2019年新考研高等数学模拟训练试题(含参考答案)

合集下载

2019新考研高数模拟训练题目(含参考答案)

2019新考研高数模拟训练题目(含参考答案)

2019最新考研数学模拟试题(含答案) 学校:__________ 考号:__________一、解答题1.设a 为非零常数,b 为正常数,求y =ax 2+bx 在以0和b a 为端点的闭区间上的最大值和最小值.解:20y ax b '=+=得2b x a =-不可能属于以0和b a为端点的闭区间上, 而 22(0)0,b b y y a a ⎛⎫== ⎪⎝⎭, 故当a >0时,函数的最大值为22b b y a a ⎛⎫= ⎪⎝⎭,最小值为(0)0y =; 当a <0时,函数的最大值为(0)0y =,最小值为22b b y a a ⎛⎫= ⎪⎝⎭.2.计算下列向量场A 的散度与旋度:(1)()222222,,y z z x x y =+++A ;解:()0,2,,y z z x x y ---(2)()222,,x yz x y z x yz =A ;解:()()()()2222226,,,xy x z y y x z z y x ---(3),,y x z yz z x x y ⎛⎫= ⎪⎝⎭A . 解:111yz zx xy ++,2222221,,y y z z x x xyz z y x z y x ⎛⎫--- ⎪⎝⎭3.求下列函数的高阶导数:⑴ e sin ,x y x =⋅求(4)y; ⑵ 22e ,x y x =⋅求(6)y ; ⑶ 2sin ,y x x =⋅求(80)y .解:⑴e sin e cos e (sin cos )x x xy x x x x '=⋅+⋅=+(4)e (sin cos )e (cos sin )2cos e 2e (cos sin )2e (cos sin )2e (sin cos )=4e sin x x x x x x x y x x x x x y x x y x x x x x ''=++-=⋅'''=-=-+---⑵ 6(6)2(6)260(e )()i x i i i y C x -==∑22(6)22(5)22(4)622524222(e )6()(e )15()(e )2e 622e 1522e 32e (21215)x x x x x xx x x x x x x x '''=++=+⋅⋅+⋅⋅=++⑶ 80(80)2()(80)800()(sin )i i i i y C x x -==∑2(80)(79)(78)22(sin )802(sin )31602(sin )πππsin(80)+160sin (79)6320sin (78)222sin 160cos 6320sin .x x x x x x x x x x x x x x x =+⋅⋅+⋅⋅=⋅+⋅⋅+⋅++⋅=--4.已知()f x ''存在,求22d d y x: ⑴ 2()y f x =; ⑵ ln ()y f x =.解:⑴ 22()y xf x ''= 222222()22()2()4()y f x x xf x f x x f x '''''=+⋅'''=+ ⑵ ()()f x y f x ''= 22()()[()]()f x f x f x y f x '''-''=5.在括号内填入适当的函数,使等式成立:⑴ d( )cos d t t =; ⑵ d( )sin d x x ω=;⑶ 1d( )d 1x x =+; ⑷ 2d( )e d x x -=; ⑸d( )x =; ⑹ 2d( )sec 3d x x =; ⑺ 1d( )ln d x x x =; ⑻d( )x =. 解:⑴ (sint)cos t '=。

2019新考研高等数学模拟训练试题(含参考答案)

2019新考研高等数学模拟训练试题(含参考答案)

2019最新考研数学模拟试题(含答案)学校:__________ 考号:__________一、解答题1. 确定下列函数的单调区间:(1) 3226187y x x x =---;解:所给函数在定义域(,)-∞+∞内连续、可导,且2612186(1)(3)y x x x x '=--=+-可得函数的两个驻点:121,3x x =-=,在(,1),(1,3),(3,)-∞--+∞内,y '分别取+,–,+号,故知函数在(,1],[3,)-∞-+∞内单调增加,在[1,3]-内单调减少.(2) 82 (0)y x x x=+>; 解: 函数有一个间断点0x =在定义域外,在定义域内处处可导,且282y x '=-,则函数有驻点2x =,在部分区间(0,2]内,0y '<;在[2,)+∞内y '>0,故知函数在[2,)+∞内单调增加,而在(0,2]内单调减少.(3) ln(y x =;解: 函数定义域为(,)-∞+∞,0y '=>,故函数在(,)-∞+∞上单调增加. (4) 3(1)(1)y x x =-+;解: 函数定义域为(,)-∞+∞,22(1)(21)y x x '=+-,则函数有驻点: 11,2x x =-=,在1(,]2-∞内, 0y '<,函数单调减少;在1[,)2+∞内, 0y '>,函数单调增加. (5) e (0,0)n x y x n x -=>≥;解: 函数定义域为[0,)+∞,11e e e ()n x n x x n y nx x x n x -----'=-=-函数的驻点为0,x x n ==,在[0,]n 上0y '>,函数单调增加;在[,]n +∞上0y '<,函数单调减少.(6) sin 2y x x =+;解: 函数定义域为(,)-∞+∞,πsin 2, [π,π], ,2πsin 2, [π,π], .2x x x n n n y x x x n n n ⎧+∈+∈⎪⎪=⎨⎪-∈-∈⎪⎩Z Z 1) 当π[π,π]2x n n ∈+时, 12cos 2y x '=+,则 1π0cos 2[π,π]23y x x n n '≥⇔≥-⇔∈+; πππ0cos 2[π,π]232y x x n n '≤⇔≤-⇔∈++. 2) 当π[π,π]2x n n ∈-时, 12cos 2y x '=-,则 1ππ0cos 2[π,π]226y x x n n '≥⇔≤⇔∈-- 1π0cos 2[π,π]26y x x n n '≤⇔≥⇔∈-. 综上所述,函数单调增加区间为πππ[,] ()223k k k z +∈, 函数单调减少区间为ππππ[,] ()2322k k k z ++∈. (7) 54(2)(21)y x x =-+.解: 函数定义域为(,)-∞+∞.4453345(2)(21)4(2)(21)2(21)(1811)(2)y x x x x x x x '=-++-+⋅=+-- 函数驻点为123111,,2218x x x =-==, 在1(,]2+∞-内, 0y '>,函数单调增加, 在111[,]218-上, 0y '<,函数单调减少, 在11[,2]18上, 0y '>,函数单调增加, 在[2,)+∞内, 0y '>,函数单调增加.故函数的单调区间为: 1(,]2-∞-,111[,]218-,11[,)18+∞.2.求下列函数在所示点的导数:(1)()sin cos t f t t ⎛⎫= ⎪⎝⎭,在点π4t =;。

2019年新考研高数模拟训练考题(含答案)

2019年新考研高数模拟训练考题(含答案)

2019最新考研数学模拟试题(含答案)学校:__________考号:__________一、解答题1.试决定曲线y =ax 3+bx 2+cx +d 中的a ,b ,c ,d ,使得x =-2处曲线有水平切线,(1,-10)为拐点,且点(-2,44)在曲线上.解:令f (x )= ax 3+bx 2+cx +d联立f (-2)=44,f ′(-2)=0,f (1)=-10,f ″(1)=0可解得a =1,b =-3,c =-24,d =16.2.利用曲线积分,求下列曲线所围成的图形的面积:(1)星形线x = a cos 3t ,y = a sin 3t ;(2)双纽线r 2 = a 2cos2θ;(3)圆x 2+y 2 = 2ax .解:(1)()()()()()2π3202π2π242222002π202π202π202d sin 3cos d sin 33sin cos d sin 2sin d 43d 1cos 41cos 2163d 1cos 2cos 4cos 2cos 416312π+d cos 2cos 61623π8L A y x a t a t t t a t t t a t t t a t t t a t t t t t a t t t a =-=-⋅-==⋅=--=--+⎡⎤=+⎢⎥⎣⎦=⎰⎰⎰⎰⎰⎰⎰ (2)利用极坐标与直角坐标的关系x =r cos θ,y =r sin θ得cos x a =sin y a =从而x d y -y d x =a 2cos2θd θ.于是面积为:[]π24π4π24π4212d d 2cos 2d sin 22L A x y y x a a a θθθ--=⋅-===⎰⎰ (3)圆x 2+y 2=2ax 的参数方程为cos 02πsin x a a y a θθθ=+⎧≤≤⎨=⎩ 故()()[]()2π022π021d d 21d a+acos sin 2d 1cos 2πcos sin LA x y y x a a a a a θθθθθθθ=-=-=+=⋅-⎰⎰⎰3. 设212s gt =,求2d d t s t =. 解:d d s gt t =,故2d 2d t s g t ==.4.讨论下列函数在指定点的连续性与可导性: (1) sin ,0;y x x == 解:因为0,0lim 0x x y y =→==所以此函数在0x =处连续. 又00()(0)sin (0)lim lim 1,0x x f x f x f x x ---→→--'===-- 00()(0)sin (0)lim lim 1,0x x f x f x f x x +++→→-'===- (0)(0)f f -+''≠,故此函数在0x =处不可导. (2) 21sin ,0, 0;0,0,x x y x x x ⎧≠⎪==⎨⎪=⎩ 解:因为201lim sin 0(0),x x y x→==故函数在0x =处连续. 又2001sin ()(0)(0)lim lim 00x x x f x f x y x x →→-'===-,。

2019新考研高等数学模拟训练题目(含参考答案)

2019新考研高等数学模拟训练题目(含参考答案)

2019最新考研数学模拟试题(含答案)学校:__________考号:__________一、解答题1.求曲线x =a cos 3t ,y = a sin 3t 在t =t 0处的曲率. 解: 22d d 3sin cos d tan d d 3cos sin d yy a t t t t x x a t tt===--, 22224d d d(tan )1sec 1(tan )d d d d 3cos sin 3sin cos d y t t t x x x ta t t a t t t--=-=⋅==-, 故 423/2123sin cos [1(tan )]3sin 2a t t k t a t==+- 且当t =t 0时, 023sin 2k a t =.2.已知电压u (t )=3sin2t ,求(1) u (t )在π0,2⎡⎤⎢⎥⎣⎦上的平均值; 解: π2026()3sin 2d .ππu t t t ==⎰ (2) 电压的均方根值.解:均方根公式为()f x =故()u t ===== 3.证明: 本章关于散度的基本性质(1)~(3).解:略。

4.求下列函数的定义域211(1)arctan ;(2);lg(1)(3); (4)arccos(2sin ).1y y x x x y y x x ==-==- 解: (1)要使函数有意义,必须400x x -≥⎧⎨≠⎩ 即 40x x ≤⎧⎨≠⎩ 所以函数的定义域是(,0)(0,4]-∞.(2)要使函数有意义,必须30lg(1)010x x x +≥⎧⎪-≠⎨⎪->⎩ 即 301x x x ≥-⎧⎪≠⎨⎪<⎩所以函数的定义域是[-3,0)∪(0,1).(3)要使函数有意义,必须210x -≠ 即 1x ≠±所以函数的定义域是(,1)(1,1)(1,)-∞--+∞.(4)要使函数有意义,必须 12sin 1x -≤≤ 即 11sin 22x -≤≤ 即ππ2π2π66k x k -+≤≤+或5π7π2π2π66k x k +≤≤+,(k 为整数). 也即ππππ66k x k -+≤≤+ (k 为整数). 所以函数的定义域是ππ[π,π]66k k -++, k 为整数.5.已知水渠的横断面为等腰梯形,斜角ϕ=40°,如图所示.当过水断面ABCD 的面积为定值S 0时,求湿周L (L =AB +BC +CD )与水深h 之间的函数关系式,并指明其定义域.图1-1解:011()(2cot )(cot )22S h AD BC h h BC BC h BC h ϕϕ=+=++=+。

2019新版考研高数模拟训练考题(含解析)

2019新版考研高数模拟训练考题(含解析)

2019最新考研数学模拟试题(含答案)学校:__________ 考号:__________一、解答题1.求下列不定积分,并用求导方法验证其结果正确否:d (1)1e xx+⎰; 解:原式=e d 11de ln(1e ).e (1e )e 1e x x xx x x xx x c ⎛⎫==-++- ⎪++⎝⎭⎰⎰ 验证:e 1(ln(1e ))1.1e 1ex xx xx c '-++=-=++ 所以,结论成立.(2)ln(x x ⎰;解:原式=ln(ln(.x x x x x c -=-验证:ln(ln(x x x x c '⎡⎤=++⎣⎦ln(x =所以,结论成立.2(3)ln(1)d x x +⎰;解:原式=2222ln(1)2d ln(1)22arctan 1x x x x x x x x c x+-=+-+++⎰. 验证:2222222ln(1)2ln(1).ln(1)22arctan 11x x x x x x x x c x x'=++⋅-+=+⎡⎤+-++⎣⎦++ 所以,结论正确.(4)x ;解:原式=9212)arcsin (.232x x x c ++=++验证: 921arcsin (232x x '+⎡++⎢⎣211(2)32x=++==所以,结论正确.(5)sin(ln)dx x⎰;解:1sin(ln)d sin(ln)cos(ln)dx x x x x x xx=-⋅⋅⎰⎰sin(ln)cos(ln)sin(ln)dx x x x x x=--⎰所以,原式=().sin(ln)cos(ln)2xcx x+-验证:()sin(ln)cos(ln)2xcx x'⎡⎤+-⎢⎥⎣⎦()111sin(ln)cos(ln)cos(ln)sin(ln)22sin(ln).xx x x xx xx⎛⎫=+-⋅+⋅⎪⎝⎭=故结论成立.2e(6)d(e1)xxxx+⎰;解:原式=1e1d d de1e1e11ee1xx x x xxx xx x x--⎛⎫-=-+=-+⎪+++++⎝⎭⎰⎰⎰ln(1e).e1xxxc--=-+++验证:22(e1)e e eln(1e)(e1)1e(e1)e1x x x xxx x xxx xxc---'-++--⎡⎤=-=-++⎢⎥++++⎣⎦.故结论成立.23/2ln(7)d(1)xxx+⎰;解:原式=1ln d d ln(.x x x cx=-=-++⎰验证:ln(x c'⎤-+⎥⎦2223/223/2(1ln )(1)ln ln .(1)(1)x x x x x x x =++-==++所以,结论成立.sin (8)d 1cos x xx x++⎰;解:原式=2d cos d d tan ln(1cos )1cos 22cos 2xx xx x x x x -=-++⎰⎰⎰tan tan d ln(1cos )22tan ln(1cos )ln(1cos )2tan 2x xx x x xx x x c x x c=--+=++-++=+⎰验证:2221sin sin (tan )tan sec 22221cos 2cos 2cos 22x x x x x x xx c x x x x +'+=+⋅=+=+ 所以,原式成立.(9)()d xf x x ''⎰;解:原式=d ()()()d ()().x f x xf x f x x xf x f x c ''''=-=-+⎰⎰验证:[]()()()().()()f x xf x f x xf x xf x f x c ''''''''=+-=-+ 故结论成立.(10)sin d n x x ⎰ (n >1,且为正整数).解:1sin d sin dcos n n n I x x x x -==-⎰⎰1221212cos sin (1)cos sin d cos sin (1)sin d (1)sin d cos sin (1)(1)n n n n n n n nx x n x x xx x n x x n x x x x n I n I ------=-+-=-+---=-+---⎰⎰⎰ 故 1211cos sin .n n n n I x x I n n---=-+ 验证: 1211cos sin sin d n n n x x x x n n --'-⎡⎤-+⎢⎥⎣⎦⎰22222111sin cos (1)sin cos sin 111sin (1sin )sin sin sin .n n n n n n n n x x n x x x n n n n n x x x x n n n x -----=-⋅-⋅+--=--+= 故结论成立.2.求22224428u x y z x y x y z =+++-+-在点,,,1,1,1,1,1,1(000)()()O A B ---的梯度,并求梯度为零的点.解:()()()()54,2,8,2,10,6,10,6,10,3,,42-------3.设()Q Q T =表示重1单位的金属从0C ︒加热到C T ︒所吸收的热量,当金属从C T ︒升温到()C T T +∆︒时,所需热量为()(),Q Q T T Q T ∆=+∆-Q ∆与T ∆之比称为T 到T T +∆的平均比热,试解答如下问题:⑴ 如何定义在C T ︒时,金属的比热; 解:0()()lim()T Q T T Q T Q T Tν∆→+∆-'==∆⑵ 当2()Q T aT bT =+(其中a , b 均为常数)时,求比热. 解:()2Q T a bT ν'==+.4.设12()()()()0n p x f x f x f x =≠,且所有的函数都可导,证明:1212()()()()()()()()n n f x f x f x P x P x f x f x f x ''''=+++证明:1212121212()1[()()()()()()()()()]()()()()().()()()n n n n n P x f x f x f x f x f x f x f x f x f x P x P x f x f x f x f x f x f x ''''=+++'''=+++5.根据下面所给的值,求函数21y x =+的,d y y ∆及d y y ∆-: ⑴ 当1,0.1x x =∆=时; 解:2222()1(1)2210.10.10.21d 2210.10.2d 0.210.20.01.y x x x x x x y x x y y ∆=+∆+-+=∆+∆=⨯⨯+==⋅∆=⨯⨯=∆-=-=. ⑵ 当1,0.01x x =∆=时.解:222210.010.010.0201d 2210.010.02d 0.02010.020.0001.y x x x y x x y y ∆=∆+∆=⨯⨯+==⋅∆=⨯⨯=∆-=-=6.利用四阶泰勒公式,求ln1.2的近似值,并估计误差.解:23455ln(1) (01)2345(1)x x x x x x x θθ+=--+-<<+ 234(0.2)(0.2)(0.2)ln1.2ln(10.2)0.20.18227234∴=+≈-++=5555(0.2)(0.2)(0.2)7105(10.2)5n R θ-=<≈⨯+7.计算正弦曲线y =sin x 上点π,12⎛⎫⎪⎝⎭处的曲率. 解:cos ,sin y x y x '''==- .当π2x =时,0,1y y '''==- , 故 23/21.(1)y k y ''=='+8.设总收入和总成本分别由以下两式给出:2()50.003,()300 1.1R q q q C q q =-=+其中q 为产量,0≤q ≤1000,求:(1)边际成本;(2)获得最大利润时的产量;(3)怎样的生产量能使盈亏平衡? 解:(1) 边际成本为:()(300 1.1) 1.1.C q q ''=+=(2) 利润函数为2()()() 3.90.003300() 3.90.006L q R q C q q q L q q=-=--'=-令()0L q '=,得650q = 即为获得最大利润时的产量. (3) 盈亏平衡时: R (q )=C (q ) 即 3.9q -0.003q 2-300=0 q 2-1300q +100000=0 解得q =1218(舍去),q =82.9.验证:函数()lnsin f x x =在π5π[,]66上满足罗尔定理的条件,并求出相应的ξ,使()0f ξ'=.证:()l n s i f x x =在区间π5π[,]66上连续,在π5π(,)66上可导,且π5π()()l n 266f f ==-,即在π5π[,]66上满足罗尔定理的条件,由罗尔定理,至少存在一点π5π(,),66ξ∈使()0f ξ'=.事实上,由cos ()cot 0sin x f x x x '===得ππ5π(,),266x =∈故取π2ξ=,可使()0f ξ'=.10.下列函数在指定区间上是否满足罗尔定理的三个条件?有没有满足定理结论中的ξ?⑴ 2, 01,() [0,1] 0, 1, x x f x x ⎧≤<=⎨=⎩; ⑵ ()1, [0,2] f x x =-; ⑶ sin , 0π,() [0,π] . 1, 0,x x f x x <≤⎧=⎨=⎩解:⑴ ()f x 在[0,1]上不连续,不满足罗尔定理的条件.而()2(01)f x x x '=<<,即在(0,1)内不存在ξ,使()0f ξ'=.罗尔定理的结论不成立. ⑵ 1, 12,()1, 0 1.x x f x x x -≤<⎧=⎨-<<⎩(1)f '不存在,即()f x 在区间(0,2) 内不可导,不满足罗尔定理的条件.而1, 12,()1, 0 1.x f x x <<⎧'=⎨-<<⎩即在(0,2)内不存在ξ,使()0f ξ'=.罗尔定理的结论不成立.⑶ 因(0)1(π)=0f f =≠,且()f x 在区间[0,π] 上不连续,不满足罗尔定理的条件. 而()cos (0π)f x x x '=<<,取π2ξ=,使()0f ξ'=.有满足罗尔定理结论的π2ξ=. 故罗尔定理的三个条件是使结论成立的充分而非必要条件.11.⑴ 证明:不等式ln(1) (0)1xx x x x<+<>+ 证明:令()ln(1)f x x =+在[0,x]上应用拉格朗日定理,则(0,),x ξ∃∈使得()(0)()(0)f x f f x ξ'-=-即ln(1)1x x ξ+=+,因为0x ξ<<,则11x xx x ξ<<++即ln(1) (0)1xx x x x<+<>+ ⑵ 设0, 1.a b n >>>证明:11()().n n n n nb a b a b na a b ---<-<-证明:令()nf x x =,在[b ,a]上应用拉格朗日定理,则(,).b a ξ∃∈使得1(), (,)n n n a b n a b b a ξξ--=-∈因为b a ξ<<,则111()()()n n n nb a b n a b na a b ξ----<-<-,即11()().n n n n nba b a b na a b ---<-<-⑶ 设0a b >>证明:ln .a b a a ba b b--<< 证明:令()ln f x x =在[b ,a]上应用拉格朗日定理,则(,).b a ξ∃∈使得1ln ln ()a b a b ξ-=-因为b a ξ<<,所以1111, ()a b a b a b a b a bξξ--<<<-<, 即ln a b a a b a b b--<<. ⑷ 设0x >证明:112x +>证明:令()f x =[0,]x x ∈,应用拉格朗日定理,有()(0)()(0), (0,)f x f f x x ξξ'-=-∈ ()()(0)f x f x f ξ'=⋅+112x=+<+即112x +>12.利用0sin lim1x xx→=或等价无穷小量求下列极限:002000sin (1)lim ;(2)lim cot ;sin 1cos 2(3)lim ;sin arctan 3(5)lim;(6)lim 2sin ;2x x x x x n n x n mxx x nx x x x x xx →→→→→→∞-22102320020041arctan (7)lim ;(8)lim ;arcsin(12)sin arcsin 2tan sin cos cos (9)lim ;(10)lim ;sin 1cos 4(12)lim 2sin t x x x x x x x x x x x x x x x x xx x x αβ→→→→→→-----+ 222200;an ln cos ln(sin e )(13)lim ;(14)lim .ln cos ln(e )2x x x x x ax x x bx x x→→+-+-解:(1)因为当0x →时,sin ~,sin ~,mx mx nx nx 所以00sin limlim .sin x x mx mx mnx nx n→→==00002000limcos cos (2)lim cot lim cos lim 1.sin sin sin lim1cos 22sin sin (3)lim lim 2lim 2.sin sin x x x x x x x x x x x x x x x xx x xx x x x x x x x→→→→→→→→=⋅===-=== (4)因为当0x →时,2221ln(1e sin )~e sin 1~2x x x x x +,所以22200002e sin sin lim lim 2e lim 2.12x x x x x x x x x x x→→→→⎛⎫==⋅= ⎪⎝⎭ (5)因为当0x →时,arctan3~3,x x 所以00arctan 33limlim 3x x x xxx →→==.sinsin 22(6)lim 2sin lim lim .222n n n n n n n n nx xx x x x x x →∞→∞→∞=⋅==(7)因为当12x →时,arcsin(12)~12x x --,所以22111122224141(21)(21)lim lim lim lim(21) 2.arcsin(12)1212x x x x x x x x x x x x →→→→---+===-+=---- (8)因为当0x →时,22arctan ~,sin~,arcsin ~,22x xx x x x 所以 2200arctan lim lim 2sin arcsin 22x x x x xx x x →→==⋅.(9)因为当0x →时,2331sin ~,1cos ~,sin ~2x x x x x x -,所以 233300001tan sin sin (1cos )2lim lim lim sin sin cos cos 11lim .2cos 2x x x x x x x x x x x x xx x x →→→→⋅--==⋅== (10)因为当0x →时,sin~,sin~2222x x x x αβαβαβαβ++--,所以22002222sinsincos cos 22lim lim 222lim1().2x x x x xx xx x x xx αβαβαβαβαββα→→→+---=+--⋅⋅==-(11)因为当0x →时,~)~,x x --所以000 1.x x x →→→==-=-(12)因为当0x →时,sin ~,sin 2~2,x x x x 所以2222200222200201cos 42sin 2lim lim 2sin tan sin (2sec )2(2)8lim lim (2sec )2sec 84.lim(2sec )x x x x x x x x x x x x x x x x x x xx x →→→→→-=++⋅==++==+ (13)因为ln cos ln[1(cos 1)],ln cos ln[1(cos 1)],ax ax bx bx =+-=+- 而当0x →时,cos 10,cos 10ax bx -→-→故 ln[1(cos 1)]~cos 1,ln[1(cos 1)]~cos 1,ax ax bx bx +--+-- 又当x →0进,2222111cos ~,1cos ~,22ax a x bx b x --所以 22220000221ln cos cos 11cos 2lim lim lim lim .1ln cos cos 11cos 2x x x x a xax ax ax a bx bx bx b b x→→→→--====-- (14)因为当0x →时,222sin 0,0e exx x x →→故 222222sin sin ln ~,ln ~,11e ee e x x xx x xx x ⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭ 所以22222222200022222000020sin ln 1ln(sin e )ln(sin e )ln e e lim lim lim ln(e )2ln(e )ln e ln 1e sin sin sin e lim lim e lim e lim e e 1 1.x x xx x x x x x x x x x x x x x x xx x x x x x x x xx x x x x →→→→→→→⎛⎫+ ⎪+-+-⎝⎭==+-+-⎛⎫+ ⎪⎝⎭⎛⎫⎛⎫==⋅=⋅ ⎪ ⎪⎝⎭⎝⎭=⋅=13.求下列曲线的拐点:23(1) ,3;x t y t t ==+解:22223d 33d 3(1),d 2d 4y t y t x t x t +-== 令22d 0d yx=,得t =1或t =-1 则x =1,y =4或x =1,y =-4当t >1或t <-1时,22d 0d yx >,曲线是凹的,当0<t <1或-1<t <0时,22d 0d yx<,曲线是凸的,故曲线有两个拐点(1,4),(1,-4). (2) x =2a cot θ, y =2a sin 2θ. 解:32d 22sin cos 2sin cos d 2(csc )y a x a θθθθθ⋅⋅==-⋅- 222442222d 11(6sin cos 2sin )sin cos (3tan )d 2(csc )y x a a θθθθθθ=-+⋅=⋅-- 令22d 0d y x =,得π3θ=或π3θ=-, 不妨设a >0tan θ>>时,即ππ33θ-<<时,22d 0d y x >,当tan θ>tan θ<π3θ<-或π3θ>时,22d 0d y x <,故当参数π3θ=或π3θ=-时,都是y的拐点,且拐点为3,2a ⎫⎪⎭及3,2a ⎛⎫⎪⎝⎭.14.利用重要极限10lim(1)e uu u →+=,求下列极限:2221232cot 00113(1)lim ;(2)lim ;12(3)lim(13tan );(4)lim(cos 2);1(5)lim [ln(2)ln ];(6)lim.ln xx x x xx x x x x x x x x x xx x x x+→∞→∞→→→∞→+⎛⎫⎛⎫+ ⎪ ⎪-⎝⎭⎝⎭+-+-解:1112222111(1)lim lim e 1lim 11x xxx x x x x x →∞→∞→∞⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫====+++ ⎪⎢⎥⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦1022121553555(2)lim lim lim 1112222x x x x x x x x x x x -++→∞→∞→∞⎡⎤+⎛⎫⎛⎫⎛⎫⎛⎫==⋅++⎢⎥ ⎪ ⎪ ⎪+ ⎪---⎝⎭⎝⎭⎝⎭⎢⎥-⎝⎭⎣⎦102551051055lim e 1e .1lim 122x x x x x -→∞→∞⎡⎤⎡⎤⎛⎫⎛⎫=⋅=⋅=+⎢⎥ ⎪+⎢⎥ ⎪-⎝⎭⎣⎦⎢⎥-⎝⎭⎣⎦ 22233112cot 323tan 23tan 000(3)lim(13tan )lim e .lim(13tan )(13tan )xx x x x x x x x →→→⎡⎤⎡⎤+===+⎢⎥+⎢⎥⎣⎦⎣⎦[][][]cos 211cos 212221cos 2121cos 2120220333ln ln cos21(cos21)03(cos21)ln 1(cos21)0cos213limlim ln 1(cos21)2sin 3limln lim (4)lim(cos 2)lim elim elim ee e x x x x x x x x xx x x x x x x x x x x x x x x x x ----→→→→⎧⎫⎪⎪⎨⎬+-⎪⎪⎩⎭→→→-+-→-⋅+--⋅=====[]1cos 212201(cos21)sin 6ln e lim 6116ee e .x x x x x -→⎧⎫⎪⎪⎨⎬+-⎪⎪⎩⎭⎛⎫-⋅⋅ ⎪-⨯⨯-⎝⎭===22222(5)lim [ln(2)ln ]lim 2ln lim 2ln 12222lim ln 2ln 1lim 12ln e 2.x x x x xxx x x x x x x x x x x →∞→∞→∞→∞→∞+⎛⎫+-=⋅⋅=+ ⎪⎝⎭⎛⎫⎛⎫⎛⎫==⋅+ ⎪ ⎪+ ⎪ ⎪⎝⎭⎝⎭⎝⎭== (6)令1x t =+,则当1x →时,0t →.1110001111limlim 1.ln ln(1)ln eln lim ln(1)lim(1)x t tt t t x tx t t t →→→→-=-=-=-=-=-+⎡⎤++⎢⎥⎣⎦15.计算下列积分(n 为正整数): (1)1;n x ⎰解:令sin x t =,d cos d x t t =, 当x =0时t =0,当x =1时t=π2, ππ12200sin cos d sin d cos n n n tx t t t t t==⎰⎰⎰由第四章第五节例8知11331π, 24221342, 253n n n n n n x n n n n n --⎧⋅⋅⋅⋅⋅⎪⎪-=⎨--⎪⋅⋅⋅⋅⎪-⎩⎰为偶数, 为奇数.(2)π240tan d .n x x ⎰解:πππ2(1)22(1)22(1)44400π2(1)411tantan d tansec d tan d 1tan d tan 21n n n n n n n I x x x x x x x xx x I I n ------==-=-=--⎰⎰⎰⎰由递推公式 1121n n I I n -+=-可得 111(1)(1)[(1)].43521n nn I n π--=---+-+-16.用定义判断下列广义积分的敛散性,若收敛,则求其值:22π11(1)sin d x x x+∞⎰; 解:原式=22ππ1111lim sin d lim coslim cos1.b bb b b x bx x →+∞→+∞→+∞⎛⎫-=== ⎪⎝⎭⎰ 2d (2);22xx x +∞-∞++⎰解:原式=02200d(1)d(1)arctan(1)arctan(1)(1)1(1)1x x x x x x +∞+∞-∞-∞+++=+++++++⎰⎰πππππ.4242⎛⎫=-+-=- ⎪⎝⎭(3)e d n x x x +∞-⎰(n 为正整数)解:原式=10e d deen x n xn xn x x x x +∞+∞+∞----+-=-⎰⎰100e d !e d !n x x n x x n x n +∞+∞---=+===⎰⎰(4)(0)a a >⎰;解:原式=00000πlim lim arcsin lim arcsin .12a a xa a εεεεεε+++--→→→⎛⎫===- ⎪⎝⎭⎰e1(5)⎰;解:原式=()e e 0110πlim arcsin(ln )lim lim arcsin .ln(e )2x εεεεεε+++--→→→===-⎰1(6)⎰.解:原式=110+⎰2121221111202lim 2lim πππlim lim 2222π.424εεεεεε++-→→→→=+⎛⎫=+=⋅+=- ⎪⎝⎭⎰⎰17.设星形线的参数方程为x =a cos 3t ,y =a sin 3t ,a >0求d) 星形线所围面积;e) 绕x 轴旋转所得旋转体的体积; f) 星形线的全长.解:(1)D =4⎠⎛0ay d x =4⎠⎜⎛π2a sin 3t d ()a cos 3t =12a 2⎠⎜⎛0π2sin 4t cos 2t d t=12a 2⎠⎜⎛0π2()sin 4t−sin 6t d t =38πa 2. (2)V x =2π⎠⎛0a y 2d x =2π⎠⎜⎛π2()a sin 3t 2d ()a cos 3t=6πa 3⎠⎜⎛0π2 sin 7t cos 2t d t=32105πa 3(3)x t ′=-3a cos 2t sin t y t ′=3a sin 2t cos t x t ′2+y t ′2=9a 2sin 2t cos 2t ,利用曲线的对称性,l =4⎠⎜⎛0π2x t ′2+ y t ′2d t =4⎠⎜⎛π2 3a sin 2t cos 2t d t=12a ⎠⎜⎛0π214sin 22t d t =6a ⎠⎜⎛0π2 sin2t d t =[]3a ()-cos2t π2=6a .18.求下列函数在[-a ,a ]上的平均值:(1)()f x=解:200111π1.arcsin 2422aa a a x y x x a a a a -⎡====+⎢⎣⎰⎰ (2) 2().f x x =解:2223001111d d .233aa a a a y x x x x x a a a -⎡⎤====⎢⎥⎣⎦⎰⎰19.将()2132f x x x =++展开成(x +4)的幂级数. 解:21113212x x x x =-++++ 而()()()011113411431314413334713nn nn n x x x x x x x ∞=∞+==+-++=-⋅+-+⎛+⎫⎛⎫=-< ⎪⎪⎝⎭⎝⎭+=--<<∑∑又()()()0101122411421214412224622nn nn n x x x x x x x ∞=∞+==+-++=-+-+⎛+⎫⎛⎫=-< ⎪⎪⎝⎭⎝⎭+=--<<-∑∑所以()()()()()2110011013244321146223n nn n n n nn n n f x x x x x x x ∞∞++==∞++==++++=-+⎛⎫=-+-<<- ⎪⎝⎭∑∑∑20.求抛物面壳221()(01)2z x y z =+≤≤的质量,此壳的面密度大小为z ρ=. 22221:():22xy z x y D x y ∑=++≤221d d ()d 2xy D M s z s x y x y ∑∑ρ===+⎰⎰⎰⎰⎰⎰12π222122225322220d (1)d 2π1)(1)(1)2π2π221)(1)(1)21553r r r r r r d r r r θ=+=+-++⎡==+-+⎢⎥⎣⎦⎰21.求面密度为0ρ的均匀半球壳x 2+y 2+z 2=a 2(z ≥0)对于z 轴的转动惯量。

2019新考研高数模拟测试考题(含答案)

2019新考研高数模拟测试考题(含答案)

2019最新考研数学模拟试题(含答案)学校:__________考号:__________一、解答题1.利用被积函数奇偶性计算下列积分值(其中a 为正常数)(1) sin d;||aa x x x -⎰ 解:因sin ||x x 为[-a , a ]上的奇函数,故 sin d 0.||a a x x x -=⎰(2)ln(aa x x -+⎰;解:因为ln(ln(x x -=-即被积函数为奇函数,所以原式=0.12212sin tan (3)d ln(1)3cos3x x x x x -⎡⎤+-⎢⎥+⎣⎦⎰; 解:因为2sin tan 3cos3x x x+为奇函数,故 原式=111222111222d 0ln(1)d ln(1)1x x x x x x x ---++-=--⎰⎰ ()121231ln 3ln 2 1.ln 3ln 2ln(1)22x x -==----+- π242π23(4)sin d sin ln 3x x x x x -+⎛⎫+ ⎪-⎝⎭⎰. 解:因为3ln3x x +-是奇函数,故 原式=ππ6622π02531π5sin d 2sin d 2π642216x x x x -==⋅⋅⋅⋅=⎰⎰2.求下列欧拉方程的通解:2(1)0x y xy y '''+-=解:作变换e t x =,即t =ln x ,原方程变为 (1)0D D y Dy y -+-=即 22d 0d y y t-= 特征方程为 210r -=121,1r r =-=故 12121e e t t y c c c c x x-=+=+. 23(2)4x y xy y x '''+-=.解:设e t x =,则原方程化为3(1)4e t D D y Dy y -+-=232d 4e d t y y t-= ① 特征方程为 240r -=122,2r r =-=故①所对应齐次方程的通解为2212e e t t y c c -=+又设*3e ty A =为①的特解,代入①化简得 941A A -=15A =, *31e 5t y = 故 223223121211e e e .55t t t y c c c x c x x --=++=++3.计算正弦曲线y =sin x 上点π,12⎛⎫⎪⎝⎭处的曲率. 解:cos ,sin y x y x '''==- . 当π2x =时,0,1y y '''==- , 故 23/21.(1)y k y ''=='+4.设总收入和总成本分别由以下两式给出:2()50.003,()300 1.1R q q q C q q =-=+其中q 为产量,0≤q ≤1000,求:(1)边际成本;(2)获得最大利润时的产量;(3)怎样的生产量能使盈亏平衡?。

2019考研高等数学模拟训练考题(含参考答案)

2019考研高等数学模拟训练考题(含参考答案)

2019最新考研数学模拟试题(含答案)学校:__________ 考号:__________一、解答题1. 确定下列函数的单调区间:(1) 3226187y x x x =---;解:所给函数在定义域(,)-∞+∞内连续、可导,且2612186(1)(3)y x x x x '=--=+-可得函数的两个驻点:121,3x x =-=,在(,1),(1,3),(3,)-∞--+∞内,y '分别取+,–,+号,故知函数在(,1],[3,)-∞-+∞内单调增加,在[1,3]-内单调减少.(2) 82 (0)y x x x=+>; 解: 函数有一个间断点0x =在定义域外,在定义域内处处可导,且282y x '=-,则函数有驻点2x =,在部分区间(0,2]内,0y '<;在[2,)+∞内y '>0,故知函数在[2,)+∞内单调增加,而在(0,2]内单调减少.(3) ln(y x =;解: 函数定义域为(,)-∞+∞,0y '=>,故函数在(,)-∞+∞上单调增加. (4) 3(1)(1)y x x =-+;解: 函数定义域为(,)-∞+∞,22(1)(21)y x x '=+-,则函数有驻点: 11,2x x =-=,在1(,]2-∞内, 0y '<,函数单调减少;在1[,)2+∞内, 0y '>,函数单调增加. (5) e (0,0)n x y x n x -=>≥;解: 函数定义域为[0,)+∞,11e e e ()n x n x x n y nx x x n x -----'=-=-函数的驻点为0,x x n ==,在[0,]n 上0y '>,函数单调增加;在[,]n +∞上0y '<,函数单调减少.(6) sin 2y x x =+;解: 函数定义域为(,)-∞+∞,πsin 2, [π,π], ,2πsin 2, [π,π], .2x x x n n n y x x x n n n ⎧+∈+∈⎪⎪=⎨⎪-∈-∈⎪⎩Z Z 1) 当π[π,π]2x n n ∈+时, 12cos 2y x '=+,则 1π0cos 2[π,π]23y x x n n '≥⇔≥-⇔∈+; πππ0cos 2[π,π]232y x x n n '≤⇔≤-⇔∈++. 2) 当π[π,π]2x n n ∈-时, 12cos 2y x '=-,则 1ππ0cos 2[π,π]226y x x n n '≥⇔≤⇔∈-- 1π0cos 2[π,π]26y x x n n '≤⇔≥⇔∈-. 综上所述,函数单调增加区间为πππ[,] ()223k k k z +∈, 函数单调减少区间为ππππ[,] ()2322k k k z ++∈. (7) 54(2)(21)y x x =-+.解: 函数定义域为(,)-∞+∞.4453345(2)(21)4(2)(21)2(21)(1811)(2)y x x x x x x x '=-++-+⋅=+-- 函数驻点为123111,,2218x x x =-==, 在1(,]2+∞-内, 0y '>,函数单调增加, 在111[,]218-上, 0y '<,函数单调减少, 在11[,2]18上, 0y '>,函数单调增加, 在[2,)+∞内, 0y '>,函数单调增加.故函数的单调区间为: 1(,]2-∞-,111[,]218-,11[,)18+∞.2.求下列线性微分方程满足所给初始条件的特解:πd 11(1)sin ,1d x y y x y x x x =+== ;。

2019新考研高数模拟考试考题(含解析)

2019新考研高数模拟考试考题(含解析)

2019最新考研数学模拟试题(含答案)学校:__________考号:__________一、解答题1.讨论下列广义积分的敛散性:2d (1)(ln )kx x x +∞⎰; 解:原式=2122112,1ln(ln )1d(ln ),1(ln )1(ln )1(ln 2),1(ln )11k k k kk x x k x k x k x kk +∞+∞-+∞-+∞-⎧=∞=⎪⎪⎪=∞<=⎨-⎪⎪=>⎪--⎩⎰ 故该广义积分当1k >时收敛;1k ≤时发散.d (2)()()b ka xb a b x >-⎰ . 解:原式=1100011lim ()()1,1lim ()d()1lim 1ln()b k k b a k a b a k b x b a k k b x b x k k b x εεεεεε+++-----→→-→⎧>⎧⎪⎪=-⎨--⎪-<---=⎪⎨-⎩⎪⎪-=-⎩⎰ 发散,发散, 综上所述,当k <1时,该广义积分收敛,否则发散.2.证明:22d d x x y y x y ++在整个xOy 平面内除y 轴的负半轴及原点外的开区域G 内是某个二元函数的全微分,并求出这样的一个二元函数.证:22x P x y =+,22y Q x y =+,显然G 是单连通的,P 和Q 在G 内具有一阶连续偏导数,并且.()2222∂∂-==∂∂+P Q xy y x x y ,(x ,y )∈G 因此22d d x x y y x y ++在开区域G 内是某个二元函数u (x ,y )的全微分. 由()()22222222d d 11ln 22d x y x x y y d x y x y x y ++⎡⎤==+⎢⎥++⎣⎦知()()221ln ,2u x y x y =+.3.求下列函数的高阶微分:⑴y 2d y ; ⑵ xy x =,求2d y ;⑶ cos 2y x x =⋅,求10d y ; ⑷ 3ln y x x =⋅,求d n y ; ⑸ 2323cos sin 0r a θθ⋅-=(a 为常数),求2d r .解:⑴d d y x x '==, 2d d y x '=3222(1)d .x x -=+⑵ (ln )(ln )(1ln ).x y y y y x x x x '''===+21[(1ln )],x y x x x''=++ 故 2221d [(1ln )]d (0).x y x x x x x=++>⑶ 由莱布尼兹公式,得 1010(10)10()(10)101001091010d (cos 2)d [C cos 2]d 10π9[2cos(2)102cos(2π)]d 221024(cos 25sin 2)d .i i i i y x x x x x x x x x x x x x x -====++⋅⋅+=-+∑ ⑷ 由莱布尼兹公式,得3()13(1)23(2)33(3)31223124d [(ln )C ()(ln )C ()(ln )C ()(ln )]d (1)!(2)!(1)(3)![(1)3(1)6(1)2(1)(2)( +6(1)6n n n n n n n n nn n n n n n n y x x x x x x x x x n n n n n x n x x x x x n n n n ---------'''=⋅+⋅+⋅'''+⋅----=⋅-⋅+⋅⋅-⋅+⋅⋅----⋅⋅-334)!]d [(1)6(4)!]d .n n n n n x xn x x --=-⋅⋅- ⑸ 223tan r a θ=两端求导,得2222323tan sec 2rr a r θθθ''=⋅⇒=等式两端再求导得 22232223(2tan sec 4tan sec )r rr a θθθθ'''+=⋅+⋅解得24314sin 4cos r a θθ+''=。

2019年考研高数模拟训练题目(含参考答案)

2019年考研高数模拟训练题目(含参考答案)

2019最新考研数学模拟试题(含答案)学校:__________ 考号:__________一、解答题1.把长为10m ,宽为6m ,高为5m 的储水池内盛满的水全部抽出,需做多少功?解:如图19,区间[x ,x +d x ]上的一个薄层水,有微体积d V =10·6·d x(19)设水的比重为1,,则将这薄水层吸出池面所作的微功为d w =x ·60g d x =60gx d x . 于是将水全部抽出所作功为w =⎠⎛0560gx d x=60g 2x 2⎪⎪5=750g (KJ) .2.一点沿对数螺线e a r ϕ=运动,它的极径以角速度ω旋转,试求极径变化率. 解: d d d e e .d d d a a r r a a t tϕϕϕωωϕ=⋅=⋅⋅=3.一动点沿抛物线y =x 2运动,它沿x 轴方向的分速度为3 cm ·s -1,求动点在点(2,4)时,沿y 轴的分速度.解: d d d 236.d d d y y x x x t x t=⋅=⋅= 当x =2时,d 6212d y t =⨯= (cm ·s -1).4.计算抛物线y =4x -x 2在它的顶点处的曲率.解:y =-(x -2)2+4,故抛物线顶点为(2,4)当x =2时, 0,2y y '''==- ,故 23/22.(1)y k y ''=='+5.利用洛必达法则求下列极限:⑴ πsin 3lim tan 5x x x →; ⑵ 3π2ln sin lim (2)x x x π→-; ⑶ 0e 1lim (e 1)x x x x x →---; ⑷ sin sin lim x a x a x a→--; ⑸ lim m mn n x a x a x a →--; ⑹ 1ln(1)lim cot x x arc x→+∞+; ⑺ 0ln lim cot x x x +→; ⑻ 0lim sin ln x x x +→; ⑼ 0e 1lim()e 1x x x x →--; ⑽ 01lim(ln )x x x+→; ⑾ 2lim (arctan )πx x x →+∞⋅; ⑿ 10lim(1sin )x x x →+; ⒀ 0lim[ln ln(1)]x x x +→⋅+; ⒁lim )x x →+∞; ⒂ sin 0e e lim sin x x x x x →--; ⒃ 210sin lim()x x x x→; ⒄ 1101lim[(1)]e x x x x →+.解:⑴ 原式=2π3cos33lim 5sec 55x x x →=-. ⑵ 原式=2ππ221cot 1csc 1lim lim 4π-2428x x x x x →→--=-=--. ⑶ 原式=000e 1e 11lim lim lim e 1e 2e e 22x x x x x x x x x x x x →→→-===-+++. ⑷ 原式=cos lim cos 1x a x a →=. ⑸ 原式=11lim m m n n x a mx m a nx n---→=. ⑹ 原式=22221()11lim lim 111x x x x x x x x x →+∞→+∞⋅-++==+-+.。

2019考研高等数学模拟训练试题(含解析)

2019考研高等数学模拟训练试题(含解析)

2019最新考研数学模拟试题(含答案) 学校:__________ 考号:__________一、解答题1.设y =f (x )在x =x 0的某邻域内具有三阶连续导数,如果00()0,()0f x f x '''==,而0()0f x '''≠,试问x =x 0是否为极值点?为什么?又00(,())x f x 是否为拐点?为什么? 答:因00()()0f x f x '''==,且0()0f x '''≠,则x =x 0不是极值点.又在0(,)U x δ中,000()()()()()()f x f x x x f x x f ηη''''''''''=+-=-,故()f x ''在0x 左侧与0()f x '''异号,在0x 右侧与0()f x '''同号,故()f x 在x =x 0左、右两侧凹凸性不同,即00(,())x f x 是拐点.2.求下列隐函数的导数:⑴ 3330x y axy +-=; ⑵ ln()x y xy =;⑶ e e 10y x x y -=; ⑷ 22ln()2arctany x y x +=; ⑸ e x y xy +=解:⑴ 两边求导,得:2233330x y y ay axy ''+⋅--=解得 22ay x y y ax-'=-. ⑵ 两边求导,得:11ln()()y xy y y xy xy ''=+⋅+ 解得 (ln ln 1)x y y x x y -'=++. ⑶ 两边求导,得:e e e e 0y y x x x y y y ''+⋅++=解得 e e =e ey xy x y y x +'-+. ⑷ 两边求导,得:222211(22)21()y x y x yy y x y x x'-'⋅+=⋅⋅++ 解得 =x y y x y+'-. ⑸ 两边求导,得:e (1)x y y xy y +''+=+解得 e =e x y x yy y x ++-'-.3.用对数求导法求下列函数的导数:⑴y = 解:1(ln )[ln(2)4ln(3)5ln(1)]2y y y y x x x '''=⋅=⋅++--+45(3)145[](1)2(2)31x x x x x -=--++-+ ⑵ cos (sin );x y x =解: 2cos (ln )(cos ln sin )1 [(sin )ln sin cos cos ]sin cos (sin )(sin ln sin )sin x y y y y x x y x x x x x x x x x x'''==⋅=-+⋅⋅=- ⑶2x y = 解:211(ln )[2ln(3)ln(5)ln(4)]22111 ].32(5)2(4)x y y y y x x x x x x x '''==++-+--=+--++-4.求下列函数在指定点的高阶导数:⑴()f x =求(0)f ''; ⑵ 21()e ,x f x -=求(0)f '',(0)f ''';⑶ 6()(10),f x x =+求(5)(0)f ,(6)(0)f .。

2019新版考研高数模拟训练考题(含答案解析)

2019新版考研高数模拟训练考题(含答案解析)

2019最新考研数学模拟试题(含答案)学校:__________ 考号:__________一、解答题1.求下列函数的最大值、最小值:254(1) (), (,0)f x x x x=-∈-∞; 解:y 的定义域为(,0)-∞,322(27)0x y x +'==,得唯一驻点x =-3 且当(,3]x ∈-∞-时,0y '<,y 单调递减;当[3,0)x ∈-时,0y '>,y 单调递增, 因此x =-3为y 的最小值点,最小值为f (-3)=27. 又lim ()x f x →-∞=+∞,故f (x )无最大值.(2) () [5,1]f x x x =+∈-;解:10y '==,在(5,1)-上得唯一驻点34x =,又 53,(1)1,(5)544y y y ⎛⎫==-= ⎪⎝⎭ ,故函数()f x 在[-5,1]上的最大值为545. 42(3) 82, 13y x x x =-+-≤≤.解:函数在(-1,3)中仅有两个驻点x =0及x =2,而 y (-1)=-5, y (0)=2, y (2)=-14, y (3)=11,故在[-1,3]上,函数的最大值是11,最小值为-14.2.设()y f x =是由方程组2323,e sin 1,y x t t y t ⎧=++⎪⎨=+⎪⎩ 所确定的隐函数,求202d d t y x =.解:分别对已知方程组的两边关于x 求导,得:d d 162,d d d d de sin e cos ,d d d y yt t t x x y y tt t x x x ⎧=⋅+⎪⎪⎨⎪=+⎪⎩再对x 求一次导,得2222222222d dd 06()62,d d d d d dyd d d (e )sin 2e cos e sin ()e cos ,d d d d d d y y y y x t t tt x x x y y tt tt t t t x x x x x x ⎧=++⎪⎪⎨⎪'=+⋅⋅-+⋅⎪⎩ 将00,1t t y ===代入上述各式,得002022202d 1d e, ,d 2d 2d 3, d 4d e 3e.d 24t t t t tyx x t x y x =======-=-3.设函数()f x 在[,]a b 上连续,在(,)a b 内可导,且lim(),x a f x A +→'=试证:()f a A +'=. 证明:()()()lim x a f x f a f a x a ++→-'=-()lim lim ()1x a x a f x f x A ++→→''===.4.求由下列方程确定的隐函数()y y x =的微分d y : ⑴ 1e y y x =+; ⑵ 22221x y a b +=;⑶ 1sin 2y x y =+; ⑷ 2arccos y x y -=.解:⑴ 对等式两端微分,得d e d d(e )y y y x x =+即d e d e d y y y x x y =+ 于是e d d .1e yy y x x =-⑵ 对等式两端微分,得22112d 2d 0x x y y a b ⋅+⋅= 得22d d .b xy x a y =-⑶ 对等式两端微分,得。

2019新版考研高等数学模拟考试试题(含答案解析)

2019新版考研高等数学模拟考试试题(含答案解析)

2019最新考研数学模拟试题(含答案)学校:__________考号:__________一、解答题1.a , b , c 取何实数值才能使201lim sin x b x t c x ax →=-⎰ 成立. 解:因为0x →时,sin 0x ax -→而该极限又存在,故b =0.用洛必达法则,有220000,1,lim lim 2cos cos lim 2, 1.sin x x x a x x x x a x a a x→→→≠⎧⎪==⎨--=-=⎪-⎩ 所以 1,0,2a b c ===-或 1,0,0a b c ≠==.2.当Σ为xOy 面内的一个闭区域时,曲面积分()d d ,,R x y x y z ∑⎰⎰与二重积分有什么关系? 解:因为Σ:z =0,在xOy 面上的投影区域就是Σ故()()d d d d ,,,,0R x y R x y x y z x y ∑∑=±⎰⎰⎰⎰当Σ取的是上侧时为正号,Σ取的是下侧时为负号.3.求n 次多项式1101n n n n y a x a xa x a --=++++的n 阶导数. 解: 1()()1()()()()0100()()()()=()=!n n n n n n n n n n n y a x a x a x a a x a n --=++++⋅ 4.设()ln(1)f x x =+,求()().n fx 解:()1(1)!(ln )(1)n n nn x x --=-⋅ ()()1(1)!()[ln(1)](1)(1)n n n nn f x x x --∴=+=-⋅+.5.求下列函数的高阶导数:⑴ e sin ,x y x =⋅求(4)y; ⑵ 22e ,x y x =⋅求(6)y ; ⑶ 2sin ,y x x =⋅求(80)y .解:⑴e sin e cos e (sin cos )x x xy x x x x '=⋅+⋅=+(4)e (sin cos )e (cos sin )2cos e 2e (cos sin )2e (cos sin )2e (sin cos )=4e sin x x xx x x x y x x x x x y x x y x x x x x''=++-=⋅'''=-=-+---⑵ 6(6)2(6)260(e )()i x i i i y C x -==∑22(6)22(5)22(4)622524222(e )6()(e )15()(e )2e 622e 1522e 32e (21215)x x x x x xx x x x x x x x '''=++=+⋅⋅+⋅⋅=++⑶ 80(80)2()(80)800()(sin )i i i i y C x x -==∑2(80)(79)(78)22(sin )802(sin )31602(sin )πππsin(80)+160sin (79)6320sin (78)222sin 160cos 6320sin .x x x x x x x x x x x x x x x =+⋅⋅+⋅⋅=⋅+⋅⋅+⋅++⋅=--6.球的半径以速率v 改变,球的体积与表面积以怎样的速率改变?解: 324d π,π,.3d r V r A r v t=== 2d d d 4πd d d d d d 8πd d d V V r r v t r t A A r r v t r t=⋅=⋅=⋅=⋅7.一点沿曲线2cos r a ϕ=运动,它的极径以角速度ω旋转,求这动点的横坐标与纵坐标的变化率.解: 22cos 2cos sin sin 2x a y a a ϕϕϕϕ⎧=⎨==⎩ d d d 22cos (sin )2sin 2,d d d d d d 2cos 22cos .d d d x x a a t t y y a a t tϕϕϕωωϕϕϕϕωωϕϕ=⋅=⋅⋅-⋅=-=⋅=⋅=8.求下列初等函数的边际函数、弹性和增长率:(1) y =ax +b ;(其中a ,b ∈R ,a ≠0)解:y ′=a 即为边际函数.弹性为: 1Ey ax a x Ex ax b ax b =⋅⋅=++,。

2019新版考研高等数学模拟考试题目(含答案)

2019新版考研高等数学模拟考试题目(含答案)

2019最新考研数学模拟试题(含答案) 学校:__________考号:__________一、解答题1.求由参数式2020sin d cos d t t x u u y u u ⎧=⎪⎨⎪=⎩⎰⎰所确定的函数y 对x 的导数d d y x . 解:222d d cos d cot.d d sin d yy t t t x x tt===2.求面密度为0ρ的均匀半球壳x 2+y 2+z 2=a 2(z ≥0)对于z 轴的转动惯量。

解:222::.xy z D x y a ∑=+≤d d d.sx y x y==22220022222π22000002220034222000()d d d d π()π()42π.()233xy z D a aa a I x y s a x y a r r a a r a d a r a a a r a ∑ρρρθρρπρρ=+===-=-⎡==--⎢⎣⎰⎰⎰⎰⎰⎰⎰⎰3.利用单调有界准则证明下列数列有极限,并求其极限值:1111(1)1,2,; (2)1,1,1,2,.1n n n n x xx n x xn x ++=====+=+ 证: (1)122x =<,不妨设2k x <,则12k x +<=.故对所有正整数n 有2n x <,即数列{}n x 有上界.又1n n n x x x +-=0>,又由2n x <从而10n n x x +->即1n n x x +>, 即数列{}n x 是单调递增的.由极限的单调有界准则知,数列{}n x 有极限.设lim n n x a →∞=,则a =于是22a a =,2,0a a ==(不合题意,舍去),lim 2n n x →∞∴=. (2) 因为110x =>,且111n n nx x x +=++, 所以02n x <<, 即数列有界 又 111111111(1)(1)n n n n n n n n n n x x x x x x x x x x --+---⎛⎫⎛⎫++-=-= ⎪ ⎪++++⎝⎭⎝⎭由110,10n n x x -+>+>知1n n x x +-与1n n x x --同号,从而可推得1n n x x +-与21x x -同号,而 1221131,1,022x x x x ==+=-> 故10n n x x +->, 即1n n x x +>所以数列{}n x 单调递增,由单调有界准则知,{}n x 的极限存在.设lim n n x a →∞=, 则11a a a=++, 解得1122a a +-==(不合题意,舍去). 所以1lim 2n n x →∞+=4.怎样选取a , b 的值,使f (x )在(-∞,+∞)上连续?π1,,e ,0,2(1)()(2)()π,0;sin ,.2xax x x f x f x a x x x b x ⎧+<⎪⎧<⎪==⎨⎨+≥⎩⎪+≥⎪⎩解:(1)()f x 在(,0),(0,)-∞+∞上显然连续,而00lim ()lim(),x x f x a x a ++→→=+= 00lim ()lim e 1,x x x f x --→→== 且(0)f a =, ∴当(0)(0)(0)f f f -+==,即1a =时,()f x 在0x =处连续,所以,当1a =时,()f x 在(,)-∞+∞上连续.。

2019考研高等数学模拟训练题目(含解析)

2019考研高等数学模拟训练题目(含解析)

2019最新考研数学模拟试题(含答案)学校:__________考号:__________一、解答题1.作出下列函数的图形:2(1)()1xf x x =+; 解:函数的定义域为(-∞,+∞),且为奇函数,2222222223121(1)(1)2(3)(1)xx x y x x x x y x +--'==++-''=+令0y '=,可得1x =±, 令0y ''=,得x =0,列表讨论如下:函数有极大值1(1)2f =,极小值1(1)2f -=-,有3个拐点,分别为,⎛ ⎝(0,0),4⎭,作图如上所示.(2) f (x )=x -2arctan x解:函数定义域为(-∞,+∞),且为奇函数,2222114(1)y x xy x '=-+''=+ 令y′=0,可得x =±1, 令y″=0,可得x =0.列表讨论如下:又()2limlim(1arctan )1x x f x x x x→∞→∞=-= 且 lim[()]lim (2arctan )πx x f x x x →+∞→+∞-=-=-故πy x =-是斜渐近线,由对称性知πy x =+亦是渐近线.函数有极小值π(1)12y =-,极大值π(1)12y -=-.(0,0)为拐点.作图如上所示. 2(3) ()1x f x x=+;解:函数的定义域为,1x R x ∈≠-.22232(1)(2)(1)(1)(1)2(1)x x x x x y x x x y x +-+'==≠-++''=+令0y '=得x =0,x =-2当(,2]x ∈-∞-时,0,()y f x '>单调增加; 当[2,1)x ∈--时,0,()y f x '<单调减少; 当(1,0]x ∈-时,0,()y f x '<单调减少; 当[0,)x ∈+∞时,0,()y f x '>单调增加, 故函数有极大值f (-2)=-4,有极小值f (0)=0又211lim ()lim1x x x f x x →-→-==∞+,故x =-1为无穷型间断点且为铅直渐近线. 又因()lim 1x f x x →∞=, 且2lim(())lim 11x x x f x x x x →∞→∞⎡⎤-==--⎢⎥+⎣⎦, 故曲线另有一斜渐近线y =x -1. 综上所述,曲线图形为:。

2019考研高等数学模拟训练考题(含解析)

2019考研高等数学模拟训练考题(含解析)

2019最新考研数学模拟试题(含答案)学校:__________ 考号:__________一、解答题1.求下列函数的最大值、最小值:254(1) (), (,0)f x x x x=-∈-∞; 解:y 的定义域为(,0)-∞,322(27)0x y x +'==,得唯一驻点x =-3 且当(,3]x ∈-∞-时,0y '<,y 单调递减;当[3,0)x ∈-时,0y '>,y 单调递增, 因此x =-3为y 的最小值点,最小值为f (-3)=27. 又lim ()x f x →-∞=+∞,故f (x )无最大值.(2) () [5,1]f x x x =+∈-;解:10y '==,在(5,1)-上得唯一驻点34x =,又 53,(1)1,(5)544y y y ⎛⎫==-= ⎪⎝⎭ ,故函数()f x 在[-5,1]上的最大值为545. 42(3) 82, 13y x x x =-+-≤≤.解:函数在(-1,3)中仅有两个驻点x =0及x =2,而 y (-1)=-5, y (0)=2, y (2)=-14, y (3)=11,故在[-1,3]上,函数的最大值是11,最小值为-14.2.求下列微分方程的通解:(1)20y y y '''+-=;解:特征方程为 220r r +-=解得 121,2r r ==-故原方程通解为 212e e .x x y c c -=+(2)0y y ''+=;解:特征方程为 210r +=解得 1,2r i =±故原方程通解为 12cos sin y c x c x =+22d d (3)420250d d x x x t t-+=; 解:特征方程为 2420250r r -+= 解得 1252r r == 故原方程通解为 5212()e t x c c t =+.(4)450y y y '''-+=;解:特征方程为 2450r r -+= 解得 1,22r i =±故原方程通解为 212e (cos sin )x y c x c x =+.(5)440y y y '''++=;解:特征方程为 2440r r ++= 解得 122r r ==-故原方程通解为 212e ()x y c c x -=+(6)320y y y '''-+=.解:特征方程为 2320r r -+= 解得 1,2r r ==故原方程通解为 212e e x x y c c =+.3.讨论下列函数在指定点的连续性与可导性: (1) sin ,0;y x x == 解:因为0,0lim 0x x y y =→==所以此函数在0x =处连续. 又00()(0)sin (0)lim lim 1,0x x f x f x f x x ---→→--'===-- 00()(0)sin (0)lim lim 1,0x x f x f x f x x +++→→-'===- (0)(0)f f -+''≠,故此函数在0x =处不可导. (2) 21sin ,0, 0;0,0,x x y x x x ⎧≠⎪==⎨⎪=⎩ 解:因为201lim sin 0(0),x x y x →==故函数在0x =处连续.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019最新考研数学模拟试题(含答案) 学校:__________ 考号:__________
一、解答题
1.试决定22(3)y k x =-中的k 的值,使曲线的拐点处的法线通过原点.
解:22
4(3),12(1)y kx x y k x '''=-=- 令0y ''=,解得x =±1,代入原曲线方程得y =4k ,
只要k ≠0,可验证(1,4k ),(-1,4k )是曲线的拐点. 18x k y =±'=±,那么拐点处的法线斜率等于
18k ,法线方程为18y x k
=. 由于(1,4k ),(-1,4k )在此法线上,因此 148k k
=±, 得22321, 321k k ==-(舍去)

8k ==±
2.求22224428u x y z x y x y z =+++-+-在点,,,1,1,1,1,1,1(000)()()O A B ---的梯度,并求梯度为零的点.
解:()()()()
54,2,8,2,10,6,10,6,10,3,,42-------
3. 试求曲线e
x y -=在点(0,1)及点(-1,0)处的切线方程和法线方程.
解:231e e (1)3
x x y x ---'=-⋅+ 012. 3x x y y ==-''=-=∞
故在点(0,1)处的切线方程为:
21(0)3
y x -=--,即2330x y +-= 法线方程为:21(0)3
y x -=-,即3220x y -+= 在点(-1,0)处的切线方程为:1x =-
法线方程为:0y =
4. 设()f x 可导,求下列函数y 的导数
d d y x : ⑴ 2()y f x =
解:22()y xf x ''=
⑵ 22(sin )(cos )y f x f x =+
解:222sin cos (sin )2cos (sin )(cos )y x xf x x x f x '''=+- 22sin 2[(sin )(cos )]x f x f x ''=-
5.设()ln(1)f x x =+,求()().n f
x 解:()1(1)!(ln )(1)n n n
n x x --=-⋅ ()()1(1)!()[ln(1)](1)(1)n n n n
n f x x x --∴=+=-⋅+.
6.利用泰勒公式求下列极限:
⑴ 30sin lim ;x x x x →- ⑵ tan 0e 1lim ;x x x →- (3) 21lim[ln(1)].x x x x
→∞-+ 解:⑴ 3
4sin 0()3!
x x x x =-+ 3
43300[0()]sin 13!lim lim 6
x x x x x x x x x x →→--+-∴== ⑵tan 2e 1tan 0(tan )x x x =++
tan 200e 11tan 0(tan )1lim lim 1x x x x x x x
→→-++-∴== (3) 令1x t
=,当x →∞时,0t →, 2
222022011111lim[2ln(1)]lim[ln(1)]lim{[()]}21()1lim().22
x t t t t x x t t o t x t t t t o t t →∞→∞→→-+=-+=--+=-=
7.求函数1()f x x
=在01x =-处的n 阶泰勒公式. 解: 1
21211(1)(1)1(1)n n n n n x x x x x x θ+++=--++-+-++。

相关文档
最新文档