《几何图形初步》全章复习与巩固基础知识讲解
七年级数学上册 第四章《图形认识初步》全章复习与巩固(基础)知识讲解 新人教版
《图形认识初步》全章复习与巩固(基础)知识讲解【学习目标】1.认识一些简单的几何体的平面展开图及三视图,初步培养空间观念和几何直观;2.掌握直线、射线、线段、角这些基本图形的概念、性质、表示方法和画法;3.初步学会应用图形与几何的知识解释生活中的现象及解决简单的实际问题;4.逐步掌握学过的几何图形的表示方法,能根据语句画出相应的图形,会用语句描述简单的图形.【高清课堂:图形认识初步章节复习 399079 本章知识结构】【知识网络】【要点梳理】要点一、多姿多彩的图形1.几何图形的分类⎧⎨⎩要点诠释:在给几何体分类时,不同的分类标准有不同的分类结果. 2.立体图形与平面图形的相互转化 (1)立体图形的平面展开图:把立体图形按一定的方式展开就会得到平面图形,把平面图形按一定的途径进行折叠就会得到相应的立体图形,通过展开与折叠能把立体图形和平面图形有机地结合起来. 要点诠释:①对一些常见立体图形的展开图要非常熟悉,例如正方体的 11种展开图,三棱柱,圆柱等的展开图;②不同的几何体展成不同的平面图形,同一几何体沿不同的棱剪开,可得到不同的平面图形,那么排除障碍的方法就是:联系实物,展开想象,建立“模型”,整体构想,动手实践. (2)从不同方向看:主(正)视图---------从正面看几何体的三视图 (左、右)视图-----从左(右)边看俯视图---------------从上面看要点诠释:①会判断简单物体(直棱柱、圆柱、圆锥、球)的三视图. ②能根据三视图描述基本几何体或实物原型. (3)几何体的构成元素及关系几何体是由点、线、面构成的.点动成线,线与线相交成点;线动成面,面与面相交成线;面动成体,体是由面组成. 要点二、直线、射线、线段 1. 直线,射线与线段的区别与联系立体图形:棱柱、棱锥、圆柱、圆锥、球等.⎧⎨⎩平面图形:三角形、四边形、圆等.几何图形2. 基本性质(1)直线的性质:两点确定一条直线. (2)线段的性质:两点之间,线段最短.要点诠释:①本知识点可用来解释很多生活中的现象. 如:要在墙上固定一个木条,只要两个钉子就可以了,因为如果把木条看作一条直线,那么两点可确定一条直线.②连接两点间的线段的长度,叫做两点的距离.(1)度量法:可用直尺先量出线段的长度,再画一条等于这个长度的线段.(2)用尺规作图法:用圆规在射线AC上截取AB=a,如下图:4.线段的比较与运算(1)线段的比较:比较两条线段的长短,常用两种方法,一种是度量法;一种是叠合法.(2)线段的和与差:如下图,有AB+BC=AC,或AC=a+b ;AD=AB-BD。
七年级数学上册 第四章《图形认识初步》全章复习与巩
《图形认识初步》全章复习与巩固(基础)知识讲解【学习目标】1.认识一些简单的几何体的平面展开图及三视图,初步培养空间观念和几何直观; 2.掌握直线、射线、线段、角这些基本图形的概念、性质、表示方法和画法; 3.初步学会应用图形与几何的知识解释生活中的现象及解决简单的实际问题;4.逐步掌握学过的几何图形的表示方法,能根据语句画出相应的图形,会用语句描述简单的图形.【高清课堂:图形认识初步章节复习 399079 本章知识结构 】 【知识网络】【要点梳理】要点一、多姿多彩的图形 1. 几何图形的分类要点诠释:在给几何体分类时,不同的分类标准有不同的分类结果. 2.立体图形与平面图形的相互转化立体图形:棱柱、棱锥、圆柱、圆锥、球等. ⎧⎨⎩平面图形:三角形、四边形、圆等.几何图形⎧⎨⎩(1)立体图形的平面展开图:把立体图形按一定的方式展开就会得到平面图形,把平面图形按一定的途径进行折叠就会得到相应的立体图形,通过展开与折叠能把立体图形和平面图形有机地结合起来. 要点诠释:①对一些常见立体图形的展开图要非常熟悉,例如正方体的 11种展开图,三棱柱,圆柱等的展开图;②不同的几何体展成不同的平面图形,同一几何体沿不同的棱剪开,可得到不同的平面图形,那么排除障碍的方法就是:联系实物,展开想象,建立“模型”,整体构想,动手实践. (2)从不同方向看:主(正)视图---------从正面看 几何体的三视图 (左、右)视图-----从左(右)边看 俯视图---------------从上面看要点诠释:①会判断简单物体(直棱柱、圆柱、圆锥、球)的三视图. ②能根据三视图描述基本几何体或实物原型. (3)几何体的构成元素及关系几何体是由点、线 、面构成的.点动成线,线与线相交成点;线动成面,面与面相交成线;面动成体,体是由面组成. 要点二、直线、射线、线段1. 直线,射线与线段的区别与联系2. 基本性质(1)直线的性质:两点确定一条直线. (2)线段的性质:两点之间,线段最短. 要点诠释:①本知识点可用来解释很多生活中的现象. 如:要在墙上固定一个木条,只要两个钉子就可以了,因为如果把木条看作一条直线,那么两点可确定一条直线. ②连接两点间的线段的长度,叫做两点的距离. 3.画一条线段等于已知线段(1)度量法:可用直尺先量出线段的长度,再画一条等于这个长度的线段. (2)用尺规作图法:用圆规在射线AC 上截取AB=a,如下图:4.线段的比较与运算 (1)线段的比较:比较两条线段的长短,常用两种方法,一种是度量法;一种是叠合法. (2)线段的和与差:如下图,有AB+BC=AC ,或AC=a+b ;AD=AB-BD 。
七年级数学上册《几何图形初步》知识讲解
作品编号:91855558874563331258学校:元明壮市文银汉镇便家蚕小学*教师:青稞酒*班级:飞鸟参班*《几何图形初步》全章知识讲解【学习目标】1.认识一些简单的几何体的平面展开图及三视图,初步培养空间观念和几何直观;2.掌握直线、射线、线段、角这些基本图形的概念、性质、表示方法和画法;3.初步学会应用图形与几何的知识解释生活中的现象及解决简单的实际问题;4.逐步掌握学过的几何图形的表示方法,能根据语句画出相应的图形,会用语句描述简单的图形.【知识网络】【要点梳理】要点一、多姿多彩的图形⎧⎨⎩1. 几何图形的分类要点诠释:在给几何体分类时,不同的分类标准有不同的分类结果. 2.立体图形与平面图形的相互转化 (1)立体图形的平面展开图:把立体图形按一定的方式展开就会得到平面图形,把平面图形按一定的途径进行折叠就会得到相应的立体图形,通过展开与折叠能把立体图形和平面图形有机地结合起来. 要点诠释:①对一些常见立体图形的展开图要非常熟悉,例如正方体的 11种展开图,三棱柱,圆柱等的展开图;②不同的几何体展成不同的平面图形,同一几何体沿不同的棱剪开,可得到不同的平面图形,那么排除障碍的方法就是:联系实物,展开想象,建立“模型”,整体构想,动手实践. (2)从不同方向看:主(正)视图---------从正面看 几何体的三视图 (左、右)视图-----从左(右)边看 俯视图---------------从上面看要点诠释:①会判断简单物体(直棱柱、圆柱、圆锥、球)的三视图. ②能根据三视图描述基本几何体或实物原型. (3)几何体的构成元素及关系几何体是由点、线 、面构成的.点动成线,线与线相交成点;线动成面,面与面相交成线;面动成体,体是由面组成.要点二、直线、射线、线段1. 直线,射线与线段的区别与联系2. 基本性质立体图形:棱柱、棱锥、圆柱、圆锥、球等. ⎧⎨⎩平面图形:三角形、四边形、圆等.几何图形(1)直线的性质:两点确定一条直线. (2)线段的性质:两点之间,线段最短. 要点诠释:①本知识点可用来解释很多生活中的现象. 如:要在墙上固定一个木条,只要两个钉子就可以了,因为如果把木条看作一条直线,那么两点可确定一条直线. ②连接两点间的线段的长度,叫做两点的距离.3.画一条线段等于已知线段(1)度量法:可用直尺先量出线段的长度,再画一条等于这个长度的线段. (2)用尺规作图法:用圆规在射线AC 上截取AB=a,如下图:4.线段的比较与运算 (1)线段的比较:比较两条线段的长短,常用两种方法,一种是度量法;一种是叠合法.(2)线段的和与差:如下图,有AB+BC=AC ,或AC=a+b ;AD=AB-BD 。
《几何图形初步》全章复习与巩固(基础)知识讲解
《几何图形初步》全章复习与巩固(基础)知识讲解【知识网络】【要点梳理】要点一、多姿多彩的图形1.几何图形的分类要点诠释:在给几何体分类时,不同的分类标准有不同的分类结果.2.立体图形与平面图形的相互转化(1)立体图形的平面展开图:把立体图形按一定的方式展开就会得到平面图形,把平面图形按一定的途径进行折叠就会得到相应的立体图形,通过展开与折叠能把立体图形和平面图形有机地结合起来.要点诠释:①对一些常见立体图形的展开图要非常熟悉,例如正方体的11种展开图,三棱柱,圆柱等的展开图;②不同的几何体展成不同的平面图形,同一几何体沿不同的棱剪开,可得到不同的平面图形,那么排除障碍的方法就是:联系实物,展开想象,建立“模型”,整体构想,动手实践.立体图形:棱柱、棱锥、圆柱、圆锥、球等.⎧⎨⎩平面图形:三角形、四边形、圆等.几何图形⎧⎨⎩(2)从不同方向看:主(正)视图---------从正面看几何体的三视图左视图-----从左(右)边看俯视图---------------从上面看要点诠释:①会判断简单物体(直棱柱、圆柱、圆锥、球)的三视图.②能根据三视图描述基本几何体或实物原型.(3)几何体的构成元素及关系几何体是由点、线、面构成的.点动成线,线与线相交成点;线动成面,面与面相交成线;面动成体,体是由面组成.要点二、直线、射线、线段1.直线,射线与线段的区别与联系2.基本性质(1)直线的性质:两点确定一条直线.(2)线段的性质:两点之间,线段最短.要点诠释:①本知识点可用来解释很多生活中的现象.如:要在墙上固定一个木条,只要两个钉子就可以了,因为如果把木条看作一条直线,那么两点可确定一条直线.②连接两点间的线段的长度,叫做两点间的距离.3.画一条线段等于已知线段(1)度量法:可用直尺先量出线段的长度,再画一条等于这个长度的线段.(2)用尺规作图法:用圆规在射线AC 上截取AB=a,如下图:4.线段的比较与运算(1)线段的比较:比较两条线段的长短,常用两种方法,一种是度量法;一种是叠合法.(2)线段的和与差:如下图,有AB+BC=AC,或AC=a+b;AD=AB-BD。
华东师大初中七年级上册数学图形的初步认识全章复习与巩固提高知识讲解精选
图形的初步认识《》全章复习与巩固(提高)知识讲解【学习目标】 1.认识一些简单的几何体的平面展开图及三视图,初步培养空间观念和几何直观; 2.掌握直线、射线、线段、角这些基本图形的概念、性质、表示方法和画法;.初步学会应用图形与几何的知识解释生活中的现象及解决简单的实际问题;3.逐步掌握学过的几何图形的表示方法,能根据语句画出相应的图形,会用语句描述简单4 的图形.【知识网络】【要点梳理】要点一、立体图形与平面图形1.几何图形的分类要点诠释:在给几何体分类时,不同的分类标准有不同的分类结果..立体图形与平面图形的相互转化2.(1)立体图形的平面展开图:把立体图形按一定的方式展开就会得到平面图形,把平面图形按一定的途径进行折叠就会得到相应的立体图形,通过展开与折叠能把立体图形和平面图形有机地结合起来.要点诠释:①对一些常见立体图形的展开图要非常熟悉,例如正方体的 11种展开图,三棱柱,圆柱等的展开图.②不同的几何体展成不同的平面图形,同一几何体沿不同的棱剪开,可得到不同的平面图形,那么排除障碍的方法就是:联系实物,展开想象,建立“模型”,整体构想,动手实践.(2)三视图:正视图--------------从正面看?几何体的三视图左视图--------------从侧边看??俯视图--------------从上面看要点诠释:①会判断简单物体(直棱柱、圆柱、圆锥、球)的三视图.②三视图的画法原则:高平齐宽相等长对正.③能根据三视图描述基本几何体或实物原型. )几何体的构成元素及关系:3(点动成线,线与线相交成点;线动成面,面与面相交. 、面构成的几何体是由点、线.成线;面动成体,体是由面组成要点二、直线、射线、线段直线,射线与线段的区别与联系1.2. 基本性质(1)直线的性质:两点确定一条直线. (2)线段的性质:两点之间,线段最短.要点诠释:①本知识点可用来解释很多生活中的现象. 如:要在墙上固定一个木条,只要两个钉子就可以了,因为如果把木条看作一条直线,那么两点可确定一条直线..②连接两点间的线段的长度,叫做两点的距离3.画一条线段等于已知线段(1)度量法:可用直尺先量出线段的长度,再画一条等于这个长度的线段.(2)用尺规作图法:用圆规在射线AC上截取AB=a,如下图:.线段的比较与运算4)线段的比较:(1.比较两条线段的长短,常用两种方法,一种是度量法;一种是叠合法 2)线段的和与差:( AD=AB-BD。
几何图形初步全章复习与巩固知识讲解.doc
《几何图形初步》全章复习与巩固(基础)知识讲解【学习目标】1.认识一些简单的几何体的平面展开图及三视图,初步培养空间观念和几何直观;2.掌握直线、射线、线段、角这些基本图形的概念、性质、表示方法和画法;3.初步学会应用图形与几何的知识解释生活中的现象及解决简单的实际问题;4.逐步掌握学过的几何图形的表示方法,能根据语句画出相应的图形,会用语句描述简单的图形.【知识网络】【要点梳理】要点一、多姿多彩的图形1.几何图形的分类立体图形:棱柱、棱锥、圆柱、圆锥、球等.几何图形平面图形:三角形、四边形、圆等 ..要点诠释:在给几何体分类时,不同的分类标准有不同的分类结果2.立体图形与平面图形的相互转化(1)立体图形的平面展开图:把立体图形按一定的方式展开就会得到平面图形,把平面图形按一定的途径进行折叠就会得到相应的立体图形,通过展开与折叠能把立体图形和平面图形有机地结合起来.要点诠释:①对一些常见立体图形的展开图要非常熟悉,例如正方体的11 种展开图,三棱柱,圆柱等的展开图;②不同的几何体展成不同的平面图形,同一几何体沿不同的棱剪开,可得到不同的平面图形,那么排除障碍的方法就是:联系实物,展开想象,建立“模型”,整体构想,动手实践. (2)从不同方向看:几何体的三视图主(正)视图---------从正面看左视图 -----从左(右)边看俯视图 ---------------从上面看要点诠释:①会判断简单物体(直棱柱、圆柱、圆锥、球)的三视图.②能根据三视图描述基本几何体或实物原型.(3)几何体的构成元素及关系几何体是由点、线、面构成的 . 点动成线,线与线相交成点;线动成面,面与面相交成线;面动成体,体是由面组成.要点二、直线、射线、线段1.直线,射线与线段的区别与联系2.基本性质(1)直线的性质 : 两点确定一条直线. (2) 线段的性质 : 两点之间,线段最短.要点诠释:①本知识点可用来解释很多生活中的现象. 如:要在墙上固定一个木条,只要两个钉子就可以了,因为如果把木条看作一条直线,那么两点可确定一条直线.②连接两点间的线段的长度,叫做两点间的距离.3.画一条线段等于已知线段(1)度量法:可用直尺先量出线段的长度 , 再画一条等于这个长度的线段 .(2)用尺规作图法:用圆规在射线 AC上截取 AB=a,如下图:4.线段的比较与运算(1)线段的比较:比较两条线段的长短,常用两种方法,一种是度量法;一种是叠合法. (2)线段的和与差:如下图,有AB+BC=AC,或 AC=a+b; AD=AB-BD。
浙教版初中数学七年级上册《图形的初步认识》全章复习与巩固(基础)知识讲解
《图形的初步认识》全章复习与巩固(基础)知识讲解【学习目标】1. 经历从现实世界抽象几何图形的过程,能说出常见的几何体和平面图形;2.掌握直线、射线、线段、角这些基本图形的概念、表示方法、性质、及画法;3.初步学会应用图形与几何的知识解释生活中的现象及解决简单的实际问题.【知识网络】【要点梳理】要点一、几何图形1.几何图形的分类要点诠释:在给几何体分类时,不同的分类标准有不同的分类结果.2.几何体的构成元素几何体是由点、线、面构成的.点动成线,线与线相交成点;线动成面,面与面相交成线;面动成体,体是由面组成.要点二、线段、射线、直线1.直线,射线与线段的区别与联系2. 基本事实(1)直线:两点确定一条直线. (2)线段:两点之间线段最短. 要点诠释:①本知识点可用来解释很多生活中的现象. 如:要在墙上固定一个木条,只要两个钉子就可以了,因为如果把木条看作一条直线,那么两点可确定一条直线. ②连接两点间的线段的长度,叫做两点的距离.3.画一条线段等于已知线段(1)度量法:可用直尺先量出线段的长度,再画一条等于这个长度的线段. (2)用尺规作图法:用圆规在射线AC 上截取AB =a,如下图:4.线段的比较与运算(1)线段的比较:①度量法;②叠合法;③估算法.(2)线段的和与差:如下图,有AB+BC =AC ,或AC =a+b ;AD =AB-BD.(3)线段的中点:把一条线段分成两条相等线段的点,叫做线段的中点.如下图,有:12AM MB AB ==.要点诠释:①线段中点的等价表述:如上图,点M 在线段上,且有12AM AB =,则点M 为线段AB 的中点.②除线段的中点(即二等分点)外,类似的还有线段的三等分点、四等分点等. 如下图,点M,N,P 均为线段AB 的四等分点,则有AB PB NP MN AM 41====. PNMBA要点三、角1.角的概念及其表示(1)角的定义:从一点引出的两条射线所形成的图形叫做角,这个点叫做角的顶点,这两条射线是角的边;此外,角也可以看作由一条射线绕着它的端点旋转而形成的图形.(2)角的表示方法:角通常有三种表示方法:一是用三个大写英文字母表示,二是用角的顶点的一个大写英文字母表示,三是用一个小写希腊字母或一个数字表示.例如下图:要点诠释:①角的两种定义是从不同角度对角进行的定义.②当一个角的顶点有多个角的时候,不能用顶点的一个大写字母来表示. 2.角的分类3.角的度量1周角=360°,1平角=180°,1°=60′,1′=60″. 要点诠释:①度、分、秒的换算是60进制,与时间中的小时分钟秒的换算相同. ②度分秒之间的转化方法:由度化为度分秒的形式(即从高级单位向低级单位转化)时用乘法逐级进行;由度分秒的形式化成度(即低级单位向高级单位转化)时用除法逐级进行. ③同种形式相加减:度加(减)度,分加(减)分,秒加(减)秒;超60进一,减一 成60.4.角的比较与运算(1)角的比较方法: ①度量法;②叠合法;③估算法.(2)角的平分线:从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线,例如:如下图,因为OC 是∠AOB 的平分线,所以∠1=∠2=12∠AOB ,或∠AOB=2∠1=2∠2. 类似地,还有角的三等分线等.∠β 锐角 直角 钝角 平角 周角 范围0<∠β<90°∠β=90°90°<∠β<180°∠β=180°∠β=360°5.余角、补角 (1)定义:若∠1+∠2=90°, 则∠1与∠2互为余角.其中∠1是∠2的余角,∠2是∠1的余角. 若∠1+∠2=180°,则∠1与∠2互为补角.其中∠1是∠2的补角,∠2是∠1的补角. (2)性质:同角(或等角)的余角相等;同角(或等角)的补角相等. 要点诠释:①余角(或补角)是两个角的关系,是成对出现的,单独一个角不能称其为余角(或补角). ②一个角的余角(或补角)可以不止一个,但是它们的度数是相同的. ③只考虑数量关系,与位置无关. ④“等角是相等的几个角”,而“同角是同一个角”. 6.方位角以正北、正南方向为基准,描述物体运动的方向,这种表示方向的角叫做方位角. 要点诠释: (1)方位角还可以看成是将正北或正南的射线旋转一定角度而形成的.所以在应用中一要确定其始边是正北还是正南.二要确定其旋转方向是向东还是向西,三要确定旋转角度的大小. (2)北偏东45 °通常叫做东北方向,北偏西45 °通常叫做西北方向,南偏东45 °通常叫做东南方向,南偏西45 °通常叫做西南方向.(3)方位角在航行、测绘等实际生活中的应用十分广泛. 【典型例题】类型一、从生活中认识几何图形1. 观察图中的立体图形,分别写出它们的名称.【答案】从左向右依次是:球、六棱柱、圆锥、正方体、三棱柱、圆柱、四棱锥、长方体. 【解析】针对立体图形的特征,直接填写它们的名称即可.【总结升华】熟记常见立体图形的特征是解决此类问题的关键. 类型二、线段和角的概念或性质2.下列说法正确的是( )A.射线AB 与射线BA 表示同一条射线.B.连结两点的线段叫做两点之间的距离.C.平角是一条直线.D.若∠1+∠2=90°,∠1+∠3=90°,则∠2=∠3. 【答案】D【解析】选项A 中端点和延伸方向不同,所以是两条射线;选项B 中两点之间的距离是指线段的长度,是一个数值,而不是图形;C 中角和直线是两种不同的概念,不能混淆. 【总结升华】理解概念,掌握概念与概念的本质区别,并进行“比较”性分析和记忆. 举一反三:【变式】下列结论中,不正确的是().A.两点确定一条直线B.两点之间,直线最短C.等角的余角相等D.等角的补角相等【答案】B3.如图所示,要把水渠中的水引到水池C,在渠岸AB的什么地方开沟,才能使沟最短? 画出图来,并说明原因.【答案与解析】解:如图,过点C作CD⊥AB,垂足为D.所以在点D沿CD开沟,才能使沟最短,原因是从直线外一点到直线上所有各点的连线中,垂线段最短.【总结升华】“如何开沟、使沟最短”,实质上是如何过C点向AB引线段,使线段最短,这就是最熟悉的垂线的性质的应用.4. (广西钦州)钟表分针的运动可看作是一种旋转现象,一只标准时钟的分针匀速旋转,经过15分钟旋转了________度.【思路点拨】画出图形,利用钟表表盘的特征解答.【答案】90【解析】根据钟表的特征;整个钟面是360°,分针每5分钟旋转30°,所以经过15分钟旋转了90°.【总结升华】在钟表问题中,常利用时针与分针转动的度数关系:时钟上的分针匀速旋转一分钟时的度数为6°,时针一分钟转过的度数为0.5°;两个相邻数字间的夹角为30°,每个小格夹角为6°,并且利用起点时间时针和分针的位置关系建立角的图形.举一反三:【变式】100°-60°52′10″=【答案】39°7′50″类型三、利用数学思想方法解决有关线段或角的计算1.方程的思想方法5. 如图所示,在射线OF上,顺次取A、B、C、D四点,使AB:BC:CD=2:3:4,又M、N分别是AB、CD的中点,已知AD=90cm,求MN的长.【思路点拨】有关比例问题,可设每一份为x,列方程求解,再利用中点定义,找出线段的【答案与解析】解:设线段AB,BC,CD的长分别是2x cm,3x cm,4x cm,∵AB+BC+CD=AD=90 cm,∴2x+3x+4x=90,x=10,∴AB=20 cm,BC=30 cm,CD=40 cm,∴MN=MB+BC+CN=12AB+BC+12CD=10+30+20=60(cm).【总结升华】当已知某线段被分成的几条线段的长度比时,可根据比设未知数x,用x的式子表示相关的线段的长度,列方程求出x的值,进而求出线段的长.举一反三:【变式】如图所示,已知∠AOC=∠BOD=100°,且∠AOB:∠AOD=2:7,求∠BOC和∠COD的度数.【答案】解:设∠AOB的度数为2x,则∠AOD的度数为7x.由∠AOD=∠AOB+∠BOD及∠BOD=100°,可得7x=2x+100°.解得x=20°,所以∠AOB=2x=40°.所以∠BOC=∠AOC-∠AOB=100°-40°=60°,∠COD=∠BOD -∠BOC=100°-60°=40°.2.分类的思想方法6.以∠AOB的顶点O为端点的射线OC,使∠AOC:∠BOC=5:4.(1)若∠AOB=18°,求∠AOC与∠BOC的度数;(2)若∠AOB=m,求∠AOC与∠BOC的度数.【答案与解析】解:(1)分两种情况:①OC在∠AOB的外部,可设∠AOC=5x,则∠BOC=4x得∠AOB=x,即x=18°所以∠AOC=90°,∠BOC=72°②OC在∠AOB的内部,可设∠AOC=5x,则∠BOC=4x∠AOB=∠AOC+∠BOC=9x所以9x=18°,则x=2°所以∠AOC=10°,∠BOC=8°(2)仿照(1),可得:若∠AOB=m,则∠AOC=59m,∠BOC=49m,或∠AOC=5m,∠BOC=4m.【总结升华】本题中的已知条件没有明确地说明OC在∠AOB的内部或外部,所以两个问题都必须分类讨论.【变式1】已知线段AB=8cm,在直线AB上画线段BC=3cm,求线段AC的长.【答案】解:分两种情况:(1)如图(1),AC=AB-BC=8-3=5(cm);(2)如图(2),AC=AB+BC=8+3=11(cm).所以线段AC的长为5cm或11cm.【变式2】下列判断正确的个数有( ).①已知A、B、C三点,过其中两点画直线一共可画三条.②过已知任意三点的直线有1条.③三条直线两两相交,有三个交点.A.0个B.1个C.2个D.3个【答案】A3.类比的思想方法【:图形认识初步章节复习399079类比思想例5】7.(1)如图,线段AD上有两点B、C,图中共有______条线段.(2)如图,在∠AOD的内部有两条射线OB、OC,则图中共有个角.【答案】(1)6;(2)6.【解析】(1)以A为端点的线段有3条,同样以B,C,D为一个端点的线段也各有3条,又因为所有线段均重复了一次,所以共有线段条数:3462⨯=(条).(2)以射线OA为一边的角有3个,同样以OB,OC,OD为一边的角也各有3个,又因为所有角均重复一次,所以共有角的个数:3462⨯=(个).【总结升华】用同样的方法解决了不同的问题,用已知的知识类比地学习未知的内容.。
人教版七年级数学第四章《几何图形初步》知识点汇总
人教版七年级数学第四章《几何图形初步》知识点汇总第四章《几何图形初步》知识点汇总01、几何图形①几何图形的定义:我们把实物中抽象出来的各种图形叫做几何图形。
②几何图形分为图形和图形。
③平面图形:图形所表示的各个部分都在内的图形,如直线、三角形等。
④立体图形:图形所表示的各个部分同一平面内的图形,如圆柱体。
02、常见的立体图形①柱体:A棱柱:B 圆柱②椎体:A棱锥B 圆锥球体等03、立体图形的三视图:从不同方向观察几何体,从正面、上面、左面三个不同方向看一个物体,然后描出三张所看到的图(分别叫做______、______、_______),这样就可以把立体图形转化为平面图形。
①会观察小正方体堆积图形画出三视图②会根据三视图知道堆积的小正方体的个数04、立体图形的展开图①圆柱的平面展开图是。
②圆锥的平面展开图是。
③n棱柱的侧面展开图是n个形,n棱柱有个底面,都是,n 棱柱的平面展开图是。
④n 棱锥的侧面展开图是 n个形,n棱锥有个底面,是,n棱锥的平面展开图是。
⑤正方体的展开图共分四类:①掌握在正方体展开图中找相对面的方法②会根据展开图中的图案判断是哪个图形的展开图05、点、线、面、体几何图形的组成:由___、___、___组成。
_____是构成图形的基本元素点动成_____、____动成____、____动成____。
06、直线:①点与直线的位置关系:第一种关系:点在直线____,或者说直线______点;第二种关系:点在直线____,或者说直线_________点。
②直线公理:经过两点有且只有一条直线(简称:______________);07、直线与直线的位置关系①同一平面内,两条直线的位置关系分为:_____与_____②当两条不同的直线________时,我们就称这两条直线相交,这个_______叫做它们的_____。
08、射线:①表示方法:端点字母必须写在前②判断两条射线是同一条射线的方法:_________________09、线段①基本性质:___________________②两点之间的距离__________________③线段的中点10、比较线段大小的方法:_______法和______法11会作图:作一条线段等于已知线段知道延长(反向延长)射线和线段的作图语言12、角:①由一点引出两条射线形成的图形叫做角。
七年级上册数学《几何图形初步》知识点整理
七年级,上册,数学,《,几何图形初步,》,几何图形初步一、本节学习指导本节知识点比较简单,都是基础,当看书应该就能理解。
二、知识要点 1、几何图形从实物中抽象出来的各种图形,包括立体图形和平面图形。
立体图形:有些几何图形的各个部分不都在同一平面内,它们是立体图形。
比如:正方体、长方体、圆柱等平面图形:有些几何图形的各个部分都在同一平面内,它们是平面图形。
比如:三角形、长方形、圆等 2、点、线、面、体(1)几何图形的组成点:线和线相交的地方是点,它是几何图形中最基本的图形。
线:面和面相交的地方是线,分为直线和曲线。
面:包围着体的是面,分为平面和曲面。
体:几何体也简称体。
(2)点动成线,线动成面,面动成体。
3、生活中的立体图形 4、棱柱及其有关概念:棱:在棱柱中,任何相邻两个面的交线,都叫做棱。
侧棱:相邻两个侧面的交线叫做侧棱。
n棱柱有两个底面,n个侧面,共(n+2)个面;3n条棱,n条侧棱;2n个顶点。
棱柱的所有侧棱长都相等,棱柱的上下两个底面是相同的多边形,直棱柱的侧面是长方形。
棱柱的侧面有可能是长方形,也有可能是平行四边形。
5、正方体的平面展开图:11种 6、截一个正方体:用一个平面去截一个正方体,截出的面可能是三角形,四边形,五边形,六边形。
7、三视图,如: 1、 2、物体的三视图指主视图、俯视图、左视图。
主视图:从正面看到的图,叫做主视图。
左视图:从左面看到的图,叫做左视图。
俯视图:从上面看到的图,叫做俯视图。
三、经验之谈本节知识比较重要的是我们要对常见的立体图形有个概念性的认识,很多图形在小学就学习过,我们要巩固其相关求法。
其次画立体图形的三视图的时候要小心,多在脑子里形成空间想象。
54《立体几何初步》全章复习与巩固(基础)-知识讲解_《立体几何初步》全章复习与巩固 -基础
《立体几何初步》全章复习与巩固编稿:丁会敏审稿:王静伟【学习目标】1.了解柱,锥,台,球及简单组合体的结构特征.2.能画出简单空间图形的三视图,由三视图能够还原成空间立体图形,并会用斜二测法画出它们的直观图.3.通过观察用平行投影与中心投影这两种方法画出的视图与直观图,了解空间图形的不同表示形式.4.理解柱,锥,台,球的表面积及体积公式.5.理解平面的基本性质及确定平面的条件.6.掌握空间直线与直线,直线与平面,平面与平面平行的判定及性质.7.掌握空间直线与平面,平面与平面垂直的判定及性质.【知识网络】【要点梳理】要点一:空间几何体的结构与特征本章出现的几何体有:①棱柱与圆柱统称为柱体;②棱锥与圆锥统称为锥体;③棱台与圆台统称为台体;④球体.柱体常以直三棱柱、正三棱柱、正四棱柱、正六棱柱、圆柱等为载体,锥体一般以正三棱锥、正四棱锥、正六棱锥、圆锥等为载体,计算高、斜高、边心距、底面半径、侧面积和体积等.在研究正棱锥和圆锥、正棱台和圆台时要充分利用其中的直角三角形:高线,边心距,斜高组成的直角三角形;高线,侧棱(母线),外接圆半径(底面半径)组成的直角三角形.空间几何体的三视图:主视图:它能反映物体的高度和长度;左视图:它能反映物体的高度和宽度;俯视图:它能反映物体的长度和宽度.先会读懂三视图,并还原为直观图,再研究其性质和进行计算.侧面展开图问题是经常出现的一个问题.平面图形的翻折与空间图形的展开问题,要对照翻折(或展开)前后两个图形,分清哪些元素的位置(或数量)关系改变了,哪些没有改变,哪些元素是同一个元素.与几何体的侧面积和体积有关的计算问题,基本概念和公式要熟练,计算要准确,重视方程的思想和割补法、等积转换法的运用,等积转换可使体积计算变得简单化.要点二:平面基本性质刻画平面的公理(或基本性质)是立体几何公理体系的基石,是研究空间图形问题、进行逻辑推理的基础.公理1:如果一条直线上的两点在一个平面内,那么这条直线上的所有点都在这个平面内.作用:是判定直线是否在平面内的依据.公理2:经过不在同一条直线上的三点,有且只有一个平面.作用:提供确定平面最基本的依据.公理3:如果不重合的两个平面有一个公共点,那么它们有且只有一条过这个点的公共直线.作用:是判定两个平面交线位置的依据.公理4:平行于同一条直线的两条直线互相平行.作用:是判定空间直线之间平行的依据.要点三:空间的平行与垂直关系理解和熟练应用空间中线面平行、垂直的有关性质与判定定理,是解决有关计算和证明的金钥匙.归纳出以下判定定理:(1)空间中的平行关系如果不在一个平面内的一条直线和平面内的一条直线平行,那么这条直线和这个平面平行.如果一个平面内有两条相交直线平行于另一个平面,那么这两个平面平行.如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线就和两平面的交线平行.如果两个平行平面同时与第三个平面相交,那么它们的交线平行.如果两条直线垂直于同一个平面,那么这两条直线平行.(2)空间中的垂直关系如果一条直线与平面内的两条相交直线垂直,则这条直线与这个平面垂直.如果一个平面过另一个平面的一条垂线,则两个平面互相垂直.如果两个平面互相垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面.解决空间问题的重要思想方法:等价转化——化空间问题为平面问题.空间平行、垂直关系证明的基本思想方法——转化与联系,如图所示.【典型例题】类型一:空间几何体的三视图例1.某几何体的三视图如图1所示,它的体积为()A.12πB.45πC.57πD.81π【答案】C【解析】该几何体下部分是半径为3,高为5的圆柱,体积为23545V ππ=⨯⨯=,上部分是半径为3,高为4的圆锥,体积为2134123V ππ=⨯⨯⨯=,所以体积为57π.【总结升华】根据三视图判断空间几何体的形状,进而求几何体的表(侧/底)面积或体积,是高考必考内容,处理的关键是准确判断空间几何体的形状,一般规律是这样的:如果三视图均为三角形,则该几何体必为三棱锥;如果三视图中有两个三角形和一个多边形,则该几何体为N 棱锥(N 值由另外一个视图的边数确定);如果三视图中有两个为矩形和一个多边形,则该几何体为N 棱柱(N 值由另外一个视图的边数确定);如果三视图中有两个为梯形和一个多边形,则该几何体为N 棱柱(N 值由另外一个视图的边数确定);如果三视图中有两个三角形和一个圆,则几何体为圆锥.如果三视图中有两个矩形和一个圆,则几何体为圆柱.如果三视图中有两个梯形和一个圆,则几何体为圆台.举一反三:【变式1】某几何体的三视图如图所示,该几何体的表面积是_____.【答案】92【解析】由三视图可知,原几何体是一个底面是直角梯形,高为4的直四棱柱,其底面积为(25)42282+⨯=,侧面积为(4255)464+++⨯=,故表面积为92.例2.如下的三个图中,上面的是一个长方体截去一个角所得多面体的直观图,它的正视图和侧视图在下面画出(单位:cm ).(1)在正视图下面,按照画三视图的要求画出该多面体的俯视图;(2)按照给出的尺寸,求该多面体的体积;(3)在所给直观图中连结'BC ,证明:'BC ∥面EFG.正视图【思路点拨】(1)按照三视图的要求直接在正视图下面,画出该多面体的俯视图;(2)按照给出的尺寸,利用转化思想V=V 长方体-V 正三棱锥,求该多面体的体积;(3)在长方体ABCD-A′B′C′D′中,连接AD′,在所给直观图中连接BC′,证明EG∥BC′,即可证明BC′∥面EFG.【解析】(1)如图4642224622(俯视图)(正视图)(侧视图)(2)所求多面体体积V V V =-长方体正三棱锥1144622232⎛⎫=⨯⨯-⨯⨯⨯⨯ ⎪⎝⎭2284(cm )3=.(3)证明:在长方体ABCD A B C D ''''-中,连结AD ',则AD BC ''∥.因为E G ,分别为AA ',A D ''中点,所以AD EG '∥,从而EG BC '∥.又BC '⊄平面EFG ,所以BC '∥面EFG .【总结升华】长方体的有关知识、体积计算及三视图的相关知识,对三视图的相关知识掌握不到位,求不出有关数据.三视图是新教材中的新内容,故应该是新高考的热点之一,要予以足够的重视.类型二:几何体的表面积和体积例3.一个几何体的三视图如图所示,该几何体的表面积为()ABC DE FGA 'B 'C 'D 'A .280B .292C .360D .372【答案】C 【解析】该几何体由两个长方体组合而成,其表面积等于下面长方体的全面积加上面长方体的侧面积S =2×(10×8+10×2+8×2)+2×(6×8+8×2)=360.【总结升华】把三视图转化为直观图是解决问题的关键.又根据三视图很容易知道是两个长方体的组合体,画出直观图,得出各条棱的长度.把几何体的表面积转化为下面长方体的全面积加上面长方体的侧面积.举一反三:【变式1】某三棱锥的三视图如图所示,该三棱锥的表面积是()A .285+B .305+C .565+D .60125+【答案】B【解析】从所给的三视图可以得到该几何体为三棱锥,本题所求表面积为三棱锥四个面的面积之和.利用垂直关系和三角形面积公式,可得:10,10,10,5S S S S ====后右左底,因此该几何体表面积305S =+,故选B.例4.设三棱柱的侧棱垂直于底面,所有棱长都为a ,顶点都在一个球面上,则该球的表面积为()A .2aπB .273a πC .2113a πD .25aπ【答案】B【解析】设三棱柱底面所在圆的半径为r ,球的半径为R ,易知233323r a =⨯=,所以球的半径R 满足:22223173212R a a a ⎛⎫⎛⎫=+= ⎪ ⎪ ⎪⎝⎭⎝⎭,所以22743S R a ππ==球.【总结升华】这是一个球内接三棱柱,球心是三棱柱两底中心连线的中点,这是本题的关键之处.举一反三:【变式1】如图,在长方体1111ABCD A BC D -中,3cm AB AD ==,12cm AA=,则四棱锥11A BB D D -的体积为cm 3.【答案】6.【解析】∵长方体底面ABCD 是正方形,∴△ABD 中BD cm,BD cm(它也是11A BB D D -中11BB D D 上的高).∴四棱锥11A BB D D -的体积为123⨯⨯.类型三:直线、平面的平行与垂直例5.如图所示,直三棱柱ABC —A 1B 1C 1中,B 1C 1=A 1C 1,AC 1⊥A 1B ,M 、N 分别是A 1B 1、AB 的中点.(1)求证:C 1M⊥平面A 1ABB 1;(2)求证:A 1B⊥AM;(3)求证:平面AMC 1∥平面NB 1C;(1)【证明】方法一由直棱柱性质可得AA 1⊥平面A 1B 1C 1,又∵C 1M ⊂平面A 1B 1C 1,∴AA 1⊥MC 1.又∵C 1A 1=C 1B 1,M 为A 1B 1中点,∴C 1M⊥A 1B 1.又A 1B 1∩A 1A=A 1,∴C 1M⊥平面AA 1B 1B.方法二由直棱柱性质得:平面AA 1B 1B⊥平面A 1B 1C 1,交线为A 1B 1,又∵C 1A 1=C 1B 1,M 为A 1B 1的中点,∴C 1M⊥A 1B 1于M.由面面垂直的性质定理可得C 1M⊥平面AA 1B 1B.(2)【证明】由(1)知C 1M⊥平面A 1ABB 1,∴C 1A 在侧面AA 1B 1B 上的射影为MA.∵AC1⊥A 1B,MC 1⊥A 1B,MC 1∩AC 1=C 1,∴A 1B⊥平面AMC 1,又AM ⊂平面AMC 1,∴A 1B⊥AM.(3)【证明】方法一由棱柱性质知四边形AA 1B 1B 是矩形,M、N 分别是A 1B 1、AB 的中点,∴AN //B 1M.∴四边形AMB 1N 是平行四边形.∴AM∥B 1N.连接MN,在矩形AA 1B 1B 中有A 1B 1//AB.∴MB 1//BN,∴四边形BB 1MN 是平行四边形.∴BB 1MN.又由BB 1//CC 1,知MN //CC 1.∴四边形MNCC 1是平行四边形.∴C 1M //CN.又C 1M∩AM=M,CN∩NB 1=N,∴平面AMC 1∥平面NB 1C.方法二由(1)知C 1M⊥平面AA 1B 1B,A 1B ⊂平面AA 1B 1B,∴C 1M⊥A 1B.又∵A 1B⊥AC 1,而AC 1∩C 1M=C 1,∴A 1B⊥平面AMC 1.同理可证,A 1B⊥平面B 1NC.∴平面AMC 1∥平面B 1NC.【总结升华】证明线面之间的垂直关系,要注意在各个阶段以某一直线为主线进行推理,以使推理过程清晰、明朗.举一反三:【变式1】如图所示,PA ^平面ABC ,点C 在以AB 为直径的⊙O 上,30CBA Ð=°,2PA AB ==,点E 为线段PB 的中点,点M 在 AB 上,且OM ∥AC .(Ⅰ)求证:平面MOE ∥平面PAC ;(Ⅱ)求证:平面P AC ^平面PCB ;【解析】(Ⅰ)证明:因为点E 为线段PB 的中点,点O 为线段AB 的中点,所以OE ∥PA .因为PA Ì平面PAC ,OE Ë平面PAC ,所以OE ∥平面PAC .因为OM ∥AC ,因为AC Ì平面PAC ,OM Ë平面PAC ,所以OM ∥平面P AC .因为OE Ì平面MOE ,OM Ì平面MOE ,OE OM O = ,所以平面MOE ∥平面PAC .(Ⅱ)证明:因为点C 在以AB 为直径的⊙O 上,所以90ACB Ð=°,即BC AC ⊥.因为PA ^平面ABC ,BC Ì平面ABC ,所以PA BC ⊥.因为AC Ì平面PAC ,PA Ì平面PAC ,PA AC A = ,所以BC ^平面PAC .因为BC Ì平面PBC ,所以平面PAC ^平面PCB .【总结升华】(1)当两个平面垂直时,常作的辅助线是在其中一个面内作交线的垂线.把面面垂直转化为线面垂直,进而可以证明线段线线垂直,构造二面角的平面角或得到点到面的距离相等.(2)已知面面垂直时,通过作辅助线可转化为线面垂直,从而有更多的线线垂直的条件可用,必要时可以通过平面几何的知识证明垂直关系,通过证线面垂直来证线线垂直是空间中两直线垂直证明的最常用方法.例6.如图所示,在五棱锥P -ABCDE ,PA ⊥平面ABCDE ,AB ∥CD ,AC ∥ED ,AE ∥BC ,∠ABC=45°,AB =,BC =2AE =4,三角形PAB 是等腰三角形.(1)求证:平面PCD ⊥平面PAC ;(2)求直线PB 与平面PCD 所成角的大小;(3)求四棱锥P -ACDE 的体积.【解析】(1)证明:因为∠ABC =45°,AB =BC =4,所以在△ABC 中,由余弦定理得:AC 2=22424cos 458+-⨯=°,解得AC =.所以AB 2+AC 2=8+8=16=BC 2,所以AB ⊥AC .又PA ⊥平面ABCDE ,所以PA ⊥AB .又PA∩AC =A ,所以AB ⊥平面PAC .又AB ∥CD ,所以CD ⊥平面PAC .又因为CDC 平面PCD ,所以平面PCD ⊥平面PAC .(2)由(1)知平面PCD ⊥平面PAC ,所以在平面PAC 内,过点A 作AH ⊥PC 于H ,则AH ⊥平面PCD .又AB ∥CD ,AB ⊄平面PCD ,所以AB ∥平面PCD ,所以点A 到平面PCD 的距离等于点B 到平面PCD 的距离.过点B 作BO ⊥平面PCD 于点O ,连接PO ,则∠BPO 为所求角,且AH =BO ,又容易求得AH =2,所以sin ∠BPO =12,即∠BPO =30°,所以直线PB 与平面PCD 所成角的大小为30°.(3)由(1)知CD ⊥平面PAC ,所以CD ⊥AC .又AC ∥ED ,所以四边形ACDE 是直角梯形.又容易求得DE ,所以四边形ACDE 的面积为132⨯+⨯=,所以四棱锥P -AC -DE 的体积为133⨯=【总结升华】本题考查了空间几何体的线面与面面垂直、线面角的求解以及几何体的体积,考查了同学们的空间想象能力.举一反三:【变式1】如图,在四棱锥P-ABCD 中,平面PAD⊥平面ABCD,AB//DC,ΔPAD 是等边三角形,已知BD=2AD=8,(1)设M 是PC 上的一点,证明:平面MBD⊥平面PAD;(2)求四棱锥P-ABCD 的体积.【证明】(1)在ΔABD 中,因为所以222AD BD AB +=,所以AD BD ⊥.又因为面PAD ⊥面ABCD,面PAD∩面ABCD=AD,BD ⊂面ABCD 所以BD⊥面PAD.又BD ⊂面BDM,所以面MBD⊥面PAD.(2)过P 作PO⊥AD,∵面PAD⊥面ABCD,∴PO⊥面ABCD,即PO 为四棱锥P-ABCD 的高.又ΔPAD 是边长为4的等边三角形,∴PO=在底面四边形ABCD 中,AB//DC,AB=2DC,∴四边形ABCD 为梯形.在Rt ADB ∆中,斜边AB855=,此即为梯形的高.∴S 四边形ABCD =2545852425+⨯=,∴1243P ABCD V -=⨯⨯=类型四:折叠问题例7.在平面四边形ABCD 中,已知AB =BC =CD ,∠ABC =90°,∠BCD =135°,沿AC 将四边形折成直二面角B -C -D .求证:平面ABC ⊥平面BCD .证明:如下图,其中图(1)是平面四边形,图(2)是折后的立体图形.∵平面ABC ⊥平面ACD ,交线为AC ,又AB =BC ,∠ABC =90°,∠BCD =135°(在图(1)中),∴∠ACD =90°,CD ⊥AC .∴CD ABC CD BCD ⊥⎫⇒⎬⎭平面平面Þ平面ABC ⊥平面BCD .举一反三:【变式1】如图1,在边长为3的正三角形ABC 中,E ,F ,P 分别为AB ,AC ,BC 上的点,且满足1AE FC CP ===.将△AEF 沿EF 折起到△1A EF 的位置,使平面1A EF ⊥平面EFB ,连结1A B ,1A P .(如图2)(Ⅰ)若Q 为1A B 中点,求证:PQ ∥平面1A EF ;PP(Ⅱ)求证:1A E ⊥EP .图1图2【解析】证明:(Ⅰ)取1A E 中点M ,连结,QM MF .在△1A BE 中,,Q M 分别为11,A B A E 的中点,所以QM ∥BE ,且12QM BE =.因为12CF CP FA PB ==,所以PF ∥BE ,且12PF BE =,所以QM ∥PF ,且QM PF =.所以四边形PQMF 为平行四边形.所以PQ ∥FM .又因为FM ⊂平面1A EF ,且PQ ⊄平面1A EF ,所以PQ ∥平面1A EF .(Ⅱ)取BE 中点D ,连结DF .因为1AE CF ==,1DE =,所以2AF AD ==,而60A ∠=,即△ADF 是正三角形.又因为1AE ED ==,所以EF AD ⊥.所以在图2中有1A E EF ⊥.因为平面1A EF ⊥平面EFB ,平面1A EF 平面EFB EF =,所以1A E⊥平面BEF.又EP 平面BEF,所以1A E⊥EP.。
word完整版几何图形初步全章复习与巩固提高知识讲解
《几何图形初步》全章复习与巩固(提高)知识讲解【学习目标】 1.认识一些简单的几何体的平面展开图及三视图,初步培养空间观念和几何直观; 2.掌握直线、射线、线段、角这些基本图形的概念、性质、表示方法和画法;.初步学会应用图形与几何的知识解释生活中的现象及解决简单的实际问题;3.逐步掌握学过的几何图形的表示方法,能根据语句画出相应的图形,会用语句描述简单4 的图形.【知识网络】【要点梳理】要点一、多姿多彩的图形1.几何图形的分类立体图形:棱柱、棱锥、圆柱、圆锥、球等. ?几何图形??平面图形:三角形、四边形、圆等.要点诠释:在给几何体分类时,不同的分类标准有不同的分类结果.2.立体图形与平面图形的相互转化(1)立体图形的平面展开图:把立体图形按一定的方式展开就会得到平面图形,把平面图形按一定的途径进行折叠就会得到相应的立体图形,通过展开与折叠能把立体图形和平面图形有机地结合起来.要点诠释:①对一些常见立体图形的展开图要非常熟悉,例如正方体的 11种展开图,三棱柱,圆柱等的展开图;②不同的几何体展成不同的平面图形,同一几何体沿不同的棱剪开,可得到不同的平面图形,那么排除障碍的方法就是:联系实物,展开想象,建立“模型”,整体构想,动手实践.(2)从不同方向看:主(正)视图----------从正面看?几何体的三视图左视图----------------从左边看??俯视图----------------从上面看要点诠释:①会判断简单物体(直棱柱、圆柱、圆锥、球)的三视图.②能根据三视图描述基本几何体或实物原型. )几何体的构成元素及关系(3点动成线,线与线相交成点;线动成面,面与面相交、面构成的.几何体是由点、线.成线;面动成体,体是由面组成要点二、直线、射线、线段直线,射线与线段的区别与联系1.2. 基本性质(1)直线的性质:两点确定一条直线. (2)线段的性质:两点之间,线段最短.要点诠释:①本知识点可用来解释很多生活中的现象. 如:要在墙上固定一个木条,只要两个钉子就可以了,因为如果把木条看作一条直线,那么两点可确定一条直线。
《几何图形初步》全章复习与巩固(提高)知识讲解
《几何图形初步》全章复习与巩固(提高)知识讲解【知识网络】【要点梳理】要点一、多姿多彩的图形1.几何图形的分类要点诠释:在给几何体分类时,不同的分类标准有不同的分类结果.2.立体图形与平面图形的相互转化(1)立体图形的平面展开图:把立体图形按一定的方式展开就会得到平面图形,把平面图形按一定的途径进行折叠就会得到相应的立体图形,通过展开与折叠能把立体图形和平面图形有机地结合起来.要点诠释:①对一些常见立体图形的展开图要非常熟悉,例如正方体的11种展开图,三棱柱,圆柱等的展开图;②不同的几何体展成不同的平面图形,同一几何体沿不同的棱剪开,可得到不同的平面图形,那么排除障碍的方法就是:联系实物,展开想象,建立“模型”,整体构想,动手实践.立体图形:棱柱、棱锥、圆柱、圆锥、球等.⎧⎨⎩平面图形:三角形、四边形、圆等.几何图形⎧⎨⎩(2)从不同方向看:主(正)视图----------从正面看几何体的三视图左视图----------------从左边看俯视图----------------从上面看要点诠释:①会判断简单物体(直棱柱、圆柱、圆锥、球)的三视图.②能根据三视图描述基本几何体或实物原型.(3)几何体的构成元素及关系几何体是由点、线、面构成的.点动成线,线与线相交成点;线动成面,面与面相交成线;面动成体,体是由面组成.要点二、直线、射线、线段1.直线,射线与线段的区别与联系2.基本性质(1)直线的性质:两点确定一条直线.(2)线段的性质:两点之间,线段最短.要点诠释:①本知识点可用来解释很多生活中的现象.如:要在墙上固定一个木条,只要两个钉子就可以了,因为如果把木条看作一条直线,那么两点可确定一条直线。
②连接两点间的线段的长度,叫做两点间的距离.3.画一条线段等于已知线段(1)度量法:可用直尺先量出线段的长度,再画一条等于这个长度的线段.(2)用尺规作图法:用圆规在射线AC 上截取AB=a,如下图:4.线段的比较与运算(1)线段的比较:比较两条线段的长短,常用两种方法,一种是度量法;一种是叠合法.(2)线段的和与差:如下图,有AB+BC=AC,或AC=a+b;AD=AB-BD。
七年级数学上册 第四章 《几何图形初步》知识讲解
《几何图形初步》全章知识讲解【学习目标】1.认识一些简单的几何体的平面展开图及三视图,初步培养空间观念和几何直观; 2.掌握直线、射线、线段、角这些基本图形的概念、性质、表示方法和画法; 3.初步学会应用图形与几何的知识解释生活中的现象及解决简单的实际问题;4.逐步掌握学过的几何图形的表示方法,能根据语句画出相应的图形,会用语句描述简单的图形. 【知识网络】【要点梳理】要点一、多姿多彩的图形 1. 几何图形的分类要点诠释:在给几何体分类时,不同的分类标准有不同的分类结果. 2.立体图形与平面图形的相互转化 (1)立体图形的平面展开图:把立体图形按一定的方式展开就会得到平面图形,把平面图形按一定的途径进行折叠就会立体图形:棱柱、棱锥、圆柱、圆锥、球等. ⎧⎨⎩平面图形:三角形、四边形、圆等.几何图形⎧⎨⎩得到相应的立体图形,通过展开与折叠能把立体图形和平面图形有机地结合起来. 要点诠释:①对一些常见立体图形的展开图要非常熟悉,例如正方体的 11种展开图,三棱柱,圆柱等的展开图;②不同的几何体展成不同的平面图形,同一几何体沿不同的棱剪开,可得到不同的平面图形,那么排除障碍的方法就是:联系实物,展开想象,建立“模型”,整体构想,动手实践. (2)从不同方向看:主(正)视图---------从正面看 几何体的三视图 (左、右)视图-----从左(右)边看 俯视图---------------从上面看要点诠释:①会判断简单物体(直棱柱、圆柱、圆锥、球)的三视图. ②能根据三视图描述基本几何体或实物原型. (3)几何体的构成元素及关系几何体是由点、线 、面构成的.点动成线,线与线相交成点;线动成面,面与面相交成线;面动成体,体是由面组成.要点二、直线、射线、线段1. 直线,射线与线段的区别与联系2. 基本性质(1)直线的性质:两点确定一条直线. (2)线段的性质:两点之间,线段最短. 要点诠释:①本知识点可用来解释很多生活中的现象. 如:要在墙上固定一个木条,只要两个钉子就可以了,因为如果把木条看作一条直线,那么两点可确定一条直线. ②连接两点间的线段的长度,叫做两点的距离.3.画一条线段等于已知线段(1)度量法:可用直尺先量出线段的长度,再画一条等于这个长度的线段. (2)用尺规作图法:用圆规在射线AC 上截取AB=a,如下图:4.线段的比较与运算 (1)线段的比较:比较两条线段的长短,常用两种方法,一种是度量法;一种是叠合法.(2)线段的和与差:如下图,有AB+BC=AC ,或AC=a+b ;AD=AB-BD 。
《几何图形初步》全章复习与巩固(基础)知识讲解及练习巩固
⎧⎨⎩①对一些常见立体图形的展开图要非常熟悉,例如正方体的 11种展开图,三棱柱,圆柱等的展开图;②不同的几何体展成不同的平面图形,同一几何体沿不同的棱剪开,可得到不同的平面图形,那么排除障碍的方法就是:联系实物,展开想象,建立“模型”,整体构想,动手实践.(2)从不同方向看:主(正)视图---------从正面看 几何体的三视图 左视图-----从左(右)边看俯视图---------------从上面看要点诠释:①会判断简单物体(直棱柱、圆柱、圆锥、球)的三视图.②能根据三视图描述基本几何体或实物原型.(3)几何体的构成元素及关系几何体是由点、线 、面构成的.点动成线,线与线相交成点;线动成面,面与面相交成线;面动成体,体是由面组成.要点二、直线、射线、线段1. 直线,射线与线段的区别与联系2. 基本性质(1)直线的性质:两点确定一条直线. (2)线段的性质:两点之间,线段最短.要点诠释:①本知识点可用来解释很多生活中的现象. 如:要在墙上固定一个木条,只要两个钉子就可以了,因为如果把木条看作一条直线,那么两点可确定一条直线.②连接两点间的线段的长度,叫做两点间的距离.3.画一条线段等于已知线段(1)度量法:可用直尺先量出线段的长度,再画一条等于这个长度的线段.(2)用尺规作图法:用圆规在射线AC 上截取AB=a,如下图:4.线段的比较与运算(1)线段的比较:比较两条线段的长短,常用两种方法,一种是度量法;一种是叠合法.(2)线段的和与差:如下图,有AB+BC=AC ,或AC=a+b ;AD=AB-BD 。
(3)线段的中点:把一条线段分成两条相等线段的点,叫做线段的中点.如下图,有:12AMMB AB ==要点诠释:①线段中点的等价表述:如上图,点M 在线段上,且有12AM AB =,则点M 为线段AB 的中点. ②除线段的中点(即二等分点)外,类似的还有线段的三等分点、四等分点等.如下图,点M,N,P 均为线段AB 的四等分点.P NAB PB NP MN AM 41==== 要点三、角1.角的度量 (1)角的定义:有公共端点的两条射线组成的图形叫做角,这个公共端点是角的顶点,这两条射线是角的两条边;此外,角也可以看作由一条射线绕着它的端点旋转而形成的图形.(2)角的表示方法:角通常有三种表示方法:一是用三个大写英文字母表示,二是用角的顶点的一个大写英文字母表示,三是用一个小写希腊字母或一个数字表示.例如下图:C b a M B A要点诠释:①角的两种定义是从不同角度对角进行的定义;②当一个角的顶点有多个角的时候,不能用顶点的一个大写字母来表示.(3)角度制及角度的换算1周角=360°,1平角=180°,1°=60′,1′=60″,以度、分、秒为单位的角的度量制,叫做角度制.要点诠释:①度、分、秒的换算是60进制,与时间中的小时分钟秒的换算相同.②度分秒之间的转化方法:由度化为度分秒的形式(即从高级单位向低级单位转化)时用乘法逐级进行;由度分秒的形式化成度(即低级单位向高级单位转化)时用除法逐级进行. ③同种形式相加减:度加(减)度,分加(减)分,秒加(减)秒;超60进一,减一 成60.(4)角的分类(5)画一个角等于已知角(1)借助三角尺能画出15°的倍数的角,在0~180°之间共能画出11个角.(2)借助量角器能画出给定度数的角.(3)用尺规作图法.2.角的比较与运算(1)角的比较方法: ①度量法;②叠合法.(2)角的平分线:从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线,例如:如下图,因为OC 是∠AOB 的平分线,所以∠1=∠2=12∠AOB ,或∠AOB=2∠1=2∠2. 类似地,还有角的三等分线等.3.角的互余互补关系余角补角(1)若∠1+∠2=90°,则∠1与∠2互为余角.其中∠1是∠2的余角,∠2是∠1的余角.(2)若∠1+∠2=180°,则∠1与∠2互为补角.其中∠1是∠2的补角,∠2是∠1的补角. ∠β锐角 直角 钝角 平角 周角 范围 0<∠β<90° ∠β=90° 90°<∠β<180° ∠β=180° ∠β=360°(3)结论: 同角(或等角)的余角相等;同角(或等角)的补角相等.要点诠释:①余角(或补角)是两个角的关系,是成对出现的,单独一个角不能称其为余角(或补角).②一个角的余角(或补角)可以不止一个,但是它们的度数是相同的.③只考虑数量关系,与位置无关.④“等角是相等的几个角”,而“同角是同一个角” .4.方位角以正北、正南方向为基准,描述物体运动的方向,这种表示方向的角叫做方位角.要点诠释:(1)方位角还可以看成是将正北或正南的射线旋转一定角度而形成的.所以在应用中一要确定其始边是正北还是正南.二要确定其旋转方向是向东还是向西,三要确定旋转角度的大小.(2)北偏东45 °通常叫做东北方向,北偏西45 °通常叫做西北方向,南偏东45 °通常叫做东南方向,南偏西45 °通常叫做西南方向.(3)方位角在航行、测绘等实际生活中的应用十分广泛.【典型例题】类型一、概念或性质的理解1.下列说法正确的是( )A.射线AB与射线BA表示同一条射线.B.连结两点的线段叫做两点之间的距离.C.平角是一条直线.D.若∠1+∠2=90°,∠1+∠3=90°,则∠2=∠3. 【答案】D【解析】选项A中端点和延伸方向不同,所以是两条射线;选项B中两点之间的距离是指线段的长度,是一个数值,而不是图形;C中角和直线是两种不同的概念,不能混淆.【总结升华】理解概念,掌握概念与概念的本质区别,并进行“比较”性分析和记忆.举一反三:【变式】下列结论中,不正确的是().A.两点确定一条直线B.两点之间,直线最短C.等角的余角相等D.等角的补角相等【答案】B类型二、立体图形与平面图形的相互转化2.(2015•泰州)一个几何体的表面展开图如图所示,则这个几何体是()A.四棱锥B.四棱柱C.三棱锥D.三棱柱【答案】A.【总结升华】此题主要考查了几何体的展开图,熟记常见立体图形的平面展开图的特征是解决此类问题的关键.举一反三:【变式】(瞿州模拟)下面形状的四张纸板,按图所示的线经过折叠可以围成一个直三棱柱的是().【答案】C3. (浙江金华)如图所示几何体的主视图是()【答案】A【解析】从正面看球位于桌面右方,故选A.【总结升华】从正面看所得到的图形是主视图,先得到球体的主视图,再得到长方体的主视图,再根据球体在长方体的右边可得出答案.类型三、互余互补的有关计算4. 已知∠A=53°27′,则∠A的余角等于().A.37°B.36°33′C.63°D.143°【思路点拨】根据互为余角的定义求解.【答案】B【解析】∠A的余角为90°-53°27′=36°33′.【总结升华】本题考查角互余的概念:和为90度的两个角互为余角.举一反三:(2015•东莞模拟)一个角的余角比这个角的补角的一半小40°,则这个角为度.【变式】【答案】80.解:设这个角为x,则它的余角为(90°﹣x),补角为(180°﹣x),由题意得,(180°﹣x)﹣(90°﹣x)=40°,解得x=80°.类型四、方位角5.如图,射线OA的方向是:________;射线OB的方向是:_________;射线OC的方向是:________ .【思路点拨】OA表示的方向是北偏东,再加上其偏转的角度即可,同理OB、OC也是如此.【答案】北偏东15°;北偏西40°;南偏东45°.【解析】根据方位角的定义解答.【总结升华】熟知方位角的定义结合图形便可解答.类型五、钟表上的角6. (广西钦州)钟表分针的运动可看作是一种旋转现象,一只标准时钟的分针匀速旋转,经过15分钟旋转了________度.【答案】90【解析】根据钟表的特征;整个钟面是360°,分针每5分钟旋转30°,所以经过15分钟旋转了90°.【总结升华】在钟表问题中,常利用时针与分针转动的度数关系:时钟上的分针匀速旋转一分钟时的度数为6°,时针一分钟转过的度数为0.5°;两个相邻数字间的夹角为30°,每个小格夹角为6°,并且利用起点时间时针和分针的位置关系建立角的图形.类型六、利用数学思想方法解决有关线段或角的计算1.方程的思想方法7.如图所示,在射线OF上,顺次取A、B、C、D四点,使AB:BC:CD=2:3:4,又M、N分别是AB、CD的中点,已知AD=90cm,求MN的长.【思路点拨】有关比例问题,可设每一份为x,列方程求解,再利用中点定义,找出线段的和、差.【答案与解析】解:设线段AB,BC,CD的长分别是2x cm,3x cm,4x cm,∵AB+BC+CD=AD=90 cm,∴2x+3x+4x=90,x=10,∴AB=20 cm,BC=30 cm,CD=40 cm,∴MN=MB+BC+CN=12AB+BC+12CD=10+30+20=60(cm).【总结升华】当已知某线段被分成的几条线段的长度比时,可根据比设未知数x,用x的式子表示相关的线段的长度,列方程求出x的值,进而求出线段的长.举一反三:【变式】如图所示,已知∠AOC=∠BOD=100°,且∠AOB:∠AOD=2:7,求∠BOC和∠COD的度数.【答案】解:设∠AOB的度数为2x,则∠AOD的度数为7x.由∠AOD=∠AOB+∠BOD及∠BOD=100°,可得7x=2x+100°.解得x=20°,所以∠AOB=2x=40°.所以∠BOC=∠AOC-∠AOB=100°-40°=60°,∠COD=∠BOD-∠BOC=100°-60°=40°.2.分类的思想方法8.以∠AOB的顶点O为端点的射线OC,使∠AOC:∠BOC=5:4.(1)若∠AOB=18°,求∠AOC与∠BOC的度数;(2)若∠AOB=m,求∠AOC与∠BOC的度数.【答案与解析】解:(1)分两种情况:①OC在∠AOB的外部,可设∠AOC=5x,则∠BOC=4x得∠AOB=x,即x=18°所以∠AOC=90°,∠BOC=72°②OC在∠AOB的内部,可设∠AOC=5x,则∠BOC=4x∠AOB=∠AOC+∠BOC=9x所以9x=18°,则x=2°所以∠AOC=10°,∠BOC=8°(2)仿照(1),可得:若∠AOB=m,则∠AOC=59m,∠BOC=49m,或∠AOC=5m,∠BOC=4m.【总结升华】本题中的已知条件没有明确地说明OC在∠AOB的内部或外部,所以两个问题都必须分类讨论.举一反三:【变式1】已知线段AB=8cm,在直线AB上画线段BC=3cm,求线段AC的长.【答案】解:分两种情况:(1)如图(1),AC=AB-BC=8-3=5(cm);(2)如图(2),AC=AB+BC=8+3=11(cm).所以线段AC的长为5cm或11cm.【变式2】下列判断正确的个数有( )①已知A、B、C三点,过其中两点画直线一共可画三条②过已知任意三点的直线有1条③三条直线两两相交,有三个交点A.0个B.1个C.2个D.3个【答案】A3.类比的思想方法9.(1)如图,线段AD上有两点B、C,图中共有______条线段.(2)如图,在∠AOD的内部有两条射线OB、OC,则图中共有个角.【答案】(1)6;(2)6.【解析】(1)以A为端点的线段有3条,同样以B,C,D为一个端点的线段也各有3条,又因为所有线段均重复了一次,所以共有线段条数:3462⨯=(条).(2)以射线OA为一边的角有3个,同样以OB,OC,OD为一边的角也各有3个,又因为所有角均重复一次,所以共有角的个数:3462⨯=(个).【总结升华】用同样的方法解决了不同的问题,用已知的知识类比地学习未知的内容. 【巩固练习】一、选择题1.从左边看图1中的物体,得到的是图2中的().2.如图所示是正方体的一种平面展开图,各面都标有数,则标有数“-4”的面与其对面上的数之积是().A.4 B.12 C.-4 D.03.在下图中,是三棱锥的是().4.如图所示,点O在直线AB上,∠COB=∠DOE=90°,那么图中相等的角的对数是().A.3 B.4 C.5 D.75.如图所示的图中有射线().A.3条B.4条C.2条D.8条6.(2015•宝应县校级模拟)在地理课堂上,老师组织学生进行寻找北极星的探究活动时,李佳同学使用了如图所示的半圆仪,则下列四个角中,最可能和∠AOB互补的角为()A.B.C.D.7.十点一刻时,时针与分针所成的角是().A.112°30′B.127°30′C.127°50′D.142°30′8.在海面上有A和B两个小岛,若从A岛看B岛是北偏西42°,则从B岛看A岛应是().A.南偏东42°B.南偏东48°C.北偏西48°D.北偏西42°二、填空题9.把一条弯曲的公路改为直道,可以缩短路程,其理由是________.10.已知∠α=30°18′,∠β=30.18°,∠γ=30.3°,则相等的两角是________.11.用平面去截一个几何体,如果得出的横截面是圆形,那么被截的几何体是________(填一个答案即可).12.(2015秋•泾阳县期中)如图是一个正方体的展开图,和C面的对面是 面.13.若∠1+∠2=90°,∠1+∠3=90°,则∠2=∠3,其根据是________.14.若∠α是它的余角的2倍,∠β是∠α的2倍,那么把∠α和∠β拼在一起(有一条边重合)组成的角是________度.15.一副三角板如图摆放,若∠BAE=135 °17′,则∠CAD 的度数是 .16.如下图,点A 、B 、C 、D 代表四所村庄,要在AC 与BD 的交点M 处建一所“希望小学”,请你说明选择校址依据的数学道理 .三、解答题 17. (2015春•淄博校级期中)如图,已知点C 为AB 上一点,AC=12cm ,CB=AC ,D 、E 分别为AC 、AB 的中点,求DE 的长.18.如图所示,已知∠COB =2∠AOC ,OD 平分∠AOB ,且∠COD =19°,求∠AOB 的度数.19.在一张城市地图上,如图所示,有学校、医院、图书馆三地,图书馆被墨水染黑,具体位置看不清,但知道图书馆在学校的北偏东45°方向,在医院的南偏东60°方向,你能确定图书馆的位置吗?MB C DA20.如图所示,线段AB =4,点O 是线段AB 上一点,C 、D 分别是线段OA 、OB 的中点,小明据此很轻松地求得CD =2.在反思过程中突发奇想:若点O 运动到AB 的延长线上,原来的结论“CD =2”是否仍然成立?请帮小明画出图形并说明理由.【答案与解析】一、选择题1.【答案】B【解析】从左边看,圆台被遮住一部分,故选B .2.【答案】B【解析】由正方体的平面展开图可知,标有数-4的面的对面是标有数-3的面,故两个数之积为12.3.【答案】B【解析】A 选项是四棱锥,B 选项是三棱锥,C 、D 两项都是三棱柱,故选B .4.【答案】C【解析】因为∠COB =90°,所以∠BOD+∠COD =90°,即∠BOD =90°-∠COD .因为∠DOE =90°,所以∠EOC+∠COD =90°,即∠EOC =90°-∠COD ,所以∠BOD =∠EOC .同理∠AOE =∠COD .又因为∠AOC =∠COB =∠DOE =90°(∠AOC =∠COB ,∠AOC =∠DOE ,∠COB =∠DOE ),所以图中相等的角有5对,故选C .5.【答案】D6.【答案】D .【解析】根据图形可得∠AOB 大约为135°,∴与∠AOB 互补的角大约为45°,综合各选项D 符合.7.【答案】D【解析】一刻是15分钟,十点一刻,即10点15分时,时针与分针所成的角为:34304⎛⎫+⨯ ⎪⎝⎭°=142.5°=142°30′,故选D . 8.【答案】A【解析】方位角存在这样的规律:甲、乙两地之间的方位角,方向相反,角度相等.由此可知从B 岛看A 岛的方向为南偏东42°,故选A .二、填空题9. 【答案】两点之间,线段最短【解析】本题是应用线段的性质解释生活中的现象,由于这是两点之间连线长度的比较,符合“两点之间,线段最短”.10.【答案】∠α和∠γ【解析】30.3601810︒''=⨯=,于是∠α=∠γ.11.【答案】圆柱(圆锥、圆台、球体等)【解析】答案不唯一,例如用平面横截圆锥即可得到圆形.12.【答案】F.【解析】这是一个正方体的平面展开图,共有六个面,其中面“B”与面“D”相对,面“A”与面“E”相对,“C”与面“F”相对.13.【答案】同角的余角相等【解析】根据余角的性质解答问题.14.【答案】60度或180【解析】先求出∠α=60°,∠β=120°;再分∠α在∠β内部和外部两种情况来讨论.15.【答案】44°43′;【解析】∠BAD+∠CAE=180°,即∠BAE+∠CAD=180°,所以∠CAD=180°-135°17′=44°43′.16.【答案】两点之间,线段最短.三、解答题17.【解析】解:∵AC=12cm,CB=AC,∴CB=6cm,∴AB=AC+BC=12+6=18cm,∵E为AB的中点,∴AE=BE=9cm,∵D为AC的中点,∴DC=AD=6cm,所以DE=AE﹣AD=3cm.18.【解析】解:设∠AOC=x°,则∠COB=2x°.因为OD平分∠AOB,所以∠AOD=12∠AOB=12(∠AOC+∠BOC)=32x°.又因为∠DOC=∠AOD-∠AOC,所以3192x x=-.解得x=38,所以∠AOB=3x°=114°.19.【解析】解:如图所示.在医院A处,以正南方向为始边,逆时针转60°角,得角的终边射线AC.在学校B处,以正北方向为始边,顺时针旋转45°角,得角的终边射线BD.AC与BD的交点为点O,则点O就是图书馆的位置.20.【解析】解:原有的结论仍然成立,理由如下:当点O在AB的延长线上时,如图所示,CD=OC-OD=12(OA-OB)=12AB=142 2⨯=.。
《几何图形初步》知识点总汇
1⎧⎨⎩⎧⎨⎩《几何图形初步》知识点总汇复习重点 理解本章的知识结构、数学思想方法,掌握定理和公理.一、知识结构框图二、具体知识点梳理(一)几何图形(是多姿多彩的)立体图形:棱柱、棱锥、圆柱、圆锥、球等. 1、几何图形 平面图形:三角形、四边形、圆等.主(正)视图---------从正面看;2、几何体的三视图 侧(左、右)视图-----从左(右)边看;俯视图---------------从上面看.(1)会判断简单物体(直棱柱、圆柱、圆锥、球)的三视图.(2)能根据三视图描述基本几何体或实物原型.3、立体图形的平面展开图(1)同一个立体图形按不同的方式展开,得到的平面图形不一样的.(2)了解直棱柱、圆柱、圆锥的平面展开图,能根据展开图判断和制作立体模型.4、点、线、面、体(1)几何图形的组成点:线和线相交的地方是点,它是几何图形最基本的图形.线:面和面相交的地方是线,分为直线和曲线.面:包围着体的是面,分为平面和曲面.体:几何体也简称体.(2)点动成线,线动成面,面动成体.(二)直线、射线、线段1、基本概念经过两点有一条直线,并且只有一条直线. 简称:两点确定一条直线.3、画一条线段等于已知线段(1)度量法(2)用尺规作图法4、线段的大小比较方法(1)度量法(2)叠合法5、线段的中点(二等分点)、三等分点、四等分点等定义:把一条线段平均分成两条相等线段的点叫做线段的中点.图形:符号:若点M是线段AB的中点,则AM=BM=12AB,AB=2AM=2BM.6、线段的性质:两点的所有连线中,线段最短.简称:两点之间,线段最短.7、两点的距离:连接两点的线段长度叫做这两点的距离.8、点与直线的位置关系(1)点在直线上;(2)点在直线外.(三)角1、角:由公共端点的两条射线所组成的图形叫做角.2、角的表示法(四种):∠1 ;∠α;∠B;∠ABC.3、角的度量单位及换算4、角的分类:锐角、直角、钝角、平角、周角.5、角的比较方法(1)度量法(2)叠合法6、角的和、差、倍、分及其近似值7、画一个角等于已知角(1)借助三角尺能画出15°的倍数的角,在0~180°之间共能画出11个角.(2)借助量角器能画出给定度数的角.(3)用尺规作图法,可以作出任意给定的角.8、角的平线线定义:从一个角的顶点出发,把这个角分成相等的两个角的射线叫做角的平分线.图形:符号:9、互余、互补(1)若∠1+∠2=90°,则∠1与∠2互为余角.其中∠1是∠2的余角,∠2是∠1的余角.(2)若∠1+∠2=180°,则∠1与∠2互为补角.其中∠1是∠2的补角,∠2是∠1的补角.(3)余(补)角的性质:同(等)角的余角相等.同(等)角的补角相等.10、方向角(1)正方向;(2)北(南)偏东(西)方向;(3)东(西)北(南)方向.2。
几何图形初步基础知识详解
几何图形初步目录一、几何图形二、直线、射线、线段三、角四、《几何图形初步》全章复习与巩固一、几何图形基础知识讲解【学习目标】1.理解几何图形的概念,并能对具体图形进行识别或判断;2.掌握立体图形从不同方向看得到的平面图形及立体图形的平面展开图,在平面图形和立体图形相互转换的过程中,初步培养空间想象能力;3.理解点线面体之间的关系,掌握怎样由平面图形旋转得到几何体,能够借助平面图形剖析常见几何体的形成过程.【要点梳理】要点一、几何图形1.定义:把从实物中抽象出的各种图形统称为几何图形.要点诠释:几何图形是从实物中抽象得到的,只注重物体的形状、大小、位置,而不注重它的其它属性,如重量,颜色等.2.分类:几何图形包括立体图形和平面图形(1)立体图形:图形的各部分不都在同一平面内,这样的图形就是立体图形,如长方体,圆柱,圆锥,球等.(2)平面图形:有些几何图形(如线段、角、三角形、圆等)的各部分都在同一平面内,它们是平面图形.要点诠释:(1)常见的立体图形有两种分类方法:(2)常见的平面图形有圆和多边形,其中多边形是由线段所围成的封闭图形,生活中常见的多边形有三角形、四边形、五边形、六边形等.(3)立体图形和平面图形是两类不同的几何图形,它们既有区别又有联系.要点二、从不同方向看从不同的方向看立体图形,往往会得到不同形状的平面图形.一般是从以下三个方向:(1)从正面看;(2)从左面看;(3)从上面看.从这三个方向看到的图形分别称为正视图(也称主视图)、左视图、俯视图.要点三、简单立体图形的展开图有些立体图形是由一些平面图形围成,将它们的表面适当剪开,可以展开成平面图形,这样的平面图形称为相应立体图形的展开图.要点诠释:(1)不是所有的立体图形都可以展成平面图形.例如,球便不能展成平面图形.(2)不同的立体图形可展成不同的平面图形;同一个立体图形,沿不同的棱剪开,也可得到不同的平面图.要点四、点、线、面、体长方体、正方体、圆柱、圆锥、球、棱柱、棱锥等都是几何体,几何体也简称体;包围着体的是面,面有平的面和曲的面两种;面和面相交的地方形成线,线也分为直线和曲线两种;线和线相交的地方形成点.从上面的描述中我们可以看出点、线、面、体之间的关系.此外,从运动的观点看:点动成线,线动成面,面动成体.A.题目典型易错,重思路分析—“渔、鱼”兼得!按照★到★★★★标注难度。
浙教版初中数学七年级上册《图形的初步认识》全章复习与巩固(基础)知识讲解
浙教版初中数学七年级上册《图形的初步认识》全章复习与巩固(基础)知识讲解本文讲述了几何图形的初步认识,包括常见的几何体和平面图形的分类和构成元素。
同时,讲解了直线、射线、线段、角等基本图形的概念、表示方法、性质和画法,并介绍了应用图形与几何的知识解释生活中的现象及解决简单的实际问题的能力。
在几何体的分类中,不同的分类标准会得到不同的分类结果。
而几何体是由点、线、面构成的,点可以动成线,线与线相交成点,线动成面,面与面相交成线,面动成体,体是由面组成。
在线段、射线和直线的区别与联系中,直线由两点确定,线段是两点之间的最短距离,而射线则是从一个点出发,延伸出去的线段。
在画一条线段等于已知线段时,可以用度量法或尺规作图法。
而线段的比较与运算可以通过度量法、叠合法或估算法来实现。
同时,线段的中点可以将一条线段分成两条相等的线段。
最后,本文介绍了角的概念及其表示方法。
角是由两条射线共同确定的,可以用度数或弧度来表示。
角是由两条射线或一条射线绕着端点旋转形成的图形,其中端点称为角的顶点,射线称为角的边。
角的表示方法有三种:用三个大写字母表示、用顶点的一个大写字母表示、用一个小写希腊字母或数字表示。
角可以根据其大小和范围进行分类,包括锐角、直角、钝角、平角和周角。
角的度量单位是度,一周角等于360度,一平角等于180度,一度等于60分,一分等于60秒。
度、分、秒之间的转换方法是逐级进行乘除法,超过60进一或减一成60.角的比较和运算有三种方法:度量法、叠合法和估算法。
角的平分线是从角的顶点出发,将角分成相等的两个或三个角的射线。
余角和补角是两个角的关系,同角(或等角)的余角和补角相等。
方位角是以正北、正南方向为基准,描述物体运动方向的角。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
———————————————————————————————— 作者:
———————————————————————————————— 日期:
《几何图形初步》全章复习与巩固(基础)知识讲解
【学习目标】
1.认识一些简单的几何体的平面展开图及三视图,初步培养空间观念和几何直观;
(2)北偏东45 °通常叫做东北方向,北偏西45 °通常叫做西北方向,南偏东45 °通常叫做东南方向,南偏西45 °通常叫做西南方向.
(3)方位角在航行、测绘等实际生活中的应用十分广泛.
【典型例题】
类型一、概念或性质的理解
1.下列说法正确的是( )
A.射线AB与射线BA表示同一条射线.B.连结两点的线段叫做两点之间的距离.
③只考虑数量关系,与位置无关.
④“等角是相等的几个角”,而“同角是同一个角”.
4.方位角
以正北、正南方向为基准,描述物体运动的方向,这种表示方向的角叫做方位角.
要点诠释:
(1)方位角还可以看成是将正北或正南的射线旋转一定角度而形成的.所以在应用中一要确定其始边是正北还是正南.二要确定其旋转方向是向东还是向西,三要确定旋转角度的大小.
(2)用尺规作图法:用圆规在射线AC上截取AB=a,如下图:
4.线段的比较与运算
(1)线段的比较:
比较两条线段的长短,常用两种方法,一种是度量法;一种是叠合法.
(2)线段的和与差:
如下图,有AB+BC=AC,或AC=a+b;AD=AB-BD。
(3)线段的中点:
把一条线段分成两条相等线段的点,叫做线段的中点.如下图,有:
要点诠释:
①线段中点的等价表述:如上图,点M在线段上,且有 ,则点M为线段AB的中点.
②除线段的中点(即二等分点)外,类似的还有线段的三等分点、四等分点等.如下图,点M,N,P均为线段AB的四等分点.
要点三、角
1.角的度量
(1)角的定义:有公共端点的两条射线组成的图形叫做角,这个公共端点是角的顶点,这两条射线是角的两条边;此外,角也可以看作由一条射线绕着它的端点旋转而形成的图形.
要点诠释:
①度、分、秒的换算是60进制,与时间中的小时分钟秒的换算相同.
②度分秒之间的转化方法:由度化为度分秒的形式(即从高级单位向低级单位转化)时用乘法逐级进行;由度分秒的形式化成度(即低级单位向高级单位转化)时用除法逐级进行.
③同种形式相加减:度加(减)度,分加(减)分,秒加(减)秒;超60进一,减一
(2)角的表示方法:角通常有三种表示方法:一是用三个大写英文字母表示,二是用角的顶点的一个大写英文字母表示,三是用一个小写希腊字母或一个数字表示.例如下图:
要点诠释:
①角的两种定义是从不同角度对角进行的定义;
②当一个角的顶点有多个角的时候,不能用顶点的一个大写字母来表示.
(3)角度制及角度的换算
1周角=360°,1平角=180°,1°=60′,1′=60″,以度、分、秒为单位的角的度量制,叫做角度制.
成60.
(4)角的分类
∠β
锐角
直角
钝角
平角
周角
范围
0<∠β<90°
∠β=90°
90°<∠β<180°
∠β=180°
∠β=360°
(5)画一个角等于已知角
(1)借助三角尺能画出15°的倍数的角,在0~180°之间共能画出11个角.
(2)借助量角器能画出给定度数的角.
(3)用尺规作图法.
2.角的比较与运算
(2)若∠1+∠2=180°,则∠1与∠2互为补角.其中∠1是∠2的补角,∠2是∠1的补角.
(3)结论:同角(或等角)的余角相等;同角(或等角)的补角相等.
要点诠释:
①余角(或补角)是两个角的关系,是成对出现的,单独一个角不能称其为余角(或补角).
②一个角的余角(或补角)可以不止一个,但是它们的度数是相同的.
(1)直线的性质:两点确定一条直线.(2)线段的性质:两点之间,线段最短.
要点诠释:
①本知识点可用来解释很多生活中的现象.如:要在墙上固定一个木条,只要两个钉子就可以了,因为如果把木条看作一条直线,那么两点可确定一条直线.
②连接两点间的线段的长度,叫做两点间的距离.
3.画一条线段等于已知线段
(1)度量法:可用直尺先量出线段的长度,再画一条等于这个长度的线段.
2.掌握直线、射线、线段、角这些基本图形的概念、性质、表示方法和画法;
3.初步学会应用图形与几何的知识解释生活中的现象及解决简单的实际问题;
4.逐步掌握学过的几何图形的表示方法,能根据语句画出相应的图形,会用语句描述简单的图形.
【知识网络】
【要点梳理】
要点一、多姿多彩的图形
1.几何图形的分类
要点诠释:在给几何体分类时,不同的分类标准有不同的分类结果.
要点诠释:
①会判断简单物体(直棱柱、圆柱、圆锥、球)的三视图.
②能根据三视图描述基本几何体或实物原型.
(3)几何体的构成元素及关系
几何体是由点、线、面构成的.点动成线,线与线相交成点;线动成面,面与面相交成线;面动成体,体是由面组成.
要点二、直线、射线、线段
1.直线,射线与线段的区别与联系②叠合法.
(2)角的平分线:
从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线,例如:如下图,因为OC是∠AOB的平分线,所以∠1=∠2= ∠AOB,或∠AOB=2∠1=2∠2.
类似地,还有角的三等分线等.
3.角的互余互补关系
余角补角
(1)若∠1+∠2=90°,则∠1与∠2互为余角.其中∠1是∠2的余角,∠2是∠1的余角.
②不同的几何体展成不同的平面图形,同一几何体沿不同的棱剪开,可得到不同的平面图形,那么排除障碍的方法就是:联系实物,展开想象,建立“模型”,整体构想,动手实践.
(2)从不同方向看:
主(正)视图---------从正面看
几何体的三视图 左视图-----从左(右)边看
俯视图---------------从上面看
2.立体图形与平面图形的相互转化
(1)立体图形的平面展开图:
把立体图形按一定的方式展开就会得到平面图形,把平面图形按一定的途径进行折叠就会得到相应的立体图形,通过展开与折叠能把立体图形和平面图形有机地结合起来.
要点诠释:
①对一些常见立体图形的展开图要非常熟悉,例如正方体的 11种展开图,三棱柱,圆柱等的展开图;