3数据结构与算法实验报告-图

合集下载

实验报告一

实验报告一
如果创建的是带头节点的线性表,在进行输入、删除、插入操作时,均应在第二个开始操作。
在进行非递减有序线性链表的创建时,如果随机读入数据并不是需要的非递减线性链表。
解决方法:人为的控制读入的数据的顺序,如果运用头插法,则应先插入大的,再插入小的;如果用尾插法,则应先插入小的,然后插入大的。
当进行删除、插入操作时,应该先连接,然后再断开原有的。
{
if (p->next->data<q->next->data)
{ s = p->next;p->next=s->next;}
else
{ s = q->next;q->next = s->next;}//先连接再释放
s->next = c->next;
c->next = s;
}
while (p->next)
实验报告
《数据结构与算法》实验报告
题目:
日期
2012年10月21日
班级
20111121
学号
2011112136
姓名
史彭飞
成绩
实验环境:
WindowsXP
VC++6.0
实验内容与完成情况:
1.设有一个顺序表A,包含n个元素,要求写出一个将该表逆置的算法,并只允许在原表的存储空间外再增加一个附加的工作单元。
}nodetype;
nodetype *create()// create创建创造
{
elemtype d;
nodetype h=NULL,*s,*t;
int i=1;
printf(“建立一个单链表\n”);
while (1)

数据结构实验指导书(新版)

数据结构实验指导书(新版)

《数据结构和算法》实验指导书实验及学时数分配序号实验名称学时数(小时)1 实验一线性表 42 实验二树和二叉树 23 实验三图 24 实验四查找 25 实验五内部排序 2合计12几点要求:一、上机前:认真预习相关实验内容,提前编写算法程序,上机时检查(未提前编写程序者,扣除平时成绩中实验相关分数)。

二、上机中:在Turbo C或VC6.0环境中,认真调试程序,记录调试过程中的问题、解决方法以及运行结果。

上机时签到;下机时验收签字。

三、下机后:按要求完成实验报告,并及时提交(实验后1周内)。

实验一线性表【实验目的】1、掌握用Turbo c上机调试线性表的基本方法;2、掌握线性表的基本操作,插入、删除、查找以及线性表合并等运算在顺序存储结构和链式存储结构上的运算;3、运用线性表解决线性结构问题。

【实验学时】4 学时【实验类型】设计型【实验内容】1、顺序表的插入、删除操作的实现;2、单链表的插入、删除操作的实现;3、两个线性表合并算法的实现。

(选做)【实验原理】1、当我们在线性表的顺序存储结构上的第i个位置上插入一个元素时,必须先将线性表中第i个元素之后的所有元素依次后移一个位置,以便腾出一个位置,再把新元素插入到该位置。

若是欲删除第i个元素时,也必须把第i个元素之后的所有元素前移一个位置;2、当我们在线性表的链式存储结构上的第i个位置上插入一个元素时,只需先确定第i个元素前一个元素位置,然后修改相应指针将新元素插入即可。

若是欲删除第i个元素时,也必须先确定第i个元素前一个元素位置,然后修改相应指针将该元素删除即可;3、详细原理请参考教材。

【实验步骤】一、用C语言编程实现建立一个顺序表,并在此表中插入一个元素和删除一个元素。

1、通过键盘读取元素建立线性表;(从键盘接受元素个数n以及n个整形数;按一定格式显示所建立的线性表)2、指定一个元素,在此元素之前插入一个新元素;(从键盘接受插入位置i,和要插入的元素值;实现插入;显示插入后的线性表)3、指定一个元素,删除此元素。

数据结构与算法实验报告

数据结构与算法实验报告

《数据结构与算法》综合实验报告系别:专业:学生姓名:指导教师:2011年 11月 25日实验目的掌握线性表的建立、插入、删除算法;掌握查找算法;掌握排序算法;实验要求使用C语言(环境任意)开发程序,能够对用户输入的任意一组数据,建立一个线性表,可以输出此线性表。

并且能够对此线性表进行插入、删除、查找、排序等操作。

程序流程建表如下:定义一个整型的数据类型data和next指针:定义头指针和当前结点指针,申请连续空间将单个字节大小复制给头指针,把头指针赋值给当前节点指针:若输入的数是0,则若输入不为0,把输入的数赋值给已申请的新结点,把新结点赋给当前节点的next域,再把新结点赋值给当前结点,以此方法重复执行得到如下链表:输出函数:把头指针赋值给当前结点指针,当当前节点的next域不为空时输出当前节点所指向的数据,把当前结点的next域赋值给当前节点,否则输出链表为空对此线性表进行插入、删除、查询、排序操作把已申请的结点数据域指向所输入的数再把插入w结点赋值头结点,是插入的位置,如果w=0则插入结点的next域赋值给头结点否则如果w>表长,则输出超出范围代码及运行结果(主要语句要求有注释)#include"stdafx.h"#include<stdio.h>#include<malloc.h>#define NULL 0typedef struct linknode{int data;struct linknode *next;}node;node *head;node *creat(){node *currnode,*newnode;int x;head=(node*)malloc(sizeof(node));currnode=head;do{scanf("%d",&x);newnode=(node*)malloc(sizeof(node));newnode->data=x;currnode->next=newnode;currnode=newnode;}while(x!=NULL);head=head->next;currnode->next=NULL;return head;};int length(){node *currnode;int i=0;currnode=head;while(currnode->data!=NULL){currnode=currnode->next;i++;};return i;};void print(){node *currnode;currnode=head;printf("链表如下....linklist");while(currnode->data!=NULL){printf("%d-->",currnode->data);currnode=currnode->next;};printf("NULL\n");printf("链表长度为........linklist length%d\n",length());};void delete1(){int x;node *delnode,*currnode;printf("输入要删除的数据......input delete data:");scanf("%d",&x);if(head->data==NULL) printf("此链表为空无法删除.....this linklist empty!\n"); if(head->data==x){delnode=head;head=head->next;free(delnode);if(head==NULL) printf("此链表为空.......this linklist enpty!");}else{currnode=head;delnode=currnode->next;while(delnode->data!=x&&delnode!=NULL){currnode=currnode->next;delnode=currnode->next;};if(delnode==NULL)printf("无此数据......no this data!\n");else{currnode->next=delnode->next;free(delnode);};};};void find(){node *currnode;int count=1,x;currnode=head;printf("输入要查找的数据.......input search data:");scanf("%d",&x);while(currnode->data!=NULL&&currnode->data!=x) {currnode=currnode->next;count++;};if(currnode->data!=NULL){printf("\n%d为第........is no.",currnode->data);printf("%d个数据........data。

国家开放大学《数据结构》课程实验报告(实验3 ——栈、队列、递归设计)参考答案

国家开放大学《数据结构》课程实验报告(实验3 ——栈、队列、递归设计)参考答案
{
x=Pop(s); /*出栈*/
printf("%d ",x);
InQueue(sq,x); /*入队*/
}
printf("\n");
printf("(10)栈为%s,",(StackEmpty(s)?"空":"非空"));
printf("队列为%s\n",(QueueEmpty(sq)?"空":"非空"));
ElemType Pop(SeqStack *s); /*出栈*/
ElemType GetTop(SeqStack *s); /*取栈顶元素*/
void DispStack(SeqStack *s); /*依次输出从栈顶到栈底的元素*/
void DispBottom(SeqStack *s); /*输出栈底元素*/
} SeqQueue; /*定义顺序队列*/
void InitStack(SeqStack *s); /*初始化栈*/
int StackEmpty(SeqStack *s); /*判栈空*/
int StackFull(SeqStack *s); /*判栈满*/
void Push(SeqStack *s,ElemType x); /*进栈*/
sq=(SeqQueue *)malloc(sizeof(SeqQueue));
InitQueue(sq);
printf("(8)队列为%s\n",(QueueEmpty(sq)?"空":"非空"));
printf("(9)出栈/入队的元素依次为:");

数据结构试验报告-图的基本操作

数据结构试验报告-图的基本操作

中原工学院《数据结构》实验报告学院:计算机学院专业:计算机科学与技术班级:计科112姓名:康岩岩学号:201100814220 指导老师:高艳霞2012-11-22实验五图的基本操作一、实验目的1、使学生可以巩固所学的有关图的基本知识。

2、熟练掌握图的存储结构。

3、熟练掌握图的两种遍历算法。

二、实验内容[问题描述]对给定图,实现图的深度优先遍历和广度优先遍历。

[基本要求]以邻接表为存储结构,实现连通无向图的深度优先和广度优先遍历。

以用户指定的结点为起点,分别输出每种遍历下的结点访问序列。

【测试数据】由学生依据软件工程的测试技术自己确定。

三、实验前的准备工作1、掌握图的相关概念。

2、掌握图的逻辑结构和存储结构。

3、掌握图的两种遍历算法的实现。

四、实验报告要求1、实验报告要按照实验报告格式规范书写。

2、实验上要写出多批测试数据的运行结果。

3、结合运行结果,对程序进行分析。

【设计思路】【代码整理】#include "stdafx.h"#include <iostream>#include <malloc.h>using namespace std;typedef int Status;#define OK 1#define ERROR 0#define OVERFLOW -1#define MAX_SIZE 20typedef enum{DG,DN,UDG,UDN}Kind;typedef struct ArcNode{int adjvex; //顶点位置struct ArcNode *nextarc; //下一条弧int *info; //弧信息};typedef struct{char info[10]; //顶点信息ArcNode *fistarc; //指向第一条弧}VNode,AdjList[MAX_SIZE];typedef struct{AdjList vertices;int vexnum,arcnum; //顶点数,弧数int kind; //图的种类,此为无向图}ALGraph;//这是队列的节点,仅用于广度优先搜索typedef struct Node{int num;struct Node* next;};//队列的头和尾typedef struct{Node * front;Node *rear;}PreBit;int LocateV ex(ALGraph G,char info[]);//定位顶点的位置Status addArcNode(ALGraph &G,int adjvex); //图中加入弧Status CreatGraph(ALGraph&G);//创建图的邻接表Status DFSTraverse(ALGraph G);//深度优先搜索Status BFSTraverse(ALGraph G);//广度优先搜索Status DFS(ALGraph G,int v);//深度优先搜索中的数据读取函数,用于递归bool visited[MAX_SIZE]; // 访问标志数组//初始化队列Status init_q(PreBit&P_B){P_B.front=P_B.rear=(Node*)malloc(sizeof(Node));if(!P_B.front){exit(OVERFLOW);}P_B.front->next=NULL;}//将数据入队Status en_q(PreBit & P_B,int num){Node *p=(Node*)malloc(sizeof(Node));if(!p){exit(OVERFLOW);}p->num=num;p->next=NULL;P_B.rear->next=p;P_B.rear=p;return OK;}//出队Status de_q(PreBit & P_B){if(P_B.front==P_B.rear){return ERROR;}Node* p=P_B.front->next;P_B.front->next=p->next;if(P_B.rear==p){P_B.rear=P_B.front;}free(p);return OK;}Status CreatGraph(ALGraph&G){cout<<"请输入顶点数目和弧数目"<<endl;cin>>G.vexnum>>G.arcnum;//依次输入顶点信息for(int i=0;i<G.vexnum;i++){cout<<"请输入顶点名称"<<endl;cin>>G.vertices[i].info;G.vertices[i].fistarc=NULL;}//依次输入弧信息for(int k=1;k<=G.arcnum;k++){char v1[10],v2[10]; //用于表示顶点名称的字符数组int i,j; //表示两个顶点的位置BACK: //返回点cout<<"请输入第"<<k<<"条弧的两个顶点"<<endl;cin>>v1>>v2;i=LocateV ex(G,v1); //得到顶点v1的位置j=LocateV ex(G,v2); //得到顶点v2的位置if(i==-1||j==-1){ //头信息不存在则返回重输cout<<"不存在该节点!"<<endl;goto BACK; //跳到BACK 返回点}addArcNode(G,i); //将弧的顶点信息插入表中addArcNode(G,j);}return OK;}//倒序插入弧的顶点信息Status addArcNode(ALGraph &G,int adjvex){ArcNode *p; //弧节点指针p=(ArcNode*)malloc(sizeof(ArcNode));p->adjvex=adjvex;p->nextarc=G.vertices[adjvex].fistarc;//指向头结点的第一条弧G.vertices[adjvex].fistarc=p; //头结点的第一条弧指向p,即将p作为头结点的第一条弧return OK;}//定位顶点的位置int LocateV ex(ALGraph G,char info[]){for(int i=0;i<G.vexnum;i++){if(strcmp(G.vertices[i].info,info)==0){ //头结点名称与传入的信息相等,证明该头节点存在return i; //此时返回位置}}return -1;}//深度优先搜索Status DFSTraverse(ALGraph G){for(int v=0;v<G.vexnum;v++){visited[v]=false;}char v1[10];int i;BACK:cout<<"请输入首先访问的顶点"<<endl;cin>>v1;i=LocateV ex(G,v1);if(i==-1){cout<<"不存在该节点!"<<endl;goto BACK;}DFS(G,i);return OK;}//深度优先搜索递归访问图Status DFS(ALGraph G,int v){visited[v]=true;cout<<G.vertices[v].info<<" ";//输出信息ArcNode *p;p=G.vertices[v].fistarc; //向头节点第一条while(p) //当弧存在{if(!visited[p->adjvex]){DFS(G,p->adjvex); //递归读取}p=p->nextarc;}return OK;}//广度优先搜索Status BFSTraverse(ALGraph G){for(int v=0;v<G.vexnum;v++){visited[v]=false;}char v1[10];int v;BACK:cout<<"请输入首先访问的顶点"<<endl;cin>>v1;v=LocateV ex(G,v1);if(v==-1){cout<<"不存在该节点!"<<endl;goto BACK;}PreBit P_B;init_q(P_B);ArcNode *p;visited[v]=true;cout<<G.vertices[v].info<<" ";//输出信息en_q(P_B,v); //将头位置v入队while(P_B.front!=P_B.rear){//当队列不为空时,对其进行访问int w=P_B.front->next->num;//读出顶点位置de_q(P_B);//顶点已经访问过,将其出队列p=G.vertices[w].fistarc;//得到与顶点相关的第一条弧while(p){if(!visited[p->adjvex]){en_q(P_B,p->adjvex);//将弧入队,但不读取,只是将其放在队尾}p=p->nextarc;}}return OK;}int _tmain(int argc, _TCHAR* argv[]){ALGraph G;CreatGraph(G);cout<<"深度优先搜索图:"<<endl;DFSTraverse(G);cout<<endl;cout<<"广度优先搜索图:"<<endl;BFSTraverse(G);cout<<endl;system("pause");return 0;}。

算法与数据结构实验报告

算法与数据结构实验报告

2015-2016学年第二学期《算法与数据结构》课程实验报告专业软件工程学生姓名成晓伟班级软件141学号1410075094实验学时16实验教师徐秀芳信息工程学院实验一单链表的基本操作一、实验目的1.熟悉C语言上机环境,进一步掌握C语言的基本结构及特点。

2.掌握线性表的各种物理存储表示和C语言实现。

3.掌握单链表的各种主要操作的C语言实现。

4.通过实验理解线性表中的单链表存储表示与实现。

二、主要仪器及耗材普通计算机三、实验内容与要求1、用C语言编写一个单链表基本操作测试程序。

(1)初始化单链表(2)创建单链表(3)求单链表长度(4)输出单链表中每一个结点元素(5)指定位置插入某个元素(6)查找第i个结点元素的值(7)查找值为e 的结点,并返回该结点指针(8)删除第i个结点(9)销毁单链表2、实验要求(1)程序中用户可以选择上述基本操作。

程序启动后,在屏幕上可以菜单形式显示不同功能,当按下不同数字后完成指定的功能,按其他键,则显示错误后重新选择。

(2)要求用线性表的顺序存储结构,带头结点的单链表存储结构分别实现。

(3)主函数实现对基本操作功能的调用。

3、主要代码(1)初始化单链表LinkList *InitList(){ //创建一个空链表,初始化线性表LinkList *L;L=(LinkList *)malloc(sizeof(LinkList));L->next=NULL;return L;}(2)创建单链表//头插法void CreateListF(LinkList *L){LinkList *s;int i=1,a=0;while(1){printf("输入第%d个元素(0表示终止)",i++);scanf("%d",&a);if(a==0)break;s=(LinkList *)malloc(sizeof(LinkList));s->data=a;s->next=L->next;L->next=s;}}(3)求链表长度int ListLength(LinkList *L){ //求链表长度int n=0;LinkList *p=L;while(p->next!=NULL){p=p->next;n++;}return(n);}(4)在指定位置插入元素int InsertList(LinkList *L,int i,ElemType e){LinkList *p=L,*s;int j=0;while(p!=NULL&&j<i-1){p=p->next;j++;} //找出要插入的位置的前一个位置if(p==NULL){return 0;}else{s=(LinkList *)malloc(sizeof(LinkList));s->data=e;s->next=p->next;p->next=s;return 1;}}(5)输出链表void DispList(LinkList *L){ //输出链表LinkList *p=L->next;while(p!=NULL){printf("%d",p->data);p=p->next;}printf("\n");}(6)查找链表中指定元素int GetElem(LinkList *L,int i){ //查找链表中指定元素LinkList *p=L;int j=0;while(j<i&&p!=NULL){j++;p=p->next;}if(p==NULL){return 0;}else{return p->data;}}(7)查找值是e的结点并返回该指针LinkList *LocateElem(LinkList *L,ElemType e){ //查找值是e的结点并返回该指针int i=1;LinkList *p=L;while(p!=NULL)if(p->data==e) return p;}if(p==NULL){return NULL;}}(8)删除元素int ListDelete(LinkList *L,int i,ElemType *e){ //删除元素LinkList *p=L,*q;int j=0;while(p!=NULL&&j<i-1){p=p->next;j++;} //找到要删除元素地址的前一个地址if(p==NULL){ return 0;} //不能删除else{q=p->next;*e=q->data;p->next=q->next;free(q); //删除成功return 1;}}(9)销毁链表void DestroyList(LinkList *L){//销毁链表LinkList *pre=L,*p=L->next;while(p!=NULL){free(pre);pre=p;p=pre->next;}free(pre);}main函数:int main(){LinkList *L;ElemType e;int i;L=InitList();CreateListF(L);DispList(L);printf("输入要查找的元素位置:\n");scanf("%d",&i);e=GetElem(L,i);printf("%d\n",e);printf("单链表长度为:%d\n",ListLength(L));printf("输入要删除元素的位置:");scanf("%d",&i);if (i>ListLength(L)){printf("超出范围重新输入");scanf("%d",&i);}if(ListDelete(L,i,&e)==0){printf("未找到元素\n");}else DispList(L);printf("输入插入元素的位置和值:");scanf("%d%d",&i,&e);InsertList(L,i,e);DispList(L);return 0;}4、测试数据及测试结果输入:23 56 12 28 45输出:四、注意事项1、存储结构定义和基本操作尽可能用头文件实现。

图的搜索与应用实验报告(附源码)(word文档良心出品)

图的搜索与应用实验报告(附源码)(word文档良心出品)

哈尔滨工业大学计算机科学与技术学院实验报告课程名称:数据结构与算法课程类型:必修实验项目名称:图的搜索与应用实验题目:图的深度和广度搜索与拓扑排序设计成绩报告成绩指导老师一、实验目的1.掌握图的邻接表的存储形式。

2.熟练掌握图的搜索策略,包括深度优先搜索与广度优先搜索算法。

3.掌握有向图的拓扑排序的方法。

二、实验要求及实验环境实验要求:1.以邻接表的形式存储图。

2.给出图的深度优先搜索算法与广度优先搜索算法。

3.应用搜索算法求出有向图的拓扑排序。

实验环境:寝室+机房+编程软件(NetBeans IDE 6.9.1)。

三、设计思想(本程序中的用到的所有数据类型的定义,主程序的流程图及各程序模块之间的调用关系)数据类型定义:template <class T>class Node {//定义边public:int adjvex;//定义顶点所对应的序号Node *next;//指向下一顶点的指针int weight;//边的权重};template <class T>class Vnode {public:T vertex;Node<T> *firstedge;};template <class T>class Algraph {public:Vnode<T> adjlist[Max];int n;int e;int mark[Max];int Indegree[Max];};template<class T>class Function {public://创建有向图邻接表void CreatNalgraph(Algraph<T>*G);//创建无向图邻接表void CreatAlgraph(Algraph<T> *G);//深度优先递归搜索void DFSM(Algraph<T>*G, int i);void DFS(Algraph<T>* G);//广度优先搜索void BFS(Algraph<T>* G);void BFSM(Algraph<T>* G, int i);//有向图的拓扑排序void Topsort(Algraph<T>*G);/得到某个顶点内容所对应的数组序号int Judge(Algraph<T>* G, T name); };主程序流程图:程序开始调用关系:主函数调用五个函数 CreatNalgraph(G)//创建有向图 DFS(G) //深度优先搜索 BFS(G) //广度优先搜索 Topsort(G) //有向图拓扑排序 CreatAlgraph(G) //创建无向图其中 CreatNalgraph(G) 调用Judge(Algraph<T>* G, T name)函数;DFS(G)调用DFSM(Algraph<T>* G , int i)函数;BFS(G) 调用BFSM(Algraph<T>* G, int k)函数;CreatAlgraph(G) 调选择图的类型无向图有向图深 度 优 先 搜 索广度优先搜索 深 度 优 先 搜 索 广度优先搜索拓 扑 排 序程序结束用Judge(Algraph<T>* G, T name)函数。

算法与及数据结构实验报告

算法与及数据结构实验报告

算法与及数据结构实验报告算法与数据结构实验报告一、实验目的本次算法与数据结构实验的主要目的是通过实际操作和编程实现,深入理解和掌握常见算法和数据结构的基本原理、特性和应用,提高我们解决实际问题的能力和编程技巧。

二、实验环境本次实验使用的编程语言为 Python,开发环境为 PyCharm。

同时,为了进行算法性能的分析和比较,使用了 Python 的 time 模块来计算程序的运行时间。

三、实验内容1、线性表的实现与操作顺序表的实现:使用数组来实现顺序表,并实现了插入、删除、查找等基本操作。

链表的实现:通过创建节点类来实现链表,包括单向链表和双向链表,并完成了相应的操作。

2、栈和队列的应用栈的实现与应用:用数组或链表实现栈结构,解决了表达式求值、括号匹配等问题。

队列的实现与应用:实现了顺序队列和循环队列,用于模拟排队系统等场景。

3、树结构的探索二叉树的创建与遍历:实现了二叉树的先序、中序和后序遍历算法,并对其时间复杂度进行了分析。

二叉搜索树的操作:构建二叉搜索树,实现了插入、删除、查找等操作。

4、图的表示与遍历邻接矩阵和邻接表表示图:分别用邻接矩阵和邻接表来存储图的结构,并对两种表示方法的优缺点进行了比较。

图的深度优先遍历和广度优先遍历:实现了两种遍历算法,并应用于解决路径查找等问题。

5、排序算法的比较插入排序、冒泡排序、选择排序:实现了这三种简单排序算法,并对不同规模的数据进行排序,比较它们的性能。

快速排序、归并排序:深入理解并实现了这两种高效的排序算法,通过实验分析其在不同情况下的表现。

6、查找算法的实践顺序查找、二分查找:实现了这两种基本的查找算法,并比较它们在有序和无序数据中的查找效率。

四、实验步骤及结果分析1、线性表的实现与操作顺序表:在实现顺序表的插入操作时,如果插入位置在表的末尾或中间,需要移动后续元素以腾出空间。

删除操作同理,需要移动被删除元素后面的元素。

在查找操作中,通过遍历数组即可完成。

大学数据结构与算法基础实验报告书(参考)

大学数据结构与算法基础实验报告书(参考)

《数据结构与算法》实验报告班级:学生学号:学生姓名:学生电话:指导教师:1. 按时完成实验;2. 实验内容和过程记录完整;3.问题解答完整、正确;4.有实验的心得或讨论;5.实验报告的撰写认真、格式符合要求,没有抄袭行为。

教师签名:1. 按时完成实验;2. 实验内容和过程记录完整;3.问题解答完整、正确;4.有实验的心得或讨论;5.实验报告的撰写认真、格式符合要求,没有抄袭行为。

教师签名:1. 按时完成实验;2. 实验内容和过程记录完整;3.问题解答完整、正确;4.有实验的心得或讨论;5.实验报告的撰写认真、格式符合要求,没有抄袭行为。

教师签名:1. 按时完成实验;2. 实验内容和过程记录完整;3.问题解答完整、正确;4.有实验的心得或讨论;5.实验报告的撰写认真、格式符合要求,没有抄袭行为。

教师签名:1. 按时完成实验;2. 实验内容和过程记录完整;3.问题解答完整、正确;4.有实验的心得或讨论;5.实验报告的撰写认真、格式符合要求,没有抄袭行为。

教师签名:1. 按时完成实验;2. 实验内容和过程记录完整;3.问题解答完整、正确;4.有实验的心得或讨论;5.实验报告的撰写认真、格式符合要求,没有抄袭行为。

教师签名:1. 按时完成实验;2. 实验内容和过程记录完整;3.问题解答完整、正确;4.有实验的心得或讨论;5.实验报告的撰写认真、格式符合要求,没有抄袭行为。

教师签名:。

数据结构(C语言版)实验报告 (内部排序算法比较)

数据结构(C语言版)实验报告 (内部排序算法比较)

《数据结构与算法》实验报告一、需求分析问题描述:在教科书中,各种内部排序算法的时间复杂度分析结果只给出了算法执行时间的阶,或大概执行时间。

试通过随机数据比较各算法的关键字比较次数和关键字移动次数,以取得直观感受。

基本要求:(l)对以下6种常用的内部排序算法进行比较:起泡排序、直接插入排序、简单选择排序、快速排序、希尔排序、堆排序。

(2)待排序表的表长不小于100000;其中的数据要用伪随机数程序产生;至少要用5组不同的输入数据作比较;比较的指标为有关键字参加的比较次数和关键字的移动次数(关键字交换计为3次移动)。

(3)最后要对结果作简单分析,包括对各组数据得出结果波动大小的解释。

数据测试:二.概要设计1.程序所需的抽象数据类型的定义:typedef int BOOL; //说明BOOL是int的别名typedef struct StudentData { int num; //存放关键字}Data; typedef struct LinkList { int Length; //数组长度Data Record[MAXSIZE]; //用数组存放所有的随机数} LinkList int RandArray[MAXSIZE]; //定义长度为MAXSIZE的随机数组void RandomNum() //随机生成函数void InitLinkList(LinkList* L) //初始化链表BOOL LT(int i, int j,int* CmpNum) //比较i和j 的大小void Display(LinkList* L) //显示输出函数void ShellSort(LinkList* L, int dlta[], int t,int* CmpNum, int* ChgNum) //希尔排序void QuickSort (LinkList* L, int* CmpNum, int* ChgNum) //快速排序void HeapSort (LinkList* L, int* CmpNum, int* ChgNum) //堆排序void BubbleSort(LinkList* L, int* CmpNum, int* ChgNum) //冒泡排序void SelSort(LinkList* L, int* CmpNum, int* ChgNum) //选择排序void Compare(LinkList* L,int* CmpNum, int* ChgNum) //比较所有排序2 .各程序模块之间的层次(调用)关系:二、详细设计typedef int BOOL; //定义标识符关键字BOOL别名为int typedef struct StudentData //记录数据类型{int num; //定义关键字类型}Data; //排序的记录数据类型定义typedef struct LinkList //记录线性表{int Length; //定义表长Data Record[MAXSIZE]; //表长记录最大值}LinkList; //排序的记录线性表类型定义int RandArray[MAXSIZE]; //定义随机数组类型及最大值/******************随机生成函数********************/void RandomNum(){int i; srand((int)time(NULL)); //用伪随机数程序产生伪随机数for(i=0; i小于MAXSIZE; i++) RandArray[i]<=(int)rand(); 返回;}/*****************初始化链表**********************/void InitLinkList(LinkList* L) //初始化链表{int i;memset(L,0,sizeof(LinkList));RandomNum();for(i=0; i小于<MAXSIZE; i++)L->Record[i].num<=RandArray[i]; L->Length<=i;}BOOL LT(int i, int j,int* CmpNum){(*CmpNum)++; 若i<j) 则返回TRUE; 否则返回FALSE;}void Display(LinkList* L){FILE* f; //定义一个文件指针f int i;若打开文件的指令不为空则//通过文件指针f打开文件为条件判断{ //是否应该打开文件输出“can't open file”;exit(0); }for (i=0; i小于L->Length; i++)fprintf(f,"%d\n",L->Record[i].num);通过文件指针f关闭文件;三、调试分析1.调试过程中遇到的问题及经验体会:在本次程序的编写和调试过程中,我曾多次修改代码,并根据调试显示的界面一次次调整代码。

数据结构实验报告范例参考模板

数据结构实验报告范例参考模板

《数据结构与算法》实验报告专业班级姓名学号实验项目实验一二叉树的应用实验目的1、进一步掌握指针变量的含义及应用。

2、掌握二叉树的结构特征,以及各种存储结构的特点及使用范围。

3、掌握用指针类型描述、访问和处理二叉树的运算。

实验内容题目1:编写一个程序,采用一棵二叉树表示一个家谱关系。

要求程序具有如下功能:(1)用括号表示法输出家谱二叉树,(2)查找某人的所有儿子,(3)查找某人的所有祖先。

算法设计分析(一)数据结构的定义为了能够用二叉树表示配偶、子女、兄弟三种关系,特采用以下存储关系,则能在二叉树上实现家谱的各项运算。

二叉树型存储结构定义为:typedef struct SNODE{char name[MAX]; //人名struct SNODE *left; //指向配偶结点struct SNODE *right; //指向兄弟或子女结点}FNODE;(二)总体设计实验由主函数、家谱建立函数、家谱输出函数、儿子查找函数、祖先查找函数、结点定位函数、选择界面函数七个函数共同组成。

其功能描述如下:(1)主函数:统筹调用各个函数以实现相应功能void main()(2)家谱建立函数:与用户交互建立家族成员对应关系void InitialFamily(FNODE *&head) //家谱建立函数(3)家谱输出函数:用括号表示法输出家谱输出形式为:父和母(子1和子妻1(孙1),子2和子妻2(孙2))void PrintFamily(FNODE *head) //家谱输出函数(4)儿子查找函数:在家谱中查找到某人所有的子女并输出,同时也能辨别出其是否为家族成员与是否有子女void FindSon(FNODE *b,char p[]) //儿子查找函数(5)祖先查找函数:在家谱中查找到某人所有的祖先并输出,同时也能辨别出其是否为家族中成员。

int FindAncestor(FNODE *head,char son[ ]) //祖先查找函数(6)结点定位函数:在家谱中找到用户输入人名所对应的结点。

数据结构实验三——二叉树基本操作及运算实验报告

数据结构实验三——二叉树基本操作及运算实验报告

《数据结构与数据库》实验报告实验题目二叉树的基本操作及运算一、需要分析问题描述:实现二叉树(包括二叉排序树)的建立,并实现先序、中序、后序和按层次遍历,计算叶子结点数、树的深度、树的宽度,求树的非空子孙结点个数、度为2的结点数目、度为2的结点数目,以及二叉树常用运算。

问题分析:二叉树树型结构是一类重要的非线性数据结构,对它的熟练掌握是学习数据结构的基本要求。

由于二叉树的定义本身就是一种递归定义,所以二叉树的一些基本操作也可采用递归调用的方法。

处理本问题,我觉得应该:1、建立二叉树;2、通过递归方法来遍历(先序、中序和后序)二叉树;3、通过队列应用来实现对二叉树的层次遍历;4、借用递归方法对二叉树进行一些基本操作,如:求叶子数、树的深度宽度等;5、运用广义表对二叉树进行广义表形式的打印。

算法规定:输入形式:为了方便操作,规定二叉树的元素类型都为字符型,允许各种字符类型的输入,没有元素的结点以空格输入表示,并且本实验是以先序顺序输入的。

输出形式:通过先序、中序和后序遍历的方法对树的各字符型元素进行遍历打印,再以广义表形式进行打印。

对二叉树的一些运算结果以整型输出。

程序功能:实现对二叉树的先序、中序和后序遍历,层次遍历。

计算叶子结点数、树的深度、树的宽度,求树的非空子孙结点个数、度为2的结点数目、度为2的结点数目。

对二叉树的某个元素进行查找,对二叉树的某个结点进行删除。

测试数据:输入一:ABC□□DE□G□□F□□□(以□表示空格),查找5,删除E预测结果:先序遍历ABCDEGF中序遍历CBEGDFA后序遍历CGEFDBA层次遍历ABCDEFG广义表打印A(B(C,D(E(,G),F)))叶子数3 深度5 宽度2 非空子孙数6 度为2的数目2 度为1的数目2查找5,成功,查找的元素为E删除E后,以广义表形式打印A(B(C,D(,F)))输入二:ABD□□EH□□□CF□G□□□(以□表示空格),查找10,删除B预测结果:先序遍历ABDEHCFG中序遍历DBHEAGFC后序遍历DHEBGFCA层次遍历ABCDEFHG广义表打印A(B(D,E(H)),C(F(,G)))叶子数3 深度4 宽度3 非空子孙数7 度为2的数目2 度为1的数目3查找10,失败。

算法实验3-最大子段和问题实验报告

算法实验3-最大子段和问题实验报告

昆明理工大学信息工程与自动化学院学生实验报告( 2011 — 2012 学年 第 1 学期 )课程名称:算法设计与分析 开课实验室:信自楼机房444 2012 年12月 14日一、上机目的及内容1.上机内容给定有n 个整数(可能有负整数)组成的序列(a 1,a 2,…,a n ),求改序列形如∑=jk ka1的子段和的最大值,当所有整数均为负整数时,其最大子段和为0。

2.上机目的(1)复习数据结构课程的相关知识,实现课程间的平滑过渡; (2)掌握并应用算法的数学分析和后验分析方法;(3)理解这样一个观点:不同的算法能够解决相同的问题,这些算法的解题思路不同,复杂程度不同,解题效率也不同。

二、实验原理及基本技术路线图(方框原理图或程序流程图)(1)分别用蛮力法、分治法和动态规划法设计最大子段和问题的算法; 蛮力法设计原理:利用3个for 的嵌套(实现从第1个数开始计算子段长度为1,2,3…n 的子段和,同理计算出第2个数开始的长度为1,2,3…n-1的子段和,依次类推到第n 个数开始计算的长为1的子段和)和一个if (用来比较大小),将其所有子段的和计算出来并将最大子段和赋值给summax1。

用了3个for 嵌套所以时间复杂性为○(n 3);分治法设计原理:1)、划分:按照平衡子问题的原则,将序列(1a ,2a ,…,na )划分成长度相同的两个字序列(1a ,…,⎣⎦2/n a )和(⎣⎦12/+n a ,…,na )。

2)、求解子问题:对于划分阶段的情况分别的两段可用递归求解,如果最大子段和在两端之间需要分别计算s1=⎣⎦⎣⎦)2/1(max2/n i an ik k≤≤∑=,s2=⎣⎦⎣⎦)2/(max12/n j n ajn k k≤≤∑+=,则s1+s2为最大子段和。

若然只在左边或右边,那就好办了,前者视s1为summax2,后者视s2 o summax2。

3)、合并:比较在划分阶段的3种情况下的最大子段和,取三者之中的较大者为原问题的解。

数据结构与算法实验教程实验

数据结构与算法实验教程实验

1.1 数据结构与算法的计算环境(实验估计时间:90分钟)1.1.1 背景知识除了进行科学计算之外,计算机已经被广泛地应用在控制、管理和数据处理等非数值计算的领域中。

与此相应,处理对象也由早先纯粹的数值发展到字符、表格和图形图像等各种具有一定结构的数据,这给计算机程序设计带来了新的问题。

为了编写一个“好”的程序,必须明确处理对象的特征及各对象之间的关系。

这就是“数据结构”这门学科形成和发展的背景。

任何实际问题只有建立了数学模型才可以被计算机计算,而数据结构就是实际问题中操作对象 (元素) 的数学抽象,算法则是建立和解决数学模型的方法。

数据结构用来反映计算机加工处理的对象,即数据的内部构成,即数据由哪几部分构成,以什么方式构成,呈什么样的结构等。

数据结构包括逻辑结构和物理结构。

这里的逻辑结构和物理结构是指一个事物的两个方面,而不是指两个不同的对象。

逻辑结构反映数据元素之间的逻辑关系,而物理结构反映了数据元素在计算机内部的存储安排,也称为存储结构。

数据结构是数据存在的形式,也是信息的一种组织方式,其目的是为了提高算法的效率。

数据结构通常与一组算法的集合相对应,通过这组算法集合可以对数据结构中的数据进行某种操作。

由于相同算法中的抽象数据类型用不同的数据结构来表示,会造成不同的执行效率,这就有必要来研究不同数据结构表示的效率差异及其适用场实验1 数据结构和算法分析基础2 数据结构与算法实验教程合。

1. 数据结构的研究对象数据结构主要研究数据的各种逻辑结构和存储结构,以及对数据的各种操作。

因此,主要有3个方面的内容,即数据的逻辑结构、数据的存储(物理) 结构和对数据的操作(或算法) 等。

通常,算法的设计取决于数据的逻辑结构,算法的实现取决于数据的存储结构。

2. 数据结构的形式化定义数据是指由有限的符号(比如“0”和“1”,具有其自己的结构、操作和相应的语义) 组成的元素的集合。

结构是元素之间关系的集合。

通常来说,一个数据结构DS 可以表示为一个二元组:DS=(D, S)这里,D是数据元素的集合(或者是“结点”,可能还含有“数据项”或“数据域”) ,S是定义在D (或其他集合) 上的关系的集合,S = { R | R : D×D×...} ,称之为元素的逻辑结构。

数据结构与算法(3):二叉树

数据结构与算法(3):二叉树
证!
1.3.3 性质三
包含n个结点的二二叉树的高高度至至少为log2(n + 1);
证明:根据"性质2"可知,高高度为h的二二叉树最多有2{h}–1个结点。反之,对于包含n个节点的二二
叉树的高高度至至少为log2(n + 1)。
1.3.4 性质四
对任何一一颗二二叉树T,如果其终端结点数为n0 ,度为2的结点数为n2 ,则n0 = n2 + 1 证明:因为二二叉树中所有结点的度数均不不大大于2,所以结点总数(记为n)="0度结点数(n0)" + "1度 结点数(n1)" + "2度结点数(n2)"。由此,得到等式一一。(等式一一) n = n0 + n1 + n2
}
还有一一种方方式就是利利用用栈模拟递归过程实现循环先序遍历二二叉树。这种方方式具备扩展性,它模拟 了了递归的过程,将左子子树不不断的压入入栈,直到null,然后处理理栈顶节点的右子子树。
java
public void preOrder(Node root){ if(root==null)return;
2. 叶子子数为2h 3. 第k层的结点数是:2k−1; 4. 总结点数是2k − 1,且总节点数一一定是奇数。
1.4.2 完全二二叉树
定义:一一颗二二叉树中,只有最小小面面两层结点的度可以小小于2,并且最下一一层的叶结点集中在靠左 的若干干位置上。这样现在最下层和次下层,且最小小层的叶子子结点集中在树的左部。显然,一一颗 满二二叉树必定是一一颗完全二二叉树,而而完全二二叉树未必是满二二叉树。
} root = s.pop(); root = root.right;//如果是null,出栈并处理理右子子树 } }

数据结构实验报告图与景区

数据结构实验报告图与景区

学生学号实验课成绩
学生实验报告书
实验课程名称数据结构与算法综合实验开课学院计算机科学与技术学院指导教师姓名
学生姓名
学生专业班级
2017-- 2018学年第 2 学期
实验课程名称: 数据结构与算法综合实验
2.综合分析与结论
由于上一次的哈夫曼树没有写很好所以我回去以后有好好学习了一下数据结构,本次实验也比第一次有了经验了,通过与视频的学习我本次把实验全都做出来了。

但在实现的过程中对算法的理解还不够透彻,有待提高。

数据结构与算法综合实验

数据结构与算法综合实验
给定一个无向图和颜色种类数,问是否能用这些颜色为图的顶点着色,使得任意两个相 邻的顶点颜色不同。
04
经典问题分析与实现方法论述
最短路径问题——Dijkstra算法和Floyd算法比较
Dijkstra算法
Floyd算法
比较
适用于没有负权边的有向图,通过贪 心策略每次找到距离起点最近的顶点 ,并更新其邻居顶点的距离。时间复 杂度为O(|V|^2),其中|V|为顶点数。
队列是一种特殊的线性 表,其只允许在表的一 端进行插入操作,而在 另一端进行删除操作。 插入元素的一端称为队 尾,删除元素的一端称 为队头。
包括初始化、入队、出 队、判断队列是否为空 等。
包括表达式求值、括号 匹配、迷宫问题、CPU 任务调度等。
树和二叉树基本概念
树定义
树是一种非线性数据结构,由n( n>=0)个有限结点组成一个具有层 次关系的集合。
未来算法的发展将更加注重高效性、 稳定性和可解释性。例如,启发式算 法、近似算法等将在解决NP难问题 中发挥更大作用,通过牺牲部分精度 换取更高的计算效率。同时,随着人 工智能和机器学习的快速发展,智能 算法如神经网络、遗传算法等将在更 多领域得到应用,实现自动化决策和 优化。
要点三
比较
Prim算法适用于稠密图,而Kruskal 算法适用于稀疏图。Prim算法通过不 断扩展已选择顶点的集合来构建最小 生成树,而Kruskal算法通过不断合 并连通分量来构建最小生成树。
拓扑排序问题——Kahn算法和DFS深度优先搜索法比较
Kahn算法
DFS深度优先搜索法
比较
从入度为0的顶点开始,不断删除该 顶点和以该顶点为起点的所有有向边 ,并更新相关顶点的入度。重复此过 程直到所有顶点都被删除或者发现存 在环为止。时间复杂度为O(|V|+|E|) ,其中|V|为顶点数,|E|为边数。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

沈阳工程学院
学生实验报告
(课程名称:数据结构与算法)
实验题目:图
班级计算机121学号2012417116 姓名赵玉林地点F608 指导教师张欣
实验日期: 2013 年11 月28 日
一、实验目的
1.掌握图的基本存储方法。

2.掌握有关图的操作算法并用高级语言实现。

3.熟练掌握图的两种搜索路径的遍历方法。

4.掌握图的有关应用。

二、实验环境
Turbo C或是Visual C++
三、实验内容与要求
实验1 建立无向图的邻接矩阵或邻接表存储并输出
本题给出了一个无向图的邻接矩阵存储表示,在此基础上稍加改动就可以实现有向图、无向图和有向网的邻接矩阵表示。

实验2 建立图的邻接矩阵或邻接表存储并在此基础上实现图的深度优先遍历和广度优先遍历
图的广度优先遍历用非递归方法很容易理解,非递归方法需要辅助队列Q以及出队、入队函数。

四、实验过程及结果分析
源代码:
#include<stdio.h>
#include<malloc.h>
#define MAX_NUM 20
#define OK 1
#define ERROR -1
typedef int ElemType;
typedef char VertexType;
typedef struct ArcNode
{ //定义弧结点
ElemType data;
ArcNode *nextarc;
}ArcNode,*ArcLink;
typedef struct VNode
{ //定义顶点结点
VertexType data;
ArcLink firstarc;
}VNode,AdjList[MAX_NUM];
typedef struct
{
AdjList vdata;
int vexnum,arcnum;
}ALGraph;
//构建图的邻接表
int Creategraph(ALGraph &G,int n){ ArcLink p;
int e,i;
char v,w;
for(i=0;i<n;i++){
G.vdata[i].data='A'+i;
G.vdata[i].firstarc=NULL;
}
printf("输入边的个数:\n");
scanf("%d",&e);
for(i=0;i<e;i++)
{
getchar();//接收scanf的回车符
printf("请输入某边所依附的两个顶点用A--%C表示\n",'A'+n-1); scanf("%c%c",&v,&w);//fflush(stdin);
printf("V=%c,W=%c,I=%d\n",v,w,i);
p=(ArcLink )malloc(sizeof(ArcNode));
p->data=(int)(w-'A'+1);printf("%d\n",p->data);
p->nextarc=G.vdata[(int)(v-'A')].firstarc;
G.vdata[(int)(v-'A')].firstarc=p;
p=(ArcLink)malloc(sizeof(ArcNode));
p->data=(int)(v-'A'+1);
p->nextarc=G.vdata[(int)(w-'A')].firstarc;
G.vdata[(int)(w-'A')].firstarc=p;
}
G.vexnum=n; G.arcnum=e;
return OK;
}
//输出邻接表
int printGraph(ALGraph G){
ArcLink p;
int i;
for(i=0;i<G.vexnum;i++){
printf("%2d %c",i,G.vdata[i]);
for(p=G.vdata[i].firstarc;p!=NULL;p=p->nextarc){ printf("-->");
printf("%d",p->data);
}
printf("\n");
}
return OK;
}
int main()
{
ALGraph G;
int n;
printf("请输入你要构建的无向图的顶点个数:\n"); scanf("%d",&n);
Creategraph(G,n);
printf("你所构建的无向图的邻接表如下所示:\n"); printGraph(G);
return OK;
}
1-1建立无向图的顶点数1-2建立无向图的边数
1-3建立无向图
五、成绩评定
优良中及格不及格出勤
内容
格式
创新
效果
总评
指导教师:
年月日。

相关文档
最新文档