金属材料学整理

合集下载

金属材料学知识点总结

金属材料学知识点总结

金属材料的热处理
热处理原理
01
热处理是通过改变金属材料内部组织结构来改善其性能的一种
工艺方法。
热处理工艺
02
包括退火、正火、淬火和回火等,不同的热处理工艺适用于不
同种类的金属材料。
热处理设备
03
热处理设备包括电炉、盐浴炉、真空炉等,选择合适的热处理
设备对获得良好性能的金属材料至关重要。
03
金属材料的力学性能
金属材料的轻量化
总结词
通过采用轻质材料、优化结构设计、减少材料厚度等方式,降低产品的重量。
详细描述
轻量化是现代工业领域中重要的技术趋势,特别是在汽车、航空航天和电子产品等领域。轻量化可以 降低产品的能耗、提高机动性、减少振动和噪音等。常用的轻量化金属材料包括铝合金、钛合金和镁 合金等。
金属材料在新能源领域的应用
电化学保护
通过外加电流或牺牲阳极等方法,改变金属 的电化学状态,防止腐蚀。
选用耐蚀材料
选用耐蚀性能好的金属或合金材料,提高耐 蚀性。
05
金属材料的新技术与新应 用
金属材料的高性能化
总结词
通过改进制造工艺和材料成分,提高金 属材料的力学性能、物理性能和化学性 能。
VS
详细描述
金属材料的高性能化主要涉及合金设计、 热处理工艺优化、表面处理技术等。这些 技术可以提高金属材料的硬度、韧性、耐 腐蚀性、高温性能等,使其在更广泛的领 域得到应用。
良好的导电性和导热性
金属材料是电和热的良导体,广泛用于电子 、电力和散热等领域。
耐腐蚀性
部分金属材料具有较好的耐腐蚀性,可以在 各种环境条件下使用。
金属材料的用途
机械制造业
用于制造各种机器 零部件、工具等。

《金属材料学》

《金属材料学》

金属材料学引言金属材料作为人类历史上最重要的材料之一,广泛应用于各个领域。

金属具有优异的机械性能、导热性能和导电性能,因此在建筑、制造业、能源、电子等行业中扮演着重要角色。

金属材料学是研究金属材料结构、性能和应用的学科。

本文将介绍金属材料学的基本概念、金属材料的分类、性能测试以及在工程中的应用。

金属材料学的基本概念金属材料学是研究金属的物理、化学和力学性质的学科。

它探讨金属材料的结构、性能和制备工艺等方面的知识。

金属材料学主要研究以下几个方面:金属的结晶结构金属材料通常由晶粒组成,晶粒内部由原子或离子排列有序构成晶体。

金属的晶体结构决定了其物理、化学和力学性质。

金属的力学性能金属材料具有优异的机械性能,如强度、塑性、硬度、韧性等。

这些性能是材料在外力作用下发生变形和破坏的表现。

金属的热处理金属材料的热处理是通过加热和冷却过程改变其结构和性能。

常见的热处理方法包括退火、淬火、固溶处理等。

金属的腐蚀与防护金属材料容易受到腐蚀的影响,降低其性能和使用寿命。

因此,研究金属材料的腐蚀机理和防护方法十分重要。

金属材料的分类根据金属的化学成分和结构特征,金属材料可以分为以下几类:黄金属黄金属是指以金、银、铜为代表的贵金属。

它们具有良好的导电性和导热性,广泛应用于电子、通信、珠宝等领域。

有色金属有色金属是指除黄金属以外的金属材料。

包括铝、镁、锌、镍、钛等。

它们具有较高的强度和耐腐蚀性能,在航空航天、汽车制造等行业中得到广泛应用。

铁基合金铁基合金是以铁为主要成分,并添加其他合金元素的金属材料。

例如,不锈钢、铸铁、高速钢等。

铁基合金具有较高的强度和耐热性,在建筑、机械制造、能源等领域中用途广泛。

金属材料的性能测试为了确保金属材料的质量和性能,需要进行各种性能测试。

常见的金属材料性能测试包括:强度测试强度测试是衡量金属材料抗拉、抗压、抗弯等力学性能的方法。

常用的强度测试方法包括拉伸试验、压缩试验和弯曲试验。

硬度测试硬度测试是衡量金属材料硬度的方法。

金属材料学

金属材料学

Edit by x.h.
4/6
复习提纲
1、说出下列材料常用的强化方法:H70;45 钢;HT350;LY12;ZL102。 答:H70——冷变形强化(加工硬化) 45 钢——固溶强化(淬火) HT350——变质(孕育)处理 LY12——时效强化 ZL102——变质处理
或其它化合物相。 15、简述合金元素对铁碳相图(如共析碳量等等临界点)的影响。 答:1、改变奥氏体的位置(Ni、Co、Mn 以及其它扩大γ相区的元素,均使共析点左移而 GS 线下沉;Cr、W、Mo、V、
Ti、Si 以及其它缩小γ相区的元素,均使三元系中的γ相区逐渐呈劈形)
金 2、改变共析温度(Ni、Mn 等扩大γ相区的元素,使共析点(S 点)左移,GS 下沉,使得 A1 和 A3 温度同时降低。 Cr、W、Mo、V、Ti、Si 以及其它缩小γ相区的元素,使γ相区呈劈形,且共析点(S 点)左移,使得 A1 和 A3 温度同时升高。) 3、改变共析体含量(所有合金元素均使共析点左移,说明在钢中 C%不到 0.77%时,钢就会变为过共析而析出二
性质硬而脆,在冷加工时产生应力集中,易产生裂纹而形成冷脆。
9、简述合金元素在钢中的作用有哪些?
答:合金元素在钢中的作用是:强化铁素体、细化晶粒、提高淬透性、提高红硬性、增加残余奥氏体量。
10、用 45 号钢加工的二根轴,分别进行调质和正火热处理。问它们的相组织和力学性能如何?有哪些区别?
答:45 钢调质处理相组织:回火索氏体,45 钢正火处理相组织:索氏体+铁素体,调质处理的钢与正火处理的钢相比,
材 糙,甚至产生裂纹;
措施:控制 Mn、Fe 含量;铸锭进行高温均匀化退火;将加热温度由 390~440℃提高到 480~520℃;采用高温快速退 火。 ②Al‐Mg 防锈铝易出现:a、钠脆和 b、时效软化现象;

《金属材料学》各章小结

《金属材料学》各章小结

图1 钢合金化原理、主线、核心和设计思路2、结构钢复习小结表1 典型结构钢的特点、应用及演变横向图2 材料成分、工艺、组织、性能间的关系3、合金工具钢复习小结表2 典型工具钢的特点、应用及演变图2 铸铁成分、工艺、组织、性能关系图3 铝合金分类和性能特点总复习提要一、主线、核心和“思想”主线:零件服役条件→技术要求→选择材料→强化工艺→组织结构→最终性能→应用、失效。

寻求最佳方案,充分发掘材料潜力。

(1)同一零件可用不同材料及相应工艺。

例:调质钢符合淬透性原则可代用,柴油机连杆螺栓可用40Cr调质,也可用15MnVB;工模具钢,CrWMn、9SiCr、9Mn2V等钢在有些情况下也可考虑代用。

(2)同一材料,可采用不同的强化工艺。

例:60Si2Mn,有常规中温回火,也可等温淬火;T10钢,淬火方法有水、水-油、分级等。

根据不同零件的服役条件,考虑改进工艺,以达到提高零件寿命的目的。

强化工艺不同,组织有所不同,但都能满足零件的性能要求。

通过分析、试验,可得到最佳的强化工艺。

考虑问题不可呆板、机械、照搬书本,不要认为中C就是调质,低合金超高强度钢就是用低温回火工艺。

弹簧钢就是中温回火?其实,60Si2Mn有时也可用作模具。

某些低合金工具钢也可做主轴,GCr15也可制作量具、模具等。

要学活,思路要宽。

提出独特见解,怎样才能做到?核心:核心是合金化基本原理。

这是材料强韧化矛盾的主要因素,要真正理解“合金元素的作用,主要不在于本身的固溶强化,而在于对合金材料相变过程的影响,而良好的作用只有在合适的处理条件下才能得到体现。

”应该主要从强化机理和相变过程两个方面来考虑。

掌握了合金元素的作用,才能更好地理解各类钢的设计与发展,才能更好地采用热处理等强化工艺。

从钢厂出来,钢成分已定。

如何在这基础上充分优化材料的使用性能,关键就在于热处理等处理工艺。

企业中的许多问题都是因为在材料的加工过程中的工艺存在问题。

总结一下常用合金元素的作用、表现是很有必要的。

金属材料学必考重点汇编

金属材料学必考重点汇编

二近代物理学的观点认为,处于凝聚态的金属原子,全部或大部将它们的价电子贡献出来,为其整个原子集体所公有,称之为电子云或电子气。

贡献出价电子的原子,则变为正离子,沉浸在电子云中,它们依靠运动于其间的公有化的自由电子的静电作用而结合起来,这种结合方式叫做金属键,它没有饱和性和方向性。

固体金属根据其原子排列特点可以分为三类:晶体金属、非晶金属和准晶金属晶体结构指晶体中原子在三维空间有规律的周期性的具体排列方式晶格——用假想的直线将原子中心连接起来所形成的三维空间格架。

直线的交点(原子中心)称结点。

由结点形成的空间点的阵列称空间点阵。

晶胞——能代表晶格原子排列规律的最小几何单元。

晶格常数——取晶胞角上某一结点作为原点,沿其三条棱边作为三个坐标轴X、Y、Z,称为晶轴,以棱边长度a、b、c和棱面夹角α、β、γ表示晶胞的形状和大小。

其中棱边长度称为晶格常数,单位为Å最典型最常见的有三种类型,即体心立方结构、面心立方结构和密排六方结构。

前两者属于立方晶系,后者属于六方晶系。

体心立方结构的晶胞模型如图所示。

晶胞的三个棱边长度相等,三个轴间夹角均为90°,构成立方体。

除了在晶胞的八个角上各有一个原子外,在立方体的中心还有一个原子面心立方结构的晶胞如图所示。

在晶胞的八个角上各有一个原子,构成立方体,在立方体六个面的中心各有一个原子密排六方结构的晶胞如图所示。

在晶胞的12个角上各有一个原子,构成六方柱体,上底面和下底面的中心各有一个原子,晶胞内还有三个原子在晶体中,由一系列原子所组成的平面称为晶面,任意两个原子之间连线所指的方向称为晶向。

为了便于研究和表述不同晶面和晶向的原子排列情况及其在空间的位向,需要有一种统一的表示方法,这就是晶面指数和晶向指数。

原子排列完全相同的晶向和晶面称作晶向族或晶面族。

分别用{hkl}和<uvw>表示原子的紧密程度不同,意味着原子之间的距离不同,则导致原子间结合力不同,从而使晶体在不同晶向上的物理、化学和力学性能不同,即无论是弹性模量、断裂抗力、屈服强度,还是电阻率、磁导率、线膨胀系数以及在酸中的溶解速度等方面都表现出明显的差异。

金属材料学知识点总结

金属材料学知识点总结

二、金属材料的制备
制备(加工)工艺 冶炼与凝固 成型与热处理
冶金与凝固理论 塑性成型与固态相变理论
二、金属材料的制备
退火(annealing)
普通热处理
正火(normalizing) 淬火(quenching)
整体热 处理
回火(tempering)

表面淬火—感应加热、火焰加热、

表面热处理
• 使用性能是保证能不能使用;
• 工艺性能是保证能不能生产和制造的问题。 • 两者有时是一致的,有时互相矛盾。
金属材料的力学性能
➢ 力学性能指金属在力的作用下所 显示出的与弹性和非弹性反应相关或 涉及应力-应变关系的性能,如强度、 塑性、弹性、硬度、韧性、疲劳等
力学性能是选择和使用结构金属材料的重要依据。
• 包括工程结构钢(碳素结构钢和低合金高强度钢)和机 械制造结构钢(优质碳素结构钢和合金结构钢)。
• 工模具钢
•可分为碳素工具钢和合金工具钢。或者刃具钢、冷变形模 具钢、热变形模具钢和量具钢等。
• 特殊性能钢
•主要为不锈耐蚀钢和耐热钢,均为合金钢。
钢铁材料
3、按冶金质量分类 • 普通钢:S≤0.055%,P≤0.045%。 • 优质钢:S≤0.035%,P≤0.035%。 • 高级优质钢:S≤0.030%,P≤0.030%。 • 特级优质钢: S≤0.020%,P≤0.025%。 • 注:碳素钢有普通级,而合金钢没有普通级。
1. 材料科学与工程、金属材料学
材料科学与工程的 主要任务
确立两个关系:
• 性能与成分、组织 结构间的关系;
• 组织结构与成分和 加工工艺间的关系
性能 材料应用的基础
提高材料性能的途径

金属材料学总复习资料

金属材料学总复习资料

金属材料学总复习资料引言金属材料学是材料科学中的重要分支,研究金属材料的性质、结构以及制备工艺等方面。

本文档旨在为金属材料学的学习者提供一份全面的复习资料,以帮助他们更好地理解和掌握金属材料学的关键概念和理论。

本文档将涵盖金属材料的分类、晶体结构、性能测试以及常见金属材料的应用等内容。

一、金属材料的分类根据金属材料内在的性质和用途,金属材料可以分为以下几类:1.纯金属:由单一金属元素组成,具有较高的热导性和电导性,例如铜、铝等。

2.合金:由两种或两种以上金属元素组成,具有较好的力学性能和耐腐蚀性,例如钢、铝合金等。

3.亚稳金属:具有一定的稳定性,但在特定条件下可能发生相变,例如亚稳钢。

4.非晶金属:由无定形结构的金属原子组成,具有高强度和高韧性,例如非晶合金。

二、金属材料的晶体结构金属材料的晶体结构是衡量其性能和特性的重要因素。

晶体结构可以通过以下几种方式进行分类:1.面心立方结构(FCC):最密堆积方式,常见金属材料如铜、铝等即采用此结构。

2.体心立方结构(BCC):次密堆积方式,常见金属材料如铁、钨等即采用此结构。

3.密排六方结构(HCP):常见金属材料如钛、锌等即采用此结构。

理解金属材料的晶体结构可帮助我们更好地理解它们的物理、化学和力学性质,并为后续的材料加工和应用提供指导。

三、金属材料的性能测试金属材料的性能测试是评估其质量和可靠性的重要手段。

常见的金属材料性能测试包括以下几个方面:1.强度测试:包括抗拉强度、屈服强度、抗压强度等。

2.硬度测试:常用方法有布氏硬度、洛氏硬度等。

3.韧性测试:通常使用冲击试验和拉伸断裂试验来评估材料的韧性。

4.热性能测试:包括热膨胀系数测试、热导率测试等。

通过对金属材料的性能测试,我们可以了解其结构与性能之间的关系,并确定最适用于特定应用的材料。

四、常见金属材料及其应用金属材料广泛应用于各个领域,下面列举了一些常见的金属材料及其应用:1.铜:具有良好的导电性能和导热性能,广泛应用于电器、建筑等领域。

(完整版)金属材料知识大全

(完整版)金属材料知识大全

概述金属材料是指金属元素或以金属元素为主构成的具有金属特性的材料的统称。

包括纯金属、合金、金属材料金属间化合物和特种金属材料等。

(注:金属氧化物(如氧化铝)不属于金属材料)1.意义人类文明的发展和社会的进步同金属材料关系十分密切。

继石器时代之后出现的铜器时代、铁器时代,均以金属材料的应用为其时代的显著标志。

现代,种类繁多的金属材料已成为人类社会发展的重要物质基础。

2.种类金属材料通常分为黑色金属、有色金属和特种金属材料.(1)黑色金属又称钢铁材料,包括含铁90%以上的工业纯铁,含碳2%~4%的铸铁,含碳小于 2%的碳钢,以及各种用途的结构钢、不锈钢、耐热钢、高温合金、不锈钢、精密合金等。

广义的黑色金属还包括铬、锰及其合金。

(2)有色金属是指除铁、铬、锰以外的所有金属及其合金,通常分为轻金属、重金属、贵金属、半金属、稀有金属和稀土金属等.有色合金的强度和硬度一般比纯金属高,并且电阻大、电阻温度系数小.(3)特种金属材料包括不同用途的结构金属材料和功能金属材料。

其中有通过快速冷凝工艺获得的非晶态金属材料,以及准晶、微晶、纳米晶金属材料等;还有隐身、抗氢、超导、形状记忆、耐磨、减振阻尼等特殊功能合金以及金属基复合材料等。

3。

性能一般分为工艺性能和使用性能两类。

所谓工艺性能是指机械零件在加工制造过程中,金属材料在所定的冷、热加工条件下表现出来的性能。

金属材料工艺性能的好坏,决定了它在制造过程中加工成形的适应能力。

由于加工条件不同,要求的工艺性能也就不同,如铸造性能、可焊性、可锻性、热处理性能、切削加工性等。

所谓使用性能是指机械零件在使用条件下,金属材料表现出来的性能,它包括力学性能、物理性能、化学性能等。

金属材料使用性能的好坏,决定了它的使用范围与使用寿命。

在机械制造业中,一般机械零件都是在常温、常压和非常强烈腐蚀性介质中使用的,且在使用过程中各机械零件都将承受不同载荷的作用。

金属材料在载荷作用下抵抗破坏的性能,称为力学性能(过去也称为机械性能)。

金属材料学

金属材料学

金属材料学复习资料一、钢铁材料把加入合金元素总量小于5%的钢,称为低合金钢;合金10%的钢称为高合金钢;在5%~10%之间的钢称为中合金钢。

合金元素对临界点的影响:合金元素对碳钢的重要影响是改变临界点的温度和碳含量,使合金钢和铸铁的热处理制度不同于碳钢。

奥氏体形成元素Ni、Mn等使共析温度A1向下移动;铁素体形成元素Cr、Si等则使共析温度A1向上移动。

合金元素对A3的影响同A1。

决定组元在置换固溶体中的溶解条件是:溶剂与溶质的点阵结构、原子尺寸因素和电子结构。

也就是组成元素在元素周期表的相对位置。

原子半径对溶解度的影响是比较大的,一般规律为:ΔR 8%,可形成无限固溶体;ΔR 15%,形成有限固溶体;ΔR 15%,溶解度极小。

按照碳化物形成能力由强到弱排列,常用碳化物形成元素有Ti、Zr、Nb、V、Mo、W、Cr、Mn、Fe等。

它们都是过渡元素。

过渡族金属元素可依其与碳的结合强度的大小分类。

钛(Ti)、锆(Zr)、铌(Nb)、钒(V)、是强碳化物形成元素;钨(W)、钼(Mo)、铬(Cr)是中等强度碳化物形成元素;锰(Mn)和铁属于弱碳比物形成元素。

钢中常见碳化物可分为简单点阵和复杂点阵结构。

属于简单点阵结构有M2C型、MC型,其特点是硬度高、熔点较高、稳定性较好。

复杂点阵结构有M23C6型、M7C3型、M3C型等,相当于简单点阵结构的碳化物来说,其特点是硬度较低、熔点较低、稳定性较差。

M6C型碳化物是复杂点阵结构,但是从性能上接近简单点阵结构,稳定性要比M23C6型、M7C3型好。

合金元素对铁的多型性转变的影响(1)扩大相区合金元素使A3温度下降,A4温度升高,稳定存在相区扩大,(a)与 -Fe无限互溶,Ni、Mn、Co开启相区,当合金元素量足够大时,为奥氏体组织。

(b)与 -Fe有限溶解,C、N、Cu扩展相区。

(2)封闭相区,使A3升高A4下降,相区稳定存在相区缩小。

(a)与 -Fe无限互溶,A3↑A4↓相区完全被封闭。

金属材料学总结

金属材料学总结

金属材料学总结第一篇:金属材料学总结第一章1、为什么钢中的硫和磷一般情况下总是有害的?控制硫化物形态的方法有哪些?答:S与Fe形成FeS,会导致钢产生热脆;P与形成Fe3P,使钢在冷加工过程中产生冷脆性,剧烈降低钢的韧性,使钢在凝固时晶界处发生偏析。

硫化物形态控制:a、加入足量的锰,形成高熔点MnS;b、控制钢的冷却速度;c、改善其形态最好为球状,而不是杆状,控制氧含量大于0.02%;d、加入变形剂,使其在金属中扩散开防止聚焦产生裂纹。

2、钢的强化机制有哪些?为什么一般钢的强化工艺采用淬火加回火?答:a、固溶强化(合金中形成固溶体、晶格畸变、阻碍位错运动、强化)b、细晶强化(晶粒细化、晶界增多、位错塞积、阻碍位错运动、强化)c、加工硬化(塑性变形、位错缠绕交割、阻碍位错运动、强化)d、弥散强化(固溶处理的后的合金时效处理、脱溶析出第二相、弥散分布在基体上、与位错交互作用、阻碍位错运动、强化)淬火处理得到强硬相马氏体,提高钢的强度、硬度,使钢塑性降低;回火可有效改善钢的韧性。

淬火和回火结合使用提高钢的综合性能。

3、按照合金化思路,如何改善钢的韧性?答:a、加入可细化晶粒的元素Mo、W、Cr;b、改善基体韧性,加Ni元素;c、提高冲击韧性,加Mn、Si元素; d、调整化学成分; e、形变热处理; f、提高冶金质量;g、加入合金元素提高耐回火性,以提高韧性。

4、试解释40Cr13属于过共析钢,Cr12钢中已出现共晶组织,属于莱氏体钢。

答、Cr元素使共析点左移,当Cr量达到一定程度时,共析点左移到碳含量小于0.4%,所以40Cr13属于过共析钢;Cr12中含有高于12%的Cr元素,缩小Fe-C平衡相图的奥氏体区,使共析点右移。

5、试解释含Mn钢易过热,而含Si钢高淬火加热温度应稍高,且冷作硬化率高,不利于冷变性加工。

答:Mn在一定量时会促使晶粒长大,而过热就会使晶粒长大。

6、合金钢中碳化物形成规律①②③④⑤⑥⑦答:①、K类型:与Me的原子半径有关;②、相似相容原理;③、强碳化物形成元素优先于碳结合形成碳化物;④、NM/NC比值决定了K类型;⑤、碳化物稳定型越好,溶解越难,析出越难,聚集长大也越难。

金属材料的基本知识

金属材料的基本知识

金属材料的基本知识金属材料是一类重要的材料,具有良好的导电性、导热性、可塑性和可焊性等特点。

金属材料广泛应用于建筑、汽车、机械制造、航空航天等行业。

本文将介绍金属材料的基本知识,包括金属的性质、金属的组织结构、金属的加工工艺以及金属的应用等内容。

1.金属的性质金属具有良好的导电性和导热性。

这是因为金属的结构中存在自由电子,电子可以自由移动,从而导致金属对电流和热的传导性能非常好。

此外,金属还具有高硬度、耐磨性和良好的韧性,使其在工程领域得到广泛应用。

2.金属的组织结构金属的组织结构主要有晶体结构和非晶态结构两种类型。

晶体结构是由晶粒组成的,晶粒是由原子周期排列形成的。

晶体结构的类型包括立方晶系、六方晶系、四方晶系等。

非晶态结构是指金属在快速冷却过程中形成的无序结构。

晶体结构和非晶态结构对金属材料的性能有着重要影响。

3.金属的加工工艺金属材料一般需要经过加工工艺才能获得所需形状和性能。

金属的加工工艺包括塑性加工、热处理和表面处理等。

塑性加工是指通过施加力量使金属材料发生塑性变形的工艺,包括锻造、轧制、拉伸等。

热处理是指通过加热和冷却控制金属的组织结构,改变其性能的工艺。

表面处理是指对金属材料的表面进行涂覆、喷涂、电镀等方式的处理,以提高金属材料的耐腐蚀性能和外观质量。

4.金属的应用金属材料广泛应用于各个领域。

在建筑领域,金属材料用于制作结构框架、铝合金门窗和金属屋面等。

在汽车和航空航天领域,金属材料用于制造车身、发动机和航空器部件等。

在机械制造领域,金属材料用于制造机床、工具和各种零部件等。

此外,金属材料还广泛应用于电子、能源和医疗器械等领域。

综上所述,金属材料具有良好的导电性、导热性、可塑性和可焊性等特点。

金属的组织结构、加工工艺和应用也是金属材料研究的重要内容。

金属材料的广泛应用和不断创新,为工业领域的发展做出了重要贡献。

然而,随着科技的不断进步,人们对金属材料的研究和应用也在不断深入,未来金属材料的发展仍然具有巨大潜力。

金属材料学 复习总结

金属材料学  复习总结

名词解释合金元素:特别添加到钢中为了保证获得所要求的组织结构从而得到一定的物理、化学或机械性能的化学元素。

(常用Me表示)微合金元素:有些合金元素如V,Nb,Ti, Zr和B等,当其含量只在0.1%左右(如B 0.001%,V 0.2 %)时,会显著地影响钢的组织与性能,将这种化学元素称为微合金元素。

奥氏体形成元素:在γ-Fe中有较大的溶解度,且能稳定γ-Fe的元素C,N,Cu,Mn,Ni,Co,W等铁素体形成元素:在α-Fe中有较大的溶解度,且能γ-Fe不稳定的元素Cr,V,Si,Al,Ti,Mo等原位析出:指在回火过程中,合金渗碳体转变为特殊碳化物。

碳化物形成元素向渗碳体富集,当其浓度超过在合金渗碳体中的溶解度时, 合金渗碳体就在原位转变成特殊碳化物。

如Cr钢碳化物转变异位析出:含强碳化物形成元素的钢,在回火过程中直接从过饱和α相中析出特殊碳化物,同时伴随着渗碳体的溶解,如V,Nb,Ti。

(W和Mo既有原味析出又有异位析出)网状碳化物:热加工的钢材冷却后,沿奥氏体晶界析出的过剩碳化物(过共析钢)或铁素体(亚共析钢)形成的网状碳化物。

水韧处理:高锰钢铸态组织中沿晶界析出的网状碳化物显著降低钢的强度、韧性和抗磨性。

将高锰钢加热到单相奥氏体温度范围,使碳化物完全溶入奥氏体,然后在水中快冷,使碳化物来不及析出,从而获得获得单相奥氏体组织。

(水韧后不再回火)超高强度钢:用回火M或下B作为其使用组织,经过热处理后抗拉强度大于1400 MPa (或屈服强度大于1250MPa)的中碳钢,均可称为超高强度钢。

晶间腐蚀:沿金属晶界进行的腐蚀(已发生晶间腐蚀的金属在外形上无任何变化,但实际金属已丧失强度)n/8规律:随着Cr含量的提高,钢的的电极电呈跳跃式增高。

即当Cr的含量达到1/8,2/8,3/8,……原子比时,Fe的电极电位就跳跃式显著提高,腐蚀也跳跃式显著下降。

这个定律叫做n/8规律。

黄铜: Cu与Zn组成的铜合金青铜: Cu与Zn、Ni以外的其它元素组成的铜合金白铜: Cu与Ni组成的铜合金灰口铸铁:灰口铸铁中碳全部或大部分以片状石墨形式存在,其断口呈暗灰色。

(完整版)金属材料学知识整理(经典版)

(完整版)金属材料学知识整理(经典版)

第一章 合金化原理主要内容:概念:⑴合金元素:特别添加到钢中为了保证获得所要求的组织结构、物理、化学和机械性能的化学元素。

⑵杂质:冶炼时由原材料以及冶炼方法、工艺操作而带入的化学元素。

⑶碳钢:含碳量在0.0218-2.11%范围内的铁碳合金。

⑷合金钢:在碳钢基础上加入一定量合金元素的钢。

①低合金钢:一般指合金元素总含量小于或等于5%的钢。

②中合金钢:一般指合金元素总含量在5~10%范围内的钢。

③高合金钢:一般指合金元素总含量超过10%的钢。

④微合金钢:合金元素(如V,Nb,Ti,Zr,B)含量小于或等于0.1%,而能显著影响组织和性能的钢。

1.1 碳钢概论一、碳钢中的常存杂质1.锰( Mn )和硅( Si )⑴Mn :W Mn %<0.8% ①固溶强化 ②形成高熔点MnS 夹杂物(塑性夹杂物),减少钢的热脆(高温晶界熔化,脆性↑);⑵Si :W Si %<0.5% ①固溶强化 ②形成SiO2脆性夹杂物;⑶Mn 和Si 是有益杂质,但夹杂物MnS 、SiO2将使钢的疲劳强度和塑、韧性下降。

2.硫(S )和磷(P )⑴S :在固态铁中的溶解度极小, S 和Fe 能形成FeS ,并易于形成低熔点共晶。

发生热脆 (裂)。

⑵P :可固溶于α-铁,但剧烈地降低钢的韧性,特别是低温韧性,称为冷脆。

磷可以提高钢在大气中的抗腐蚀性能。

⑶S 和P 是有害杂质,但可以改善钢的切削加工性能。

3.氮(N )、氢(H )、氧(O )⑴N :在α-铁中可溶解,含过饱和N 的钢析出氮化物—机械时效或应变时效(经变形,沉淀强化,强度↑,塑性韧性↓,使其力学性能改变)。

N 可以与钒、钛、铌等形成稳定的氮化物,有细化晶粒和沉淀强化。

⑵H :在钢中和应力的联合作用将引起金属材料产生氢脆。

⑶O :在钢中形成硅酸盐(2MnO•SiO2、MnO•SiO2)或复合氧化物(MgO•Al2O3、碳钢中的常存杂质 碳钢的分类 碳钢的用途 1.1 碳钢概论 主要内容 1.2 钢的合金化原理: ①Me 在钢中的存在形式 ②Me 与铁和碳的相互作用 ③Me 对Fe-Fe3C 相图的影响 ④Me 对钢的热处理的影响 ⑤Me 对钢的性能的影响 1.3合金钢的分类MnO•Al2O3)。

金属材料学

金属材料学

1.A、F、K、非K形成合金元素。

A形成元素:1.完全固溶。

Mn、Co、Ni(Mn脆Co贵都少见,Ni有工业价值)(fcc);2.部分固溶。

Cu、C、N(C、N间隙,有工业价值,Cu 置换)。

F形成元素:1.完全固溶体(无限置换固溶体):Cr、V(bcc);2.有限互溶:Ti、Mo、W、Al、P、Sn、Sb、As等。

K形成元素:1.强K:Ti、Zr、Nb、V,熔点3000℃左右,一般热处理工艺中不熔化;2.中强K:W、Mo、Cr,熔点1500℃左右;3.弱K:Mn、Fe。

非K 形成元素:Ni、Co、Cu、Si、Al、N、P、S等。

2.为什么要在钢中加入合金元素?对相图的影响?对C曲线的影响?相图:①改变A相区位置。

A形成元素使A存在区域扩大,其中开启γ相区的元素如Ni、Mn含量较多时,可使钢在室温下得到单相A组织;F 形成元素均使A存在区域减小,其中封闭γ相区的元素如Cr、Ti、Si等超过一定含量时,可使钢在室温获得单相F组织。

②改变共析转变温度。

扩大γ相区元素使铁碳相图中的共析转变温度下降,缩小γ相区的元素则使其升高。

③改变S和E等临界点的含碳量。

几乎所有合金元素都使共析点(S)和共晶点(E)的含碳量下降。

即使S和E点左移。

C曲线:①除Co外,几乎所有合金元素都增加A的稳定性,推迟A向P组织的转变。

使C曲线右移,提高了钢的淬透性。

②非K形成元素Ni、Si和弱K形成元素Mn,大致保持碳钢C曲线形状,只是使其向右作不同程度的移动。

③非K形成元素Co,不改变C曲线形状,使其左移。

④K形成元素不仅使C曲线右移,并且改变其形状。

因对P和B转变推迟作用的影响不同,产生两个“鼻子”,C曲线分成上下两条,两个相区完全分开。

(机械性能:①对退火下的机械性能无明显影响;②对正火、淬火、回火状态下钢的强化作用明显,提高强度、回火稳定性,有些可提高高温性能。

工艺性能:①对铸造性能取决于对Fe-Fe3C相图的影响:固、液相的温度差下降,性能提高,共晶成分处最好;能形成强K的元素,会降低流动性,恶化铸造性能。

金属材料知识点

金属材料知识点

金属材料知识点金属材料是一类常见的材料,广泛应用于工业和日常生活中。

它们具有许多独特的性质和特点,为我们提供了各种各样的用途和功能。

本文将介绍一些与金属材料相关的主要知识点。

一、金属的基本特性金属材料的基本特性是它们具有良好的导电性和导热性。

这使得金属材料成为电器、电子设备、加热器和冷却器等领域的理想选择。

此外,金属材料还具有高强度和硬度,使其能够支撑重物和承受外力。

同时,金属材料还具有良好的塑性和可塑性,可以通过锻造、压延和拉伸等方式进行成型。

二、金属晶体结构金属材料的原子结构呈现出一种有序排列的结构,称为金属晶体结构。

最常见的金属晶体结构是面心立方(fcc)和体心立方(bcc)。

在面心立方结构中,每个原子都与周围12个原子有着最密堆积的联系;而在体心立方结构中,每个原子都与周围8个原子有着最密堆积的联系。

这种有序结构赋予金属材料优异的物理和力学性能。

三、金属材料的类型金属材料可以分为两类:纯金属和合金。

纯金属由同一种原子构成,具有较高的纯度。

合金是由两种或两种以上的金属元素组成,通过加入不同元素可以调整和改善材料的性能。

例如,将铁和碳合金化可以制造出钢材,具有更好的强度和韧性。

四、金属的热处理热处理是指通过加热和冷却的方式改变金属材料的晶体结构和性能。

常见的热处理方法包括退火、淬火和时效处理。

退火可以消除金属内部的应力和缺陷,提高材料的延展性和韧性。

淬火则用于增加金属的硬度和强度。

时效处理是将金属材料在一定温度下保持一段时间,使其硬度和强度得到优化。

五、金属的表面处理金属材料的表面处理是为了增强其耐腐蚀性和装饰性。

常见的金属表面处理方法包括电镀、喷涂和阳极氧化。

电镀可以在金属表面形成一层附着性好、抗腐蚀的保护层。

喷涂涂层可以提供美观和装饰效果,并增强金属的抗腐蚀性。

阳极氧化是将金属表面形成一层氧化膜,提高其抗氧化性和耐磨性。

六、常见的金属材料金属材料有许多种类,常见的包括铁、铜、铝、锌、镁等。

08652首饰金属材料学知识点

08652首饰金属材料学知识点

08652首饰金属材料学知识点一、金属材料的基本性质。

1. 物理性质。

- 密度。

- 不同的首饰金属材料密度不同。

例如,金的密度较大,为19.32g/cm³,这使得相同体积的金制品比一些密度小的金属制品更重。

密度是鉴别首饰金属材料种类的一个重要物理性质。

- 颜色。

- 金属的颜色是其重要的外观特征。

金通常为金黄色,银为银白色,铜为紫红色等。

金属的颜色会影响首饰的整体美观和风格,而且一些金属还可以通过合金化改变颜色,如铜与锌合金形成黄铜,颜色为黄色。

- 硬度。

- 硬度影响首饰的耐磨性和加工性能。

例如,纯金较软,莫氏硬度约为2.5,在制作复杂款式的首饰时容易变形。

而通过加入其他金属制成合金可以提高硬度,如18K金(金含量75%,其他金属25%)的硬度比纯金高,更适合镶嵌宝石等工艺。

- 熔点。

- 不同金属有不同的熔点。

金的熔点为1064.43°C,银的熔点为961.78°C。

在首饰制作过程中,如铸造工艺就需要考虑金属的熔点,选择合适的加热设备和工艺参数。

2. 化学性质。

- 耐腐蚀性。

- 首饰金属需要有一定的耐腐蚀性,以保持其外观和质量。

金是一种化学性质非常稳定的金属,在常温下几乎不与任何化学物质发生反应,所以金首饰可以长期保持光亮。

而银容易与空气中的硫化物反应生成硫化银,使银首饰表面变黑,需要采取一些防护措施,如镀铑等。

- 氧化性。

- 金属在不同环境下的氧化性不同。

铜在潮湿的空气中容易被氧化,表面形成铜绿(碱式碳酸铜)。

在首饰制作中,对于容易氧化的金属,需要进行表面处理或者制成合金来提高抗氧化能力。

二、常见首饰金属材料。

1. 黄金(Au)- 种类。

- 足金:含金量不低于99%的黄金,质地较软,颜色金黄,具有良好的保值性。

- K金:K金是黄金与其他金属熔合而成的合金。

常见的有18K金(含金量75%)、14K金(含金量58.5%)等。

18K金颜色多样,除了常见的黄色外,还有白色(加入镍、钯等金属)和玫瑰色(加入铜等金属),硬度适中,适合制作各种款式的首饰,并且价格相对足金更为多样化。

金属材料学-自制资料

金属材料学-自制资料

1.固溶强化元素有钨、钼、铬。

铬提高钢的化学稳定性。

钨、钼,可产生“二次硬化”,以保证热硬性,同时较多的碳化物可显著地提高耐磨性。

2.合金元素对淬火钢回火转变的影响主要有以下三点:①提高回火稳定性。

提高回火稳定性作用较强的合金元素有:V、Si、Mo、W、Ni、Co等。

②产生二次硬化(包括两种情况)。

③增大回火脆性(第二类回火脆性) 3.奥氏体形成元素:在γ-Fe中有较大溶解度并能稳定γ-Fe的元素(Mn、Ni、Co、C,N,Cu等);铁素体形成元素:在α-Fe中有较大溶解度并使γ-Fe不稳定的元素(Cr、Mo、W、V、Ti、Al、Si 、B、Nb、Zr等)4.①钛、锆、铌、钒是强碳化物形成元素;②钨、钼、铬是中等强度碳化物形成元素;③锰和铁属于弱碳化物形成元素。

5.Si和Mn的作用主要是提高淬透性,同时也提高了屈强比,而以Si的作用最突出,但Si在加热时促进表面脱碳,Mn则使钢易于过热。

重要用途的合金弹簧钢必须加入Cr、V、W等元素。

6.热作模具钢,热强性、抗热疲劳性能和抗氧化性。

热作模具钢的合金化特点:热作模具钢的含碳量大多是中碳(0.30~0.50%C)范围。

钢中加入铬、镍、钨、钼、钒、硅、锰等合金元素。

铬、硅、锰提高淬透性。

镍可提高钢的韧性,并与铬、钼一起提高耐热疲劳性能。

钨、钼、钒可产生二次硬化效果,钼还能防止第二类回火脆性、提高高温硬度和回火稳定性。

铬和硅还能提高抗氧化和抗烧蚀性。

在高铬不锈钢、铬镍及铬锰奥氏体不锈钢、高合金耐热钢及耐热合金中,都会出现ó相。

伴随着ó相的析出,脆性增加,钢和合金的塑性和韧性显著下降。

ó相具有高硬度,属正方晶系。

7. Mn和Si是有益杂质提高强硬度、固溶强化,S和P是有害杂质,但可以改善钢的切削加工性能。

8.“低合金”是指钢中合金元素总含量不超过3%。

9.F (铁素体)+P(珠光体):含碳量越低F↑,含碳量越高P↓。

10. 15MnTi (铁素体-珠光体钢/工程结构钢),含碳量为15~16%,Mn起固溶强化的作用,Ti起沉淀强化的作用。

材料科学基础复习整理——金属材料

材料科学基础复习整理——金属材料

金属材料复习资料一、结构钢1、低合金结构钢2、表面硬化钢(渗碳钢)3、调质钢典型钢号碳及合金含量合金元素作用热处理工艺 及组织性能用途Q235、Q345(16Mn )、Q420(15MnVN );属于低碳, ωc<=0.2%,低合金,合金含量一般小于3%;主加元素Mn 固溶强化;辅加的V 、Ti 、Nb 、A 等可形成强氮(碳)化合物可弥散强化;Cu 、P 提高耐蚀性;稀土RE 净化金属;正火或正火+高温回火; S 或S 回; 高强度,足够的韧性、塑性及低温韧性,良好的焊接性和热、冷塑性加工性;桥梁、车辆、锅炉、船舶、压力容器、起重设备等 典型钢号碳及合金含量合金元素作用热处理工艺 及组织性能 用途20Cr、18Cr2Ni4WA 、20MnVB;C含量0.1%~0.25%; 主加元素Cr 、Mn 、Ti 、B 提高淬透性;辅加的Mo 、W 、V 、Ti 形成稳定的合金碳化物组织渗碳时奥氏体晶粒长大;渗碳后直接淬火+低温回火;表层组织细针状回火高碳马氏体+粒状碳化物+少量残余奥氏体;表硬内韧、高耐磨性,优良的热处理性能; 汽车和机床齿轮、发动机曲轴、凸轮轴等;4、弹簧钢5、滚动轴承钢典型钢号 碳及合金含量合金元素作用 热处理工艺 及组织性能 用途45、40Mn 、40MnVB 、40CrNiMoA;C 含量0.25%~0.5%; 主加元素Cr 、Mn 、Si 、Ni 、B 提高淬透性及固溶强化;辅加的Mo 、W 抑制第二类回火脆性,V 阻碍奥氏体长大,能细晶强韧化和弥散强化;最终热处理淬火+高温回火;组织S 回; 优良的力学性能(好的强度和韧性); 发动机连杆、曲轴、机床主轴等;典型钢号 碳及合金含量合金元素作用 热处理工艺 及组织性能 用途65、65Mn 、55Si2Mn 、50CrV A;碳素弹簧钢碳含量0.6%~0.9%;合金弹簧钢碳含量0.45%~0.7%; 主加元素Cr 、Mn 、Si 提高淬透性及回火稳定性、固溶强化基体;辅加的Mo 、W 、V 防止脱碳和过热;淬火+中温回火; 组织T 回;高的弹性极限和屈强比,高的疲劳极限,足够的塑性和韧性;汽车、火车上的各种板簧、螺旋弹簧、仪表弹簧; 典型钢号碳及合金含量合金元素作用热处理工艺 及组织性能用途二、工具钢性能要求:高的硬度和高的耐磨性;高的热硬性,高温工作状态(500~600℃)下保持较高的硬度;适当的韧性;成分与组织特点:通常使用状态是在回火马氏体基体上分布着细小的均匀的粒状碳化物。

金属材料学简要总结

金属材料学简要总结

金属材料学简要总结《金属材料学》复习总结第1章:钢的合金化概论一、名词解释:合金化:未获得所要求的组织结构、力学性能、物理性能、化学性能或工艺性能而特别在钢铁中加入某些元素,称为合金化。

过热敏感性:钢淬火加热时,对奥氏体晶粒急剧长大的敏感性。

回火稳定性:淬火钢在回火时,抵抗强度、硬度下降的能力。

回火脆性:淬火钢回火后出现韧性下降的现象。

二、填空题:1.合金化理论是金属材料成分设计和工艺过程控制的重要原理,是材料成分、工艺、组织、性能、应用之间有机关系的根本源头,也是重分发结材料潜力和开发新材料的基本依据。

2.扩大A相区的元素有:Ni、Mn、Co(与Fe-γ无限互溶);C、N、Cu(有限互溶);α无限互溶);Mo、W、Ti(有限互溶);扩大F相区的元素有:Cr、V(与Fe-缩小F相区的元素有:B、Nb、Zr(锆)。

3.强C化物形成元素有:Ti、Zr、Nb、V;弱C化物形成元素有:Mn、Fe;4.强N化物形成元素有:Ti、Zr、Nb、V;弱N化物形成元素有:Cr、Mn、Fe;三、简答题:1.合金钢按照含量的分类有哪些?具体含量是多少?按含碳量划分又如何?●按照合金含量分类:低合金钢:合金元素总量<5%;中合金钢:合金元素总量在5%~10%;高合金钢:合金元素总量>10%;●按照含碳量的分类:低碳钢:w c≤0.25%;中碳钢:w c=0.25%~0.6%;高碳钢:w c>0.6%;2.加入合金元素的作用?①:与Fe、C作用,产生新相,组成新的组织与结构;②:使性能改善。

3.合金元素对铁碳相图的S、E点有什么影响?这种影响意味着什么?(1)A形成元素均使S、E点向左下方移动,如Mn、Ni等;F形成元素均是S、E点向左上方移动,如Cr、V等(2)S点向左下方移动,意味着共析C含量减小,使得室温下将得到A组织;E点向左上方移动,意味着出现Ld的碳含量会减小。

4.请简述合金元素对奥氏体形成的影响。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章钢的合金化概论1.名词解释1)合金元素: 特别添加到钢中为了保证获得所要求的组织结构从而得到一定的物理、化学或机械性能的化学元素。

(常用M来表示)2)微合金元素: 有些合金元素如V,Nb,Ti, Zr和B等,当其含量只在0.1%左右(如B 0.001%,V 0.2 %)时,会显著地影响钢的组织与性能,将这种化学元素称为微合金元素。

3)奥氏体形成元素:在γ-Fe中有较大的溶解度,且能稳定γ相;如 Mn, Ni, Co, C, N, Cu;4)铁素体形成元素: 在α-Fe中有较大的溶解度,且能稳定α相。

如:V,Nb, Ti 等。

5)原位析出: 元素向渗碳体富集,当其浓度超过在合金渗碳体中的溶解度时, 合金渗碳体就在原位转变成特殊碳化物如Cr钢中的Cr:ε-Fe x C→Fe3C→(Fe, Cr)3C→(Cr, Fe)7C3→(Cr, Fe)23C66)离位析出:在回火过程中直接从α相中析出特殊碳化物,同时伴随着渗碳体的溶解,可使HRC和强度提高(二次硬化效应)。

如 V,Nb, Ti等都属于此类型。

2.合金元素V、Cr、W、Mo、Mn、Co、Ni、Cu、Ti、Al中哪些是铁素体形成元素?哪些是奥氏体形成元素?哪些能在α-Fe中形成无限固溶体?哪些能在γ-Fe 中形成无限固溶体?答:铁素体形成元素:V、Cr、W、Mo、Ti、Al;奥氏体形成元素:Mn、Co、Ni、Cu能在α-Fe中形成无限固溶体:V、Cr;能在γ-Fe 中形成无限固溶体:Mn、Co、Ni3.简述合金元素对扩大或缩小γ相区的影响,并说明利用此原理在生产中有何意义?扩大γ相区:使A3降低,A4升高一般为奥氏体形成元素分为两类:a.开启γ相区:Mn, Ni, Co 与γ-Fe无限互溶.b.扩大γ相区:有C,N,Cu等。

如Fe-C相图,形成的扩大的γ相区,构成了钢的热处理的基础。

(2)缩小γ相区:使A3升高,A4降低。

一般为铁素体形成元素分为两类:a.封闭γ相区:使相图中γ区缩小到一个很小的面积形成γ圈,其结果使δ相区与α相区连成一片。

如V, Cr, Si, A1, Ti, Mo, W, P, Sn, As, Sb。

b.缩小γ相区:Zr, Nb, Ta, B, S, Ce 等(3)生产中的意义:可以利用M扩大和缩小γ相区作用,获得单相组织,具有特殊性能,在耐蚀钢和耐热钢中应用广泛。

4.简述合金元素对铁碳相图(如共析碳量、相变温度等)的影响。

答:1)改变了奥氏体区的位置2)改变了共晶温度:(l)扩大γ相区的元素使A1,A3下降;(2)缩小γ相区的元素使A1,A3升高。

当Mo>8.2%, W>12%,Ti>1.0%,V>4.5%,Si>8.5%,γ相区消失。

3.)改变了共析含碳量:所有合金元素均使S点左移。

(提问:对组织与性能有何影响呢?)5.合金钢中碳化物形成元素(V,Cr,Mo,Mn等)所形成的碳化物基本类型及其相对稳定性。

答:基本类型:MC型;M2C型;M23C6型;M7C3型;M3C型;M6C型;(强K形成元素形成的K比较稳定,其顺序为:Ti>Zr>Nb>V>W,Mo>Cr>Mn>Fe)各种K相对稳定性如下:MC→M2C→M6C→M23C6→M7C3→M3C(高-------------------------低)6.主要合金元素(V,Cr,Ni,Mn,Si,B等)对过冷奥氏体冷却转变影响的作用机制。

答:Ti, Nb, Zr, V:主要是通过推迟P转变时K形核与长大来提高过冷γ的稳定性;W,Mo,Cr:1)推迟K形核与长大;2)增加固溶体原子间的结合力,降低Fe的自扩散激活能。

作用大小为:Cr>W>MoMn:(Fe,Mn)3C,减慢P转变时合金渗碳体的形核与长大;扩大γ相区,强烈推迟γ→α转变,提高α的形核功;Ni:开放γ相区,并稳定γ相,提高α的形核功(渗碳体可溶解Ni, Co)Co扩大γ相区,但能使A3温度提高(特例),使γ→α转变在更高的温度进行,降低了过冷γ的稳定性。

使C曲线向左移。

Al, Si :不形成各自K,也不溶解在渗碳体中,必须扩散出去为K形核创造条件;Si可提高Fe原子的结合力。

B,P,Re:强烈的内吸附元素,富集于晶界,降低了γ的界面能,阻碍α相和K形核。

7.合金元素对马氏体转变有何影响?答:合金元素的作用表现在:1)对马氏体点Ms- M f温度的影响;2)改变马氏体形态及精细结构(亚结构)。

除Al,Co 外,都降低Ms温度,其降低程度:强C→Mn→Cr→Ni→V→Mo,W,Si弱提高γ’含量:可利用此特点使Ms温度降低于0℃以下,得到全部γ组织。

如加入Ni,Mn,C,N 等合金元素有增加形成孪晶马氏体的倾向,且亚结构与合金成分和马氏体的转变温度有关.8.如何利用合金元素来消除或预防第一次、第二次回火脆性?1)低温回火脆性(第I类,不具有可逆性)其形成原因:沿条状马氏体的间界析出K薄片;防止:加入Si, 脆化温度提高300℃;加入Mo, 减轻作用。

2)高温回火脆性(第II类,具有可逆性)其形成原因:与钢杂质元素向原奥氏体晶界偏聚有关。

防止:加入W,Mo消除或延缓杂质元素偏聚.9.如何理解二次硬化与二次淬火两个概念的相关性与不同特点。

答:二次硬化:在含有Ti, V, Nb, Mo, W等较高合金钢淬火后,在500- 600℃范围内回火时,在α相中沉淀析出这些元素的特殊碳化物,并使钢的HRC和强度提高。

(但只有离位析出时才有二次硬化现象)二次淬火:在强K形成元素含量较高的合金钢中淬火后γ’十分稳定,甚至加热到500-600℃回火时升温与保温时中仍不分解,而是在冷却时部分转变成马氏体,使钢的硬度提高。

相同点:都发生在合金钢中,含有强碳化物形成元素相对多,发生在淬回火过程中,且回火温度550℃左右。

不同点:二次淬火,是回火冷却过程中Ar转变为m,是钢硬度增加。

二次硬化:回火后,钢硬度不降反升的现象(由于特殊k的沉淀析出)10.一般的钢有哪些强化与韧化途径?(强化的主要途径)宏观上:钢的合金化、冷热加工及其综合运用是钢强化的主要手段。

微观上:在金属晶体中造成尽可能多的阻碍位错运动的障碍;或者尽可能减少晶体中的可动位错,抑制位错源的开动,如晶须。

固溶强化、细晶强化、位错强化、“第二相”强化沉淀强化、时效强化、弥散强化、析出强化、二次硬化、过剩相强化)韧化途径:细化晶粒;降低有害元素的含量;防止预存的显微裂纹;形变热处理;利用稳定的残余奥氏体来提高韧性;加入能提高韧性的M,如Ni, Mn;尽量减少在钢基体中或在晶界上存在粗大的K或其它化合物相。

第二章工程结构钢1.对工程结构钢的基本性能要求是什么?答:(1)足够高的强度、良好的塑性;(2)适当的常温冲击韧性,有时要求适当的低温冲击韧性;(3)良好的工艺性能。

2.合金元素在低合金高强度结构钢中的主要作用是什么?为什么考虑采用低C?答:为提高碳素工程结构钢的强度,而加入少量合金元素,利用合金元素产生固溶强化、细晶强化和沉淀强化。

利用细晶强化使钢的韧-脆转变温度的降低,来抵消由于碳氮化物沉淀强化使钢的韧-脆转变温度的升高。

考虑低C的原因:(1)C含量过高,P量增多,P为片状组织,会使钢的脆性增加,使FATT50(℃)增高。

(2)C含量增加,会使C当量增大,当C当量>0.47时,会使钢的可焊性变差,不利于工程结构钢的使用。

3.什么是微合金钢?微合金化元素在微合金化钢中的主要作用有哪些?试举例说明。

答:微合金钢:利用微合金化元素Ti, Nb, V;主要依靠细晶强化和沉淀强化来提高强度;利用控制轧制和控制冷却工艺----- 高强度低合金钢微合金元素的作用:1)抑制奥氏体形变再结晶;例:再热加工过程中,通过应变诱导析出铌、钛、钒的氮化物,沉淀在晶界、亚晶界和位错上,起钉扎作用,有效地阻止奥氏体再结晶的晶界和位错的运动,抑制再结晶过程的进行。

2)阻止奥氏体晶粒长大;例:微量钛(w≤0.02%)以TiN从高温固态钢中析出,呈弥散分布,对阻止奥氏体晶粒长大很有效。

3)沉淀强化;例:w(Nb)≤0.04%时,细化晶粒造成的屈服强度的增量ΔζG大于沉淀强化引起的增量ΔζPh;当w(Nb)≥0.04%时, ΔζPh增量大大增加,而ΔζG保持不变。

4)改变与细化钢的组织例:在轧制加热时,溶于奥氏体的微合金元素提高了过冷奥氏体的稳定性,降低了发生先共析铁素体和珠光体的温度范围,低温下形成的先共析铁素体和珠光体组织更细小,并使相间沉淀Nb(C,N)和V(C,N)的粒子更细小。

4.低碳贝氏体钢的合金化有何特点?解:合金元素主要是能显著推迟先共析F和P转变,但对B转变推迟较少的元素如Mo,B,可得到贝氏体组织。

1)加入Mn, Ni, Cr等合金元素,进一步推迟先共析F和P转变,并使Bs点下降,可得到下B组织;2)加入微合金化元素充分发挥其细化作用和沉淀作用;3)低碳,使韧性和可焊性提高。

第三章机械制造结构钢1.名词解释1)液析碳化物:由于碳和合金元素偏析,在局部微小区域内从液态结晶时析出的碳化物。

2)网状碳化物:过共析钢在热轧(锻)加工后缓慢冷却过程中由二次碳化物以网状析出于奥氏体晶界所造成的。

3)水韧处理:高锰钢铸态组织中沿晶界析出的网状碳化物显著降低钢的强度、韧性和抗磨性。

将高锰钢加热到单相奥氏体温度范围,使碳化物充分溶入奥氏体,然后水冷,获得单一奥氏体组织。

4)超高强度钢:一般讲,屈服强度在1 370MPa(140 kgf/mm2)以上,抗拉强度在1 620 MPa (165 kgf/mm2)以上的合金钢称超高强度钢。

2.调质钢、弹簧钢进行成分、热处理、常用组织及主要性能的比较,并熟悉各自主要钢种。

答:A.调质钢:按淬透性大小可分为几级:1)40,45,45B2)40Cr,45Mn2, 45MnB, 35MnSi3)35CrMo, 42MnVB, 40MnMoB ,40CrNi4)40CrMnMo, 35SiMn2MoV,40CrNiMoB.弹簧钢:1)Mn弹簧钢:60Mn,65Mn2)MnSi弹簧钢:55Si2Mn,60Si2MnA3)Cr弹簧钢:50CrMn,50CrV A, 50CrMnV A (使用T<300℃)4)耐热弹簧:30W4Cr2V A (可达500℃)5)耐蚀弹簧:3Cr13, 4Cr13, 1Cr18Ni9Ti (温度<400℃)3.液析碳化物和带状碳化物的形成、危害及消除方法。

答:形成:均起因于钢锭结晶时产生的树枝状偏析;液析碳化物属于偏析引起的伪共晶碳化物(一次碳化物);带状碳化物属于二次碳化物偏析(固相凝固过程中)危害:降低轴承的使用寿命,增大零件的淬火开裂倾向,造成硬度和力学性能的不均匀性(各向异性)消除方法:1)控制成分(C,Cr%);2)合理设计钢锭,改进工艺;3)大的锻(轧)造比来破碎碳化物;4)采用高温扩散退火(1200℃左右)。

相关文档
最新文档