《一元二次方程》单元检测数学试题二
(必考题)初中数学九年级数学上册第二单元《一元二次方程》测试卷(有答案解析)(2)
一、选择题1.一元二次方程x 2=2x 的根是( ).A .0B .2C .0和2D .0和﹣2 2.一元二次方程x 2﹣2x +5=0的根的情况为( ) A .有两个不相等的实数根 B .有两个相等实数根C .只有一个实数根D .没有实数根3.某商品的售价为100元,连续两次降价%x 后售价降低了36元,则x 的值为( )A .60B .20C .36D .18 4.如图①,在矩形ABCD 中,AB >AD ,对角线AC ,BD 相交于点O ,动点P 由点A 出发,沿A→B→C 运动.设点P 的运动路程为x ,△AOP 的面积为y ,y 与x 的函数关系图象如图②所示,则AB 边的长为( )A .3B .4C .5D .6 5.定义运算:21a b ab ab =--☆.例如:23434341=⨯-⨯-☆.则方程10x =☆的根的情况为( ) A .有两个不相等的实数根B .有两个相等的实数根C .无实数根D .只有一个实数根6.用配方法解方程2420x x -+=,下列配方正确的是( ) A .()222x -= B .()222x += C .()222x -=- D .()226x -= 7.已知a 是方程2210x x --=的一个根,则代数式2245a a -+的值应在( ) A .4和5之间 B .3和4之间 C .2和3之间 D .1和2之间 8.某小区附近新建一个游泳馆,馆内矩形游泳池的面积为2300m ,且游泳池的宽比长短10m .设游泳池的长为xm ,则可列方程为( )A .()10300x x -=B .()10300x x +=C .()2210300x x -= D .()2210300x x +=9.若12,x x 是方程2420200x x --=的两个实数根,则代数式211222x x x -+的值等于( )A .2020B .2019C .2029D .202810.某养殖户的养殖成本逐年增长,已知第1年的养殖成本为10万元,第3年的养殖成本为16万元,设每年平均增长的百分率为x ,则下面所列方程中正确的是( ) A .10(1﹣x )2=16 B .16(1﹣x )2=10C .16(1+x )2=10D .10(1+x )2=1611.受非洲猪瘟及其他因素影响,2020年9月份猪肉价格两次大幅度上涨,瘦肉价格由原来23元/千克,连续两次上涨x%后,售价上升到60元/千克,则下列方程中正确的是( )A .23(1﹣x%)2=60B .23(1+x%)2=60C .23(1+x 2%)=60D .23(1+2x%)=6012.若关于x 的一元二次方程kx 2-3x +1=0有实数根,则k 的取值范围为( ) A .k ≥94 B .k ≤94且k ≠0 C .k <94且k ≠0 D .k ≤94二、填空题13.某电脑公司计划两年内将产品成本由原来2500元下降到1600元,则每年平均下降的百分率是________.14.已知关于x 的一元二次方程m 2x ﹣nx ﹣m ﹣3=0,对于任意实数n 都有实数根,则m 的取值范围是_____.15.某超市1月份营业额为90万元,1月、2月、3月总营业额为144万元,设平均每月营业额增长率为x ,则可列方程为__.16.若x=2是一元二次方程x 2+x+c=0的一个解,则c 2=__.17.已知:(x 2+y 2)(x 2+y 2﹣1)=20,那么x 2+y 2=_____.18.有一个人患了流感,两轮传染后共有225人患了流感,则平均每轮传染______人. 19.一个农业合作社以64000元的成本收获了某种农产品80吨,目前可以以1200元/吨的价格售出,如果储藏起来,每星期会损失2吨,且每星期需支付各种费用1600元,但同时每星期每吨的价格将上涨200元.设储藏x 个星期再出售这批农产品,可获利122000元.根据题意,可列方程______.20.已知关于x 的二次方程(1﹣2k )x 2﹣2x ﹣1=0有实数根,则k 的取值范围是_______.三、解答题21.一个直角三角形的两条直角边的和是7cm ,面积是26cm ,求两条直角边的长. 22.解下列方程:2(1)3(1)x x x -=-23.解方程:(1)2(2)3(2)0x x ++=-;(2)2101x x-=+. 24.2020年年末,大丰迈入高铁时代,建设部门打算对高铁站广场前一块长为20m ,宽为8m 的矩形空地进行绿化,计划在其中间修建两块相同的矩形绿地(图中阴影部分),若它们的面积之和为102m 2,两块绿地之间及周边留有宽度相等的人行通道,问人行通道的宽度是多少米?25.用适当的方法解下列方程:(1)22210x x +-= (2)225(3)9x x +=-26.在ABC 中,90,10cm B AB BC ∠===,点P 、Q 分别从A 、C 两点同时出发,均以1cm/s 的速度作直线运动,已知点P 沿射线AB 运动,点Q 沿边BC 的延长线运动,设点P 运动时间为(s)t ,PCQ △的面积为()2cm S .当P 运动到几秒时625ABC S S =?【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据一元二次方程的性质,先提公因式,通过计算即可得到答案.【详解】移项得,x 2-2x =0,提公因式得,x (x-2)=0,解得,x 1=0,x 2=2,故选:C .【点睛】本题考查了一元二次方程的知识;解题的关键是熟练掌握一元二次方程的性质,从而完成求解.2.D【分析】根据根的判别式判断 .【详解】解:∵△=4﹣20=﹣16<0,∴方程没有实数根.故选:D .【点睛】本题考查一元二次方程的根的情况,熟练掌握根判别式的计算方法及应用是解题关键. 3.B解析:B【分析】起始价为100元,终止价为100-36=64元,根据题意列方程计算即可.【详解】∵起始价为100元,终止价为100-36=64元,∴根据题意,得1002(1-%)x =64,解得x=20或x=180(舍去),故选B .【点睛】本题考查了一元二次方程的增长率问题,熟练掌握增长率问题的计算方法,正确布列方程是解题的关键.4.D解析:D【分析】当P 点在AB 上运动时,△AOP 面积逐渐增大,当P 点到达B 点时,结合图象可得△AOP 面积最大为6,得到AB 与BC 的积为24;当P 点在BC 上运动时,△AOP 面积逐渐减小,当P 点到达C 点时,△AOP 面积为0,此时结合图象可知P 点运动路径长为10,得到AB 与BC 的和为10,构造关于AB 的一元二方程可求解.【详解】解:当P 点在AB 上运动时,△AOP 面积逐渐增大,当P 点到达B 点时,△AOP 面积最大为6. ∴12AB·12BC=6,即AB•BC=24. 当P 点在BC 上运动时,△AOP 面积逐渐减小,当P 点到达C 点时,△AOP 面积为0,此时结合图象可知P 点运动路径长为10,∴AB+BC=10.则BC=10-AB ,代入AB•BC=24,得AB 2-10AB+24=0,解得AB=4或6,因为AB >BC ,所以AB=6.【点睛】本题主要考查动点问题的函数图象,解一元二次方程,解题的关键是分析三角形面积随动点运动的变化过程,找到分界点极值,结合图象得到相关线段的具体数值.5.A解析:A【分析】根据新定义运算法则以及利用△>0可判断方程根的情况.【详解】解:由题意可知:1☆x=x2-x-1=0,∴△=1-4×1×(-1)=5>0,∴有两个不相等的实数根故选:A.【点睛】本题考查根的判别式,解题的关键是正确理解新定义运算法则,本题属于基础题型.6.A解析:A【分析】先把方程变形为x2-4x=-2,再把两方程两边加上4,然后把方程左边用完全平方公式表示即可.【详解】解:x2-4x=-2,x2-4x+4=2,(x-2)2=2.故选:A.【点睛】本题考查了解一元二次方程-配方法:将一元二次方程配成(x+m)2=n的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.7.A解析:A【分析】先依据一元二次方程的定义得到a式的取值范围.【详解】解:∵a是方程2210--=的一个根,x x∴2210a a--=,即221-=,a a∴原式=2-=+a a2(2)2∵459,∴23<<, ∴425<+<,即224a a -+的值在4和5之间,故选:A .【点睛】本题考查一元二次方程的解得定义,估算.掌握整体代入法是解题关键.8.A解析:A【分析】因为游泳池的长为xm ,那么宽可表示为(x-10)m ,根据面积为300,即可列出方程.【详解】解:因为游泳池的长为xm ,那么宽可表示为(x-10)m ;则根据矩形的面积公式:x (x-10)=300;故选:A .【点睛】本题考查了一元二次方程的应用,掌握“矩形面积=长×宽”是关键.9.D解析:D【分析】先根据一元二次方程的解的概念和根与系数的关系得出21142020x x -=,124x x +=,代入原式计算即可.【详解】解:∵1x ,2x 是方程2420200x x --=的两个实数根,∴211420200x x --=,即21142020x x -=,由根与系数之间关系可知124x x +=,∴211222x x x -+=21112422x x x x -++=2020+122()x x +=2020+8=2028.所以选项D 正确.故答案为:D【点睛】本题主要考查了一元二次方程的解、根与系数之间的关系,本题解题的关键是将211222x x x -+进行等量变形,并代入求解.10.D解析:D【分析】根据第一年的养殖成本×(1+平均年增长率)2=第三年的养殖成本,列出方程即可.【详解】设增长率为x ,根据题意得210(1)16x +=. 故选:D .【点睛】本题考查了从实际问题中抽象出一元二次方程,若设变化前的量为a ,变化后的量为b ,平均变化率为x ,则经过两次变化后的数量关系为2(1)a x b ±=.(当增长时中间的“±”号选“+”,当下降时中间的“±”号选“-”). 11.B解析:B【分析】可先用x%表示第一次提价后商品的售价,再根据题意表示第二次提价后的售价,然后根据已知条件得到关于x%的方程.【详解】解:当猪肉第一次提价x%时,其售价为23+23x%=23(1+x%);当猪肉第二次提价x%后,其售价为23(1+x%)+23(1+x%)x%=23(1+x%)2. ∴23(1+x%)2=60.故选:B .【点睛】本题考查了一元二次方程的应用,要根据题意列出第一次提价后商品的售价,再根据题意列出第二次提价后售价的方程,令其等于60即可.12.B解析:B【分析】根据二次项系数非零及根的判别式△≥0,即可得出关于k 的一元一次不等式组,解之即可得出k 的取值范围.【详解】解:∵关于x 的一元二次方程kx 2-3x+1=0有实数根,∴()203410k k ≠⎧⎪⎨--⨯⨯≥⎪⎩=, ∴k≤94且k≠0. 故选:B .【点睛】 本题考查了一元二次方程的定义以及根的判别式,利用二次项系数非零及根的判别式△≥0,找出关于k 的一元一次不等式组是解题的关键.二、填空题13.20【分析】新成本=原成本×(1-平均每月降低的百分率)2把相关数值代入即可求解【详解】∵原开支为2500元设平均每月降低的百分率为x∴第一个月的开支为2500×(1-x)元第二个月的开支为2500解析:20%【分析】新成本=原成本×(1-平均每月降低的百分率)2,把相关数值代入即可求解.【详解】∵原开支为2500元,设平均每月降低的百分率为x,∴第一个月的开支为2500× (1-x)元,第二个月的开支为2500×(1-x)×(1-x) =2500×(1-x)2元,可列方程为:2500(1-x)2= 1600,解得:x=0.2=20%或x =-1.8(舍去)故答案为:20%.【点睛】本题考查求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a (1土x) 2=b.14.m>0或m≤-3【分析】把方程有实数根转型为根的判别式大于等于零根据n的任意性构造不等式求解即可【详解】∵关于x的一元二次方程m﹣nx﹣m﹣3=0对于任意实数n都有实数根∴△≥0且m≠0∴≥0∴≥0解析:m>0或m≤-3.【分析】把方程有实数根,转型为根的判别式大于等于零,根据n的任意性,构造不等式求解即可.【详解】∵关于x的一元二次方程m2x﹣nx﹣m﹣3=0,对于任意实数n都有实数根,∴△≥0,且m≠0,∴2()4(3)n m m-++≥0,∴22412n m m++≥0,∵对于任意实数n都有实数根,∴2412m m+≥0,∴30mm≥⎧⎨+≥⎩或30mm≤⎧⎨+≤⎩,∴m≥0或m≤-3,且m≠0,∴m>0或m≤-3,故答案为:m>0或m≤ -3.【点睛】本题考查了一元二次方程的根的判别式,熟练掌握根的判别式,并规范把问题转化为不等式组求解是解题的关键.15.【分析】增长率问题一般用增长后的量=增长前的量×(1+增长率)由此可以求出2月份和3月份的营业额而第一季度的总营业额已经知道所以可以列出一个方程【详解】解:设平均每月营业额的增长率为x 则2月份的营业 解析:()()290190114490x x +++-=【分析】增长率问题,一般用增长后的量=增长前的量×(1+增长率),由此可以求出2月份和3月份的营业额,而第一季度的总营业额已经知道,所以可以列出一个方程.【详解】解:设平均每月营业额的增长率为x ,则2月份的营业额为:90×(1+x ),3月份的营业额为:90×(1+x )2,则由题意列方程为:90(1+x )+90(1+x )2=144-90.故答案为:90(1+x )+90(1+x )2=144-90.【点睛】本题主要考查增长率问题,然后根据增长率和已知条件抽象出一元二次方程. 16.36【分析】根据一元二次方程的解的定义把x=2代入方程x2+x+c=0即可求得c 的值进而求得c2的值【详解】解:依题意得22+2+c=0解得c=-6则c2=(-6)2=36故答案为:36【点睛】本题解析:36【分析】根据一元二次方程的解的定义,把x=2代入方程x 2+x+c=0即可求得c 的值,进而求得c 2的值.【详解】解:依题意,得22+2+c=0,解得,c=-6,则c 2=(-6)2=36.故答案为:36.【点睛】本题考查了一元二次方程的解的定义.能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.17.5【分析】应用换元法得到一元二次方程解方程问题可解【详解】解:设t =x2+y2(t≥0)则t (t ﹣1)=20整理得(t ﹣5)(t+4)=0解得t =5或t =﹣4(舍去)所以x2+y2=5故答案是:5【解析:5【分析】应用换元法,得到一元二次方程,解方程问题可解.【详解】解:设t =x 2+y 2(t ≥0),则t (t ﹣1)=20.整理,得(t ﹣5)(t +4)=0.解得t =5或t =﹣4(舍去).所以x 2+y 2=5.故答案是:5.【点睛】本题考查了换元法和解一元二次方程的知识,解答关键是根据题意选择合适未知量使用换元法法解题.18.14【分析】如果设每轮传染中平均每人传染了x 人那么第一轮传染中有x 人被传染第二轮则有x (x+1)人被传染已知共有225人患了流感那么可列方程然后解方程即可【详解】解:设每轮传染中平均每人传染了x 人则解析:14【分析】如果设每轮传染中平均每人传染了x 人,那么第一轮传染中有x 人被传染,第二轮则有x (x+1)人被传染,已知“共有225人患了流感”,那么可列方程,然后解方程即可.【详解】解:设每轮传染中平均每人传染了x 人,则第一轮传染中有x 人被传染,第二轮则有x(x+1)人被传染,又知:共有225人患了流感,∴可列方程:1+x+x(x+1)=225,解得,114x =,216x =-(不符合题意,舍去)∴每轮传染中平均一个人传染了14个人.故答案为14.【点睛】本题考查由实际问题抽象出一元二次方程,解题的关键是找准等量关系.19.【分析】设储藏x 星期出售这批农产品可获利122000元则需要支付费用1600x 元损失2x 吨价格为(1200+200x )元根据获利122000元列方程求解【详解】解:设储藏x 星期出售这批农产品可获利1解析:()()1200200802160064000122000x x x +⨯---=【分析】设储藏x 星期出售这批农产品可获利122000元,则需要支付费用1600x 元,损失2x 吨,价格为(1200+200x )元,根据获利122000元,列方程求解.【详解】解:设储藏x 星期出售这批农产品可获利122000元,由题意得(1200+200x )×(80-2x )-1600x-64000=122000,故答案为:()()1200200802160064000122000x x x +⨯---=.【点睛】本题考查了一元二次方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系列方程.20.且【分析】根据二次项系数非零及根的判别式△≥0即可得出关于k 的一元一次不等式组解之即可得出k 的取值范围【详解】解:∵关于x 的一元二次方程(1﹣2k )x2﹣2x ﹣1=0有实数根解得且故答案为:且【点睛解析:1k ≤且12k ≠【分析】根据二次项系数非零及根的判别式△≥0,即可得出关于k 的一元一次不等式组,解之即可得出k 的取值范围.【详解】解:∵关于x 的一元二次方程(1﹣2k )x 2﹣2x ﹣1=0有实数根, 2120(2)4(1)(12)0k k -≠⎧∴⎨∆=--⨯-⨯-≥⎩解得1k ≤且12k ≠, 故答案为:1k ≤且12k ≠. 【点睛】本题考查了根的判别式以及一元二次方程的定义,利用二次项系数非零及根的判别式△≥0,找出关于k 的一元一次不等式组是解题的关键.三、解答题21.3cm ,4cm【分析】首先设一条直角边为xcm ,然后根据三角形的面积列出方程,从而求出x 的值,得出答案.【详解】解:设一条直角边为xcm ,则另一条直角边的长为(7)cm x -,根据题意得: 1(7)62x x -=,整理得: 27120x x -+=,解得:123,4x x ==,当3x =时,74x -=.当4x =时,73x -=.答:这两条直角边的长分别为3cm 和4cm .【点睛】本题考查一元二次方程在几何图形中运用,掌握根据面积列一元二次方程,及其解方程的方法.22.1231,2x x ==【分析】 移项后分解因式,即可得出两个一元一次方程,求出方程的解即可.【详解】解:()()2131x x x -=-,移项得()()21310x x x ---=,因式分解得()()2310x x --=, 解得1231,2x x ==. 【点睛】本题考查了因式分解法解一元二次方程,正确理解因式分解法的基本思想是化成一元一次方程.23.(1)122=1x x =-,;(2)2x =-是原方程的解.【分析】(1)利用因式分解法解一元二次方程即可;(2)利用方程两边都乘以x(x+1)把分式方程转化为整式方程,解方程,检验即可.【详解】解:(1)2(2)3(2)0x x ++=-, 因式分解()(2)230x x ++-=,化为20-1=0x x +=,,∴122=1x x =-,;(2)2101x x-=+, 方程两边都乘以x(x+1)得()210x x +-=,去括号得:2+20x x -=,移项合并得:2x =-,检验当2x =-时,()()122120x x +=-⨯-+=≠,所以2x =-是原方程的解.【点睛】本题考查一元二次方程的解法与可化为一元一次方程的分式方程的解法,掌握一元二次方程的解法与可化为一元一次方程的分式方程的解法是解题关键.24.1【分析】根据矩形的面积和为102平方米列出一元二次方程求解即可.【详解】解:设人行通道的宽度为x 米,根据题意得,(20﹣3x )(8﹣2x )=102,解得:x 1=1,x 2293=(不合题意,舍去). 答:人行通道的宽度为1米.【点睛】本题考查了一元二次方程的应用,利用两块矩形的面积之和为102m 2得出等式是解题关键.25.(1)12x x ==2)1293,2x x =-=- 【分析】(1)根据公式法计算即可;(2)根据因式分解法计算即可;【详解】解:(1)22210x x +-=, 2242(1)12∆=-⨯⨯-=,222x -±=⨯,121122x x -+-∴==; (2)25(3)(3)(3)x x x +=+-,25(3)(3)(3)0x x x +-+-=,(3)[5(3)(3)]0x x x ++--=,即(3)(418)0x x ++=,1293,2x x ∴=-=-. 【点睛】本题主要考查了一元二次方程的求解,准确计算是解题的关键.26.4秒、6秒或12秒【分析】先根据三角形面积公式可得S△ABC,根据S=625S△ABC,可求△PCQ的面积,再分两种情况:P在线段AB上;P在线段AB的延长线上;进行讨论即可求得P运动的时间.【详解】解:∵S△ABC=12AB•BC=50cm2,625S△PCQ=12cm2,设当点P运动x秒时,S=625S△ABC,当P在线段AB上,此时CQ=x,PB=10-x,S△PCQ=12x(10-x)=12,化简得 x2-10 x+24=0,解得x=6或4,P在线段AB的延长线上,此时CQ=x,PB=x-10,S△PCQ=12x(x-10)=12,化简得 x2-10 x+24=0,x2-10 x-24=0,解得x=12或-2,负根不符合题意,舍去.所以当点P运动4秒、6秒或12秒时,S=625S△ABC.【点睛】此题主要考查了三角形面积公式和一元二次方程的应用,根据已知分两种情况进行讨论是解题关键.。
(常考题)北师大版初中数学九年级数学上册第二单元《一元二次方程》测试卷(包含答案解析)(2)
一、选择题1.一元二次方程x 2=2x 的根是( ).A .0B .2C .0和2D .0和﹣2 2.设a ,b 是方程220220x x +-=的两个实数根,则22a a b ++的值为( ) A .2019B .2020C .2021D .2022 3.若关于x 的一元二次方程220x x a ++=的一个根大于1,另一个根小于1,则a 的值可能为( )A .2-B .4-C .2D .44.学校准备举办“和谐校园”摄影作品展黛,现要在一幅长30cm ,宽20cm 的矩形作品四周外围上宽度相等的彩纸,并使彩纸的面积恰好与原作品面积相等,设彩纸的宽度为cm x ,则x 满足的方程是( )A .()()3022023020=++⨯x xB .()()30203020++=⨯x xC .()()30220223020--=⨯⨯x xD .()()30220223020++=⨯⨯x x 5.下列一元二次方程中,有两个不相等实数根的是( ) A .2690x x ++=B .2230x x -+=C .22x x -=D .23420x x -+= 6.定义运算:21a b ab ab =--☆.例如:23434341=⨯-⨯-☆.则方程10x =☆的根的情况为( )A .有两个不相等的实数根B .有两个相等的实数根C .无实数根D .只有一个实数根 7.某企业通过改革,生产效率得到了很大的提高,该企业一月份的营业额是1000万元,月平均增长率相同,第一季度的总营业额是3390万元.若设月平均增长率是x ,那么可列出的方程是( )A .1000(1+x )2=3390B .1000+1000(1+x )+1000(1+x )2=3390C .1000(1+2x )=3390D .1000+1000(1+x )+1000(1+2x )=33908.用配方法解方程2420x x -+=,下列配方正确的是( )A .()222x -=B .()222x +=C .()222x -=-D .()226x -= 9.若关于x 的一元二次方程()()212110m x m x ---+=有两个相等的实数根,则m 的值是( )A .-1或2B .1C .2D .1或210.在ABC 中,2BC =,AC =30A ∠=︒ ,则AB 的长为( )A B .2 C 4 D .2或4 11.某小区附近新建一个游泳馆,馆内矩形游泳池的面积为2300m ,且游泳池的宽比长短10m .设游泳池的长为xm ,则可列方程为( )A .()10300x x -=B .()10300x x +=C .()2210300x x -= D .()2210300x x +=12.当3b c -=时,关于x 的一元二次方程220x bx c -+=的根的情况为( ) A .有两个不相等的实数根 B .有两个相等的实数根C .没有实数根D .无法确定 二、填空题13.设a ,b 分别是方程220220x x +-=的两个实数根,则22a a b ++的值是______. 14.已知一元二次方程ax 2+bx +c =0(a ≠0).下列说法:①若a +c =0,则方程一定有两个不相等的实数根;②若a +b +c =0,则1一定是这个方程的实数根;③若b 2﹣6ac >0,则方程一定有两个不相等的实数根;④若ax 2+bx +c =0(a ≠0)的两个根为2和3,则1211,23x x ==是方cx 2+bx +a =0(a ≠0)的根,其中正确的是_____(填序号). 15.关于x 的方程2210mx x --=有两个不相等的实数根,那么m 的取值范围是________.16.如果菱形的两对角线的长分别是关于x 的一元二次方程2240x mx ++=的两实数根,那么该菱形的面积是____.17.已知三角形的两边长分别是方程211300x x -+=的两个根,则该三角形第三边m 的取值范围是______.18.已知m 为一元二次方程x²-3x-2020=0的一个根,则代数式2m²-6m+2的值为___________19.将一元二次方程2310x x -+=变形为()2x h k +=的形式为________. 20.对于实数a b 、,定义新运算“⊗”:2a b a ab ⊗=-,如2424428⊗=-⨯=.若44x ⊗=-,则实数x 的值是_______.三、解答题21.已知关于x 的一元二次方程2(3)890a x x --+=.(1)若方程的一个根为1x =-,求a 的值;(2)若方程有实数根,求满足条件的正整数a 的值:(3)请为a 选取一个合适的整数,使方程有两个整数根,并求这两个根.22.已知关于x 的一元二次方程()22230x m x m +++=有两根α,β. (1)求m 的取值范围;(2)若()()111αβ++=,求m 的值.23.解方程∶(1)213(1)x x -=-(2)241x x -=-24.已知关于x 的一元二次方程2410x x m -++=有实数根.(1)若1是方程的一个根,求出一元二次方程的另一根;(2)若方程的两个实数根为1x ,2x ,且1211+x x =3,求m 的值. 25.解方程:(1)2210x x +-=; (2)3(1)2(1)x x x -=-.26.已知关于x 的一元二次方程222x x m -+=有两个不相等的实数根.(1)求m 的取值范围;(2)当1m =时,求方程222x x m -+=的解.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据一元二次方程的性质,先提公因式,通过计算即可得到答案.【详解】移项得,x 2-2x =0,提公因式得,x (x-2)=0,解得,x 1=0,x 2=2,故选:C .【点睛】本题考查了一元二次方程的知识;解题的关键是熟练掌握一元二次方程的性质,从而完成求解.2.C解析:C【分析】由一元二次方程根与系数的关系,得到1a b +=-,然后求出22022a a +=,然后代入计算,即可得到答案.【详解】解:∵a ,b 是方程220220x x +-=的两个实数根,∴1a b +=-,22022a a +=,∴222()()a a b a a a b ++=+++2022(1)=+-2021=.【点睛】本题考查了一元二次方程的解,根与系数的关系,解题的关键是熟练掌握运算法则,正确的进行解题.3.B解析:B【分析】设220x x a ++=的两根分别为12,,x x 可得12122,,x x x x a +=-= 由关于x 的一元二次方程220x x a ++=的一个根大于1,另一个根小于1,可得()()1211x x --<0, 再列不等式:()21a --+<0, 解不等式可得答案.【详解】解:设220x x a ++=的两根分别为12,,x x12122,,x x x x a ∴+=-=关于x 的一元二次方程220x x a ++=的一个根大于1,另一个根小于1,()()1211x x ∴--<0,()12121x x x x ∴-++<0,()21a ∴--+<0,a ∴<3,-4a ∴=-符合题意,所以,,A C D 不符合题意,B 符合题意,故选:.B【点睛】本题考查的是一元二次方程根与系数的关系,一元一次不等式的解法,掌握以上知识是解题的关键.4.D解析:D【分析】由彩纸的面积恰好与原画面面积相等,即可得出关于x 的一元二次方程,此题得解.【详解】解:依题意,得()()30220223020++=⨯⨯x x .故选:D .【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.5.C解析:C根据一元二次方程根的判别式判断即可.【详解】解:A.x2+6x+9=0,则△=62-4×9=36-36=0,即该方程有两个相等实数根,故本选项不合题意;B.2230-+=,则△=(-2)2-4×3=4-12=-8<0,即该方程无实数根,故本选项不合题意;x xC.22-=,则△=(-1)2-4×(-2)=1+8=9>0,即该方程有两个不相等实数根,故本选项合题x x意;D.2-+=,则△=(-4)2-4×3×2=16-24=-8<0,即该方程无实数根,故本选项不合题x x3420意.故选C.【点睛】本题考查了一元二次方程根的判别式,一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac 有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.6.A解析:A【分析】根据新定义运算法则以及利用△>0可判断方程根的情况.【详解】解:由题意可知:1☆x=x2-x-1=0,∴△=1-4×1×(-1)=5>0,∴有两个不相等的实数根故选:A.【点睛】本题考查根的判别式,解题的关键是正确理解新定义运算法则,本题属于基础题型.7.B解析:B【分析】月平均增长的百分率是x,则该超市二月份的营业额为1000(1+x)万元,三月份的营业额为1000(1+x)2万元,根据该超市第一季度的总营业额是3990万元,即可得出关于x的一元二次方程,此题得解.【详解】解:设月平均增长的百分率是x,则该超市二月份的营业额为1000(1+x)万元,三月份的营业额为1000(1+x)2万元,依题意,得1000+1000(1+x)+1000(1+x)2=3990.故选:B.【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解8.A解析:A【分析】先把方程变形为x 2-4x=-2,再把两方程两边加上4,然后把方程左边用完全平方公式表示即可.【详解】解:x 2-4x=-2,x 2-4x+4=2,(x-2)2=2.故选:A .【点睛】本题考查了解一元二次方程-配方法:将一元二次方程配成(x+m )2=n 的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.9.C解析:C【分析】关于x 的一元二次方程有两个相等的实数根,说明判别式=0,且要注意二次项系数不为0,解出m 的值即可.【详解】关于x 的一元二次方程()()212110m x m x ---+=有两个相等的实数根, 则()()22141010m m m ⎧⎡⎤∆=----=⎪⎣⎦⎨-≠⎪⎩, 解得:11m =(舍去),22m =∴m=2,故选:C .【点睛】本题是对一元二次方程的考查,熟练掌握一元二次方程的解法及根的判别式是解决本题的关键.10.D解析:D【分析】利用分类讨论的思想,①当AC 边为长边时,作BD AC ⊥交AC 于点D ,设BD=x ,由题意可求出AD 、DC 长,再根据勾股定理可列出关于x 的一元二次方程,解出x 即可求出AB 长;②当AB 边为长边时,作CE AB ⊥交AB 于点E ,由题意可求出CE 、AE 长,再根据勾股定理可求出BE 长,从而得到AB 长.【详解】分类讨论:①当AC 边为长边时,作BD AC ⊥交AC 于点D ,设BD=x ,∵30A ∠=︒, ∴33AD BD x ==, ∴233DC AC AD x =-=-,在Rt BCD 中,222BC BD DC =+,即2222(233)x x =+-,整理得:(1)(2)0x x --=.解得11x =,22x =. 当22x =时,23230DC AC AD =-=-=不合题意,所以此解舍去.∴2212AB BD ==⨯=.②当AB 边为长边时,作CE AB ⊥交AB 于点E ,∵30A ∠=︒,∴33233AE AC ==⨯=,1123322CE AC ==⨯=. 在Rt BCE 中,22222(3)1BE BC CE =-=-=,∴314AB AE BE =+=+=.【点睛】本题考查勾股定理以及解一元二次方程.根据题意结合勾股定理得到边的关系是解答本题的关键.11.A解析:A【分析】因为游泳池的长为xm ,那么宽可表示为(x-10)m ,根据面积为300,即可列出方程.【详解】解:因为游泳池的长为xm ,那么宽可表示为(x-10)m ;则根据矩形的面积公式:x (x-10)=300;故选:A .【点睛】本题考查了一元二次方程的应用,掌握“矩形面积=长×宽”是关键.12.A解析:A首先将已知等式转换形式,然后代入判别式,判断其正负,即可得解.【详解】解:3b c -=,3c b ∴=-, 220x bx c -+=,∴∆22()428b c b c =--⨯⨯=-28(3)b b =--2824b b =-+2(4)80b =-+>,∴方程有两个不相等的实数根,故选:A .【点睛】此题主要考查根据参数的值判定一元二次方程根的情况,熟练掌握,即可解题.二、填空题13.2021【分析】根据题意得a2+a-2022=0即a2+a=2022利用根与系数的关系得到a+b=-1代入整理后的代数式求值【详解】解:ab 分别是方程x2+x-2022=0的两个实数根∴a+b=-1解析:2021【分析】根据题意得a 2+a-2022=0,即a 2+a=2022,利用根与系数的关系得到a+b=-1,代入整理后的代数式求值.【详解】解:a ,b 分别是方程x 2+x-2022=0的两个实数根,∴a+b=-1,a 2+a-2022=0,∴a 2+a=2022,故a 2+2a+b=a 2+a+(a+b )=2022-1=2021,故答案为:2021.【点睛】本题主要考查了一元二次方程的根,根与系数的关系,一元二次方程20ax bx c ++=(0a ≠) 的根与系数的关系为12b x x a +=-,12c x x a=. 14.①②④【分析】根据一元二次方程根的判别式根与系数的关系解的意义求解【详解】解:①因为a+c =0a≠0所以ac 异号所以△=b2﹣4ac >0所以方程有两个不等的实数根故①正确;②∵x=1时ax2+bx+解析:①②④根据一元二次方程根的判别式、根与系数的关系、解的意义求解.【详解】解:①因为a +c =0,a ≠0,所以a 、c 异号,所以△=b 2﹣4ac >0,所以方程有两个不等的实数根故①正确;②∵x=1时,ax 2+bx +c =a+b+c ,∴a +b +c =0时,一定有一个根是1,故②正确;③根据b 2﹣6ac >0,不能得到b 2﹣4ac >0,从而不能证得方程ax 2+bx +c =0一定有两个不相等的实数根,故③错误;④∵2和3是ax 2+bx +c =0(a ≠0)的两个根, ∴235,236b c a a -=+==⨯=, ∴51,66b a c c -==, 而115111,236236b a c c+==-⨯==, ∴121123x x ==,是方和cx 2+bx +a =0(a ≠0)的根,故④正确, ∴正确的结论是①②④,故答案为:①②④,【点睛】 本题考查一元二次方程的应用,熟练掌握一元二次方程根判别式的计算与应用、根与系数的关系、解的意义是解题关键.15.且【分析】根据一元二次方程的定义以及根的判别式的意义可得△=4+4m >0且m≠0求出m 的取值范围即可【详解】解:∵方程mx2−2x -1=0有两个不相等的实数根∴△>0且m≠0∴4+4m >0且m≠0∴解析:1m >-且0m ≠【分析】根据一元二次方程的定义以及根的判别式的意义可得△=4+4m >0且m≠0,求出m 的取值范围即可.【详解】解:∵方程mx 2−2x-1=0有两个不相等的实数根,∴△>0且m≠0,∴4+4m >0且m≠0,∴m>-1,且m≠0,故答案为:m>-1且m≠0.【点睛】本题考查了一元二次方程ax 2+bx +c =0(a≠0,a ,b ,c 为常数)根的判别式△=b 2−4ac .当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了一元二次方程的定义.16.12【分析】可根据韦达定理求出一元二次方程的两根之积接着通过菱形面积公式求解即可【详解】解:设的两根为则一元二次方程的两实数根为菱形的两对角线的长菱形的面积===12故答案为:12【点睛】本题主要考解析:12【分析】可根据韦达定理求出一元二次方程的两根之积,接着通过菱形面积公式求解即可.【详解】解:设2240x mx ++=的两根为12x x 、,则1224x x =,一元二次方程的两实数根12x x 、为菱形的两对角线的长,∴菱形的面积=1212x x =1242⨯=12. 故答案为:12.【点睛】本题主要考查一元二次方程的韦达定理,还涉及菱形的面积运算,属于基础题,熟练掌握韦达定理及菱形的面积公式是解决本题的关键.17.【分析】先根据一元二次方程的根与系数的关系求得两根和与两根积经过变形得到两根差的值即可求得第三边的范围【详解】解:∵三角形两边长是方程x2−11x +30=0的两个根∴x1+x2=11x1x2=30∵解析:111<<m【分析】先根据一元二次方程的根与系数的关系求得两根和与两根积,经过变形得到两根差的值,即可求得第三边的范围.【详解】解:∵三角形两边长是方程x 2−11x +30=0的两个根,∴x 1+x 2=11,x 1x 2=30,∵(x 1−x 2)2=(x 1+x 2)2−4x 1x 2=121−120=1,∴x 1−x 2=1,又∵x 1−x 2<m <x 1+x 2,∴1<m <11.故答案为:1<m <11.【点睛】本题主要考查了三角形的三边关系和一元二次方程的根与系数的关系,要知道第三边大于两边差,小于两边和.18.4042【分析】由题意可得m2-3m=2020进而可得2m2-6m=4040然后整体代入所求式子计算即可【详解】解:∵m 为一元二次方程x2-3x -2020=0的一个根∴m2-3m -2020=0∴m2解析:4042【分析】由题意可得m 2-3m=2020,进而可得2m 2-6m=4040,然后整体代入所求式子计算即可.【详解】解:∵m 为一元二次方程x 2-3x -2020=0的一个根,∴m 2-3m -2020=0,∴m 2-3m=2020,∴2m 2-6m=4040,∴2m 2-6m+2=4040+2=4042.故答案为:4042.【点睛】本题考查了一元二次方程的解和代数式求值,熟练掌握基本知识、灵活应用整体思想是解题的关键.19.【分析】将方程常数项移到方程右边左右两边都加上左边化为完全平方式右边合并即可得到所求的结果【详解】解:移项得配方得即故答案为:【点睛】本题考查了配方法解一元二次方程利用此方法解方程时首先将二次项系数 解析:23524x ⎛⎫-= ⎪⎝⎭ 【分析】 将方程常数项移到方程右边,左右两边都加上232⎛⎫ ⎪⎝⎭,左边化为完全平方式,右边合并即可得到所求的结果.【详解】解:2310x x -+=移项得 231x x -=-, 配方得222333122x x ⎛⎫⎛⎫-+=-+ ⎪ ⎪⎝⎭⎝⎭ 即 23524x ⎛⎫-= ⎪⎝⎭ 故答案为:23524x ⎛⎫-= ⎪⎝⎭ 【点睛】本题考查了配方法解一元二次方程,利用此方法解方程时,首先将二次项系数化为1,常数项移到方程右边,然后方程两边都加上一次项系数一半的平方,左边化为完全平方式,右边合并为一个常数,开方即可求出解. 20.【分析】根据新运算法则以及一元二次方程的解法解答即可【详解】解:由题意可知:∴即解得:x =2故答案为:2【点睛】本题以新运算的形式考查了一元二次方程的解法正确理解新运算法则熟练掌握解一元二次方程的方 解析:2【分析】根据新运算法则以及一元二次方程的解法解答即可.【详解】解:由题意可知:2a b a ab ⊗=-,∴2444x x x ⊗=-=-,即244x x -=-,解得:x =2.故答案为:2.【点睛】本题以新运算的形式考查了一元二次方程的解法,正确理解新运算法则、熟练掌握解一元二次方程的方法是解题关键.三、解答题21.(1)-14;(2)1或2或4;(3)a=2,两根为-9或1【分析】(1)把1x =-代入方程求出a 即可.(2)利用判别式根据不等式即可解决问题.(3)利用(2)中结论,一一判断即可解决问题.【详解】解:(1)方程的一个根为1x =-,3890a ∴-++=,14a ∴=-.(2)由题意△0且3a ≠6436(3)0a ∴--, 解得439a , a 是正整数,1a 或2或4.(3)当2a =时,方程为2890x x +-=,解得9x =-或1.【点睛】本题考查了根的判别式,一元二次方程等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.22.(1)3m 4≥-;(2)m 3=【分析】(1)利用判别式得到()222340m m =+-≥,然后解不等式即可;(2)根据根与系数的关系得到()23m αβ+=-+,2m αβ=,由已知得到 0αβαβ++=,代入得到关于m 的方程,解方程即可求得m 的值.【详解】(1)由题意知:()22242340b ac m m =-=+-≥, 解得:3m 4≥-, ∴m 的取值范围是3m 4≥-; (2)由根与系数关系可知:()23m αβ+=-+,2m αβ=,∵()()111αβ++=,∴ 0αβαβ++=, 即()2230m m -+=,解得:1231m m ==-,(舍去),∴m 的值为3.【点睛】本题考查了一元二次方程根的判别式以及根与系数的关系,若12x x 、是一元二次方程20ax bx c ++=(0a ≠)的两根时,12b x x a +=-,12c x x a =.23.(1)11x =,22x =;(2)12x =22x =【分析】(1)移项后,运用因式分解法求解即可;(2)运用配方法求解即可.【详解】解:(1)213(1)x x -=- (1)(1)3(1)x x x +-=-(1)(1)3(1)0x x x +---=(1)(13)0x x -+-=(1)(2)0x x --=∴10x -=或20x -=11x ∴=,22x =;(2)241x x -=-24414x x -+=-+2(x 2)3-=2x ∴-=12x ∴=+22x =.【点睛】本题考查了一元二次方程的解法,解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.24.(1)3;(2)13. 【分析】(1)设方程的另一个根为α,选择合适计算方式,利用根与系数关系定理求解即可; (2)利用根与系数关系定理和根的判别式求解即可.【详解】解:(1)∵1是关于x 的一元二次方程2410x x m -++=的一个根,∴设α是关于x 的一元二次方程2410x x m -++=的另一个根,∴1+α=4,∴α=3,∴关于x 的一元二次方程2410x x m -++=的另一个根是3;(2)∵12,x x 是方程2410x x m -++=的两个实数根,∴=16-4(1)0m ∆+≥,∴3m ≤,又∵1211+x x =3 而124x x +=且121x x m =+, ∴1211+x x =1212431x x x x m +==+, ∴13m =<3, ∴m 的值是13. 【点睛】 本题考查了根与系数的关系定理的解题应用,根的判别式的应用,熟练掌握根与系数关系定理并灵活应用是解题的关键.25.(1)11x =-21x =-;(2)11x =,223x =【分析】(1)配方法求解可得;(2)因式分解法求解可得;【详解】(1)解:2212x x ++=2(1)2x +=1x +=11x ∴=-+21x =-.(2)解:3(1)2(1)0x x x ---=(1)(32)0x x --=10x -=;或320x -=11x ∴=,223x =. 【点睛】本题主要考查解一元二次方程的能力,根据不同的方程选择合适的方法是解题的关键.26.(1)3m <;(2)1211x x ==【分析】(1)根据分的判别式求解即可;(2)根据公式法计算即可;【详解】解:()1根据题意得:()2()2421240m m ∆=-=-->-,解得3m <;()2当1m =时,原方程为2210x x --=,()22(41)28--∆=⨯-=,∴x =,解得1211x x ==;【点睛】本题主要考查了一元二次方程根的判别式和公式法求解,准确计算是解题的关键.。
第二单元《一元二次方程》单元测试卷(标准难度)(含答案)
浙教版初中数学八年级下册第二单元《一元二次方程》(标准难度)(含答案解析)考试范围:第二单元; 考试时间:120分钟;总分:120分,第I卷(选择题)一、选择题(本大题共12小题,共36分。
在每小题列出的选项中,选出符合题目的一项)1. 若x=0是关于x的一元二次方程(k−1)x2+3x+k2−1=0(k为系数)的根,则k的值为( )A. k=1B. k=−1C. k≠1D. k=±12. 下列方程是一元二次方程的是( )A. x2+1x2=1 B. ax2+bx+c=0(a,b,c均为常数)C. (2x−1)(3x+2)=5D. (2x+1)2=4x2−33. 若m,n是方程x2−2022x−1=0的两个根,则(m2−2022m+3)·(n2−2022n+4)的值为.( )A. 16B. 12C. 20D. 304. 在《九章算术》“勾股”章里有求方程x2+34x−71000=0的正根才能解答的题目,以上方程用配方法变形正确的是( )A. (x+17)2=70711B. (x+17)2=71289C. (x−17)2=70711D. (x−17)2=712895. 用公式法求一元二次方程的根时,首先要确定a,b,c的值.对于方程−4x2+3=5x,下列叙述正确的是( )A. a=−4,b=5,c=3B. a=−4,b=−5,c=3C. a=4,b=5,c=3D. a=4,b=−5,c=−36. 下列方程中,有两个相等实数根的是( )A. x2−2x=3B. x2+1=0C. x2+1=2xD. x2−2x=07. 若函数y={x 2+3(x≤2)3x(x>2),则当函数值y=9时,自变量x的值是( )A. ±√6B. 3C. 3或±√6D. 3或−√68. 若16m+2<0,则关于x的方程mx2−(2m+1)x+m−1=0的根的情况是.( )A. 没有实数根B. 只有一个实数根C. 有两个相等的实数根D. 有两个不相等的实数根9. 如图,在宽为20m、长为30m的矩形地面上修建两条同样宽的道路,余下部分作为耕地.若耕地面积需要504m2,则修建的路宽应为( )A. 1mB. 1.5mC. 2mD. 2.5m10. 某校准备修建一个面积为200m2的矩形花圃,它的长比宽多10m.设花圃的宽为xm,则可列方程为.( )A. x(x−10)=200B. 2x+2(x−10)=200C. x(x+10)=200D. 2x+2(x+10)=20011. —个长方形的面积为9m2,并且长比宽多8m,设长方形的宽为x m,则列方程为( )A. 2x(x+8)=9B. 2[x+(x+8)]=9C. x(x−8)=9D. x(x+8)=912. 小滨家2019年年收入25万元,2021年年收入达到36万元,求这两年小滨家年收入的平均增长率.设这两年年收入的平均增长率为x,根据题意所列方程为( )A. 25x2=36B. 25(1+x)=36C. 25(1+x)2=36D. 25[1+(1+x)+(1+x)2]=36第II卷(非选择题)二、填空题(本大题共4小题,共12分)13. 已知关于x的一元二次方程(k−1)x2+6x+k2−1=0的常数项为0,则k的值为.14. 若方程x2−2x+m=0可以配方成(x−n)2=5(m,n为常数),则方程x2−2x+m=3的根为.15. 已知(a2+b2)(a2+b2−1)=6,则a2+b2的值为.16. 我市某企业为节约用水,自建污水净化站.7月份净化污水3000吨,9月份增加到3630吨,则这两个月净化的污水量平均每月增长的百分率为______%.三、解答题(本大题共9小题,共72分。
(常考题)北师大版初中数学九年级数学上册第二单元《一元二次方程》测试(含答案解析)(2)
一、选择题1.一元二次方程2(21)2(21)x x +=+的解是( )A .1212x x ==B .1212x x ==-C .1211,22x x =-=D .1211,2x x == 2.已知关于x 的方程220x bx c ++=的根为12x =-,23x =,则+b c 的值是( ) A .-10B .-7C .-14D .-2 3.下列一元二次方程中无实数根的是( )A .22x x =B .(1)(3)0x x ++=C .2(2)5x -=D .210x x -+= 4.下列方程中,是一元二次方程的是( )A .12x +=B .21x y +=C .243x x -=D .35-=xy 5.解方程2630x x -+=,可用配方法将其变形为( ) A .2(3)3x += B .2(3)6x -= C .2(3)3x -= D .2(6)3x -= 6.一元二次方程22410x x ++=的两根为1x 、2x ,则12x x +的值是( )A .4B .4-C .2-D .2 7.已知关于x 的一元二次方程2420ax x +-=有实数根,则a 的取值范围是( ) A .2a >-且0a ≠ B .2a ≥-且0a ≠ C .2a ≥- D .0a ≠ 8.在疫情期间,口罩的需求量急剧上升.某口罩生产企业四月份生产了口罩200000只, 如果要在第二季度总共生产728000只口罩,设生产口罩月平均增长的百分率为x ,则可根据题意列出的方程是( )A .()22000001+728000x =B .()32000001+728000x =C .()()22000001+2000001+728000x x +=D .()()2200000+2000001+2000001+728000x x +=9.疫情促进了快递行业高速发展,某家快递公司2020年5月份与7月份完成投递的快递总件数分别为100万件和144万件,设该快递公司5月到7月投递总件数的月平均增长率为x ,则下列方程正确的是( )A .100(12)144x +=B .2100(1)144x +=C .100(12)144x -=D .2100(1)144x -= 10.在下列方程中,有一个方程有两个实数根,且它们互为相反数,这个方程是( ) A .10x -= B .20x x += C .210x -= D .210x += 11.用配方法解一元二次方程29190x x -+=,配方后的方程为( )A .29524x ⎛⎫-= ⎪⎝⎭B .29524x ⎛⎫+= ⎪⎝⎭C .()2962x -=D .()2962x +=12.若关于x 的一元二次方程x 2+x -3m +1=0有两个实数根,则m 的取值范围是( ) A .m >14 B .m <14 C .m ≥14 D .m ≤14二、填空题13.关于x 的一元二次方程2(2)430k x x ---=有两个不相等的实数根,则k 的取值范围是__________.14.如图,有一块长21,m 宽10m 的矩形空地,计划在这块空地上修建两块相同的矩形绿地,两块绿地之间及周边留有宽度相同的人行通道,两块绿地的面积和为290m .设人行通道的宽度为xm ,根据题意可列方程:_______________________.15.一件商品的标价为108元,经过两次降价后的销售价是72元,求平均每次降价的百分率.若设平均每次降价的百分率为x ,则可列方程_________.16.若m 是一元二次方程x 2﹣3x +1=0的一个根,则2020﹣m 2+3m =_____.17.已知﹣2是关于x 的方程x 2﹣4x ﹣m 2=0的一个根,则m =______.18.α是一元二次方程2240x x --=的一个根,2αβ+=,则22ββ-的值是________.19.将一元二次方程2310x x -+=变形为()2x h k +=的形式为________.20.关于x 的方程222x x m p -+=,无论实数p 取何值,该方程总有两个不相等的实数根,则实数m 的取值范围为______. 三、解答题21.解方程(1)2(3)5(3)60x x +-++= (2) x 2﹣6x ﹣9=022.定义:若两个一元二次方程有且只有一个相同的实数根,我们就称这两个方程为“同伴方程”.例如x 2=4和(x-2)(x+3)=0有且只有一个相同的实数根x=2,所以这两个方程为“同伴方程”.(1)根据所学定义,下列方程属于“同伴方程”的是________;(只填写序号即可) ①()219x -=; ②2440x x ++=; ③()()420x x +-=; (2)若关于x 的一元二次方程x 2-2x=0与x 2+3x+m-1=0为“同伴方程”,求m 的值. 23.已知一元二次方程(a ﹣3)x 2﹣4x+3=0.(1)若方程的一个根为x =﹣1,求a 的值;(2)若方程有实数根,求满足条件的正整数a 的值.24.已知关于x 的一元二次方程x 2﹣2x +m =0有两个不相等的实数根x 1、x 2.(1)求m 的取值范围;(2)当x 1=﹣1时,求另一个根x 2的值.25.2019年年底以来,“新冠疫情在全球肆虐,由于我国政府措施得当,疫情得到控制.而某些国家不够重视,导致疫情持续蔓延.若某国一社区开始有2人感染发病,未加控制,结果两天后发现共有50人感染发病.(1)求每位发病者平均每天传染多少人?(2)若疫情得不到有效控制,按照这样的传染速度,再过一天发病人数会超过200人吗?26.解方程(1)(3)26x x x +=+; (2)22350x x --=【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】先将原方程整理为2(21)2(21)0x x +-+=,再利用因式分解法求出方程的解,即可得出结论.【详解】解:2(21)2(21)x x +=+, 移项,得2(21)2(21)0x x +-+=,分解因式,得(21)(21)0x x +-=,则210x +=或210x -=, 解得:1211,22x x =-=. 故选:C .【点睛】本题考查了解一元二次方程,掌握一元二次方程的解法及步骤是解题的关键. 2.C解析:C【分析】根据一元二次方程根与系数的关系分别求出b ,c 的值即可得到结论.【详解】解:∵关于x 的方程220x bx c ++=的根为12x =-,23x =,∴121222b c x x x x +=-=, ∴232322b c -+=--⨯=,,即b=-2,c=-12 ∴21214b c +=--=-.故选:C .【点睛】本题考查了一元二次方程ax 2+bx+c=0(a≠0)的根与系数的关系:若方程两个为x 1,x 2,则x 1+x 2=-b a ,x 1•x 2=c a. 3.D解析:D【分析】由因式分解法、偶次方的非负性和根的判别式依次判断即可;【详解】解:A.由22x x =可得(2)0x x -=,由因式分解法可知有两个实数根,故不符合题意;B.(1)(3)0x x ++=,由因式分解法可知有两个实数根,故不符合题意;C. 2(2)5x -=,50>,有两个实数根,故不符合题意;D. 224(1)41130b ac ∆=-=--⨯⨯=-<,没有实数根,符合题意.故选:D .【点睛】本题主要考查了根的判别式Δ=b 2−4ac 以及配方法和因式分解法解一元二次方程,牢记Δ<0时,方程有两个相等的实根是解题的关键.4.C解析:C【分析】只含有一个未知数,并且未知数的最高次数是2的方程是一元二次方程,根据定义解答即可.【详解】A 、是一元一次方程,不符合题意;B 、是二元一次方程,不符合题意;C 、是一元二次方程,符合题意;D 、是二元二次方程,不符合题意;故选:C .【点睛】此题考查一元二次方程,熟记定义是解题的关键.5.B解析:B【分析】方程两边同时加6即可配方变形,由此得到答案.【详解】解:方程两边同时加上6,得2696x x -+=,∴2(3)6x -=,故选:B .【点睛】此题考查一元二次方程的配方,掌握配方法的解题方法是解题的关键.6.C解析:C【分析】根据一元二次方程根与系数的关系求解即可.【详解】解:由一元二次方程根与系数的关系得:12x x +=-b a =4-2=-2. 故选:C .【点睛】本题考查了一元二次方程根与系数的关系,解题的关键是熟记12x x +=-b a ,12c x x a⋅=. 7.B解析:B【分析】根据方程有实数根得到.【详解】由题意得:0∆≥,即244(2)0a -⨯⨯-≥,且0a ≠,解得2a ≥-且0a ≠,故选:B .【点睛】此题考查根据一元二次方程根的情况求参数,掌握一元二次方程根的判别式与根的个数的三种情况是解题的关键. 8.D解析:D【分析】根据题意生产口罩月平均增长的百分率为x ,四月份生产了口罩200000只,第二季度总共生产728000只口罩,由此列出方程即可.【详解】解:设生产口罩月平均增长的百分率为x ,四月份生产了口罩200000只,∴五月份生产了口罩()2000001x +只,∴六月份生产了口罩()22000001+x 只, 又在第二季度四、五、六3个月总共生产了728000只口罩, ∴列式为:()()2200000+2000001+2000001+728000x x +=.故选:D .【点睛】此题考查一元二次方程的实际应用问题,属于增长率问题,根据题意列出等式是解决本题的关键.9.B解析:B【分析】利用7月份完成投递的快递总件数=5月份完成投递的快递总件数×(1+x )2,进而得出等式求出答案.【详解】解:设该快递公司这两个月投递总件数的月平均增长率为x ,根据题意,得100(1+x )2=144,故选:B .【点睛】本题考查了一元二次方程的应用,根据题意正确用未知数表示出七月份完成投递的快递总件数是解题的关键.10.C解析:C【分析】根据题意一次项系数为0且△>0判断即可.【详解】解:A 、x-1=0是一次方程,方程有一个实数根,故选项不合题意;B 、∵方程两根互为相反数和为0,一次项的系数为1,故选项不合题意;C 、∵△=0-4×1×(-1)=4>0,且一次项系数为0,故此选项符合题意;D 、∵△=0-4×1×1=-4<0,故此选项不合题意.故选:C .【点睛】本题考查了一元二次方程ax 2+bx+c=0(a≠0)的根与系数的关系:若方程的两根为x 1,x 2,则x 1+x 2=-b a ,x 1•x 2=c a,也考查了一元二次方程的根的判别式. 11.A解析:A【分析】两边配上一次项系数一半的平方,写成完全平方式即可得到答案.【详解】∵29190x x -+=,∴2919x x -=-, 则2818191944x x -+=-+, 即29524x ⎛⎫-= ⎪⎝⎭, 故选:A.【点睛】此题考查配方法解一元二次方程,掌握配方法的计算方法是解题的关键.12.C解析:C【分析】关于x 的一元二次方程2310x x m +-+=有两个实数根,即判别式△=24b ac - ≥0,即可得到关于m 的不等式,从而求得m 的范围;【详解】∵ 关于x 的一元二次方程2310x x m +-+=有两个实数根,∴ ()214131m ∆=-⨯⨯-+≥0, 解得:m≥14, 故选:C .【点睛】 本题考查了根的判别式,用到的知识点是一元二次方程根的情况与判别式△的关系,正确掌握根与判别式的关系是解题的关键.二、填空题13.且【分析】根据一元二次方程有两个不相等的实数根知△=b2-4ac >0结合一元二次方程的定义列出关于k 的不等式组解不等式组即可得答案【详解】解:∵关于的一元二次方程有两个不相等的实数根∴解得:且故答案 解析:23k >且2k ≠ 【分析】根据一元二次方程2(2)430k x x ---=有两个不相等的实数根,知△=b 2-4ac >0,结合一元二次方程的定义列出关于k 的不等式组,解不等式组即可得答案.【详解】解:∵关于x 的一元二次方程2(2)430k x x ---=有两个不相等的实数根,∴()()()22044230k k -≠⎧⎪⎨--⨯-⨯->⎪⎩, 解得:23k >且2k ≠, 故答案为:23k >且2k ≠. 【点睛】 本题考查了根的判别式以及一元二次方程的定义,根据二次项系数非零结合根的判别式△=b 2−4ac>0,列出关于k 的一元一次不等式组是解题的关键.14.【分析】根据矩形的性质求解即可;【详解】根据题意可知:宽为长为∴;故答案是【点睛】本题主要考查了一元二次方程的应用准确分析列方程是解题的关键解析:()()21310290x x --=【分析】根据矩形的性质求解即可;【详解】根据题意可知:宽为()102xm -,长为()213x m -,∴()()21310290x x --=;故答案是()()21310290x x --=.【点睛】本题主要考查了一元二次方程的应用,准确分析列方程是解题的关键. 15.【分析】设平均每次降价的百分率为x 根据一件商品的标价为108元经过两次降价后的销售价是72元即可列出方程【详解】解:设平均每次降价的百分率为x 根据题意可得:故答案为:【点睛】本题考查一元二次方程的实 解析:()2108172x -=【分析】设平均每次降价的百分率为x ,根据“一件商品的标价为108元,经过两次降价后的销售价是72元”即可列出方程.【详解】解:设平均每次降价的百分率为x ,根据题意可得:()2108172x -=,故答案为:()2108172x -=.【点睛】本题考查一元二次方程的实际应用,理解题意,找出等量关系是解题的关键. 16.2021【分析】先根据意元二次方程根的定义得到m2=3m ﹣1然后把m2=3m ﹣1代入2020﹣m2+3m 中后合并即可【详解】解:∵m 是一元二次方程x2﹣3x+1=0的一个根∴m2﹣3m+1=0∴m2解析:2021【分析】先根据意元二次方程根的定义得到m 2=3m ﹣1,然后把m 2=3m ﹣1代入2020﹣m 2+3m 中后合并即可.【详解】解:∵m 是一元二次方程x 2﹣3x +1=0的一个根,∴m 2﹣3m +1=0,∴m 2=3m ﹣1,∴2020﹣m 2+3m =2020﹣(3m ﹣1)+3m=2020﹣3m +1+3m=2021.故答案为2021.【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.利用整体代入的方法解决此类问题.17.【分析】利用方程的根的性质把x=-2代入方程得到关于m 的方程解这个方程即可【详解】解:∵是方程的一个根∴有解得:故答案为:【点睛】本题考查一元二次方程的根问题掌握方程的根的性质会用方程的解代入构造参解析:±【分析】利用方程的根的性质把x=-2代入方程得到关于m 的方程,解这个方程即可.【详解】解:∵2x =-是方程2240x x m --=的一个根,∴有()()222420m --⨯--=,解得:m =±故答案为:±【点睛】本题考查一元二次方程的根问题,掌握方程的根的性质,会用方程的解代入构造参数方程是解题关键.18.4【分析】利用根与系数的关系确定为原一元二次方程的另一个根即可求出的大小【详解】设原一元二次方程的另一个根为根据根与系数的关系可知根据题意∴为原一元二次方程的另一个根∴即故答案为:4【点睛】本题考查 解析:4【分析】利用根与系数的关系确定β为原一元二次方程的另一个根,即可求出22ββ-的大小.【详解】设原一元二次方程的另一个根为2x , 根据根与系数的关系可知22==21x α-+-, 根据题意=2αβ+,∴β为原一元二次方程的另一个根,∴ 224=0ββ--,即22=4ββ-.故答案为:4.【点睛】本题考查一元二次方程根与系数的关系.掌握一元二次方程根与系数关系的公式并确定β为原一元二次方程的另一个根是解答本题的关键.19.【分析】将方程常数项移到方程右边左右两边都加上左边化为完全平方式右边合并即可得到所求的结果【详解】解:移项得配方得即故答案为:【点睛】本题考查了配方法解一元二次方程利用此方法解方程时首先将二次项系数 解析:23524x ⎛⎫-= ⎪⎝⎭ 【分析】 将方程常数项移到方程右边,左右两边都加上232⎛⎫ ⎪⎝⎭,左边化为完全平方式,右边合并即可得到所求的结果.【详解】解:2310x x -+=移项得 231x x -=-, 配方得222333122x x ⎛⎫⎛⎫-+=-+ ⎪ ⎪⎝⎭⎝⎭ 即 23524x ⎛⎫-= ⎪⎝⎭ 故答案为:23524x ⎛⎫-= ⎪⎝⎭ 【点睛】本题考查了配方法解一元二次方程,利用此方法解方程时,首先将二次项系数化为1,常数项移到方程右边,然后方程两边都加上一次项系数一半的平方,左边化为完全平方式,右边合并为一个常数,开方即可求出解. 20.【分析】先根据一元二次方程的根的判别式可得从而可得m 应该小于的最小值再根据偶次方的非负性求解即可得【详解】原方程可化为当该方程总有两个不相等的实数根时则其根的判别式解得无论实数取何值该方程总有两个不 解析:1m <【分析】先根据一元二次方程的根的判别式可得21m p <+,从而可得m 应该小于21p +的最小值,再根据偶次方的非负性求解即可得.【详解】原方程可化为2220x x m p -+-=,当该方程总有两个不相等的实数根时,则其根的判别式222(2)4()4440m p m p ∆=---=-++>,解得21m p <+,无论实数p 取何值,该方程总有两个不相等的实数根,即无论实数p 取何值,不等式21m p <+恒成立,m ∴小于21p +的最小值,由偶次方的非负性得:20p ≥,211p ∴+≥,21p ∴+的最小值为1,1m ∴<,故答案为:1m <.【点睛】本题考查了一元二次方程的根的判别式等知识点,正确将问题转化为无论实数p 取何值,不等式21m p <+恒成立是解题关键. 三、解答题21.(1)121,0x x =-=;(2) 1x ,2x【分析】(1)用因式分解法解得()()32330x x +-+-=,化为10,0x x +== 解一次方程即可;(2)用配方法配方得()2x-3=18,直接开平方得x-3=±【详解】解:(1)2(3)5(3)60x x +-++=, ()()32330x x +-+-=,10,0x x +==,121,0x x =-=;(2) x 2﹣6x ﹣9=0,()2x-3=18,x-3=±x=3±,1x ,2x【点睛】本题考查一元二次方程的解法,掌握一元二次方程的各种解法,并能灵活选择恰当方法解方程是解题关键.22.(1)①②;(2)1或9-【分析】(1)结合题意,通过求解一元二次方程,即可得到答案;(2)首先求解220x x -=,得10x =,22x =;结合题意,将10x =,22x =分别代入x 2+3x+m-1=0,从而计算得m 的值;再经检验符合m 的值是否符合题意,从而完成求解. 【详解】(1)①()219x -=的解为:14x =,22x =-;②2440x x ++=的解为:2x =-③()()420x x +-=的解为:14x =-,22x = ∴属于“同伴方程”的是①②故答案为:①②;(2)220x x -=的解为:10x =,22x = 当相同的实数根是0x =时,则m-1=0, ∴m=1将m=1代入原方程,得:230x x +=∴10x =,23x =-∴两个方程有且仅有一个相同的实数根,符合题意;当相同的实数根是x=2时,则4+6+m-1=0,∴m=-9,将m=-9代入原方程,得:23100x x +-=∴15x =-,22x =∴两个方程有且仅有一个相同的实数根,符合题意;∴m 的值为1或-9.【点睛】本题考查了一元二次方程的知识;解题的关键是熟练掌握一元二次方程的解法,从而完成求解.23.(1)a=-4.(2)a=1或2或4.【分析】(1)把x=-1代入方程求出a 即可.(2)利用判别式根据不等式即可解决问题.【详解】解:(1)∵方程的一个根为x=-1,∴a-3+4+3=0,∴a=-4.(2)∵方程有实数根,∴△≥0且a≠3,∴16-12(a-3)≥0,解得a≤133,a≠3, ∵a 是正整数,∴a=1或2或4.【点睛】 本题属于根的判别式,一元二次方程的解等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.24.(1)m <1;(2)另一个根x 2的值是3.【分析】(1)根据题意可得根的判别式△>0,再代入可得4-4m>0,再解即可;(2) 根据根与系数的关系可得12b x x a+=-, 再代入可得答案. 【详解】解:(1)一元二次方程x 2﹣2x +m =0有两个不相等的实数根x 1、x 2.△=4﹣4m >0,∴m <1,(2)根据根与系数的关系可知:x 1+x 2=2,因为x 1=-1,所以x 2=3.【点睛】本题考查根与系数的关系及根的判别式,解题的关键是掌握根与系数的关系及根的判别式.25.(1)4人;(2)会【分析】(1)设每位发病者平均每天传染x 人,然后根据一开始有两人,经过两天后变为50人列出方程,即可求解;(2)利用(1)结果,结合第二天总人数计算即可求解.【详解】(1)设每位发病者平均每天传染x 人,由题意得, 22(1)50x +=.解得:14x =,26x =-(不合题意,舍去)答:每位发病者平均每天传染4个人;(2)50(1)505250x ⨯+=⨯=.答:若疫情得不到有效控制,再过一天发病人数会超过200人.【点睛】本题考查了一元二次方程的应用,属于传播类问题,关键是根据等量关系列出方程. 26.(1)122,3x x ==-;(2)152x =;21x =- 【分析】(1)用因式分解法解方程即可;(2)用公式法解方程即可.【详解】解:(1)(3)26x x x +=+, (3)2(3)0x x x +-+=,(2)(3)0x x -+=,20x -=或30x +=,122,3x x ==-;(2)22350x x --=,2,3,5a b c ==-=-,224(3)42(5)49b ac -=--⨯⨯-=,x == 125,12x x ==-. 【点睛】本题考查了一元二次方程的解法,解题关键是根据方程的特征选择恰当的方法进行解方程.。
北师大版九年级数学上册单元测试卷:第二章 《一元二次方程》(含答案)
单元测试卷:第二章《一元二次方程》时间:100分钟满分:100分班级:_______ 姓名:________得分:_______一.选择题(每题3分,共30分)1.将一元二次方程x2﹣8x﹣5=0化成(x+a)2=b(a,b为常数)的形式,则a,b的值分别是()A.﹣4,21 B.﹣4,11 C.4,21 D.﹣8,692.若关于x的方程(k﹣1)x2+4x+1=0有实数解,则k的取值范围是()A.k≥5 B.k≥5且k≠1 C.k≤5且k≠1 D.k≤53.下列方程中,是关于x的一元二次方程的是()A.+x=3 B.x2+2x﹣3=0C.4x+3=x D.x2+x+1=x2﹣2x4.已知m、n是一元二次方程x2﹣3x﹣1=0的两个实数根,则=()A.3 B.﹣3 C.D.﹣5.国家统计局统计数据显示,我国快递业务收入逐年增加.2017年至2019年我国快递业务收入由5000亿元增加到7500亿元.设我国2017年至2019年快递业务收入的年平均增长率为x,则可列方程为()A.5000(1+2x)=7500B.5000×2(1+x)=7500C.5000(1+x)2=7500D.5000+5000(1+x)+5000(1+x)2=75006.若a是方程x2﹣x﹣1=0的一个根,则﹣a3+2a+2020的值为()A.2020 B.﹣2020 C.2019 D.﹣20197.小刚在解关于x的方程ax2+bx+c=0(a≠0)时,只抄对了a=1,b=3,解出其中一个根是x=﹣1.他核对时发现所抄的c比原方程的c值小2.则原方程的根的情况是()A.不存在实数根B.有两个不相等的实数根C.有一个根是x=﹣1 D.有两个相等的实数根8.若x 1x 2=2,+=,则以x 1,x 2为根的一元二次方程是( )A .x 2+3x ﹣2=0B .x 2﹣3x +2=0C .x 2+3x +2=0D .x 2﹣3x ﹣2=0 9.若关于x 的一元二次方程x 2+2x +c =0有实数根,则c 的取值可能为( )A .4B .3C .2D .110.设a 、b 是方程x 2+x ﹣2020=0的两个实数根,则(a ﹣1)(b ﹣1)的值为( )A .﹣2018B .2018C .2020D .2022二.填空题(每题4分,共20分)11.已知一元二次方程x 2+2x +m =0的一个根是﹣1,则m 的值为 .12.若关于x 的一元二次方程mx 2﹣2x ﹣1=0无实数根,则一次函数y =mx +m 的图象不经过第 象限.13.已知x 为实数,且满足(2x 2+3)2+2(2x 2+3)﹣15=0,则2x 2+3的值为 . 14.2019女排世界杯于9月14月至29日在日本举行,赛制为单循环比赛(即每两个队之间比赛一场),一共比赛66场,中国女排以全胜成绩卫冕世界杯冠军,为国庆70周年献上大礼,则中国队在本届世界杯比赛中连胜 场.15.已知一元二次方程x 2+2x ﹣8=0的两根为x 1、x 2,则+2x 1x 2+= .三.解答题(每题10分,共50分)16.解下列方程.(1)x 2+2x ﹣35=0(2)4x (2x ﹣1)=1﹣2x17.某公司设计了一款工艺品,每件的成本是40元,为了合理定价,投放市场进行试销:据市场调查,销售单价是50元时,每天的销售量是100件,而销售单价每提高1元,每天就减少售出2件,但要求销售单价不得超过65元.(1)若销售单价为每件60元,求每天的销售利润;(2)要使每天销售这种工艺品盈利1350元,那么每件工艺品售价应为多少元?18.某扶贫单位为了提高贫困户的经济收入,购买了33m的铁栅栏,准备用这些铁栅栏为贫困户靠墙(墙长15m)围建一个中间带有铁栅栏的矩形养鸡场(如图所示).(1)若要建的矩形养鸡场面积为90m2,求鸡场的长(AB)和宽(BC);(2)该扶贫单位想要建一个100m2的矩形养鸡场,请直接回答:这一想法能实现吗?19.已知关于x的方程x2﹣(2k+1)x+4(k﹣)=0.(1)求证:无论k取何值,此方程总有实数根;(2)若等腰△ABC的一边长a=3,另两边b、c恰好是这个方程的两个根,求k值多少?20.某商店以每件40元的价格进了一批热销商品,出售价格经过两个月的调整,从每件50元上涨到每件72元,此时每月可售出188件商品.(1)求该商品平均每月的价格增长率;(2)因某些原因,商家需尽快将这批商品售出,决定降价出售.经过市场调查发现:售价每下降一元,每个月多卖出一件,设实际售价为x元,则x为多少元时商品每月的利润可达到4000元.参考答案一.选择题1.解:∵x2﹣8x﹣5=0,∴x2﹣8x=5,则x2﹣8x+16=5+16,即(x﹣4)2=21,∴a=﹣4,b=21,故选:A.2.解:①当该方程是关于x的一元一次方程时,k﹣1=0即k=1,此时x=﹣,符合题意;②当该方程是关于x的一元二次方程时,k﹣1≠0即k≠1,此时△=16﹣4(k﹣1)≥0.解得k≤5;综上所述,k的取值范围是k≤5.故选:D.3.解:A、因为方程是分式方程,不是整式方程,所以方程不是一元二次方程,故本选项不符合题意;B、是一元二次方程,故本选项符合题意;C、因为方程是一元一次方程,所以方程不是一元二次方程,故本选项不符合题意;D、因为方程是一元一次方程,所以方程不是一元二次方程,故本选项不符合题意;故选:B.4.解:根据题意得m+n=3,mn=﹣1,所以=.故选:B.5.解:设我国2017年至2019年快递业务收入的年平均增长率为x,由题意得:5000(1+x)2=7500,故选:C.6.解:∵a是方程x2﹣x﹣1=0的一个根,∴a2﹣a﹣1=0,∴a 2﹣1=a ,﹣a 2+a =﹣1,∴﹣a 3+2a +2020=﹣a (a 2﹣1)+a +2020=﹣a 2+a +2020=2019.故选:C .7.解:∵小刚在解关于x 的方程ax 2+bx +c =0(a ≠0)时,只抄对了a =1,b =3,解出其中一个根是x =﹣1,∴(﹣1)2﹣3+c =0,解得:c =2,故原方程中c =4,则b 2﹣4ac =9﹣4×1×4=﹣7<0,则原方程的根的情况是不存在实数根.故选:A .8.解:∵+=,∴x 1+x 2=x 1x 2,∵x 1x 2=2,∴x 1+x 2=3,∴以x 1,x 2为根的一元二次方程是x 2﹣3x +2=0.故选:B .9.解:根据题意得△=22﹣4c ≥0,解得c ≤1.故选:D .10.解:∵a 、b 是方程x 2+x ﹣2020=0的两个实数根,∴a +b =﹣1,ab =﹣2020,则原式=ab ﹣a ﹣b +1=ab ﹣(a +b )+1=﹣2020+1+1=﹣2018.故选:A .二.填空题(共5小题)11.解:把x =﹣1代入方程得1﹣2+m =0,解得m =1,故答案为1.12.解:∵关于x 的一元二次方程mx 2﹣2x ﹣1=0无实数根,∴m ≠0且△=(﹣2)2﹣4m (﹣1)<0,∴一次函数y=mx+m的图象经过第二、三、四象限,不经过第一象限.故答案为一.13.解:设2x2+3=t,且t≥3,∴原方程化为:t2+2t﹣15=0,∴t=3或t=﹣5(舍去),∴2x2+3=3,故答案为:314.解:设中国队在本届世界杯比赛中连胜x场,则共有(x+1)支队伍参加比赛,依题意,得:x(x+1)=66,整理,得:x2+x﹣132=0,解得:x1=11,x2=﹣12(不合题意,舍去).故答案为:11.15.解:∵一元二次方程x2+2x﹣8=0的两根为x1、x2,∴x1+x2=﹣2,x1•x2=﹣8,∴+2x1x 2 +=2x1x 2 +=2×(﹣8)+=﹣16+=﹣,故答案为:﹣.三.解答题(共5小题)16.解:(1)x2+2x﹣35=0,(x+7)(x﹣5)=0,x+7=0或x﹣5=0,12(2)4x(2x﹣1)=1﹣2x,4x(2x﹣1)+(2x﹣1)=0,(2x﹣1)(4x+1)=0,(2x﹣1)=0或(4x+1)=0,,17.解:(1)(60﹣40)×[100﹣(60﹣50)×2]=1600(元).答:每天的销售利润为1600元.(2)设每件工艺品售价为x元,则每天的销售量是[100﹣2(x﹣50)]件,依题意,得:(x﹣40)[100﹣2(x﹣50)]=1350,整理,得:x2﹣140x+4675=0,解得:x1=55,x2=85(不合题意,舍去).答:每件工艺品售价应为55元.18.解:(1)设BC=xm,则AB=(33﹣3x)m,依题意,得:x(33﹣3x)=90,解得:x1=6,x2=5.当x=6时,33﹣3x=15,符合题意,当x=5时,33﹣3x=18,18>18,不合题意,舍去.答:鸡场的长(AB)为15m,宽(BC)为6m.(2)不能,理由如下:设BC=ym,则AB=(33﹣3y)m,依题意,得:y(33﹣3y)=100,整理,得:3y2﹣33y+100=0.∵△=(﹣33)2﹣4×3×100=﹣111<0,∴该方程无解,即该扶贫单位不能建成一个100m2的矩形养鸡场.19.(1)证明:∵△=(2k+1)2﹣4×4(k﹣)=4k2﹣12k+9=(2k﹣3)2≥0,∴该方程总有实数根;(2)x=∴x1=2k﹣1,x2=2,∵a、b、c为等腰三角形的三边,∴2k﹣1=2或2k﹣1=3,∴k=或2.20.解:(1)设该商品平均每月的价格增长率为m,依题意,得:50(1+m)2=72,解得:m1=0.2=20%,m2=﹣2.2(不合题意,舍去).答:该商品平均每月的价格增长率为20%.(2)依题意,得:(x﹣40)[188+(72﹣x)]=4000,整理,得:x2﹣300x+14400=0,解得:x1=60,x2=240.∵商家需尽快将这批商品售出,∴x=60.答:x为60元时商品每天的利润可达到4000元.。
《一元二次方程》单元检测试题(含答案)
《一元二次方程》单元检测试题(含答案)一、选一选,慧眼识金(每小题3分,共24分)1.在一元二次方程265x x x -=+中,二次项系数、一次项系数、常数项分别是( ).A .1、-1、5B .1、6、5C .1、-7、5D .1、-7、-5 2.用配方法解方程22x x +=,方程的两边应同时( ).A .加上14B .加上12C .减去14D .减去123.方程(x -5)( x -6)=x -5的解是( )A .x =5B .x =5或x =6C .x =7D .x =5或x =74.餐桌桌面是长160cm ,宽为100cm 的长方形,妈妈准备设计一块桌布,面积是桌面的2倍,且使四周垂下的边等宽,小刚设四周垂下的边宽为xcm ,则应列得的方程为( ). A .(160+x )(100+x )=160×100×2 B .(160+2x )(100+2x )=160×100×2 C .(160+x )(100+x )=160×100 D .(160+2x )(100+2x )=160×1005.电流通过导线会产生热量,设电流强度为I (安培),电阻为R (欧姆),1秒产生的热量为Q (卡),则有Q=0.24I 2R ,现在已知电阻为0.5欧姆的导线,1秒间产生1.08卡的热量,则该导线的电流是( ).A .2安培B .3安培C . 6安培D .9安培 6.关于x 的方程20ax bx c ++=(a ≠0,b ≠0)有一根为-1,则ba c+的值为( ) A .1 B .-1 C .2 D .-27.关于x 的一元二次方程x 2(23)20m x m --+-=根的情况是( ).A .有两个相等的实数根B .没有实数根C .有两个不相等的实数根D .根的情况无法确定8.在解二次项系数为1的一元二次方程时,粗心的甲、乙两位同学解同一道题,甲看错了常数项,得到两根分别是4和5;乙看错了一次项系数,得到的两根分别是-3和-2,则方程是( )A .2960x x ++=B .2960x x -+=C .2960x x +-=D .2960x x --= 二、填一填,画龙点睛(每题3分,共18分) 9.关于x 的方程22(2)(3)20mm x m x --+--=是一元二次方程,则m 的值为_______.10.若关于x 的一元二次方程20x mx n ++=有两个相等的实数根,则符合条件的一组m ,n 的实数值可以是m =_________,n =________. 11.第二象限内一点A (1x -, x 2-3),其关于x 轴的对称点为B ,已知AB=12,则点A 的坐标为__________.12.随着人们收入的不断提高及汽车产业的快速发展,汽车已越来越多地进入了普通家庭,成为居民消费新的增长点.据某市交通部门统计,2008年底全市汽车拥有量为150万辆,而截止到2010年底,全市的汽车拥有量已达216万辆.则2008年底至2010年底该市汽车拥有量的年平均增长率为__________.13.黎明同学在演算某正数的平方时,将这个数的平方误写成它的2倍,使答案少了35,则这个数为__________.14.将4个数a b c d ,,,排成2行、2列,两边各加一条竖直线记成a bc d,定义a bc dad bc =-,上述记号就叫做2阶行列式.若1111x x x x +--+ 6=,则x =______. 三、做一做,牵手成功(共58分)15.(每小题3分,共9分)用适当方法解下列方程: (1)(x -4)2-81=0; (2)3x (x -3)=2(x -3);(3)2216x x -=.16.(5分)已知213y x x =-+,25(1)y x =-,当x 为何值时,12y y =. 17.(6分)飞机起飞时,要先在跑道上滑行一段路程,这种运动在物理中叫做匀加速直线运动,其公式为2012s v t at =+,若某飞机在起飞前滑行了400m 的距离,其中v 0=30m/s ,a =20m/s 2,求所用的时间t .18.(7分)阅读材料:为解方程222(1)5(1)40x x ---+=,我们可以将21x -看作一个整体,然后设21x y -=,那么原方程可化为2540y y -+=……①. 解得y 1=1,y 2=4.当1y =时,211x -=,∴22x =,∴x =;当4y =时,214x -=,∴25x =,∴x =.故原方程的解为1x =2x =22x =-,4x =解答问题:(1)上述解题过程,在由原方程得到方程①的过程中,利用________法达到了解方程的目的,体现了转化的数学思想; (2)请利用以上知识解方程x 4-x 2-6=0.19.(7分)设a 、b 、c 是△ABC 的三条边,关于x 的方程220x c a ++-=有两个相等的实数根,且方程322cx b a +=的根为0. (1)求证:△ABC 为等边三角形;(2)若a 、b 为方程230x mx m +-=的两根,求m 的值.20.(7分)在国家的宏观调控下,某市的商品房成交价由今年5月份的14000元/m 2下降到7月份的12600元/ m 2(1)问6、70.95≈) (2)如果房价继续回落,按此降价的百分率,你预测到9月份该市的商品房成交均价是否会跌破10000元/ m 2?请说明理由.21.(8分)已知关于x 的一元二次方程22(21)0x m x m +-+=有两个实数根1x 和2x . (1)求实数m 的取值范围;(2)当22120x x -=时,求m 的值.22.(9分)如图1,在矩形ABCD 中,AB=6㎝,BC=12㎝,点P 从A 开始沿AB 边向点B 以1/cm s 的速度移动,点Q 从点B 开始沿BC 边向点C 以2/cm s 的速度移动,如果P 、Q 分别从A 、B 同时出发. (1)经过几秒后,△PBQ 的面积等于28cm ;(2)经过几秒后,五边形APQCD 的面积最小,最小值是多少?参考答案:一、选一选,慧眼识金1.D .点拨:原方程的一般形式为2750x x --=.2.A .点拨:方程两边同时加上一次项系数一半的平方. 3.D .点拨:可利用因式分解法解方程.4.B .点拨:桌布的长为(160+2x )cm ,桌布的宽为(100+2x )cm . 5.B .点拨:根据题意得,20.240.5 1.08I ⨯=.6.A .点拨:由1x =-,得0a b c -+=,即a c b +=.7.C .点拨:[]2224(23)4(2)4(2)10b ac m m m -=----=-+>.8.B .点拨:设原方程为20x bx c ++=,则129x x b +=-=,126x x c ⋅==. 二、填一填,画龙点睛9.—2. 点拨:根据一元二次方程的定义知,222m -=且20m -≠.图110.2,1. 点拨:答案不惟一,只要满足24m n =即可.11.(-4,6).点拨:根据题意得,23x -=6,解得1x =-3,2x =3(不符合题意,舍去) 12.20%. 点拨:设该市汽车拥有量的年平均增长率为x . 根据题意,得2150(1)216x +=. 13.7.点拨:设这个正数为x ,根据题意得2235x x -=,解得1x =7,2x =-5(舍去)14.点拨: 原方程可转化为22(1)(1)6x x ++-=. 三、做一做,牵手成功15.(1)1x =13,2x =-5; (2)1x =3,223x =; (3)132x =,232x =16.根据题意得,235(1)x x x -+=-,整理得2680x x -+=,解得1x =2,2x =4.即当x =2或x =4时,12y y =. 17.根据题意得,2140030202t t =+⨯,整理得23400t t +-=, 解得1t =5,2t =-8(不符合题意,舍去).答:飞机在起飞前滑行400m 的距离所用的时间为5秒. 18.(1)换元法(2)设2x y =,那么原方程可化为260y y --=,解得13y =;22y =-.当y =3时,23x =,∴x =当y =-2时,x 2 =-2,,不符合题意,应舍去.∴原方程的解为1x 2x =.19.(1)∵方程220x c a ++-=有两个相等的实数根,∴24(2)0c a --=,化简得2a b c +=; 又∵x =0是方程322cx b a +=的根,∴a b =. ∴a b c ==,故△ABC 为等边三角形(2)由(1)知a b =,∴方程230x mx m +-=有两个相等的实数根.∴24(3)0m m -⨯-=,即2120m m +=,解得10m =,212m =-.20.(1)设6、7两月平均每月降价的百分率为x .根据题意,得214000(1)12600x -=,化简得2(1)0.9x -=. 解得10.05x ≈,2 1.95x ≈(不合题意,应舍去).答:设6、7两月平均每月降价的百分率为5%.(2)如果房价按此降价的百分率继续回落,则9月份该市的商品房成交均价为12600(1-x )2 =12600×0.9=11340>10000.答:9月份该市的商品房成交均价不会跌破10000元/m 2. 21.(1)由题意有2224(21)40b ac m m -=--≥,解得14m ≤. 即实数m 的取值范围是14m ≤. (2)由22120x x -=得,1212()()0x x x x +-=.若120x x +=,即(21)0m --=,解得12m =. ∵21>41,∴12m =不合题意,应舍去. 若120x x -=,即12x x =,∴240b ac -=,由(1)知14m =. 故当22120x x -=时,14m =. 22.(1)设经过x 秒后,△PBQ 的面积等于28cm .此时BP=(6-x )cm ,BQ=2x cm .根据题意得1(6)282x x -⋅=,解得12x =,14x =. 答:经过2秒或4秒后,△PBQ 的面积等于28cm . (2)设经过y 秒后,五边形APQCD 的面积最小. 此时BP=(6-y )cm ,BQ=2y cm ,则S △PBQ =1(6)22y y -⋅=26y y -. ∴S 五边形APQCD =S 四边形ABCD -S △PBQ =72-(26y y -)=2(3)63y -+. ∴当3y =时,S 五边形APQCD =63.答:经过3秒后,五边形APQCD 的面积最小,最小值是63cm 2.人教版九年级数学上册第21章一元二次方程单元检测题(有答案)(4)一、精心选一选1.已知x=1是一元二次方程x 2-2mx+1=0的一个解,则m 的值是( ) A .1 B .0 C .0或1 D .0或-12.已知a 、b 为一元二次方程0922=-+x x 的两个根,那么b a a -+2的值为( )(A )-7 (B )0 (C )7 (D )113.若关于x 的一元二次方程(k ﹣2)x 2﹣2kx +k =6有实数根,则k 的取值范围为( ) A .k ≥0B .k ≥0且k ≠2C .k ≥23 D .k ≥23且k ≠2 4.等腰三角形的底和腰是方程x 2-6x+8=0的两根,则这个三角形的周长为( ) A.8 B.10 C.8或10 D.不能确定5.现定义某种运算()a b a a b ⊗=>,若2(2)2x x x +⊗=+,那么x 的取值范围是( )(A )12x -<<(B )2x >或1x <-(C )2x >(D )1x <-6.已知a b ,是关于x 的一元二次方程210x nx +-=的两实数根,则式子b aa b+的值是( ) A .22n +B .22n -+C .22n -D .22n --7.关于x 的一元二次方程222310x x a --+=的一个根为2,则a 的值是( )A .1B C .D .8. 国家实施”精准扶贫“政策以来,很多贫困人口走向了致富的道路.某地区2016年底有贫困人口9万人,通过社会各界的努力,2018年底贫困人口减少至1万人.设2016年底至2018年底该地区贫困人口的年平均下降率为x ,根据题意列方程得( )A .9(1﹣2x )=1B .9(1﹣x )2=1C .9(1+2x )=1D .9(1+x )2=1 二、耐心填一填9.已知一元二次方程有一个根是2,那么这个方程可以是 (填上你认为正确的一个方程即可).10.如果αβ、是一元二次方程23 1 0x x +-=的两个根,那么2+2ααβ-的值是___________11.已知2是一元二次方程240x x c -+=的一个根,则方程的另一个根是 .12.已知01a a b x ≠≠=,,是方程2100ax bx +-=的一个解,则2222a b a b--的值是 .13.在实数范围内定义一种运算“*”,其规则为22b a b a -=*,根据这个规则,方程05)2(=+*x 的解为14、已知三个连续奇数,其中较大的两个数的平方和比最小数的平方的3倍还小25,则这三个数分别为_________15、甲、乙两同学解方程x 2+px+q=0,甲看错了一次项系数,得根为2和7;乙看错了常数项,得根为1和-10,则原方程为16、如图,张大叔从市场上买回一块矩形铁皮,他将此矩形铁皮的四个角各剪去一个边长为1米的正方形后,剩下的部分刚好能围成一个容积为15米3的无盖长方体箱子,且此长方体箱子的底面长比宽多2米,现已知购买这种铁皮每平方米需20元钱,问张大叔购回这张矩形铁皮共花了 元钱?三、专心解一解 17、我们已经学习了一元二次方程的四种解法:因式分解法,开平方法,配方法和公式法.请从以下一元二次方程中任选一个..,并选择你认为适当的方法解这个方程. ①2310x x -+=;②2(1)3x -=;③230x x -=;④224x x -=.18、关x 的一元二次方程(x-2)(x-3)=m 有两个不相等的实数根x 1、x 2,则m 的取值范围是 ;若x 1、x 2满足等式x 1x 2-x 1-x 2+1=0,求m 的值.19、数学课上,李老师布置的作业是图2中小黑板所示的内容,楚楚同学看错了第(2)题※中的数,求得(1)的一个解x=2;翔翔同学由于看错了第(1)题※中的数,求得(2)的一个解是x=3;你知道今天李老师布置作业的正确答案吗?请你解出来20.已知下列n (n 为正整数)个关于x 的一元二次方程:()x x x x x x n x n n 2222101202230310-=<>+-=<>+-=<>+--=<>……(1)请解上述一元二次方程<1>、<2>、<3>、<n>;(2)请你指出这n 个方程的根具有什么共同特点,写出一条即可 21.广东将一条长为20cm 的铁丝剪成两段,并以每一段铁丝的长度为周长做成一个正方形.(1)要使这两个正方形的面积之和等于17cm 2,那么这段铁丝剪成两段后的长度分别是多少?(2)两个正方形的面积之和可能等于12cm 2吗? 若能,求出两段铁丝的长度;若不能,请说明理由.22.某商场在“五一节”的假日里实行让利销售,全部商品一律按九销售,这样每天所获得的利润恰是销售收入的20%,如果第一天的销售收入4万元,且每天的销售收入都有增长,第三天的利润是1.25万元,(1)求第三天的销售收入是多少万元?(2)第二天和第三天销售收入平均每天的增长率是多少?23.学校为了美化校园环境,在一块长40米,宽20米的长方形空地上计划新建一块长9米,宽7米的长方形花圃.(1)若请你在这块空地上设计一个长方形花圃,使它的面积比学校计划新建的长方形花圃的面积多1平方米,请你给出你认为合适的三种不同的方案;(2)在学校计划新建的长方形花圃周长不变的情况下,长方形花圃的面积能否增加2平方米?如果能,请求出长方形花圃的长和宽;如果不能,请说明理由.24、已知:△ABC 的两边AB 、AC 的长是关于x 的一元二次方程023)32(22=++++-k k x k x 的两个实数根,第三边BC 的长为5.(1)k 为何值时,△ABC 是以BC 为斜边的直角三角形?(2)k 为何值时,△ABC 是等腰三角形?并求△ABC 的周长. 25、阅读材料:各类方程的解法 求解一元一次方程,根据等式的基本性质,把方程转化为x=a 的形式.求解二元一次方程组,把它转化为一元一次方程来解;类似的,求解三元一次方程组,把它转化为解二元一次方程组.求解一元二次方程,把它转化为两个一元一次方程来解.求解分式方程,把它转化为整式方程来解,由于“去分母”可能产生增根,所以解分式方程必须检验.各类方程的解法不尽相同,但是它们有一个共同的基本数学思想转化,把未知转化为已知.用“转化”的数学思想,我们还可以解一些新的方程.例如,一元三次方程x 3+x 2﹣2x=0,可以通过因式分解把它转化为x (x 2+x ﹣2)=0,解方程x=0和x 2+x ﹣2=0,可得方程x 3+x 2﹣2x=0的解.(1)问题:方程x 3+x 2﹣2x=0的解是x 1=0,x 2= ,x 3= ; (2)拓展:用“转化”思想求方程x x =+32的解;(3)应用:如图,已知矩形草坪ABCD 的长AD=8m ,宽AB=3m ,小华把一根长为10m 的绳子的一端固定在点B ,沿草坪边沿BA ,AD 走到点P 处,把长绳PB 段拉直并固定在点P ,然后沿草坪边沿PD 、DC 走到点C 处,把长绳剩下的一段拉直,长绳的另一端恰好落在点C .求AP 的长.参考答案:一、1~5.ADDBB ;6~8.DDB ;二、9、x 2-2x=0; 10、4;11、2+;12、5;13、3,-7; 14、-3,-1,1或15,17,19;15、x 2+9x+14=0;16、700;三、17、①1232x ±=,;②121x =,10x =,23x =;④121x =,18、m >-1/4 ,m=2;19、方程(1)的解是x 1=2,x 2=0;方程(2)的解是x 1=3,x 2=4 20、解:(1)<1>()()x x +-=110,所以x x 1211=-=, <2>()()x x +-=210,所以x x 1221=-=, <3>()()x x +-=310,所以x x 1231=-=,……<n>()()x n x +-=10,所以x n x 121=-=,(2)比如:共同特点是:都有一个根为1;都有一个根为负整数;两个根都是整数根等 21、(1)解:设剪成两段后其中一段为xcm ,则另一段为(20-x )cm 由题意得:2220()()1744xx -+=,解得:116x =,24x = 当116x =时,20-x=4,当24x =时,20-x=16(2)不能。
北师大版九年级数学上册《第二章一元二次方程》单元测试卷(带答案)
北师大版九年级数学上册《第二章一元二次方程》单元测试卷(带答案)时间:60分钟,满分:100分一、选择题(每题3分,共24分)1.一元二次方程2x2−4x−5=0的一次项系数是()A.2 B.−4C.5 D.42.关于x的方程x2−mx−6=0的一个根为x=−3,则实数m的值为()A.−1B.1 C.−5D.53.用配方法解方程x2+6x+5=0,配方后所得的方程是()A.y=14x2B.(x−3)2=−4C.(x+3)2=4D.(x−3)2=44.方程中x(x−1)=0的根是()A.x1=0,x2=−1B.x1=0C.x1=x2=0D.x1=x2=15.如果关于x的一元二次方程x2−4x−k=0有两个不相等的实数根,则k的取值范围是()A.k<−4B.k>−4C.k<4且k≠0D.k>−4且k≠06.下列一元二次方程的两个实数根之和为−3的是()A.x2+2x−3=0B.x2−3x+3=0C.x2+3x−5=0D.x2+3x+5=07.毕业前夕,班主任王老师让每一位同学为班级的其他同学发送祝福短信,全班一共发送870条,这个班级的学生总人数是()A.40B.30C.29D.398.已知方程x2−7x+12=0的两根是x1,x2,则1x1+1x2的值是()A.−112B.112C.−712D.712二、填空题(每题2分,共10分)9.若关于x的方程(m+1)x m2+1−3x+2=0是一元二次方程,则m的值是.10.已知方程x2−6x+q=0可以配方成(x−p)2=7的形式,那么p−q=.11.关于x的一元二次方程(k−1)x2−2x−1=0有两个实数根,则k的取值范围是.12.等腰三角形的底和腰是方程x2−7x+10=0的两根,则这个三角形的周长是.13.已知方程x2−2x−3=0的两个根分别为x1x2,则x1+x2−x1⋅x2的值为.三、计算题(共10分)14.解方程:(1)(x+2)2=x+2(2)3x2+2x−3=0四、解答题(共56分)15.已知关于x的一元二次方程x2−(m+3)x+m+2=0.(1)求证:无论实数m取何值,方程总有两个实数根;(2)若方程两个根均为正整数,求负整数m的值.16.关于x的一元二次方程x2+(2m−1)x+m2=0有实数根.(1)求m的取值范围;(2)若两根为x1、x2且x12+x22=7,求m的值.17.淄博烧烤风靡全国.某烧烤店今年5月份的盈利额为15万元,7月份的盈利额达到21.6万元,如果每月增长的百分率相同.(1)求该烧烤店这两个月的月均增长率.(2)若该烧烤店盈利的月增长率继续保持不变,预计8月份盈利多少万元?18.某电商店铺销售一种儿童服装,其进价为每件50元,现在的销售单价为每件80元,每周可卖出200件,双十二期间,商家决定降价让利促销,经过市场调查发现,单价每件降低1元,每周可多卖出20件.(1)若想满足每周销售利润为7500元,同时尽可能让利于顾客,则每件童服装应降价多少元?(2)该店铺每周可能盈利10000元吗?请说明理由.参考答案1.B2.A3.C4.B5.B6.C7.B8.D9.110.111.k≥0且k≠112.1213.514.(1)解:x2+4x+4−x−2=0.x2+3x+2=0(x+1)(x+2)=0.∴x1=−1x2=−2(2)解:a=3b=2c=−3 b2−4ac=4+36=40>0.∴x=−2±√406=−2±2√106∴x1=−1+√103x2=−1−√10315.(1)证明:Δ=(m+3)2−4(m+2)=m2+6m+9−4m−8=m2+2m+1=(m+1)2≥0∴无论m为何值,方程总有两个实数根.(2)解:x=m+3±(m+1)2,则x1=m+2,x2=1,又方程两根均为正整数,则m+2>0m>−2,所以负整数m=−1.16.(1)解:∵关于x的一元二次方程x2+(2m−1)x+m2=0有实数根∴Δ=(2m−1)2−4×1×m2=−4m+1≥0解得:m≤14.(2)解:∵x1,x2是一元二次方程x2+(2m−1)x+m2=0的两个实数根∴x1+x2=1−2m,x1x2=m2∴x12+x22=(x1+x2)2−2x1x2=7,即(1−2m)2−2m2=7整理得:m2−2m−3=0解得:m1=−1,m2=3.又∵m≤14∴m=−1.17.(1)解:设该烧烤店这两个月盈利额的月均增长率为x根据题意得:15(1+x)2=21.6解得:x1=0.2=20%,x2=﹣2.2(不符合题意,舍去).答:该烧烤店这两个月盈利额的月均增长率为20%;(2)解:根据题意得:21.6×(1+20%)=25.92(万元).答:预计8月份盈利25.92万元.18.(1)解:设每件童服装应降价x元根据题意,得(80﹣50﹣x)(200+20x)=7500整理,得x2﹣20x+75=0解得x1=5,x2=15∵尽可能让利于顾客∴x=15答:每件童服装应降价15元;(2)解:该店铺每周不可能盈利10000元,理由为:设该店铺每周可能盈利10000元,则(80﹣50﹣x)(200+20x)=10000 整理,得x2﹣20x+200=0∵Δ=(﹣20)2﹣4×200=﹣400<0∴所列方程没有实数根故该店铺每周不能盈利10000元.。
《一元二次方程》单元综合测试题含答案
《一元二次方程》单元综合测试题含答案一、填空题(每题2分,共20分)1.方程12x (x -3)=5(x -3)的根是_______.2.下列方程中,是关于x 的一元二次方程的有________.(1)2y 2+y -1=0;(2)x (2x -1)=2x 2;(3)21x-2x=1;(4)ax 2+bx+c=0;(5)12x 2=0. 3.把方程(1-2x )(1+2x )=2x 2-1化为一元二次方程的一样形式为________.4.假如21x-2x -8=0,则1x 的值是________.5.关于x 的方程(m 2-1)x 2+(m -1)x+2m -1=0是一元二次方程的条件是________. 6.关于x 的一元二次方程x 2-x -3m=0•有两个不相等的实数根,则m•的取值范畴是定______________.7.x 2-5│x │+4=0的所有实数根的和是________. 8.方程x 4-5x 2+6=0,设y=x 2,则原方程变形_________ 原方程的根为________.9.以-1为一根的一元二次方程可为_____________(写一个即可).10.代数式12x 2+8x+5的最小值是_________.二、选择题(每题3分,共18分)11.若方程(a -b )x 2+(b -c )x+(c -a )=0是关于x 的一元二次方程,则必有( ).A .a=b=cB .一根为1C .一根为-1D .以上都不对12.若分式22632x x x x ---+的值为0,则x 的值为( ).A .3或-2B .3C .-2D .-3或2 13.已知(x 2+y 2+1)(x 2+y 2+3)=8,则x 2+y 2的值为( ). A .-5或1 B .1 C .5 D .5或-1 14.已知方程x 2+px+q=0的两个根分别是2和-3,则x 2-px+q 可分解为( ). A .(x+2)(x+3) B .(x -2)(x -3) C .(x -2)(x+3) D .(x+2)(x -3)15已知α,β是方程x 2+2006x+1=0的两个根,则(1+2008α+α2)(1+2008β+β2)的值为( ).A.1 B.2 C.3 D.416.三角形两边长分别为2和4,第三边是方程x2-6x+8=0的解,•则那个三角形的周长是().A.8 B.8或10 C.10 D.8和10三、用适当的方法解方程(每小题4分,共16分)17.(1)2(x+2)2-8=0;(2)x(x-3)=x;(3)2=6x;(4)(x+3)2+3(x+3)-4=0.四、解答题(18,19,20,21题每题7分,22,23题各9分,共46分)18.假如x2-10x+y2-16y+89=0,求xy的值.19.阅读下面的材料,回答问题:解方程x4-5x2+4=0,这是一个一元四次方程,依照该方程的特点,它的解法通常是:设x2=y,那么x4=y2,因此原方程可变为y2-5y+4=0 ①,解得y1=1,y2=4.当y=1时,x2=1,∴x=±1;当y=4时,x2=4,∴x=±2;∴原方程有四个根:x1=1,x2=-1,x3=2,x4=-2.(1)在由原方程得到方程①的过程中,利用___________法达到________的目的,•表达了数学的转化思想.(2)解方程(x2+x)2-4(x2+x)-12=0.20.如图,是丽水市统计局公布的2000~2003年全社会用电量的折线统计图.(1)填写统计表:年份2000 2001 2002 2003全社会用电量(单位:亿kW·h)13.33(2)依照丽水市2001年至2003年全社会用电量统计数据,求这两年年平均增长的百分率(保留两个有效数字).21.某商场服装部销售一种名牌衬衫,平均每天可售出30件,每件盈利40元.为了扩大销售,减少库存,商场决定降价销售,经调查,每件降价1元时,平均每天可多卖出2件.(1)若商场要求该服装部每天盈利1200元,每件衬衫应降价多少元?(2)试说明每件衬衫降价多少元时,商场服装部每天盈利最多.22.设a,b,c是△ABC的三条边,关于x的方程12x2b x+c-12a=0有两个相等的实数根,•方程3cx+2b=2a的根为x=0.(1)试判定△ABC的形状.(2)若a,b为方程x2+mx-3m=0的两个根,求m的值.23.已知关于x 的方程a 2x 2+(2a -1)x+1=0有两个不相等的实数根x 1,x 2.(1)求a 的取值范畴;(2)是否存在实数a ,使方程的两个实数根互为相反数?假如存在,求出a 的值;假如不存在,说明理由.解:(1)依照题意,得△=(2a -1)2-4a 2>0,解得a<14.∴当a<0时,方程有两个不相等的实数根.(2)存在,假如方程的两个实数根x 1,x 2互为相反数,则x 1+x 2=-21a a=0①,解得a=12,经检验,a=12是方程①的根.∴当a=12时,方程的两个实数根x 1与x 2互为相反数.上述解答过程是否有错误?假如有,请指出错误之处,并解答.24、如图,A 、B 、C 、D 为矩形的4个顶点,AB =16cm ,BC =6cm ,动点P 、Q 分别从点A 、C 同时动身,点P 以3cm/s 的速度向点B 移动,一直到达点B 为止;点Q 以2cm/s 的速度向点B 移动,通过多长时刻P 、Q 两点之间的距离是10cm?25、如图,在△ABC 中,∠B =90°,BC =12cm ,AB =6cm ,点P 从点A 开始沿AB 边向点B 以2cm/s 的速度移动(不与B 点重合),动直线QD 从AB 开始以2cm/s 速度向上平行移动,同时分别与BC 、AC 交于Q 、D 点,连结DP ,设动点P 与动直线QD 同时动身,运动时刻为t 秒,(1)试判定四边形BPDQ 是什么专门的四边形?假如P 点的速度是以1cm/s ,则四边形BPDQ 还会是梯形吗?那又是什么专门的四边形呢?(2)求t 为何值时,四边形BPDQ 的面积最大,最大面积是多少?C A BP Q D←↑ QP B D A C1、如图,在平面直角坐标系内,已知点A(0,6)、点B(8,0),动点P 从点A 开始在线段AO 上以每秒1个单位长度的速度向点O 移动,同时动点Q 从点B 开始在线段BA 上以每秒2个单位长度的速度向点A 移动,设点时刻为t 秒,(1)当t为何值时,△APQ 与△AOB 相似?(2)当t 为何值时,△APQ 的面积为524个平方单位?2、有一边为5cm 的正方形ABCD 和等腰三角形PQR ,PQ =PR =5cm ,QR =8cm ,点B 、C 、Q 、R 在同一直线l 上,当C 、Q 两点重合时,等腰三角形PQR 以1cm/s 的速度沿直线l 按箭头方向匀速运动,(1)t 秒后正方形ABCD 与等腰三角形PQR 重合部分的面积为5,求时刻t ; (2)当正方形ABCD 与等腰三角形PQR 重合部分的面积为7,求时刻t ;3、如图所示,在平面直角坐标中,四边形OABC 是等腰梯形,CB ∥OA ,OA=7,AB=4,∠COA=60°,点P 为x 轴上的—个动点,点P 不与点0、点A 重合.连结CP ,过点P 作PD 交AB 于点D ,(1)求点B 的坐标;(2)当点P 运动什么位置时,△OCP 为等腰三角形,求这时点P 的坐标;(3)当点P 运动什么位置时,使得∠C PD=∠OAB, 且58BD BA ,求这时点P 的坐标;C BQ R A D lP答案:1.x1=3,x2=102.(5)点拨:准确把握一元二次方程的定义:即含一个未知数,未知数的最高次数是2,整式方程.3.6x2-2=04.4 -2 点拨:把1x看做一个整体.5.m≠±16.m>-112点拨:明白得定义是关键.7.0 点拨:绝对值方程的解法要把握分类讨论的思想.8.y2-5y+6=0 x1x2=,x3x4=9.x2-x=0(答案不唯独)10.-2711.D 点拨:满足一元二次方程的条件是二次项系数不为0.12.A 点拨:准确把握分式值为0的条件,同时灵活解方程是关键.13.B 点拨:明白得运用整体思想或换元法是解决问题的关键,同时要注意x2+y2式子本身的属性.14.C 点拨:灵活把握因式分解法解方程的思想特点是关键.15.D 点拨:本题的关键是整体思想的运用.16.C 点拨:•本题的关键是对方程解的概念的明白得和三角形三边关系定理的运用.17.(1)整理得(x+2)2=4,即(x+2)=±2,∴x1=0,x2=-4(2)x(x-3)-x=0,x(x-3-1)=0,x(x-4)=0,∴x1=0,x2=4.(326x=0,x2-x+1=0,由求根公式得x1,x2.(4)设x+3=y,原式可变为y2+3y-4=0,解得y1=-4,y2=1,即x+3=-4,x=-7.由x+3=1,得x=-2.∴原方程的解为x1=-7,x2=-2.18.由已知x2-10x+y2-16y+89=0,得(x-5)2+(y-8)2=0,∴x=5,y=8,∴xy=58.19.(1)换元降次(2)设x2+x=y,原方程可化为y2-4y-12=0,解得y1=6,y2=-2.由x2+x=6,得x1=-3,x2=2.由x2+x=-2,得方程x2+x+2=0,b2-4ac=1-4×2=-7<0,现在方程无解.因此原方程的解为x1=-3,x2=2.20(2)设2001年至2003年平均每年增长率为x,则2001年用电量为14.73亿kW·h,2002年为14.73(1+x)亿kW·h,2003年为14.73(1+x)2亿kW·h.则可列方程:14.73(1+x)2=21.92,1+x=±1.22,∴x1=0.22=22%,x2=-2.22(舍去).则2001~2003年年平均增长率的百分率为22%.21.(1)设每件应降价x元,由题意可列方程为(40-x)·(30+2x)=1200,解得x1=0,x2=25,当x=0时,能卖出30件;当x=25时,能卖出80件.依照题意,x=25时能卖出80件,符合题意.故每件衬衫应降价25元.(2)设商场每天盈利为W元.W=(40-x )(30+2x )=-2x 2+50x+1200=-2(x 2-25x )+1200=-2(x -12.5)2+1512.5 当每件衬衫降价为12.5元时,商场服装部每天盈利最多,为1512.5元.22.∵12x 2x+c -12a=0有两个相等的实数根,∴判别式=)2-4×12(c -12a )=0,整理得a+b -2c=0 ①,又∵3cx+2b=2a 的根为x=0, ∴a=b ②.把②代入①得a=c ,∴a=b=c ,∴△ABC 为等边三角形. (2)a ,b 是方程x 2+mx -3m=0的两个根, 因此m 2-4×(-3m )=0,即m 2+12m=0, ∴m 1=0,m 2=-12.当m=0时,原方程的解为x=0(不符合题意,舍去), ∴m=12.23.上述解答有错误.(1)若方程有两个不相等实数根,则方程第一满足是一元二次方程, ∴a 2≠0且满足(2a -1)2-4a 2>0,∴a<14且a ≠0. (2)a 不可能等于12. ∵(1)中求得方程有两个不相等实数根,同时a 的取值范畴是a<14且a ≠0, 而a=12>14(不符合题意) 因此不存在如此的a 值,使方程的两个实数根互为相反数.。
湘教版九年级数学上册第2章《一元二次方程》检测题及答案
第2章检测题时间:120分钟 满分:120分一、选择题(本大题共10个小题,每小题3分,共30分)1.将一元二次方程2x 2=1-3x 化成一般形式后,一次项系数和常数项分别为( C )A .-3x ,1B .3x ,-1C .3,-1D .2,-12.用配方法解关于x 的一元二次方程x 2-2x -3=0,配方后的方程可以是( A )A .(x -1)2=4B .(x +1)2=4C .(x -1)2=16D .(x +1)2=163.(云南)一元二次方程x 2-x -2=0的解是( D )A .x 1=1,x 2=2B .x 1=1,x 2=-2C .x 1=-1,x 2=-2D .x 1=-1,x 2=24.已知关于x 的方程x 2-kx -6=0的一个根为x =3,则实数k 的值为( A )A .1B .-1C .2D .-25.某工厂今年元月份的产值是50万元,3月份的产值达到了72万元.若求2、3月份的产值平均增长率,设这两个月月平均增长率为x ,依题意可列方程( B )A .72(x +1)2=50B .50(x +1)2=72C .50(x -1)2=72D .72(x -1)2=506.若关于x 的一元二次方程(k -1)x 2+2x -2=0有两个不相等实数根,则k 的取值范围是( C )A .k >12B .k ≥12C .k >12且k ≠1D .k ≥12且k ≠1 7.在Rt △ABC 中,其中两边的长恰好是方程x 2-14x +48=0的两个根,则这个直角三角形的斜边长是( D )A .10B .48C .36D .10或88.一边靠6 m 长的墙,其他三边用长为13 m 的篱笆围成的长方形鸡栅栏的面积为20 m 2,则这个长方形鸡栅栏的长和宽分别为( B )A .长8 m ,宽2.5 mB .长5 m ,宽4 mC .长10 m ,宽2 mD .长8 m ,宽2.5 m 或长5 m ,宽4 m9.(仙桃)已知m ,n 是方程x 2-x -1=0的两实数根,则1m +1n的值为( A ) A .-1 B .-12 C.12D .1 10.已知a ,b ,c 是△ABC 三条边的长,那么方程cx 2+(a +b )x +c 4=0的根的情况是( B )A .有两个相等的实数根B .有两个不相等的实数根C .没有实数根D .无法确定二、填空题(本大题共8个小题,每小题3分,共24分)11.一元二次方程x 2=16的解是__x =±4__.12.孔明同学在解一元二次方程x 2-3x +c =0时,正确解得x 1=1,x 2=2,则c 的值为__2__.13.若代数式x 2-8x +12的值是21,则x 的值是__9或-1__.14.已知关于x 的一元二次方程x 2+bx +b -1=0有两个相等的实数根,则b 的值是__2__.15.(宿迁)一块矩形菜地的面积是120 m 2,如果它的长减少2 m ,那么菜地就变成正方形,则原菜地的长是__12__m.16.要组织一次篮球联赛,赛制为单循环形式(每两队之间都赛一场),若计划安排21场比赛,则应邀请__7__个球队参加比赛.17.若关于x 的一元二次方程x 2+(k +3)x +k =0的一个根是-2,则另一个根是__1__.18.已知关于x 的一元二次方程x 2+(2k +1)x +k 2-2=0的两根为x 1和x 2,且(x 1-2)(x 1-x 2)=0,则k 的值是__-2或-94__. 点拨:若x 1-2=0,则x 1=2,代入方程解得k =-2;若x 2-x 2=0,则Δ=0,解得k =-94三、解答题(66分)19.(8分)用适当的方法解下列方程:(1)2x 2+7x -4=0;解:x 1=12,x 2=-4(2)(x -3)2+2x (x -3)=0.解:x 1=1,x 2=320.(7分)已知关于x 的方程2x 2-kx +1=0的一个解与方程2x +11-x=4的解相同,求k 的值.解:2x +11-x =4得x =12,经检验x =12是原方程的解,x =12是2x 2-k 为何值,方程x 2+(m -2)x +m 2-3=0总有两个不相等的实数根. 证明:Δ=(m -2)2-4(m 2-3)=(m -3)2+7>0,∴方程x 2+(m -2)x +m 2-3=0总有两个不相等的实数根22.(10分)(南充)已知关于x的一元二次方程x2-22的最大整数值;(2)在(1)的条件下,方程的实数根是x1,x2,求代数式x12+x22-x1x2的值.解:(1)根据题意知Δ=(-22)2-4m>0,解得m<2,∴m的最大整数值为1(2)m =1时,方程为x2-22x+1=0,∴x1+x2=22,x1x2=1,∴x12+x22-x1x2=(x1+x2)2-3x1x2=8-3=523.(10分)电动自行车已成为市民日常出行的首选工具.据某市某品牌电动自行车经销商1至3月份统计,该品牌电动自行车1月份销售150辆,3月份销售216辆.(1)求该品牌电动自行车销售量的月均增长率;(2)若该品牌电动自行车的进价为2300元,售价为2800元,则该经销商1至3月共盈利多少元?解:(1)设月增长率为x,则150(1+x)2=216,解得x1=20%或x2=-220%(舍去),即:月增长率为20%(2)二月份销售150×(1+20%)=180(辆),(2800-2300)×(150+180+216)=273000(元),该经销商1至3月共盈利273000元24.(12分)用长为32米的篱笆围一个矩形养鸡场,设围成的矩形一边长为x米.(1)当x为何值时,围成的养鸡场面积为60平方米?(2)能否围成面积为70平方米的养鸡场?如果能,请求出其边长;如果不能,请说明理由.解:(1)根据题意知x(16-x)=60,解得x1=6,x2=10,当x=6或10时,面积为60平方米(2)假设能,则有x(16-x)=70,整理得x2-16x+70=0,Δ=-24<0,∴方程没有实数根,即不能围成面积为70平方米的养鸡场25.(12分)(株洲)已知关于x的一元二次方程(a+c)x2+2bx+(a-c)=0,其中a,b,c 分别为△ABC三边的长.(1)如果x=-1是方程的根,试判断△ABC的形状,并说明理由;(2)如果方程有两个相等的实数根,试判断△ABC的形状,并说明理由.解:(1)根据题意有a+c-2b+a-c=0,即a=b,∴△ABC为等腰三角形(2)根据题意有Δ=(2b)2-4(a+c)(a-c)=4b2-4a2+4c2=0,∴b2+c2=a2,∴△ABC为直角三角形。
人教版九年级数学上册第二十一章 《一元二次方程》 单元测试卷(二)
第二十一章《一元二次方程》单元测试卷(二)一.选择题1.下列方程中属于一元二次方程的是()A.=0 B.x2+3x=x2﹣2C.ax2+bx+c=0 D.2(x+1)2=x+12.已知关于x的方程(a+1)x|a|+1﹣2x﹣1=0是一元二次方程,则a的值为()A.﹣1 B.1 C.0 D.﹣1或13.已知x、y都是正实数,且满足x2+2xy+y2+x+y﹣12=0,则x(1﹣y)的最小值是()A.4 B.﹣1 C.﹣2 D.无法确定4.一个矩形内放入两个边长分别为3cm和4cm的小正方形纸片,按照图①放置,矩形纸片没有被两个正方形纸片覆盖的部分(黑色阴影部分)的面积为8cm2;按照图②放置,矩形纸片没有被两个正方形纸片覆盖的部分的面积为11cm2,若把两张正方形纸片按图③放置时,矩形纸片没有被两个正方形纸片覆盖的部分的面积为()A.5cm2B.6cm2C.7cm2D.8cm25.若一元二次方程5x﹣1=4x2的两根为x1和x2,则x1•x2的值等于()A.1 B.C.D.6.一元二次方程x2+4x+5=0的根的情况是()A.无实数根B.有一个实根C.有两个相等的实数根D.有两个不相等的实数根7.受非洲猪瘟及其他因素影响,2019年9月份猪肉价格两次大幅度上涨,瘦肉价格由原来23元/千克,连续两次上涨x%后,售价上升到60元/千克,则下列方程中正确的是()A.23(1﹣x%)2=60 B.23(1+x%)2=60C.23(1+x2%)=60 D.23(1+2x%)=608.已知一元二次方程x2+6x+c=0有一个根为﹣2,则另一个根为()A.﹣2 B.﹣3 C.﹣4 D.﹣89.若a是方程x2﹣x﹣1=0的一个根,则﹣a3+2a+2020的值为()A.2020 B.﹣2020 C.2019 D.﹣2019 10.若关于x的一元二次方程ax2+bx+2=0(a≠0)有一根为x=2019,则一元二次方程a(x﹣1)2+b(x﹣1)=﹣2必有一根为()A.2017 B.2020 C.2019 D.2018二.填空题11.已知关于x的方程x2+kx﹣2=0的一个根是x=2,则另外一个根为.12.某人感染了某种病毒,经过两轮传染共感染了121人.设该病毒一人平均每轮传染x 人,则关于x的方程为.13.若关于x的一元二次方程(m﹣2)x2+x+m2﹣4=0的一个根为0,则m值是.14.把关于y的方程(2y﹣3)2=y(y﹣2)化成一般形式为.15.已知关于x的方程x2﹣(3+2a)x+a2=0的两个实数根为x1,x2,且x1x2﹣5=x1+x2,则a的值为.16.在元旦前夕,某通讯公司的每位员工都向本公司的其他员工发出了1条祝贺元旦的短信.已知全公司共发出2450条短信,那么这个公司有员工人.17.疫情期间,学校利用一段已有的围墙(可利用的围墙长度仅有5米)搭建一个矩形临时隔离点ABCD,如图所示,它的另外三边所围的总长度是10米,矩形隔离点的面积为12平方米,则AB的长度是米.三.解答题18.解方程:(1)x2﹣x﹣1=0;(2)3x(1﹣x)=2﹣2x.19.如图所示,在Rt△ABC中,∠B=90°,AB=6cm,BC=8cm,点P由点A出发,沿AB边以1cm/s的速度向点B移动;点Q由点B出发,沿BC边以2cm/s的速度向点C移动.如果点P,Q分别从点A,B同时出发,问:(1)经过几秒后,△PBQ的面积等于8cm2?(2)经过几秒后,P,Q两点间距离是cm?20.已知关于x的一元二次方程x2﹣4x﹣2k+8=0有两个实数根x1,x2.(1)求k的取值范围;(2)若x13x2+x1x23=24,求k的值.21.某口罩生产厂生产的口罩1月份平均日产量为20000个,1月底因突然爆发新冠肺炎疫情,市场对口罩需求量大增,为满足市场需求,工厂决定从2月份起扩大产能,3月份平均日产量达到24200个.(1)求口罩日产量的月平均增长率;(2)按照这个增长率,预计4月份平均日产量为多少?22.合肥长江180艺术街区进行绿化改造,用一段长40m的篱笆和长15m的墙AB,围成一个矩形的花园,设平行于墙的一边DE的长为xm;(1)如图1,如果矩形花园的一边靠墙AB,另三边由篱笆CDEF围成,当花园面积为150m2时,求x的值;(2)如图2,如果矩形花园的一边由墙AB和一节篱笆BF构成,另三边由篱笆ADEF 围成,当花园面积是150m2时,求BF的长.23.悠悠食品店的A、B两种菜品,每份成本均为14元,售价分别为20元、18元,这两种菜品每天的营业额共为1120元,总利润为280元.(1)该店每天卖出这两种菜品共多少份?(2)该店为了增加利润,准备降低A种菜品的售价,同时提高B种菜品的售价,售卖时发现,A种菜品售价每降0.5元可多卖1份;B种菜品售价每提高0.5元就少卖1份,如果这两种菜品每天销售的总份数不变,这两种菜品一天的总利润是316元.求A种菜品每天销售多少份?参考答案一.选择题1.解:A、是分式方程,故A不合题意;B、整理后是一元一次方程,故B不合题意;C、当a=0时是一元一次方程,故C不合题意;D、是一元二次方程,故D符合题意.故选:D.2.解:∵方程(a+1)x|a|+1﹣2x﹣1=0是一元二次方程,∴|a|+1=2且a+1≠0,∴a=±1且a≠﹣1,∴a=1,故选:B.3.解:∵x2+2xy+y2+x+y﹣12=0∴(x+y)2+(x+y)﹣12=0即(x+y﹣3)(x+y+4)=0,可得x+y=3或x+y=﹣4(舍去)∴y=﹣x+3,∴x(1﹣y)=x(1+x﹣3)=x2﹣2x=(x﹣1)2﹣1,最小值为﹣1.故选:B.4.解:设矩形的长为xcm,宽为ycm,依题意,得:,(②﹣①)÷3,得:y﹣x+1=0,∴x=y+1③.将③代入②,得:y(y+1)=16+3(y﹣4)+11,整理,得:y2﹣2y﹣15=0,解得:y1=5,y2=﹣3(舍去),∴x=6.∴按图③放置时,矩形纸片没有被两个正方形纸片覆盖的部分的面积为(x﹣4)(y﹣3)+(x﹣3)(y﹣4)=2×2+3×1=7.故选:C.5.解:方程化为4x2﹣5x+1=0,根据题意得x1•x2=.故选:B.6.解:∵△=42﹣4×5=﹣4<0,∴方程无实数根.故选:A.7.解:当猪肉第一次提价x%时,其售价为23+23x%=23(1+x%);当猪肉第二次提价x%后,其售价为23(1+x%)+23(1+x%)x%=23(1+x%)2.∴23(1+x%)2=60.故选:B.8.解:∵一元二次方程x2+6x+c=0有一个根为﹣2,∴设另一个根为m,则有m﹣2=﹣6,∴m=﹣4,故选:C.9.解:∵a是方程x2﹣x﹣1=0的一个根,∴a2﹣a﹣1=0,∴a2﹣1=a,﹣a2+a=﹣1,∴﹣a3+2a+2020=﹣a(a2﹣1)+a+2020=﹣a2+a+2020=2019.故选:C.10.解:对于一元二次方程a(x﹣1)2+b(x﹣1)+2=0,设t=x﹣1,所以at2+bt+2=0,而关于x的一元二次方程ax2+bx+2=0(a≠0)有一根为x=2019,所以at2+bt+2=0有一个根为t=2019,解得x=2020,所以一元二次方程a(x﹣1)2+b(x﹣1)=﹣2必有一根为x=2020.故选:B.二.填空题(共7小题)11.解:设方程的另一个根为t,根据题意得2t=﹣2,解得t=﹣1.即方程的另一个根为﹣1.故答案为﹣1.12.解:∵1人患流感,一个人传染x人,∴第一轮传染x人,此时患病总人数为1+x;∴第二轮传染的人数为(1+x)x,此时患病总人数为1+x+(1+x)x,∵经过两轮传染后共有121人患了流感,∴可列方程为:(1+x)2=121.故答案为:(1+x)2=121.13.解:根据题意,得x=0满足关于x的一元二次方程(m﹣2)x2+x+m2﹣4=0,∴m2﹣4=0,解得,m=±2;又∵二次项系数m﹣2≠0,即m≠2,∴m=﹣2;故答案为:﹣2.14.解:∵(2y﹣3)2=y(y﹣2),∴4y2﹣12y+9=y2﹣2y,∴4y2﹣12y+9﹣y2+2y=0,∴3y2﹣10y+9=0,故答案为:3y2﹣10y+9=0.15.解:根据题意得△=(3+2a)2﹣4a2≥0,解得a≥﹣,∵x1+x2=3+2a,x1x2=a2,∴a2﹣5=3+2a,整理得a2﹣2a﹣8=0,解得a1=4,a2=﹣2(舍去),∴a的值为4.故答案为4.16.解:设这个公司有员工x人,则每人需发送(x﹣1)条祝贺元旦的短信,依题意,得:x(x﹣1)=2450,解得:x1=50,x2=﹣49(不合题意,舍去).故答案为:50.17.解:设AB=x米,则BC=(10﹣2x)米,根据题意可得,x(10﹣2x)=12,解得x1=3,x2=2(舍去),∴AB的长为3米.故答案为:3.三.解答题(共6小题)18.解:(1)∵x2﹣x﹣1=0,∴b2﹣4ac=(﹣1)2﹣4×1×(﹣1)=5,∴x==,解得:x1=,x2=.(2)∵3x(1﹣x)=2﹣2x.∴3x(1﹣x)=2(1﹣x),∴(3x﹣2)(1﹣x)=0,∴3x﹣2=0,1﹣x=0,解得:x1=,x2=1.19.解:(1)设经过x秒后,△PBQ的面积等于8cm2,则BP=(6﹣x)cm,BQ=2xcm,依题意,得:(6﹣x)×2x=8,化简,得:x2﹣6x+8=0,解得:x1=2,x2=4.答:经过2秒或4秒后,△PBQ的面积等于8cm2.(2)设经过y秒后,P,Q两点间距离是cm,则BP=(6﹣y)cm,BQ=2ycm,依题意,得:(6﹣y)2+(2y)2=()2,化简,得:5y2﹣12y﹣17=0,解得:y1=,y2=﹣1(不合题意,舍去).答:经过秒后,P,Q两点间距离是cm.20.解:(1)由题意可知,△=(﹣4)2﹣4×1×(﹣2k+8)≥0,整理得:16+8k﹣32≥0,解得:k≥2,∴k的取值范围是:k≥2.故答案为:k≥2.(2)由题意得:,由韦达定理可知:x1+x2=4,x1x2=﹣2k+8,故有:(﹣2k+8)[42﹣2(﹣2k+8)]=24,整理得:k2﹣4k+3=0,解得:k1=3,k2=1,又由(1)中可知k≥2,∴k的值为k=3.故答案为:k=3.21.解:(1)设口罩日产量的月平均增长率为x,根据题意,得20000(1+x)2=24200解得x1=﹣2.1(舍去),x2=0.1=10%,答:口罩日产量的月平均增长率为10%.(2)24200(1+0.1)=26620(个).答:预计4月份平均日产量为26620个.22.解:(1)由题意得:(40﹣x)x=150;解得:x1=10,x2=30,∵30>15∴x=30舍去,∴x=10m;答:x的值为10m;(2)设BF=y;则(25﹣2y)(y+15)=150;解得y1=﹣(舍去),y2=5,答:BF的长为5m.23.(1)设该店每天卖出A、B两种菜品分别为x份、y份,根据题意得,.解得:.答:该店每天卖出这两种菜品共60份.(2)设A种菜品售价降0.5a元,即每天卖(20+a)份,则B种菜品卖(40﹣a)份,每份售价提高0.5a元.(20﹣14﹣0.5a)(20+a)+(18﹣14+0.5a)(40﹣a)=316.即a2﹣12a+36=0a1=a2=6答:A种菜品每天销售26份.。
人教版初三数学上册第21章《一元二次方程》单元测试题含答案解析
7.输入一组数据,按下列程序进行计算,输出结果如表:
6
人教版初三数学上册第 21 章《一元二次方程》单元测试题含答案解析
x 输出
20.5 -13.75
20.6 -8.04
20.7 -2.31
20.8 3.44
20.9 9.21
分析表格中的数据,估计方程(x+8)2-826=0 的一个正数解 x 的大致范围为(C) A.20.5<x<20.6 B.20.6<x<20.7 C.20.7<x<20.8 D.20.8<x<20.9
17.(本题 8 分)小明用下面的方法求出方程 2 x-3=0 的解,请你仿照他的方法求出下面另 外两个方程的解,并把你的解答过程写在下面的表格中. 方程 换元法得新方程 令 x=t 则 2t-3=0 解新方程 3 2 检验 3 t= >0 2 求原方程的解 3 x= , 2 9 所以 x= . 4
(2)如果该养殖户第 3 年的养殖成本为 7.146 万元,求可变成本平均每年增长的百分率 x.
21.(本题 8 分)一张长为 30 cm,宽 20 cm 的矩形纸片,如图 1 所示,将这张纸片的四个角 各剪去一个边长相同的正方形后,把剩余部分折成一个无盖的长方体纸盒,如图 2 所示,如 果折成的长方体纸盒的底面积为 264 cm2,求剪掉的正方形纸片的边长.
人教版初三数学上册第 21 章《一元二次方程》单元测试题含答案解析
初三数学上册第 21 章《一元二次方程》单元测试题
(满分:120 分 考试时间:120 分钟)
一、选择题(本大题共 10 个小题,每小题 3 分,共 30 分.) 1.下列方程是关于 x 的一元二次方程的是( A.ax2+bx+c=0 1 1 B. 2+ =2 x x ) C.x2+2x=y2-1 ) D.3(x+1)2=2(x+1)
初中数学《一元二次方程》单元测试(含答案)
一元二次方程单元测试一、选择题:(3分×8=24分)1. 在4(1)(2)5x x -+=,221x y +=,25100x -=,2280x x +=0,213x x=+中,是一元二次方程的个数为 ( ) A .3 个 B.4 个 C. 5 个 D. 6 个 ⒉ 方程21242x x -=-化为一般式后,,,a b c 的值依次为( ) A.12,-4,-2 B.12,-4, 2 C. 12,4,-2 D.1, -8, -4 3.2260x -=的解是( )A.3x =±B.x =x =无实根4. 20=2=的解( )A.都是零B.都不相等C.有一个相等的根1x =D.有一个相等的根0x = 5. 方程2410mx x -+=的根是( )A.14B. D.以上都不对6. 方程2230x x --=的解是( )A.3±B.3,1±±C.1,3--D.1,3- 7. 方程)0()(2>=-b b a x 的根是 ( )A b a ±B )(b a +±C b a +±D b a ±±8. 方程:①230x -=, ②291210x x --=, ③2121225xx += ,④22(51)3(51)x x -=-,较简便的解法( ) A .依次为直接开平方法,配方法,公式法和因式分解法 B.①用直接开平方法,②用公式法,③④用因式分解法 C. 依次为因式分解法,公式法,配方法和直接开平方法 D. ①用直接开平方法,②③用公式法,④用因式分解法二、填空题: (2分×10=20分)1.把方程9)2)(2()1(3+-+=-x x x x 化成一般式为_________________________.2.方程212y y =的二次项系数是________,一次项系数是_________,常数项是_________.3.方程0162=-x 的根是______________, 方程2120y y +-=的根是 ;4.已知256y x x =-+,当x=_______时,y=0; 当y=_______时,x=0.5.223____(_____)x x x -+=-; 2226____2(_____)x x x -+=-6.若关于x 的一元二次方程240x x m +-=2,那么m =____________.7. ,则x =____________. 8. 一元二次方程20ax bx c ++=若有两根1和-1,那么a b c ++=________,a b c -+=____9.220b c ++=时,则20ax bx c ++=的解为____________________.10.当_____m =时, 关于x 的方程2(80m m x mx -+=是一元二次方程. 三、按要求解下列方程: ( 5分×4=20分)1. 229()525x -=(直接开平方法) 2. 0362=+-x x (配方法)3. 0672=+-x x (因式分解法) 4. 2230x x +-= (求根公式法)四、用适当的方法解下列各题:( 5分×4=20分)1.(1)(3)12x x -+= 2.224(3)25(2)x x +=-3.2(23)3(23)40x x +-+-= 4.221(1)0x x k x -+--=五、解答下列个题:( 5分×2+6分=16分)(1) 已知方程258(2)4k k k x -+-=是一元二次方程,求k 的值.(2)当,a b 为何值时,关于x 的方程2210ax bx ++=和230ax bx -+=都有一个根2 ?(3)某村计划修一条横断面为等腰梯形的渠道,断面面积为10.52米,上口比底宽3米,比深多2米,求上口应挖多宽? 附加题:一、填空题: ( 3分×4=12分)1、 若代数式(5)(3)x x -+的值为0,则x 的值为____________.2、 已知235x x ++的值为7,则2392x x +-的值为_____________. 3、 若2225120x xy y --=,则xy=________________. 4、 观察下列等式: 73452331210122222222=-=-=-=-、、、,用含自然数n 的等式表示这种规律为_____________________. 二、解答题: ( 4分×2=8分)1、 当k 是什么数时,222(1)5x k x k -+++是完全平方式.2、 解关于x 的方程:2(1)2(3)80m x m x ----=(提示:分1,1m m =≠两种情况讨论)参考答案一.ABCD DAAB二. 1.22350x x --= 2.1,1,02- 3.124;3,4x y y =±==- 4.2或3;6 5. 9393,;,42226. 1- 7.2或128.0;0 9.1210,2x x ==10.三.1.1211,5x x ==- 2.1233x x ==3.121,6x x == 4.1231,2x x ==- 四.1.123,5x x ==- 2.12164,37x x == 3.1212,2x x =-=4.121,1x x k ==+ 五.1.解:2122,35803220k k k k k k k ==⎧-+=⎧⇒⇒=⎨⎨≠-≠⎩⎩2.解:由题意得:4221034230 4.5a b a a b a ++==-⎧⎧⇒⎨⎨-+==-⎩⎩ 3.解:设上口应挖x 米,则:()()13210.52x x x +-⋅-=⎡⎤⎣⎦ ()1235,2x x ∴==-舍 答:上口应挖5米。
数学九年级上册《一元二次方程》单元检测(附答案)
人教版数学九年级上学期《一元二次方程》单元测试考试时间:100分钟;总分:120分一、单选题(每小题3分,共30分)1.(2019·临邑县实验中学初三期中)方程()223x x =-化为一般形式后二次项系数、一次项系数和常数项分别为( )A .1、2、-3B .1、2、-6C .1、-2、6D .1、2、62.(2019·南山第二外国语学校集团海德学校初三期中)若关于 x 的一元二次方程中 20ax bx c ++= 有一个根是-1,则下列结论正确的是( )A .1a b c ++=B .0a b c -+=C .0a b c ++=D .1a b c -+=-3.(2019·厦门市第五中学初三期中)方程:x 2﹣25=0的解是( )A .x=5B .x=﹣5C .x 1=﹣5,x 2=5D .x=±254.(2019·湖北初三期中)方程(m ﹣2)x |m |+3mx +1=0是关于x 的一元二次方程,则( )A.m =±2B.m =2C.m =﹣2D.m ≠±2 5.(2017全国初三课时练习)方程 229(1)4(1)0x x +--= 正确解法是( )A .直接开方得 3(1)2(1)x x +=-B .化为一般形式 21350x +=C .分解因式得 [][]3(1)2(1)3(1)2(1)0x x x x ++-+--=D .直接得 x+1=0或 x-1=06.(2019·山东初三期中)已知关于的一元二次方程21(2)02m x x -++=有两个不等的实数根,则实数m 的取值范围为 ( )A.52m <B.52m >C.52m <且2m ≠D.52m >且2m ≠ 7.(2019·广东初三期中)已知α、β满足α+β=5,αβ=6,则以α、β为根的一元二次方程( ) A .x 2+5x +6=0 B .x 2-5x +6=0C .x 2-5x -6=0D .x 2+5x -6=08.(2019·江苏东绛实验学校初三期中)过元旦了,全班同学每人互发一条祝福短信,共发了380条,设全班有x 名同学,列方程为( ) A.()113802x x -= B.x (x ﹣1)=380C.2x (x ﹣1)=380D.x (x +1)=380 9.(2019·湖南初三期中)如图,在宽度为20 m ,长为32 m 的矩形地面上修筑同样宽的道路(图中阴影部分),余下的部分种上草坪,要使草坪的面积为540 m 2 , 求道路的宽.如果设小路宽为x m ,根据题意,所列方程正确的是( )A.(20+x )(32+x )=540B.(20﹣x )(32﹣x )=100C.(20﹣x )(32﹣x )=540D.(20-2x )(32﹣2x )=54010.(2019·黑龙江省哈尔滨市第一五六中学初三期中)某农机厂一月份生产零件50万个,第一季度共生产零件182万个.设该厂二、三月份平均每月的增长率为x ,那么x 满足的方程是( )A.50(1+x )²=182B.50+50(1+x )+50(1+x )²=182C.50(1+2x )=182D.50+50(1+x )+50(1+2x )²=182二、填空题(每小题4分,共24分)11.(2018全国初三期末)把方程3x (x ﹣2)=4(x+1)化为一元二次方程的一般形式是_______; 12.(2019·江苏初三期中)已知(m −3)x 2 −3x + 1 = 0是关于x 的一元二次方程,则m 的取值范围是______. 13.(2019·湖北初三期中)关于x 的一元二次方程x 2+2x +k =0有两个不相等的实数根,则k 的取值范围是______.14.(2019·江西省宜春实验中学初三期中)已知a 、b 为方程x 2+4x+2=0的两实根,则a 3+14b+50=_______. 15.(2019·上海市市八初级中学初二月考)已知方程220x kx +-=的一个根是1,则另一个根是_________. 16.(2019·江苏初三期中)方程(x -1)(x +2)=0的两根分别为________.三、解答题一(每小题6分,共18分)17.(2019·青浦区华新中学初二月考)解方程:3x 2﹣6x+1=0(用配方法)18.(2019·河南省实验中学初三月考)已知关于x 的一元二次方程22(1)(2)0x m x m m ---+=.(1)求证:方程总有两个不相等的实数根;(2)若2x =-是此方程的一个根,求方程的另一个根.19.已知关于x 的方程2(1)2(1)0k x k x k +--+=有两个实数根1x ,2x .(1)求k 的取值范围;(2)若12122x x x x +=+,求k 的值.四、解答题二(每小题7分,共21分)20.(2019·湖南初三月考)先化简,再求值:32111m m m m +⎛⎫--÷ ⎪++⎝⎭,其中m 满足方程260m m --=. 21.(2019·上海初二期中)解方程:(1)(x-1)(x+3)=5(2)x 2+x-3=0(公式法)22.(2019·农安县前岗乡初级中学初三月考)某商场销售一批名牌衬衫,平均每天可销售20件,每件盈利40元.为了扩大销售量,增加盈利,尽量减少库存,商场决定采取适当的降价措施.经调查发现,如果每件衬衫每降价5元,商场平均每天可多售出10件.(1)若每件衬衫降价4元,商场每天可盈利多少元?(2)若商场平均每天要盈利1200元,每件衬衫应降价多少元?五、解答题三(每小题9分,共27分)23.(2019·河南初三月考)已知:如图所示.在△ABC 中,∠B =90°,AB =5cm ,BC =7cm .点P 从点A 开始沿AB 边向点B 以1c m/s 的速度移动,点Q 从点B 开始沿BC 边向点C 以2c m/s 的速度移动,当其中一点达到终点后,另外一点也随之停止运动.(1)如果P ,Q 分别从A ,B 同时出发,那么几秒后,△PBQ 的面积等于4cm 2?(2)如果P ,Q 分别从A ,B 同时出发,那么几秒后,PQ 的长度等于5cm ?(3)在(1)中,△PQB 的面积能否等于7cm 2?说明理由.24.(2019·上海民办浦东交中初级中学初二月考)阅读材料:用配方法可以解一元二次方程,还可以用它来解决很多问题.例如:因为3a2≥0,所以3a2+1就有最小值1,即3a2+1≥1,只有当a=0时,才能得到这个式子的最小值1.同样,因为-3a2≤0,所以-3a2+1有最大值1,即-3a2+1≤1,只有在a=0时,才能得到这个式子的最大值1.(1)当x=___时,代数式3(x+3)2+4有最小____(填写大或小)值为____.(2)当x=_____时,代数式-2x2+4x+3有最大____(填写大或小)值为____.(3)矩形花园的一面靠墙,另外三面的栅栏所围成的总长度是16m,当花园与墙相邻的边长为多少时,花园的面积最大?最大面积是多少?25.(2019·江苏初三期中)我们知道:任何有理数的平方都是一个非负数,即对于任何有理数a,都有a2≥0成立,所以,当a=0时,a2有最小值0.(应用):(1)代数式(x-1)2有最小值时,x=___1;(2)代数式m2+3的最小值是____3;(探究):求代数式n2+4n+9的最小值,小明是这样做的:n2+4n+9=n2+4n+4+5=(n+2)2+5∴当n=-2时,代数式n2+4n+9有最小值,最小值为5.请你参照小明的方法,求代数式a2-6a-3的最小值,并求此时a的值.(拓展):(3)代数式m2+n2-8m+2n+17=0,求m+n的值.(4)若y=-4t2+12t+6,直接写出y的取值范围.参考答案一、单选题(每小题3分,共30分)1.(2019·临邑县实验中学初三期中)方程()223x x =-化为一般形式后二次项系数、一次项系数和常数项分别为( )A .1、2、-3B .1、2、-6C .1、-2、6D .1、2、6【答案】C【解析】首先将方程()223x x =-化为一般形式: 2260x x -+=,然后根据此一般形式,即可求得答案. 【详解】解:方程()223x x =-化成一般形式是2260x x -+=, ∴二次项系数为1,一次项系数为-2,常数项为6.所以C 选项是正确的.【点睛】此题考查了一元二次方程的一般形式.注意一元二次方程的一般形式是:ax 2+bx+c=0(a,b,c 是常数且a≠0),其中a,b,c 分别叫二次项系数,一次项系数,常数项.2.(2019·南山第二外国语学校集团海德学校初三期中)若关于 x 的一元二次方程中 20ax bx c ++= 有一个根是-1,则下列结论正确的是( )A .1a b c ++=B .0a b c -+=C .0a b c ++=D .1a b c -+=-【答案】B【解析】把x=-1代入已知方程可以求得a-b+c=0.【详解】依题意,得x=-1满足关于x 的一元二次方程ax 2+bx+c=0,则a-b+c=0.故选B .【点睛】本题考查了一元二次方程的解的定义.能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.3.(2019·厦门市第五中学初三期中)方程:x 2﹣25=0的解是( )A .x=5B .x=﹣5C .x 1=﹣5,x 2=5D .x=±25【答案】C【解析】利用直接开平方法解方程即可.【详解】移项得:x 2=25,∴x 1=﹣5,x 2=5.故选C .【点睛】本题考查了解一元二次方程﹣直接开平方法:形如x 2=p 或(nx +m )2=p (p ≥0)的一元二次方程可采用直接开平方的方法解一元二次方程.4.(2019·湖北初三期中)方程(m ﹣2)x |m |+3mx +1=0是关于x 的一元二次方程,则( )A.m =±2B.m =2C.m =﹣2D.m ≠±2【答案】C【解析】根据一元二次方程的定义即可得.【详解】解:∵方程(m ﹣2)x |m |+3mx +1=0是关于x 的一元二次方程,∴|m |=2,且m ﹣2≠0.解得:m =﹣2.故选:C .【点睛】本题主要考查一元二次方程的定义,掌握只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程是解题的关键.5.(2017·全国初三课时练习)方程 229(1)4(1)0x x +--= 正确解法是( ) A .直接开方得 3(1)2(1)x x +=-B .化为一般形式 21350x +=C .分解因式得 [][]3(1)2(1)3(1)2(1)0x x x x ++-+--=D .直接得 x+1=0或 x-1=0【答案】C【解析】A :直接开平方应得到两个方程:3(x+1)=2(x-1)和3(x+1)=-2(x-1),所以A 不正确; B :化成一般形式应是:5x 2+26x+5=0;所以B 不正确;C :方程左边满足平方差形式,可以用平方差公式因式分解为:[3(x+1)+2(x-1)][3(x+1)-2(x-1)]=0,所以C 正确.D :两个完全平方的差为0,不能直接得到两个式子分别是0,只有两个完全平方的和是0,才能直接得到两个式子分别是0,所以D 不对.故选:C .点睛:本题考查的是用因式分解法解一元二次方程,根据题目的结构特点,用平方差公式因式分解.6.(2019·山东初三期中)已知关于的一元二次方程21(2)02m x x -++=有两个不等的实数根,则实数m 的取值范围为 ( )A.52m <B.52m >C.52m <且2m ≠D.52m >且2m ≠ 【答案】D【解析】∵关于x 的一元二次方程21(2)02m x x -++=有两个不等的实数根, ∴220{12(2)0m m -≠∆=--> 解得:52m <且2m ≠ 故选C.7.(2019·广东初三期中)已知α、β满足α+β=5,αβ=6,则以α、β为根的一元二次方程( ) A .x 2+5x +6=0 B .x 2-5x +6=0C .x 2-5x -6=0D .x 2+5x -6=0【答案】B【解析】分析: α 、β为一元二次方程的两根,且α、β满足α+ β=5、αβ=6.所以这个方程的系数应满足两根之和是b a - =5,两根之积是c a=6 ,当二次项系数为”1”时,可直接确定一次项系数、常数项. 本题解析:∵所求一元二次方程的两根是α、β,且α、β满足α+ β=5、αβ=6. ∴这个方程的系数应满足两根之和是b a -=5,两根之积是c a =6. 当二次项系数a=1时,一次项系数b=−5,常数项c=6.故选B8.(2019·江苏东绛实验学校初三期中)过元旦了,全班同学每人互发一条祝福短信,共发了380条,设全班有x 名同学,列方程为( )A.()113802x x -=B.x (x ﹣1)=380C.2x (x ﹣1)=380D.x (x +1)=380 【答案】B【解析】设该班级共有同学x 名,每个人要发(x-1)条短信,根据题意可得等量关系:人数×每个人所发的短信数量=总短信数量.【详解】设全班有x 名同学,由题意得:x(x-1)=380,故选:B.【点睛】此题考查由实际问题抽象出一元二次方程,解题关键是正确理解题意,找出题目中的等量关系,列出方程.9.(2019·湖南初三期中)如图,在宽度为20 m,长为32 m的矩形地面上修筑同样宽的道路(图中阴影部分),余下的部分种上草坪,要使草坪的面积为540 m2,求道路的宽.如果设小路宽为x m,根据题意,所列方程正确的是()A.(20+x)(32+x)=540B.(20﹣x)(32﹣x)=100C.(20﹣x)(32﹣x)=540D.(20-2x)(32﹣2x)=540【答案】C【解析】把白色部分经过平移合并成长为32-x,宽为20-x的小长方形,再根据小长方形的面积等于草坪的面积建立等式.【详解】白色部分经过平移合并成长为32-x,宽为20-x的小长方形则小长方形的面积为(20﹣x)(32﹣x)由小长方形的面积等于草坪的面积可得:(20﹣x)(32﹣x)=540故答案为:C.【点睛】本题考查了一元二次方程的应用,解题关键在于把白色部分的图形平行合并成一个小长方形. 10.(2019·黑龙江省哈尔滨市第一五六中学初三期中)某农机厂一月份生产零件50万个,第一季度共生产零件182万个.设该厂二、三月份平均每月的增长率为x,那么x满足的方程是()A.50(1+x)²=182B.50+50(1+x)+50(1+x)²=182C.50(1+2x)=182D.50+50(1+x)+50(1+2x)²=182【答案】B【解析】设二、三月份平均每月的增长率为x,根据某农机厂一月份生产零件50万个,第一季度共生产182万个,可列出方程.【详解】解:设二、三月份平均每月的增长率为x,则二月份生产零件50(1+x)个,三月份生产零件50(1+x)2个,则得:50+50(1+x)+50(1+x)2=182.故选:B.【点睛】本题考查理解题意的能力,关键设出增长率,表示出每个月的生产量,以一季度的产量做为等量关系列出方程.二、填空题(每小题4分,共24分)11.(2018·全国初三期末)把方程3x(x﹣2)=4(x+1)化为一元二次方程的一般形式是_______;【答案】3x2-10x-4=0.【解析】先把一元二次方程3x(x﹣2)=4(x+1)的各项相乘,再按二次项,一次项,常数项的顺序进行排列即可.解:∵一元二次方程3x(x﹣2)=4(x+1)可化为3x2-6x-4x--4=0,∴化为一元二次方程的一般形式为3x2-10x-4=0.12.(2019·江苏初三期中)已知(m−3)x2−3x + 1 = 0是关于x的一元二次方程,则m的取值范围是______.【答案】m≠3【解析】根据一元二次方程的定义:未知数的最高次数是2;二次项系数不为0,由这两个条件得到相应的关系式,再求解即可.【详解】由题意,得m-3≠0.解得m≠3,故答案为:m≠3.【点睛】本题利用了一元二次方程的概念.只有一个未知数且未知数最高次数为2的整式方程叫做一元二次方程,一般形式是ax2+bx+c=0(且a≠0).特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.13.(2019·湖北初三期中)关于x的一元二次方程x2+2x+k=0有两个不相等的实数根,则k的取值范围是______.【答案】k<1.【解析】由方程有两个不等实数根可得出关于k的一元一次不等式,解不等式即可得出结论.【详解】∵关于x的一元二次方程x2+2x+k=0有两个不相等的实数根,∴△=2241k 0-⨯⨯>,解得:k 1<,故答案为:k 1<.【点睛】本题考查了根的判别式以及解一元一次不等式,解题的关键是得出关于k 的一元一次不等式.熟知”在一元二次方程()2ax bx c 0a 0++=≠中,若方程有两个不相等的实数根,则△=2b 4ac 0->“是解答本题的关键.14.(2019·江西省宜春实验中学初三期中)已知a 、b 为方程x 2+4x+2=0的两实根,则a 3+14b+50=_______.【答案】2【解析】试题解析:∵a 、b 为方程x 2+4x+2=0的两实根,∴a+b=-4,a•b=2,a 2+4a+2=0,∴a 2=-4a-2,∴a 3+14b+50=a (-4a-2)+14b+50=-4a 2-2a+14b+50=-4(a 2+4a+2)+14a+14b+50+8=14(a+b )+58=14×(-4)+58=2.15.(2019·上海市市八初级中学初二月考)已知方程220x kx +-=的一个根是1,则另一个根是_________.【答案】2-【解析】直接利用根与系数的关系求出另外一根即可,【详解】解:设方程的另一根为2x ,根据根与系数的关系得:212x ⋅=-,∴22x =-,故答案为2-.【点睛】本题考查了一元二次方程的根与系数的关系,掌握一元二次方程中根与系数的关系是解题的关键. 16.(2019·江苏初三期中)方程(x -1)(x +2)=0的两根分别为________.【答案】121,2x x ==-【解析】根据A·B=0,则A 、B 中至少有一个为0,化为一元一次方程即可解出方程. 【详解】解:(x -1)(x +2)=0x -1=0或x +2=0解得:121,2x x ==-【点睛】此题考查的是一元二次方程的解法,根据A·B=0,则A 、B 中至少一个为0,掌握将一元二次方程化为一元一次方程的方法是解决此题的关键.三、解答题一(每小题6分,共18分)17.(2019·青浦区华新中学初二月考)解方程:3x 2﹣6x+1=0(用配方法)【答案】x 1,x 2=1 【解析】试题分析:先移项,再将二次项系数化为1,然后配方解出x 即可.试题解析:3x 2-6x +1=0,移项,得3x 2-6x =-1,二次项系数化为1,得x 2-2x =-13, 配方,得x 2-2x +12=-13+12,即(x -1)2=23, 解得,x -1=±3,即x 1,x 2=1. 点睛:配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方;(4)解出未知数.18.(2019·河南省实验中学初三月考)已知关于x 的一元二次方程22(1)(2)0x m x m m ---+=.(1)求证:方程总有两个不相等的实数根;(2)若2x =-是此方程的一个根,求方程的另一个根.【答案】(1)证明见解析;(2)方程的另一个根为0或4.【解析】(1)根据根的判别式求出△的值,再进行判断即可;(2)先把x=-2代入方程,然后解关于m 的一元二次方程,即可求出m 的值.【详解】(1)证明:()()222141284m m m m ∆=---⨯⨯-+=+⎡⎤⎡⎤⎣⎦⎣⎦. 20m ≥2840m ∴+>,即>0∆,∴方程总有两个不相等的实数根.(2)当2x =-时,原方程为()()44120m m m +--+=,即2 20m m -=,解得:10m =,22m =.设方程的另一根为1x ,当0m =时,有120x -=,解得:10x =;当2m =时,有128x -=,解得:14x =(将m 代入方程,解方程得到亦可)综上所述:当=-2x 是此方程的一个根时,方程的另一个根为0或4.【点睛】此题考查一元二次方程的根的判别式,解题关键在于利用方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.19.已知关于x 的方程2(1)2(1)0k x k x k +--+=有两个实数根1x ,2x .(1)求k 的取值范围;(2)若12122x x x x +=+,求k 的值.【答案】(1)13k ≤且k 1≠-;(2)4-. 【解析】(1)方程有两个实数根,则0k+10≥≠△,,解出即可;(2)根据根与系数的关系,求出1212x x x x +,的值,解出即可.【详解】解:(1)方程有两个实数根,则0k+10≥≠△,,即[]2=2(1)4(1)0k+10k k k ---+≥≠△,,解得:13k ≤且k 1≠-; (2)()()12211k b x x a k -+=-=+,121c k x x a k ==+,则()()21211k k k k -=+++,解得:4k =-,143-<, 则k 的值为4-.【点睛】本题是对一元二次方程的综合考查,熟练掌握一元二次方程的根的判别式及根与系数的关系是解决本题的关键.四、解答题二(每小题7分,共21分)20.(2019·湖南初三月考)先化简,再求值:32111m m m m +⎛⎫--÷ ⎪++⎝⎭,其中m 满足方程260m m --=. 【答案】1【解析】根据分式的运算法则先化简分式.再解一元二次方程求出m ,代入化简后的式子,注意代入时原分式要有意义,m 不等于-1和-2. 【详解】原式213112m m m m --+=⋅++ (2)(2)112m m m m m +-+=⋅++ 2m =-解方程260m m --=得:3m =或2m =-20m +≠2m ∴≠-当3m =时,原式321=-=【点睛】本题考查分式的运算,解题的关键是熟练运用分式的运算法则,注意代入分式中字母的值必须使分式必须有意义.21.(2019·上海初二期中)解方程:(1)(x-1)(x+3)=5(2)x 2+x-3=0(公式法)【答案】(1)x 1=-4,x 2=2;(2)x 1x 2. 【解析】(1)先把方程化为一般式,然后利用因式分解法解方程;(2)利用求根公式解方程.【详解】(1)x 2+2x-8=0,(x+4)(x-2)=0,所以x 1=-4,x 2=2;(2)△=12-4×1×(-3)=13,,所以x 1x 2. 【点睛】此题考查解一元二次方程-因式分解法,解题关键在于掌握运算法则.22.(2019·农安县前岗乡初级中学初三月考)某商场销售一批名牌衬衫,平均每天可销售20件,每件盈利40元.为了扩大销售量,增加盈利,尽量减少库存,商场决定采取适当的降价措施.经调查发现,如果每件衬衫每降价5元,商场平均每天可多售出10件.(1)若每件衬衫降价4元,商场每天可盈利多少元?(2)若商场平均每天要盈利1200元,每件衬衫应降价多少元?【答案】(1)1008;(2)20【解析】(1)降价4元时,根据题意分别求出单件利润和销量,再根据销售利润问题的等量关系:单件利润×销量=总利润,可求出总利润;(2)设降价x 元,然后根据题意找出单件利润和销量的表达式,再根据销售利润问题的等量关系:单件利润×销量=总利润,列出方程求解,最后根据题意舍去不符合题意的解.【详解】(1)降价4元时,每件盈利为40-4=36元,销量为10204=285+⨯件, ∴总盈利36×28=1008元.(2)设降价x 元,由题意得()104020=12005x x ⎛⎫-+⋅ ⎪⎝⎭化简得2302000x x -+=,解得1=10x ,2=20x ,要尽量减少库存,则取=20x ,所以平均每天要盈利1200元,每件衬衫应降价20元.【点睛】本题考查一元二次方程的应用:销售利润问题,根据等量关系建立方程是解题的关键.五、解答题三(每小题9分,共27分)23.(2019·河南初三月考)已知:如图所示.在△ABC 中,∠B =90°,AB =5cm ,BC =7cm .点P 从点A 开始沿AB 边向点B 以1c m/s 的速度移动,点Q 从点B 开始沿BC 边向点C 以2c m/s 的速度移动,当其中一点达到终点后,另外一点也随之停止运动.(1)如果P ,Q 分别从A ,B 同时出发,那么几秒后,△PBQ 的面积等于4cm 2?(2)如果P ,Q 分别从A ,B 同时出发,那么几秒后,PQ 的长度等于5cm ?(3)在(1)中,△PQB 的面积能否等于7cm 2?说明理由.【答案】(1)1;(2)2;(3)不能.【解析】(1)设P 、Q 分别从A 、B 两点出发,x 秒后,AP=xcm ,PB=(5-x )cm ,BQ=2xcm 则△PBQ 的面积等于12×2x (5-x ),令该式等于4,列出方程求出符合题意的解; (2)利用勾股定理列出方程求解即可;(3)看△PBQ 的面积能否等于7cm 2,只需令12×2x (5-x )=7,化简该方程后,判断该方程的△与0的关系,大于或等于0则可以,否则不可以.【详解】设t 秒后,则:AP =tcm ,BP =(5﹣t )cm ;BQ =2tcm .(1)S △PBQ =BP ×BQ ,即1(5)242x x -⨯=,解得:t =1或4.(t =4秒不合题意,舍去) 故:1秒后,△PBQ 的面积等于4cm 2.(2)PQ =5,则PQ 2=25=BP 2+BQ 2,即25=(5﹣t )2+(2t )2,t =0(舍)或2.故2秒后,PQ 的长度为5cm .(3)令S △PQB =7,即:BP ×2BQ =7,1(5)272x x -=,整理得:t 2﹣5t +7=0. 由于b 2﹣4ac =25﹣28=﹣3<0,则方程没有实数根.所以,在(1)中,△PQB 的面积不等于7cm 2.【点睛】本题主要考查一元二次方程的应用,关键在于理解清楚题意,找出等量关系列出方程求解,判断某个三角形的面积是否等于一个值,只需根据题意列出方程,判断该方程是否有解,若有解则存在,否则不存在.24.(2019·上海民办浦东交中初级中学初二月考)阅读材料:用配方法可以解一元二次方程,还可以用它来解决很多问题.例如:因为3a2≥0,所以3a2+1就有最小值1,即3a2+1≥1,只有当a=0时,才能得到这个式子的最小值1.同样,因为-3a2≤0,所以-3a2+1有最大值1,即-3a2+1≤1,只有在a=0时,才能得到这个式子的最大值1.(1)当x=___时,代数式3(x+3)2+4有最小____(填写大或小)值为____.(2)当x=_____时,代数式-2x2+4x+3有最大____(填写大或小)值为____.(3)矩形花园的一面靠墙,另外三面的栅栏所围成的总长度是16m,当花园与墙相邻的边长为多少时,花园的面积最大?最大面积是多少?【答案】(1)-3,小,4;(2)1,大,5;(3)当边长为4米时,花园面积最大为32m2.【解析】(1)由完全平方式的最小值为0,得到x=-3时,代数式的最小值为4;(2)将代数式前两项提取-2,配方为完全平方式,根据完全平方式的最小值为0,即可得到代数式的最大值及此时x的值;(3)设垂直于墙的一边长为xm,根据总长度为16m,表示出平行于墙的一边为(16-2x)m,表示出花园的面积,整理后配方,利用完全平方式的最小值为0,即可得到面积的最大值及此时x的值.【详解】(1)∵(x+3)2≥0,∴当x=-3时,(x+3)2的最小值为0,则当x=-3时,代数式3(x+3)2+4的最小值为4;(2)代数式-2x2+4x+3=-2(x-1)2+5,则当x=1时,代数式-2x2+4x+3的最大值为5;(3)设垂直于墙的一边为xm,则平行于墙的一边为(16-2x)m,∴花园的面积为x(16-2x)=-2x2+16x=-2(x2-8x+16)+32=-2(x-4)2+32,则当边长为4米时,花园面积最大为32m2.【点睛】此题考查配方法的应用,解题关键在于要注意配方法的步骤.注意在变形的过程中不要改变式子的值.25.(2019·江苏初三期中)我们知道:任何有理数的平方都是一个非负数,即对于任何有理数a,都有a2≥0成立,所以,当a=0时,a2有最小值0.(应用):(1)代数式(x-1)2有最小值时,x=___1;(2)代数式m2+3的最小值是____3;(探究):求代数式n2+4n+9的最小值,小明是这样做的:n2+4n+9=n2+4n+4+5=(n+2)2+5∴当n=-2时,代数式n2+4n+9有最小值,最小值为5.请你参照小明的方法,求代数式a2-6a-3的最小值,并求此时a的值.(拓展):(3)代数式m2+n2-8m+2n+17=0,求m+n的值.(4)若y=-4t2+12t+6,直接写出y的取值范围.【答案】(1)1;(2)3;(3)3;(4)y≤15.【解析】(1)由(x-1)2≥0可得x=1时,取得最小值0;(2)由m2≥0知m2+3≥3可得答案;(3)将方程变形为(m-4)2+(n+1)2=0,由非负数性质求得m、n的值即可得;(4)由y=-4t2+12t+6=-4(t-32)2+15知-4(t-32)2+15≤15,从而得出答案.【详解】(1)代数式(x-1)2有最小值时,x=1,故答案为:1;(2)代数式m2+3的最小值是在m=0时,最小值为3,故答案为:3.(3)∵m2+n2-8m+2n+17=0,∴(m-4)2+(n+1)2=0,则m=4、n=-1,∴m+n=3;(4)y=-4t2+12t+6=-4(t2-3t)+6=-4(t2-3t+94-94)+6=-4(t-32)2+15,∵(t-32)2≥0,∴-4(t-32)2≤0,则-4(t-32)2+15≤15,即y≤15.【点睛】此题考查配方法的应用,完全平方公式,非负数的性质,解题的关键是把给出的式子化成完全平方的性质进行解答.。
九年级上册数学《一元二次方程》单元检测(含答案)
C.300(1+2x)=363D.300(1﹣x)2=363
【答案】B
【解析】
【分析】
本题为增长率问题,一般用增长后的量=增长前的量×(1+增长率),如果设绿化面积平均每年的增长率为x,根据题意即可列出方程.
【详解】设绿化面积平均每年的增长率为x,根据题意得:
3.已知关于x的一元二次方程x2+mx﹣8=0的一个实数根为2,则另一实数根及m的值分别为()
A.4,﹣2B.﹣4,﹣2C.4,2D.﹣4,2
【答案】D
【解析】
试题分析:由根与系数的关系式得: , =﹣2,解得: =﹣4,m=2,则另一实数根及m的值分别为﹣4,2,故选D.
考点:根与系数 关系.
4.已知x为实数,且满足(x2+3x)2+2(x2+3x)-3=0,那么x2+3x的值为()
17.三角形的每条边的长都是方程 的根,则三角形的周长是.
18.已知a,b,c是△ABC的三边长,若方程(a-c)x2+2bx+a+c=0有两个相等的实数根,则△ABC是__________三角形
三、解答题(共66分)
19.用适当的方法解下列方程:
(1)(x+1)(x-2)=x+1; (2) x2-4x=4 .
26.要在一块长52m,宽48m的矩形绿地上,修建同样宽的两条互相垂直的甬路.下面分别是小亮和小颖的设计方案.
(1)求小亮设计方案ຫໍສະໝຸດ 甬路的宽度x;(2)求小颖设计方案中四块绿地的总面积(友情提示:小颖设计方案中的与小亮设计方案中的取值相同)
参考答案
一、选择题(每小题3分,共30分)
1.一元二次方程x2-8x-1=0配方后为()
浙教版八年级下数学《第二章一元二次方程》单元检测卷含答案
第二章一元二次方程单元检测卷姓名:__________ 班级:__________一、选择题(共12小题;每小题3分,共36分)1.请判别下列哪个方程是一元二次方程()A. x+2y=1B. x2+5=0C. 2x+=8D. 3x+8=6x+22.一元二次方程﹣x2+2x=﹣1的两个实数根为α,β,则α+β与α•β的值分别为()A. 2,﹣1B. ﹣2,﹣1C. 2,1D. ﹣2,13.方程2x2=3(x-6)化为一般式后二次项系数、一次项系数和常数项分别为 ( )A. 2、3、-6B. 2、-3、18C. 2、-3、6D. 2、3、64.如果一元二次方程x2﹣2x﹣3=0的两根为x1、x2,则x12x2+x1x22的值等于()A. -6B. 6C. -5D. 55.因春节放假,某工厂2月份产量比1月份下降了5%,3月份将恢复正常,预计3月份产量将比2月份增长15%.设2、3月份的平均增长率为x,则x满足的方程是()A. 15%﹣5%=xB. 15%﹣5%=2xC. (1﹣5%)(1+15%)=2(1+x)D. (1﹣5%)(1+15%)=(1+x)26.方程2x2﹣6x+3=0较小的根为p,方程2x2﹣2x﹣1=0较大的根为q,则p+q等于()A. 3B. 2C. 1D.7.商场在促销活动中,将标价为200元的商品,在打a折的基础上再打a折销售,现该商品的售价为128元,则a的值是()A. 0.64B. 0.8C. 8D. 6.48.下列说法不正确的是()A. 方程x2=x有一根为0B. 方程x2﹣1=0的两根互为相反数C. 方程(x﹣1)2﹣1=0的两根互为相反数D. 方程x2﹣x+2=0无实数根9.下列方程中,两根之和是3的是()A. x2﹣3x+ =0B. ﹣x2+3x+ =0C. x2+3x﹣=0D. x2+3x+ =010.近几年安徽省民生事业持续改善,2012年全省民生支出3163亿元,2014年全省民生支出4349亿元,若平均每年民生支出的增长率相同,设这个增长率为x,则下列列出的方程中正确的是()A. 3163(1+x)2=4349B. 4349(1﹣x)2=3163C. 3163(1+2x)=4349D. 4349(1﹣2x)=316311.关于x的方程kx2+3x﹣1=0有实数根,则k的取值范围是()A. k≤B. k≥﹣且k≠0C. k≥﹣D. k>﹣且k≠012.一元二次方程x(x﹣2)=x﹣2的根是()A. 0B. 1C. 1,2D. 0,2二、填空题(共10题;共40分)13.若(x2+y2)(x2+y2﹣1)=12,则x2+y2=________.14.关于x的一元二次方程x2﹣3x+k=0有一个根为1,则k的值等于________.15.若对于实数a,b,规定a*b=,例如:2*3,因2<3,所以2*3=2×3﹣22=2.若x1, x2是方程x2﹣2x﹣3=0的两根,则x1*x2=________ .16.请你给出一个c值,c=________,使方程x2﹣3x+c=0无实数根.17.以3、-5为根且二次项系数为1的一元二次方程是________.18.若x=2是方程x2+3x﹣2m=0的一个根,则m的值为________.19.若方程x2﹣3x+1=0的两根分别为x1和x2,则代数式x1+x2﹣x1x2=________.20.已知如图所示的图形是一无盖长方体的铁盒平面展开图,若铁盒的容积为3m3,则根据图中的条件,可列出方程:________.21.一元二次方程x2﹣6x﹣4=0两根为x1和x2,则x1+x2=________x1x2=________x1+x2﹣x1x2=________.22.如图,是一个长为30m,宽为20m的矩形花园,现要在花园中修建等宽的小道,剩余的地方种植花草.如图所示,要使种植花草的面积为532m2,那么小道进出口的宽度应为________米.三、计算题(共2小题;共24分)23.解方程(1)x2+x﹣1=0;(2)(x﹣1)(x+3)=5.(3) x2﹣2x﹣3=0;24.如图,要利用一面墙(墙长为25米)建羊圈,用100米的围栏围成总面积为400平方米的三个大小相同的矩形羊圈,求羊圈的边长AB,BC各为多少米?参考答案一、选择题B A B A D BC C B A C C二、填空题13. 4 14. 2 15. 12或﹣416. 3 17. 18. 519. 2 20. x(x+1)=3 21. 6;﹣4;10 22. 1三、计算题23. (1)解:x2+x﹣1=0; a=1,b=1,c=﹣1,∵b2﹣4ac=5>0,∴x= ,∴x1= ,x2=(2)解:(x﹣1)(x+3)=5.整理得,x2+2x﹣8=0,分解因式得,(x+4)(x﹣2)=0,∴x+4=0,x﹣2=0,∴x1=﹣4,x2=2(3 ) 解:因式分解得:(x+1)(x﹣3)=0,即x+1=0或x﹣3=0,解得:x1=﹣1,x2=3;24. 解:设AB的长度为x,则BC的长度为(100﹣4x)米.根据题意得 : (100﹣4x)x=400,解得 x1=20,x2=5.则100﹣4x=20或100﹣4x=80.∵80>25,∴x2=5舍去.即AB=20,BC=20.答:羊圈的边长AB,BC分别是20米、20米。
《一元二次方程》 单元测试卷 (含答案)
《一元二次方程》单元检测题一、选择题(每小题只有一个正确答案)1. 把方程23402x x ++=左边配成一个完全平方式后,所得方程是( ). (A )2355()416x += (B )2315()24x +=- (C )2315()24x += (D )2355()416x +=- 2.已知方程260x x q -+=可以配方成2()7x p -=的形式, 那么262x x q -+=可以配方成下列的 ( )(A) 2()5x p -= (B) 2()9x p -=(C) 2(2)9x p -+= (D) 2(2)5x p -+=3.一元二次方程2230x x --=的两个根分别为( ).(A)X l =1, x 2=3 (B)X l =1, x 2=-3(C)X 1=-1,X 2=3 (D)X I =-1, X 2=-34. 若2222()(1)60m n m n +--+=,则22m n +的值为( ).(A )3 (B )-2 (C )3或-2 (D )-3或25. 方程(3)x x x +=的根是( ).(A )-2 (B )0 (C )无实根 (D )0或-2 6. 已知x 满足方程2310x x -+=,则1x x+的值为( ). (A )3 (B )-3 (C )32 (D )以上都不对 7. 要使分式2544x x x -+-的值为0,x 等于( ). (A )1 (B )4或1 (C )4 (D )-4或-18. 关于x 的方程22(2)0a a x ax b --++=是一元二次方程的条件是( ).(A )2a ≠-且1a = (B )2a ≠ (C )2a ≠-且1a =- (D )1a =-二、填空题 9. 222(_____)[(____)]3y y y -+=+.10. x =__________.11. 若代数式2713x x -+的值为31,则x =_________________.12.用公式法解方程2815x x =--,其中24b ac -=__________,1x =__________,2x =_______________.13. 一元二次方程x 2-2x-1=0的根是__________.14. 若方程x 2-m=0的根为整数,则m 的值可以是________(只填符合条件的一个即可)15. 若(2x+3y )2+3(2x+3y )-4=0,则2x+3y 的值为_________.16. 请写出一个根为x= 1, 另一根满足-1< x< 1 的一元二次方程_______.三、计算题17.用配方法解下列方程:(1)210257x x -+=; (2)261x x +=;(3)23830x x +-=;(4)2310x x -+=.18.用公式法解下列方程:(1)27180x x --=;(2)22980x x -+=;(3)29610x x ++=;(4)21683x x +=.19.用因式分解法解下列方程:(1)(41)(57)0x x -+=; (2)3(1)22x x x -=-;(3)2(23)4(23)x x +=+; (4)222(3)9x x -=-.20. 阅读材料,解答问题:材料:为解方程(x 2-1)2-5(x 2-1)+4=0我们可以将x 2-1视为一个整体,然后设x 2-1=y ,•则(x 2-1)2=y 2,原方程可化为y 2-5y+4=0,解得y 1=1,y 2=4,当y=1时,x 2-1=1,∴x 2=2,∴x=;当y=4时,x 2-1=4,∴x 2=5,∴x=x 1,x 2,x 3x 4解答问题:(1)填空,在解原方程得到①的过程中利用_________法达到了降次的目的,体现了_______•数学思想;(2)利用上述方法解方程x 4-x 2-6=0.21. 若规定两数a 、b 通过“※”运算,得到4ab ,即a ※b=4ab ,例如2※6=4•×2•×6=48(1)求3※5的值;(2)求x ※x+2※x-2※4=0中x 的值;(3)若无论x 是什么数,总有a ※x=x ,求a 的值.参考答案:一、选择题1.D ;2.B ;3.C ;4.A ;5.D ;6.A ;7.A ;8.C ;二、填空题 9. 19,13-; 10. -5或3;11.9或-2;12.4,-3,-5;13. x 1;x 2;14.如4 , 提示:m 应是一个整数的平方,此题可填的数字很多.15. -•4或1;16.略;三计算题17.(1)15x =25x =(2)13x =-23x =-(3)113x =,23x =-;(4)132x +=,2x =; 18.(1)19x =,22x =-;(2)194x +=,294x =; (3)1213x x ==-; (4)114x =,234x =-; 19.(1)175x =-,214x =;(2)12 3x=-,21x=;(3)13 2x=-,21 2x=;(4)13x=,29x=.20. (1)换元,转化;(2)x=21. (1)3※5=4×3×5=60,(2)由x※x+2※x-2※4=0得4x2+8x-32=0,即x2+2x-8=0,∴x1=2,x2=-4,(3)由a*x=x得4ax=a,无论x为何值总有4ax=x,∴a=14.。
第2章《一元二次方程 》北师大版九年级数学上册单元测试卷(含答案)
第二章《一元二次方程》单元测试卷一、单选题(每题3分)1.下面关于x的方程中:①ax2+bx+c=0;②3(x﹣9)2﹣(x+1)2=1;③x2++5=0;④x2+5x3﹣6=0;⑤3x2=3(x﹣2)2;⑥12x﹣10=0,是一元二次方程个数是()A.1B.2C.3D.42.已知一元二次方程,若方程有解,则必须()A.n=0B.n=0或mn同号C.n是m的整数倍D.mn异号3.方程的解是()A.B.C.D.4.一元二次方程的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.无实数根D.无法确定5.解方程:①;②;③;④.较简便的解法是()A.依次用直接开平方法、配方法、公式法和因式分解法B.①用直接开平方法,②用公式法,③④用因式分解法C.依次用因式分解法、公式法、配方法和因式分解法D.①用直接开平方法,②③用公式法,④用因式分解法6.秋冬季节为流感的高发期,有一人患了流感,经过两轮传染后共有人患了流感,每轮传染中平均一个人传染的人数为()A.人B.人C.人D.人7.现要在一个长为,宽为的矩形花园中修建等宽的小道,剩余的地方种植花草.如图所示,要使种植花草的面积为,那么小道的宽度应是()A.1B.2C.2.5D.38.小明和小华解同一个一元二次方程时,小明看错一次项系数,解得两根为2,﹣3,而小华看错常数项,解错两根为﹣2,5,那么原方程为( )A.x2﹣3x+6=0B.x2﹣3x﹣6=0C.x2+3x﹣6=0D.x2+3x+6=09.若关于x的一元二次方程的一个根大于1,另一个根小于1,则a的值可能为()A.B.C.2D.410.将关于x的一元二次方程变形为,就可以将表示为关于的一次多项式,从而达到“降次”的目的,又如…,我们将这种方法称为“降次法”,通过这种方法可以化简次数较高的代数式.根据“降次法”,已知:,则的值为()A.3B.4C.5D.6二、填空题(每题3分)11.方程(m﹣1)x|m|+1﹣4x+3=0是一元二次方程,则m满足的条件是:_____,此方程的二次项系数为:_____,一次项系数为:_____,常数项为:_____.12.若一元二次方程的一个根为0,则___________.13.关于x的一元二次方程有两个不相等的实数根,则a的取值范围是____________.14.劳动教育已纳入人才培养全过程,某学校加大投入,建设校园农场,该农场一种作物的产量两年内从300千克增加到363千克.设平均每年增产的百分率为,则可列方程为________.15.已知方程的两个实数根分别为、,则__.16.已知实数,满足,则的值为________.17.已知关于x的方程a(x+m)2+b=0(a,b,m均为常数,且a≠0)的两个解是x1=3,x2=7,则方程的解是________.18.阅读理解:对于x3﹣(n2+1)x+n这类特殊的代数式可以按下面的方法分解因式:x3﹣(n2+1)x+n=x3﹣n2x﹣x+n=x(x2﹣n2)﹣(x﹣n)=x(x﹣n)(x+n)﹣(x﹣n)=(x﹣n)(x2+nx﹣1).理解运用:如果x3﹣(n2+1)x+n=0,那么(x﹣n)(x2+nx﹣1)=0,即有x﹣n=0或x2+nx﹣1=0,因此,方程x﹣n=0和x2+nx﹣1=0的所有解就是方程x3﹣(n2+1)x+n=0的解.解决问题:求方程x3﹣5x+2=0的解为_____.三、解答题19.解方程(8分)(1);(2);(3)(配方法);(4).20.用适当的方法解一元二次方程(8分)(1);(2);(3);(4).21.已知关于的方程.(6分)(1)当为何值时,方程只有一个实数根?(2)当为何值时,方程有两个相等的实数根?(3)当为何值时,方程有两个不相等的实数根?22.已知关于x的一元二次方程x2﹣(2m﹣2)x+(m2﹣2m)=0.(6分)(1)求证:方程有两个不相等的实数根.(2)如果方程的两实数根为x1,x2,且x12+x22=10,求m的值.23.如图,在足够大的空地上有一段长为的旧墙,某人利用旧墙和木栏围成一个矩形菜园,其中.已知矩形菜园的一边靠墙,修筑另三边一共用了木栏.若所围成的矩形菜园的面积为,求的长.(6分)24.某企业设计了一款工艺品,每件成本50元,为了合理定价,现投放市场进行试销.据市场调查,销售单价是100元时,每天的销售量是50件,若销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于成本.销售单价为多少元时,每天的销售利润可达4000元?(6分)25.某商店代销一种智能学习机,促销广告显示“若购买不超过40台学习机,则每台售价800元,若超出40台,则每超过1台,每台售价将均减少5元”,该学习机的进价与进货数量关系如图所示:(6分)(1)当时,用含x的代数式表示每台学习机的售价;(2)当该商店一次性购进并销售学习机60台时,每台学习机可以获利多少元?(3)若该商店在一次销售中获利4800元,则该商店可能购进并销售学习机多少台?26.已知关于x的一元二次方程.(6分)(1)求证:这个方程的一根大于2,一根小于2;(2)若对于时,相应得到的一元二次方程的两根分别为和和和,…,和和,试求的值.27.阅读理解:(7分)材料1:对于一个关于x的二次三项式(),除了可以利用配方法求该多项式的取值范围外,还可以用其他的方法:比如先令(),然后移项可得:,再利用一元二次方程根的判别式来确定y的取值范围,请仔细阅读下面的例子:例:求的取值范围:解:令,,即;材料2:在学习完一元二次方程的解法后,爱思考的小明同学又想到类比一元二次方程的解法来解决一元二次不等式的解集问题,他的具体做法如下:若关于x的一元二次方程()有两个不相等的实数根、(),则关于x的一元二次不等式()的解集为:或,则关于x的一元二次不等式()的解集为:;请根据上述材料,解答下列问题:(1)若关于x的二次三项式(a为常数)的最小值为-6,则_____.(2)求出代数式的取值范围.类比应用:(3)猜想:若中,,斜边(a为常数,),则_____时,最大,请证明你的猜想.28.(7分)阅读下列材料:分解因式的常用方法有提取公因式法、公式法,但有部分项数多于3的多项式只单纯用上述方法就无法分解,如,我们细心观察这个式子就会发现,前三项符合完全平方公式,进行变形后可以与第四项结合再运用平方差公式进行分解.过程如下:,这种分解因式的方法叫分组分解法.利用这种分组的思想方法解决下列问题:1.知识运用:试用“分组分解法”分解因式:;2.解决问题:(1)已知a,b,c为△ABC的三边,且,试判断△ABC的形状.(2)已知四个实数a,b,c,d,满足a≠b,c≠d,并且,同时成立.①当k=1时,求a+c的值②当k≠0时,用含有a的代数式分别表示b,c,d(直接写出答案即可)答案一、单选题A.B.B.C.D.B.B.B.B.D.二、填空题11.m=﹣1;﹣2,﹣4,3.12.113.且.14.300(1+x)2=363.15.-5.16.2.17.或.18.x=2或x=﹣1+或x=﹣1﹣.三、解答题19.(1)解:或,;(2)解:或,;(3)解:,;(4)解:①当时,,解得:;②当时,,若,即,;若,即,方程无解.20.(1)原方程可化为,∴,用直接开平方法,得方程的根为,.(2)原方程可化为x2+2ax+a2=4x2+2ax+,∴x2=.用直接开平方法,得原方程的根为,.(3)a=2,b=-4,c=-1b2-4ac=(-4)2-4×2×(-1)=24>0,∴,.(4)将方程整理,得(1-)x2-(1+)x=0用因式分解法,得x[(1-)x-(1+)]=0,,.21.(1)∵方程只有一个实数根,,解得(2)∵方程有两个相等的实数根,,,解得(3)∵方程有两个不相等的实数根,且,且,解得且.22.(1)由题意可知:△=(2m﹣2)2﹣4(m2﹣2m)=4>0,∴方程有两个不相等的实数根.(2)∵x1+x2=2m﹣2,x1x2=m2﹣2m,∴x12+x22=(x1+x2)2﹣2x1x2=10,∴(2m﹣2)2﹣2(m2﹣2m)=10,∴m2﹣2m﹣3=0,∴m=﹣1或m=323.解:设的长为,则的长为.依题意,得,解得,.当时,(不符合题意,舍去).当时,.∴的长为.24.设销售单价降低x元,则销售单价为元,每天的销售量是件,由题意得:,整理得:,解得或,因为要求销售单价不得低于成本,所以,解得,因此和均符合题意,则或70,答:销售单价为90元或70元时,每天的销售利润可达4000元.25.(1)由题意可知当时,每台学习机的售价为.(2)设题图中直线的解析式为.把和代入得解得故直线解析式为.当时,进价为(元),售价为(元),则每台学习机可以获利(元).(3)当时,每台学习机的利润是,则.解得(舍去).当时,每台学习机的利润是,则,解得(舍去).答:该商店可能购进并销售学习机80台或30台.26.解:(1)证明:设方程的两根是,,则,,,,,即这个方程的一根大于2,一根小于2;(2),对于,2,3,,2019,2020时,相应得到的一元二次方程的两根分别为和,和,和,,和,和,.27.解:(1)设,∴,∴,即,根据题意可知,∴,解得:或;(2)设,可化为,即,∴,即,令,解得,,∴或;(3)猜想:当时,最大.理由:设,,则,在中,斜边(a为常数,),∴,∴,∴,即,∴,即,∵,,∴,当时,有,∴,即当时,最大.28.解:(1)将写成,等式左边因式分解,得,证明,是等腰三角形;(2)①由得到和,推出,就可以算出a和c的值,再算;②同①可得,根据,利用因式分解得到,同理由,得,从而可以用a表示出b、c、d.解:知识运用原式;解决问题(1),∵,∴,即,∴是等腰三角形;(2)①当时,,即,,即,若则,把它代入,得,解得,当时,,则,当时,,则,综上:的值为6或;②当,∵,∴,∵,∴,同理由,得,由,,若,则,,,则此时k就等于0了,矛盾,不合题意,若,则,,,综上:,,.。
2020初中数学一元二次方程单元能力达标测试题2(附答案)
2020初中数学一元二次方程单元能力达标测试题2(附答案)1.如图,某中学准备在校园里利用围墙的一段,再砌三面墙,围成一个矩形花园ABCD (围墙MN 最长可利用25m),现在已备足可以砌50m 长的墙的材料,若设计一种砌法,使矩形花园的面积为300m 2.则AB 长度为( )A .10B .15C .10或15D .12.52.方程3x 2﹣7x ﹣2=0的根的情况是( )A .方程没有实数根B .方程有两个不相等的实数根C .方程有两个相等的实数很D .不确定3.若关于x 的一元二次方程x 2﹣3x+m =0没有实数根,则实数m 的取值范围是( ) A .m <94 B .m >﹣94 C .m >94 D .m <﹣944.如图,在长20m 、宽18m 的矩形草坪上,修筑同样宽的三条(横向一条,纵向两条)矩形道路,要使草坪面积达到306m 2,则道路宽度是( )A .4mB .3mC .2mD .1m5.下列一元二次方程中,两根分别为5和-7的是( )A .7)50()(x x ++=B .7)50()(x x =--C .7)50()(x x +-=D .7)50()(x x +=-6.若已知a ,b 是方程x 2-2x -1=0的两个根,则a 2+a +3b 的值是()..A .7B .-5C .7D .-27.把方程2x 2﹣3x ﹣2=0配方成(x+m )2=n 的形式,则m 、n 的值分别是( ) A .m =﹣34,n =2516 B .m =﹣32,n =2516C .m =﹣34,n =2716D .m =﹣34,n =254 8.一元二次方程(1)0-=x x 的解是( )A .0B .1C .0和1D .0和1-9.下列方程中是一元二次方程的是( )A .x +2x ﹣3=0B .2x+2y ﹣1=0C .x -(x+7)x=0D .ax +bx+c=010.某种植物的主干长出若干数目的支干,每个支干又长出相同数目的小分支,主干、支干和小分支的总数是57.设每个支干长出x 个小分支,根据题意列出方程为( )A .()1157x x x +++=B .2157x x ++=C .()157x x x ++=D .21257x +=11.方程23520x x -+=的一个根是a ,则21062019a a -+=_____.12.若一个等腰三角形的三边长均满足方程x 2-6x +8=0,则此三角形的周长为______. 13.如图,在△ABC 中,∠BAC =45°,AD ⊥BC 于点D ,若BD =3,CD =2.则△ABC 的面积为_____.14.有一间会议室,它的地板长为20m ,宽为15m ,现准备在会议室地板中间铺一块地毯,要求四周未铺地毯的部分宽度相同,而且地毯的面积是会议室地板面积的一半,若设四周未铺地毯的部分宽度为 m x ,则铺地毯部分的长是__________________________,宽是_____________________,铺地毯部分的面积为______________________,可列方程______________________.15.某校九年级学生毕业时,每个同学都将自己的相片向全班其他同学各送一张作纪念,全班共送了2070张相片.若全班有x 名学生,根据题意,列出方程为 . 16.已知非零有理数x 、y 满足22x 4xy 3y 0-+=,则x yx y -+=__________.公式分解为,然后转化为两个一元一次方程_____________,从而求得方程的根为_________. 18.一个矩形的长比宽多2,面积是100,若设矩形的宽为x ,列出关于x 的方程是_____. 19.已知两个数的和等于7,积等于12,则这两个数分别是______.20.已知方程22340x x +-=的两根为1x ,2x ,那么2212x x +=___21.如图,某小区在宽20m ,长32m 的矩形场地上修同样宽的三条人行道(阴影部分),余下的部分种花草.若种植花草的面积为2589m ,求道路的宽度.22.解方程:(1)x 2﹣3x =0(2)2x 2﹣4x ﹣5=0(3)x (x ﹣1)=0(4)(x ﹣1)2=3x ﹣323.用配方法解下列方程:(1)22630x x -++=;(2)216702x x --=. 24.已知关于x 的一元二次方程230x mx ++=的一个根为1-,求它的另一个根及的m 值.25.用配方法解方程:x 2﹣6x ﹣1=0.26.解方程(1)2481x =(2)2214x x ++=(3)2470x x --=27.已知x 2+y 2+6x +4y =-13,求y x 的值.28.先化简,再求值:22121()111x x x x x -+÷+--,其中x 满足方程x (x ﹣1)=2(x ﹣1).参考答案1.B【解析】【分析】根据可以砌50m长的墙的材料,即总长度是50米,AB=x米,则BC=(50-2x)米,再根据矩形的面积公式列方程,解一元二次方程即可.【详解】设AB=x米,则BC=(50-2x)米.根据题意可得,x(50-2x)=300,解得:x1=10,x2=15,当x=10,BC=50-10-10=30>25,故x1=10(不合题意舍去),故选B.【点睛】本题考查了一元二次方程的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系求解,注意围墙MN最长可利用25m,舍掉不符合题意的数据.2.B【解析】【分析】先求一元二次方程的判别式的值,由△与0的大小关系来判断方程根的情况即可求解.【详解】由根的判别式△=b2﹣4ac=(﹣7)2﹣4×3×(﹣2)=49+24=73>0,所以方程有两个不相等的实数根.故选B.【点睛】本题考查了一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.3.C【解析】【分析】由关于x 的一元二次方程x 2﹣3x+m =0没有实数根,即可得△<0,继而求得答案.【详解】∵关于x 的一元二次方程x 2﹣3x+m =0没有实数根,∴△=b 2﹣4ac =(﹣3)2﹣4×1×m =9﹣4m <0,解得:m >94. 故选:C .【点睛】此题考查了根的判别式.注意△<0⇔方程没有实数根.4.D【解析】【分析】矩形的面积-三条道路的面积+道路重叠部分的两个小正方形的面积=草坪的面积.如果设道路宽x ,可根据此关系列出方程求出x 的值,然后将不合题意的舍去即可.【详解】设道路为x 米宽,由题意得:22018(20218)2306x x x ⨯-+⨯+=整理得:228270x x -+=解得:1x =或27x =∵2718x =>,因此不合题意舍去.∴1x =,即道路的宽是1米.故选:D.【点睛】本题考查了一元二次方程的应用,对于面积问题应熟记各种图形的面积公式.5.D【解析】【分析】根据有理数的乘法运算法则和根的定义即可解答.【详解】解:∵两根分别为5和-7,∴7)50()(x x +=-; 故选D.【点睛】本题考查了一元二次方程根的定义,熟练掌握是解题的关键.6.A【解析】【分析】根据一元二次方程根与系数的关系与系数的关系,即韦达定理进行作答.【详解】由韦达定理,即.且a 为方程的一个根,即a 2-2a -1=0,得到a 2=2a +1.所以,a 2+a +3b =3a +3b +1=3(a +b )+1=32+1=7.所以,答案选A. 【点睛】本题考查了一元二次方程根与系数的关系与系数的关系,即韦达定理的运用,熟练掌握一元二次方程根与系数的关系与系数的关系,即韦达定理是本题解题关键. 7.A【解析】【分析】对方程配方后,即可得出正确选项.【详解】解:方程整理得:2312x x -=, 配方得:2392521616x x -+=,即2325416x ⎛⎫-= ⎪⎝⎭ 则325,416m n =-=, 故选:A .【点睛】此题考查了解一元二次方程-配方法,熟练掌握完全平方公式是解本题的关键.8.C【解析】由x(x−1)=0,推出方程x−1=0,x=0,求出方程的解即可.【详解】x(x−1)=0,∴x=0,x−1=0,∴x1=0,x2=1,故选:C.【点睛】本题主要考查解一元二次方程−因式分解法,能把一元二次方程转化成一元一次方程是解此题的关键.9.A【解析】【分析】根据一元二次方程的定义进行判断即可.【详解】解:A项,符合一元二次方程的定义,符合题意;B项,方程含有两个未知数,不符合题意;C项,原方程可化为-7x=0,是一元一次方程,不符合题意;D项,方程二次项系数可能为0,不符合题意.故选A.【点睛】一元二次方程的一般形式是ax+bx+c=0(a、b、c是常数,且a≠0).特别要注意a≠0这一条件,这是在做题过程中容易忽视的知识点.10.B【解析】【分析】根据题意,可以列出相应的方程,从而可以解答本题.【详解】解:由题意可得,1+x+x•x=1+x+x2=57,【点睛】本题考查由实际问题抽象出一元二次方程,解答本题的关键是明确题意,列出相应的方程.11.2023【解析】【分析】把a 代入方程,得到2352a a -=-,把235a a -看成是一个整体,代入代数式求值即可.【详解】把a 代入方程得:23520a a -+=则:2352a a -=-原式22(35)2019(2)(2)20192023a a =--+=-⨯-+=故填:2023.【点睛】本题主要考查一元二次方程的解和代数式求值,采用整体代入法是解本题的关键.12.6或12或10【解析】【分析】由等腰三角形的底和腰是方程2680x x -+=的两根,解此一元二次方程即可求得等腰三角形的腰与底边的长,注意需要分当2是等腰三角形的腰时与当4是等腰三角形的腰时讨论,然后根据三角形周长的求解方法求解即可.【详解】解:∵2680x x -+=,∴()()240x x --=,解得:2x =或4x =,∵等腰三角形的底和腰是方程2680x x -+=的两根,∴当2是等腰三角形的腰时,2+2=4,不能组成三角形,舍去;当4是等腰三角形的腰时,2+4>4,则这个三角形的周长为2+4+4=10.当边长为2的等边三角形,得出这个三角形的周长为2+2+2=6.当边长为4的等边三角形,得出这个三角形的周长为4+4+4=12.∴这个三角形的周长为6或12或10.故答案为:6或12或10.【点睛】本题考查了三角形三边关系的应用,一元二次方程的解法.解题的关键是注意分类讨论思想的应用.特别注意不要忘记三边都是2或都是4的情况.13.15【解析】【分析】将△ABD绕着点A逆时针旋转90°,得△AFQ,延长FQ,BC,交于点E,连接CQ,判定△BAC≌△QAC(SAS),得到BC=CQ=BD+CD=5,再设AD=x,在Rt△CQE中,运用勾股定理列出关于x的方程,求得x的值,最后根据△ABC的面积=12×BC×AD,进行计算即可【详解】解:如图,将△ABD绕着点A逆时针旋转90°,得△AFQ,延长FQ,BC,交于点E,连接CQ,由旋转可得,△ABD≌△AQF,∴AB=AQ,∠BAD=∠FAQ,BD=QF=3,∠F=∠ADC=∠DAF=90°=∠E,∵∠BAC=45°,∴∠BAD+∠DAC=45°,∴∠DAC+∠FAQ=45°,又∵∠DAF=90°,∴∠CAQ=45°,∴∠BAC=∠CAQ.且AB=AQ,AC=AC∴△BAC ≌△QAC (SAS ),∴BC =CQ =BD+CD =5,设AD =x ,则QE =x ﹣3,CE =x ﹣2.在Rt △CQE 中,CE 2+QE 2=CQ 2∴(x ﹣2)2+(x ﹣3)2=52解得:x 1=6,x 2=﹣1(舍去),∴AD =6,∴△ABC 的面积为=12×BC×AD =15 故答案为15【点睛】本题考查了正方形的性质,全等三角形的性质,勾股定理,添加恰当辅助线构造全等三角形是本题的关键.14.(202)m x - (152)m x - 2(202)(152)m x x -- 1(202)(152)20152x x --=⨯⨯ 【解析】【分析】 根据题意找到等量关系即可依次填写求解.【详解】设四周未铺地毯的部分宽度为 m x ,则铺地毯部分的长是(202)m x -,宽是(152)m x -,铺地毯部分的面积为2(202)(152)m x x --,可列方程1(202)(152)20152x x --=⨯⨯. 故填: (202)m x - ;(152)m x -; 2(202)(152)m x x --;1(202)(152)20152x x --=⨯⨯ 【点睛】 此题主要考查一元二次方程的应用,解题的关键是根据题意找到等量关系进行求解. 15.x (x ﹣1)=2070(或x 2﹣x ﹣2070=0).【解析】【分析】根据题意得:每人要赠送(x-1)张相片,有x个人,然后根据题意可列出方程:(x-1)x=2070.【详解】根据题意得:每人要赠送(x﹣1)张相片,有x个人,∴全班共送:(x﹣1)x=2070(或x2﹣x﹣2070=0),故答案为x(x﹣1)=2070(或x2﹣x﹣2070=0).【点睛】此题主要考查了由实际问题抽象出一元二次方程,本题要注意读清题意,弄清楚每人要赠送x-1张相片,有x个人是解决问题的关键.16.0或12.【解析】【分析】由已知方程得出(x-y)(x-3y)=0,据此知x=y或x=3y,再分别代入计算可得.【详解】解:∵非零有理数x、y满足x2-4xy+3y2=0,∴(x-y)(x-3y)=0,则x-y=0或x-3y=0,所以x=y或x=3y,当x=y时,x yx y-+=0;当x=3y时,x yx y-+═3y y3y y-+=24yy=12;综上,x yx y-+=0或12,故答案为:0或12.【点睛】本题考查解一元二次方程,分式的化简求值,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.17.平方差或,【解析】【分析】利用平方差公式对方程左边进行因式分解,再转化为一元一次方程求解即可.【详解】解:或,故答案为: (1). 平方差(2). 或(3). ,【点睛】本题考查了平方差公式因式分解,掌握因式分解的平方差公式是解题的关键.18.x(x+2)=100.【解析】【分析】设矩形的宽为x,则矩形的长为(x+2),利用矩形的面积公式,即可得出关于x的一元二次方程,此题得解.【详解】设矩形的宽为x,则矩形的长为(x+2),根据题意得:x(x+2)=100.故答案为:x(x+2)=100.【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.19.3和4【解析】【分析】根据题意,设一个数为x ,则另一个数为7-x ,根据“积等于12”列出方程,求解即可解答.【详解】设一个数为x ,则另一个数为7-x根据题意得,(7)12x x -=解得:123,4x x ==则这两个数分别是3和4故答案为:3和4【点睛】本题考查一元二次方程的应用,审清题意,列出方程,正确求解是解题关键.20.254【解析】【分析】由22340x x +-=的两根为1x ,2x ,可推出1232x x +=-,122x x =-,然后通过配方法对2212x x +进行变形得()212122x x x x +-,最后代入求值即可.【详解】∵22340x x +-=的两根为1x ,2x , ∴1232x x +=-,122x x =-, ∴2212x x +=()212122x x x x +-=925444+= 故答案为254. 【点睛】 此题考查根与系数的关系,解题关键在于掌握配方法将原式变形.21.道路的宽1米【解析】【分析】设道路宽为x 米,先将道路进行平移,然后根据矩形的面积公式列方程求解即可.【详解】设道路宽为x 米,根据题意,得(20-x )(32-x )=589.整理得:x 2-52x+51=0.解得x 1=51(不合题意,舍去),x 2=1.答:道路宽为1米.【点睛】此题考查了一元二次方程的应用,对于面积问题应熟记各种图形的面积公式.本题中按原图进行计算比较复杂时,可根据图形的性质适当的进行转换化简,然后根据题意列出方程求解.22.(1)x 1=0,x 2=3;(2)x 1=,x 2=1;(3)x 1=0,x 2=1;(4)x 1=1,x 2=4.【解析】【分析】(1)利用因式分解法解方程即可;(2)利用配方法解方程即可;(3)利用因式分解法解方程即可;(4)利用因式分解法解方程即可.【详解】(1)x (x ﹣3)=0,x =0或x ﹣3=0,所以x 1=0,x 2=3;(2)x 2﹣2x =52, x 2﹣2x +1=52+1, (x ﹣1)2=72,x ﹣1=所以x 1=1+2,x 2=1﹣2; (3)x =0或x ﹣1=0,所以x 1=0,x 2=1;(4)(x ﹣1)2﹣3(x ﹣1)=0,(x ﹣1)(x ﹣1﹣3)=0,x =1或x ﹣4=0,所以x 1=1,x 2=4.【点睛】本题考查了一元二次方程的解法,根据方程的特点选择适当的方法解方程是解决问题的关键.23.(1)1x =2x =(2)16x =+26x =- 【解析】【分析】(1)把方程两边都除以-2,把二次项系数化为1,然后配方求解即可;(2)把方程两边都乘以2,把二次项系数化为1,然后配方求解即可【详解】(1)原方程可化为23302x x --=, 移项,得2332x x -=, 配方,得29393424x x -+=+, 即2315()24x -=,两边开平方,得32x -=,解得1x =2x =. (2)原方程可化为212140x x --=,移项,得21214x x -=,配方,得212361436x x -+=+,即2(6)50x -=,两边开平方,得6x -=±解得16x =+26x =-.【点睛】本题考查了解一元二次方程-配方法:将一元二次方程配成(x+m)2=n 的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.24.原方程的另一根是3-.4m =.【解析】【分析】根据一元二次方程的解的定义,将x =﹣1代入一元二次方程x 2+mx +3=0,求得m 值,然后将m 值代入原方程,利用根与系数的关系求另一根.【详解】解:设方程的另一根是2x .Q 一元二次方程230x mx ++=的一个根为1-,1x ∴=-是原方程的解,130m ∴-+=,解得4m =;又由根与系数的关系可得,得213x -⨯=,23x ∴=-,即原方程的另一根是3-.【点睛】本题考查了一元二次方程的解、根与系数的关系.另外,本题也可以设方程的另一根是2x .然后利用根与系数的关系来求另一个根及m 的值.25.x 1=,x 2=3【解析】【分析】将方程的常数项移到方程右边,两边都加上9,左边化为完全平方式,右边合并,开方转化为两个一元一次方程,求出一元一次方程的解即可得到原方程的解.【详解】解:x 2﹣6x ﹣1=0,移项得:x 2﹣6x =1,配方得:x 2﹣6x+9=10,即(x ﹣3)2=10,开方得:x ﹣3=,则x 1=,x 2=3.【点睛】此题考查了解一元二次方程−配方法,利用此方法解方程时,首先将二次项系数化为1,常数项移到方程右边,然后两边都加上一次项系数一半的平方,左边化为完全平方式,右边合并,开方转化为两个一元一次方程来求解.26.(1)9x 2=±(2)1231x x =-= (3)1222x x ==【解析】【分析】(1)运用直接开平方法;(2)运用配方法;(3)运用公式法.【详解】解(1)2248181492x x x ===±(2)()222141412x x x x ++=+=+=±所以1231x x =-=(3)2S 因为a=1,b=-4,c=-7()()224441744b ac ∆=-=--⨯⨯-=所以,2x ==±所以1222x x ==【点睛】 考核知识点:解一元二次方程.掌握各种方法是关键.27.18-【解析】【分析】原式因式分解得(x+3)2+(y+2)2=0,再由非负数的性质得出x ,y 的值,代入计算可得.【详解】解:由已知得(x 2+6x +9)+(y 2+4y +4)=0,(x +3)2+(y +2)2=0,∴x =-3,y =-2,∴y x =(-2)-3=-18. 【点睛】本题考查了配方法的应用,完全平方公式:a 2+2ab+b 2=(a+b )2.也考查了几个非负数和的性质.28.x 2+1,5【解析】【分析】找出原式括号中两项的最简公分母,通分并利用同分母分式的加法法则计算,除式的分母利用平方差公式分解因式,并利用除以一个数等于乘以这个数的倒数将除法运算化为乘法运算,约分后得到最简结果,然后将已知的方程移项提取公因式x−1,左边化为积的形式,右边化为0,利用两数相乘积为0,两因式中至少有一个为0,转化为两个一元一次方程,求出方程的解得到x 的值,将满足题意x 的值代入化简后的式子中计算,即可得到原式的值.【详解】 解:原式=()()()()()2121x 111x x x x x -++-+-n =x 2﹣2x+1+2x=x 2+1,方程x (x ﹣1)=2(x ﹣1),移项变形得:(x ﹣1)(x ﹣2)=0,解得:x=1或x=2,当x=1时,原式没有意义;则当x=2时,原式=22+1=5.【点睛】此题考查了分式的化简求值,以及利用因式分解法解一元二次方程,分式的加减运算关键是通分,通分的关键是找最简公分母,分式的乘除运算关键是约分,约分的关键是找公因式,约分时分式的分子分母出现多项式,应将多项式分解因式后再约分.。
(好题)初中数学九年级数学上册第二单元《一元二次方程》检测卷(答案解析)
一、选择题1.关于x 的一元二次方程x 2﹣4x +2n =0无实数根,则一次函数y =(2﹣n )x +n 的图象不经过( )A .第一象限B .第二象限C .第三象限D .第四象限 2.一元二次方程2(21)2(21)x x +=+的解是( )A .1212x x ==B .1212x x ==-C .1211,22x x =-=D .1211,2x x == 3.若关于x 的方程2210mx x +-=有两个不相等的实数根,则m 的取值范围是( ) A .1m <-B .1m >-且0m ≠C .1m >-D .1m ≥-且0m ≠4.为切实解决群众看病贵的问题,药监部门对药品价格进行了两次下调.某种药品原价为250元/瓶,经两次下调后价格变为160元/瓶,该药品平均每次降价的百分率为( ) A .10% B .15% C .20% D .25% 5.一元二次方程20x x +=的根的情况为( )A .没有实数根B .只有一个实数根C .有两个相等的实数根D .有两个不相等的实数根6.请你判断,320x x x -+=的实根的个数为( )A .1B .2C .3D .4 7.已知关于x 的一元二次方程2420ax x +-=有实数根,则a 的取值范围是( ) A .2a >-且0a ≠ B .2a ≥-且0a ≠ C .2a ≥- D .0a ≠ 8.某企业通过改革,生产效率得到了很大的提高,该企业一月份的营业额是1000万元,月平均增长率相同,第一季度的总营业额是3390万元.若设月平均增长率是x ,那么可列出的方程是( )A .1000(1+x )2=3390B .1000+1000(1+x )+1000(1+x )2=3390C .1000(1+2x )=3390D .1000+1000(1+x )+1000(1+2x )=33909.2020年12月29日,贵阳轨道交通2号线实现试运行,从白云区到观山湖区轨道公司共设计了132种往返车票,则这段线路有多少个站点?设这段线路有x 个站点,根据题意,下面列出的方程正确的是( )A .()1132x x +=B .()1132x x -=C .1(1)1322x ⨯+=D .1(1)1322x x -= 10.若12,x x 是方程2420200x x --=的两个实数根,则代数式211222x x x -+的值等于( )A .2020B .2019C .2029D .202811.由于国内疫情得到缓和,餐饮业逐渐恢复,某地一家餐厅重新开张,开业第一天收入约为2000元,之后两天的收入按相同的增长率增长,第3天的收入约为2420元,若设每天的增长率为x ,则列方程为( )A .2000(1)2420x +=B .2000(12)2420x +=C .22000(1)2420x -=D .22000(1)2420x +=12.当3b c -=时,关于x 的一元二次方程220x bx c -+=的根的情况为( ) A .有两个不相等的实数根B .有两个相等的实数根C .没有实数根D .无法确定二、填空题13.关于x 的一元二次方程2(2)430k x x ---=有两个不相等的实数根,则k 的取值范围是__________.14.若a ,b 是一元二次方程2202020210x x --=的两根,则22021a a b --=__________.15.一元二次方程x 2-4x +1=0的两根是x 1,x 2,则x 1+x 2-x 1⋅x 2=_________. 16.等腰ABC 中,4AB AC ==,30BAC ∠=︒,以AC 为边作等边ACD △,则点B 到CD 的距离为________.17.如图,某小区规划在一个长30m 、宽20m 的长方形ABCD 上修建三条同样宽的通道,使其中两条与AB 平行,另一条与AD 平行,其余部分种花草.要使每一块花草的面积都为78m 2,那么通道的宽应设计成多少m ?设通道的宽为xm ,由题意列得方程__________________________.18.在实数范围内因式分解:231x x --=_______.19.一件商品的标价为108元,经过两次降价后的销售价是72元,求平均每次降价的百分率.若设平均每次降价的百分率为x ,则可列方程_________.20.已知12x x 、是方程2310x x --=的根,则式子21122x x x -+的值为_____.三、解答题21.2020年,受新冠疫情影响,众多学校开展了“停课不停学”的线上教学活动,因此,手写板的需求量大幅上升.某网店抓住时机销售A ,B 两款手写板,A 型手写板的单价为360元,B 型手写板的单价为240元.(1)商家在1月共销售两种型号手写板600个,若A 型手写板的销售额不低于B 型手写板销售额的3倍,求1月A 型手写板至少售出多少个?(2)该商家在2月继续销售这两种型号的手写板并适当的进行了调整,A 型手写板的售价降低了13a%.B 型手写板的销价不变.结果A 型手写板的销售量在1月最低销售量的基础上增加了43a%,B 型手写板的销售量在一月保证A 最低销量的基础上增加了15a%,结果2月两种手写板的总销售额比1月两种手写板的总销售额增加了35a%,求a 的值. 22.某住宅小区在住宅建设时留下一块1248平方米的空地,准备建一个矩形的露天游泳池,设计如图所示,游泳池的长是宽的2倍,在游泳池的前侧留一块5米宽的空地,其它三侧各保留2米宽的道路及1米宽的绿化带.请你计算出游泳池的长和宽.23.解答下列各题:(1)用配方法解方程:2840x x --=;(2)已知2x =关于x 的一元二次方程()22130x m x m +--=的一个根,求m 的值及方程的另一个根.24.已知2x =时,二次三项式224x mx -+的值等于4.(1)x 为何值时,这个二次三项式的值为3;(2)是否存在x 的值,使得这个二次三项式的值为1-?说明理由.25.解方程:2582(4)x x x ++=+.26.解方程(1)(3)26x x x +=+; (2)22350x x --=【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】由一元二次方程根的情况可以求出n 的范围,并可得到一次函数中参数的范围,从而得到问题解答.【详解】解:由已知得:△=b 2﹣4ac =(﹣4)2﹣4×1×(2n )=16﹣8n <0,解得:n >2,∵一次函数y =(2﹣n )x +n 中,k =2﹣n <0,b =n >0,∴该一次函数图象在第一、二、四象限,故选:C .【点睛】本题考查一次函数的综合应用,熟练掌握一元二次方程根判别式的计算和应用、一次函数的图象与性质是解题关键.2.C解析:C【分析】先将原方程整理为2(21)2(21)0x x +-+=,再利用因式分解法求出方程的解,即可得出结论.【详解】解:2(21)2(21)x x +=+,移项,得2(21)2(21)0x x +-+=,分解因式,得(21)(21)0x x +-=,则210x +=或210x -=, 解得:1211,22x x =-=. 故选:C .【点睛】本题考查了解一元二次方程,掌握一元二次方程的解法及步骤是解题的关键. 3.B解析:B【分析】利用判别式大于零和二次项系数不为零求解即可.【详解】∵方程2210mx x +-=有两个不相等的实数根,∴m≠0,且△>0,∴m≠0,且224m +>0,∴1m >-且0m ≠,故选B .【点睛】本题考查了一元二次方程根的判别式,熟练运用判别式并保证二次项系数不能为零是解题的关键.4.C解析:C【分析】设该药品平均每次降价的百分率为x ,根据题意列方程求解即可.【详解】解:设该药品平均每次降价的百分率为x ,根据题意得,250(1-x )2=160,解得,x 1=0.2,x 2=1.8(舍去),答:该药品平均每次降价的百分率为20%;故选:C .【点睛】本题考查了一元二次方程的应用—增长率(或下降率)问题,解题关键是熟知增长率(或下降率)问题的数量关系,结合题意列方程.5.D解析:D【分析】确定a 、b 、c 计算根的判别式,利用根的判别式直接得出结论;【详解】∵20x x += ,∴ △=1-0=1>0,∴ 原方程有两个不相等的实数根;故选:D .【点睛】本题考查了根的判别式、一元二次方程实数根的情况取决于根的判别式△,正确掌握△的值与根的个数的关系是解题的关键.6.C解析:C【分析】利用绝对值的几何意义,假设x >0或x <0,分别分析得出即可.【详解】解:当x >0时,2320x x -+=,解得:x 1=1;x 2=2;当x <0时,2320x x --=,解得:x 1(不合题意舍去),x 2, ∴方程的实数解的个数有3个.故选:C .【点睛】此题主要考查的是含有绝对值符号的一元二次方程的一般计算题,理解绝对值的意义是关键.7.B解析:B【分析】根据方程有实数根得到.由题意得:0∆≥,即244(2)0a -⨯⨯-≥,且0a ≠,解得2a ≥-且0a ≠,故选:B .【点睛】此题考查根据一元二次方程根的情况求参数,掌握一元二次方程根的判别式与根的个数的三种情况是解题的关键. 8.B解析:B【分析】月平均增长的百分率是x ,则该超市二月份的营业额为1000(1+x )万元,三月份的营业额为1000(1+x )2万元,根据该超市第一季度的总营业额是3990万元,即可得出关于x 的一元二次方程,此题得解.【详解】解:设月平均增长的百分率是x ,则该超市二月份的营业额为1000(1+x )万元,三月份的营业额为1000(1+x )2万元,依题意,得1000+1000(1+x )+1000(1+x )2=3990.故选:B .【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.9.B解析:B【分析】利用列方程解应用题,仔细阅读试题,找出等量关系为:站点数×每站票数(比站点数少1)=总票数,列方程即可.【详解】设这段线路有x 个站点,每个站点售其它各站一张往返车票,共有(x-1)张票,根据题意,列方程得()1132x x -=.故选择:B .【点睛】本题考查列方程解应用题,掌握列方程解应用题的方法,抓住等量关系站点数×每站票数(比站点数少1)=总票数是解决问题的关键.10.D解析:D【分析】先根据一元二次方程的解的概念和根与系数的关系得出21142020x x -=,124x x +=,代入原式计算即可.解:∵1x ,2x 是方程2420200x x --=的两个实数根,∴211420200x x --=,即21142020x x -=,由根与系数之间关系可知124x x +=,∴211222x x x -+=21112422x x x x -++=2020+122()x x +=2020+8=2028.所以选项D 正确.故答案为:D【点睛】本题主要考查了一元二次方程的解、根与系数之间的关系,本题解题的关键是将211222x x x -+进行等量变形,并代入求解.11.D解析:D【分析】根据开业第一天收入约为2000元,之后两天的收入按相同的增长率增长,第3天收入约为2420元列方程即可得到结论.【详解】设每天的增长率为x ,依题意,得:22000(1)2420x +=.故选:D .【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.12.A解析:A【分析】首先将已知等式转换形式,然后代入判别式,判断其正负,即可得解.【详解】解:3b c -=,3c b ∴=-, 220x bx c -+=,∴∆22()428b c b c =--⨯⨯=-28(3)b b =--2824b b =-+2(4)80b =-+>,∴方程有两个不相等的实数根,故选:A .【点睛】此题主要考查根据参数的值判定一元二次方程根的情况,熟练掌握,即可解题.二、填空题13.且【分析】根据一元二次方程有两个不相等的实数根知△=b2-4ac >0结合一元二次方程的定义列出关于k 的不等式组解不等式组即可得答案【详解】解:∵关于的一元二次方程有两个不相等的实数根∴解得:且故答案 解析:23k >且2k ≠ 【分析】根据一元二次方程2(2)430k x x ---=有两个不相等的实数根,知△=b 2-4ac >0,结合一元二次方程的定义列出关于k 的不等式组,解不等式组即可得答案.【详解】解:∵关于x 的一元二次方程2(2)430k x x ---=有两个不相等的实数根, ∴()()()22044230k k -≠⎧⎪⎨--⨯-⨯->⎪⎩, 解得:23k >且2k ≠, 故答案为:23k >且2k ≠. 【点睛】 本题考查了根的判别式以及一元二次方程的定义,根据二次项系数非零结合根的判别式△=b 2−4ac>0,列出关于k 的一元一次不等式组是解题的关键.14.【分析】根据a 与b 为方程的两根把x =a 代入方程并利用根与系数的关系求出所求即可【详解】解:∵ab 为一元二次方程的两根∴即a+b =2020则原式=(a2-2020a )﹣(a+b )=2021﹣2020=解析:1【分析】根据a 与b 为方程的两根,把x =a 代入方程,并利用根与系数的关系求出所求即可.【详解】解:∵a ,b 为一元二次方程2202020210x x --=的两根,∴2202020210a a --=,即220202021a a -=,a +b =2020,则原式=(a 2-2020a )﹣(a +b )=2021﹣2020=1.故答案为:1.【点睛】此题考查了根与系数的关系,熟练掌握根与系数的关系是解本题的关键.15.3【分析】先根据根与系数的根据求得x1+x2和x1x2的值然后代入计算即可【详解】解:∵一元二次方程x2-4x +1=0的两根是x1x2∴x1+x2=4x1x2=1∴x1+x2-x1x2=4-1解析:3【分析】 先根据根与系数的根据求得x 1+x 2和x 1⋅x 2的值,然后代入计算即可.【详解】解:∵一元二次方程x 2-4x +1=0的两根是x 1,x 2∴x 1+x 2=4,x 1⋅x 2=1∴x 1+x 2-x 1⋅x 2=4-1=3.故答案为3.【点睛】本题主要考查了一元二次方程根与系数的关系,一元二次方程ax 2+bx+c=0(a≠0)的两根是x 1、x 2,则x 1+x 2=b a -、x 1⋅x 2=c a. 16.或【分析】分两种情况讨论利用等边三角形的性质和勾股定理可求解【详解】解:当点D 在AC 的左侧时设AB 与CD 交于点E ∵△ACD 是等边三角形∴AC=AD=CD=4∠DAC=60°又∵∠BAC=30°∴∠D解析:232-或423-【分析】分两种情况讨论,利用等边三角形的性质和勾股定理可求解.【详解】解:当点D 在AC 的左侧时,设AB 与CD 交于点E ,∵△ACD 是等边三角形,∴AC=AD=CD=4,∠DAC=60°,又∵∠BAC=30°,∴∠DAE=∠BAC=30°,∴AB ⊥CD ,∵∠BAC=30°,∴CE=12AC=2,AE=22224223AC EC -=-=, ∴BE=AB-AE=423-;当点D 在AC 的右侧时,过点B 作BE ⊥CD ,交DC 的延长线于点E ,连接BD ,∵△ACD 是等边三角形,∴AC=AD=CD=AB=4,∠DAC=60°,∴∠BAD=90°,∴22161642AB AD =+=+∵AB=AC ,∠BAC=30°,∴∠ACB=75°, ∴∠BCE=180°-∠ACD-∠ACB=45°, ∵BE ⊥CE ,∴∠BCE=∠CBE=45°,∴BE=CE ,∵BD 2=BE 2+DE 2,∴32=BE 2+(CE+4)2,∴BE=232-,综上所述:点B 到CD 的距离为32或423-.故答案为:32-或423-【点睛】本题考查了勾股定理,等边三角形的性质,利用分类讨论思想解决问题是本题的关键. 17.【分析】设道路的宽为将6块草地平移为一个长方形长为宽为根据长方形面积公式即可列方程【详解】设道路的宽为由题意得:故答案为:【点睛】本题主要考查了一元二次方程的应用掌握长方形的面积公式求得6块草地平移解析:(302)(20)786x x --=⨯【分析】设道路的宽为xm ,将6块草地平移为一个长方形,长为()302-x m ,宽为()20x m -.根据长方形面积公式即可列方程(302)(20)786x x --=⨯.【详解】设道路的宽为xm ,由题意得:(302)(20)786x x --=⨯,故答案为:(302)(20)786x x --=⨯.【点睛】本题主要考查了一元二次方程的应用,掌握长方形的面积公式,求得6块草地平移为一个长方形的长和宽是解决本题的关键.18.【分析】令x2-3x-1=0求出方程的两个根即可把多项式x2-3x-1因式分解【详解】解:令x2-3x-1=0∵a=1b=-3c=-1∴b2-4ac=(-3)2-4×1×(-1)=13>0∴∴故答案解析:33(22--x x 【分析】令x 2-3x-1=0,求出方程的两个根,即可把多项式x 2-3x-1因式分解.【详解】解:令x 2-3x-1=0,∵a=1,b=-3,c=-1,∴b 2-4ac=(-3)2-4×1×(-1)=13>0,∴x =∴231(x --=x x x故答案为:(-x x 【点睛】 此题主要考查了实数范围内分解因式,熟练掌握利用公式法解一元二次方程是解答本题的关键.19.【分析】设平均每次降价的百分率为x 根据一件商品的标价为108元经过两次降价后的销售价是72元即可列出方程【详解】解:设平均每次降价的百分率为x 根据题意可得:故答案为:【点睛】本题考查一元二次方程的实 解析:()2108172x -=【分析】设平均每次降价的百分率为x ,根据“一件商品的标价为108元,经过两次降价后的销售价是72元”即可列出方程.【详解】解:设平均每次降价的百分率为x ,根据题意可得:()2108172x -=,故答案为:()2108172x -=.【点睛】本题考查一元二次方程的实际应用,理解题意,找出等量关系是解题的关键. 20.4【分析】由是方程的根可得再将式子变形为即可求出答案【详解】解:∵是方程的根∴即∴∴原式=1+3=4故答案为:4【点睛】本题考查了一元二次方程根与系数的关系熟练掌握一元二次方程根与系数的关系并与代数 解析:4【分析】由12x x 、是方程2310x x --=的根,可得21131x x -=,123x x +=,再将式子21122x x x -+变形为211123()x x x x -++,即可求出答案.【详解】解:∵12x x 、是方程2310x x --=的根,∴211310x x --=,即21131x x -=,123x x +=,∴22112111223()x x x x x x x -+-++=,∴原式=1+3=4.故答案为:4.【点睛】本题考查了一元二次方程根与系数的关系,熟练掌握一元二次方程根与系数的关系并与代数式变形相结合解题是解题的关键.三、解答题21.(1)A 型手写板至少售出400个;(2)60a =.【分析】(1)设A 型手写板售出x 个,则B 型手写板售出(600-x )个,根据题意列出不等式求解即可;(2)根据售价×销量=销售额,别表示出A 型手写板和B 型手写板的销售额相加等于总销售额列出方程求解即可.【详解】解:(1)设A 型手写板售出x 个,则B 型手写板售出(600-x )个,根据题意3603240(600)x x ≥⨯-,解得400x ≥,故A 型手写板至少售出400个;(2)由(1)得,A 型手写板售出400个,B 型手写板售出200个,根据题意可知1413360(1%)400(1%)240200(1%)(400360200240)(1%)3355a a a a -⨯++⨯+=⨯+⨯+解得:60a =或0a =(舍去).所以60a =.【点睛】本题考查一元一次不等式的应用,一元二次方程的应用.根据题意找出等量或者不等量关系,列出方程(不等式)是解题关键.(2)中计算过程较为复杂,可先领%y a =,求出y 后,再求a .22.游泳池的长为40米,宽为20米.【分析】设游泳池的宽为x 米,而游泳池的长是宽的2倍,那么原来的空地的长为(2x +8),宽为(x +6),根据空地面积为1248平方米即可列出方程解题.【详解】解:设游泳池的宽为x 米,依题意得(x +6)(2x +8)=1248整理得x 2+10x ﹣600=0,解得x 1=20,x 2=﹣30(负数不合题意,舍去),∴x =20,2x =40.答:游泳池的长为40米,宽为20米.【点睛】找到关键描述语,找到等量关系准确的列出方程是解决问题的关键.此题要注意判断所求的解是否符合题意,舍去不合题意的解.23.(1)14x =+24x =-;(2)2m =-,方程的另一个根3【分析】(1)先把常数项移到右边284x x -=,再添加一次项系数一半的平方配方求解;(2)将2x =代入一元二次方程()22130x m x m +--=求得m ,再将m 代入原方程求另一个根,也可设另一根为α,利用根与系数关系21223m mαα+=-⎧⎨=-⎩解方程组即可. 【详解】解:(1)284x x -=, 281620x x -+=,()2420x -=,4x -=±,∴14x =+24x =-;(2)方法1:设方程的另一个根为α,利用根与系数关系则,21223m m αα+=-⎧⎨=-⎩, 解得:32m α=⎧⎨=-⎩, 即2m =-,方程的另一个根3.方法2:将2x =代入方程,得:()2222130m m +--=,解得:2m =-, ∴2560x x -+=,解得:122,3x x ==,即2m =-,方程的另一个根3.【点睛】本题考查了根的定义、一元二次方程的解法,要熟练掌握配方法、因式分解法、公式法、直接开平方法,并能按照题目要求选择最佳解法.,也可用根与系数关系来求另一根问题. 24.(1)1;(2)不存在,理由见解析【分析】(1)由已知可以得到m 的值,并可得一元二次方程,解方程可得答案;(2)由已知可得一元二次方程,计算判别式的值可以得解.【详解】解:(1)当2x =时,求得1m =,∴由已知可得方程:2243x x -+=,即2210x x -+=,解之可得121x x ==;(2)不存在,理由如下:令2241x x -+=-,可得2250x x -+=,∵Δ=()22415160--⨯⨯=-< ∴方程无解,故不存在x 的值,使得这个二次三项式的值为−1.【点睛】本题考查一元二次方程的应用,熟练掌握一元二次方程的求解与根的判别式的计算与应用是解题关键.25.3x =-或0x =【分析】先把方程去括号、移项进行整理,再利用因式分解法解方程,即可得到答案.【详解】解:2582(4)x x x ++=+,∴25828x x x ++=+∴230x x +=∴(3)0x x +=3x ∴=-或0x =.【点睛】本题考查了解一元二次方程,解题的关键是掌握因式分解法解一元二次方程. 26.(1)122,3x x ==-;(2)152x =;21x =- 【分析】(1)用因式分解法解方程即可;(2)用公式法解方程即可.【详解】解:(1)(3)26x x x +=+, (3)2(3)0x x x +-+=,(2)(3)0x x -+=,20x -=或30x +=,122,3x x ==-;(2)22350x x --=,2,3,5a b c ==-=-,224(3)42(5)49b ac -=--⨯⨯-=,x == 125,12x x ==-. 【点睛】本题考查了一元二次方程的解法,解题关键是根据方程的特征选择恰当的方法进行解方程.。
(必考题)初中数学九年级数学上册第二单元《一元二次方程》检测(答案解析)(2)
一、选择题1.一元二次方程x 2=2x 的根是( ).A .0B .2C .0和2D .0和﹣2 2.若x m =是方程210x x +-=的根,则22020m m ++的值为( )A .2022B .2021C .2019D .2018 3.要组织一次足球联赛,赛制为双循环形式(每两队之间都进行两场比赛),共要比赛90场.设共有x 个队参加比赛,则x 满足的关系式为( )A .12x (x +1)=90B .12x (x ﹣1)=90 C .x (x +1)=90 D .x (x ﹣1)=904.用配方法解一元二次方程2830x x +-=,下列变形中正确的是( ) A .()2419x -= B .()2419x += C .()2861x += D .()2867x -= 5.在某种病毒的传播过程中,每轮传染平均1人会传染x 个人,若最初2个人感染该病毒,经过两轮传染,共有y 人感染.则y 与x 的函数关系式为( )A .()221y x =+B .()22y x =+C .222y x =+D .()212y x =+ 6.在“文博会”期间,某公司展销如图所示的长方形工艺品,该工艺品长60cm ,宽40cm .中间镶有宽度相同的三条丝绸花边.若丝绸花边的面积为650cm ,设丝绸花边的宽为xcm ,根据题意,可列方程为( )A .()()60240650x x -⋅-=B .()()60402650x x -⋅-=C .2402650x x x ⋅+⋅=D .()240602650x x x ⋅+⋅-= 7.关于x 的方程()()223x x a -+=(a 为常数)的根的情况,下列结论中正确的是( )A .两个正根B .两个负根C .一个正根一个负根D .无实数根 8.2020年12月29日,贵阳轨道交通2号线实现试运行,从白云区到观山湖区轨道公司共设计了132种往返车票,则这段线路有多少个站点?设这段线路有x 个站点,根据题意,下面列出的方程正确的是( )A .()1132x x +=B .()1132x x -=C .1(1)1322x ⨯+=D .1(1)1322x x -= 9.关于x 的一元二次方程2430x x -+=的实数根有( )A .0个B .1个C .2个D .3个10.若12,x x 是方程2420200x x --=的两个实数根,则代数式211222x x x -+的值等于( )A .2020B .2019C .2029D .202811.若关于x 的一元二次方程kx 2-3x +1=0有实数根,则k 的取值范围为( ) A .k ≥94 B .k ≤94且k ≠0 C .k <94且k ≠0 D .k ≤9412.由于国内疫情得到缓和,餐饮业逐渐恢复,某地一家餐厅重新开张,开业第一天收入约为2000元,之后两天的收入按相同的增长率增长,第3天的收入约为2420元,若设每天的增长率为x ,则列方程为( )A .2000(1)2420x +=B .2000(12)2420x +=C .22000(1)2420x -=D .22000(1)2420x +=二、填空题13.将23220x x --=配方成2()x m n +=的形式,则n =__________.14.一元二次方程x 2-4x +1=0的两根是x 1,x 2,则x 1+x 2-x 1⋅x 2=_________. 15.已知2x =是方程220x bx +-=的一个根,则方程的另一个根为____.16.已知方程2560x kx ++=的一个根是2,则它的另一个根是________.17.已知m 为一元二次方程x²-3x-2020=0的一个根,则代数式2m²-6m+2的值为___________18.如图,把矩形纸片ABCD (BC CD >)沿折痕DE 折叠,点C 落在对角线BD 上的点P 处;展开后再沿折痕BF 折叠,点C 落在BD 上的点Q 处;沿折痕DG 折叠,点A 落在BD 上的点R 处.若4PQ =,7PR =,则BD =___________.19.对于实数a b 、,定义新运算“⊗”:2a b a ab ⊗=-,如2424428⊗=-⨯=.若44x ⊗=-,则实数x 的值是_______.20.如果关于x 的一元二次方程220k x kx +=的一个根是2-,那么k =_______.三、解答题21.按要求解下列方程:用配方法解:(1)x 2﹣4x +1=0.用公式法解:(2)21204x x -=.22.已知关于x 的一元二次方程2(3)890a x x --+=.(1)若方程的一个根为1x =-,求a 的值;(2)若方程有实数根,求满足条件的正整数a 的值:(3)请为a 选取一个合适的整数,使方程有两个整数根,并求这两个根.23.阅读材料:若22228160x xy y y -+-+=,求x ,y 的值.解:∵22228160x xy y y -+-+=∴()()22228160x xy yy y -++-+= ∴()()2240x y y -+-=∴()20x y -=,()240y -= ∴4,4y x ==根据上述材料,解答下列问题:(1)2222210m mn n n -+-+=,求2m n +的值;(2)6a b -=,24130ab c c +-+=,求a b c ++的值.24.解方程:(1)(x +2)2﹣25=0;(2)x 2+4x ﹣5=0.25.劳动是财富的源泉,也是幸福的源泉.某中学对劳动教育进行积极探索和实践,创建学生劳动教育地,让学生参与到农耕劳作中.如图,现准备利用校园围墙的一段MN (MN 最长可用25m ),用40m 长的篱笆,围成一个矩形菜园ABCD .(1)当AB 长度为多少时,矩形菜园的面积为2150m ?(2)能否围成面积为2210m 的矩形菜园?为什么?26.解方程:(1)x 2-3x +2=0 (2)22410y y --=.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据一元二次方程的性质,先提公因式,通过计算即可得到答案.【详解】移项得,x 2-2x =0,提公因式得,x (x-2)=0,解得,x 1=0,x 2=2,故选:C .【点睛】本题考查了一元二次方程的知识;解题的关键是熟练掌握一元二次方程的性质,从而完成求解.2.B解析:B【分析】利用一元二次方程根的定义,代入变形计算即可.【详解】∵x m =是方程210x x +-=的根,∴210m m +-=,∴21m m +=,∴22020m m ++=2021,故选B .【点睛】本题考查了一元二次方程根的定义,熟练把方程的根转化为所含字母的一元二次方程是解题的关键.3.D解析:D【分析】设有x 个队参赛,根据参加一次足球联赛的每两队之间都进行两场场比赛,共要比赛90场,可列出方程.【详解】解:设有x 个队参赛,则x (x ﹣1)=90.故选:D .【点睛】本题考查由实际问题抽象出一元二次方程,关键是根据总比赛场数做为等量关系列方程求解.4.B解析:B【分析】方程移项后,利用完全平方公式变形即可得到结果.【详解】解:方程x2+8x-3=0,移项得:x2+8x=3,配方得:x2+8x+16=16+3,即(x+4)2=19.故选:B.【点睛】此题考查了解一元二次方程-配方法,熟练掌握完全平方公式是解本题的关键.5.A解析:A【分析】用含有x的代数式分别表示出每轮传染的人数和总人数即可得解.【详解】∵每轮传染平均1人会传染x个人,∴2人感染时,一轮可传染2x人,∴一轮感染的总人数为2x+2=2(1+x)人;∵每轮传染平均1人会传染x个人,∴2(1+x)人感染时,二轮可传染2(1+x)x人,∴二轮感染的总人数为[2(1+x)+ 2(1+x)x]= ()2+人;21x∴()2=+,21y x故选A.【点睛】本题考查了平均增长问题,准确表示每一轮传染的人数是解题的关键.6.D解析:D【分析】找出丝绸花边的总面积与丝绸花边的宽之间的关系式即可列出方程.【详解】解:由题意知:三条丝绸花边的面积和-两个重叠部分的面积=丝绸花边的总面积,∴设丝绸花边的宽为 xcm ,根据题意,可列方程为:2×40x+60x-2x×x=650,即2x⋅40+x⋅(60−2x)=650,故选D.【点睛】本题考查方程的列法,仔细分析题中含有未知数所表示的量之间的数量关系并把各数量正确地表示出来是解题关键.7.C解析:C【分析】∆>,得到方程有两个不相等的实数根,再根据两根之先将方程整理为一般形式,计算0积为负数即可求解.【详解】解:整理关于x 的方程()()223x x a -+=得 2260x x a +--=,∴()22214162540a a ∆=-⨯⨯--=+>, ∴方程有两个不相等的实数根, ∴212601a x x --=<, ∴方程了两个根一正一负.故选:C【点睛】本题考查了一元二次方程根的判别式和根与系数的关系,熟知两个知识点是解题关键,注意在讨论一元二次方程根与系数的关系时首先要注意确保方程有实根.8.B解析:B【分析】利用列方程解应用题,仔细阅读试题,找出等量关系为:站点数×每站票数(比站点数少1)=总票数,列方程即可.【详解】设这段线路有x 个站点,每个站点售其它各站一张往返车票,共有(x-1)张票,根据题意,列方程得()1132x x -=.故选择:B .【点睛】本题考查列方程解应用题,掌握列方程解应用题的方法,抓住等量关系站点数×每站票数(比站点数少1)=总票数是解决问题的关键.9.C解析:C【分析】根据一元二次方程根的判别式判断即可.【详解】解:一元二次方程2430x x -+=的根的判别式为:b 2-4ac=(-4)2-4×3×1=4>0,所以,方程有两个不相等的实数根,故选:C .【点睛】本题考查了一元二次方程根的判别式,求出根的判别式的值是解题关键.10.D【分析】先根据一元二次方程的解的概念和根与系数的关系得出21142020x x -=,124x x +=,代入原式计算即可.【详解】解:∵1x ,2x 是方程2420200x x --=的两个实数根,∴211420200x x --=,即21142020x x -=,由根与系数之间关系可知124x x +=,∴211222x x x -+=21112422x x x x -++=2020+122()x x +=2020+8=2028.所以选项D 正确.故答案为:D【点睛】本题主要考查了一元二次方程的解、根与系数之间的关系,本题解题的关键是将211222x x x -+进行等量变形,并代入求解.11.B解析:B【分析】根据二次项系数非零及根的判别式△≥0,即可得出关于k 的一元一次不等式组,解之即可得出k 的取值范围.【详解】解:∵关于x 的一元二次方程kx 2-3x+1=0有实数根,∴()203410k k ≠⎧⎪⎨--⨯⨯≥⎪⎩=, ∴k≤94且k≠0. 故选:B .【点睛】 本题考查了一元二次方程的定义以及根的判别式,利用二次项系数非零及根的判别式△≥0,找出关于k 的一元一次不等式组是解题的关键.12.D解析:D根据开业第一天收入约为2000元,之后两天的收入按相同的增长率增长,第3天收入约为2420元列方程即可得到结论.【详解】设每天的增长率为x ,依题意,得:22000(1)2420x +=.故选:D .【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.二、填空题13.【分析】先将二次项系数化为1再利用配方法变形即可得出答案【详解】解:∵3x2-2x-2=0∴∴∴故答案为:【点睛】本题考查了配方法在一元二次方程变形中的应用熟练掌握配方法是解题的关键 解析:79 【分析】 先将二次项系数化为1,再利用配方法变形即可得出答案. 【详解】解:∵3x 2-2x-2=0,∴222033x x --=, ∴221213939x x -+=+, ∴217()39x -=, 故答案为:79. 【点睛】 本题考查了配方法在一元二次方程变形中的应用,熟练掌握配方法是解题的关键. 14.3【分析】先根据根与系数的根据求得x1+x2和x1x2的值然后代入计算即可【详解】解:∵一元二次方程x2-4x +1=0的两根是x1x2∴x1+x2=4x1x2=1∴x1+x2-x1x2=4-1解析:3【分析】 先根据根与系数的根据求得x 1+x 2和x 1⋅x 2的值,然后代入计算即可.【详解】解:∵一元二次方程x 2-4x +1=0的两根是x 1,x 2∴x 1+x 2=4,x 1⋅x 2=1∴x 1+x 2-x 1⋅x 2=4-1=3.故答案为3.【点睛】本题主要考查了一元二次方程根与系数的关系,一元二次方程ax 2+bx+c=0(a≠0)的两根是x 1、x 2,则x 1+x 2=b a -、x 1⋅x 2=c a. 15.【分析】利用一元二次方程的根与系数的关系定理中的两根之积计算即可【详解】设方程的另一个根为x ∵是方程的一个根∴根据根与系数关系定理得2x=-2解得x=-1故答案为:x=-1【点睛】本题考查了已知一元解析:1x =-.【分析】利用一元二次方程的根与系数的关系定理中的两根之积,计算即可.【详解】设方程220x bx +-=的另一个根为x ,∵2x =是方程220x bx +-=的一个根,∴根据根与系数关系定理,得 2x=-2,解得x=-1,故答案为:x=-1.【点睛】本题考查了已知一元二次方程的一个根求另一个根,熟练运用一元二次方程根与系数的关系定理,选择合适的计算方式是解题的关键.16.【分析】设方程的另一个根为根据根与系数的关系得到然后解一次方程即可【详解】解:设另一个根为∴∴∴另一个根为故答案为:【点睛】本题考查了根与系数的关系:若是一元二次方程ax2+bx+c =0(a≠0)的 解析:35【分析】设方程的另一个根为1x ,根据根与系数的关系得到1625x =,然后解一次方程即可. 【详解】解:设另一个根为1x , ∴1625x =, ∴135x =,∴另一个根为35. 故答案为:35. 【点睛】 本题考查了根与系数的关系:若12x x ,是一元二次方程ax 2+bx +c =0(a ≠0)的两根时1212b a c x x x x a-+=,=. 17.4042【分析】由题意可得m2-3m=2020进而可得2m2-6m=4040然后整体代入所求式子计算即可【详解】解:∵m 为一元二次方程x2-3x -2020=0的一个根∴m2-3m -2020=0∴m2解析:4042【分析】由题意可得m 2-3m=2020,进而可得2m 2-6m=4040,然后整体代入所求式子计算即可.【详解】解:∵m 为一元二次方程x 2-3x -2020=0的一个根,∴m 2-3m -2020=0,∴m 2-3m=2020,∴2m 2-6m=4040,∴2m 2-6m+2=4040+2=4042.故答案为:4042.【点睛】本题考查了一元二次方程的解和代数式求值,熟练掌握基本知识、灵活应用整体思想是解题的关键.18.13【分析】由折叠的性质可得CD=PDAD=DRBC=BQ 由勾股定理可得(CD+7+CD4)2=(CD+7)2+CD2可求CD=5由勾股定理可求解【详解】解:∵四边形ABCD 是矩形∴AD=BC ∠C=解析:13【分析】由折叠的性质可得CD=PD ,AD=DR ,BC=BQ ,由勾股定理可得(CD+7+CD -4)2=(CD+7)2+CD 2,可求CD=5,由勾股定理可求解.【详解】解:∵四边形ABCD 是矩形,∴AD=BC ,∠C=90°,由折叠的性质可得:CD=PD ,AD=DR ,BC=BQ ,∵PQ=4,PR=7,∴PQ=BQ-(BD-PD )=BC -BD+CD=4,PR=AD -PD=BC -CD=7,∴BD=BC+CD -4,BC=CD+7,∵BD 2=BC 2+CD 2,∴(CD+7+CD -4)2=(CD+7)2+CD 2,∴CD 1=5,CD 2=-4(舍去),∴BC=12,∴13=,故答案为:13.【点睛】本题考查了翻折变换,矩形的性质,利用勾股定理列出方程是本题的关键.19.【分析】根据新运算法则以及一元二次方程的解法解答即可【详解】解:由题意可知:∴即解得:x =2故答案为:2【点睛】本题以新运算的形式考查了一元二次方程的解法正确理解新运算法则熟练掌握解一元二次方程的方 解析:2【分析】根据新运算法则以及一元二次方程的解法解答即可.【详解】解:由题意可知:2a b a ab ⊗=-,∴2444x x x ⊗=-=-,即244x x -=-,解得:x =2.故答案为:2.【点睛】本题以新运算的形式考查了一元二次方程的解法,正确理解新运算法则、熟练掌握解一元二次方程的方法是解题关键.20.【分析】把x=-2代入一元二次方程得到k 的一元二次方程解出k 的值即可【详解】一元二次方程的一个根是x=-2解得k=0或k≠0故答案为【点睛】本题考查的是一元二次方程的根即方程的解的定义逆用一元二次方 解析:12【分析】把x=-2代入一元二次方程220k x kx +=,得到k 的一元二次方程解出k 的值即可【详解】一元二次方程220k x kx +=的一个根是x=-2,∴ 2420k k -=解得k=0或12k = , k≠0∴12 k=故答案为12k=.【点睛】本题考查的是一元二次方程的根即方程的解的定义,逆用一元二次方程解的定义易得出k 的值.三、解答题21.(1) x1=x2=2;(2) x1,x2.【分析】(1)利用配方法解一元二次方程,即可求出答案;(2)利用公式法解一元二次方程,即可求出答案.【详解】解:(1)2410x x-+=,∵x2﹣4x=﹣1,∴x2﹣4x+4=﹣1+4,即(x﹣2)2=3,则x﹣2=∴x1=x2=2(2)210 4x--=,∵a=1,b,c=﹣14,∴△2﹣4×1×(﹣14)=3>0,则x=2,即x1=2,x2.【点睛】本题考查了解一元二次方程,解题的关键是掌握配方法和公式法解一元二次方程.22.(1)-14;(2)1或2或4;(3)a=2,两根为-9或1【分析】(1)把1x=-代入方程求出a即可.(2)利用判别式根据不等式即可解决问题.(3)利用(2)中结论,一一判断即可解决问题.【详解】解:(1)方程的一个根为1x =-,3890a ∴-++=,14a ∴=-.(2)由题意△0且3a ≠6436(3)0a ∴--, 解得439a , a 是正整数,1a 或2或4.(3)当2a =时,方程为2890x x +-=,解得9x =-或1.【点睛】本题考查了根的判别式,一元二次方程等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.23.(1)23m n +=;(2)2a b c ++=.【分析】(1)将方程2222210m mn n n -+-+=的左边分组配方,再根据偶次方的非负性,可求得mn 、的值,最后代入2m n +即可解题; (2)由6a b -=整理得,6+a b =,代入已知等式中,利用完全平方公式化简,最后由偶次方的非负性解题即可【详解】解:(1)∵2222210m mn n n -+-+=∴()()2222210m mn nn n -++-+= ∴()()2210m n n -+-=∴()20m n -=,()210n -= ∴1n =,1m n ==∴22113m n +=⨯+=;(2)∵6a b -=,∴6a b =+∵24130ab c c +-+=2(6)4130b b c c ∴++-+=∴22(69)(44)0b b c c +++-+=∴()()22320b c ++-= ∴()230b +=,()220c -= ∴3b =-,2c =∴()633a =+-=∴()3322a b c ++=+-+=.【点睛】本题考查配方法的应用,涉及完全平方公式化简、偶次方的非负性,是重要考点,难度较易,掌握相关知识是解题关键.24.(1)x 1=3,x 2=-7;(2)x 1=1,x 2=-5.【分析】(1)用直接开方法解方程即可;(2)用配方法解方程即可.【详解】解:(1)(x +2)2﹣25=0;移项得,(x +2)2=25,两边开方得,x+2=±5,解得,x 1=3,x 2=-7;(2)x 2+4x ﹣5=0.移项得,x 2+4x =5.两边加4得,x 2+4x+4=9.配方得,(x+2)2=9.开方得,x+2=±3,解得,x 1=1,x 2=-5.【点睛】本题考查了一元二次方程的解法,解题关键是选择适当的方法解一元二次方程. 25.(1)当AB 长度为15m 时,矩形菜园的面积为2150m ;(2)不能围成面积为2210m 的菜园,见解析【分析】(1)设当AB 长度为xm ,根据“矩形菜园的面积为2150m ”,列出关于x 的方程,即可求解;(2)如果矩形菜园面积为2210m 时,列出关于x 的一元二次方程,利用判别式,即可得到结论.【详解】解:(1)设当AB 长度为xm ,矩形菜园的面积为2150m .则()402150x x -=,解得:5x =或15x =当5x =时,40230x -=,不符合题意.5x ∴=舍去答:当AB 长度为15m 时,矩形菜园的面积为2150m ;(2)不能围成,如果矩形菜园面积为2210m 时,则:22402100x x -+=,∵800∆=-<,方程没有实数根.∴不能围成面积为2210m 的菜园.【点睛】此题主要考查了一元二次方程的应用,关键是正确理解题意,找出题目中的等量关系,设出未知数,列出方程.26.(1)121,2x x ==;(2)121,122y y =+=- 【分析】(1)用因式分解法求解即可;(2)用公式法求解即可;【详解】(1)∵x 2-3x +2=0∴(x-1)(x-2)=0∴121,2x x ==;(2)∵22410y y --= ∴a=2,b=-4,c=-1,∴b 2-4ac=16+8=24,∴y=44±=12±,∴121,122y y =+=-. 【点睛】 本题考查了一元二次方程的解法,常用的方法有直接开平方法、配方法、因式分解法、求根公式法,熟练掌握各种方法是解答本题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《一元二次方程》单元检测数学试题班级姓名得分
一、选择题:本大题共10小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得4分,选错、不选或选出的答案超过一个均记零分.
1.若x的一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,则k的取值范围是()
A.k≤﹣1且k≠0
B.k<﹣1且k≠0
C.k≥﹣1且k≠0
D.k>﹣1且k≠0
2.若一元二次方程9x2-12x-39996=0的两根为a,b,且a<b,则a+3b的值为()
A.136 B.268 C.796
3
D.
392
3
3.现定义运算“★”,对于任意实数a,b,都有a★b=a2-3a+b,如:3★5=32-3×3+5,若x★2=6,则实数x的值是()
A、-1
B、4
C、-1或4
D、1或-4
4.一元二次方程x2+2x-c=0中,c>0,该方程的解的情况是()
A.没有实数根 B.有两个不相等的实数根
C.有两个相等的实数根 D.不能确定
5.x的方程m(x+h)2+k=0(m,h,k均为常数,m≠0)的解是x1=-3,x2=2,则方程m(x+h-3)2+k=0的解是()
A.x1=-6,x2=-1 B.x1=0,x2=5C.x1=-3,x2=5 D.x1=-6,x2=2
6.对于任意实数a、b,定义f(a,b)=a2+5a-b,如:f(2,3)=22+5×2-3,若f(x,2)=4,则实数x的值是()
A.1或-6 B.-1或6 C.-5或1 D.5或-1
7.用配方法解一元二次方程x2+4x-5=0,此方程可变形为()
A.(x-2)2=9 B.(x+2)2=9 C.(x+2)2=1 D.(x-2)2=1
8.为了让山更绿、水更清,确保到实现全省森林覆盖率达到63%的目标,已知2013年全省森林覆盖率为6005%,设从2013年起全省森林覆盖率的年平均增长率为x,则可列方程()
A.60.05(1+2x)=63%
B.60.05(1+3x)=63
C.60.05(1+x)2=63%
D.60.05%(1+x)2=63%
9.于x的一元二次方程(a2-1)x2+x-2=0是一元二次方程,则a满足( )
A.a≠1 B.a≠-1 C.a≠±1 D.为任意实数
10.于任意实数k,关于x的方程x2-2(k+1)x-k2+2k-1=0的根的情况为( )
A.有两个相等的实数根B.没有实数根C.有两个不相等的实数根D.无法确定
二、填空题(本大题共4小题,每小题5分,满分20分)
11.已知(x-1)2=ax2+bx+c,则a+b+c的值为 .
12.根据图中的程序,当输入一元二次方程x2﹣2x=0的解x时,输出结果y= .
13已知x1,x2是方程x2-2x-1=0的两个根,则
1
x1
+
1
x2
=__________.
14.已知直角三角形两边x、y的长满足|x2
,则第三边长为.三、用适当的方法解方程(每小题4分,满分16分)
15.2230
x x
--=2
(3)4(3)0
x x x
-+-=
16.2x2-4x-5=0. x2-4x+1=0.(配方法)
四、(本大题共2小题,每小题8分,满分16分)
17.平面上不重合的两点确定一条直线,不同三点最多可确定3条直线,若平面上不同的n个点最多可确定21条直线.则n的值为
18如果若a,b,c是△ABC的三条边,且a2-6a+b2-10c+c2=8b-50,判断此三角形的形状.
五、(本大题共2小题,每小题10分,满分20分)
19.已知:关于x的方程kx2-(3k-1)x+2(k-1)=0,
(1)求证:无论k为何实数,方程总有实数根;
(2)若此方程有两个实数根x1,x2,且|x1-x2|=2,求k的值.
20. 在宽为20 m ,长为32 m 的矩形耕地上,修筑同样宽的三条道路(互相垂直),把耕地分成大小不等的六块试验田,要使试验田的面积为570 m 2,道路应为多宽?
六、(本题满分12分) 21 .“大湖名城•创新高地•中国合肥”,为了让学生亲身感受合肥城市的变化,蜀山中学九(1)班组织学生进行“环巢湖一日研学游”活动,某旅行社推出了如下收费标准:(1)如果人数不超过30人,人均旅游费用为100元;(2)如果超过30人,则每超过1人,人均旅游费用降低2元,但人均旅游费用不能低于80元.该班实际共支付给旅行社3150元,问:共有多少名同学参加了研学游活动? 七、(本题满分12分) 22.(安徽2010年)在国家下身的宏观调控下,某市的商品房成交价由今年3月分的14000元/2
m 下降到5月分的12600元/2
m
⑴问4、5两月平均每月降价的百分率是多少?(参考数据:95.09.0 )
⑵如果房价继续回落,按此降价的百分率,你预测到7月分该市的商品房成交均价是否会跌破10000元/2
m ?请说明理由。
八、(本题满分14分)
23(2008安徽省)刚回营地的两个抢险分队又接到救灾命令:一分队立即出发往30千米的A 镇;二分队因疲劳可在营地休息a (0≤a≤3)小时再往A 镇参加救灾。
一分队了发后得知,唯一通往A
镇的道路在离营地10千米处发生塌方,塌方地形复杂,必须由一分队用1小时打通道路,已知一分队的行进速度为5千米/时,二分队的行进速度为(4+a )千米/时。
⑴若二分队在营地不休息,问二分队几小时能赶到A 镇? ⑵若二分队和一分队同时赶到A 镇,二分队应在营地休息几小时?
⑶下列图象中,①②分别描述一分队和二分队离A 镇的距离y(千米)和时间x(小时)的函数关系,请写出你认为所有可能合理的代号,并说明它们的实际意义。