Trelagliptin_succinate_HNMR_09028_MedChemExpress

合集下载

索马鲁肽 质量标准

索马鲁肽 质量标准

索马鲁肽(Semaglutide)是一种新型长效胰高血糖素样肽-1(GLP-1)受体激动剂,主要用于治疗2型糖尿病。

其通过促进胰岛素分泌和抑制胰高血糖素分泌来降低血糖,同时具有减少食物摄入和降低体重的效果。

索马鲁肽的质量标准通常包括以下几个方面:
1. 纯度:索马鲁肽的纯度要求通常非常高,常见的要求为95%或99%以上。

这保证了药品中活性成分的浓度和一致性,从而确保疗效的稳定。

2. 分子式与分子量:索马鲁肽的分子式为C187H291N45O59,分子量约为411
3.57754。

这些参数是化学表征的重要指标,用于确保产品的正确性。

3. 外观:索马鲁肽通常为白色粉末状,这与其化学性质和纯度有关。

4. 溶解性:索马鲁肽在水中的溶解性良好,通常可溶解至1 mg/ml。

这与其作为注射剂的给药形式相关。

5. 储存条件:索马鲁肽应在-20°C的条件下储存,以保持其稳定性和活性。

6. 质量检验:在生产过程中,索马鲁肽会经过严格的质量检验,包括使用高效液相色谱法(HPLC)等分析技术来确保其纯度和含量。

7. 生物活性:索马鲁肽的生物活性是通过与GLP-1受体结合的能力来评估的。

这一点对于确保其治疗效果至关重要。

8. 稳定性:索马鲁肽在储存和使用过程中的稳定性也是质量标准的一部分,这包括对温度、pH 值和光照等条件的稳定性评估。

总的来说,索马鲁肽的质量标准旨在确保其作为药物的安全性和有效性,这些标准通常由药品制造商和监管机构设定并执行。

恩曲替尼化学式-概述说明以及解释

恩曲替尼化学式-概述说明以及解释

恩曲替尼化学式-概述说明以及解释1.引言1.1 概述概述恩曲替尼(英文名称:Entrectinib)是一种靶向抗癌药物,属于酪氨酸激酶抑制剂。

它通过抑制肿瘤细胞中的激酶信号通路,发挥抗肿瘤的作用。

恩曲替尼被广泛应用于非小细胞肺癌、神经母细胞瘤和其他肿瘤的治疗。

该药物的化学性质使其具备出色的抗肿瘤效果。

恩曲替尼的分子式为C31H34Cl2N5O3,分子量为602.54克/摩尔。

其分子结构复杂,由多个不同原子组成的编织网状结构构成。

这种特殊的结构赋予了恩曲替尼优异的特性,包括其强大的抑制肿瘤生长能力和独特的靶向治疗机制。

除了化学性质外,恩曲替尼还具有一系列独特的物理性质。

该药物为白色或类白色结晶粉末,具有极高的纯度要求。

其熔点为210-215,在这个温度范围内可以保持稳定。

此外,恩曲替尼在常温下可溶于一些有机溶剂,如二氯甲烷和二甲基亚砜,但不溶于水。

在药理作用方面,恩曲替尼主要表现出针对肿瘤细胞的抗增殖和抗转移能力。

它通过干扰肿瘤细胞的激酶信号通路,阻止肿瘤细胞的分裂和生长。

此外,恩曲替尼还具有特异性靶向治疗作用,能够选择性地抑制特定的激酶,从而实现精确的治疗效果。

然而,恩曲替尼也存在一些副作用,如恶心、呕吐、疲劳和食欲不振等,这些副作用需在使用时留意并及时处理。

综上所述,恩曲替尼作为一种靶向抗肿瘤药物,具有复杂的化学性质、独特的物理性质以及较广泛的药理作用。

进一步的研究和应用将有助于更好地发掘恩曲替尼的潜力,为肿瘤治疗提供新的突破和可能性。

1.2 文章结构文章结构部分的内容如下:文章结构部分主要介绍了整篇文章的组织结构和内容安排。

本文的目录分为引言、正文和结论三个部分。

引言部分主要是对整篇文章的背景和目的进行概述,并对恩曲替尼的化学式进行引入。

接着,文章结构部分将详细介绍恩曲替尼的化学性质、物理性质和药理作用。

最后,结论部分将对恩曲替尼的化学性质、物理性质和药理作用进行总结。

在正文部分,恩曲替尼的化学性质将包括分子式、分子量和结构式的介绍。

琥珀酸曲格列汀说明书中文翻译

琥珀酸曲格列汀说明书中文翻译

2015年3月出版(第一版)Zafatek片100mgZafatek片50mg持续选择性DPP-4抑制剂,治疗2型糖尿病。

贮存:室温保存使用有效期:见包装盒上,请在有效期内使用注:处方签:按医师处方使用。

曲格列汀琥珀酸片说明书(译文)Zafatek ®片100mg或50mg【禁忌】(以下患者禁止使用)(1)严重酮症、糖尿病昏迷或昏睡、1型糖尿病患者【需要迅速输胰岛素纠正高血糖的患者不使用该药】。

(2)严重感染,手术前后,严重创伤患者【通过注射胰岛素控制血糖的患者不适合该药】。

(3)高度肾功能障碍患者或终末期肾功能衰竭透析患者【此剂主要是由肾脏所排泄,因此会造成延迟排泄而增加血药浓度】。

(参见【药代动力学】)(4)有药物过敏史患者。

【组成性状】Zafatek片100mg Zafatek片50mg每片的有效成分曲格列汀琥珀酸盐133mg(曲格列汀100mg)曲格列汀琥珀酸盐66.5mg (曲格列汀50mg)剂型双面切割的薄膜包衣片薄膜包衣片片剂颜色淡红色淡黄红色识别码形状上面下面添加剂:D-甘露醇,微晶纤维素,羧甲基纤维素钠,羟丙基纤维素,硬脂酰富马酸钠,羟丙甲纤维素,聚乙二醇6000,氧化钛,三氧化二铁(总配方均含有),氧化铁(仅50mg的片剂含有)。

【功效】治疗2型糖尿病【用法用量】通常情况下,成人每周口服一次100毫克曲格列汀片。

(1)中度肾功能不全的患者,并且在该药物代谢缓慢而增加血药浓度的患者,应减小服药剂量。

(参见【药代动力学】)中度肾功能障碍患者服药剂量血肌酐(mg/dl)※肌酐清除率(Ccr,ml/min)服药量中度肾功能障碍患者男性:1.4<~≤2.4女性:1.2<~≤2.030≤~<50 50mg,每周一次(2)以下患者用药指导1)每周服药一次,每周在同一天的时间内服用2)如果错过某次服药时间,就在你想起的时间服用,随后每周就在该时间点服用即可。

※:对应肌酐清除率换算值(年龄60岁,体重65公斤)【注意事项】1 慎用药(以下患者慎用此药)(1)中度肾功能障碍患者(参照【药代动力学】)(2)同时服用黄酰脲类或胰岛素抑制剂患者【其他DPP-4抑制剂,并患有严重低血糖患者】(参照重要注意事项,相互作用,严重副作用)。

醋酸戈那瑞林——肽类化合物

醋酸戈那瑞林——肽类化合物

酸醋戈那瑞林
戈那瑞林,Gonadorelin
Acetate,为人工合成的促性腺激素释放素,属肽类化合物,为十肽。

用于诊断下丘脑—腺垂体—性腺功能障碍,可根据其中促性腺激素和性激素水平变化进行。

产品名称:醋酸戈那瑞林
英文名称:Gonadorelin Acetate
中文别名:高乐肽;促黄体激素释放激素;促黄体激素释放因子;促黄体生成素释放激素;促黄体生成素释放素;促性激素释放素;促性释放素
英文别名:Crylocur、Crytocur、Furtiral、GonadotropinReleasingHormone、Lutei CAS号:34973-08-5
序列:pGlu-His-Trp-Ser-Tyr-Gly-Leu-Arg-Pro-Gly-NH2
分子式:C55H75N17O13.C2H4O2
分子量:1242.36
分子结构:
(台州保隆化工)
储存环境:2~8℃。

每周只需注射一次,3个月即可轻松减掉10斤肥肉能让你管住嘴的减肥神药真的来了 临床大发现

每周只需注射一次,3个月即可轻松减掉10斤肥肉能让你管住嘴的减肥神药真的来了  临床大发现

每周只需注射一次,3个月即可轻松减掉10斤肥肉。

能让你管住嘴的减肥神药真的来了临床大发现“管住嘴,迈开腿”简简单单六个字,就道出了减肥的真谛。

然而,面对那么多的美食诱惑,光这前三个字就足以让无数人的减肥大业半途而废了。

不过,好消息来了!最近,肥胖研究领域中的著名期刊《糖尿病,肥胖和代谢》杂志刊登的一项临床研究[1]显示,诺和诺德公司开发的索马鲁肽,可以抑制食欲,让你轻松“管住嘴”。

只需一周注射1次,连续注射12周后,就可减重10斤!而且,在这减轻的体重中,主要还是体内的脂肪组织,药物对除脂肪以外的去脂体重影响很小。

不光有效,还很安全!这项研究的通讯作者,来自英国利兹大学的John Blundell 教授表示,“索马鲁肽的作用是非常令人惊讶的,我们在12周内就观察到了其他减肥药物需要6个月才能达到的效果。

它减少了饥饿感和食欲,让患者能更好地控制饮食摄入。

”[2] John Blundell教授索马鲁肽(Semaglutide)本身是一款针对2型糖尿病的降糖药,主要成分为胰高血糖素样肽-1(GLP-1)类似物。

GLP-1是一种由小肠分泌的激素,在血液中葡萄糖水平升高时促进胰岛素的合成和分泌。

GLP-1进入人体后很容易被酶降解,天然的GLP-1半衰期仅有几分钟,所以,为了让它更长久的工作,研究人员会对它进行一些结构上的改造,在保留功能的同时不那么容易被酶降解。

这样得到的GLP-1类似物药物,比如大名鼎鼎的利拉鲁肽,可以将注射频率减缓到每天1~2次。

而索马鲁肽可以说是它们的“升级版”,在经过改造后,它的半衰期可延长至大约1周,因此注射一次的效果可以维持大约一周的时间[3],对于患者来说更方便。

在不久前公布的全球大型III期临床试验中,索马鲁肽表现优秀,既能控制血糖,还可以保护心血管,这为它在上周赢得了FDA内分泌及代谢药物专家咨询委员会16:0的支持率,不出意外的话,索马鲁肽上市在即[4]。

不少分析人士预测它未来十年内的销售峰值将超百亿,成为治疗2型糖尿病中最好的降糖药。

罗米司亭及艾曲波帕药品说明书

罗米司亭及艾曲波帕药品说明书

根据病人的病情选择:1.确定什么原因引起的血小板减少,至少要找到疾病的诱因。

免疫系统?骨髓造血系统?分泌(激素)?2.若不能找到诱因,一定要使用该两种药品,先用6周,看看效果,查血小板计数,是否继续使用,再做评估。

罗米司亭【商品名】Nplate【药品名称】罗米司亭/ romiplostim【适应症】治疗脾切除和脾未切除慢性免疫性血小板减少性紫癜(ITP)成人患者的血小板生成药。

【用法用量】(1)初始剂量1μg/kg每周1次皮下注射。

(2)因为需要减低出血的风险,通过增量1μg/kg调整每周剂量以达到和维持血小板计数50 × 109/L.(3)最大剂量不要超过每周10μg/kg。

如血小板计数达>400×109/L不要给药。

(4)如在最大剂量4周后血小板计数不增加中断Nplate。

(5)在配制期间不要震荡;避光保护配制好的Nplate; 24小时给配制好的Nplate。

(6)注射容积可能非常小。

使用刻度0.01 mL的注射器。

(7)遗弃单次使用小瓶中未使用部份。

【注意事项】(1)Nplate增加骨髓网硬蛋白(reticulin)沉积的风险;临床研究未除外网硬蛋白和其它纤维沉积导致有血细胞减少的骨髓纤维化的可能性。

监查外周血骨髓纤维化征象。

(2)中止Nplate可能导致血小板减少比Nplate治疗前更坏。

Nplate中止后监查全血细胞计数(CBCs),包括血小板计数至少2周。

(3)过量Nplate可能增加血小板计数至产生血栓形成/栓塞并发症的水平。

(4)如随Nplate初期反应后血小板计数严重减低评估患者中和抗体的形成。

(5)Nplate可能增加血液学恶性病的风险,尤其是有骨髓增生异常综合征患者。

(6)每周监查CBCs,包括血小板计数和外周血涂片,直至达到稳定的Nplate 剂量。

其后,至少每月监查CBCs,包括血小板计数和外周血涂片。

(7)只能通过受限制的分配计划,称为Nplate NEXUS(了解和支持Nplate专家和患者网络)计划,才能获得Nplate。

注射用替考拉宁说明书

注射用替考拉宁说明书

核准日期:2009年07月07日注射用替考拉宁说明书请仔细阅读说明书并在医师指导下使用通用名称:注射用替考拉宁商品名称:他格适?英文名称:Teicoplanin for Injection汉语拼音:Zhusheyong Tikaolaning【成份】化学名称:替考拉宁化学结构式:分子式:分子量:辅料:氯化钠,注射用水【性状】本品为类白色冻干状物和粉末.【适应证】本品可用于治疗各种严重的革兰阳性菌感染,包括不能用青霉素类和头孢菌素类其他抗生素者.本品可用于不能用青霉素类及头孢菌素类抗生素治疗或用上述抗生素治疗失败的严生葡萄球菌感染,或对其他抗生素耐药的葡萄球菌感染.已证明他格适对下列感染有效:皮肤和软组织感染,泌尿道感染,呼吸道感染,骨和关节感染,败血症,心内膜炎及持续不卧床腹膜透析相关性腹膜炎.在矫形手术具有革兰阳性菌感染的高危因素时,本品也可作预防用.【规格】替考拉宁200mg 每包装含一小瓶200mg替考拉宁和一安瓿注射用水。

【用法用量】注射用替考拉宁注射液既可以静脉注射也可以肌肉注射可以快速静脉注射注射时间不少于1分钟或缓慢静脉滴注滴注时间不少于30分钟一般每日给药一次但第一天可以给药两次对敏感菌所致感染的大多数病人给药后48-72小时会出现疗效反应疗程长短则依据感染的类型严重程度和病人的临床反应而定心内膜炎和骨髓炎的疗程则推荐为3周或更长时间治疗剂量:肾功能正常的成人和老年人:矫形手术预防感染:麻醉诱导期单剂量静脉注射400mg 中度感染:皮肤和软组织感染泌尿系统感染呼吸道感染负荷量:第一天只一次静脉注射剂量400mg 维持量:静脉或肌肉注射200mg 每日一次严重感染:骨和关节感染败血症心内膜炎负荷量:头三剂静脉注射400mg 每12小时给药一次维持量:静脉或肌肉注射400mg 每日一次某些临床情况如严重烧伤感染或金葡菌心内膜炎病人替考拉宁维持量可能需要达到12mg/kg 备注:本品200mg及400mg标准剂量分别相当于3mg/kg及6mg/kg平均剂量如病人体重超过85kg建议用相同治疗方案按公斤体重给药:中度感染为3mg/kg 严重感染为6mg/kg.【不良反应】人们对注射用替考拉宁耐受性良好,不良反应一般轻微且短暂,很少需要中断治疗,严重不良反应罕见,已报道主要有以下不良反应:局部反应:红斑、局部疼痛、血栓性静脉炎。

益生菌对阿尔茨海默病作用的研究进展

益生菌对阿尔茨海默病作用的研究进展

益生菌对阿尔茨海默病作用的研究进展发布时间:2021-12-14T06:08:15.523Z 来源:《中国结合医学杂志》2021年12期作者:宋鑫萍1,2,李盛钰2,金清1[导读] 阿尔茨海默病已成为威胁全球老年人生命健康的主要疾病之一,患者数量逐年攀升,其护理的经济成本高,给全球经济造成重大挑战。

近年来研究显示,益生菌在适量使用时作为有益于宿主健康的微生物,在防治阿尔茨海默病方面具有积极影响,其作用机制可能通过调节肠道菌群,影响神经免疫系统,调控神经活性物质以及代谢产物,通过肠-脑轴影响该病发生和发展。

宋鑫萍1,2,李盛钰2,金清11.延边大学农学院,吉林延吉 1330022.吉林省农业科学院农产品加工研究所,吉林长春 130033摘要:阿尔茨海默病已成为威胁全球老年人生命健康的主要疾病之一,患者数量逐年攀升,其护理的经济成本高,给全球经济造成重大挑战。

近年来研究显示,益生菌在适量使用时作为有益于宿主健康的微生物,在防治阿尔茨海默病方面具有积极影响,其作用机制可能通过调节肠道菌群,影响神经免疫系统,调控神经活性物质以及代谢产物,通过肠-脑轴影响该病发生和发展。

本文综述了近几年来国内外益生菌对阿尔茨海默病的作用进展,以及其预防和治疗阿尔茨海默病的潜在作用机制。

关键词:益生菌;阿尔茨海默病;肠道菌群;机制Recent Progress in Research on Probiotics Effect on Alzheimer’s DiseaseSONG Xinping1,2,LI Shengyu2,JI Qing1*(1.College of Agricultural, Yanbian University, Yanji 133002,China)(2.Institute of Agro-food Technology, Jilin Academy of Agricultural Sciences, Chanchun 130033, China)Abstract:Alzheimer’s disease has become one of the major diseases threatening the life and health of the global elderly. The number of patients is increasing year by year, and the economic cost of nursing is high, which poses a major challenge to the global economy. In recent years, studies have shown that probiotics, as microorganisms beneficial to the health of the host, have a positive impact on the prevention and treatment of Alzheimer’s disease. Its mechanism may be through regulating intestinal flora, affecting the nervous immune system, regulating the neuroactive substances and metabolites, and affecting the occurrence and development of the disease through thegut- brain axis. This paper reviews the progress of probiotics on Alzheimer’s disease at home and abroad in recent years, as well as its potential mechanism of prevention and treatment.Key words:probiotics; Alzheimer’s disease; gut microbiota; mechanism阿尔茨海默病(Alzheimer’s disease, AD),系中枢神经系统退行性疾病,属于老年期痴呆常见类型,临床特征主要包括:记忆力减退、认知功能障碍、行为改变、焦虑和抑郁等。

培非格司亭中英文介绍

培非格司亭中英文介绍

王婕 913103860408NEULASTA(PEGFILGRASTIM)|培非格司亭注射液1.Introduction(简介)【产地英文商品名】:NEULASTA-6mg/0.6ml/Syringe【原产地英文药品名】:PEGFILGRASTIM【中文参考商品译名】:纽拉思塔-6毫克/0.6毫升/支【中文参考药品译名】:培非格司亭【生产厂家中文参考译名】:安进【生产厂家英文名】:Amgen, IncAmgen Announces Novel Drugs for Antitumor Chemotherapy Side Effects of FGT (TM) (pegfilgrastim), a drug developed by the US Food and Drug Administration (FDA), has been approved by the US Food and Drug Administration (FDA) Approval. Amphetamycin, the chief executive of Amgen, says that pemetrexedin will make it easier for healthcare workers to prevent chemotherapy-induced neutropenia and its serious complications.The third drug approved by Amgen in the past six months will significantly improve the prognosis of chemotherapy patients and is expected to enter the market in early April.BUSINESS WIRE 2002年2月1日美国加州THOUSAND OAKS消息,安进公司宣布抗肿瘤化疗副作用新药培非格司亭(TM) (pegfilgrastim)通过美国食品与药品管理局(FDA)的审批。

三氟乙酸脱苄基O-debenzylation_of_ortho-substituted_phenols_with_trifluoroacetic_acid

三氟乙酸脱苄基O-debenzylation_of_ortho-substituted_phenols_with_trifluoroacetic_acid

Mild,efficient and rapid O-debenzylation of ortho -substituted phenols with trifluoroacetic acidSteven Fletcher *,Patrick T.Gunning *Department of Chemistry,University of Toronto,Mississauga,ON L5L 1C6,Canadaa r t i c l e i n f o Article history:Received 21May 2008Revised 2June 2008Accepted 4June 2008Available online 10June 2008a b s t r a c tThe mild and efficient deblocking of aryl benzyl ethers with TFA is reported.Cleavage was fastest with ortho -electron-withdrawing groups on the phenolic ring,which we have attributed to a proton chelation effect,furnishing the deprotected phenols in excellent yields.The corresponding para -methoxybenzyl,allyl and iso -propyl ethers were also cleanly removed under these conditions.In addition,the selective aryl benzyl ether debenzylation in the presence of benzyl ester,Cbz carbamate and Boc carbamate func-tionalities was also observed.Crown Copyright Ó2008Published by Elsevier Ltd.All rights reserved.Phosphotyrosines feature in the design of inhibitors of several protein targets,including protein tyrosine phosphatase 1B (PTP1B).1However,these moieties suffer from hydrolytic lability to cellular phosphatases and poor cell penetration due to the asso-ciated dianionic charge.1To address these issues,salicylic acid derivatives (and closely-related analogues)have become popular mimetics of phosphotyrosine in small molecule inhibitors.1–5Turk-son et al.have recently reported on NSC74859(1),a potent,sali-cylic acid-based inhibitor of the oncogenic protein Stat3.6As part of our structure–activity relationship (SAR)studies on NSC74859(1),we sought to debenzylate both the phenol ether and benzoate ester in 2without reducing the aryl-bromide bond,a common undesired side reaction that occurs with hydrogen gas and Pd/C catalyst.7O -Benzyl-protected phenols are known to undergo debenzyla-tion with trifluoroacetic acid (TFA)8by an initial protonation of the weakly basic phenol oxygen,although additives such as strongorganic acids (e.g.,trifluoromethanesulfonic acid 9)or a large excess of nucleophilic scavenger (e.g.,thioanisole,which accelerates the reaction by a ‘push–pull’mechanism 10)are typically required.Re-cent work by Ploypradith et al.describes the mild deprotection of aromatic ethers with sub-stoichiometric para -toluenesulfonic acid on solid support.11In a special case,O -benzyl-protected ortho -nitrophenol was cleaved rapidly (<5min)with neat TFA,12which we considered was due to the ability of the substrate to chelate a proton since the structurally-similar ortho -hydroxybenzoates (salicylates)are well-known to chelate copper ions and iron ions.We reasoned that 2(and indeed 3)may similarly undergo acceler-ated debenzylation with TFA.In fact,as shown in Scheme 1,treat-ment of 2(or 3)with a 1:1mixture of TFA/toluene led to rapid debenzylation (5min for 2;1h for 3)in 91%yield for 2(or 85%yield for 3).In this Letter,we will explore the structural require-ments of the phenol component that increase the lability of the O -benzyl phenol ether bond in the presence of TFA.In addition,0040-4039/$-see front matter Crown Copyright Ó2008Published by Elsevier Ltd.All rights reserved.*Tel.:+19058285354;fax:+19058285425(P.T.G.).E-mail addresses:steven.fletcher@utoronto.ca (S.Fletcher),patrick.gunning@utoronto.ca (P.T.Gunning).Tetrahedron Letters 49(2008)4817–4819Contents lists available at ScienceDirectTetrahedron Lettersj o ur na l h om e pa ge :w w w.e ls e v ie r.c o m/lo c at e/t et l e twe will explore the selectivity of this mild debenzylation tech-nique with respect to other aromatic ethers and examine the sta-bility of other benzyl-based protecting groups to these reaction conditions.A series of 12O -benzyl-protected phenols was prepared by standard procedures in near quantitative yields.Each of these ethers was then deprotected with a 1:1mixture of TFA/toluene;our observations are summarized in Table 1.In certain cases,O ?C benzyl migration (Friedel–Crafts reaction)by-products (610%)were occasionally inseparable from the product by silica gel flash column chromatography.Thus,several benzyl cation cap-tors were investigated for their abilities to improve yields and puri-ties of the debenzylation reactions.Three to ten equivalents of p -cresol,anisole and triethylsilane were employed,but these exerted little effects on reducing by-product formation.Conversely,we dis-covered that including the more nucleophilic scavenger thioanisole as an additive to the co-solvent toluene typically,after silica gel flash column chromatography,furnished products in P 95%puri-ties (and higher yields),as judged by 1H NMR.Nevertheless,we envisaged any Friedel–Crafts impurities would be more readily separable on slightly more complex aryl benzyl ethers,as we ob-served with the substrates shown in Scheme 1and Tables 3and 4(>99%purities (1H NMR)in each case).Whilst likely leading to even higher yields and purities,large excesses of thioanisole (50equiv)are also known to accelerate TFA-mediated debenzyla-tion.10However,in our hands just 3equiv of thioanisole had little effect on the rate of debenzylation,allowing us to attribute the deprotection rates solely to the structure of the phenol.Electron-rich phenols are good scavengers of benzyl cations,13and since preliminary experiments with electron-rich phenols generated complex mixtures of Friedel–Crafts by-products under these deb-enzylation conditions,we chose to investigate only electron-poor phenols in this study.O -Benzyl-protected phenols with p -ortho -electron-withdraw-ing groups (6a ,6b ,6d ,6f )were swiftly (several in less than 3h cf.24h for unsubstituted phenol 6l )and cleanly debenzylated,with less than 5%of the undesired C-benzylated phenol by-prod-ucts.In contrast,meta -and para -electron-withdrawing groups slo-wed down the debenzylation (e.g.,entries 6g and 6h ),relative to the control compound 6l ,which itself could only be obtained in moderate purity by this method.The r -withdrawing (and p -donating)bromophenols 6i –k were insufficiently deactivated to benzyl cation scavenging and were contaminated with several by-products.Importantly,n -butyl benzyl ether 8was unaffected by TFA under the reaction conditions,indicating this procedure is selective for aryl benzyl ethers.In addition,the results in Table 1suggest that this procedure is suitable only for phenols substituted with p -electron-withdrawing groups.Since the debenzylation mechanism with TFA proceeds via an initial protonation of the phenol ether oxygen,the more available the ether oxygen lone pairs are,the faster the reaction will be.Hence,the slower reaction times for the phenols bearing meta -and para -electron-withdrawing groups make sense,although this is not true for the ortho -functionalized aryl benzyl ethers.As hypothesized for the bis-benzyl salicylate derivative 2earlier,we considered these ortho -substituted phenols were capable of chelat-ing the acidic hydrogen atom from TFA which therein facilitated the acid-mediated debenzylation via a six-membered cyclic inter-mediate,as proposed in Scheme 2.A similar chelation intermediate has been put forward by Baldwin and Haraldsson to account for the Lewis acid MgBr 2-mediated debenzylation of aromatic benzyl ethers ortho to an aldehyde group.14Accordingly,to test this hypothesis we expanded this series of ortho -substituted aryl benzyl ethers,and the results from their deb-enzylation reactions with TFA are summarized in Table 2.These substrates have been listed in order of increasing approximateTable 1TFA-mediated debenzylation of O -benzyl-protected phenols aTFAtolueneOBnROHR67Substrate RTime (h)b Yield c (%)6a o -CO 2Me,m d -NHAc 5min 936b o -CO 2Me 5min 946c p -CO 2Me 36e 63(85f )6d o -CO 2Bn 5min 936e p -CO 2Bn 36e 58(79f )6f o -NO 23976g m -NO 236e 75(98f )6h p -NO 236e 66(98f )6i o -Br 16—g 6j m -Br 30—g 6k p -Br 36—g 6lH 24—gn -BuOBn (8)—24No reactionaThe reaction was carried out with 6(0.5mmol)in a 1:1mixture of TFA/toluene (5ml)at rt,with 3equiv of thioanisole.bTime taken for all starting material to be consumed.cIsolated yield after silica gel flash column chromatography.dmeta to phenol oxygen AND para to ester.eReaction was slow and incomplete after 3days.fYield based on recovered starting material.gComplex mixture of products.Table 2TFA-mediated debenzylation of O -benzyl-protected,ortho -substituted phenols aTFA tolueneOBnOH67RRSubstrate R p K aH b Time c (h)Yield d (%)Relative rate 6m CO 2NH 2À2248316n CHO À7 3.594e 6.96o CO 2H À8191246b CO 2Me À8.55min 942886d CO 2Bn À8.55min 932886p CN À10>4851(95f )—6f NO 2À1239786i Br —16—g 1.56lH—24—g1aThe reaction was carried out with 6(0.5mmol)in a 1:1mixture of TFA/toluene (5ml)at rt,with 3equiv of thioanisole.bApproximate p K aH of conjugate acid of R group.15cTime taken for all starting material to be consumed.dIsolated yield after silica gel flash column chromatography.eIncluding thioanisole in the deprotection of 6n led to further by-products,thus no scavenger was used and compound 7n could be obtained in only 90%purity.fYield based on recovered starting material.gComplex mixture of products.4818S.Fletcher,P.T.Gunning /Tetrahedron Letters 49(2008)4817–4819acidity of the conjugate acid (decreasing p K aH )of the ortho -elec-tron-withdrawing substituent.15There appears to be an optimal p K aH of around À8.5,that is exhibited by carboxylic esters,which lead to the fastest rate of debenzylation with TFA.In an approxi-mate bell-shaped distribution of reaction rate versus ortho -substi-tuent p K aH —that was interrupted only by ortho -cyanophenol 6p —protonatable groups with p K aH ’s <À8.5or >À8.5were less effective at accelerating the TFA-mediated debenzylation.These data concur with our chelation hypothesis:groups that are too ba-sic bind more strongly to the TFA proton making it less available for sharing with,and ultimately releasing to,the phenol ether oxygen;groups that are weakly basic do not bind the TFA proton as well,leading to reduced chelation and hence less rate enhancement.The anomalous result for ortho -cyanophenol 6p was anticipated since this compound was selected as a negative control.Phenol 6p is geometrically incapable of chelating a proton,because the lin-ear,sp -hybridized nitrile functionality directs its basic nitrogen atom (p K aH %À10)away from the phenol oxygen.As predicted,there was no rate enhancement for the TFA-mediated debenzyla-tion of 6p relative to phenol 6l .In fact,6p was only slowly deben-zylated,at a rate that was comparable with the m -nitro and p -nitro derivatives 6g and 6h ,respectively.We next wanted to investigate the selectivity for the deprotec-tion of the benzyl group over other phenol protecting groups.Accordingly,the benzyl group in salicylate derivative 9a was varied with para -methoxybenzyl (PMB;9b ),methyl (9c ),allyl (9d )and iso -propyl (i -Pr;9e ).These substrates were then debenzylated with a 1:1mixture of TFA/toluene;our findings are reported in Table 3.Any impurities this time were minor and readily separable from the products,eliminating the need for the additive thioanisole.The relative rates at which these protecting groups were removed was para -methoxybenzyl >benzyl >allyl >iso -propyl )methyl,which reflects the stability of the carbocations.These data suggest that in salicylates such as 9,the benzyl phenol protecting group (R =Bn)can be removed with TFA in the presence of the corres-ponding allyl,iso -propyl and methyl ethers.Finally,we explored the selectivity of this mild debenzylation technique over other benzyl-based protecting groups,as shown in Table 4.As the results demonstrate,it was possible to deblock the O -benzyl ether in the presence of a benzyl ester (6d )and in the presence of a benzyl carbamate (11b ),thereby increasing the orthogonality of O -benzyl phenol ethers of salicylate derivatives.Interestingly,it was even possible to cleave the benzyl group in 11c with TFA in the presence of an N -Boc-protected aniline.In summary,we have presented the mild,efficient and rapid deblocking of ortho -substituted aryl benzyl ethers with TFA.Deb-enzylation was fastest when the ortho group was a carboxylic ester,which we have attributed to a proton chelation effect.Other ortho groups that accelerated the TFA-mediated debenzylation included carboxylic acid,aldehyde and nitro.In addition,we have shown that in such ortho -functionalized phenols,benzyl could be removed in the presence of the corresponding iso -propyl,allyl and methyl ethers.Moreover,the benzyl ether could be selectively cleaved in the presence of benzyl ester,Cbz carbamate and Boc carbamate functionalities.AcknowledgementsThe authors gratefully acknowledge financial support for this work from the Canadian Foundation of Innovation and the Univer-sity of Toronto (Connaught Foundation).References and notes1.Zhang,S.;Zhang,Z.-Y.Drug Discov.Today 2007,12,373–381.2.(a)Pei,Z.;Li,X.;Liu,G.;Abad-Zapatero,C.;Lubben,T.;Zhang,T.;Ballaron,S.J.;Hutchins,C.W.;Trevillyana,J.M.;Jirouseka,M.R.Bioorg.Med.Chem.Lett.2003,13,3129–3132;(b)Xin,Z.;Liu,G.;Abad-Zapatero,C.;Pei,Z.;Szczepankiewicz,B.G.;Li,X.;Zhang,T.;Hutchins,C.W.;Hajduk,P.J.;Ballaron,S.J.;Stashko,M.A.;Lubben,T.H.;Trevillyana,J.M.;Jirouseka,M.R.Bioorg.Med.Chem.Lett.2003,13,3947–3950.3.Tautz,L.;Bruckner,S.;Sareth,S.;Alonso,A.;Bogetz,J.;Bottini,N.;Pellecchia,M.;Mustelin,T.J.Biol.Chem.2005,280,9400–9408.4.Shrestha,S.;Bhattarai,B.R.;Chang,K.J.;Leea,K.-H.;Choa,H.Bioorg.Med.Chem.Lett.2007,17,2760–2764.5.Liljebris,C.;Larsen,S.D.;Ogg,D.;Palazuk,B.J.;Bleasdale,J.E.J.Med.Chem.2002,45,1785–1798.6.Siddiquee,K.;Zhang,S.;Guida,W.C.;Blaskovich,M.A.;Greedy,B.;Lawrence,H.R.;Yip,M.L.R.;Jove,R.;Laughlin,M.M.;Lawrence,N.J.;Sebti,S.M.;Turkson,J.Proc.Natl.Acad.Sci.U.S.A.2007,104,7391–7396.7.Pandey,P.N.;Purkayastha,M.L.Synthesis 1982,876–878.8.(a)Greene,T.W.;Wuts,P.G.M.Protective Groups in Organic Synthesis ,3rd ed.;John Wiley &Sons:New York,1999;(b)Kocienski,P.J.Protecting Groups ,3rd ed.;Georg Thieme:Stuttgart,Germany,2003.9.Kiso,Y.;Isawa,H.;Kitagawa,K.;Akita,T.Chem.Pharm.Bull.1978,26,2562–2564.10.Kiso,Y.;Ukawa,K.;Nakamura,S.;Ito,K.;Akita,T.Chem.Pharm.Bull.1980,28,673–676.11.Ploypradith,P.;Cheryklin,P.;Niyomtham,N.;Bertoni,D.R.;Ruchirawat,.Lett.2007,9,2637–2640.12.Marsh,J.P.,Jr.;Goodman,.Chem.1965,30,2491–2492.13.(a)Eberle,A.N.J.Chem.Soc.,Perkin Trans.11986,361–367;(b)Bodanszky,M.;Tolle,J.C.;Deshmane,S.S.;Bodanszky,A.Int.J.Pept.Protein Res.1978,12,57–68.14.Haraldsson,G.G.;Baldwin,J.E.Tetrahedron 1997,53,215–224.15.(a)Ionization Constants of Organic Acids in Solution ;Serjeant,E.P.,Dempsey,B.,Eds.IUPAC Chemical Data Series No.23;Pergamon Press:Oxford,UK,1979;(b)see also:/labs/evans/pdf/evans_pKa_table.pdf .Table 3TFA-mediated deprotection of O-blocked phenol ether derivatives of methyl 4-acetamidosalicylate aTFAtolueneNHAcNHAcORO OMeOH OMeO 910Substrate R Time b (h)Yield c (%)9a Bn 5min 919b PMB 2min 909c Me 480d 9d Allyl 20919ei -Pr3692aThe reaction was carried out with 9(0.5mmol)in a 1:1mixture of TFA/toluene (5ml)at rt.bTime taken for all starting material to be consumed.cIsolated yield after silica gel flash column chromatography.dOnly starting material remained after 48h,at which point the reaction was aborted.Table 4Selectivity investigation into the TFA-mediated debenzylation of aryl benzyl ethers aTFA tolueneOBnOH2Bn2Bn1112RRSubstrate R Yield b (%)6d c H 9311a NHAc 9211b NHCbz 9311c dNHBoc54aThe reaction was carried out with 11(0.5mmol)in a 1:1mixture of TFA/toluene (5ml)at rt for 5min,then all solvents were evaporated.bIsolated yield after silica gel flash column chromatography.cFor compound 6d ,3equiv of thioanisole were also used.dAfter 5min,the reaction mixture was diluted with CH 2Cl 2and then immedi-ately neutralized with 1M NaOH.The organic layer was then separated and evaporated.S.Fletcher,P.T.Gunning /Tetrahedron Letters 49(2008)4817–48194819。

常用蛋白酶切割位点

常用蛋白酶切割位点
Invitrogen – Life Technologies,
LifeSensors
Ni-NTA (6His recomb. enzyme)
Kex-2
-Arg-X-Lys/Arg-Arg▼
Invitrogen – Life Technologies,
Ni-NTA (6His recomb. enzyme)
Ni-NTA (6His recomb. TEV)
PreScission(PreScisபைடு நூலகம்ion蛋白酶)
Leu-Glu-Val-Leu-Phe-Gln▼Gly-Pro
L-E-V-L-F-Q▼G-P
Amersham-Biosciences
GSTrap for GST fusion enzyme
TAGZyme(标记酶)
Factor Xa(Xa因子)
Ile-Glu/Asp-Gly-Arg▼?
I-E/D-G-R▼
Amersham-Biosciences,
New England Biolabs,
Roche
Benzamidine-Agarose
Enterokinase(肠激酶)
Asp-Asp-Asp-Asp-Lys▼
D-D-D-D-K▼
His-tag removal by Exoproteolytic Digestion
Qiagen
Ni-NTA (6His recomb. enzyme)
Intein Site(内含肽)
dithiothreitol cleavage(二硫苏糖醇清除)
New England Biolabs
DTT elimination by dialysis?(透析)
New England Biolabs,

日本糖尿病新药ザファテック——琥珀酸曲格列汀(TrelagliptinSuccinate)[JAN]

日本糖尿病新药ザファテック——琥珀酸曲格列汀(TrelagliptinSuccinate)[JAN]

持续性选择的DPP-4抑制剂—2型糖尿病治疗剂—中文名:琥珀酸曲格列汀(TrelagliptinSuccinate)[JAN]储存方法:室温保存使用期限:请在外包装盒上标明的使用期限内使用。

(在使用期限内一旦开封请尽快使用。

)【禁忌】(以下患者禁用)(1)严重酮症、糖尿病昏迷或昏迷前期、1 型糖尿病患者[由于输液、胰岛素快速校正高血糖是必要的,故不适合使用本品。

](2)严重感染、手术前后、严重创伤患者[由于需要注射胰岛素控制血糖,故不适合使用本品。

](3)严重肾功能障碍患者或需透析的晚期肾衰竭患者[由于本品主要经肾脏排泄,排泄延迟可能导致本品的血药浓度上升。

](参见【药代动力学】项)(4)对本品的成份有过敏史的患者【组成·性状】【功能主治】 2 型糖尿病【用法·用量】通常成人每周一次口服曲格列汀 100mg。

(2)以下几点患者指导。

1)本品为每周服用 1 次药物,应在每周的同一天服用。

2)本品忘记服用时,在注意到这点时按规定剂量服用,之后按预先每周定好时间服用。

【使用上的注意】1. 慎重给药(以下患者慎用)下列患者或状态:(1)中度肾功能损害患者(见<用法用量相关使用上的注意>、参见【药代动力学】项)(2)正在使用磺脲类药物或胰岛素制剂的患者[与其他 DPP-4 抑制剂并用时有严重低血糖的报道](见「重要注意事项」、「相互作用」、「严重不良反应」)(3)脑垂体功能不全或肾上腺功能不全[有引发低血糖的风险](4)营养不良、饥饿、饮食不规律、进食量不足或虚弱状态[有引发低血糖的风险](5)激烈肌肉运动[有引发低血糖的风险](6)饮酒过量者[有引发低血糖的风险]2. 重要的注意事项(1)应注意,由于本品与其他糖尿病药物并用时有引发低血糖的风险,因此在与这些药物并用时需对患者详细说明低血糖症状及其处理方法。

尤其是与磺脲类药物或胰岛素制剂并用时,有低血糖风险增加的可能。

为了降低磺脲类药物或胰岛素制剂的低血糖风险,在合并使用这些药物时考虑减少磺脲类药物或胰岛素制剂的用量。

streptavidin-icg结构式 -回复

streptavidin-icg结构式 -回复

streptavidin-icg结构式-回复Streptavidin-ICG Structure Explained: Unveiling the Mysteries of a Versatile CombinationIntroduction:In the world of biochemistry and molecular biology, the discovery of streptavidin revolutionized the way scientists study and manipulate biomolecules. Streptavidin, a tetrameric protein derived from Streptomyces avidinii, has gained considerable attention due to its extraordinary ability to bind biotin with an exceptionally high affinity. This article will delve into the intricacies of streptavidin and a popular combination involving this protein calledstreptavidin-ICG.1. What is Streptavidin?Streptavidin is a tetrameric protein consisting of four identical subunits. Each subunit contains a binding site for biotin, making it an ideal tool for researchers who work with biomolecules. Streptavidin's remarkable binding affinity for biotin has made it a staple in numerous biological techniques, such as fluorescentlabeling, cell imaging, and affinity chromatography.2. Structure of Streptavidin:The overall structure of streptavidin features four subunits arranged in a symmetrical manner. The subunits are connected to each other by extensive hydrogen bonding, resulting in a highly stable protein structure. Each subunit contains a binding pocket for biotin, also known as the active site. The active site consists of residues that form a hydrophobic cage-like structure to accommodate the biotin molecule, ensuring a tight and specific binding interaction.3. Introduction to ICG:Indocyanine Green (ICG), a cyanine dye, has gained popularity in recent years due to its remarkable near-infrared fluorescent properties. This fluorescence property makes it ideal for use in various biomedical applications, such as angiography, lymph node mapping, and tumor imaging. ICG has a peak absorption wavelength at around 780 nanometers, which corresponds to the near-infrared range of light, allowing for deeper tissue penetration.4. Streptavidin-ICG Combination:Streptavidin-ICG is a complex formed by conjugating ICG to streptavidin. By linking ICG to streptavidin, the fluorescence properties of ICG can be harnessed while taking advantage of streptavidin's biotin-binding capabilities. The streptavidin-ICG complex opens up a world of possibilities in various research fields, including biomedical imaging, drug delivery, and targeted therapy.5. Synthesis of Streptavidin-ICG:Synthesizing streptavidin-ICG is a multi-step process. It typically involves the following steps:a. Preparation of activated ICG: ICG is activated by reacting it with a suitable activating agent, such as N-hydroxysuccinimide (NHS), to form an active ester. This activated ICG can now react with the amino groups present on the streptavidin protein.b. Conjugation of streptavidin and activated ICG: The activated ICG is now mixed with streptavidin solution, allowing the reactionbetween the activated ester and the amino groups on the protein to occur. This conjugation reaction forms covalent bonds, linking the streptavidin and ICG molecules together.c. Purification and characterization: The streptavidin-ICG complex is then purified using techniques such as dialysis or size-exclusion chromatography to eliminate any unreacted components. The complex is then characterized using various analytical techniques, including SDS-page and UV-vis spectroscopy, to confirm its composition and purity.6. Applications of Streptavidin-ICG:The streptavidin-ICG complex has found numerous applications in the field of biotechnology and medicine. Its ability to specifically target biotinylated molecules, combined with the fluorescent properties of ICG, allows for targeted imaging of specific cells or tissues. Researchers have utilized the streptavidin-ICG complex for the targeted delivery of drugs and therapeutic agents to specific sites in the body, enabling precise treatment and reduced side effects.Conclusion:Streptavidin and its combination with ICG, streptavidin-ICG, have revolutionized the field of biochemistry and molecular biology. The exceptional binding affinity of streptavidin for biotin and the unique fluorescent properties of ICG make this complex combination a valuable tool in various research areas. As scientists continue to explore and refine streptavidin and its applications, we can expect new and exciting breakthroughs in the near future.。

塞润榈脂质固醇提取物片-详细说明书与重点

塞润榈脂质固醇提取物片-详细说明书与重点

塞润榈脂质固醇提取物片
英文名:The Lipid/Sterol Extract of Serenoa Repens Tablets
汉语拼音:Sai Run Lv Zhi Zhi Gu Chun Ti Qu Wu Pian
【成份】
塞润榈脂质固醇。

【性状】片剂
【适应症】
良性前列腺增生造成的功能失调:不正常尿频,尤其在夜间。

排尿困难、盆腔充血。

【规格】80mg
【用法用量】
一日二次,每次2片,就餐时用少量水吞服。

【不良反应】
1.少见恶心、腹痛、头痛、腰背痛、高血压
【注意事项】空腹服用本药有时会引起恶心。

【药理毒理】
本品通过抑制Ⅰ型和Ⅱ型5α-还原酶的活性,进而抑制DHT的代谢,它具有抗雄激素特性,选择性地作用于前列腺,不影响下丘脑垂体轴,亦可通过抑制磷脂酶A2,使前列腺素合成减少。

【药物相互作用】
如正在服用其他药品,使用本品前请咨询医师或药师。

【贮藏】
密封。

治疗慢性特发性便秘新药——普卡那肽(plecanatide)

治疗慢性特发性便秘新药——普卡那肽(plecanatide)

治疗慢性特发性便秘新药——普卡那肽(plecanatide)陈本川【摘要】普卡那肽(plecanatide)由美国Synergy制药公司研发,是尿鸟苷蛋白(uroguanylin)的类似物,含有16个氨基酸的环状多肽,具有促尿钠排泄的鸟苷酸环化酶受体激动药的作用,能调节胃肠道中的酸碱离子,诱导液体转运进入胃肠道,增加胃肠道的蠕动,适用于治疗成人慢性特发性便秘.美国食品药品管理局(FDA)于2017年1月19日批准上市,商品名为Trulance.该文对普卡那肽的非临床毒理学和临床药理学、临床试验、适应证、剂量与用法、用药注意事项与警示、不良反应及知识产权状态与国内外研究进展等进行介绍.【期刊名称】《医药导报》【年(卷),期】2017(036)006【总页数】6页(P716-718,后插1-后插2,封3)【关键词】普卡那肽;便秘,特发性;尿鸟苷蛋白;鸟苷酸环化酶;环状多肽【作者】陈本川【作者单位】湖北丽益医药科技有限公司,武汉 430205【正文语种】中文【中图分类】R975.3;R574.62DOI 10.3870/j.issn.1004-0781.2017.06.032慢性特发性便秘(chronic idiopathic constipation,CIC)属于下消化道动力学障碍性疾病,其发病与结肠、肛门直肠动力学及精神心理异常有关,也是困扰中、老年人群的常见多发病,不同程度影响现代人的工作和生活质量。

流行病学调查结果显示,世界各国和地区因饮食结构和生活习惯各异,CIC的发病率有较大差异。

据不完全统计,欧美等发达国家为2.0%~28.0%;中国南北方地区为9.0%~20.3%。

Plecanatide暂译名为普卡那肽,其他译名为皮卡那肽。

研究代号SP-304和GCRA等。

该药是尿鸟苷蛋白(uroguanylin,UGN)的类似物,含有双二硫键连接的16个氨基酸的环状多肽;英文化学名为L-Leucine,L-asparaginyl-L-α-aspartyl-L-α-glutamyl-L-cysteinyl-L–α-glutamyl-L-leucyl-L-cysteinyl-L-valyl-L-asparaginyl-L-valyl-L-alanyl-L-threonylglycyl-L-cysteinyl-,cyclic(4→12),(7→15)-bis(disulfide),中文化学名为(第4与12位L-半胱氨酸),(第7与15位L-半胱氨酸)环状双二硫键结合的L-天冬酰胺酰基-L-α-天冬氨酰基-L-α-谷氨酰基-L-半胱氨酰基-L-α-谷氨酰基-L-亮氨酰基-L-半胱氨酰基-L-缬氨酰基-L-天冬酰胺酰基-L-缬氨酰基-L-丙氨酰基-L-半胱氨酰基-L-苏氨酰甘氨酰-L-半胱氨酰基-L-亮氨酸。

西他列汀

西他列汀

制剂与规格
制剂与规格
磷酸西他列汀片 (1)25mg。(2)50mg。(3)100mg。 贮法:20-25℃(15-30℃)保存。 分子结构图
谢谢观看
临床应用
临床应用
用于2型糖尿病。
药理
药效学
药动学
药效学
本药为二肽基肽酶-4(DPP-4)抑制药,通过保护内源性肠降血糖素和增强其作用而控制血糖水平。葡萄糖依 赖性促胰岛素释放肽(GIP)和胰高血糖素样肽-1(GLP-1),是针对膳食摄入而释放的肠降血糖素。
GLP-1和GIP能通过细胞内信号途径增加胰岛素合成及从胰岛β细胞的释放,GLP-1亦能减少胰岛α细胞分泌 胰高血糖素,使肝葡萄糖生成减少。但GLP-1和GIP均由DPP-4快速代谢,导致其促胰岛素作用丧失。
本药抑制肠降血糖素经DPP-4的降解,故能增强GLP-1和GIP的功能,增加胰岛素释放并降低循环中胰高血糖 素水平(此作用呈葡萄糖依赖性)。本药选择性抑制DPP-4,对DPP-8或DPP-9无抑制活性。
药动学
本药口服后1-4小时达血药峰浓度950nmol,曲线下面积为8.52mmol·h,绝对生物利用度约87%,蛋白结合 率为38%,分布容积约198L。极少在肝脏代谢。肾清除率约350ml/min,肾排泄率为87%(79%为原形药),消除半 衰期为12.4小时,血液透析有助于本药的清除。
注意事项
注意事项
1.禁忌症尚不明确。 2.慎用 (1)晚期肾病患者(国外资料)。(2)中度或重度肾功能不全者(国外资料)。 3.药物对儿童的影响儿童用药的安全性和有效性尚未确立。 4.药物对妊娠的影响尚缺乏在孕妇中的对照研究,且本药是否透过胎盘尚不明确,建议孕妇必要时方可使用 本药。美国食品药品管理局(FDA)对本药的妊娠安全性分级为B级。 西他列汀5.药物对哺乳的影响哺乳妇女慎用。

舍雷肽酶肠溶片

舍雷肽酶肠溶片

舍雷肽酶肠溶片【药品名称】通用名称:舍雷肽酶肠溶片英文名称:Serrapeptase Enteric-coated Tablets【成份】本品主要成分为:由沙雷氏菌属产生的蛋白分解酶。

【适应症】1缓解由手术、外伤、慢性副鼻窦炎、乳汁瘀积等所引起的肿胀。

2治疗由支气管炎、肺炎、支气管哮喘、支气管扩张等所引起的痰液粘稠、咯痰困难。

3也可用于麻醉术后的痰液粘稠、咯痰困难。

【用法用量】口服。

成人一日3次,一次1~2片,餐后服用。

可根据年龄和症状适当增减。

【不良反应】本品偶见以下不良反应:1 过敏反应:如皮疹、瘙痒、皮肤潮红等。

2 消化道反应:如食欲不振、胃部不适、恶心、呕吐、腹泻等。

3 其它:如鼻出血、痰中带血等出血症状,以及出现黄疸、谷氨酸草酰乙酸转氨酶(GOT)、谷氨酸丙酮酸转氨酶(GPT)、碱性磷酸酶(ALP)、γ-谷氨酸丙酮酸转氨酶(γ-GTP)等上升。

【禁忌】对本品过敏者禁用。

【注意事项】1 既往有药物过敏史者、凝血功能障碍、严重肝、肾功能不全者慎用。

2 若有不良反应发生,应停止用药,并进行适当处理。

【药物相互作用】1 本品与抗凝剂并用,有时会增强抗凝效果。

因本品可强效溶解纤维蛋白和纤维蛋白原,从而增强抗凝药的作用,所以与抗凝药联合使用时应慎重,已使用者应注意密切观察。

2 本品与抗生素类药、化疗药、非甾体类抗炎药并用可引起下列反应:(1) 皮肤粘膜眼综合征及中毒性表皮坏死症。

(2) 间质性肺炎、嗜酸细胞肺浸润综合征。

(3) 休克。

【药理作用】本品为沙雷氏菌属细菌所产生的蛋白分解酶口服制剂。

能够抑制烫伤大鼠的纤溶活性亢进及血管通透性亢进;抑制某些致炎物质所致大鼠的炎性肿胀;降低支气管炎家兔痰液的粘稠度;提示本品具有消肿和祛痰作用。

【贮藏】密封,在干燥处保存。

【批准文号】XC20010013【生产企业】企业名称:Weidar Chem & Pharm.Co.,Ltd.。

中毒性眩晕相关药品--还原型谷胱甘肽片

中毒性眩晕相关药品--还原型谷胱甘肽片

中毒性眩晕相关药品--还原型谷胱甘肽片【通用名】还原型谷胱甘肽片【商品名】阿拓莫兰片【汉语拼音】HuanyuanxingGuguanggantaiPian【英文名】ReducedGlutathioneTablets【化学名】其化学名为N-(N-L-γ-谷氨酰基-L-半胱氨酰基)甘氨酸。

分子式:C10H17N3O6S分子量:307.33【主要成份】本品主要成份为还原型谷胱甘肽。

【性状】本品为白色糖衣片,除去糖衣后显白色。

【药理毒理】阿拓莫兰的主要成分(还原型谷胱甘肽)是含有巯基(SH)的三肽类化合物,在人体内具有活化氧化还原系统,激活SH酶、解毒作用等重要生理活性。

参与体内三羧酸循环和糖代谢,促进体内产生高能量,起到辅酶作用。

还原型谷胱甘肽是甘油醛磷酸脱氢酶的辅基,又是乙二醛酶及磷酸丙糖脱氢酶的辅酶。

还原型谷胱甘肽能激活体内SH酶等,促进碳水化合物、脂肪及蛋白质的代谢,以调节细胞膜的代谢过程。

还原型谷胱甘肽参与多种外源性、内源性有毒物质结合生成减毒物质。

【药物动力学】【适应症】解药物毒性(抗肿瘤药、抗结核药、中枢神经药物、对乙酰氨基酚等中毒),防止抗癌药物的副作用,预防和治疗放射线损害;对抗自由基,抗氧化;提高机体免疫力……人体在许多状态下都可以使细胞内GSH生物合成能力降低,含量下降,尤其是在病理状态下。

外源性GSH的补充,可以预防、减轻、中止、组织细胞的损伤,改变病理生理过程。

【用法用量】成人常用量为每次口服400mg,每日三次.疗程12周【不良反应】1、过敏症:偶有皮疹等过敏症状,应停药;2、偶有食欲不振,恶心,呕吐,上腹痛等症状。

【禁忌】对谷胱甘肽过敏者禁用【注意事项】如在用药过程中出现出疹,面色苍白,血压下降,脉博异常等症状,应立即停药。

【孕妇及哺乳期妇女用药】尚不明确【儿童用药】尚不明确【老年患者用药】尚不明确【药物相互作用】尚不明确【药物过量】尚不明确【贮藏】密封。

【有效期】三年【包装规格】0.1g*36s【批准文号】国药准字H20050667【生产企业】重庆药友制药责任有限公司。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档