2021版高考北师大版文科数学一轮复习 二十五 4.7 正弦定理、余弦定理的应用举例

合集下载

高三数学一轮复习正弦定理和余弦定理

高三数学一轮复习正弦定理和余弦定理

•∴sinA>0,sinB>0,
•∴sinAcosA=sinBcosB.
整理课件
20
即 sin2A=sin2B. 又 2A、2B∈(0,2π), ∴2A=2B 或 2A+2B=π. 即 A=B 或 A+B=π2. 因此△ABC 是等腰三角形或直角三角形.
解析:根据正弦定理sianA=sibnB得:sin2A=sin630°⇒sinA
= 22,又a<b,∴A<B,A=45°.
•答案:C
整理课件
8
2.△ABC的内角A、B、C的对边分别为a、b、c.若a、
b、c成等比数列,且c=2a,则cosB等于( )
1
3
A.4
B.4
2 C. 4
2 D. 3
整理课件
•a2[sin(A+B)-sin(A-B)]
•=b2[sin(A+B)+sin(A-B)]
•∴2a2cosAsinB=2b2cosBsinA.
•由正弦定理可得:
•sin2AcosAsinB=sin2BcosBsinA.
•即sinAsinB·(sinAcosA-sinBcosB)=0.
•∵A、B∈(0,π),
sAinBC=sBinCA.
于是 AB=ssiinnCABC=2BC=2 5.
(2)在△ABC 中,根据余弦定理,得
cosA=AB2+2AABC·A2-C BC2=2
5
5 .
于是 sinA= 1-cos2A=整理5课5件.
14
从而 sin2A=2sinAcosA=45, cos2A=cos2A-sin2A=35.
由正弦定理得 sinB=bsianA,
因为 b2=ac 且∠A=60°,

一轮复习北师大版正弦定理和余弦定理作业

一轮复习北师大版正弦定理和余弦定理作业

第四章 三角函数、解三角形第六节 正弦定理和余弦定理A 级·基础过关 |固根基|1.在△ABC 中,若sin A a =cos Bb ,则B 的大小为( )A .30°B .45°C .60°D .90°解析:选B 由正弦定理知,sin A sin A =cos Bsin B ,∴tan B =1.∵0°<B <180°,∴B =45°.故选B .2.在△ABC 中,2a cos A +b cos C +c cos B =0,则角A 的大小为( ) A .π6B .π3C .2π3D .5π6解析:选C 由余弦定理得,2a cos A +b ·a 2+b 2-c 22ab +c ·a 2+c 2-b 22ac =0,即2a cos A +a =0,∴cos A =-12,又A ∈(0,π),∴A =2π3.故选C .3.(2021届宝鸡一模)△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,已知b =7,c =4,cos B =34,则△ABC 的面积等于( ) A .37 B .372C .9D .92解析:选B ∵b =7,c =4,cos B =34,∴sin B =1-cos 2B =74,∴由余弦定理b 2=a 2+c 2-2ac cos B ,可得7=a 2+16-2×a ×4×34,整理可得a 2-6a +9=0,解得a =3,∴S △ABC =12ac sin B =12×3×4×74=372.故选B . 4.(2021届湘东六校联考)若△ABC 的三个内角满足6sin A =4sin B =3sin C ,则△ABC 是( ) A .锐角三角形 B .直角三角形 C .钝角三角形D .以上都有可能解析:选C 由题意,利用正弦定理可得6a =4b =3c ,则可设a =2k ,b =3k ,c =4k ,k >0,则cos C=4k 2+9k 2-16k 22×2k ×3k<0,所以C 是钝角,所以△ABC 是钝角三角形,故选C .5.(2021届昆明市高三诊断测试)在平面四边形ABCD 中,∠D =90°,∠BAD =120°,AD =1,AC =2,AB =3,则BC =( )A . 5B . 6C .7D .2 2解析:选C 如图,在△ACD 中,∠D =90°,AD =1,AC =2,所以∠CAD =60°.又∠BAD =120°,所以∠BAC =∠BAD -∠CAD =60°.在△ABC 中,由余弦定理得BC 2=AB 2+AC 2-2AB ·AC cos ∠BAC =7,所以BC =7.故选C .6.(2021届湖北部分重点中学联考)在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,cos A a +cos Bb =sin C c ,若b 2+c 2-a 2=85bc ,则tan B 的值为( ) A .-13B .13C .-3D .3解析:选C 因为cos A a +cos B b =sin C c ,所以由正弦定理得cos A sin A +cos B sin B =sin C sin C =1,即1tan A +1tan B =1.又b 2+c 2-a 2=85bc ,所以由余弦定理a 2=b 2+c 2-2bc cos A ,可得cos A =45,则sin A =1-cos 2A =35,则tan A =sin A cos A =34,解得tan B =-3,故选C .7.(2021届四川五校联考)在△ABC 中,角A 的平分线交BC 于点D ,BD =2CD =2,则△ABC 面积的最大值为( )A .3 2B .2 2C .3D .4解析:选C 如图,由BD =2CD =2,知BC =3,由角平分线定理,得AB AC =BDCD =2,设AC =x ,∠BAC =2α,α∈⎝⎛⎭⎫0,π2,则AB =2x ,由余弦定理,得32=4x 2+x 2-2·2x ·x ·cos 2α,即x 2=95-4cos 2α.S △ABC =12·2x ·x ·sin 2α=x 2·sin 2α=9sin 2α5-4cos 2α=9×2sin αcos α5-4×(cos 2α-sin 2α)=9·2tan α1+tan 2α5-4·1-tan 2α1+tan 2α=18tan α1+9tan 2α=181tan α+9tan α≤1821tan α·9tan α=3,当且仅当1tan α=9tan α,即tan α=13时取等号,故△ABC 面积的最大值为3.8.(2021届合肥调研)在△ABC 中,A =2B ,AB =73,BC =4,CD 平分∠ACB 交AB 于点D ,则线段AD 的长为________.解析:解法一:因为A =2B ,BC =4,所以由正弦定理AC sin B =BC sin A ,得AC sin B =4sin 2B =42sin B cos B,所以cos B =2AC 且AC >2,由余弦定理AC 2=BC 2+AB 2-2BC ·AB cos B ,得AC 2=42+⎝⎛⎭⎫732-2×4×73×2AC ,即9AC 3-193AC +336=0,得(AC -3)(3AC -7)(3AC +16)=0,解得AC =73或AC =3.当AC =73时,△ABC为等腰三角形,且cos B =67,2B =2∠ACB =A ,由三角形内角和定理A +B +∠ACB =π,得B =π4,与cos B=67矛盾,舍去;当AC =3时,由三角形的角平分线定理,得AD BD =AC BC ,即AD 73-AD =34,解得AD =1.综上可得,AD =1.解法二:因为A =2B ,BC =4,所以由正弦定理AC sin B =BC sin A ,得AC sin B =4sin 2B =42sin B cos B ,所以cosB =2AC ,则cos A =cos 2B =2cos 2B -1=8AC2-1.在△ABC 中,sin C =sin(A +B )=sin A cos B +cos A sin B ,由正弦定理可得AC cos A +BC cos B =AB ,即AC ·⎝⎛⎭⎫8AC 2-1+4·2AC =73,解得AC =-163(舍去)或AC =3,由三角形的角平分线定理,得AD BD =AC BC ,即AD 73-AD =34,解得AD =1.答案:19.(年天津卷)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知b +c =2a ,3c sin B =4a sin C .(1)求cos B 的值; (2)求sin ⎝⎛⎭⎫2B +π6的值. 解:(1)在△ABC 中,由正弦定理b sin B =csin C,得b sin C =c sin B ,又由3c sin B =4a sin C ,得3b sin C=4a sin C ,即3b =4a .又因为b +c =2a ,得到b =43a ,c =23a .由余弦定理可得,cos B =a 2+c 2-b 22ac =a 2+49a 2-169a 22·a ·23a=-14. (2)由(1)可得,sin B =1-cos 2B =154, 从而sin 2B =2sin B cos B =-158,cos 2B =cos 2B -sin 2B =-78, 故sin ⎝⎛⎭⎫2B +π6=sin 2B cos π6+cos 2B sin π6=-158×32-78×12=-35+716. 10.(2021届石家庄摸底)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,b cos A +22a =c ,D 是BC 边上的点.(1)求角B ;(2)若AC =7,AD =5,DC =3,求AB 的长. 解:(1)由b cos A +22a =c 及正弦定理,得sin B cos A +22sin A =sin C ,即sin B cos A +22sin A =sin(A +B ),所以sin B cos A +22sin A =sin A cos B +cos A sin B ,即22sin A =sin A cos B .∵sin A ≠0,∴cos B =22,∴B =π4.(2)在△ADC 中,AC =7,AD =5,DC =3,∴cos ∠ADC =AD 2+DC 2-AC 22AD ·DC =52+32-722×5×3=-12,∴∠ADC =2π3.在△ABD 中,AD =5,B =π4,∠ADB =π3,由AB sin ∠ADB =ADsin B ,得AB =AD ·sin ∠ADB sin B =5×sin π3sin π4=5×3222=562. 11.(年江苏卷)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c . (1)若a =3c ,b =2,cos B =23,求c 的值;(2)若sin A a =cos B2b ,求sin ⎝⎛⎭⎫B +π2的值. 解:(1)因为a =3c ,b =2,cos B =23,由余弦定理cos B =a 2+c 2-b 22ac ,得23=(3c )2+c 2-(2)22×3c ×c,即c 2=13.所以c =33. (2)因为sin A a =cos B2b,由正弦定理a sin A =b sin B ,得cos B 2b =sin Bb ,所以cos B =2sin B ,从而cos 2B =(2sin B )2,即cos 2B =4(1-cos 2B ),故cos 2B =45.因为sin B >0,所以cos B =2sin B >0, 从而cos B =255.因此sin ⎝⎛⎭⎫B +π2=cos B =255. B 级·素养提升 |练能力|12.(2021届惠州调研)已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且内角满足sin A -sin B +sin Csin C =sin Bsin A +sin B -sin C .(1)求角A ;(2)若△ABC 的外接圆半径为1,求△ABC 的面积S 的最大值. 解:(1)由题意及正弦定理可得a -b +c c =ba +b -c,化简得b 2+c 2-a 2=bc ,由余弦定理得cos A =b 2+c 2-a 22bc ,∴cos A =bc 2bc =12.又0<A <π,∴A =π3. (2)记△ABC 外接圆的半径为R ,由正弦定理得a sin A =2R ,即a =2R sin A =2sin π3=3,由余弦定理得3=b 2+c 2-bc ≥2bc -bc =bc , 即bc ≤3(当且仅当b =c 时取等号),故S =12bc sin A ≤12×3×32=334(当且仅当b =c 时取等号),即△ABC 的面积S 的最大值为334.13.(年全国卷Ⅲ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知a sin A +C2=b sin A . (1)求B ;(2)若△ABC 为锐角三角形,且c =1,求△ABC 面积的取值范围. 解:(1)由题设及正弦定理,得sin A sin A +C2=sin B sin A . 因为sin A ≠0,所以sin A +C 2=sin B .由A +B +C =180°,可得sinA +C 2=cosB 2,故cos B 2=2sin B 2cos B2.因为cos B 2≠0,故sin B 2=12,因此B =60°.(2)由题设及(1)知,△ABC 的面积S △ABC =12ac sin B =34a .由正弦定理得a =c sin A sin C =sin (120°-C )sin C =32tan C +12.由于△ABC 为锐角三角形,故0°<A <90°,0°<C <90°.由(1)知,A +C =120°, 所以30°<C <90°,故12<a <2,从而38<S △ABC <32.所以△ABC 面积的取值范围是⎝⎛⎭⎫38,32. 14.(2021届长春市第二次质量监测)如图,在△ABC 中,AB =3,∠ABC =30°,cos ∠ACB =74. (1)求AC 的长;(2)作CD ⊥BC ,连接AD ,若AD ∶CD =2∶3,求△ACD 的面积. 解:(1)因为cos ∠ACB =74,所以sin ∠ACB =34, 由正弦定理得AC =ABsin ∠ACB·sin ∠ABC =2.(2)因为CD ⊥BC ,所以∠ACD =90°-∠ACB ,所以cos ∠ACD =sin ∠ACB =34.设AD =2m ,则CD =3m .由余弦定理得AD 2=AC 2+CD 2-2×AC ×CD cos ∠ACD ,即4m 2=4+9m 2-2×2×3m ×34,解得m =1或m =45.当m =1时,CD =3,sin ∠ACD =74,S △ACD =12·AC ·CD ·sin ∠ACD =374; 当m =45时,CD =125,sin ∠ACD =74,S △ACD =12·AC ·CD sin ∠ACD =375.综上,△ACD 的面积为374或375.。

高中数学一轮复习 4.7 正弦定理和余弦定理

高中数学一轮复习 4.7 正弦定理和余弦定理

第七节 正弦定理和余弦定理1.正弦定理 2.余弦定理 3.三角形的面积公式第一课时 正弦定理和余弦定理(一) 考点一 利用正、余弦定理解三角形考法(一) 正弦定理解三角形[典例] (1)在△ABC 中,a =3,b =2,A =30°,则cos B =________.(2)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若a =3,sin B =12,C =π6,则b =________.考法(二) 余弦定理解三角形[典例] (1)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若b cos A +a cos B =c 2,a =b =2,则△ABC 的周长为( ) A .7.5 B .7 C .6 D .5(2)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且c -b 2c -a =sin Asin B +sin C,则角B =________. [题组训练]1.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若b 2=ac ,c =2a ,则cos C =( ) A.24 B .-24 C.34 D .-342.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知sin B +sin A (sin C -cos C )=0,a =2,c =2,则C =( ) A.π12 B.π6 C.π4 D.π33.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知sin 2B +sin 2C =sin 2A +sin B sin C . (1)求角A 的大小;(2)若cos B =13,a =3,求c 的值.考点二 判定三角形的形状[典例] (1)设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若b cos C +c cos B =a sin A ,则△ABC 的形状为( )A .锐角三角形B .直角三角形C .钝角三角形D .不确定(2)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若sin A sin B =a c ,(b +c +a )(b +c -a )=3bc ,则△ABC 的形状为( ) A .直角三角形B .等腰非等边三角形C .等边三角形D .钝角三角形[变透练清]1.(变条件)若本例(1)条件改为“a sin A +b sin B <c sin C ”,那么△ABC 的形状为________.2.(变条件)若本例(1)条件改为“c -a cos B =(2a -b )cos A ”,那么△ABC 的形状为________.3.(变条件)若本例(2)条件改为“cos A cos B =ba=2”,那么△ABC 的形状为________.[课时跟踪检测]1.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .若sin A a =cos Bb ,则B 的大小为( )A .30°B .45°C .60°D .90°2.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .已知b =40,c =20,C =60°,则此三角形的解的情况是( )A .有一解B .有两解C .无解D .有解但解的个数不确定3.在△ABC 中,cos B =ac (a ,b ,c 分别为角A ,B ,C 的对边),则△ABC 的形状为( )A .直角三角形B .等边三角形C .等腰三角形D .等腰三角形或直角三角形4.在△ABC 中,a ,b ,c 分别是内角A ,B ,C 的对边.若b sin A =3c sin B ,a =3,cos B =23,则b=( )A .14B .6 C.14 D. 65.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若a sin B cos C +c sin B cos A =12b ,且a >b ,则B =( )A.π6B.π3C.2π3D.5π66.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若2(b cos A +a cos B )=c 2,b =3,3cos A =1,则a =( )A. 5 B .3 C.10 D .47.在△ABC 中,AB =6,A =75°,B =45°,则AC =________.8.设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且a =2,cos C =-14,3sin A =2sin B ,则c=________.9.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .若a =7,b =2,A =60°,则sin B =________,c =________.10.在△ABC 中,a ,b ,c 分别为角A ,B ,C 所对的边,sin A ,sin B ,sin C 成等差数列,且a =2c ,则cos A =________.11.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且A =2B . (1)求证:a =2b cos B ; (2)若b =2,c =4,求B 的值.12.在△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,且2a sin A =(2b +c )sin B +(2c +b )sin C . (1)求A 的大小; (2)若sin B +sin C =1,试判断△ABC 的形状.第二课时 正弦定理和余弦定理(二)考点一 有关三角形面积的计算[典例] (1)△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,已知b =7,c =4,cos B =34,则△ABC 的面积等于( ) A .37 B.372 C .9 D.92(2)△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .若△ABC 的面积为34(a 2+c 2-b 2),则B =______. [变透练清]1.(变条件)本例(1)的条件变为:若c =4,sin C =2sin A ,sin B =154,则S △ABC =________. 2.(变结论)本例(2)的条件不变,则C 为钝角时,ca 的取值范围是________.3.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,(2b -a )cos C =c cos A . (1)求角C 的大小;(2)若c =3,△ABC 的面积S =433,求△ABC 的周长.考点二 平面图形中的计算问题[典例] 如图,在平面四边形ABCD 中,∠ABC =3π4,AB ⊥AD ,AB =1.(1)若AC =5,求△ABC 的面积; (2)若∠ADC =π6,CD =4,求sin ∠CAD .[题组训练]1.如图,在△ABC 中,D 是边AC 上的点,且AB =AD,2AB =3BD ,BC =2BD ,则sin C 的值为________.2.如图,在平面四边形ABCD 中,DA ⊥AB ,DE =1,EC =7,EA =2,∠ADC =2π3,且∠CBE ,∠BEC ,∠BCE 成等差数列.(1)求sin ∠CED ;(2)求BE 的长.考点三 三角形中的最值、范围问题[典例] (1)在△ABC 中,内角A ,B ,C 对应的边分别为a ,b ,c ,A ≠π2,sin C +sin(B -A )=2sin 2A ,则角A 的取值范围为( )A.⎝⎛⎦⎤0,π6B.⎝⎛⎦⎤0,π4C.⎣⎡⎦⎤π6,π4D.⎣⎡⎦⎤π6,π3 (2)已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且cos 2A +cos 2B =2cos 2C ,则cos C 的最小值为( )A.32 B.22 C.12 D .-12[题组训练]1.在钝角△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,B 为钝角,若a cos A =b sin A ,则sin A +sin C 的最大值为( ) A. 2 B.98 C .1 D.782.在△ABC 中,已知c =2,若sin 2A +sin 2B -sin A sin B =sin 2C ,则a +b 的取值范围为________. 3.已知在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且cos B b +cos C c =sin A3sin C .(1)求b 的值;(2)若cos B +3sin B =2,求△ABC 面积的最大值.考点四 解三角形与三角函数的综合应用考法(一) 正、余弦定理与三角恒等变换[典例] 在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知 b sin A =ac os ⎝⎛⎭⎫B -π6. (1)求角B 的大小;(2)设a =2,c =3,求b 和sin(2A -B )的值.考法(二) 正、余弦定理与三角函数的性质[典例] 已知函数f (x )=c os 2x +3sin(π-x )c os(π+x )-12.(1)求函数f (x )在[0,π]上的单调递减区间;(2)在锐角△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,已知f (A )=-1,a =2,b sin C =a sin A ,求△ABC 的面积.[对点训练]在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,(2a -c )cos B -b cos C =0. (1)求角B 的大小;(2)设函数f (x )=2sin x cos x cos B -32cos 2x ,求函数f (x )的最大值及当f (x )取得最大值时x 的值. [课时跟踪检测]1.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,cos 2A =sin A ,bc =2,则△ABC 的面积为( ) A.12 B.14C .1D .22.在△ABC 中,a ,b ,c 分别是角A ,B ,C 所对的边,若(2a +c )cos B +b cos C =0,则角B 的大小为( ) A.π6 B.π3 C.2π3 D.5π63.在锐角△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若sin A =223,a =3, S △ABC =22,则b 的值为( ) A .6 B .3 C .2 D .2或34.在△ABC 中,已知AB =2,AC =5,t a n ∠BAC =-3,则BC 边上的高等于( ) A .1 B. 2 C. 3 D .25.已知a ,b ,c 分别是△ABC 的内角A ,B ,C 的对边,且a sin B =3b cos A ,当b +c =4时,△ABC 面积的最大值为( )A.33 B.32C. 3 D .2 3 6.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若bc =1,b +2c cos A =0,则当角B 取得最大值时,△ABC 的周长为( )A .2+ 3B .2+ 2C .3D .3+ 27.在△ABC 中,B =120°,AC =7,AB =5,则△ABC 的面积为________.8.在△ABC 中,三个内角A ,B ,C 的对边分别为a ,b ,c ,若 12b cos A =sin B ,且a =23,b +c =6,则△ABC 的面积为________.9.已知在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,∠BAC =π2,点D 在边BC 上,AD =1,且BD =2DC ,∠BAD =2∠DAC ,则sin Bsin C=________.10.如图所示,在△ABC 中,C =π3,BC =4,点D 在边AC 上,AD =DB ,DE ⊥AB ,E为垂足,若DE =22,则cos A =________.11.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知c (1+cos B )=b (2-cos C ). (1)求证:2b =a +c ;(2)若B =π3,△ABC 的面积为43,求b .12.在△ABC 中,AC =6,cos B =45,C =π4.(1)求AB 的长;(2)求c os ⎝⎛⎭⎫A -π6的值.。

专题4.5正弦定理和余弦定理的应用(2021年高考数学一轮复习专题)

专题4.5正弦定理和余弦定理的应用(2021年高考数学一轮复习专题)

专题 正弦定理和余弦定理的应用一、题型全归纳题型一 利用正弦、余弦定理解三角形【题型要点】(1)正、余弦定理的选用①利用正弦定理可解决两类三角形问题:一是已知两角和一角的对边,求其他边或角;二是已知两边和一边的对角,求其他边或角;①利用余弦定理可解决两类三角形问题:一是已知两边和它们的夹角,求其他边或角;二是已知三边求角.由于这两种情形下的三角形是唯一确定的,所以其解也是唯一的. (2)三角形解的个数的判断已知两角和一边,该三角形是确定的,其解是唯一的;已知两边和一边的对角,该三角形具有不唯一性,通常根据三角函数值的有界性和大边对大角定理进行判断.【例1】 (2020·广西五市联考)在①ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知a =1,b =3,A =30°,B 为锐角,那么A ①B ①C 为( ) A .1①1①3 B .1①2①3 C .1①3①2D .1①4①1【解析】:法一:由正弦定理a sin A =b sin B ,得sin B =b sin A a =32.因为B 为锐角,所以B =60°,则C =90°,故A ①B ①C =1①2①3,选B.法二:由a 2=b 2+c 2-2bc cos A ,得c 2-3c +2=0,解得c =1或c =2.当c =1时,①ABC 为等腰三角形,B =120°,与已知矛盾,当c =2时,a <b <c ,则A <B <C ,排除选项A ,C ,D ,故选B.【例2】(2019·高考全国卷Ⅰ)①ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知a sin A -b sin B =4c sin C ,cos A =-14,则bc =( )A .6B .5C .4D .3【解析】选A.由题意及正弦定理得,b 2-a 2=-4c 2,所以由余弦定理得,cos A =b 2+c 2-a 22bc =-3c 22bc =-14,得bc=6.故选A. 【例3】(2020·济南市学习质量评估)已知①ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且2c +a =2b cos A . ①求角B 的大小;①若a =5,c =3,边AC 的中点为D ,求BD 的长.【解析】 (1)选A.由题意及正弦定理得,b 2-a 2=-4c 2,所以由余弦定理得,cos A =b 2+c 2-a 22bc =-3c 22bc=-14,得bc=6.故选A. (2)①由2c +a =2b cos A 及正弦定理,得2sin C +sin A =2sin B cos A , 又sin C =sin(A +B )=sin A cos B +cos A sin B ,所以2sin A cos B +sin A =0, 因为sin A ≠0,所以cos B =-12,因为0<B <π,所以B =2π3.①由余弦定理得b 2=a 2+c 2-2a ·c cos①ABC =52+32+5×3=49,所以b =7,所以AD =72.因为cos①BAC =b 2+c 2-a 22bc =49+9-252×7×3=1114,所以BD 2=AB 2+AD 2-2·AB ·AD cos①BAC =9+494-2×3×72×1114=194,所以BD =192.题型二 判断三角形的形状【题型要点】判定三角形形状的两种常用途径【易错提醒】“角化边”后要注意用因式分解、配方等方法得出边的相应关系;“边化角”后要注意用三角恒等变换公式、三角形内角和定理及诱导公式推出角的关系.【例1】(2020·蓉城名校第一次联考)设①ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若b cos C +c cos B=a sin A ,则①ABC 的形状为( ) A .直角三角形 B .锐角三角形 C .钝角三角形D .不确定【解析】 (1)法一:因为b cos C +c cos B =b ·a 2+b 2-c 22ab +c ·a 2+c 2-b 22ac =2a 22a =a ,所以a sin A =a 即sin A =1,故A =π2,因此①ABC 是直角三角形.法二:因为b cos C +c cos B =a sin A ,所以sin B cos C +sin C cos B =sin 2 A ,即sin(B +C )=sin 2 A ,所以sin A =sin 2 A ,故sin A =1,即A =π2,因此①ABC 是直角三角形.【例2】在①ABC 中,若c -a cos B =(2a -b )cos A ,则①ABC 的形状为 .【解析】因为c -a cos B =(2a -b )cos A ,所以由正弦定理得sin C -sin A cos B =2sin A cos A -sin B cos A , 所以sin(A +B )-sin A cos B =2sin A cos A -sin B cos A ,故cos A (sin B -sin A )=0, 所以cos A =0或sin A =sin B ,A =π2或A =B ,故①ABC 为等腰或直角三角形.题型三 与三角形面积有关的问题命题角度一 计算三角形的面积【题型要点】1.①ABC 的面积公式(1)S ①ABC =12a ·h (h 表示边a 上的高).(2)S ①ABC =12ab sin C =12ac sin B =12bc sin A .(3)S ①ABC =12r (a +b +c )(r 为内切圆半径).2.求三角形面积的方法(1)若三角形中已知一个角(角的大小或该角的正、余弦值),结合题意求解这个角的两边或该角的两边之积,代入公式求面积;(2)若已知三角形的三边,可先求其中一个角的余弦值,再求其正弦值,代入公式求面积,总之,结合图形恰当选择面积公式是解题的关键.【例1】(2019·高考全国卷Ⅰ)①ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若b =6,a =2c ,B =π3,则①ABC的面积为 .【解析】 (1)法一:因为a =2c ,b =6,B =π3,所以由余弦定理b 2=a 2+c 2-2ac cos B ,得62=(2c )2+c 2-2×2c ×c cos π3,得c =23,所以a =43,所以①ABC 的面积S =12ac sin B =12×43×23×sin π3=6 3.法二:因为a =2c ,b =6,B =π3,所以由余弦定理b 2=a 2+c 2-2ac cos B ,得62=(2c )2+c 2-2×2c ×c cos π3,得c =23,所以a =43,所以a 2=b 2+c 2,所以A =π2,所以①ABC 的面积S =12×23×6=6 3.【例2】(2020·福建五校第二次联考)在①ABC 中,A ,B ,C 所对的边分别为a ,b ,c ,已知a 2+b 2-c 2=3ab ,且ac sin B =23sin C ,则①ABC 的面积为 .【解析】因为a 2+b 2-c 2=3ab ,所以由余弦定理得cos C =a 2+b 2-c 22ab =3ab 2ab =32,又0<C <π,所以C =π6.因为ac sin B =23sin C ,所以结合正弦定理可得abc =23c ,所以ab =2 3.故S ①ABC =12ab sin C=12×23sin π6=32. 命题角度二 已知三角形的面积解三角形【题型要点】已知三角形面积求边、角的方法(1)若求角,就寻求这个角的两边的关系,利用面积公式列方程求解; (2)若求边,就寻求与该边(或两边)有关联的角,利用面积公式列方程求解.【提示】正弦定理、余弦定理与三角函数性质的综合应用中,要注意三角函数公式的工具性作用. 【例3】(2020·湖南五市十校共同体联考改编)已知a ,b ,c 分别为①ABC 的内角A ,B ,C 的对边,(3b -a )cos C =c cos A ,c 是a ,b 的等比中项,且①ABC 的面积为32,则ab = ,a +b = . 【解析】 因为(3b -a )cos C =c cos A ,所以利用正弦定理可得3sin B cos C =sin A cos C +sin C cos A =sin(A +C )=sinB .又因为sin B ≠0,所以cos C =13,则C 为锐角,所以sin C =223.由①ABC 的面积为32,可得12ab sin C =32,所以ab =9.由c 是a ,b 的等比中项可得c 2=ab ,由余弦定理可得c 2=a 2+b 2-2ab cos C ,所以(a +b )2=113ab =33,所以a +b =33.【例4】(2020·长沙市统一模拟考试)已知①ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且a sin(A +B )=c sin B +C2.(1)求A ;(2)若①ABC 的面积为3,周长为8,求a .【解析】:(1)由题设得a sin C =c cos A 2,由正弦定理得sin A sin C =sin C cos A 2,所以sin A =cos A2,所以2sin A 2cos A 2=cos A 2,所以sin A 2=12,所以A =60°.(2)由题设得12bc sin A =3,从而bc =4.由余弦定理a 2=b 2+c 2-2bc cos A ,得a 2=(b +c )2-12.又a +b +c =8,所以a 2=(8-a )2-12,解得a =134.题型四 三角形面积或周长的最值(范围)问题【题型要点】求有关三角形面积或周长的最值(范围)问题在解决求有关三角形面积或周长的最值(范围)问题时,一般将其转化为一个角的一个三角函数,利用三角函数的有界性求解,或利用余弦定理转化为边的关系,再应用基本不等式求解.【例1】(2020·福州市质量检测)①ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若角A ,B ,C 成等差数列,且b =32. (1)求①ABC 外接圆的直径;(2)求a +c 的取值范围.【解析】:(1)因为角A ,B ,C 成等差数列,所以2B =A +C ,又因为A +B +C =π,所以B =π3.根据正弦定理得,①ABC 的外接圆直径2R =bsin B =32sin π3=1.(2)法一:由B =π3,知A +C =2π3,可得0<A <2π3.由(1)知①ABC 的外接圆直径为1,根据正弦定理得,a sin A =b sin B =c sin C=1, 所以a +c =sin A +sin C =sin A +sin ⎪⎭⎫⎝⎛A -32π=3⎪⎪⎭⎫ ⎝⎛+A A cos 21sin 23=3sin ⎪⎭⎫ ⎝⎛+6πA . 因为0<A <2π3,所以π6<A +π6<5π6.所以12<sin ⎪⎭⎫ ⎝⎛+6πA ≤1,从而32<3sin ⎪⎭⎫ ⎝⎛+6πA ≤3,所以a +c 的取值范围是⎥⎦⎤⎝⎛323, 法二:由(1)知,B =π3,b 2=a 2+c 2-2ac cos B =(a +c )2-3ac ≥(a +c )2-322⎪⎭⎫ ⎝⎛+c a =14(a +c )2(当且仅当a =c 时,取等号),因为b =32,所以(a +c )2≤3,即a +c ≤3,又三角形两边之和大于第三边,所以32<a +c ≤3, 所以a +c 的取值范围是⎥⎦⎤⎝⎛323, 题型五 解三角形与三角函数的综合应用【题型要点】标注条件,合理建模解决三角函数的应用问题,无论是实际应用问题还是三角函数与解三角形相结合的问题,关键是准确找出题中的条件并在三角形中进行准确标注,然后根据条件和所求建立相应的数学模型,转化为可利用正弦定理或余弦定理解决的问题.【例1】 (2020·湖南省五市十校联考)已知向量m =(cos x ,sin x ),n =(cos x ,3cos x ),x ①R ,设函数f (x )=m ·n +12.(1)求函数f (x )的解析式及单调递增区间;(2)设a ,b ,c 分别为①ABC 的内角A ,B ,C 的对边,若f (A )=2,b +c =22,①ABC 的面积为12,求a 的值.【解析】 (1)由题意知,f (x )=cos 2x +3sin x cos x +12=sin ⎪⎭⎫ ⎝⎛+62πx +1.令2x +π6①⎥⎦⎤⎢⎣⎡++ππππk k 22,22-,k ①Z ,解得x ①⎥⎦⎤⎢⎣⎡++ππππk k 6,3-,k ①Z ,所以函数f (x )的单调递增区间为⎥⎦⎤⎢⎣⎡++ππππk k 6,3-,k ①Z .(2)因为f (A )=sin ⎪⎭⎫⎝⎛+62πA +1=2,所以sin ⎪⎭⎫ ⎝⎛+62πA =1. 因为0<A <π,所以π6<2A +π6<13π6,所以2A +π6=π2,即A =π6.由①ABC 的面积S =12bc sin A =12,得bc =2,又b +c =22,所以a 2=b 2+c 2-2bc cos A =(b +c )2-2bc (1+cos A ),解得a =3-1. 【例2】①ABC 中的内角A ,B ,C 的对边分别为a ,b ,c ,已知b =2a -2c cos B . (1)求角C 的大小;(2)求3cos A +sin ⎪⎭⎫⎝⎛+3πB 的最大值,并求出取得最大值时角A ,B 的值. 【解析】:(1)法一:在①ABC 中,由正弦定理可知sin B =2sin A -2sin C cos B ,又A +B +C =π,则sin A =sin(π-(B +C ))=sin(B +C ),于是有sin B =2sin(B +C )-2sin C cos B =2sin B cos C +2cos B sin C -2sin C cos B ,整理得sin B =2sin B cos C ,又sin B ≠0,则cos C =12,因为0<C <π,则C =π3.法二:由题可得b =2a -2c ·a 2+c 2-b 22ac ,整理得a 2+b 2-c 2=ab ,即cos C =12,因为0<C <π,则C =π3.(2)由(1)知C =π3,则B +π3=π-A ,3cos A +sin ⎪⎭⎫⎝⎛+3πB =3cos A +sin(π-A )=3cos A +sin A =2sin ⎪⎭⎫⎝⎛+3πA , 因为A =2π3-B ,所以0<A <2π3,所以π3<A +π3<π,故当A =π6时,2sin ⎪⎭⎫ ⎝⎛+3πA 的最大值为2,此时B =π2.二、高效训练突破 一、选择题1.(2020·广西桂林阳朔三校调研)在①ABC 中,a ①b ①c =3①5①7,那么①ABC 是( ) A .直角三角形 B .钝角三角形 C .锐角三角形D .非钝角三角形【解析】:因为a ①b ①c =3①5①7,所以可设a =3t ,b =5t ,c =7t ,由余弦定理可得cos C =9t 2+25t 2-49t 22×3t ×5t =-12,所以C =120°,①ABC 是钝角三角形,故选B. 2.(2020·河北衡水中学三调)在①ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且b 2+c 2=a 2+bc ,若sin B sin C =sin 2A ,则①ABC 的形状是( ) A .等腰三角形 B .直角三角形 C .等边三角形D .等腰直角三角形【解析】:在①ABC 中,因为b 2+c 2=a 2+bc ,所以cos A =b 2+c 2-a 22bc =bc 2bc =12,因为A ①(0,π),所以A =π3,因为sin B sin C =sin 2A ,所以bc =a 2,代入b 2+c 2=a 2+bc ,得(b -c )2=0,解得b =c ,所以①ABC 的形状是等边三角形,故选C.3.(2020·河南南阳四校联考)在①ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若b =8,c =3,A =60°,则此三角形外接圆的半径R =( ) A.823 B.1433 C.73D .733【解析】:因为b =8,c =3,A =60°,所以a 2=b 2+c 2-2bc cos A =64+9-2×8×3×12=49,所以a =7,所以此三角形外接圆的直径2R =a sin A =732=1433,所以R =733,故选D. 4.(2020·湖南省湘东六校联考)在①ABC 中,A ,B ,C 的对边分别为a ,b ,c ,其中b 2=ac ,且sin C =2sinB ,则其最小内角的余弦值为( )A .-24 B.24 C.528D .34【解析】:由sin C =2sin B 及正弦定理,得c =2b .又b 2=ac ,所以b =2a ,所以c =2a ,所以A 为①ABC 的最小内角.由余弦定理,知cos A =b 2+c 2-a 22bc =(2a )2+(2a )2-a 22·2a ·2a=528,故选C.5.(2020·长春市质量监测(一))在①ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若b =a cos C +12c ,则角A 等于( ) A .60°B .120°C .45°D .135°【解析】:法一:由b =a cos C +12c 及正弦定理,可得sin B =sin A cos C +12sin C ,即sin(A +C )=sin A cos C+12sin C ,即sin A cos C +cos A sin C =sin A cos C +12sin C ,所以cos A sin C =12sin C ,又在①ABC 中,sin C ≠0,所以cos A =12,所以A =60°,故选A.法二:由b =a cos C +12c 及余弦定理,可得b =a ·b 2+a 2-c 22ab +12c ,即2b 2=b 2+a 2-c 2+bc ,整理得b 2+c 2-a 2=bc ,于是cos A =b 2+c 2-a 22bc =12,所以A =60°,故选A.6.(2020·河南三市联考)已知a ,b ,c 分别为①ABC 三个内角A ,B ,C 的对边,sin A ①sin B =1①3,c =2cos C =3,则①ABC 的周长为( ) A .3+3 3 B .23 C .3+2 3D .3+3【解析】:因为sin A ①sin B =1①3,所以b =3a , 由余弦定理得cos C =a 2+b 2-c 22ab =a 2+(3a )2-c 22a ×3a=32,又c =3,所以a =3,b =3,所以①ABC 的周长为3+23,故选C.7.(2020·湖南师大附中4月模拟)若①ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且b =2,c =5,①ABC的面积S =52cos A ,则a =( ) A .1 B.5 C.13D .17【解析】:因为b =2,c =5,S =52cos A =12bc sin A =5sin A ,所以sin A =12cos A . 所以sin 2A +cos 2A =14cos 2A +cos 2A =54cos 2A =1.易得cos A =255.所以a 2=b 2+c 2-2bc cos A =4+5-2×2×5×255=9-8=1,所以a =1.故选A. 8.(2020·开封市定位考试)已知①ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,①ABC 的面积为43,且2b cos A +a =2c ,a +c =8,则其周长为( ) A .10 B .12 C .8+ 3D .8+23【解析】:因为①ABC 的面积为43,所以12ac sin B =4 3.因为2b cos A +a =2c ,所以由正弦定理得2sin B cosA +sin A =2sin C ,又A +B +C =π,所以2sin B cos A +sin A =2sin A cos B +2cos A sin B ,所以sin A =2cos B ·sin A ,因为sin A ≠0,所以cos B =12,因为0<B <π,所以B =π3,所以ac =16,又a +c =8,所以a =c =4,所以①ABC 为正三角形,所以①ABC 的周长为3×4=12.故选B.9.(2020·昆明市诊断测试)在平面四边形ABCD 中,①D =90°,①BAD =120°,AD =1,AC =2,AB =3,则BC =( )A. 5B.6C.7D .22【解析】:如图,在①ACD 中,①D =90°,AD =1,AC =2,所以①CAD =60°.又①BAD =120°,所以①BAC =①BAD -①CAD =60°.在①ABC 中,由余弦定理得BC 2=AB 2+AC 2-2AB ·AC cos①BAC =7,所以BC =7.故选C.10.(2020·广州市调研测试)已知①ABC 的内角A ,B ,C 的对边分别是a ,b ,c ,且sin 2A +sin 2B -sin 2Cc =sin A sin Ba cos B +b cos A ,若a +b =4,则c 的取值范围为( )A .(0,4)B .[2,4)C .[1,4)D .(2,4]【解析】:根据正弦定理可得sin 2A +sin 2B -sin 2C sin C =sin A sin Bsin A cos B +cos A sin B ,即sin 2A +sin 2B -sin 2C sin C =sin A sin Bsin (A +B ),由三角形内角和定理可得sin(A +B )=sin C ,所以sin 2A +sin 2B -sin 2C =sin A sin B ,再根据正弦定理可得a 2+b 2-c 2=ab .因为a +b =4,a +b ≥2ab ,所以ab ≤4,(a +b )2=16,得a 2+b 2=16-2ab ,所以16-2ab -c 2=ab ,所以16-c 2=3ab ,故16-c 2≤12,c 2≥4,c ≥2,故2≤c <4,故选B.二、填空题1.在①ABC 中,角A ,B ,C 满足sin A cos C -sin B cos C =0,则三角形的形状为 . 【解析】:由已知得cos C (sin A -sin B )=0,所以有cos C =0或sin A =sin B ,解得C =90°或A =B . 2.(2020·天津模拟)在①ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知b +c =2a ,3c sin B =4a sin C ,则cos B = .【解析】:在①ABC 中,由正弦定理b sin B =c sin C ,得b sin C =c sin B ,又由3c sin B =4a sin C ,得3b sin C =4a sinC ,即3b =4a .因为b +c =2a ,得到b =43a ,c =23a .由余弦定理可得cos B =a 2+c 2-b 22ac =a 2+49a 2-169a 22·a ·23a=-14.3.(2020·河南期末改编)在①ABC 中,B =π3,AC =3,且cos 2C -cos 2A -sin 2B =-2sin B sin C ,则C = ,BC = .【解析】:由cos 2C -cos 2A -sin 2B =-2sin B sin C ,可得1-sin 2C -(1-sin 2A )-sin 2B =-2sin B sin C ,即sin 2A -sin 2C -sin 2B =-2sin B sin C .结合正弦定理得BC 2-AB 2-AC 2=-2·AC ·AB ,所以cos A =22,A =π4,则C =π-A -B =5π12.由AC sin B =BC sin A,解得BC = 2.4.在①ABC 中,A =π4,b 2sin C =42sin B ,则①ABC 的面积为 .【解析】:因为b 2sin C =42sin B ,所以b 2c =42b ,所以bc =42,S ①ABC =12bc sin A =12×42×22=2.5.(2020·江西赣州五校协作体期中改编)在①ABC 中,A =π3,b =4,a =23,则B = ,①ABC 的面积等于 .【解析】:①ABC 中,由正弦定理得sin B =b sin A a =4×sinπ323=1.又B 为三角形的内角,所以B =π2,所以c =b 2-a 2=42-(23)2=2,所以S ①ABC =12×2×23=2 3.6.在①ABC 中,a ,b ,c 分别是内角A ,B ,C 的对边,且B 为锐角,若sin A sin B =5c 2b ,sin B =74,S ①ABC =574,则b 的值为 .【解析】:由sin A sin B =5c 2b ①a b =5c 2b ①a =52c ,①由S ①ABC =12ac sin B =574且sin B =74得12ac =5,①联立①,①得a =5,且c =2.由sin B =74且B 为锐角知cos B =34, 由余弦定理知b 2=25+4-2×5×2×34=14,b =14.三 解答题1.(2020·兰州模拟)已知在①ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且a sin B +b cos A =0. (1)求角A 的大小;(2)若a =25,b =2,求边c 的长.【解析】:(1)因为a sin B +b cos A =0,所以sin A sin B +sin B cos A =0,即sin B (sin A +cos A )=0,由于B 为三角形的内角,所以sin A +cos A =0,所以2sin ⎪⎭⎫⎝⎛+4πA =0,而A 为三角形的内角,所以A =3π4. (2)在①ABC 中,a 2=c 2+b 2-2cb cos A ,即20=c 2+4-4c ⎪⎪⎭⎫⎝⎛22-,解得c =-42(舍去)或c =2 2. 2.在①ABC 中,角A ,B ,C 的对边分别为a ,b ,c .(1)若a =3c ,b =2,cos B =23,求c 的值;(2)若sin A a =cos B2b ,求cos B 的值.【解析】:(1)因为a =3c ,b =2,cos B =23,由余弦定理cos B =a 2+c 2-b 22ac ,得23=(3c )2+c 2-(2)22×3c ×c ,即c 2=13.所以c =33.(2)因为sin A a =cos B 2b ,由正弦定理a sin A =b sin B ,得cos B 2b =sin Bb ,所以cos B =2sin B .从而cos 2B =(2sin B )2,即cos 2B =4(1-cos 2B ),故cos 2B =45.因为sin B >0,所以cos B =2sin B >0,从而cos B =255.3.(2020·福建五校第二次联考)在①ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,且3a cos C =(2b -3c )cos A . (1)求角A 的大小;(2)若a =2,求①ABC 面积的最大值.【解析】:(1)由正弦定理可得,3sin A cos C =2sin B cos A -3sin C cos A , 从而3sin(A +C )=2sin B cos A ,即3sin B =2sin B cos A .又B 为三角形的内角,所以sin B ≠0,于是cos A =32,又A 为三角形的内角,所以A =π6. (2)由余弦定理a 2=b 2+c 2-2bc cos A ,得4=b 2+c 2-2bc ×32≥2bc -3bc , 所以bc ≤4(2+3),所以S ①ABC =12bc sin A ≤2+3,故①ABC 面积的最大值为2+ 3.4.(2020·广东佛山顺德第二次质检)在①ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,2b sin C cos A +a sin A =2c sin B .(1)证明:①ABC 为等腰三角形;(2)若D 为BC 边上的点,BD =2DC ,且①ADB =2①ACD ,a =3,求b 的值.【解析】:(1)证明:因为2b sin C cos A +a sin A =2c sin B ,所以由正弦定理得2bc cos A +a 2=2cb ,由余弦定理得2bc ·b 2+c 2-a 22bc +a 2=2bc ,化简得b 2+c 2=2bc ,所以(b -c )2=0,即b =c .故①ABC 为等腰三角形.(2)法一:由已知得BD =2,DC =1,因为①ADB =2①ACD =①ACD +①DAC , 所以①ACD =①DAC ,所以AD =CD =1.又因为cos①ADB =-cos①ADC ,所以AD 2+BD 2-AB 22AD ·BD =-AD 2+CD 2-AC 22AD ·CD ,即12+22-c 22×1×2=-12+12-b 22×1×1,得2b 2+c 2=9,由(1)可知b =c ,得b = 3.法二:由已知可得CD =13a =1,由(1)知,AB =AC ,所以①B =①C ,又因为①DAC =①ADB -①C =2①C -①C =①C =①B , 所以①CAB ①①CDA ,所以CB CA =CA CD ,即3b =b1,所以b = 3.5.(2020·重庆市学业质量调研)①ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,已知①ABC 的面积为32ac cos B ,且sin A =3sin C .(1)求角B 的大小;(2)若c =2,AC 的中点为D ,求BD 的长.【解析】:(1)因为S ①ABC =12ac sin B =32ac cos B ,所以tan B = 3.又0<B <π,所以B =π3.(2)sin A =3sin C ,由正弦定理得,a =3c ,所以a =6.由余弦定理得,b 2=62+22-2×2×6×cos 60°=28,所以b =27. 所以cos A =b 2+c 2-a 22bc =(27)2+22-622×2×27=-714.因为D 是AC 的中点,所以AD =7.所以BD 2=AB 2+AD 2-2AB ·AD cos A =22+(7)2-2×2×7×⎪⎪⎭⎫⎝⎛147-=13.所以BD =13.。

2025高考数学一轮复习-正弦定理与余弦定理【课件】

2025高考数学一轮复习-正弦定理与余弦定理【课件】

cos B=____2_a_c____; a2+b2-c2
cos C=_____2_a_b_____
④a sin B=b sin A,b sin C=c sin B,a sin C=c sin A
解斜
①已知三边,求各角;
三角 ①已知两角和任一边,求另一角和其他两条边;
②已知两边和它们的夹
形的 ②已知两边和其中一边的对角,求另一边和其他两角 角,求第三边和其他两
第四章 三角函数与解三角形
第22讲 解三角形
激活思维
1.在△ABC中,已知a=7,b=5,c=3,则角A的大小为
(
A)
A.120°
B.90°
【解析C】.由60余°弦定理知 cos A=b2+2cb2c-a2D=.-4125,°所以 A=120°.
2.在△ABC 中,设 b=5,c=5 3,A=30°,则 a=
问题
个角
2.三角形常用面积公式
(1) S=12a·ha(ha 表示边 a 上的高); (2) S=12ab sin C=12ac sin B=12bc sin A.
3.在△ABC中,已知a,b和A时,解的情况
A为锐角
A为钝角或直角
图形
关系式 解的个数
a=b sin A __一__解____
b sin A<a<b ___两__解___
6+ 2
则由正弦定理sinb B=sinc C,得 c=bssininBC=2ssiinn6705°°=2×
4 3

2+
6 3.
2
6
3 A=4,B=π,b= 3,则 a=5______,c=____5________.
53
【解析】由 cos A=45,可知 A 为锐角,所以 sin A= 1-cos2A=35.由正弦定理,得 a=

高考数学一轮复习正弦定理余弦定理及解三角形课件理

高考数学一轮复习正弦定理余弦定理及解三角形课件理

基础诊断 考点突破
课堂总结
解 (1)由题意可知 c=8-(a+b)=72.
由余弦定理得 cos C=a2+2ba2b-c2=22+2×5222×-52722
=-15.
(2)由 sin Acos2B2+sin Bcos2A2=2sin C 可得:
sin
1+cos A· 2
B+sin
1+cos B· 2
a2+b2-c2 2ab
基础诊断 考点突破
课堂总结
2.S△ABC=12absin C=12bcsin A=12acsin B=a4bRc=12(a+b+c)·r(r 是 三角形内切圆的半径),并可由此计算 R,r.
基础诊断 考点突破
课堂总结
• 3.实际问题中的常用角
• (1)仰角和俯角
• 在同一铅垂平面内的水平视线和目标视线
1-2419=2
7 7.
而∠AEB=23π-α,所以
cos∠AEB=cos23π-α=cos23πcos α+sin23πsin α
=-12cos
α+
3 2 sin
α
=-12·2 7 7+
3 21 2 ·7

7 14 .
基础诊断 考点突破
课堂总结

Rt△EAB
中,cos∠AEB=EBAE=B2E,故
课堂总结
5.(人教 A 必修 5P10B2 改编)在△ABC 中,acos A=bcos B, 则这个三角形的形状为________. 解析 由正弦定理,得 sin Acos A=sin Bcos B, 即 sin 2A=sin 2B,所以 2A=2B 或 2A=π-2B, 即 A=B 或 A+B=2π, 所以这个三角形为等腰三角形或直角三角形. 答案 等腰三角形或直角三角形

2021高考一轮复习 第十八讲 正弦定理、余弦定理及其应用

2021高考一轮复习  第十八讲  正弦定理、余弦定理及其应用

h
th
hcos
ht
× h × cos
因此ΔABC 得中线 h
cos ,则 △
是( )
A. 正三角形
B. 等腰三角形
C. 等腰直角三角形
D. 有一内角为 60°的直角三角形
【答案】 C
【考点】正弦定理,三角形的形状判断
5.在 △
中,角 t t 所对的边分别为 t t .若
t
t
° ,则 sin ( )
A.
B.
C.
D.
【答案】 C
【考点】正弦定理,余弦定理
6.△ABC 的三边长分别为 AB=7,BC=5,CA=6,则
两点之间的距离为 60m,则树的高度 h 为( )
A. a h t h t
B. a ht
t
【答案】 A
【考点】正弦定理的应用
C. a t h t
D. a t
t
2/6
14.在
中,角 , , 所对的边分别为 , , 满足 t
值范围是( )
t
,则 t 的取
A. a t
B. a t
C. a t
D. a t
D. -19
,则
tan tan
tan atan ttan
的值为( )
D. 2020
1/6
A. 一解
B. 两解
C. 一解或两解
D. 无解
【答案】 D
【考点】正弦定理
9.一船沿北偏西 方向航行,正东有两个灯塔 A,B,
h 海里,航行半小时后,看见一灯塔在船的
南偏东 h ,另一灯塔在船的南偏东 ,则这艘船的速度是每小时( )
A. 19
B. 14
【答案】 D

北师版高考总复习一轮数学精品课件 第5章三角函数、解三角形 课时规范练34 正弦定理和余弦定理

北师版高考总复习一轮数学精品课件 第5章三角函数、解三角形 课时规范练34 正弦定理和余弦定理
课时规范练34
正弦定理和余弦定理
基础
巩固练
π
1.△ABC 中,内角 A,B,C 的对边分别为 a,b,c.已知 A=4 ,a=
2,b= 3,则 B 的大小
为( D )
π
A. 6
π
B. 3
π

C. 或
6
6
π

D. 或
3
3
解析 由正弦定理可得 asin B=bsin A⇒ 2sin B= 3 ×
(0,π),b>a,所以
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
解 (1)因为
3 2
S= (a +b2-c2),
4
由余弦定理,得 a2+b2-c2=2abcos C,
所以
3
S= 4 ·2abcos
C,
由三角形的面积公式可得
3
所以 4 ·2abcos
1
C=2absin
1S=2absin NhomakorabeaC,
C,
3
综合
提升练
11.在平面四边形 ABCD 中,AB⊥AC,且 AB=AC,AD= 2CD=2 2,则 BD 的最大
值为( B )
A.2 7
B.6
C.2 5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
D.2 3
解析 由题意可知 AB=AC,AD=2 2,CD=2,设∠ADC=θ,在△ADC 中,
(2)由(1)和题设得 cos∠ABC=

sin∠
tan∠ABC=
cos∠
=
1-sin2 ∠
=
5 7

第五章 第七节正弦定理和余弦定理课件-2025届高三数学一轮复习

第五章 第七节正弦定理和余弦定理课件-2025届高三数学一轮复习
= .故选D.

D)
D. 41

− = − ,由余弦定理得,


− × × × − = ,所以

(2)在△ ABC中,角A,B,C的对边分别为a,b,c.已知a = 6,b = 2c,cos A =
1
− .
4
①求c的值;
1
2
解 因为a2 = b2 + c 2 − 2bccos A,所以6 = b2 + c 2 + bc,而b = 2c,代入得
A+B
cos
2
=
A+B
2
C
2
= cos ;
C
sin .
2
π
3
2.等差关系:若三角形三内角A,B,C成等差数列,则B = ,A + C =
c成等差数列,则 2b = a + c ⇔ 2sin B = sin A + sin C .
3.在△ ABC中,两边之和大于第三边,两边之差小于第三边,
A > B ⇔ a > b ⇔ sin A > sin B ⇔ cos A < cos B .


⋅ − = ,所以 = 或 = ,所以 = 或 = 或
= − (舍去),所以△ 为等腰三角形或直角三角形.
(2)(多选题)已知a,b,c分别是△ ABC三个内角A,B,C的对边,下列四个说法中,正确
的有( ACD )
=
故选B.
. ∵
∈ , ,∴ > ,∴ = ,即 =

,∴△

为直角三角形.
(2)在△ ABC中,已知a + b =

高考数学一轮总复习教学课件第四章 三角函数、解三角形第一课时 余弦定理和正弦定理

高考数学一轮总复习教学课件第四章 三角函数、解三角形第一课时 余弦定理和正弦定理



,

= =c=csin C,
判断三角形形状的两种途径
[针对训练] (2020·全国Ⅱ卷)△ABC的内角A,B,C的对边分别为
2


a,b,c,已知 cos (+A)+cos A=.
(1)求A;

2
(1)解:由已知得 sin A+cos A=,

2
即 cos A-cos A+=0,





sin B=2× = ,


2
由余弦定理 a =b +c -2bccos A,


2

2
得 2= +c -2× c· ,即 2c -2c-3=0,解得 c=
+




综上,b= ,c=
+

.

或 c=
-

(舍去).
(1)正弦定理、余弦定理的作用是在已知三角形部分元素的情况下
所以 sin B=
×

=



=


.


- = ,
(3)求sin(2A-B)的值.








解:(3)因为 cos A=- ,所以 <A<π,故 0<B< ,又 sin A=

2sin Acos A=2×


(-
,所以 c;
2.在△ABC中,已知a,b和A时,解的情况
项目
A为锐角
A为钝角或直角
图形

2021高考数学一轮复习统考第4章三角函数解三角形第6讲正弦定理和余弦定理课时作业含解析北师大版

2021高考数学一轮复习统考第4章三角函数解三角形第6讲正弦定理和余弦定理课时作业含解析北师大版

6讲 正弦定理和余弦定理课时作业1.(2020·广东广雅中学模拟)已知a ,b ,c 为△ABC 的三个内角A ,B ,C 所对的边,若3b cos C =c (1-3cos B ),则sin C ∶sin A =( )A .2∶3B .4∶3C .3∶1D .3∶2答案 C解析 由正弦定理得3sin B cos C =sin C -3sin C cos B,3sin(B +C )=sin C ,因为A +B +C =π,所以B +C =π-A ,所以3sin A =sin C ,所以sin C ∶sin A =3∶1,故选C.2.(2019·南昌模拟)在△ABC 中,已知C =π3,b =4,△ABC 的面积为23,则c =( )A .27B .7C .2 2D .2 3答案 D解析 由S =12ab sin C =2a ×32=23,解得a =2,由余弦定理得c 2=a 2+b 2-2ab cos C=12,故c =2 3.3.(2019·兰州市实战考试)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若b 2=ac ,c =2a ,则cos C =( )A.24B .-24C.34 D .-34答案 B解析 由题意得,b 2=ac =2a 2,所以b =2a ,所以cos C =a 2+b 2-c 22ab =a 2+2a 2-4a 22a ×2a=-24,故选B. 4.(2019·广西南宁模拟)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,ac =3,且a =3b sin A ,则△ABC 的面积等于( )A.12 B .32 C .1 D .34答案 A解析 ∵a =3b sin A ,∴由正弦定理得sin A =3sin B sin A ,∴sin B =13.∵ac =3,∴△ABC的面积S =12ac sin B =12×3×13=12.故选A.5.在△ABC 中,角A ,B ,C 所对的边的长分别为a ,b ,c ,若a sin A +b sin B <c sin C ,则△ABC 的形状是( )A .锐角三角形B .直角三角形C .钝角三角形D .不确定答案 C解析 根据正弦定理可得a 2+b 2<c 2.由余弦定理,得cos C =a 2+b 2-c 22ab<0,故C 是钝角.6.已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且c -b c -a =sin Asin C +sin B,则B =( ) A.π6 B .π4C.π3D .3π4答案 C 解析 因为c -b c -a =sin A sin C +sin B ,所以c -b c -a =a c +b,即(c -b )(c +b )=a (c -a ),所以a 2+c 2-b 2=ac ,所以cos B =12,又B ∈(0,π),所以B =π3.7.(2019·大连双基测试)△ABC 中,AB =2,AC =3,B =60°,则cos C =( ) A.33 B .±63C .-63D .63答案 D解析 由正弦定理得AC sin B =ABsin C,∴sin C =AB ·sin B AC =2×sin60°3=33,又AB <AC ,∴0<C <B =60°,∴cos C =1-sin 2C =63.故选D. 8.(2018·全国卷Ⅲ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若△ABC 的面积为a 2+b 2-c 24,则C =( )A.π2B .π3C.π4 D .π6答案 C解析 由题可知S △ABC =12ab sin C =a 2+b 2-c 24,所以a 2+b 2-c 2=2ab sin C .由余弦定理得a2+b 2-c 2=2ab cos C ,∴sin C =cos C .∵C ∈(0,π),∴C =π4.故选C.9.(2019·江西新八校第二次联考)我国南宋著名数学家秦九韶提出了由三角形三边求三角形面积的“三斜求积”,设△ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,面积为S ,则“三斜求积”公式为S =14⎣⎢⎡⎦⎥⎤a 2c 2-⎝ ⎛⎭⎪⎫a 2+c 2-b 222,若a 2sin C =2sin A ,(a +c )2=6+b 2,则用“三斜求积”公式求得△ABC 的面积为( )A.32B . 3 C.12 D .1答案 A解析 因为a 2sin C =2sin A ,所以a 2c =2a ,所以ac =2, 因为(a +c )2=6+b 2,所以a 2+c 2+2ac =6+b 2, 所以a 2+c 2-b 2=6-2ac =6-4=2, 从而△ABC 的面积为S △ABC =14×⎣⎢⎡⎦⎥⎤22-⎝ ⎛⎭⎪⎫222=32,故选A. 10.(2019·南阳模拟)设△ABC 的内角A ,B ,C 所对边的长分别为a ,b ,c ,若b +c =2a,3sin A =5sin B ,则C =( )A.π3 B .3π4C.5π6D .2π3答案 D解析 因为3sin A =5sin B ,所以由正弦定理可得:3a =5b ,所以a =5b3.又b +c =2a ,所以c =2a -b =7b3,不妨取b =3,则a =5,c =7,所以cos C =a 2+b 2-c 22ab =52+32-722×5×3=-12.因为C ∈(0,π),所以C =2π3. 11.已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若2b cos B =a cos C +c cos A ,b =2,则△ABC 的面积的最大值是( )A .1B . 3C .2D .4答案 B解析 ∵2b cos B =a cos C +c cos A ,∴2sin B cos B =sin A cos C +sin C cos A =sin(A +C )=sin B .∵0<B <π,∴cos B =12,∴B =π3.∵cos B =a 2+c 2-b 22ac =12,b =2,∴a 2+c 2-4=ac .∵a 2+c 2≥2ac ,∴2ac -4≤ac ,即ac ≤4,当且仅当a =c 时等号成立,∴S △ABC =12ac sin B≤12×4×32=3,故△ABC 的面积的最大值为 3. 12.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若2(b cos A +a cos B )=c 2,b =3,3cos A =1,则a =( )A. 5 B .3 C.10 D .4答案 B解析 由正弦定理可得2(sin B cos A +sin A cos B )=c sin C ,∵2(sin B cos A +sin A cos B )=2sin(A +B )=2sin C ,∴2sin C =c sin C ,∵sin C >0,∴c =2,由余弦定理得a 2=b 2+c 2-2bc cos A =32+22-2×3×2×13=9,∴a =3.故选B.13.(2020·北京海淀模拟)在△ABC 中,A =2π3,a =3c ,则bc =________.答案 1解析 由题意知sin 2π3=3sin C ,∴sin C =12,又0<C <π3,∴C =π6,从而B =π6,∴b =c ,故b c=1.14.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若2b cos B =a cos C +c cos A ,则B =________. 答案π3解析 解法一:由2b cos B =a cos C +c cos A 及正弦定理, 得2sin B cos B =sin A cos C +sin C cos A . ∴2sin B cos B =sin(A +C ). 又A +B +C =π,∴A +C =π-B . ∴2sin B cos B =sin(π-B )=sin B . 又sin B ≠0,∴cos B =12.∴B =π3.解法二:∵在△ABC 中,a cos C +c cos A =b , ∴条件等式变为2b cos B =b ,∴cos B =12.又0<B <π,∴B =π3.15.(2019·杭州模拟)已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,a =2,且(2+b )(sin A -sin B )=(c -b )·sin C ,则△ABC 的面积的最大值为________.答案3解析 因为a =2,(2+b )(sin A -sin B )=(c -b )sin C ,所以根据正弦定理,得(a +b )(a-b )=(c -b )c ,所以a 2-b 2=c 2-bc ,所以b 2+c 2-a 2=bc ,根据余弦定理,得cos A =b 2+c 2-a 22bc=12,因为A ∈(0,π),故A =π3.因为b 2+c 2-bc =4,所以4=b 2+c 2-bc ≥2bc -bc =bc (当且仅当b =c =2时取等号),所以△ABC 的面积S △ABC =12bc sin A =34bc ≤34×4=3,所以△ABC 的面积的最大值为 3.16.已知在△ABC 中,AB =AC =4,BC =2.点D 为AB 延长线上一点,BD =2,连接CD ,则△BDC 的面积是________,cos ∠BDC =________.答案152104解析 依题意作出图形,如图所示, 则sin ∠DBC =sin ∠ABC .由题意知AB =AC =4,BC =BD =2, 则sin ∠ABC =154,cos ∠ABC =14. 所以S △BDC =12BC ·BD ·sin∠DBC=12×2×2×154=152.因为cos ∠DBC =-cos ∠ABC =-14=BD 2+BC 2-CD 22BD ·BC =8-CD 28,所以CD =10.由余弦定理,得cos ∠BDC =4+10-42×2×10=104. 17.(2019·全国卷Ⅰ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .设(sin B -sin C )2=sin 2A -sinB sinC .(1)求A ;(2)若2a +b =2c ,求sin C .解 (1)由已知得sin 2B +sin 2C -sin 2A =sinB sinC , 故由正弦定理得b 2+c 2-a 2=bc .由余弦定理得cos A =b 2+c 2-a 22bc =12.因为0°<A <180°,所以A =60°. (2)由(1)知B =120°-C ,由题设及正弦定理,得2sin A +s in(120°-C )=2sin C , 即62+32cos C +12sin C =2sin C , 可得cos(C +60°)=-22. 因为0°<C <120°,所以sin(C +60°)=22, 故sin C =sin(C +60°-60°)=sin(C +60°)cos60°-cos(C +60°)sin60°=6+24. 18.(2019·天津高考)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知b +c =2a,3c sin B =4a sin C .(1)求cos B 的值; (2)求sin ⎝⎛⎭⎪⎫2B +π6的值. 解 (1)在△ABC 中,由正弦定理b sin B =csin C ,得b sin C =c sin B .由3c sin B =4a sin C , 得3b sin C =4a sin C ,即3b =4a ,所以b =43a .因为b +c =2a ,所以c =23a .由余弦定理可得cos B =a 2+c 2-b 22ac =a 2+49a 2-169a 22·a ·23a=-14.(2)由(1)可得sin B =1-cos 2B =154, 从而sin2B =2sin B cos B =-158, cos2B =cos 2B -sin 2B =-78,故sin ⎝ ⎛⎭⎪⎫2B +π6=sin2B cos π6+cos2B sin π6=-158×32-78×12=-35+716. 19.(2019·河南安阳一模)如图,在圆内接四边形ABCD 中,AB =2,AD =1,3BC =3BD cos α+CD sin β.(1)求角β的大小;(2)求四边形ABCD 周长的取值范围. 解 (1)∵3BC =3BD cos α+CD sin β, ∴3sin ∠BDC =3sin βcos α+sin αsin β, ∴3sin(α+β)=3sin βcos α+sin αsin β, ∴3(sin αcos β+sin βcos α) =3sin βcos α+sin αsin β,∴3sin αcos β=sin αsin β,∴tan β=3, 又β∈(0,π),∴β=π3.(2)根据题意,得∠BAD =2π3,由余弦定理,得BD 2=AB 2+AD 2-2AB ·AD cos ∠BAD=4+1-2×2×1×cos 2π3=7,又BD 2=CB 2+CD 2-2CB ·CD cos β =(CB +CD )2-3CB ·CD ≥(CB +CD )2-3(CB +CD )24=(CB +CD )24,∴CB +CD ≤27,又CB +CD >7,∴四边形ABCD 的周长AB +BC +CD +DA 的取值范围为(3+7,3+27].20.(2019·河南联考)如图,在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,已知c =4,b =2,2c cos C =b ,D ,E 分别为线段BC 上的点,且BD =CD ,∠BAE =∠CAE .(1)求线段AD 的长; (2)求△ADE 的面积.解 (1)因为c =4,b =2,2c cos C =b ,所以cos C =b 2c =14.由余弦定理得cos C =a 2+b 2-c 22ab =a 2+4-164a =14,所以a =4,即BC =4. 在△ACD 中,CD =2,AC =2,所以AD 2=AC 2+CD 2-2AC ·CD ·cos∠ACD =6,所以AD = 6. (2)因为AE 是∠BAC 的平分线,所以S △ABE S △ACE =12AB ·AE ·sin∠BAE12AC ·AE ·sin∠CAE =AB AC=2,又S △ABE S △ACE =BE EC ,所以BEEC=2, 所以EC =13BC =43,DE =2-43=23.又cos C =14,所以sin C =1-cos 2C =154.所以S △ADE =12DE ·AC ·sin C =156.附:什么样的考试心态最好大部分学生都不敢掉以轻心,因此会出现很多过度焦虑。

高考数学一轮复习 正弦定理、余弦定理及其应用

高考数学一轮复习 正弦定理、余弦定理及其应用
=__________,cosA2=__________,tanA2=__________.tanA+tanB +tanC=____________.
(3)若三角形三边 a,b,c 成等差数列,则 2b=____________

2sinB

____________

2sin
B 2

cos
A-C 2
解:由正弦定理得ab=ssiinnAB,所以
sinB=
2× 7
sinπ3=
721,
由余弦定理得 a2=b2+c2-2bccosA,所以 7= 4+c2-2c,所
以 c=3(负值舍去).故填 721;3.
(2018·全国卷Ⅰ) △ABC 的内角 A,B,C 的对边 分别为 a,b,c,已知 bsinC+csinB=4asinBsinC,b2+c2
-a2=8,则△ABC 的面积为________.
解:根据题意,结合正弦定理
可得 sinBsinC+sinCsinB=4sinAsinBsinC,即 sinA=12, 结合余弦定理可得 b2+c2-a2=2bccosA=8,
所以 A 为锐角,且 cosA= 23,从而求得 bc=8 3 3,
所以△ABC 的面积为 S=12bcsinA=12×8 3 3×
所 以 AB2 = BC2 + AC2 - 2BC·AC·cosC = 1 + 25 -
2×1×5×-35=32,所以 AB=4 2.故选 A.
(2017·山东)在△ABC 中,角 A,B,C 的对边分
别为 a,b,c.若△ABC 为锐角三角形,且满足 sinB(1+2cosC)
=2sinAcosC+cosAsinC,则下列等式成立的是( )

余弦定理正弦定理应用举例课件高三数学一轮复习

余弦定理正弦定理应用举例课件高三数学一轮复习
2.方位角 从正北方向线顺时针旋转到目标方向线的水平角.如点B的方位角为α(如图②). 微点拨 仰角与俯角是相对水平线而言的,而方位角是相对正北方向而言的.
3.方向角 相对某一正方向的水平角,即从指定方向线到目标方向线的水平角(指定方向线 一般是指正北或正南方向,方向角小于90°).如北偏东α,南偏西α.特别地,若目标方 向线与指北或指南方向线成45°角,则称为东北方向、西南方向等. (1)北偏东α,即由__指_北__方__向__顺__时__针__旋__转__α__到达目标方向(如图③); (2)北偏西α,即由__指_北__方__向__逆__时__针__旋__转__α__到达目标方向; (3)南偏西等其他方向角类似.
留宇宙秘密的最后遗产”,若要测量如图所示某蓝洞洞口边缘A,B两点CD=8海里,∠ADB=135°,∠BDC=∠DCA=15°,
∠ACB=120°,则A,B两点的距离为
海里.
考点二测量高度问题 [例2](1)如图,某同学为测量鹳雀楼的高度MN,在鹳雀楼的正东方向找到一座建 筑物AB,高约为37 m,在地面上点C处(B,C,N三点共线)测得建筑物顶部A,鹳雀楼 顶部M的仰角分别为30°和45°,在A处测得鹳雀楼顶部M的仰角为15°,则鹳雀楼的 高度约为( )
核心考点·分类突破
14
解题技法 距离问题的类型及解法
(1)类型:①两点间既不可达也不可视,②两点间可视但不可达,③两点都不可达. (2)解法:选择合适的辅助测量点,构造三角形,将问题转化为求某个三角形的边长 问题,从而利用正、余弦定理求解.
对点训练
1.(2023·青岛模拟)海洋蓝洞是地球罕见的自然地理现象,被喻为“地球给人类保
第六章 平面向量、复数
第2课时 余弦定理、正弦定理应用举例

第21讲 正弦定理和余弦定理-2021年新高考数学一轮专题复习(新高考专版)(解析版)

第21讲 正弦定理和余弦定理-2021年新高考数学一轮专题复习(新高考专版)(解析版)

第21讲-正弦定理和余弦定理一、 考情分析1.掌握正弦定理、余弦定理.2.能解决一些简单的三角形度量问题.二、 知识梳理1.正、余弦定理在△ABC 中,若角A ,B ,C 所对的边分别是a ,b ,c ,R 为△ABC 外接圆半径,则定理正弦定理余弦定理公式a sin A =b sin B =csin C =2Ra 2=b 2+c 2-2bc cos__A ;b 2=c 2+a 2-2ca cos__B ; c 2=a 2+b 2-2ab cos__C 常见变形(1)a =2R sin A ,b =2R sin__B ,c =2R sin__C ;(2)sin A =a 2R ,sin B =b 2R ,sin C =c 2R ; (3)a ∶b ∶c =sin__A ∶sin__B ∶sin__C ; (4)a sin B =b sin A ,b sin C =c sin B ,a sin C =c sin Acos A =b 2+c 2-a 22bc ;cos B =c 2+a 2-b 22ac ;cos C =a 2+b 2-c 22ab2.S △ABC =12ab sin C =12bc sin A =12ac sin B =abc 4R =12(a +b +c )·r (r 是三角形内切圆的半径),并可由此计算R ,r .3.在△ABC 中,已知a ,b 和A 时,解的情况如下:A 为锐角A 为钝角或直角图形关系式 a =b sin A b sin A <a <b a ≥b a >b a ≤b 解的个数一解两解一解一解无解[微点提醒]1.三角形中的三角函数关系(1)sin(A +B )=sin C ;(2)cos(A +B )=-cos C ;(3)sin A +B 2=cos C 2;(4)cos A +B 2=sin C 2. 2.三角形中的射影定理在△ABC 中,a =b cos C +c cos B ;b =a cos C +c cos A ;c =b cos A +a cos B . 3.在△ABC 中,两边之和大于第三边,两边之差小于第三边,A >B ⇔a >b ⇔sin A > sin B ⇔cos A <cos B .三、 经典例题考点一 利用正、余弦定理解三角形【例1】 (1)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知C =60°,b =6,c =3,则A =________.(2)已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若 (a +b )(sin A -sin B )=(c -b )sin C ,则A =( ) A.π6 B.π3 C.5π6 D.2π3(3)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若△ABC 的面积为a 2+b 2-c 24,则C =( )A.π2B.π3C.π4D.π6 【解析】 (1)由正弦定理,得sin B =b sin C c =6×323=22, 结合b <c 得B =45°,则A =180°-B -C =75°. (2)∵(a +b )(sin A -sin B )=(c -b )sin C ,∴由正弦定理得(a +b )(a -b )=c (c -b ),即b 2+c 2-a 2=bc . 所以cos A =b 2+c 2-a 22bc =12, 又A ∈(0,π),所以A =π3.(3)因为a 2+b 2-c 2=2ab cos C ,且S △ABC =a 2+b 2-c 24,所以S △ABC =2ab cos C 4=12ab sin C ,所以tan C =1.又C ∈(0,π),故C =π4.规律方法 1.三角形解的个数的判断:已知两角和一边,该三角形是确定的,其解是唯一的;已知两边和一边的对角,该三角形具有不唯一性,通常根据三角函数值的有界性和大边对大角定理进行判断.2.已知三角形的两边和其中一边的对角解三角形.可用正弦定理,也可用余弦定理.用正弦定理时,需判断其解的个数,用余弦定理时,可根据一元二次方程根的情况判断解的个数.考点二判断三角形的形状【例2】(1)在△ABC中,角A,B,C所对的边分别为a,b,c,若cb<cos A,则△ABC为()A.钝角三角形B.直角三角形C.锐角三角形D.等边三角形(2)设△ABC的内角A,B,C所对的边分别为a,b,c,若b cos C+c cos B=a sin A,则△ABC的形状为()A.锐角三角形B.直角三角形C.钝角三角形D.不确定【解析】(1)由cb<cos A,得sin Csin B<cos A,又B∈(0,π),所以sin B>0,所以sin C<sin B cos A,即sin(A+B)<sin B cos A,所以sin A cos B<0,因为在三角形中sin A>0,所以cos B<0,即B为钝角,所以△ABC为钝角三角形.(2)由正弦定理得sin B cos C+sin C cos B=sin2A,∴sin(B+C)=sin2A,即sin A=sin2A.∵A∈(0,π),∴sin A>0,∴sin A=1,即A=π2,∴△ABC为直角三角形.规律方法 1.判定三角形形状的途径:(1)化边为角,通过三角变换找出角之间的关系;(2)化角为边,通过代数变形找出边之间的关系,正(余)弦定理是转化的桥梁.2.无论使用哪种方法,都不要随意约掉公因式,要移项提取公因式,否则会有漏掉一种形状的可能.注意挖掘隐含条件,重视角的范围对三角函数值的限制.考点三和三角形面积、周长有关的问题角度1 与三角形面积有关的问题【例3-1】△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知sin A +3cos A =0,a =27,b =2. (1)求c ;(2)设D 为BC 边上一点,且AD ⊥AC ,求△ABD 的面积. 【解析】(1)由sin A +3cos A =0及cos A ≠0, 得tan A =-3,又0<A <π, 所以A =2π3.由余弦定理,得28=4+c 2-4c ·cos 2π3. 即c 2+2c -24=0,解得c =-6(舍去),c =4.(2)由题设可得∠CAD =π2,所以∠BAD =∠BAC -∠CAD =π6. 故△ABD 与△ACD 面积的比值为12AB ·AD sin π612AC ·AD =1.又△ABC 的面积为12×4×2sin ∠BAC =23, 所以△ABD 的面积为 3.角度2 与三角形周长有关的问题【例3-2】 在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且满足a sin B =3b cos A .若a =4,则△ABC 周长的最大值为________. 【解析】 由正弦定理a sin A =bsin B ,可将a sin B =3b cos A 转化为sin A sin B =3sin B cos A . 又在△ABC 中,sin B >0,∴sin A =3cos A , 即tan A = 3. ∵0<A <π,∴A =π3.由余弦定理得a 2=16=b 2+c 2-2bc cos A=(b +c )2-3bc ≥(b +c )2-3⎝⎛⎭⎪⎫b +c 22, 则(b +c )2≤64,即b +c ≤8(当且仅当b =c =4时等号成立), ∴△ABC 周长=a +b +c =4+b +c ≤12,即最大值为12.规律方法 1.对于面积公式S =12ab sin C =12ac sin B =12bc sin A ,一般是已知哪一个角就使用哪一个公式.2.与面积周长有关的问题,一般要用到正弦定理或余弦定理进行边和角的转化. [方法技巧]1.正弦定理和余弦定理其主要作用是将已知条件中的边、角关系转化为角的关系或边的关系.2.在已知关系式中,既含有边又含有角,通常的解题思路是:先将角都化成边或边都化成角,再结合正弦定理、余弦定理即可求解.3.在△ABC 中,若a 2+b 2<c 2,由cos C =a 2+b 2-c 22ab <0,可知角C 为钝角,则△ABC 为钝角三角形.4.在利用正弦定理解有关已知三角形的两边和其中一边的对角解三角形时,有时出现一解、两解,所以要进行分类讨论.另外三角形内角和定理起着重要作用,在解题中要注意根据这个定理确定角的范围,确定三角函数值的符号,防止出现增解等扩大范围的现象.5.在判断三角形的形状时,等式两边一般不要约去公因式,应移项提取公因式,以免漏解.四、 课时作业1.(2020·安徽省舒城中学高一月考(文))在ABC 中,a =c =60A =︒,则C =( ). A .30° B .45°C .45°或135°D .60°【答案】B【解析】由正弦定理得2,sinC ,45sin 60sin 2c a C C =∴=<∴=.2.(2020·四川外国语大学附属外国语学校高一月考)在ABC ∆中,,,a b c 分别为,,A B C 的对边,60,1A b ==,则a =( )A .2BC .D【答案】D 【解析】依题意11sin 1sin 60322S bc A c ==⋅⋅=,解得4c =,由余弦定理得13a ==.3.(2020·浙江省高一期中)在ABC 中,内角A 、B 、C 所对的边分别为a 、b 、c ,222c a b =+,则C =( ) A .60 B .30C .60或120D .120【答案】B【解析】222c a b =+,222a b c ∴+-=,由余弦定理得222cos 2a b c C ab +-==, 0180C <<,因此,30C =.4.(2020·金华市江南中学高一期中)钝角三角形ABC 的面积是12,AB=1,,则AC=( )A .5BC .2D .1【答案】B【解析】由面积公式得:1122B =,解得sin B =,所以45B =或135B =,当45B =时,由余弦定理得:21245AC =+-=1,所以1AC =,又因为AB=1,,所以此时ABC ∆为等腰直角三角形,不合题意,舍去;所以135B =,由余弦定理得:212AC =+-=5,所以AC =故选B.5.(2020·全国高三(文))在锐角ABC ∆中,若2C B =,则cb的范围( )A .B .)2C .()0,2D .)2【答案】A【解析】由正弦定理得c sinC sin2B sinB sinBb ===2cosB ,∵△ABC 是锐角三角形,∴三个内角均为锐角, 即有 0<B <2π, 0<C=2B <2π,0<π-A-B=π-3B <2π,解得6π<B <4π,余弦函数在此范围内是减函数.故2<cosB ∴c b ∈,故选A .6.(2020·全国高三(文))在△ABC 中,如果sin :sin :sin 2:3:4A B C =,那么cosC 等于 ( ) A .23B .23-C .13-D .14-【答案】D【解析】由正弦定理可得;sinA :sinB :sinC=a :b :c=2:3:4可设a=2k ,b=3k ,c=4k (k >0)由余弦定理可得,cosC=1-4,选D7.(2020·山东省枣庄八中高一开学考试)在ABC 中,π3A =,b 2=,其面积为sin sin A Ba b++等于( )A .14B .13C D 【答案】A【解析】因为在ABC 中,π3A =,b 2=,其面积为所以12bcsinA =,因此4c =, 所以22212416224122a b c bccosA =+-=+-⨯⨯⨯=,所以a = 由正弦定理可得:a b sinA sinB=,所以sin sin sin 14A B Aa b a +===+. 8.(2020·四川省高三二模(文))ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,若sin 2sin B A =,3C π=,则ca的值为( )A B C .2 D .12【答案】A【解析】由sin 2sin B A =,据正弦定理有2b a =,又3C π=,根据余弦定理有222cos 2a b c C ab +-=,即222214222a a c a+-=⨯,223c a =故ca=9.(2020·秦皇岛市抚宁区第一中学高二月考(理))在ABC ∆中,内角A ,B ,C 所对的边分别为,,a b c .已知sin cos 2A a B b c -=-,则A = A .6πB .4π C .3π D .23π 【答案】C【解析】由已知和正弦定理得sin sin cos 2sin sin B A A B B C -=-,sin sin cos 2sin sin()B A A B B A B -=-+,()sin sin cos 2sin sin cos cos sin B A A B B A B A B -=-+sin 2sin cos sin B A B A B =-,因为sin 0B ≠,cos 2A A +=,即sin 16A π⎛⎫+= ⎪⎝⎭,所以262A k πππ+=+,即23A k ππ=+,又(0,)A π∈,所以3A π=,故选C .10.(2020·金华市江南中学高一期中)在ABC ∆中,内角,,A B C 所对的边分别为,,,a b c若a =60A ︒=,45B ︒=,则b 的长为( )A.2B .1 CD .2【答案】C 【解析】在ABC ∆中,内角,,A B C 所对的边分别为,,,a b c且a =60A ︒=,45B ︒=由正弦定理sin sin a b A B= 得:sin sin a Bb A===故选:C.11.(2020·浙江省高二学业考试)已知ABC 的三个内角A ,B ,C 所对的三条边为a ,b ,c ,若::1:1:4A B C =,则::a b c =( )A .1:1:4B .1:1:2C .1:1:3D .1:1:3【答案】D【解析】设A x =,则,4B x C x ==,所以4180x x x ++=︒,解得30x =︒, 则30,30,120A B C =︒=︒=︒,则::sin :sin :sin sin 30:sin 30:sin1201:1:3a b c A B C ==︒︒︒=,故选:D. 12.(2020·威远中学校高一月考(文))在△ABC 中,a=3,b=5,sinA=,则sinB=( ) A . B .C .D .1【答案】B【解析】由正弦定理得,故选B .13.(2020·石嘴山市第三中学高三其他(理))在三角形ABC 中,a ,b ,c 分别为角A ,B ,C 的对边,且满足22265b c a bc +=+,则sin 2B C +⎛⎫= ⎪⎝⎭( ) A .22B 5C .25D 25【答案】D【解析】∵22265b c a bc +=+,即22265a b c bc -=+,由余弦定理可得2222cos a b c bc A =+-, ∴62cos 5bc A bc =, ∴3cos 5A =,则02A π<<, ∵ABC π++=, ∴1cos 25sin cos 222B C A A ++⎛⎫===⎪⎝⎭,故选:D . 14.(2020·山东省高三其他)在3世纪中期,我国古代数学家刘徽在《九章算术注》中提出了割圆术:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆合体,而无所失矣”.这可视为中国古代极限观念的佳作.割圆术可以视为将一个圆内接正n 边形等分成n 个等腰三角形(如图所示),当n 变得很大时,等腰三角形的面积之和近似等于圆的面积.运用割圆术的思想,可得到sin 3°的近似值为( )(π取近似值3.14)A .0.012B .0.052C .0.125D .0.235【答案】B【解析】当120n =时,每个等腰三角形的顶角为360=3120︒︒,则其面积为21sin 32S r ∆=︒, 又因为等腰三角形的面积之和近似等于圆的面积, 所以221120sin 3sin 30.052260r r ππ⨯︒≈⇒︒≈≈,故选:B 15.(2020·全国高三(文))在ABC ∆中,若cos cos a cA C b++=,则ABC ∆的形状是( ) A .C 为直角的直角三角形 B .C 为钝角的钝角三角形 C .B 为直角的直角三角形 D .A 为锐角的三角形【答案】C【解析】因为cos cos a cA C b++=, 所以22222222b c a a b c a c bc ab b+-+-++=, 所以222222()()2()a b c a c a b c ac a c +-++-=+, 所以233()()()b a c a c ac a c +-+=+,所以222()()()()b a c a c a ac c ac a c +-+-+=+, 因为0a c +>,所以222()b a ac c ac --+=, 所以222a c b +=, 所以B 为直角.16.(2020·四川省成都外国语学校高一期中(文))在锐角..ABC 中, 2,2a B A ==,则b 的取值范围是( ) A .(2,23B .(22,23C .()2,4D .()23,4【答案】B【解析】由题得3,C B A A ππ=--=-因为三角形是锐角三角形,所以0202,,cos 2642032A B A A A C A ππππππ⎧<<⎪⎪⎪<=<∴<<<<⎨⎪⎪<=-<⎪⎩. 由正弦定理得22,,4cos sin sin sin 22sin cos sin b b b b A B A A A A A=∴==∴=.所以b ∈.17.(2020·四川省高一月考(理))在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若,23C c π==,当ABC 面积最大时,此时的ABC 为( )A .直角三角形B .钝角三角形C .等边三角形D .不能对形状进行判断 【答案】C【解析】1sin 23ABC S ab π==,当ab 取最大值,面积最大, 由余弦定理可得,2242a b ab ab ab ab =+-≥-=,解得4ab ≤,当2a b ==等号成立,所以ABC 为等边三角形.故选:C.18.(2020·宁夏回族自治区银川一中高三其他(文))已知ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,ABC 的外接圆的面积为3π,且222cos cos cos 1sin sin A B C A C -+=+,则ABC 的最大边长为( )A .3B .4C .5D .6【答案】A【解析】因为222cos cos cos 1sin sin A B C A C -+=+,所以222sin sin sin sin sin A C B A C +-=-,由正弦定理得222a cb ac +-=-,所以2221cos 22a c b B ac +-==-,120B =︒,所以b 边最大, 设ABC 外接圆半径为R ,则23R ππ=,R =, 由2sin b R B=得2sin 3b R B ==︒=. 19.(2020·辽宁省高三月考(文))已知ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且满足6a =,c =2sin tan tan cos C A B A +=,则ABC S =( ) A.B. C. D.【答案】B 【解析】由2sin tan tan cos C A B A +=,得sin cos cos sin 2sin cos cos cos A B A B C A B A +=,即sin 2sin cos C C B=. 因为sin 0C ≠,所以1cos ,(0,)2B B π=∈,所以3B π=,因此11sin 622ABC S ac B ==⨯⨯△=20.(2020·威远中学校高一月考(文))在ABC ∆中,内角,,A B C 的对边分别为,,a b c ,若ABC ∆的面积为S ,且221,41a S b c ==+-,则ABC ∆外接圆的面积为( ) A .2π B .2π CD.4【答案】A【解析】∵由余弦定理可得:222222cos 1bc A b c a b c =+-=+-, 又∵1sin 2S bc A =,可得42sin S bc A =, ∵2241S b c =+-,可得:2cos 2sin bc A bc A =,即tan 1A =,∵()0,A π∈,∴4A π=,设ABC 外接圆的半径为R ,由正弦定理可得: 2sin R Aa =,22R =得:2R =,∴ABC 外接圆的面积22S R ππ==,故选:A.21.(2020·山东省高三其他)已知ABC △同时满足下列四个条件中的三个: ①π3A =;②2cos 3B =-;③ 7a =;④ 3b =. (Ⅰ)请指出这三个条件,并说明理由;(Ⅱ)求ABC △的面积.【解析】(Ⅰ)解:ABC △同时满足①,③,④.理由如下:若ABC △同时满足①,②. 因为21cos 32B =-<-,且(0,π)B ∈,所以2π3B >. 所以πA B +>,矛盾.所以ABC △只能同时满足③,④.所以a b >,所以A B >,故ABC △不满足②.故ABC △满足①,③,④.(Ⅱ)解:因为2222cos a b c bc A =+-, 所以222173232c c =+-⨯⨯⨯. 解得8c =,或5c =-(舍).所以△ABC 的面积1sin 2S bc A ==22.(2020·山东省枣庄八中高一开学考试)一道题目因纸张破损,其中的一个条件不清楚,具体如下:在ABC ∆中,已知a =_______,)22cos 1cos 2A C B +=,经过推断破损处的条件为该三角形一边的长度,且该题的答案为60A =︒,那么缺失的条件是什么呢?问题:(1)如何根据题目条件求出,B C 的大小?(2)由求得的,B C 的值和正弦定理如何求出,b c 的值?(3)破损处的条件应该用b 边的长度还是用c 边的长度,还是二者均可?为什么?【解析】(1)由()22cos=1+cos 2A C A C ++, 即()22cos =1+cos 1cos 2A C A CB ++=-又)22cos 1cos 2A C B +=所以cos 2B =,又()0,180B ∈ 所以45B =,则180456075C =--=(2)由sin sin sin a b c A B C ==且a =所以可知2sin 2sin a B b A ===由()6sin 75sin 4530+=+=所以62sin sin 2a C c A +=== (3)只能用c 若用b =sin sin aB A b == 那么60A =或120,故有两个值,所以不能用b =23.(2020·肥城市教学研究中心高三其他)在ABC 中,,,a b c 分别为角,,A B C 所对的边,且22()b a ac c -=-.(1)求角B .(2)若 b =2a c +的最大值.【解析】(1)22()b a a c c -=-即222b a c ac =+-2222cos b a c ac B =+-1cos 2B ∴= (0,)B π∈3B π∴=(2)由sin sin a c A C ==可得,2sin ,2sin a A c C ==24sin 2sin a c A C ∴+=+ 2+3A C π= 23C A π∴=- 224sin 2sin 3a c A A π∴+=+-() 5sin A A=)A ϕ=+(其中tan ϕ=) 203A π<< 2ac ∴+的最大值为24.(2020·山东省高三其他)已知,,a b c 分别为ABC ∆内角,,A B C 的对边试从下列①②条件中任选一个作为已知条件并完成下列(1)(2)两问的解答①sin sin sin sin A C A B b a c --=+;②2cos cos cos c C a B b A =+. (1)求角C(2)若c =a b +=求ABC ∆的面积. 【解析】(1)选择①根据正弦定理得a c a b b a c--=+, 从而可得222a c ab b -=-,根据余弦定理2222cos c a b ab C =+-,解得1cos 2C =, 因为()0,πC ∈,故π3C =. 选择②根据正弦定理有sin cos sin cos 2sin cos A B B A C C +=,即()sin 2sin cos A B C C +=,即sin 2sin cos C C C =因为()0,πC ∈,故sin 0C ≠,从而有1cos 2C =, 故π3C = (2)根据余弦定理得2222cos c a b ab C =+-,得223a b ab =+-,即()233a b ab =+-,解得83ab =, 又因为ABC 的面积为1sin 2ab C , 故ABC 的面积为23. 25.(2020·四川外国语大学附属外国语学校高一月考)如图,在四边形ABCD 中,AD AB ⊥,60CAB ︒∠=,120BCD ︒∠=,2AC =.(1)若15ABC ︒∠=,求DC ;(2)记ABC θ∠=,当θ为何值时,BCD ∆的面积有最小值?求出最小值.【解析】(1)在四边形ABCD 中,因为AD AB ⊥,120BCD ∠=,15ABC ︒∠=所以135ADC ︒∠= ,在ACD ∆中,可得906030CAD ︒︒︒∠=-=,135ADC ︒∠=,2AC =由正弦定理得:sin sin CD AC CAD ADC=∠∠,解得:2CD = . (2)因为60CAB ∠=,AD AB ⊥可得30CAD ∠=,四边形内角和360得150ADC θ∠=-,∴在ADC ∆中,()()21sin 30sin 150sin 150DCDC θθ=⇒=--. 在ABC ∆中,2sin 60sin sin BC BC θθ=⇒=, ()131sin12024sin 150sin BCDS DC BC θθ∆∴=⋅⋅=⨯- 334422444==)34360=+, 当75θ=时,S 取最小值6-.。

2023年高考数学一轮复习:正弦定理和余弦定理

2023年高考数学一轮复习:正弦定理和余弦定理

第六节 
正弦定理和余弦定理
2023年高考数学总复习
内容索引
必备知识·自主学习
核心考点·精准研析核心素养·微专题核心素养测评
2.余弦定理
(1)定理:在△ABC中,a2=b2+c2-2bccos A, b2=c2+a2-2accos B,
a2+b2-2abcos C
c2=_______________.
【知识点辨析】(正确的打“√”,错误的打“×”)
(1)在△ABC中,已知a,b和角B,能用正弦定理求角A;已知a,b和角C,能用余弦定理求边c.( )
(2)在三角形中,已知两角和一边或已知两边和一角都能解三角形.( )
(3)在△ABC中,sin A>sin B的充分不必要条件是A>B.( )
提示:根据正弦定理和余弦定理知(3)是错误的,(1)(2)是正确的,所以(1)√, (2)√,(3)×.
【易错点索引】
序号易错警示典题索引
1在三角形中,一个正弦值(正数)对应两个角,
一个余弦值对应一个角
考点一、T3
2忽视三角形内角范围,即0°<A<180°考点二、典例。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

温馨提示:此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。

关闭Word文档返回原板块。

核心素养测评二十五正弦定理、余弦定理的应用举例(25分钟50分)一、选择题(每小题5分,共35分)1.已知A,B两地间的距离为10 km,B,C两地间的距离为20 km,现测得∠ABC=120°,则A,C两地间的距离为 ( )A.10 kmB.10 kmC.10 kmD.10 km【解析】选D.由余弦定理得,AC2=AB2+CB2-2AB·CB·cos120°=102+202-2×10×20×=700.所以AC=10(km).2.甲船在岛的正南方A处,AB=10千米,甲船以每小时4千米的速度向正北匀速航行,同时乙船自B出发以每小时6千米的速度向北偏东60°的方向匀速航行,当甲、乙两船相距最近时,它们所航行的时间是( )A.小时B.小时C.小时D.小时【解析】选A.假设经过x小时两船相距最近,甲乙分别行至C,D,如图所示:可知BC=10-4x,BD=6x,∠CBD=120°,由余弦定理可得,CD2=BC2+BD2-2BC·BD·cos∠CBD=(10-4x)2+36x2+2×(10-4x)×6x×=28x2-20x+100,所以当x=时两船相距最近.3.如图所示,为测一建筑物的高度,在地面上选取A,B两点,从A,B两点分别测得建筑物顶端的仰角为30°,45°,且A,B两点间的距离为60 m,则该建筑物的高度为( )A.(30+30)mB.(30+15)mC.(15+30)mD.(15+15)m【解析】选A.在△PAB中,∠PAB=30°,∠APB=15°,AB=60 m,sin 15°=sin(45°-30°)=sin 45°cos 30°-cos 45°sin 30°=.由正弦定理得PB==30(+)(m),所以建筑物的高度为PBsin 45°=30(+)×=(30+30)m.4.已知A船在灯塔C的北偏东85°方向且A到C的距离为2 km,B船在灯塔C的西偏北25°方向且B到C的距离为 km,则A,B两船的距离为 ( )A. kmB. kmC.2 kmD.3 km【解析】选A.画出图形如图所示,由题意可得∠ACB=(90°-25°)+85°=150°,又AC=2,BC=.在△ABC 中,由余弦定理可得AB2=AC2+BC2-2AC·BC·cos 150°=13,所以AB=,即A,B两船的距离为 km.5.一个大型喷水池的中央有一个强力喷水柱,为了测量喷水柱喷出的水柱的高度,某人在喷水柱正西方向的点A处测得水柱顶端的仰角为45°,从点A沿北偏东30°方向前进100 m到达点B,在B点测得水柱顶端的仰角为30°,则水柱的高度是( )A.50 mB.100 mC.120 mD.150 m【解析】选A.设水柱高度是h,水柱底端为C,则在△ABC中,∠BAC=60°,AC=h,AB=100,BC=h,根据余弦定理得,(h)2=h2+1002-2·h·100·cos 60°,即h2+50h-5 000=0,即(h-50)(h+100)=0,解得h=50(负值舍去),故水柱的高度是50 m.6.如图,测量河对岸的塔高AB时可以选与塔底B在同一水平面内的两个测量点C与D,测得∠BCD=15°,∠BDC=30°,CD=30,并在点C测得塔顶A的仰角为60°,则塔高AB等于( )A.5B.15C.5D.15【解析】选D.在△BCD中,∠CBD=180°-15°-30°=135°.由正弦定理得=,所以BC=15.在Rt△ABC中,AB=BCtan∠ACB=15×=15.7.长为3.5 m的木棒AB斜靠在石堤旁,木棒的一端A在离堤足C处1.4 m的地面上,另一端B在离堤足C处的2.8 m的石堤上,石堤的倾斜角为α,则坡度值tan α=世纪金榜导学号( )A. B. C. D.【解析】选A.由已知,在△ABC中,AB=3.5 m,AC=1.4 m,BC=2.8 m,且∠α+∠ACB=π.由余弦定理得AB2=AC2+BC2-2·AC·BC·cos∠ACB,即3.52=1.42+2.82-2×1.4×2.8×cos(π-α),解得cos α=,所以sin α=,所以tan α==.二、填空题(每小题5分,共15分)8.一艘海轮从A出发,以每小时40海里的速度沿南偏东40°方向直线航行,30分钟后到达B处,在C处有一座灯塔,海轮在A观察灯塔,其方向是东偏南20°,在B处观察灯塔,其方向是北偏东65°,则B,C两点间的距离是海里.【解析】如图,由已知可得,∠BAC=30°,∠ABC=105°,AB=20,从而∠ACB=45° .在△ABC 中,由正弦定理,得BC=×sin 30°=10.答案:109.(2018·德州模拟)如图,某炮兵阵地位于A点,两观察所分别位于C,D 两点.已知△ACD为正三角形,且DC= km,当目标出现在点B时,测得∠CDB=45°,∠BCD=75°,则炮兵阵地与目标的距离是.(保留1位小数)【解析】∠CBD=180°-∠BCD-∠CDB=60°.在△BCD中,由正弦定理,得BD==.在△ABD中,∠ADB=45°+60°=105°,由余弦定理,得AB2=AD2+BD2-2AD·BDcos 105°=3++2×××=5+2.所以AB=≈2.9(km).所以炮兵阵地与目标的距离约是2.9 km.答案:2.9 km10.海轮“和谐号”从A处以每小时21海里的速度出发,海轮“奋斗号”在A处北偏东45°的方向,且与A相距10海里的C处,沿东偏南15°的方向以每小时9海里的速度行驶,则海轮“和谐号”与海轮“奋斗号”相遇所需的时间为小时. 世纪金榜导学号【解析】设海轮“和谐号”与海轮“奋斗号”相遇所需的时间为x小时,如图,在△ABC中,AC=10海里,AB=21x海里,BC=9x海里,∠ACB=120°.由余弦定理得(21x)2=100+(9x)2-2×10×9x×cos 120°,整理,得36x2-9x-10=0,解得x=或x=-(舍). 所以海轮“和谐号”与海轮“奋斗号”相遇所需的时间为小时.答案:(15分钟35分)1.(5分)如图,要测量底部不能到达的某铁塔AB的高度,在塔的同一侧选择C,D两观测点,且在C,D两点测得塔顶的仰角分别为45°,30°.在水平面上测得∠BCD=120°,C,D两地相距600 m,则铁塔AB的高度是( )A.120 mB.480 mC.240 mD.600 m【解析】选D.设AB=x,则BC=x,BD= x,在△BCD中,由余弦定理知cos 120°===-, 解得x=600 m,(x=-300舍去).故铁塔AB的高度为600 m.2.(5分)如图所示,在一个坡度一定的山坡AC的顶上有一高度为25 m 的建筑物CD,为了测量该山坡相对于水平地面的坡角θ,在山坡的A处测得∠DAC=15°,沿山坡前进50 m到达B处,又测得∠DBC=45°,根据以上数据可得cos θ=.【解析】由∠DAC=15°,∠DBC=45°得∠BDA=30°,∠DBA=135°,∠BDC=90°-(15°+θ)-30°=45°-θ,由内角和定理可得∠DCB=180°-(45°-θ)-45°=90°+θ,根据正弦定理可得=,即DB=100sin 15°=100×sin (45°-30°)=25(-1),又=,即=,得到cos θ=-1.答案:-13.(5分)如图,勘探队员朝一座山行进,在前后A,B两处观察山顶C的仰角分别是30°和45°,两个观察点A,B之间的距离是100米,则此座山CD的高度为米.【解析】设山高CD为x米,在Rt△BCD中,有BD=CD=x米,在Rt△ACD 中,有AC=2x米,AD=x米.而AB=AD-BD=(-1)x=100.解得:x=50+50.答案:(50+50)4.(10分)已知岛A南偏西38°方向,距岛A 3海里的B处有一艘缉私艇.岛A处的一艘走私船正以10海里/时的速度向岛屿北偏西22°方向行驶,问缉私艇朝何方向以多大速度行驶,恰好用0.5小时能截住该走私船? 世纪金榜导学号【解析】如图,设缉私艇在C处截住走私船,D为岛A正南方向上一点,缉私艇的速度为每小时x海里,则BC=0.5x海里,AC=5海里,由已知, ∠BAC=180°-38°-22°=120°,由余弦定理得BC2=AB2+AC2-2AB·ACcos 120°,所以BC2=49,BC=0.5x=7,解得x=14.又由正弦定理得sin∠ABC===,所以∠ABC=38°,又∠BAD=38°,所以BC∥AD,所以缉私艇以每小时14海里的速度向正北方向行驶,恰好用0.5小时截住该走私船.5.(10分)已知在东西方向上有M,N两座小山,山顶各有一个发射塔A,B,塔顶A,B的海拔高度分别为AM=100 m和BN=200 m,一测量车在小山M 的正南方向的点P处测得发射塔顶A的仰角为30°,该测量车向北偏西60°方向行驶了100 m后到达点Q,在点Q处测得发射塔顶B处的仰角为θ,且∠BQA=θ,经测量tan θ=2,求两发射塔顶A,B之间的距离.世纪金榜导学号【解析】在Rt△AMP中,∠APM=30°,AM=100 m,所以PM=100 m.连接QM,在△PQM中,∠QPM=60°,又PQ=100 m,所以△PQM为等边三角形,所以QM=100 m.在Rt△AMQ中,由AQ2=AM2+QM2得AQ=200 m.在Rt△BNQ中,tan θ=2,BN=200 m,所以BQ=100 m,cos θ=.在△BQA中,BA2=BQ2+AQ2-2BQ·AQcos θ=(100)2,所以BA=100.所以两发射塔顶A,B之间的距离是100 m.关闭Word文档返回原板块快乐分享,知识无界!感谢您的下载!由Ruize收集整理!。

相关文档
最新文档