偶性并给予证明; (3)求使f (x )>0的x 的取值范围.解:(1) 由011>-+xx得 -1<x <1 ∴f (x )的定义域为(-1,1)。
2018年浙江省温州市中考数学试卷及答案
浙江省温州市2018年中考数学试卷参考答案与试题解析一、选择题(共10小题,每小题4分,满分40分)1.(4分)(2018•温州)计算:(﹣3)+4的结果是()A.﹣7B.﹣1 C. 1 D.7考点:有理数的加法.分析:根据异号两数相加,取绝对值较大的数的符号,再用较大的绝对值减去较小的绝对值,可得答案.解答:解:原式=+(4﹣3)=1,故选:C.点评:本题考查了有理数的加法,先确定和的符号,再进行绝对值得运算.2.(4分)(2018•温州)如图是某班45名同学爱心捐款额的频数分布直方图(每组含前一个边界值,不含后一个边界值),则捐款人数最多的一组是()A.5﹣10元B.10﹣15元C.15﹣20元D.20﹣25元考点:频数(率)分布直方图.分析:根据图形所给出的数据直接找出捐款人数最多的一组即可.解答:解:根据图形所给出的数据可得:15﹣20元的有20人,人数最多,则捐款人数最多的一组是15﹣20元;故选C.点评:本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.3.(4分)(2018•温州)如图所示的支架是由两个长方形构成的组合体,则它的主视图是()A.B.C.D.考点:简单组合体的三视图.分析:找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.解答:解:从几何体的正面看可得此几何体的主视图是,故选:D.点评:本题考查了三视图的知识,主视图是从物体的正面看得到的视图.4.(4分)(2018•温州)要使分式有意义,则x的取值应满足()A.x≠2 B.x≠﹣1 C.x=2 D.x=﹣1考点:分式有意义的条件.分析:根据分式有意义,分母不等于0列式计算即可得解.解答:解:由题意得,x﹣2≠0,解得x≠2.故选A.点评:本题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.5.(4分)(2018•温州)计算:m6•m3的结果()A.m18B.m9C.m3D.m2考点:同底数幂的乘法.分析:根据同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,进行计算即可.解答:解:m6•m3=m9.故选B.点评:本题考查了同底数幂的乘法,解答本题的关键是掌握同底数幂的乘法法则.6.(4分)(2018•温州)小明记录了一星期天的最高气温如下表,则这个星期每天的最高气温的中位数是()星期一二三四五六日最高气温(℃)22 24 23 25 24 22 21A.22℃B.23℃C.24℃D.25℃考点:中位数.分析:将数据从小到大排列,根据中位数的定义求解即可.解答:解:将数据从小到大排列为:21,22,22,23,24,24,25,中位数是23.故选B.点评:本题考查了中位数的知识,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.7.(4分)(2018•温州)一次函数y=2x+4的图象与y轴交点的坐标是()A.(0,﹣4)B.(0,4)C.(2,0)D.(﹣2,0)考点:一次函数图象上点的坐标特征.分析:在解析式中令x=0,即可求得与y轴的交点的纵坐标.解答:解:令x=0,得y=2×0+4=4,则函数与y轴的交点坐标是(0,4).故选B.点评:本题考查了一次函数图象上点的坐标特征,是一个基础题.8.(4分)(2018•温州)如图,已知A,B,C在⊙O上,为优弧,下列选项中与∠AOB 相等的是()A.2∠C B.4∠B C.4∠A D.∠B+∠C考点:圆周角定理.分析:根据圆周角定理,可得∠AOB=2∠C.解答:解:如图,由圆周角定理可得:∠AOB=2∠C.故选A.点评:此题考查了圆周角定理.此题比较简单,注意掌握数形结合思想的应用.9.(4分)(2018•温州)20位同学在植树节这天共种了52棵树苗,其中男生每人种3棵,女生每人种2棵.设男生有x人,女生有y人,根据题意,列方程组正确的是()A.B.C.D.考点:由实际问题抽象出二元一次方程组.分析:设男生有x人,女生有y人,根据男女生人数为20,共种了52棵树苗,列出方程组成方程组即可.解答:解:设男生有x人,女生有y人,根据题意得,.故选:D.点评:此题考查二元一次方程组的实际运用,找出题目蕴含的数量关系是解决问题的关键.10.(4分)(2018•温州)如图,矩形ABCD的顶点A在第一象限,AB∥x轴,AD∥y轴,且对角线的交点与原点O重合.在边AB从小于AD到大于AD的变化过程中,若矩形ABCD的周长始终保持不变,则经过动点A的反比例函数y=(k≠0)中k的值的变化情况是()A.一直增大B.一直减小C.先增大后减小D.先减小后增大考点:反比例函数图象上点的坐标特征;矩形的性质.分析:设矩形ABCD中,AB=2a,AD=2b,由于矩形ABCD的周长始终保持不变,则a+b 为定值.根据矩形对角线的交点与原点O重合及反比例函数比例系数k的几何意义可知k=AB•AD=ab,再根据a+b一定时,当a=b时,ab最大可知在边AB从小于AD到大于AD的变化过程中,k的值先增大后减小.解答:解:设矩形ABCD中,AB=2a,AD=2b.∵矩形ABCD的周长始终保持不变,∴2(2a+2b)=4(a+b)为定值,∴a+b为定值.∵矩形对角线的交点与原点O重合∴k=AB•AD=ab,又∵a+b为定值时,当a=b时,ab最大,∴在边AB从小于AD到大于AD的变化过程中,k的值先增大后减小.故选C.点评:本题考查了矩形的性质,反比例函数比例系数k的几何意义及不等式的性质,有一定难度.根据题意得出k=AB•AD=ab是解题的关键.二、填空题(共6小题,每小题5分,满分30分)11.(5分)(2018•温州)分解因式:a2+3a=a(a+3).考点:因式分解-提公因式法.分析:直接提取公因式a,进而得出答案.解答:解:a2+3a=a(a+3).故答案为:a(a+3).点评:此题主要考查了提取公因式法分解因式,正确提取公因式是解题关键.12.(5分)(2018•温州)如图,直线AB,CD被BC所截,若AB∥CD,∠1=45°,∠2=35°,则∠3=80度.考点:平行线的性质.分析:根据平行线的性质求出∠C,根据三角形外角性质求出即可.解答:解:∵AB∥CD,∠1=45°,∴∠C=∠1=45°,∵∠2=35°,∴∠3=∠∠2+∠C=35°+45°=80°,故答案为:80.点评:本题考查了平行线的性质,三角形的外角性质的应用,解此题的关键是求出∠C的度数和得出∠3=∠2+∠C.13.(5分)(2018•温州)不等式3x﹣2>4的解是x>2.考点:解一元一次不等式.分析:先移项,再合并同类项,把x的系数化为1即可.解答:解:移项得,3x>4+2,合并同类项得,3x>6,把x的系数化为1得,x>2.故答案为:x>2.点评:本题考查的是解一元一次不等式,熟知解一元一次不等式的基本步骤是解答此题的关键.14.(5分)(2018•温州)如图,在△ABC中,∠C=90°,AC=2,BC=1,则tanA的值是.考点:锐角三角函数的定义.分析:根据锐角三角函数的定义(tanA=)求出即可.解答:解:tanA==,故答案为:.点评:本题考查了锐角三角函数定义的应用,注意:在Rt△ACB中,∠C=90°,sinA=,cosA=,tanA=.15.(5分)(2018•温州)请举反例说明命题“对于任意实数x,x2+5x+5的值总是整数”是假命题,你举的反例是x=(写出一个x的值即可).考点:命题与定理.专题:开放型.分析:能使得x2+5x+5的值不是整数的任意实数均可.解答:解:当x=时,原式=+5=5,不是整数,故答案为:.点评:本题考查了命题与定理的知识,在判断一个命题为假命题时,可以举出反例.16.(5分)(2018•温州)如图,在矩形ABCD中,AD=8,E是边AB上一点,且AE=AB.⊙O 经过点E,与边CD所在直线相切于点G(∠GEB为锐角),与边AB所在直线交于另一点F,且EG:EF=:2.当边AB或BC所在的直线与⊙O相切时,AB的长是12.考点:切线的性质;矩形的性质.分析:过点G作GN⊥AB,垂足为N,可得EN=NF,由EG:EF=:2,得:EG:EN=:1,依据勾股定理即可求得AB的长度.解答:解:如图,过点G作GN⊥AB,垂足为N,∴EN=NF,又∵EG:EF=:2,∴EG:EN=:1,又∵GN=AD=8,∴设EN=x,则,根据勾股定理得:,解得:x=4,GE=,设⊙O的半径为r,由OE2=EN2+ON2得:r2=16+(8﹣r)2,∴r=5.∴OK=NB=5,∴EB=9,又AE=AB,∴AB=12.故答案为12.点评:本题考查了切线的性质以及勾股定理和垂径定理的综合应用,解答本题的关键在于做好辅助线,利用勾股定理求出对应圆的半径.三、解答题(共8小题,满分80分)17.(10分)(2018•温州)(1)计算:+2×(﹣5)+(﹣3)2+20180;(2)化简:(a+1)2+2(1﹣a)考点:实数的运算;整式的混合运算;零指数幂.分析:(1)分别根据有理数乘方的法则、数的开放法则及0指数幂的运算法则计算出各数,再根据实数混合运算的法则进行计算即可;(2)根据整式混合运算的法则进行计算即可.解答:解:(1)原式=2﹣10+9+1=2;(2)原式=a2+2a+1+2﹣2a=a2+3.点评:本题考查的是实数的运算,熟知有理数乘方的法则、数的开放法则及0指数幂的运算法则是解答此题的关键.18.(8分)(2018•温州)如图,在所给方格纸中,每个小正方形边长都是1,标号为①②③的三个三角形均为格点三角形(顶点在方格顶点处),请按要求将图甲,图乙中的指定图形分割成三个三角形,使它们与标号为①②③的三个三角形分别对应全等.(1)图甲中的格点正方形ABCD;(2)图乙中的格点平行四边形ABCD.注:图甲,图乙在答题卡上,分割线画成实线.考点:作图—应用与设计作图.分析:(1)利用三角形的形状以及各边长进而拼出正方形即可;(2)利用三角形的形状以及各边长进而拼出平行四边形即可.解答:解:(1)如图甲所示:(2)如图乙所示:点评:此题主要考查了应用设计与作图,利用网格结合三角形各边长得出符合题意的图形是解题关键.19.(8分)(2018•温州)一个不透明的袋中装有20个只有颜色不同的球,其中5个黄球,8个黑球,7个红球.(1)从袋中摸出一个球是黄球的概率;(2)现从袋中取出若干个黑球,搅匀后,使从袋中摸出一个球是黑球的概率是,求从袋中取出黑球的个数.考点:概率公式;分式方程的应用.分析:(1)由一个不透明的袋中装有20个只有颜色不同的球,其中5个黄球,8个黑球,7个红球,直接利用概率公式求解即可求得答案;(2)首先设从袋中取出x个黑球,根据题意得:=,继而求得答案.解答:解:(1)∵一个不透明的袋中装有20个只有颜色不同的球,其中5个黄球,8个黑球,7个红球,∴从袋中摸出一个球是黄球的概率为:=;(2)设从袋中取出x个黑球,根据题意得:=,解得:x=2,经检验,x=2是原分式方程的解,∴从袋中取出黑球的个数为2个.点评:此题考查了概率公式的应用.注意用到的知识点为:概率=所求情况数与总情况数之比.20.(10分)(2018•温州)如图,在等边三角形ABC中,点D,E分别在边BC,AC上,DE∥AB,过点E作EF⊥DE,交BC的延长线于点F.(1)求∠F的度数;(2)若CD=2,求DF的长.考点:等边三角形的判定与性质;含30度角的直角三角形.分析:(1)根据平行线的性质可得∠EDC=∠B=60,根据三角形内角和定理即可求解;(2)易证△EDC是等边三角形,再根据直角三角形的性质即可求解.解答:解:(1)∵△ABC是等边三角形,∴∠B=60°,∵DE∥AB,∴∠EDC=∠B=60°,∵EF⊥DE,∴∠DEF=90°,∴∠F=90°﹣∠EDC=30°;(2)∵∠ACB=60°,∠EDC=60°,∴△EDC是等边三角形.∴ED=DC=2,∵∠DEF=90°,∠F=30°,∴DF=2DE=4.点评:本题考查了等边三角形的判定与性质,以及直角三角形的性质,30度的锐角所对的直角边等于斜边的一半.21.(10分)(2018•温州)如图,抛物线y=﹣x2+2x+c与x轴交于A,B两点,它的对称轴与x轴交于点N,过顶点M作ME⊥y轴于点E,连结BE交MN于点F,已知点A的坐标为(﹣1,0).(1)求该抛物线的解析式及顶点M的坐标.(2)求△EMF与△BNE的面积之比.考点:抛物线与x轴的交点;二次函数的性质;待定系数法求二次函数解析式;相似三角形的判定与性质.分析:(1)直接将(﹣1,0)代入求出即可,再利用配方法求出顶点坐标;(2)利用EM∥BN,则△EMF∽△BNF,进而求出△EMF与△BNE的面积之比.解答:解:(1)由题意可得:﹣(﹣1)2+2×(﹣1)+c=0,解得:c=3,∴y=﹣x2+2x+3,∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴顶点M(1,4);(2)∵A(﹣1,0),抛物线的对称轴为直线x=1,∴点B(3,0),∴EM=1,BN=2,∵EM∥BN,∴△EMF∽△BNF,∴=()2=()2=.点评:此题主要考查了待定系数法求二次函数解析式以及相似三角形的判定与性质,得出△EMF∽△BNF是解题关键.22.(8分)(2018•温州)勾股定理神秘而美妙,它的证法多样,其巧妙各有不同,其中的“面积法”给了小聪以灵感,他惊喜的发现,当两个全等的直角三角形如图1或图2摆放时,都可以用“面积法”来证明,下面是小聪利用图1证明勾股定理的过程:将两个全等的直角三角形按图1所示摆放,其中∠DAB=90°,求证:a2+b2=c2证明:连结DB,过点D作BC边上的高DF,则DF=EC=b﹣a.∵S四边形ADCB=S△ACD+S△ABC=b2+ab.又∵S四边形ADCB=S△ADB+S△DCB=c2+a(b﹣a)∴b2+ab=c2+a(b﹣a)∴a2+b2=c2请参照上述证法,利用图2完成下面的证明.将两个全等的直角三角形按图2所示摆放,其中∠DAB=90°.求证:a2+b2=c2证明:连结过点B作DE边上的高BF,则BF=b﹣a,∵S五边形ACBED=S△ACB+S△ABE+S△ADE=ab+b2+ab,又∵S五边形ACBED=S△ACB+S△ABD+S△BDE=ab+c2+a(b﹣a),∴ab+b2+ab=ab+c2+a(b﹣a),∴a2+b2=c2.考点:勾股定理的证明.分析:首先连结BD,过点B作DE边上的高BF,则BF=b﹣a,表示出S,进而五边形ACBED 得出答案.解答:证明:连结BD,过点B作DE边上的高BF,则BF=b﹣a,∵S五边形ACBED=S△ACB+S△ABE+S△ADE=ab+b2+ab,又∵S五边形ACBED=S△ACB+S△ABD+S△BDE=ab+c2+a(b﹣a),∴ab+b2+ab=ab+c2+a(b﹣a),∴a2+b2=c2.点评:此题主要考查了勾股定理得证明,表示出五边形面积是解题关键.23.(12分)(2018•温州)八(1)班五位同学参加学校举办的数学素养竞赛.试卷中共有20道题,规定每题答对得5分,答错扣2分,未答得0分.赛后A,B,C,D,E五位同学对照评分标准回忆并记录了自己的答题情况(E同学只记得有7道题未答),具体如下表参赛同学答对题数答错题数未答题数A 19 0 1B 17 2 1C 15 2 3D 17 1 2E / / 7(1)根据以上信息,求A,B,C,D四位同学成绩的平均分;(2)最后获知ABCDE五位同学成绩分别是95分,81分,64分,83分,58分.①求E同学的答对题数和答错题数;②经计算,A,B,C,D四位同学实际成绩的平均分是80.75分,与(1)中算得的平均分不相符,发现是其中一位同学记错了自己的答题情况,请指出哪位同学记错了,并写出他的实际答题情况(直接写出答案即可)考点:二元一次方程组的应用;加权平均数.分析:(1)直接算出A,B,C,D四位同学成绩的总成绩,再进一步求得平均数即可;(2)①设E同学答对x题,答错y题,根据对错共20﹣7=13和总共得分58列出方程组成方程组即可;②根据表格分别算出每一个人的总成绩,与实际成绩对比:A为19×5=95分正确,B为17×5+2×(﹣2)=81分正确,C为15×5+2×(﹣2)=71错误,D为17×5+1×(﹣2)=83正确,E正确;所以错误的是E,多算7分,也就是答对的少一题,打错的多一题,由此得出答案即可.解答:解:(1)==82.5(分),答:A,B,C,D四位同学成绩的平均分是82.5分.(2)①设E同学答对x题,答错y题,由题意得,解得,答:E同学答对12题,答错1题.②C同学,他实际答对14题,答错3题,未答3题.点评:此题考查加权平均数的求法,一元二次方程组的实际运用,以及有理数的混合运算等知识,注意理解题意,正确列式解答.24.(14分)(2018•温州)如图,在平面直角坐标系中国,点A,B的坐标分别为(﹣3,0),(0,6).动点P从点O出发,沿x轴正方向以每秒1个单位的速度运动,同时动点C从B 出发,沿射线BO方向以每秒2个单位的速度运动,以CP,CO为邻边构造▱PCOD,在线段OP延长线上取点E,使PE=AO,设点P运动的时间为t秒.(1)当点C运动到线段OB的中点时,求t的值及点E的坐标.(2)当点C在线段OB上时,求证:四边形ADEC为平行四边形.(3)在线段PE上取点F,使PF=1,过点F作MN⊥PE,截取FM=2,FN=1,且点M,N 分别在一,四象限,在运动过程中▱PCOD的面积为S.①当点M,N中有一点落在四边形ADEC的边上时,求出所有满足条件的t的值;②若点M,N中恰好只有一个点落在四边形ADEC的内部(不包括边界)时,直接写出S 的取值范围.考点:四边形综合题.分析:(1)由C是OB的中点求出时间,再求出点E的坐标,(2)连接CD交OP于点G,由▱PCOD的对角线相等,求四边形ADEC是平行四边形.(3)当点C在BO上时,第一种情况,当点M在CE边上时,由△EMF∽△ECO求解,第二种情况,当点N在DE边上时,由△EFN∽△EPD求解,当点C在BO的延长线上时,第一种情况,当点M在DE边上时,由EMF∽△EDP 求解,第二种情况,当点N在CE边上时,由△EFN∽△EOC求解,②当1≤t<时和当<t≤5时,分别求出S的取值范围,解答:解:(1)∵OB=6,C是OB的中点,∴BC=OB=3,∴2t=3即t=,∴OE=+3=,E(,0)(2)如图,连接CD交OP于点G,在▱PCOD中,CG=DG,OG=PG,∵AO=PO,∴AG=EG,∴四边形ADEC是平行四边形.(3)①(Ⅰ)当点C在BO上时,第一种情况:如图,当点M在CE边上时,∵MF∥OC,∴△EMF∽△ECO,∴=,即=,∴t=1,第二种情况:当点N在DE边∵NF∥PD,∴△EFN∽△EPD,∴==,∴t=,(Ⅱ)当点C在BO的延长线上时,第一种情况:当点M在DE边上时,∵MF∥PD,∴EMF∽△EDP,∴=即=,∴t=,第二种情况:当点N在CE边上时,∵NF∥OC,∴△EFN∽△EOC,∴=即=,∴t=5.②<S≤或<S≤20.当1≤t<时,S=t(6﹣2t)=﹣2(t﹣)2+,∵t=在1≤t<范围内,∴<S≤,当<t≤5时,S=t(2t﹣6)=2(t﹣)2﹣,∴<S≤20.点评:本题主要是考查了四边形的综合题,解题的关键是正确分几种不同种情况求解.。
第二学期温州市初中学校六校联考一模数学卷参考答案及评分标准
2018年度第二学期温州市初中学校六校联考一模数学卷参考答案及评分标准一、选择题 二、填空题11.22a a - 12.30 13.83π 14.813 15. 16.72三、解答题17.(1)解:原式=112244+-⨯(3分) =22 (2分)(2)解:原式=()()2226x x x +--=+ (4分)当x =-1时,原式=-1+6=5 (1分)18.(1)∵AE =BE ,∠A =∠B ,AD =BC ,∴△ADE ≌△BCE .·······················(4分) (2)∵△ADE ≌△BCE ,∴DE =CE ,∠A =∠B =70°,∠ADE =∠BCE =60°,∴∠AED =∠BEC =50°,∠CED =80°,······(6分)∴∠CDE =∠DCE =50°. ··················(8分)(其他合理答案酌情给分) 19.解:(1).(4分)(本题答案众多,其他合理答案酌情给分)(2)(4分)(本题答案众多,其他合理答案酌情给分)20.解:(1)众数是 12件 ,中位数是 件 ,平均数是 件 .(6分)(2)75%×16=12(人),月销售件12件以下恰好4人,所以应该以众数12作为月销售件数的定额.(2分)21.解:(1)证明:连结AD ,∵BD 是⊙O 的直径,∴∠BAD =90°,又CF ⊥BD ,∴∠BEF =90°, ∴∠BFC =∠ADB ,∵AB =AC ,∴∠ABC =∠ACB , ∵∠ACB =∠ADB ,∴∠BFC =∠ABC .(4分) (2)连结CD ,∵BD 是⊙O 的直径,∴∠BCD =90°,∵∠BFC =∠ABC ,∴BC =CF =6,又BD =10,∴CD =8,在Rt △BCE 中,318cos 655BE BC DBC =⋅∠=⨯=,424sin 655CE BC DBC =⋅∠=⨯=,∴65EF =,6105BF =, 题号 1 2 3 4 5 6 7 8 9 10 答案BABDACBDCC(第18题) (第21题)∵cos AB BE ΑBD =BD BF ∠=,185610105AB=,310AB =,9105AF =.(6分)22.解:(1)由题意,得46120x y +=,∴2203y x =-+.(3分)(2)由题意,得240300120303000x y +-⨯≥,又2203y x =-+,∴2240300201203030003x x ⎛⎫+-+-⨯≥ ⎪⎝⎭,解得x ≥15,∴甲种礼品盒的数量至少要15盒,此时乙种礼品盒的数量要10盒,符合题意. (3分) (3)由题意,得5424030046m x ym x y=+⎧⎨=+⎩, ∴()2403005446x y x y +=+,x =y ,m =10x ,又69x y +≤,34.5x ≤, 因为x 是整数,所以x 的最大值为34, ∴m 的最大值为340.(4分)23.解:(1)顶点D (4,-16),点C 的纵坐标:16a -16.(2分)(2)∵D (4,-16),∴OH =4,∵AF =AH =OH ,EH =HF ,∴F (12,0),A (8,0),E (-4,0), ∴()2012416a =--,14a =, 1803b ⨯+=,83b =-,∴C (0,-12),OC =12,12tan 34OC CEO OE ===∠, tan 3OAΟΒΑOB==∠,∴∠CEO =∠ABO .(4分)(3) a =59,b =-2或a =43,b =-1或a =136,b =4(6分).24.解:(1)364y x =+(3分) (2) 连结BC ,作DE ⊥OC 于点E , ∵∠OBC =∠ODC ,tan ∠ODC =53,∴53OC BC =,OC =10, AC =18,472cos 1855AD AC DAC =⋅=⨯=∠,(第23题)723216sin 5525DE AD DAC =⋅=⨯=∠, 令21625y =,21636254x =+,8825x =, ∴D (8825,21625)(5分)(3)如图,m 的值为8或-3或1447或12.(4分)(4)BQ =115.(2分)。
浙江省温州市2018年中考数学试题(含解析)
浙江省温州市2018年中考数学试卷(解析版)一、选择题1. ( 2分) 给出四个实数,2,0,-1,其中负数是()A.B.2C.0D.-1【答案】D【考点】正数和负数的认识及应用【解析】【解答】解根据题意:负数是-1,故答案为:D。
【分析】根据负数的定义,负数小于0 即可得出答案。
2. ( 2分) 移动台阶如图所示,它的主视图是()A.B.C.D.【答案】B【考点】简单组合体的三视图【解析】【解答】解:A、是其俯视图,故不符合题意;B是其主视图,故符合题意;C是右视图,故不符合题意;D是其左视图,故不符合题意。
故答案为:B。
【分析】根据三视图的定义,其主视图,就是从前向后看得到的正投影,根据看的情况一一判断即可。
3. ( 2分) 计算的结果是()A. B. C. D.【答案】C【考点】同底数幂的乘法【解析】【解答】解: a 6 · a 2=a8故答案为:C。
【分析】根据同底数幂的乘法,底数不变,指数相加即可得出答案。
4. ( 2分) 某校九年级“诗歌大会”比赛中,各班代表队得分如下(单位:分):9,7,8,7,9,7,6,则各代表队得分的中位数是()A. 9分B. 8分C. 7分D. 6分【答案】C【考点】中位数【解析】【解答】解:将这组数据按从小到大排列为:6<7<7<7<8<9<9,故中位数为:7分,故答案为:C。
【分析】根据中位数的定义,首先将这组数据按从小到大的顺序排列起,由于这组数据共有7个,故处于最中间位置的数就是第四个,从而得出答案。
5. ( 2分) 在一个不透明的袋中装有10个只有颜色不同的球,其中5个红球、3个黄球和2个白球.从袋中任意摸出一个球,是白球的概率为()A. B. C. D.【答案】D【考点】概率公式【解析】【解答】解:根据题意:从袋中任意摸出一个球,是白球的概率为=故答案为:D。
【分析】一个不透明的袋中装有10个只有颜色不同的球,其中5个红球、3个黄球和2个白球.从袋中任意摸出一个球,共有10种等可能的结果,其中摸出白球的所有等可能结果共有2种,根据概率公式即可得出答案。
2018年浙江省温州市中考数学试卷(带解析)
ͻ 形的面积为
cm2,则该圆的半径为
8
cm.
【解答】解:设两个正六边形的中心为 O,连接 OP,OB,过 O 作 OG⊥PM,OH
⊥AB,
由题意得:∠MNP=∠NMP=∠MPN=60°,
ͻ ∵小正六边形的面积为
cm2,
∴∴小正六边形的边长为 cm,即 PM=7 cm,
∴S△MPN=
cm2,
∵OG⊥PM,且 O 为正六边形的中心,
【解答】解: 萰 > , 萰 >
解①得 x>2, 解②得 x>4. 故不等式组的解集是 x>4. 故答案为:x>4.
15.(5 分)如图,直线 y=﹣ x+4 与 x 轴、y 轴分别交于 A,B 两点,C 是 OB 的中点,D 是 AB 上一点,四边形 OEDC 是菱形,则△OAE 的面积为 2 .
三、解答题(本题有 8 小题,共 80 分.解答需写出必要的文字说明、演算步骤或 证明过程) 17.(10 分)(1)计算:(﹣2)2﹣ +( ﹣1)0. (2)化简:(m+2)2+4(2﹣m). 【解答】解:(1)(﹣2)2﹣ +( ﹣1)0 =4﹣3 +1 =5﹣3 ; (2)(m+2)2+4(2﹣m) =m2+4m+4+8﹣4m =m2+12.
A.(1,0) B.( , ) C.(1, ) D.(﹣1, ) 【解答】解:因为点 A 与点 O 对应,点 A(﹣1,0),点 O(0,0), 所以图形向右平移 1 个单位长度,
第 2页(共 18页)
所以点 B 的对应点 B'的坐标为(0+1, ),即(1, ), 故选:C.
8.(4 分)学校八年级师生共 466 人准备参加社会实践活动.现已预备了 49 座
2018年浙江省温州市中考数学试卷含答案
1 (2 2
1)
k
1 , 4
Q △OAC 与 △ABD 的面积之和为 3 , 2
k 1 k 1 3 , 2 42
解得: k 3 . 【考点】反比例函数系数 k 的几何意义,反比例函数图象上点的坐标特征 10.【答案】B 【解析】设小正方形的边长为 x , Q a 3,b4, AB 3 4 7 , 在 Rt△ABC 中, AC 2 BC 2 AB2 , 即 (3 x)2 (x 4)2 72 ,
.
x 2 0,
14.不等式组 2x 6 2 的解是
.
15.如图,直线 y 3 x 4 与 x 轴、y 轴分别交于 A , B 两点, C 是 OB 的中点, D 是 AB 3
上一点,四边形 OEDC 是菱形,则 △OAE 的面积为
.
数学试卷第 3页(共 22页)数学试卷第 4页(共 22页)
22.(本小题满分 10 分) 如图, D 是 △ABC 的 BC 边上一点,连接 AD ,作 △ABD 的外接圆,将 △ADC 沿直线 AD 折叠,点 C 的对应点 E 落在 e O 上. (1)求证: AE AB . (2)若 CAB 90 , cos ADB 1 , BE 2 ,求 BC 的长. 3
x y 466 C. 49x 37 y 10
x y 466 D. 37x 49 y 10
9. 如 图 , 点 A , B 在 反 比 例 函 数 y 1 (x 0) 的 图 象 上 , 点 C , D 在 反 比 例 函 数 x
y k (k 0) 的图象上, AC∥BD∥y 轴,已知点 A , B 的横坐标分别为 1,2, △OAC 与 x
浙江省温州市中考数学试题(含解析)
浙江省温州市2018年中考数学试卷(解析版)一、选择题1. ( 2分) 给出四个实数,2,0,-1,其中负数是()A.B.2C.0D.-1【答案】D【考点】正数和负数的认识及应用【解析】【解答】解根据题意:负数是-1,故答案为:D。
【分析】根据负数的定义,负数小于0 即可得出答案。
2. ( 2分) 移动台阶如图所示,它的主视图是()A.B.C.D.【答案】B【考点】简单组合体的三视图【解析】【解答】解:A、是其俯视图,故不符合题意;B是其主视图,故符合题意;C是右视图,故不符合题意;D是其左视图,故不符合题意。
故答案为:B。
【分析】根据三视图的定义,其主视图,就是从前向后看得到的正投影,根据看的情况一一判断即可。
3. ( 2分) 计算的结果是()A. B. C. D.【答案】C【考点】同底数幂的乘法【解析】【解答】解: a 6 · a 2=a8故答案为:C。
【分析】根据同底数幂的乘法,底数不变,指数相加即可得出答案。
4. ( 2分) 某校九年级“诗歌大会”比赛中,各班代表队得分如下(单位:分):9,7,8,7,9,7,6,则各代表队得分的中位数是()A. 9分B. 8分C. 7分D. 6分【答案】C【考点】中位数【解析】【解答】解:将这组数据按从小到大排列为:6<7<7<7<8<9<9,故中位数为:7分,故答案为:C。
【分析】根据中位数的定义,首先将这组数据按从小到大的顺序排列起来,由于这组数据共有7个,故处于最中间位置的数就是第四个,从而得出答案。
5. ( 2分) 在一个不透明的袋中装有10个只有颜色不同的球,其中5个红球、3个黄球和2个白球.从袋中任意摸出一个球,是白球的概率为()A. B. C. D.【答案】D【考点】概率公式【解析】【解答】解:根据题意:从袋中任意摸出一个球,是白球的概率为=故答案为:D。
【分析】一个不透明的袋中装有10个只有颜色不同的球,其中5个红球、3个黄球和2个白球.从袋中任意摸出一个球,共有10种等可能的结果,其中摸出白球的所有等可能结果共有2种,根据概率公式即可得出答案。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017学年第二学期九年级(下)六校联考
数学试题卷
亲爱的同学:
欢迎参加考试!请你认真审题,积极思考,细心答题,发挥最佳水平.答题时,请注意以下几点:1.全卷共6页,有三大题,24小题.全卷满分150分.考试时间120分钟.
2.答案必须写在答题纸相应的位置上,写在试题卷、草稿纸上均无效.
3.答题前,认真阅读答题纸上的《注意事项》,按规定答题.
祝你成功!
卷Ⅰ
一、选择题(本题有10小题,每小题4分,共40分.每小题只有一个选项是正确的,不选、多选、错选,
均不给分)
1. ﹣5的绝对值是(▲)
A.5 B.1
C.0 D.﹣5
2.右图是七(1)班40名同学在校午餐所需时间的频数直
方图(每组含前一个边界值,不含后一个边界值).
由图可知,人数最多的一组是(▲)
A.10~15分钟 B.15~20分钟
C.20~25分钟 D.25~30分钟
3. 如图所示的几何体的主视图为(▲)
七(1)班40名同学在校午餐
频数
(第2题)
4.一次函数y=2x+6图象与y轴的交点坐标是(▲)
A. (-3,0)
B. (3,0)
C. (0,-6)
D. (0,6)
5.在一个不透明的袋中,装有3个黄球,2个红球和5个白球,它们除颜色外其它都相同,从袋中任意摸出
一个球,是红球的概率是(▲)
A. 1
2
B.
1
3
C.
1
5
D.
1
10
6. 如图,在△ABC中,∠C=90°,AB=13,BC=5,则cosA的值是(▲)
A. 12
13
B.
5
13
C.
5
12
D.
12
5
7. 已知,方程组
1
24
2
321
x y
x y
⎧
-=
⎪
⎨
⎪-=
⎩
的解为
3
4
x
y
=
⎧
⎨
=
⎩
,现给出另一个方程组
1
2213+14
2
32-123+11
x y
x y
⎧
--=
⎪
⎨
⎪-=
⎩
()()
()()
,它的解为(▲)
A.
3
4
x
y
=
⎧
⎨
=
⎩
B.
1
2
x
y
=
⎧
⎨
=
⎩
C.
4
3
x
y
=
⎧
⎨
=
⎩
D.
2
1
x
y
=
⎧
⎨
=
⎩
8.如图,矩形ABCD和菱形EFGH均以直线HF、EG为对称轴,边EH分别交AB,AD于点M,N,若M,N分别为
EH的三等分点,且菱形EFGH的面积与矩形ABCD的面积之差为S,则菱形EFGH的面积等于(▲)
A. 7S
B. 8S
C. 9S
D. 10S
9. 如图,将正五边形绕其中心O顺时针旋转ɑ角度,与原正五边形构成新的图形,若要使该图形是中心对称
图形,则ɑ的最小角度为(▲)
A. 30°
B. 36°
C. 72°
D. 90°
A
(第3题)
(第6题)。