高考数学专题闯关教学概率随机变量及其分布列共张-PPT精品

合集下载

2023版高三数学复习优秀课件《随机变量及其分布》

2023版高三数学复习优秀课件《随机变量及其分布》
(3)列成表格。
一个口袋中装有大小相同的2个白球和4个 黑球,采取不放回抽样方式,从中摸出两个小 球,求摸得白球的个数的分布列.
1、离散型随机变量取值的平均值 数学期望
X x1 x2 ··· xi ··· xn P p1 p2 ··· pi ··· pn EX x1 p1 x2 p2 xi pi xn pn
地从其中一盒中取出一根。试求他发现一
盒已空时,另一盒中剩下的火柴根数k的分
布列。PΒιβλιοθήκη Cn 2nk1 2
2nk
,
k
0,1,
2,
,n
盒中有9个正品和3个次品零件,每次取 出一个零件,如果取出的次品不再放回,则 在取得正品前已取出的次品数X的分布列。
某射手有5发子弹,射击一次命中的概率 为0.8.
⑴如果命中了就停止射击,否则一直射击到子
ξ取每一个值 xi (i 1, 2, )的概率
P( xi ) pi
则表
ξ x1 x2 … xi …
p
p1
p2 … pi …
称为随机变量ξ的概率分布,简称ξ的分布列。
根据随机变量的意义与概率的性质, 你能得出分布列有什么性质?
两个关健步骤: ⑴列出随机变量ξ的所有取值;
⑵求出ξ的每一个取值的概率.
C191
(
3 8
)10
(
5 8
)2
得a≤10000 故最大定为10000元。
袋中有7只白球, 3只红球, 白球中有4只 木球, 3只塑料球; 红球中有2只木球, 1只塑 料球.
现从袋中任取1球, 假设每个球被取到 的可能性相同. 若已知取到的球是白球, 问 它是木球的概率是多少?
条件概率 P(B A)(conditional probability ):

高考数学:专题六 第二讲 概率、随机变量及其分布列课件

高考数学:专题六 第二讲 概率、随机变量及其分布列课件

本 讲 栏 目 开 关
解析 设 AC=x,CB=12-x,
所以 x(12-x)<32,所以 x>8 或 x<4 4+4 2 又因为 0<x<12,所以 P= 12 =3.
考点与考题
0≤x≤2, 3.(2012· 北京)设不等式组 0≤y≤2
第二讲
表示的平面区域为 D, 在区域 D
本 讲 栏 目 开 关
本 讲 栏 目 开 关
解析 分别从两个集合中各取一个数共有 15 种取法,其中满足 b>a 3 1 的有 3 种取法,故所求事件的概率为 P=15=5.
题型与方法
第二讲
(2)学生通过演示实验来估算不规则图形的面积,先在平面内画 4 条直 线 x=0,x=5,y=-2,y=1 围成矩形,再画 2 条曲线 y=log2x,y =log2(x-3), 2 条直线 y=-2, 称 y=1 和 2 条曲线 y=log2x, y=log2(x
本 讲 栏 目 开 关
回答互不影响. (1)求该选手进入第四轮才被淘汰的概率; (2)求该选手至多进入第三轮考核的概率.
解 (1)记“该选手能正确回答第 i 轮的问题”的事件为 Ai (i=
1,2,3,4),
4 3 2 则 P(A1)= ,P(A2)= ,P(A3)= , 5 5 5 1 P(A4)=5,
第二讲
本 讲 栏 目 开 关
ξ P
0 3 8
1 7 16
2 1 6
3 1 48
3 7 1 1 5 所以 E(ξ)=0×8+1×16+2×6+3×48=6.
题型与方法
第二讲
方法提炼 求出概率.
(1)求离散型随机变量的分布列的关键是正确理解随机变

高考总复习一轮数学精品课件 第十一章 计数原理、概率、随机变量及其分布 第二节 排列与组合

高考总复习一轮数学精品课件 第十一章 计数原理、概率、随机变量及其分布 第二节 排列与组合
比赛,在下列情形中各有多少种选派方法?
(1)男运动员3名,女运动员2名;
(2)至少有1名女运动员;
(3)队长中至少有1人参加;
(4)既要有队长,又要有女运动员.
解 (1)分两步完成:第 1 步,选 3 名男运动员,有C63 种选派方法;第 2 步,选 2 名女
运动员,有C42 种选派方法.由分步乘法计数原理可得,共有C63 × C42 =120 种选派
A.1 800
B.3 600
C.4 320
)
D.5 040
(3)(2024九省联考)甲、乙、丙等5人站成一排,且甲不在两端,乙和丙之间
恰有2人,则不同排法共有(
A.20种
B.16种
)
C.12种
D.8种
答案 (1)B (2)B
(3)B
解析 (1)因为 A 在 B 的前面出场,且 A,B 都不在 3 号位置,则情况如下:
n!.
-1

4.kC =nC-1 .
5.C
=


-1
C-1
=


6.A
=
C
·A


.

-

C-1
=
- +1

-1
·C .
对点演练
1.判断下列结论是否正确,正确的画“√”,错误的画“×”.
(1)所有元素完全相同的两个排列为相同排列.( × )
(2)两个组合相同的充要条件是其中的元素完全相同.( √
有 2C84 + C83 =196 种选派方法.
5
(方法 2 间接法)从 10 人中任选 5 人有C10
种选派方法,其中不选队长的选派

人教版高考总复习一轮数学精品课件 主题四概率与统计 第十一章第五节 随机变量及其概率分布、均值与方差

人教版高考总复习一轮数学精品课件 主题四概率与统计 第十一章第五节 随机变量及其概率分布、均值与方差

9
1
4
10
2
5
3
10
[对点训练2]甲同学参加化学竞赛初赛,考试分为笔试、面试、实验三个项目,各
3
4
2
3
1
2
单项通过考试的概率依次为 , , ,各项成绩互不影响.记甲同学三个项目中通过的
考试个数为,求随机变量的分布列.
解随机变量的所有可能取值为0,1,2,3.
=0 = 1−
3
4
× 1
解,目前市场上销售的主流纯电动汽车,按行驶里程数(单位:公里)可分为三类车
型: 80 ≤ < 150 , 150 ≤ < 250 , ≥ 250 .甲从,,三类车型中挑
选,乙从,两类车型中挑选,甲、乙二人选择各类车型的概率如下表:
车型
概率




1
5


1
4
3
4


3
若甲、乙都选类车型的概率为 .
5
5

× + + = ,


[解析]设 = = , = = ,由题意得൞
解得 = ,

+ + = ,

=

,∴



= × −


+

× −



+ × −

=


.故答案为 .


02
研考点 题型突破
题型一 离散型随机变量的分布列
典例2(1)设离散型随机变量的分布列为

0
1

高考数学 题型通关21讲第7讲 分布列与数学期望(解析版)

高考数学 题型通关21讲第7讲 分布列与数学期望(解析版)

第7讲 分布列与数学期望高考预测一:求概率及随机变量的分布列的基本类型 类型一:利用古典概型求概率1.10月1日,某品牌的两款最新手机(记为W 型号,T 型号)同时投放市场,手机厂商为了解这两款手机的销售情况,在10月1日当天,随机调查了5个手机店中这两款手机的销量(单位:部),得到如表(Ⅰ)若在10月1日当天,从A ,B 这两个手机店售出的新款手机中分别随机抽取1部,求抽取的2部手机中至少有1部为W 型号手机的概率;(Ⅱ)现从这5个手机店中任选3个举行促销活动,用X 表示其中W 型号手机销量超过T 型号手机销量的手机店的个数,求随机变量X 的分布列和数学期望;(Ⅲ)经测算,W 型号手机的销售成本η(百元)与销量ξ(部)满足关系34ηξ=+.若表中W 型号手机销量的方差20(0)S m m =>,试给出表中5个手机店的W 型号手机销售成本的方差2S 的值.(用m 表示,结论不要求证明)【解析】解:()I 设事件1M 为从A 店售出的手机中随机抽取1部手机,抽取的手机为W 型号手机, 设事件2M 为从A 店售出的手机中随机抽取1部手机,抽取的手机为W 型号手机, 则事件1M ,2M 相互独立,且161()6123P M ==+,262()695P M ==+, ∴抽取的2部手机中至少有1部为W 型号手机的概率为13221233535355P =⨯+⨯+⨯=.()II 由表格可知W 型号手机销售量超过T 型号手机的店有2个,故X 的可能取值有0,1,2.且33351(0)10C P X C ===,1223353(1)5C C P X C ===,2123353(2)10C C P X C ===. X ∴的分布列为:数学期望为1336()012105105E X =⨯+⨯+⨯=.20()()III D s m ξ==,34ηξ=+,2()9()9S D D m ηξ∴===.2.为了研究一种新药的疗效,选100名患者随机分成两组,每组各50名,一组服药,另一组不服药.一段时间后,记录了两组患者的生理指标x 和y 的数据,并制成如图,其中“*”表示服药者,“+”表示未服药者.(1)从服药的50名患者中随机选出一人,求此人指标y 的值小于60的概率;(2)从图中A ,B ,C ,D 四人中随机选出两人,记ξ为选出的两人中指标x 的值大于1.7的人数,求ξ的分布列和数学期望()E ξ;(3)试判断这100名患者中服药者指标y 数据的方差与未服药者指标y 数据的方差的大小.(只需写出结论)【解析】解:(1)由图知:在50名服药患者中,有15名患者指标y 的值小于60, 答:从服药的50名患者中随机选出一人,此人指标小于60的概率为:1535010p ==. (2)由图知:A 、C 两人指标x 的值大于1.7,而B 、D 两人则小于1.7,可知在四人中随机选项出的2人中指标x 的值大于1.7的人数ξ的可能取值为0,1,2, 2411(0)6P C ξ===, 1122242(1)3C C P C ξ===,2411(2)6P C ξ===, ξ∴的分布列如下:答:121()0121636E ξ=⨯+⨯+⨯=.(3)答:由图知100名患者中服药者指标y 数据的方差比未服药者指标y 数据的方差大.3.已知2件次品和3件正品混放在一起,现需要通过检测将其区分,每次随机检测一件产品,检测后不放回,直到检测出2件次品或者检测出3件正品时检测结束. (1)求第一次检测出的是次品且第二次检测出的是正品的概率;(2)已知每检测一件产品需要费用100元,设X 表示直到检测出2件次品或者检测出3件正品时所需要的检测费用(单位:元),求X 的分布列和数学期望.【解析】解:(1)记“第一次检测出的是次品且第二次检测出的是正品”为事件A ,则P (A )1123252332010A A A ⨯===; (2)X 的可能取值为200,300,400,222521(200)2010A P X A ====,311232323562323(300)6010A C C A P X A ++⨯⨯====, 133(400)1(200)(300)110105P X P X P X ==-=-==--=; 所以X的分布列为:数学期望为13320030040035010105EX =⨯+⨯+⨯=. 类型二:利用相互独立事件的概率乘法公式和互斥事件概率加法公式求概率 4.电影公司随机收集了电影的有关数据,经分类整理得到下表:好评率是指:一类电影中获得好评的部数与该类电影的部数的比值. 假设所有电影是否获得好评相互独立.(Ⅰ)从电影公司收集的电影中随机选取1部,求这部电影是获得好评的第四类电影的概率; (Ⅱ)从第四类电影和第五类电影中各随机选取1部,估计恰有1部获得好评的概率;(Ⅲ)假设每类电影得到人们喜欢的概率与表格中该类电影的好评率相等.用“1k ξ=”表示第k 类电影得到人们喜欢.“0k ξ=”表示第k 类电影没有得到人们喜欢(1k =,2,3,4,5,6).写出方差1D ξ,2D ξ,3D ξ,4D ξ,5D ξ,6D ξ的大小关系.【解析】解:(Ⅰ)设事件A 表示“从电影公司收集的电影中随机选取1部,求这部电影是获得好评的第四类电影”,总的电影部数为140503002008005102000+++++=部, 第四类电影中获得好评的电影有:2000.2550⨯=部,∴从电影公司收集的电影中随机选取1部,求这部电影是获得好评的第四类电影的频率为:P (A )500.0252000==. (Ⅱ)设事件B 表示“从第四类电影和第五类电影中各随机选取1部,恰有1部获得好评”, 第四类获得好评的有:2000.2550⨯=部, 第五类获得好评的有:8000.2160⨯=部,则从第四类电影和第五类电影中各随机选取1部,估计恰有1部获得好评的概率:P (B )50(800160)(20050)1600.35200800⨯-+-⨯==⨯.(Ⅲ)由题意知,定义随机变量如下:0,1,k k k ξ⎧=⎨⎩第类电影没有得到人们喜欢第类电影得到人们喜欢,则k ξ服从两点分布,则六类电影的分布列及方差计算如下: 第一类电影:1()10.400.60.4E ξ=⨯+⨯=,221()(10.4)0.4(00.4)0.60.24D ξ=-⨯+-⨯=.第二类电影:2()10.200.80.2E ξ=⨯+⨯=,222()(10.2)0.2(00.2)0.80.16D ξ=-⨯+-⨯=.第三类电影:3()10.1500.850.15E ξ=⨯+⨯=,223()(10.15)0.15(00.15)0.850.1275D ξ=-⨯+-⨯=.第四类电影:4()10.2500.750.25E ξ=⨯+⨯=,224()(10.25)0.25(00.25)0.750.1875D ξ=-⨯+-⨯=.第五类电影:5()10.200.80.2E ξ=⨯+⨯=,225()(10.2)0.2(00.2)0.80.16D ξ=-⨯+-⨯=.第六类电影:6()10.100.90.1E ξ=⨯+⨯=,225()(10.1)0.1(00.1)0.90.09D ξ=-⨯+-⨯=.∴方差1D ξ,2D ξ,3D ξ,4D ξ,5D ξ,6D ξ的大小关系为:632541D D D D D D ξξξξξξ<<=<<.5.设甲、乙两位同学上学期间,每天7:30之前到校的概率均为23.假定甲、乙两位同学到校情况互不影响,且任一同学每天到校情况相互独立.(1)设甲同学上学期间的三天中7:30之前到校的天数为X ,求0X =,1X =,2X =,3X =时的概率(0)P X =,(1)P X =,(2)P X =,(3)P X =.(2)设M 为事件“上学期间的三天中,甲同学在7:30之前到校的天数比乙同学在7:30之前到校的天数恰好多2”,求事件M 发生的概率.【解析】解:(1)321(0)(1)327P X ==-=,123222(1)(1)339P X C ==-=, 223224(2)()(1)339P X C ==-=,33328(3)()327P X C ===. (2)设乙同学上学期间的三天中在7:30之前到校的天数为Y , 则1(0)(0)27P Y P X ====,2(1)(1)9P Y P X ====, 4(2)(2)9P Y P X ====,8(3)(3)27P Y P X ====, 418220()(2)(0)(3)(1)927279243P M P X P Y P X P Y ∴===+===⨯+⨯=. 类型三:利用条件概率公式求概率6.如图所示,质点P 在正方形ABCD 的四个顶点上按逆时针方向前进.现在投掷一个质地均匀、每个面上标有一个数字的正方体玩具,它的六个面上分别写有两个1、两个2、两个3一共六个数字.质点P 从A 点出发,规则如下:当正方体上底面出现的数字是1,质点P 前进一步(如由A 到)B ;当正方体上底面出现的数字是2,质点P 前两步(如由A 到)C ,当正方体上底面出现的数字是3,质点P 前进三步(如由A 到)D .在质点P 转一圈之前连续投掷,若超过一圈,则投掷终止.(1)求点P 恰好返回到A 点的概率;(2)在点P 转一圈恰能返回到A 点的所有结果中,用随机变量ξ表示点P 恰能返回到A 点的投掷次数,求ξ的分布列及数学期望.【解析】解:(1)投掷一次正方体玩具,因每个数字在上底面出现是等可能的,故其概率12163P ==. 易知只投掷一次不可能返回到A 点.①若投掷两次质点P 就恰好能返回到A 点,则上底面出现的两个数字,应依次为:(1,3)、(3,1)、(2,2)三种结果,其概率为2211()333P =⨯=.②若投掷三次质点P 恰能返回到A 点,则上底面出现的三个数字,应依次为:(1,1,2)、(1,2,1)、(2,1,1)三种结果,其概率为3311()339P =⨯=. ③若投掷四次质点P 恰能返回到A 点,则上底面出现的四个数字应依次为:(1,1,1,1),其概率为4411()381P ==.所以,质点P 恰好返回到A 点的概率为:23411137398181P P P P =++=++=.(2)由(1)知,质点P 转一圈恰能返回到A 点的所有结果共有以上问题中的7种情况, 且ξ的可能取值为2,3,4.则1273(2)373781P ξ===,199(3)373781P ξ===,1181(4)373781P ξ===,故ξ的分布列为:所以,27918523437373737E ξ=⨯+⨯+⨯=.7.根据以往的经验,某工程施工期间的降水量X (单位:)mm 对工期的影响如下表:300700X <700900X <9002610历年气象资料表明,该工程施工期间降水量X 小于300,700,900的概率分别为0.3,0.7,0.9,求: ()I 工期延误天数Y 的均值与方差;(Ⅱ)在降水量X 至少是300的条件下,工期延误不超过6天的概率.【解析】()I 由题意,(300)0.3P X <=,(300700)(700)(300)0.70.30.4P X P X P X <=<-<=-=,(700900)(900)(700)0.90.70.2P X P X P X <=<-<=-=,(900)10.90.1P X =-=Y 的分布列为()00.320.460.2100.13E Y ∴=⨯+⨯+⨯+⨯=2222()(03)0.3(23)0.4(63)0.2(103)0.19.8D Y =-⨯+-⨯+-⨯+-⨯=∴工期延误天数Y 的均值为3,方差为9.8;(Ⅱ)(300)1(300)0.7P X P X =-<=,(300900)(900)(300)0.90.30.6P X P X P X <=<-<=-= 由条件概率可得(300900)0.66(6|300)(300)0.77P X P Y X P X <===.类型四:利用统计图表中的数据求概率8.某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:C)︒有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:以最高气温位于各区间的频率代替最高气温位于该区间的概率. (1)求六月份这种酸奶一天的需求量X (单位:瓶)的分布列;(2)设六月份一天销售这种酸奶的利润为Y (单位:元),当六月份这种酸奶一天的进货量n (单位:瓶)为多少时,Y 的数学期望达到最大值?【解析】解:(1)由题意知X 的可能取值为200,300,500,216(200)0.290P X +===,36(300)0.490P X ===, 2574(500)0.490P X ++===, X ∴的分布列为:(2)由题意知这种酸奶一天的需求量至多为500瓶,至少为200瓶,∴只需考虑200500n ,当300500n 时,若最高气温不低于25,则642Y n n n =-=;若最高气温位于区间[20,25),则63002(300)412002Y n n n =⨯+--=-; 若最高气温低于20,则62002(200)48002Y n n n =⨯+--=-, 20.4(12002)0.4(8002)0.26400.4EY n n n n ∴=⨯+-⨯+-⨯=-,当200300n 时,若最高气温不低于20,则642Y n n n =-=,若最高气温低于20,则62002(200)48002Y n n n =⨯+--=-, 2(0.40.4)(8002)0.2160 1.2EY n n n ∴=⨯++-⨯=+.300n ∴=时,Y 的数学期望达到最大值,最大值为520元.9.某贫困地区共有1500户居民,其中平原地区1050户,山区450户.为调查该地区2017年家庭收入情况,从而更好地实施“精准扶贫”,采用分层抽样的方法,收集了150户家庭2017年年收入的样本数据(单位:万元).(1)应收集多少户山区家庭的样本数据?(2)根据这150个样本数据,得到2017年家庭收入的频率分布直方图(如图所示),其中样本数据分组区间为(0,0.5],(0.5,1],(1,1.5],(1.5,2],(2,2.5],(2.5,3].如果将频率视为概率,估计该地区2017年家庭收入超过1.5万元的概率;(3)样本数据中,有5户山区家庭的年收入超过2万元,请完成2017年家庭收入与地区的列联表,并判断是否有90%的把握认为“该地区2017年家庭年收入与地区有关”?附:2() n ad bcK-=++++2)k【解析】解:(1)由已知可得每户居民被抽取的概率为0.1,故应收集手机4500.145⨯=户山区家庭的样本数据.(2)由直方图可知该地区2017年家庭年收入超过1.5万元的概率约为(0.5000.3000.100)0.50.45++⨯=.(3)样本数据中,年收入超过2万元的户数为(0.3000.100)0.515030+⨯⨯=户.而样本数据中,有5户山区家庭的年收入超过2万元,故列联表如下:所以2150(2540580)2003.175 2.706 301201054563K⨯-⨯==≈>⨯⨯⨯,∴有90%的把握认为“该地区2017年家庭年收入与地区有关”.高考预测二:超几何分布和二项分布类型一:超几何分布10.已知某单位甲、乙、丙三个部门的员工人数分别为24,16,16.现采用分层抽样的方法从中抽取7人,进行睡眠时间的调查.(Ⅰ)应从甲、乙、丙三个部门的员工中分别抽取多少人?(Ⅱ)若抽出的7人中有4人睡眠不足,3人睡眠充足,现从这7人中随机抽取3人做进一步的身体检查. ()i 用X 表示抽取的3人中睡眠不足的员工人数,求随机变量X 的分布列与数学期望;()ii 设A 为事件“抽取的3人中,既有睡眠充足的员工,也有睡眠不足的员工”,求事件A 发生的概率.【解析】解:(Ⅰ)单位甲、乙、丙三个部门的员工人数分别为24,16,16.人数比为:3:2:2, 从中抽取7人现,应从甲、乙、丙三个部门的员工中分别抽取3,2,2人.(Ⅱ)若抽出的7人中有4人睡眠不足,3人睡眠充足,现从这7人中随机抽取3人做进一步的身体检查. ()i 用X 表示抽取的3人中睡眠不足的员工人数,随机变量X 的取值为:0,1,2,3,34337()k kC C P X k C -⋅==,0k =,1,2,3. 所以随机变量的分布列为:随机变量X 的数学期望11218412()0123353535357E X =⨯+⨯+⨯+⨯=; ()ii 设A 为事件“抽取的3人中,既有睡眠充足的员工,也有睡眠不足的员工”,设事件B 为:抽取的3人中,睡眠充足的员工有1人,睡眠不足的员工有2人,事件C 为抽取的3人中, 睡眠充足的员工有2人,睡眠不足的员工有1人, 则:A BC =,且P (B )(2)P X ==,P (C )(1)P X ==,故P (A )6()(2)(1)7P B C P X P X ===+==. 所以事件A 发生的概率:67. 11. 2.5PM 是指大气中直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物. 2.5PM 日均值在35微克/立方米以下空气质量为一级;在35微克/立方米~75微克/立方米之间空气质量为二级;在75微克/立方米以上空气质量为超标.石景山古城地区2013年2月6日至15日每天的 2.5PM 监测数据如茎叶图所示.(1)小陈在此期间的某天曾经来此地旅游,求当天 2.5PM 日均监测数据未超标的概率;(2)从所给10天的数据中任意抽取三天数据,记ξ表示抽到 2.5PM 监测数据超标的天数,求ξ的分布列及期望.【解析】解:(1)记“当天 2.5PM 日均监测数据未超标”为事件A , 因为有24+天 2.5PM 日均值在75微克/立方米以下, 故P (A )243105+==. (2)ξ的可能值为0,1,2,3.由茎叶图可知:空气质量为一级的有2天,空气质量为二级的有4天,只有这6天空气质量不超标,而其余4天都超标.363101(0)6C P C ξ===,21643101(1)2C C P C ξ===,12643103(2)10C C P C ξ===,343101(3)30C P C ξ===.ξ的分布列如下表:1131601236210305E ξ∴=⨯+⨯+⨯+⨯=.类型二:二项分布12.某商场举行有奖促销活动,顾客购买一定金额的商品后即可抽奖,每次抽奖都是从装有4个红球、6个白球的甲箱和装有5个红球、5个白球的乙箱中,各随机摸出一个球,在摸出的2个球中,若都是红球,则获得一等奖;若只有1个红球,则获得二等奖;若没有红球,则不获奖. (1)求顾客抽奖1次能获奖的概率;(2)若某顾客有3次抽奖机会,记该顾客在3次抽奖中或一等奖的次数为X ,求X 的分布列、数学期望和方差.【解析】解:(1)设顾客抽奖1次能中奖的概率为P .116511101037111010C C P C C =-=-=,(2)设该顾客在一次抽奖中获一等奖的概率为1P ,1145112101015C C P C C ==, 故而1?(3,)5X B .3464(0)()5125P X ∴===,1231448(1)()55125P X C ===, 2231412(2)()55125P X C ===,311(3)()5125P X ===. 故X 的分布列为数学期望13()355E X ==,方差1412()35525D X ==. 13.近年来,空气质量成为人们越来越关注的话题,空气质量指数(,)AirQualityIndex AQI 是定量描述空气质量状况的指数,空气质量按照AQI 大小分为六级,0~50为优;51~100为良;101~150为轻度污染;151~200为中度污染;201~300为重度污染;大于300为严重污染.环保部门记录了2017年某月哈尔滨市10天的AQI 的茎叶图如下:(1)利用该样本估计该地本月空气质量优良(100)AQI 的天数;(按这个月总共30天计算) (2)现工作人员从这10天中空气质量为优良的日子里随机抽取2天进行某项研究,求抽取的2天中至少有一天空气质量是优的概率;(3)将频率视为概率,从本月中随机抽取3天,记空气质量优良的天数为ξ,求ξ的概率分布列和数学期望.【解析】解:(1)从茎叶图中可发现该样本中空气质量优的天数为2,空气质量良的天数为4,故该样本中空气质量优良的频率为63105=,从而估计该月空气质量优良的天数为330185⨯=(2)现工作人员从这10天中空气质量为优良的日子里随机抽取2天进行某项研究, 基本事件总数2615n C ==,抽取的2天中至少有一天空气质量是优的对立事件是抽取的2天中至少有一天空气质量都不是优,∴抽取的2天中至少有一天空气质量是优的概率:2426315C p C =-=.(3)由(1)估计某天空气质量优良的概率为35,ξ∴的所有可能取值为0,1,2,3,且3~(3,)5B ξ,328(0)()5125P ξ===, 1233236(1)()55125P C ξ===, 2233254(2)()55125P C ξ===, 3327(3)()5125P ξ===, 故ξ的分布列为:3~(3,)5B ξ,33 1.85E ξ=⨯=.高考预测三:概率与其他知识点交汇 类型一:以其他知识为载体14.已知正四棱锥PABCD 的侧棱和底面边长相等,在这个正四棱锥的8条棱中任取两条,按下列方式定义随机变量ξ的值:若这两条棱所在的直线相交,则ξ的值是这两条棱所在直线的夹角大小(弧度制); 若这两条棱所在的直线平行,则0ξ=;若这两条棱所在的直线异面,则ξ的值是这两条棱所在直线所成角的大小(弧度制). (1)求(0)P ξ=的值;(2)求随机变量ξ的分布列及数学期望()E ξ.【解析】解:(1)根据题意,该四棱锥的四个侧面均为等边三角形,底面为正方形,PAC ∆,PBD ∆为等腰直角三角形.ξ的可能取值为:0,3π,2π, 在这个正四棱锥的8条棱中任取两条基本事件总数2828n C ==种情况, 当0ξ=时有2种,当3πξ=时有342420⨯+⨯=种,当2πξ=时有246+=种.21(0)2814P ξ∴===. (2)21(0)2814P ξ===. 205()3287P πξ===, 63()22814P πξ===.随机变量ξ的分布列如下表:15329()0143721484E πππξ=⨯+⨯+⨯=. 15.从集合{1M =,2,3,4,5,6,7,8,9}中抽取三个不同的元素构成子集1{a ,2a ,3}a . (1)求对任意的i 和(1j i =,2,3,1j =,2,3,)i j ≠满足||2i j a a -的概率;(2)若1a ,2a ,3a 成等差数列,设其公差为(0)ξξ>,求随机变量ξ的分布列与数学期望()E ξ.【解析】解:(1)由题意知基本事件数为3984C =,而满足条件||2i j a a -,即取出的元素不相邻,则用插空法有3735C =种,故所求事件的概率为3558412P ==; (2)分析1a ,2a ,3a 成等差数列的情况:1ξ=的情况有7种:{1,2,3},{2,3,4},{3,4,5},{4,5,6},{5,6,7},{6,7,8},{7,8,9}, 2ξ=的情况有5种:{1,3,5},{2,4,6},{3,5,7},{4,6,8},{5,7,9}. 3ξ=的情况有3种:{1,4,7},{2,5,8},{3,6,9}.4ξ=的情况有1种:{1,5,9}.故ξ的分布列如下:所以753115()1234161615168E ξ=⨯+⨯+⨯+⨯=. 类型二:构造递推关系求概率问题16.为治疗某种疾病,研制了甲、乙两种新药,希望知道哪种新药更有效,为此进行动物试验.试验方案如下:每一轮选取两只白鼠对药效进行对比试验.对于两只白鼠,随机选一只施以甲药,另一只施以乙药.一轮的治疗结果得出后,再安排下一轮试验.当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止试验,并认为治愈只数多的药更有效.为了方便描述问题,约定:对于每轮试验,若施以甲药的白鼠治愈且施以乙药的白鼠未治愈则甲药得1分,乙药得1-分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈则乙药得1分,甲药得1-分;若都治愈或都未治愈则两种药均得0分.甲、乙两种药的治愈率分别记为α和β,一轮试验中甲药的得分记为X . (1)求X 的分布列;(2)若甲药、乙药在试验开始时都赋予4分,(0i p i =,1,⋯,8)表示“甲药的累计得分为i 时,最终认为甲药比乙药更有效”的概率,则00p =,81p =,11(1i i i i p ap bp cp i -+=++=,2,⋯,7),其中(1)a P X ==-,(0)b P X ==,(1)c P X ==.假设0.5α=,0.8β=. ()i 证明:1{}(0i i p p i +-=,1,2,⋯,7)为等比数列; ()ii 求4p ,并根据4p 的值解释这种试验方案的合理性.【解析】(1)解:X 的所有可能取值为1-,0,1.(1)(1)P X αβ=-=-,(0)(1)(1)P X αβαβ==+--,(1)(1)P X αβ==-,X ∴的分布列为:(2)()i 证明:0.5α=,0.8β=,∴由(1)得,0.4a =,0.5b =,0.1c =.因此110.40.50.1(1i i i i p p p p i -+=++=,2,⋯,7),故110.1()0.4()i i i i p p p p +--=-,即11()4()i i i i p p p p +--=-,又1010p p p -=≠,1{}(0i i p p i +∴-=,1,2,⋯,7)为公比为4,首项为1p 的等比数列;()ii 解:由()i 可得,881887761001(14)41()()()143p p p p p p p p p p --=-+-+⋯+-+==-,81p =,18341p ∴=-, 444332*********()()()()3257p p p p p p p p p p p -∴=-+-+-+-+==. 4p 表示最终认为甲药更有效的概率.由计算结果可以看出,在甲药治愈率为0.5,乙药治愈率为0.8时,认为甲药更有效的概率为410.0039257p =≈,此时得出错误结论的概率非常小,说明这种试验方案合理. 17.从原点出发的某质点M ,按向量(0,1)a =移动的概率为23,按向量(0,2)b =移动的概率为13,设M 可到达点(0,)(1n n =,2,3,)⋯的概率为n P . (1)求1P 和2P 的值;(2)求证:2111()3n n n n P P P P +++-=--;(3)求n P 的表达式.【解析】解:(1)123P =,22217()339P =+= (2)证明:M 点到达点(0,2)n +有两种情况 ①从点(0,1)n +按向量(0,1)a =移动 ②从点(0,)n 按向量(0,2)b =移动∴212133n n n P P P ++=+ ∴2111()3n n n n P P P P +++-=-- 问题得证.(3)数列1{}n n P P +-是以21P P -为首项,13-为公比的等比数列 1111211111()()()()3933n n n n n P P P P --++-=--=-=- 11()3n n n P P -∴-=-又因为111221()()()n n n n n P P P P P P P P ----=-+-+⋯+-12111()()()333n n -=-+-+⋯+-111[1()]123n -=-- 11n n P P P P ∴=-+∴113()434n n P =⨯-+. 类型三:利用导数研究概率问题18.某工厂的某种产品成箱包装,每箱200件,每一箱产品在交付用户之前要对产品作检验,如检验出不合格品,则更换为合格品.检验时,先从这箱产品中任取20件作检验,再根据检验结果决定是否对余下的所有产品作检验,设每件产品为不合格品的概率都为(01)p p <<,且各件产品是否为不合格品相互独立.(1)记20件产品中恰有2件不合格品的概率为()f p ,求()()f p f p 的最大值点0p (即()f p 取最大值时对应的p 的值).(2)现对一箱产品检验了20件,结果恰有2件不合格品,以(1)中确定的0p 作为p 的值,已知每件产品的检验费用为3元,若有不合格品进入用户手中,则工厂要对每件不合格品支付28元的赔偿费用 ()i 若不对该箱余下的产品作检验,这一箱产品的检验费用与赔偿费用之和记为X 求()E X ; ()ii 以检验费用与赔偿费用和的期望值为决策依据,是否该对这箱余下的所有产品作检验?【解析】解:(1)记20件产品中恰有2件不合格品的概率为()f p ,则221820()(1)f p C p p =-,2182172172020()[2(1)18(1)]2(1)(110)f p C p p p p C p p p ∴'=---=--,令()0f p '=,得0.1p =, 当(0,0.1)p ∈时,()0f p '>, 当(0.1,1)p ∈时,()0f p '<, f ∴()p 的最大值点00.1p =.(2)()i 由(1)知0.1p =,令Y 表示余下的180件产品中的不合格品数,依题意知~(180,0.1)Y B ,20328X Y =⨯+,即6028X Y =+,()(6028)6028()60281800.1564E X E Y E Y ∴=+=+=+⨯⨯=. ()ii 如果对余下的产品作检验,由这一箱产品所需要的检验费为600元, ()564600E X =<,∴应该对余下的产品不进行检验.19.某有机水果种植基地试验种植的某水果在售卖前要成箱包装,每箱80个,每一箱水果在交付顾客之前要按约定标准对水果作检测,如检测出不合格品,则更换为合格品.检测时,先从这一箱水果中任取10个作检测,再根据检测结果决定是否对余下的所有水果作检测.设每个水果为不合格品的概率都为(01)p p <<,且各个水果是否为不合格品相互独立.(Ⅰ)记10个水果中恰有2个不合格品的概率为()f p ,求()f p 取最大值时p 的值0p ;(Ⅱ)现对一箱水果检验了10个,结果恰有2个不合格,以(Ⅰ)中确定的0p 作为p 的值.已知每个水果的检测费用为1.5元,若有不合格水果进入顾客手中,则种植基地要对每个不合格水果支付a 元的赔偿费用(*)a N ∈.(ⅰ)若不对该箱余下的水果作检验,这一箱水果的检验费用与赔偿费用的和记为X ,求EX ; (ⅱ)以检验费用与赔偿费用和的期望值为决策依据,当种植基地要对每个不合格水果支付的赔偿费用至少为多少元时,将促使种植基地对这箱余下的所有水果作检验?【解析】解:(Ⅰ)记10个水果中恰有2个不合格的概率为()f p ,则22810()(1)f p C p p =-,282710()[2(1)8(1)]f p C p p p p ∴'=---,由()0f p '=,得0.2p =.且当(0,0.2)p ∈时()0f p '>,当(0.2,1)p ∈时,()0f p '<,()f p ∴的最大值点00.2p =.(Ⅱ)由(Ⅰ)知00.2p =.(ⅰ)令Y 表示余下的70个水果中的不合格数,依题意~(70,0.2)Y B ,10 1.515X aY aY =⨯+=+. ()(15)15()15700.21514E X E aY aE Y a a ∴=+=+=+⨯⨯=+.(ⅱ)如果对余下的水果作检验,则这箱水果的检验费为120元, 由1514120a +>,得1057.514a >=,且*a N ∈, ∴当种植基地要对每个不合格水果支付的赔偿费用至少为8元时,将促使种植基地对这箱余下的所有水果作检验.高考预测三:决策问题20.某公司计划购买2台机器,该种机器使用三年后即被淘汰,机器有一易损零件,在购买机器时,可以额外购买这种零件作为备件,每个300元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得到下面柱状图.以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记X 表示2台机器三年内共需更换的易损零件数,n 表示购买2台机器的同时购买的易损零件数.(1)求X 的分布列;(2)若要求()0.5P X n ,试确定n 的最小值;(3)以购买易损零件所需费用的期望值为决策依据,在19n =与20n =之中选其一,应选用哪个?【解析】解:(1)每台机器更换的易损零件数为8,9,10,11,记事件1A 为第一台机器3年内换掉7i +个零件(1i =,2,3,4),记事件1B 为第二台机器3年内换掉7i +个零件(1i =,2,3,4),由题知134134()()()()()()0.2P A P A P A P B P B P B ======,22()()0.4P A P B ==,则X 的可能的取值为16,17,18,19,20,21,22,11(16)()()0.20.20.04P X P A P B ===⨯=;1221(17)()()()()0.20.40.40.20.16P X P A P B P A P B ==+=⨯+⨯=;132231(18)()()()()()()0.20.20.20.20.40.40.24P X P A P B P A P B P A P B ==++=⨯+⨯+⨯=;14233241(19)()()()()()()()()0.20.20.20.20.40.20.20.40.24P X P A P B P A P B P A P B P A P B ==+++=⨯+⨯+⨯+⨯=;243342(20)()()()()()()0.40.20.20.40.20.20.2P X P A P B P A P B P A P B ==++=⨯+⨯+⨯=;3443(21)()()()()0.20.20.20.20.08P X P A P B P A P B ==+=⨯+⨯=;44(22)()()0.20.20.04P X P A P B ===⨯=.从而X 的分布列为(2)要()0.5P x n ,0.040.160.240.5++<,0.040.160.240.240.5+++,则n 的最小值为19;(3)购买零件所需费用含两部分,一部分为购买机器时购买零件的费用,另一部分为备件不足时额外购买的费用,当19n =时,费用的期望为193005000.210000.0815000.045940⨯+⨯+⨯+⨯=元,当20n =时,费用的期望为203005000.0810000.046080⨯+⨯+⨯=元,若要费用最少,所以应选用19n =.高考预测四:正态分布21.为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:)cm .根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布2(,)N μσ.(1)假设生产状态正常,记X 表示一天内抽取的16个零件中其尺寸在(3,3)μσμσ-+之外的零件数,求(1)P X ;(2)一天内抽检零件中,如果出现了尺寸在(3,3)μσμσ-+之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.下面是检验员在一天内抽取的16个零件的尺寸:9.95 10.12 9.96 9.96 10.01 9.92 9.98 10.0410.26 9.91 10.13 10.02 9.22 10.04 10.05 9.95 经计算得16119.9716i i x x ===∑,0.212s =≈,其中i x 为抽取的第i 个零件的尺寸,1i =,2,⋯,16. 用样本平均数x 作为μ的估计值ˆμ,用样本标准差s 作为σ的估计值ˆσ,利用估计值判断是否需对当天的生产过程进行检查?剔除ˆˆˆˆ(3,3)μσμσ-+之外的数据,用剩下的数据估计μ和σ(精确到0.01). 附:若随机变量Z 服从正态分布2(,)N μσ,则(33)0.9974P Z μσμσ-<<+=,160.99740.9592≈,0.09.【解析】解:(1)抽取的一个零件的尺寸在(3,3)μσμσ-+之内的概率为0.9974,从而零件的尺寸在(3,3)μσμσ-+之外的概率为0.0026,故~(16,0.0026)X B .因此,16(1)1(0)10.99740.0408P X P X =-==-≈;(2)由9.97,0.212x s =≈,得μ的估计值为ˆ9.97μ=,σ的估计值为ˆ0.212σ=, 由样本数据可以看出有一个零件的尺寸在ˆˆˆˆ(3,3)μσμσ-+之外, 因此需对当天的生产过程进行检查,剔除ˆˆˆˆ(3,3)μσμσ-+之外的数据9.22, 剩下数据的平均数为1(169.979.22)10.0215⨯-=, 因此μ的估计值为10.02,162221160.212169.971591.134i i x ==⨯+⨯≈∑,剔除ˆˆˆˆ(3,3)μσμσ-+之外的数据9.22, 剩下数据的样本方差为221(1591.1349.221510.02)0.00815--⨯≈. 因此σ0.09.22.从某企业生产的某种产品中抽取500件,测量这些产品的一项质量指标值,由测量结果得如图频率分布直方图:(1)求这500件产品质量指标值的样本平均值x 和样本方差2s (同一组的数据用该组区间的中点值作代表);(2)由直方图可以认为,这种产品的质量指标Z 服从正态分布2(,)N μσ,其中μ近似为样本平均数x ,2σ近似为样本方差2s①利用该正态分布,求(187.8212.2)P Z <<②某用户从该企业购买了100件这种产品,记X 表示这100件产品中质量指标值位于区间(187.8,212.2)的产品件数.利用 ①的结果,求EX 附:6 2.44≈,若2~(,)z n μσ,则()0.6826p Z μσμσ-<<+=,(22)0.9544p Z μσμσ-<<+=.【解析】解:(1)抽取产品的质量指标值的样本平均数为:1700.021800.091900.222000.332100.242200.082300.02200x =⨯+⨯+⨯+⨯+⨯+⨯+⨯=,样本方差2s 分别为:2222222(30)0.02(20)0.09(10)0.2200.33100.24200.08300.02150s =-⨯+-⨯+-⨯+⨯+⨯+⨯+⨯=. (Ⅱ)()i 由(Ⅰ)知~(200,150)Z N ,从而(187.8212.2)(20012.220012.2)0.6826P Z P Z <<=-<<+=;()ii 由()i 知一件产品的质量指标值位于区间(187.8,212.2)的概率为0.6826,依题意知~(100,0.6826)X B ,所以1000.682668.26EX =⨯=.。

高考数学二轮复习专题20概率及随机变量及其分布列精品PPT课件

高考数学二轮复习专题20概率及随机变量及其分布列精品PPT课件

变式训练1 从集合{1,2,3,4,5}的所有非空子集中,
等可能地取出一个.
(1)记性质r:集合中的所有元素之和为10,求所取出的 非空子集满足性质r的概率;
(2)记所取出的非空子集的元素个数为 ,求 的分
布列和数学期望 E .
解 (1)记“所取出的非空子集满足性质r”为事件A.
基本事件总数 nC 1 5 C 5 2 C 3 5 C 5 4 C 5 53.1
P (
1)
C
1 3
4 9
(5 )2 9
100 243
,
P (
2)
C
2 3
(
4 9
)
2
5 9
80 243
,
P ( 3 ) ( 4 ) 3 64 . 9 729
的分布列为
125
100
80
64
729
243
243
729
数E 学 0 1 期 2 1 1 5 望 0 2 8 0 0 3 6 4 4 . 722 942 347 32 39 【探究拓展】本题主要考查随机事件、互斥事件、相 互独立事件等概率知识,考查离散型随机变量的分布 列和期望等基础知识,考查运用概率与统计知识解决 实际问题的能力.
4.(2009·广东)已知离散型随机变量X的分布列如下
5
1
表,若EX=0,DX=1,则a=1_2 __,b=_4___.
1
12
由题意知
a
b
c
5, 12 1, 4 1. 4
a a
a
b c
c
c
1 3
1 6
11 12
1,
, 0,
离散型随机变量的分布列、期望及方差

高考数学一轮总复习第10章计数原理概率随机变量及其分布高考大题规范解答__概率统计pptx课件

高考数学一轮总复习第10章计数原理概率随机变量及其分布高考大题规范解答__概率统计pptx课件
高考大题规范解答 ——概率统计
1.(2023·江西上饶、景德镇等地名校联考)(12分)2022年12月份以 来,全国多个地区纷纷采取不同的形式发放多轮消费券,助力消费复 苏,记发放的消费券额度为x(百万元),带动的消费为y(百万元).某省随 机抽查的一些城市的数据如下表所示.
x3
3
4
5
5
6
6
8
y 10 12 13 18 19 21 24 27
P(ξ=10)=C13CC1137C13=395, P(ξ=11)=CC23C37 11=335,(10 分) ∴ξ 的分布列为:
P 6 7 8 9 10 11
ξ
1 35
9 35
9 35
4 35
9 35
3 35
∴ξ 的数学期望 E(ξ)=6×315+7×395+8×395+9×345+10×395+
答对的概率为23,乙能答对的概率为35;第二关的 6 道题目中甲能答对 4 题,乙能答对 3 题.
(1)求甲获胜的概率; (2)设 X 表示甲获得的优惠券总金额,求 X 的分布列和期望.
[解析] (1)令事件 A 为“甲第一关胜出进入第二关”,事件 B 为“乙 第一关胜出进入第二关”,
则 P(A)=12×23+12×1-35=13+15=185,(2 分) P(B)=12×1-23+12×35=12×13+130=3104=175 或PB=1-PA=175,(3 分) 令:C1:第二关甲两题都答对
8
(xi--x )(yi--y )=16+12+5+0+0+3+6+27=69,(2 分)
i=1
8
(xi--x )2=4+4+1+0+0+1+1+9=20,
i=1
8Hale Waihona Puke (yi--y )2=64+36+25+0+1+9+36+81=252,(3 分)

高考数学总复习第十一章计数原理概率随机变量及其分布第七节二项分布超几何分布正态分布课件北师大版

高考数学总复习第十一章计数原理概率随机变量及其分布第七节二项分布超几何分布正态分布课件北师大版

从二项分布,即X~B(n,p)(其中p=
M
N
);若 远远小于N时,每抽取一次后,
采用不放回抽样的方法随机抽取则随 对N的影响很小,超几何分布
机变量X服从超几何分布
可以用二项分布近似
3.正态分布
(1)正态曲线
1
分布密度函数解析式为φμ,σ(x)=

2
(-)
e 22
,x∈(-∞,+∞),其中实数μ,σ(σ>0)
)
1
2.设随机变量 X~B 6, 2 ,则 P(X=3)=(
5
A.16
3
B.16
5
C.8
)
3
D.8
答案 A
解析 因为 X~B
A.
1
6,
2
3
1
,所以由二项分布可得,P(X=3)=C63
2
1 3
12
=
5
.故选
16
3.已知随机变量X服从正态分布N(3,1),且P(X>2c-1)=P(X≤c+3),则
c=
因此,随机变量X在区间(μ-σ,μ+σ],(μ-2σ,μ+2σ],
(μ-3σ,μ+3σ]上取值的概率分别约为68.3%,95.4%,99.7%.
微点拨1.若X服从正态分布,即X~N(μ,σ2),要充分利用正态曲线的关于直线
X=μ对称和曲线与x轴之间的面积为1.
2.在实际应用中,通常认为服从于正态分布N(μ,σ2)的随机变量X只取
答案
.
4
3
解析 因为X~N(3,1),所以正态曲线关于直线x=3对称,且P(X>2c-1)
=P(X≤c+3),所以2c-1+c+3=2×3,所以c= 4

人教版高考总复习一轮数学精品课件 第十一章 计数原理、概率、随机变量及其分布-第七节 正态分布

人教版高考总复习一轮数学精品课件 第十一章 计数原理、概率、随机变量及其分布-第七节 正态分布
× . = ,故此次考试成绩在区间 , 内的学生大约有954人.
02
研考点 题型突破
题型一 正态密度曲线的运用
典例1(多选题)某工厂加工一种零件,有两种不同
的工艺选择,用这两种工艺加工一个零件所需时间
(单位:h)均近似服从正态分布,用工艺1加工一个
零件所用时间~ 1, 12 ,用工艺2加工一个零件所
B.40
C.228
D.455
[解析]由正态分布 , 可知 = , = ,∴ + = , + = ,
∴ ≤ ≤ ≈
. −.

= . , ≥ ≈
−.

= . ,
直径高于22的个数大约为 ÷ . × . = .故选D.

,

,无法比较
[对点训练1]已知随机变量服从正态分布 , 2 ,若函数 = ≤ ≤ + 1
为偶函数,则 =() C
1
2
1
2
A.− B.0C. D.1
[解析]因为函数 为偶函数,所以 − = ,即
− ≤ ≤ − + = ≤ ≤ + ,所以 =
B.曲线关于直线 = 对称
C.曲线呈现“中间高,两边低”的钟形形状
D.曲线与轴之间的面积为1
[解析]由正态曲线的特点,易知B,C,D说法正确;对于A,曲线与轴不相交,故
A错误.故选.
2.已知随机变量服从正态分布 1, 2 ,若 > 2 = 0.15,则 0 ≤ ≤ 1 =
知,当 > 时,的密度曲线与轴所围成的面积大于的密度曲线与轴所围成的面
积,即 > > > ,所以 ≤ < ≤ ,所以应选择工艺2,所以C

2025版高考数学总复习第10章计数原理概率随机变量及其分布第6讲二项分布与超几何分布课件

2025版高考数学总复习第10章计数原理概率随机变量及其分布第6讲二项分布与超几何分布课件

2.超几何分布的适用范围及本质 (1)适用范围: ①考察对象分两类; ②已知各类对象的个数; ③从中抽取若干个个体,考察某类个体个数Y的概率分布. (2)本质:超几何分布是不放回抽样问题,在每次试验中某一事件发 生的概率是不相同的.
双基自测
题组一 走出误区
1.判断下列结论正误(在括号内打“√”或“×”)
2.已知随机变量ξ~B(7,0.5),则k=___3_或__4____时P(ξ=k)最大.
[解析] 依题意 P(ξ=k)=Ck712k×127-k=Ck7127,k=0,1,2,…,7, P(ξ=k)最大⇔Ck7最大,故 k=3 或 k=4.
角度2 二项分布的实际应用 (2023·湖北九师联盟联考)某校为了缓解高三学子复习压力,举
A.17
B.1556
C.27 [解Βιβλιοθήκη ]D.57 P(X≥2)=P(X=2)+P(X=3)=CC15C38 23+CC3338=27.故选 C.
题组三 走向高考
4.(2018·课标Ⅲ)某群体中的每位成员使用移动支付的概率都为p,
各成员的支付方式相互独立.设X为该群体的10位成员中使用移动支付
的人数,D(X)=2.4,P(X=4)<P(X=6),则p=( B )
进点球的概率为34,若前一次没有射进点球,则下一次射进点球的概率为 1 2.
(1)设甲 3 次点球的总得分为 X,求 X 的概率分布列和数学期望; (2)求乙总得分为 100 分的概率.
[解析] (1)设甲 3 次点球射进的次数为 Y,则 Y~B3,23, Y 的可能取值为 0,1,2,3,且 X=50Y,则 X 的所有可能的取值为 0,50,100,150. P(X=0)=P(Y=0)=1-233=217; P(X=50)=P(Y=1)=C13×23×1-232=29; P(X=100)=P(Y=2)=C23×232×1-23=49;

北师版高考总复习一轮数学精品课件 第11章计数原理、概率、随机变量及其分布 概率与统计中的综合问题

北师版高考总复习一轮数学精品课件 第11章计数原理、概率、随机变量及其分布 概率与统计中的综合问题
0 1 3 1
1 1 3 3
2 1 3 3
3 1 3 1
P(ξ=0)=C3 ( ) = ,P(ξ=1)=C3 ( ) = ,P(ξ=2)=C3 ( ) = ,P(ξ=3)=C3 ( ) = , ....6
2
8
2
8
2
8
2
8
所以 ξ 的分布列为

ξ
P
0
1
1
8
2
3
8
3
3
8
1
8
........................................................................................................................... 7 分
(1)设X表示指定的两只小白鼠中分配到对照组的只数,求X的分布列和数
学期望;
关键点:结合题意弄清楚X服从的是超几何分布还是二项分布.
(2)试验结果如下:
对照组的小白鼠体重的增加量从小到大排序为
15.2
18.8 20.2
21.3
22.5 23.2
25.8
26.5 27.5
34.3
34.8 35.6
35.6
C47
C13 C34
P(η=1)=
C47
=
12
C23 C24
,P(η=2)=
35
C47
=
18
C33 C14
,P(η=3)=
35
C47
1
2
=
4
.
35
所以 η 的分布列为
η
P
所以 Eη=0×

高考数学专题闯关教学概率随机变量及其分布列共张-PPT精品

高考数学专题闯关教学概率随机变量及其分布列共张-PPT精品
P(A)=2344=8116.
法二:设对每位申请人的观察为一次试验,这是 4 次独立重复试验.
记“申请 A 片区房源”为事件 A,则 P(A)=13.
由独立重复试验中事件 A 恰好发生 k 次的概率计
算公式知,没有人申请 A 片区房源的概率为 P4(0) =C04310·324=8116.
P(AB)=P(A)P(B).
(6)独立重复试验 如果事件 A 在一次试验中发生的概率是 p,那么 它在 n 次独立重复试验中恰好发生 k 次的概率为
Pn(k)=Cknpk(1-p)n-k,k=0,1,2,…,n.
2.常见的离散型随机变量的分布 (1)两点分布 分布列为(其中0<p<1)
ξ
0
1
P 1-p
4,t≥102.
从用 B 配方生产的产品中任取一件,其利润记为 X(单位:元),求 X 的分布列及数学期望.(以试 验结果中质量指标值落入各组的频率作为一件产
品的质量指标值落入相应组的概率)
【解】 (1)由试验结果知,用 A 配方生产的产品
中优质品的频率为2120+08=0.3,所以用 A 配方生 产的产品的优质品率的估计值为 0.3. 由试验结果知,用 B 配方生产的产品中优质品的
高考热点讲练
几何概型
例1 如图,矩形 ABCD 中,点 E 为边 CD 的中
点,若在矩形 ABCD 内部随机取一个点 Q,则点
Q 取自△ABE 内部的概率等于( )
A.14
B.13
C.12
D.23
【解析】 这是一道几何概型的概率问题,点 Q
1
取自△ABE
内部的概率为 S△ABE =2·|AB|·|AD|= S矩形ABCD |AB|·|AD|
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
称这样的随机变量 ξ 服从参数 n 和 p 的二项分布, 记为 ξ~B(n,p).
3.离散型随机变量的期望与方差 若离散型随机变量ξ的分布列为
ξ x1 x2 … xn … P p1 p2 … pn … 则称E(ξ)=x1p1+x2p2+…+xnpn+…为ξ的数 学期望,简称期望.
D(ξ)=[x1-E(ξ)]2·p1+[x2-E(ξ)]2·p2+…+[xn -E(ξ)]2·pn+…叫做随机变量ξ的方差.
(2)所有可能的申请方式有 34 种,而“每个片区的
房源都有人申请”的申请方式有 C24A33种.
记“每个片区的房源都有人申请”为事件 B,从
而有 P(B)=C324A4 33=49.
【归纳拓展】 (1)求复杂事件的概率,要正确 分析复杂事件的构成,看复杂事件能转化为几 个彼此互斥的事件的和事件还是能转化为几个 相互独立事件同时发生的积事件,然后用概率 公式求解.
P(AB)=P(A)P(B).
(6)独立重复试验 如果事件 A 在一次试验中发生的概率是 p,那么 它在 n 次独立重复试验中恰好发生 k 次的概率为
Pn(k)=Cknpk(1-p)n-k,k=0,1,2,…,n.
2.常见的离散型随机变量的分布 (1)两点分布 分布列为(其中0<p<1)
ξ
0
1
P 1-p
解析:(1)圆心 C 到 l 的距离为 |-25| =5. 42+32
(2)如图 l′∥l,且 O 到 l′的距离为 3,sin∠ODE
=3= 23
23,所以∠ODE=60°,从而∠BOD=60°,
点 A 应在劣弧 BD 上,所以满足条件的概率为16.
答案:(1)5
1 (2)6
古典概型
例2 一个袋中装有大小相同的10个球,其中 红球8个,黑球2个,现从袋中有放回地取球, 每次随机取1个. (1)求连续取两次都是红球的概率; (2)如果取出黑球,则取球终止,否则继续取球, 直到取出黑球,求取球次数不超过3次的概率.
甲两场皆胜的概率为 P(ξ=6)=23×14=16.
∴ξ 的分布列为
ξ0 3 6
P
1 4
7 12
1 6
∴E(ξ)=0×14+3×172+6×16=141.
考题解答技法
例 (本题满分12分)某产品按行业生产标准分 成8个等级,等级系数X依次为1,2,…,8,其中 X≥5为标准A,X≥3为标准B.已知甲厂执行标准 A生产该产品,产品的零售价为6元/件;乙厂执 行标准B生产该产品,产品的零售价为4元/件, 假定甲、乙两厂的产品都符合相应的执行标准. (1)已知甲厂产品的等级系数X1的概率分布列如 下所示:
例3
区.设每位申请人只申请其中一个片区的房源, 且申请其中任一个片区的房源是等可能的,求 该市的任4位申请人中: (1) 没有人申请A片区房源的概率; (2) 每个片区的房源都有人申请的概率.
【解】 (1)法一:所有可能的申请方式有 34 种,
而“没有人申请 A 片区房源”的申请方式有 24 种. 记“没有人申请 A 片区房源”为事件 A,则
事件的概率公式去计算所求事件的概率.
变式训练2 有两枚大小相同、质地均匀的正四 面体玩具,每个玩具的各个面上分别写着数字 1,2,3,5.同时投掷这两枚玩具一次,记m为两个 朝下的面上的数字之和.
(1)求事件“m不小于6”的概率; (2)“m为奇数”的概率与“m为偶数”的概率 是否相等?并给出说明.
即 X 的分布列为
X -2 P 0.04
2
4
0.54 0.42
X 的 数 学 期 望 E(X) = - 2×0.04 + 2×0.54 + 4×0.42=2.68.
【归纳拓展】 (1)求离散型随机变量的分布列 的关键是正确理解随机变量取每一个值所表示 的具体事件,然后综合应用各类求概率的公式, 求出概率.
解:因为玩具的质地是均匀的,所以玩具各面朝 下的可能性相等,出现的可能情况有:(1,1),(1,2), (1,3),(1,5),(2,1),(2,2),(2,3),(2,5),(3,1),(3,2), (3,3),(3,5),(5,1),(5,2),(5,3),(5,5),共 16 种. (1)事件“m 不小于 6”包含(1,5),(2,5),(3,5), (3,3),(5,1),(5,2),(5,3),(5,5),共 8 个基本事件,
P(A)=P2+P3=0.49+0.24=0.73, P(B)=0.8×0.8×0.2×3+0.8×0.8×0.8= 0.896. 故P(B)>P(A),即该人选择每次在乙袋中取球得 分超过1分的概率大于该人选择先在甲袋中取一 球,以后均在乙袋中取球得分超过1分的概率.
离散型随机变量及分布列
例4 某种产品的质量以其质量指标值衡量,质 量指标值越大表明质量越好,且质量指标值大于 或等于 102 的产品为优质品.现用两种新配方
和数学期望.
解:(1)甲获第一,则甲胜乙且甲胜丙. ∴甲获第一的概率为23×14=16. 丙获第二,则丙胜乙,其概率为 1-15=45. ∴甲获第一名且丙获第二名的概率为16×45=125.
(2)ξ 可能取的值为 0、3、6. 甲两场比赛皆输的概率为 P(ξ=0)=(1-23)(1-14) =14. 甲两场只胜一场的概率为 P(ξ=3)=23×(1-14)+14 ×(1-23)=172.
(2)求随机变量的均值和方差的关键是正确求出 随机变量的分布列,若随机变量服从二项分布( 或两点分布),则可直接使用公式求解.
变式训练 4 甲、乙、丙三人进行象棋比赛,每两 人比赛一场,共赛三场.每场比赛胜者得 3 分, 负者得 0 分,没有平局,在每一场比赛中,甲胜 乙的概率为23,甲胜丙的概率为14,乙胜丙的概率 为15. (1)求甲获第一名且丙获第二名的概率; (2)设在该次比赛中,甲得分为 ξ,求 ξ 的分布列
频率为321+0010=0.42,所以用 B 配方生产的产品
的优质品率的估计值为 0.42.
(2)用 B 配方生产的 100 件产品中,其质量指标值
落入区间[90,94),[94,102),[102,110]的频 率分别为 0.04,0.54,0.42,因此 P(X=-2)=0.04, P(X=2)=0.54,P(X=4)=0.42,
4,t≥102.
从用 B 配方生产的产品中任取一件,其利润记为 X(单位:元),求 X 的分布列及数学期望.(以试 验结果中质量指标值落入各组的频率作为一件产
品的质量指标值落入相应组的概率)
【解】 (1)由试验结果知,用 A 配方生产的产品
中优质品的频率为2120+08=0.3,所以用 A 配方生 产的产品的优质品率的估计值为 0.3. 由试验结果知,用 B 配方生产的产品中优质品的
所以 P(m≥6)=186=12.
(2)“m 为奇数”的概率和“m 为偶数”的概率不 相等. 因为 m 为奇数的概率为 P(m=3)+P(m=5)+P(m =7)=126+126+126=38.
m 为偶数的概率为 1-38=58,这两个概率值不相
等.
相互独立事件、独立重复试 验的概率
某市公租房的房源位于A、B、C三个片
(1)求q的值; (2)试比较此人选择每次都在乙袋中取球得分超 过1分与选择上述方式取球得分超过1分的概率 的大小.
解 : (1) 依 题 意 , 得 (1 - q)×0.8×0.2 + (1 - q)×0.2×0.8=0.24,解之,得q=0.25.
(2)设此人按题中方式取球结束后得n分的概率为
高考热点讲练
几何概型
例1 如图,矩形 ABCD 中,点 E 为边 CD 的中
点,若在矩形 ABCD 内部随机取一个点 Q,则点
Q 取自△ABE 内部的概率等于( )
A.14
B.13
C.12
D.23
【解析】 这是一道几何概型的概率问题,点 Q
1
取自△ABE
内部的概率为 S△ABE =2·|AB|·|AD|= S矩形ABCD |AB|·|AD|
p
(2)二项分布 在 n 次独立重复试验中,事件 A 发生的次数 ξ 是一 个随机变量,其所有可能取的值为 0,1,2,3,…,n, 并且 P(ξ=k)=Cknpkqn-k(其中 k=0,1,2,…,n,q=1 -p).
n
显然 P(ξ=k)≥0(k=0,1,2,…,n), Cknpkqn-k=1. k=0
(2)一个复杂事件若正面情况比较多,反面情况 较少,则一般利用对立事件进行求解,对于“ 至少”,“至多”等问题往往用这种方法求 解.
变式训练3 甲袋中装有若干质地、大小相同的黑 球、白球,乙袋中装有若干个质地、大小相同的黑
球、红球.某人有放回地从两袋中每次取一球,甲 袋中每取到一黑球得2分,乙袋中每取到一黑球得1 分,取得其他球得零分,规定他最多取3次,如果 前两次得分之和超过2分即停止取球,否则取第三 次.取球方式:先在甲袋中取一球,以后均在乙袋 中取球,此人在甲袋中取到一个黑球的概率为q, 在乙袋中取到一个黑球的概率为0.8,用ξ表示他取 球结束后的总分,已知P(ξ=1)=0.24.
P(A)=2344=8116.
法二:设对每位申请人的观察为一次试验,这是 4 次独立重复试验.
记“申请 A 片区房源”为事件 A,则 P(A)=13.
由独立重复试验中事件 A 恰好发生 k 次的概率计
算公式知,没有人申请 A 片区房源的概率为 P4(0) =C04310·324=8116.
【解】 (1)由于是有放回地取球,故连续两次取 球是相互独立的,因此连续取两次都是红球的概 率 P=CC11180·CC11180=1265. (2)取到黑球时取球次数为 1 次,2 次,3 次的事件, 分别记为 A、B、C.
则 P(A)=15,P(B)=45×15=245,
P(C)=(45)2×15=11265. 所以,取球次数不超过 3 次的概率是 P(A+B+C) =P(A)+P(B)+P(C)=15+245+11265=16215. 即取球次数不超过 3 次的概率是16215.
相关文档
最新文档