2017-2018年邢台市八年级上学期期末数学(冀教版)试卷
河北省邢台市八年级上学期数学期末考试试卷
河北省邢台市八年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、选择题(每小题3分,共30分) (共10题;共30分)1. (3分) (2015八上·中山期末) 下列图形是轴对称图形的是()A .B .C .D .2. (3分)(2019·海门模拟) 下列运算正确的是()A . 3x2+4x2=7x4B . 2x3·3x3=6x3C . x6÷x3=x2D . (x2)4=x83. (3分) (2017八下·万盛开学考) 已知三角形的两边分别为4和10,则此三角形的第三边可能是()A . 4B . 6C . 8D . 164. (3分)(2020·平顶山模拟) 已知长度单位1纳米米,目前发现一种新型冠状病毒的直径为154纳米.用科学记数法表示154纳米是()A . 米B . 米C . 米D . 米5. (3分) (2015八下·萧山期中) 一个多边形的内角和等于外角和的一半,那么这个多边形是()A . 三角形B . 四边形C . 五边形D . 六边形6. (3分) (2020八上·阳东月考) 能把一个三角形分成面积相等的两个三角形的是().A . 高B . 中线和角平分线C . 角平分线D . 中线7. (3分) (2019七下·漳州期中) 要使式子成为一个完全平方式,则需添上()A .B .C .D .8. (3分) (2017八上·江门月考) 如果将一副三角板按如图方式叠放,那么∠1等于()A . 120°B . 105°C . 60°D . 45°9. (3分)下列算式能用平方差公式计算的是()A . (﹣m﹣n)(﹣m+n)B .C . (3x﹣y)(﹣3x+y)D . (2a+b)(2b﹣a)10. (3分) (2020七下·曲靖期末) 将一个长方形纸片按如图所示折叠,若,则的度数是()A . 60°B . 65°C . 70°D . 75°二、填空题(每小题3分,共18分) (共6题;共18分)11. (3分) (2019八下·新余期末) 式子有意义,则x的取值范围是________.12. (3分)在平面直角坐标系xOy中,点A(2,-3)关于x轴对称的点B的坐标是________13. (3分) (2020七下·江苏月考) 如图,BD∥CE,∠1=85°,∠2=37°,则∠A=________°.14. (3分)(2017·绵阳) 关于x的分式方程 = 的解是________.15. (3分) (2020八下·金山月考) 方程的根是________16. (3分) (2019八上·德阳月考) 如图,在中,,、是内两点,平分,,若,,则的长为________.三、解答题(共8小题,共52分) (共7题;共46分)17. (8分)(2017·中山模拟) 计算:()﹣2﹣6sin30°﹣(π+2017)0+ .18. (5分) (2017八下·兴化期中) 计算:(1);(2).19. (6分) (2019九上·淮阴期末) 已知:如图,在△ABC中,AB=AC,D为CA延长线上一点,DE⊥BC,交线段AB于点F.请找出一组相等的线段(AB=AC除外)并加以证明.20. (5.0分) (2019八上·天山期中) 尺规作图:(不写作法,但要保留作图痕迹)①画出∠AOB的平分线OC.②画出与△ABC关于对称的图形.21. (6分) (2017七上·闵行期末) “新禧”杂货店去批发市场购买某种新型儿童玩具,第一次用1200元购得玩具若干个,并以7元的价格出售,很快就售完.由于该玩具深受儿童喜爱,第二次进货时每个玩具的批发价已比第一次提高了20%,他用1500元所购买的玩具数量比第一次多10个,再按8元售完,问该老板两次一共赚了多少钱?22. (6分)(2019·高新模拟) 图①、图②、图③均为方形网格,每个小正方形的顶点称为格点,每个小正方形的边长均为1.(探究)在图①中,点A、B、C、D均为格点.证明:BD平分∠ABC.(应用)在图②、图③中,点M、O、N均为格点.(1)利用(探究)的方法,在图②、图③中分别找到一个格点P,使OP平分∠MON.要求:图②、图③中所画的图形不相同,保留画图痕迹.(2)cos∠MOP的值为________.23. (10.0分) (2019八上·恩施期中) 如图1所示,点E、F在线段AC上,过E,F分别作DE⊥AC,BF⊥AC,垂足分别为点E,F;DE,BF分别在线段AC的两侧,且AE=CF,AB=CD,BD与AC相交于点G.(1)求证:EG=GF;(2)若点E在F的右边,如图2时,其余条件不变,上述结论是否成立?请说明理由.(3)若点E、F分别在线段CA的延长线与反向延长线上,其余条件不变,(1)中结论是否成立?(要求:在备用图中画出图形,直接判断,不必说明理由)参考答案一、选择题(每小题3分,共30分) (共10题;共30分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:答案:8-1、考点:解析:答案:9-1、考点:解析:答案:10-1、考点:解析:二、填空题(每小题3分,共18分) (共6题;共18分)答案:11-1、考点:解析:答案:12-1、考点:解析:答案:13-1、考点:解析:答案:14-1、考点:解析:答案:15-1、考点:解析:答案:16-1、考点:解析:三、解答题(共8小题,共52分) (共7题;共46分)答案:17-1、考点:解析:答案:18-1、答案:18-2、考点:解析:答案:19-1、考点:解析:答案:20-1、考点:解析:答案:21-1、考点:解析:答案:22-1、答案:22-2、考点:解析:答案:23-1、答案:23-2、答案:23-3、考点:解析:。
2017-2018学年河北省邢台市八年级第一学期期末数学试卷带答案
2017-2018学年河北省邢台市初二(上)期末数学试卷一、选择题(本大题共14小题,其中1-6小题每小题2分,7-14题每小题2分,共36分)1.(2分)﹣64的立方根是()A.﹣4B.4C.±4D.不存在2.(2分)下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.3.(2分)如图,AB=DB,∠1=∠2,请问添加下面哪个条件不能判断△ABC≌△DBE的是()A.BC=BE B.AC=DE C.∠A=∠D D.∠ACB=∠DEB4.(2分)用四舍五入法对“145762”取近似数,要求精确到千位,下列表示正确的是()A.1.5×105B.1.46×105C.1.458×105D.15万5.(2分)用反证法证明“a>b”时,应假设()A.a<b B.a≤b C.a≥b D.a≠b6.(2分)一份工作,甲单独做需a天完成,乙单独做需b天完成,则甲乙两人合作一天的工作量是()A.a+b B.C.D.7.(3分)如图,在△ABC中,D在BC上,若AD=BD,AB=AC=CD,则∠ABC的度数是()A.30°B.35°C.36°D.60°8.(3分)估算的值在()A.1与2之间B.2与3之间C.3与4之间D.5与6之间9.(3分)如图,在△ABD中,∠D=90°,CD=6,AD=8,∠ACD=2∠B,则BD的长是()A.12B.14C.16D.1810.(3分)下列运算正确的是()A.+=B.•=C.=D.=3 11.(3分)一个正数的平方根为2x+1和x﹣7,则这个正数为()A.5B.10C.25D.±2512.(3分)如图,∠A=80°,点O是AB,AC垂直平分线的交点,则∠BCO的度数是()A.40°B.30°C.20°D.10°13.(3分)下列算式中,你认为正确的是()A.B.C.D.14.(3分)如图,已知线段BC,分别以B、C为圆心,大于BC为半径作弧,两弧相交于E、F两点,连接CE,过点E作射线BA,若∠CEA=60°,CE=4,则△BCE的面积为()A.4B.4C.8D.8二、填空题(本大题共4小题,其中15-17题每小题3分,18小题4分,共13分)15.(3分)若在实数范围内有意义,则x的取值范围为.16.(3分)若,则=.17.(3分)如图,下列4个三角形中,均有AB=AC,则经过三角形的一个顶点的一条直线不能够将这个三角形分成两个小等腰三角形的是(填序号).18.(4分)给定一列分式:,﹣,,﹣,……,(其中x≠0)用任意一个分式做除法,去除它后面一个分式得到的结果是;根据你发现的规律,试写出第9个分式.三、解答题(共71分)19.(7分)在计算的值时,小亮的解题过程如下:解:原式==2……①=2……②=(2﹣1)……③=……④(1)老师认为小亮的解法有错,请你指出:小亮是从第步开始出错的;(2)请你给出正确的解题过程.20.(7分)如图,已知AC⊥BC,BD⊥AD,AC与BD交于点O,AC=BD,求证:△OAB是等腰三角形.21.(8分)如图,在△ABC中,∠ABC>90°.(1)先过点B画BD⊥BC交AC于点D,然后用尺规作图的方法在BC边上求作一点P,使得点P到AC的距离等于BP的长(保留作图痕迹,不写作法).(2)在(1)的基础上,如果PD=PC,则PC:BC=.22.(8分)(1)先化简,再求值:1﹣,其中x=﹣2,y=.(2)解分式方程:.23.(10分)如图,在△ABC中,点D在边AC上,DB=BC,E是CD的中点,F 是AB的中点.(1)直接写出AB与EF的数量关系:;(2)若AD=3,BD=2,∠C=60°,求EF的长.24.(10分)如图1,射线OB与直线AN垂直于点O,线段OP在∠AOB内,一块三角板的直角顶点与点P重合,两条直角边分别与AN、OB的交于点C、D.(1)当∠POB=60°,∠OPC=30°,PC=2时,则PD=.(2)若∠POB=45°,①当PC与PO重合时,PC和PD之间的数量关系是;②当PC与PO不重合时,猜想PC与PD之间的数量关系,并证明你的结论.25.(10分)王伟和张岩今年秋冬以来进行了两次徒步爬山活动.(1)第一次爬紫金山,他们沿通往主峰的山路爬到某景点A,行程1800米,二人从山脚下同时出发,但是王伟爬的很快,平均速度是张岩的1.2倍,结果比张岩早30分钟到达景点,求王伟的平均爬山速度是每分钟多少米?(2)第二次爬天梯山,王伟爬到顶峰用了n小时(n>2),张岩爬到顶峰的时间是王伟的1.1倍还多1小时,王伟的平均爬山速度是张岩的2倍吗?请说明理由.26.(11分)在Rt△AOB 中,∠AOB=90°,∠A=45°,点P、D分别在射线AB、OB上,PO=PD.(1)如图1,若∠OPD=30°,S=9,求点D到AB的距离.△OPD(2)①如图2,作DE⊥AB于点E,当∠OPD≤90°时,PE与AB之间的数量关系是;②当∠OPD为钝角时,PE与AB之间是否存在上述关系?若存在,设AB=11,求出PE的值;若不存在,请说明理由.2017-2018学年河北省邢台市初二(上)期末数学试卷参考答案与试题解析一、选择题(本大题共14小题,其中1-6小题每小题2分,7-14题每小题2分,共36分)1.(2分)﹣64的立方根是()A.﹣4B.4C.±4D.不存在【解答】解:∵(﹣4)3=﹣64,∴﹣64的立方根是﹣4.故选:A.2.(2分)下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【解答】解:A、是轴对称图形,不是中心对称图形,故本选项不符合题意;B、是轴对称图形,不是中心对称图形,故本选项不符合题意;C、不是轴对称图形,是中心对称图形,故本选项不符合题意;D、既是轴对称图形又是中心对称图形,故本选项符合题意.故选:D.3.(2分)如图,AB=DB,∠1=∠2,请问添加下面哪个条件不能判断△ABC≌△DBE的是()A.BC=BE B.AC=DE C.∠A=∠D D.∠ACB=∠DEB【解答】解:A、添加BC=BE,可根据SAS判定△ABC≌△DBE,故正确;B、添加AC=DE,SSA不能判定△ABC≌△DBE,故错误;C、添加∠A=∠D,可根据ASA判定△ABC≌△DBE,故正确;D、添加∠ACB=∠DEB,可根据ASA判定△ABC≌△DBE,故正确.故选:B.4.(2分)用四舍五入法对“145762”取近似数,要求精确到千位,下列表示正确的是()A.1.5×105B.1.46×105C.1.458×105D.15万【解答】解:近似数145762≈1.46×105(精确到千位).故选:B.5.(2分)用反证法证明“a>b”时,应假设()A.a<b B.a≤b C.a≥b D.a≠b【解答】解:用反证法证明“a>b”时,应先假设a≤b.故选:B.6.(2分)一份工作,甲单独做需a天完成,乙单独做需b天完成,则甲乙两人合作一天的工作量是()A.a+b B.C.D.【解答】解:根据工作总量=工作效率×工作时间,得甲的工作效率是,乙的工作效率是.∴甲乙两人合作一天的工作量为:+.故选D.7.(3分)如图,在△ABC中,D在BC上,若AD=BD,AB=AC=CD,则∠ABC的度数是()A.30°B.35°C.36°D.60°【解答】解:∵AB=AC,∴∠B=∠C,∵CD=DA,∴∠C=∠DAC,∵BA=BD,∴∠BDA=∠BAD=2∠C=2∠B,又∵∠B+∠BAD+∠BDA=180°,∴5∠B=180°,∴∠B=36°,故选:C.8.(3分)估算的值在()A.1与2之间B.2与3之间C.3与4之间D.5与6之间【解答】解:∵25<27<36,∴5<<6,∴2<﹣3<3.故选:B.9.(3分)如图,在△ABD中,∠D=90°,CD=6,AD=8,∠ACD=2∠B,则BD的长是()A.12B.14C.16D.18【解答】解:∵∠D=90°,CD=6,AD=8,∴AC==10,∵∠ACD=2∠B,∠ACD=∠B+∠CAB,∴∠B=∠CAB,∴BC=AC=10,∴BD=BC+CD=16,故选:C.10.(3分)下列运算正确的是()A.+=B.•=C.=D.=3【解答】解:A、与不能合并,所以A选项错误;B、原式==,所以B选项正确;C、原式=,所以C选项错误;D、原式==2,所以D选项错误.故选:B.11.(3分)一个正数的平方根为2x+1和x﹣7,则这个正数为()A.5B.10C.25D.±25【解答】解;一个正数的平方根为2x+1和x﹣7,∴2x+1+x﹣7=0x=2,2x+1=5(2x+1)2=52=25,故选:C.12.(3分)如图,∠A=80°,点O是AB,AC垂直平分线的交点,则∠BCO的度数是()A.40°B.30°C.20°D.10°【解答】解:连接OA、OB,∵∠A=80°,∴∠ABC+∠ACB=100°,∵O是AB,AC垂直平分线的交点,∴OA=OB,OA=OC,∴∠OAB=∠OBA,∠OCA=∠OAC,OB=OC,∴∠OBA+∠OCA=80°,∴∠OBC+∠OCB=100°﹣80°=20°,∵OB=OC,∴∠BCO=∠CBO=10°,故选:D.13.(3分)下列算式中,你认为正确的是()A.B.C.D.【解答】解:A、,错误;B、1×=,错误;C、3a﹣1=,错误;D、==,正确.故选:D.14.(3分)如图,已知线段BC,分别以B、C为圆心,大于BC为半径作弧,两弧相交于E、F两点,连接CE,过点E作射线BA,若∠CEA=60°,CE=4,则△BCE的面积为()A.4B.4C.8D.8【解答】解:如图,连接EF交BC于H.由题意EB=EC=4,EF⊥BC,∴∠B=∠C,∵∠AEC=∠B+∠C=60°,∴EH=CE=2,BH=CH=EH=2,∴BC=4,∴S=•BC•EH=×4×2=4,△EBC故选:B.二、填空题(本大题共4小题,其中15-17题每小题3分,18小题4分,共13分)15.(3分)若在实数范围内有意义,则x的取值范围为x≥2.【解答】解:由题意得:x﹣2≥0,解得:x≥2,故答案为:x≥2.16.(3分)若,则=﹣.【解答】解:∵﹣=2,∴a﹣b=﹣2ab,∴原式===﹣.故答案为:﹣.17.(3分)如图,下列4个三角形中,均有AB=AC,则经过三角形的一个顶点的一条直线不能够将这个三角形分成两个小等腰三角形的是②(填序号).【解答】解:由题意知,要求“被一条直线分成两个小等腰三角形”,①中分成的两个等腰三角形的角的度数分别为:36°,36°,108°和36°,72°72°,能;②不能;③显然原等腰直角三角形的斜边上的高把它还分为了两个小等腰直角三角形,能;④中的为36°,72,72°和36°,36°,108°,能.故答案为:②18.(4分)给定一列分式:,﹣,,﹣,……,(其中x≠0)用任意一个分式做除法,去除它后面一个分式得到的结果是﹣;根据你发现的规律,试写出第9个分式.【解答】解:给定一列分式:,﹣,,﹣,……,(其中x≠0)用任意一个分式做除法,去除它后面一个分式得到的结果是﹣;根据你发现的规律,试写出第9个分式,故答案为:﹣;三、解答题(共71分)19.(7分)在计算的值时,小亮的解题过程如下:解:原式==2……①=2……②=(2﹣1)……③=……④(1)老师认为小亮的解法有错,请你指出:小亮是从第③步开始出错的;(2)请你给出正确的解题过程.【解答】解:(1)③(2)原式=2﹣=6﹣2=420.(7分)如图,已知AC⊥BC,BD⊥AD,AC与BD交于点O,AC=BD,求证:△OAB是等腰三角形.【解答】证明:∵AC⊥BC,BD⊥AD∴∠D=∠C=90°,在Rt△ABD和Rt△BAC中,,∴Rt△ABD≌Rt△BAC(HL),∴∠DBA=∠CAB,∴OA=OB,即△OAB是等腰三角形.21.(8分)如图,在△ABC中,∠ABC>90°.(1)先过点B画BD⊥BC交AC于点D,然后用尺规作图的方法在BC边上求作一点P,使得点P到AC的距离等于BP的长(保留作图痕迹,不写作法).(2)在(1)的基础上,如果PD=PC,则PC:BC=2:3.【解答】解:(1)如图所示:(2)∵PD=PC,∴∠PDC=∠C,∵DP平分∠BDC,∴∠BDP=∠PDC,∵∠BDP+∠PDC+∠C=90°,可得∠C=30°,∴∠BDP=30°,设BP=1,可得DP=2,即PC=2,所以PC:BC=2:(1+2)=2:3;故答案为:2:322.(8分)(1)先化简,再求值:1﹣,其中x=﹣2,y=.(2)解分式方程:.【解答】解:(1)原式=1﹣•=1﹣==﹣,当x=﹣2、y=时,原式=﹣=;(2)两边都乘以3(x﹣1),得:﹣3x=5+3(x﹣1),解得:x=﹣,检验:x=﹣时,3(x﹣1)=﹣4≠0,所以原分式方程的解为x=﹣.23.(10分)如图,在△ABC中,点D在边AC上,DB=BC,E是CD的中点,F 是AB的中点.(1)直接写出AB与EF的数量关系:EF=AB;(2)若AD=3,BD=2,∠C=60°,求EF的长.【解答】(1)解:结论:EF=AB理由:如图,连接BE,∵在△BCD中,DB=BC,E是CD的中点,∴BE⊥CD,∵F是AB的中点,∴在Rt△ABE中,EF是斜边AB上的中线,∴EF=AB.故答案为EF=AB.(2)解:连接BE.∵BD=BC,∠C=60°,∴△CBD是等边三角形,∴CD=BD=BC=2,∵E是BC中点,∴DE=CD=1,在Rt△BED中,∵BE===,在Rt△AEB中,AE=AD+DE=3+1=4,∴AB==,∵F是AB中点,∴EF=AB=.24.(10分)如图1,射线OB与直线AN垂直于点O,线段OP在∠AOB内,一块三角板的直角顶点与点P重合,两条直角边分别与AN、OB的交于点C、D.(1)当∠POB=60°,∠OPC=30°,PC=2时,则PD=2.(2)若∠POB=45°,①当PC与PO重合时,PC和PD之间的数量关系是PC=PD;②当PC与PO不重合时,猜想PC与PD之间的数量关系,并证明你的结论.【解答】解:(1)作PE⊥AN于E,∵∠POB=60°,OB⊥AN,∴∠AOP=30°,又∠OPC=30°,∴∠ACP=60°,∴AP=PC•sin∠ACP=,∴OP=2AP=2,∵∠POB=60°,∠OPD=60°,∴△POD是等边三角形,∴PD=PO=2,故答案为:2;(2)①当∠POB=45°时,∵三角板的直角顶点与点P重合,∴PC与PO重合时,△PCD为等腰直角三角形,∴PC=PD,故答案为:PC=PD;②PC=PD,理由如下:作PE⊥AN于E,PF⊥OB于F,∵AN⊥OB,PE⊥AN,PF⊥OB,∴四边形EOFP为矩形,∴∠EPF=90°,∴∠EPC=∠FPD,∵∠POB=45°,∴∠POA=45°,∴OP平分∠EOF,又PE⊥AN,PF⊥OB,∴PE=PF,在△EPC和△FPD中,,∴△EPC≌△FPD,∴PC=PD.25.(10分)王伟和张岩今年秋冬以来进行了两次徒步爬山活动.(1)第一次爬紫金山,他们沿通往主峰的山路爬到某景点A,行程1800米,二人从山脚下同时出发,但是王伟爬的很快,平均速度是张岩的1.2倍,结果比张岩早30分钟到达景点,求王伟的平均爬山速度是每分钟多少米?(2)第二次爬天梯山,王伟爬到顶峰用了n小时(n>2),张岩爬到顶峰的时间是王伟的1.1倍还多1小时,王伟的平均爬山速度是张岩的2倍吗?请说明理由.【解答】解:(1)设张岩的平均爬山速度为x米/分,则王伟的平均爬山速度为1.2米/分,根据题意得:+30=,解得:x=10,经检验x=10是原方程的解,所以1.2x=12,答:王伟的平均爬山速度是1.2米/分;(2)王伟的平均爬山速度不是张岩的2倍;由题意知,王伟的平均爬山速度是,张岩平均爬山速度是,÷==1.1+,∵n>2,∴<,∴1.1+<2,∴王伟的平均爬山速度不是张岩的2倍.26.(11分)在Rt△AOB 中,∠AOB=90°,∠A=45°,点P、D分别在射线AB、OB上,PO=PD.=9,求点D到AB的距离.(1)如图1,若∠OPD=30°,S△OPD(2)①如图2,作DE⊥AB于点E,当∠OPD≤90°时,PE与AB之间的数量关系是PE=AB;②当∠OPD为钝角时,PE与AB之间是否存在上述关系?若存在,设AB=11,求出PE的值;若不存在,请说明理由.【解答】解:(1)如图1中,作DF⊥OP于F,DE⊥AB于E.设DF=a.在Rt△PDF中,∵∠PFD=90°,∠DPF=30°,∴PD=2DF=OP=2a,=•OP•DF=•2a•a=9,∴S△OPD∴a=3,∵OP=PD,∴∠PDO=(180°﹣30°)=75°,∵∠PDO=∠B+∠DPB,∴75°=45°+∠DPB,∴∠DPB=∠DPO=30°,∵DF⊥OP,DE⊥AB,∴DE=DF=3.∴点D到AB的距离为3.(2)结论:PE=AB,理由如下:如图,过点O作OC⊥AB于C,∵∠AOB=90°,AO=BO,∴△BOC是等腰直角三角形,∠COB=∠B=45°,点C为AB的中点,∴OC=AB,∵PO=PD,∴∠POD=∠PDO,又∵∠POD=∠COD+∠POC=45°+∠POC,∠PDO=∠B+∠DPE=45°+∠DPE,∴∠POC=∠DPE,在△POC和△DPE中,,∴△POC≌△DPE(AAS),∴OC=PE,∴PE=AB.(3)当∠OPD为钝角时,PE=AB.作OC⊥AB于C,同法可证∴△POC≌△DPE(AAS),∴OC=PE,∴PE=AB.∵AB=11,∴PE=AB=.附赠:初中数学考试答题技巧一、答题原则大家拿到考卷后,先看是不是本科考试的试卷,再清点试卷页码是否齐全,检查试卷有无破损或漏印、重印、字迹模糊不清等情况。
2017-2018学年第一学期期末检测八年级数学试题及参考答案
2017—2018学年度第一学期期末调研考试八年级数学试题注意:本份试卷共8页,三道大题,26个小题,总分120分,时间120分钟。
一、选择题(本大题共16个小题,共42分.1~10每小题3分,11~16每小题2分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的.请将正确的选项填在A.1,2,6 B.2,2,4 C.1,2,3 D.2,3,42.在下列运算中,计算正确的是A.(x5)2=x7B.(x-y)2=x2-y2C.x12÷x3=x9D.x3+x3=x63.数学课上,同学们在练习本上画钝角三角形ABC的高BE时,有一部分学生画出下列四种图形,其中错误的个数为A.1个B.2个C.3个D.4个4.下列轴对称图形中,对称轴条数是四条的图形是A.B.C.D.5.下列关于分式的判断,正确的是A.当x=2时,12xx+-的值为零B.无论x为何值,231x+的值总为正数C .无论x 为何值,31x +不可能得整数值 D .当x≠3时,3x x -有意义6.如图,已知AB=AC ,AD=AE ,若要得到“△ABD ≌△ACE”,必须添加一个条件,则下列所添条件不恰当的是A .BD=CEB .∠ABD=∠ACEC .∠BAD=∠CAED .∠BAC=∠DAE 7.若把分式2x yxy+中的x 和y 都扩大3倍,且x+y≠0,那么分式的值 A .扩大3倍 B .不变 C .缩小3倍 D .缩小6倍 8.若x=-2,y=12,则y (x+y )+(x+y )(x -y )-x 2的值等于 A .-2 B .12C .1D .-19.如图,在△ABC 中,DE 是AC 的垂直平分线,AC=6cm ,且△ABD 的周长为13cm ,则△ABC 的周长为A .13cmB .19cmC .10cmD .16cm10.观察等式(2a ﹣1)a+2=1,其中a 的取值可能是A .﹣2B .1或﹣2C .0或1D .1或﹣2或0 11.下列计算中正确的是A .22155b a a b ab -⨯=-- B .32x y x y ya b a b a b+--=+++ C .m m n m n n m n ÷⨯= D .1224171649xy xy a xy a -⎛⎫⎛⎫÷=⎪ ⎪⎝⎭⎝⎭12.如图,C 在AB 的延长线上,CE ⊥AF 于E ,交FB 于D ,若∠F=40°,∠C=20°,则∠FBA 的度数为A .50°B .60°C .70°D .80°13.若y -x=-1,xy=2,则代数式-12x 3y+x 2y 2-12xy 3的值是 A .2 B .-2 C .1 D .-114.图1是一个长为 2a ,宽为2b (a >b )的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图2那样拼成一个正方形,则中间空的部分的面积是A .a 2-b 2B .(a -b )2C .(a+b )2D .ab15.如图,△ABC的顶点坐标分别为A(4,4)、B(2,1)、C(5,2),沿某一直线作△ABC的对称图形,得到△A′B′C′,若点A的对应点A′的坐标是(3,5),那么点B的对应点B′的坐标是A.(0,3)B.(1,2)C.(0,2)D.(4,1)16.如图,点E是BC的中点,AB⊥BC,DC⊥BC,AE平分∠BAD,下列结论:①∠AED=90°②∠ADE=∠CDE ③DE=BE ④AD=AB+CD,四个结论中成立的是A.①②④B.①②③C.②③④D.①②二、填空题(本大题共3小题,共10分.17~18小题各3分;19小题有2个空,每空2分.把答案写在题中横线上)17.一个多边形的每一个外角都为36°,则这个多边形是边形.18.若x2+2(m-3)x+16是一个完全平方式,那么m应为.19.对于实数a、,b,定义运算⊗如下:a⊗b=()(),0,0bba ab aa ab a-⎧>≠⎪⎨≤≠⎪⎩,例如:2⊗4=2-4=116,计算[4⊗2] =,[2⊗2]×[3⊗2]=.三、解答题(本大题共7小题,共68分.解答应写出文字说明、证明过程或演算步骤)20.计算(本题满分8分)如图,在平面直角坐标中,△ABC各顶点都在小方格的顶点上.(1)画出△ABC关于x轴对称的图形△A1B1C1;(2)在y轴上找一点P,使PA+PB1最短,画出图形并写出P点的坐标.21.(本题满分9分)先化简,再求值:2214411a aa a a-+⎛⎫-÷⎪--⎝⎭,其中-2<a≤2,请选择一个a的合适整数代入求值.22.(本题满分9分)两个大小不同的等腰直角三角形三角板如图①所示放置,图②是由它抽象出的几何图形,B,C,E在同一条直线上,连接DC,(1)请找出图②中的全等三角形,并给予证明(结论中不得含有未标识的字母);(2)求证:DC⊥BE.23.(本题满分9分)先阅读以下材料,然后解答问题.将一个多项式分组后,可提公因式或运用公式继续分解的方法是因式分解中的分组分解法,一般的分组分解法有四种形式,即“2+2”分法、“3+1”分法、“3+2”分法及“3+3”分法等.如“2+2”分法:ax+ay+bx+by=(ax+ay)+(bx+by)=a(x+y)+b(x+y)=(x+y)(a+b)请你仿照以上方法,探索并解决下列问题:(1)分解因式:x2-y2-x-y;(2)分解因式:9m2-4x2+4xy-y2;24.(本题满分10分)如图,已知BD平分∠ABC,AB=AD,DE⊥AB,垂足为E.(1)求证:AD∥BC;(2)若DE=6cm,求点D到BC的距离;(3)当∠ABD=35°,∠DAC=2∠ABD时,①求∠BAC的度数;②证明:AC=AD.25.(本题满分11分)随着城际铁路的正式开通,从甲市经丙市到乙市的高铁里程比普快里程缩短了90km,运行时间减少了8h,已知甲市到乙市的普快列车里程为1220km.高铁平均时速是普快平均时速的2.5倍.(1)求高铁列车的平均时速;(2)某日王先生要从甲市去距离大约780km的丙市参加14:00召开的会议,如果他买到当日9:20从甲市到丙市的高铁票,而且从丙市火车站到会议地点最多需要1小时.试问在高铁列车准点到达的情况下,它能否在开会之前20分钟赶到会议地点?26.(本题满分12分)如图1,△ABC是边长为5cm的等边三角形,点P,Q分别从顶点A,B同时出发,沿线段AB,BC运动,且它们的是速度都为1厘米/秒.当点P到达点B时,P、Q两点停止运动.设点P的运动时间为t(秒).(1)当运动时间为t秒时,BQ的长为厘米,BP的长为厘米;(用含t 的式子表示)(2)当t为何值时,△PBQ是直角三角形;(3)如图2,连接AQ、CP,相交于点M,则点P,Q在运动的过程中,∠CMQ会变化吗?若变化,则说明理由;若不变,请求出它的度数.参考答案及评分标准说明:1.在阅卷过程中,如果考生还有其它正确解法,可参照评分参考酌情给分;2.填空题缺少必有的单位或答案不完整不得分;3.坚持每题评阅到底的原则,当考生的解答在某一步出现错误,影响了后继部分时,如果该步以后的解答未改变这一题的内容和难度,可视影响的程度决定后面部分的给分,但不得超过后继部分应给分数的一半;如果这一步后面的解答有较严重的错误,就不给分;4.解答右端所注分数,表示正确做到这一步应得的累积分数.。
2017-2018冀教版八年级第一学期期末复习数学试卷三
绝密★启用前 2017-2018冀教版八年级第一学期期末复习 数学试卷三 温馨提示:亲爱的同学们,考试只是检查我们对所学知识的掌握情况,希望你保持镇静,不要急于下结论;下笔时,把字写得规矩些,让自己和老师都看得舒服些,祝你成功! 1.(本题3分)在实数2, -3,-3.14,0,π 中,无理数有 ( ) A.1个 B.2个 C.3个 D.4个 2.(本题3分)下列分式是最简分式的是( ) A. 22a a ab + B. 63xy a C. 211x x -+ D. 211x x ++ 3.(本题3分)下列各式中,最简二次根式是( ) A . B . C . D . 4.(本题3分)有一个等腰三角形的周长为16,其中一边长为4,则这个等腰三角形的底边长是( ) A. 4或8 B. 6 C. 4 D. 8 5.(本题3分)下列方法中,不能判定三角形全等的是( ) A. SSA B. SSS C. ASA D. SAS 6.(本题3分)设 3+2的整数部分用a 表示,小数部分用b 表示,4− 3的整数部分用c 表示,小数部分用d 表示,则b +d ac 的值为( ) A. 18 B. 56 C. 16 D. 13( 3−1) 7.(本题3分)如图,BD 平分ABC ∠,CD ⊥BD ,D 为垂足,C 55∠=︒,则ABC ∠的度数是( )CDB AA .35°B .55°C .60°D .70°8.(本题3分)下列图形中,既是轴对称图形,又是中心对称图形的是( )9.(本题3分)(3分)在△ABC 中,∠C=90°,点D 、E 分别在边BC 、AC 上.若DE=AB=5,则AD 2+BE 2的值为( )A.15B.25C.30D.5010.(本题3分)如图,OC 平分∠AOB ,点P 是射线OC 上的一点,PD ⊥OB 于点D ,且PD=3,动点Q 在射线OA 上运动,则线段PQ 的长度不可能是( )A .2B .3C .4D .5二、填空题(计32分)11.(本题4分)当x=时,分式132x x -+的值为0.12.(本题4分)等腰三角形的底角为15°,腰长为2a ,则这个三角形的面积为.13.(本题4分)点()2,3A -关于x 轴对称的点的坐标为__________,点()3,1B -到y 轴的距离是__________.14.(本题4分)如图,把一张长方形纸片ABCD 沿EF 折叠后,点A 落在CD 边上的点A ,处,点B 落在点B ,处,A ,B ,与BC 交于点G,若∠A ,GC=60°,则∠BFE 的度数为______.(A ) (B ) (C ) (D )…………○……○…………装…………○… 15.(本题4分)比较大小:23-______32-. 16.(本题4分)已知直角三角形的两直角边长分别为5和12,则三角形的周长为__________.17.(本题4分)△ABC 中,∠C=90°,AD 平分∠BAC 交BC 于点D ,且CD=4cm ,则点D 到AB •的距离是________. 18.(本题4分)如图,在高3米,坡面线段距离AB 为5米的楼梯表面铺地毯,则地毯长度至少需米. 三、解答题(计58分) (1); (2) 20.(本题8分)已知两个分式:A=244x -,B=1122x x ++-,其中x ≠±2.下面有三个结论: ①A=B ; ②A 、B 互为倒数; ③A 、B 互为相反数. 请问哪个正确?为什么?…………订……订※※线※※内※※答※※线……21.(本题8分)先化简,再求值:21222xx y x xy x⎛⎫++÷⎪--⎝⎭,其中实数x、y满足1y=.22.(本题8分)如图,△ABC中,AB=AC,DE垂直平分AB,D为垂足交AC于E.(1)若∠A=50°,求∠EBC的度数;(2)若8AB=,△BEC的周长是11,求ABC的周长.23.(本题8分)如图,已知△ABC,∠C=Rt∠,AC<BC,D为BC上一点,且到A、B两点的距离相等.(1)用直尺和圆规,作出点D的位置(不写做法,保留作图痕迹);(2)连结AD,若∠B=37°,求∠CAD的度数.装…………○_姓名:___________班…………○…………线24.(本题9分)(6分)如图,在△ABC 中,AB=AC=13,BC=10,点D 为BC 的中点,E 为AC 的中点,DF ⊥AB ,垂足为点F ,求DE 、DF 的长.25.(本题9分)生活表明,靠墙摆放梯子时,若梯子底端离墙距离为梯子长度的13,则梯子比较稳定.现有一长度为6米的梯子,当梯子稳定摆放时,它的顶端能达到5.7米高的墙头吗?参考答案1.B.【解析】试题分析:无理数是-3、 ,共2个.故选B.考点:无理数.2.D【解析】A选项中,分式的分子、分母中含有公因式a,因此它不是最简分式.故本选项错误;B选项中,分式的分子、分母中含有公因数3,因此它不是最简分式.故本选项错误;C选项中,分子可化为(x+1)(x-1),所以该分式的分子、分母中含有公因式(x+1),因此它不是最简分式.故本选项错误;D选项中,分式符合最简分式的定义.故本选项正确.故选:D.点睛:最简分式的标准是分子,分母中不含有公因式,不能再约分.判断的方法是把分子、分母分解因式,看分子和分母中有无公因式,并且观察有无互为相反数的因式,这样的因式可以通过符号变化化为相同的因式从而进行约分. 3.D【解析】试题分析:根据最简二次根式的概念进行判断即可.解:被开方数含分母,不是最简二次根式,A错误;=2不是最简二次根式,B错误;=x不是最简二次根式,C错误;,是最简二次根式,D正确,故选:D.4.C【解析】当4为等腰三角形的底边长时,则这个等腰三角形的底边长为4;当4为等腰三角形的腰长时,底边长=16−4−4=8,4、4、8不能构成三角形。
河北省邢台市八年级数学上学期期末试题(扫描版)
数学试题参考答案一、选择题(每小题3分,共42分)1-5 C C A A D 6-10 C A C D C 11-14 A A B B二、填空题(每小题3分,共12分)15.7。
90 16.a 17.3418.两边及夹角对应相等的两个三角形全等,全等三角形对应边相等.三、解答题(共66分)19.解:∵A,B两点表示的数分别为1,2∴C点所表示的数是x=1-(2-1)=2-2。
..。
.。
....。
..。
.。
5分∴BC=2-(2-2)=22-2 。
.。
.。
.。
....。
....。
.。
10分20.(1)解:∵AB=AC,∴∠B=∠C=30°,∵∠C+∠BAC+∠B=180°, ∴∠BAC=180°-30°-30°=120°。
.。
.。
.。
.。
.。
.。
.。
2分∵∠DAB=45°,∴∠DAC=∠BAC-∠DAB=120°-45°=75°。
.。
.。
.。
.。
.。
.。
5分(2)证明:∵∠DAB=45°∴∠ADC=∠B+∠DAB=75°,∴∠DAC=∠ADC .。
.。
..。
(3)∴DC=AC,∴DC=AB. ....。
.。
..。
.。
..。
..5分21.(1)③ .。
.......。
..。
.。
4分(2)623243⨯-÷=24263⨯-3=2188-= 6222-= 42 ..。
..。
.。
.。
...。
.。
6分22.解:(1)如图(1),设CE=x ,则BE=8-x ;由题意得:AE=BE=8-x .。
.。
.。
....2分由勾股定理得:x 2+62=(8-x)2 .。
..。
.。
.。
..。
....5分解得:x=74 即CE 的长为:74 。
.。
.。
.。
..。
...。
.......。
.。
.6分(2)如图(2),∵点B′落在AC 的中点∴CB′=12AC=3;设CE=x 则EB ′=EB=8-x .。
【精选3份合集】2017-2018年邢台市八年级上学期数学期末质量检测试题
八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.下列各数中,无理数是()A.πB.C.D.【答案】A【解析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】A. π是无理数;B. =2,是有理数;C. 是有理数;D. =2,是有理数.故选:A.【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.2.若x2﹣kxy+9y2是一个完全平方式,则k的值为()A.3 B.±6 C.6 D.+3【答案】B【解析】∵x2−kxy+9y2是完全平方式,∴−kxy=±2×3y⋅x,解得k=±6.故选B.3.如图,在△ABC中,AB=AC=5,BC=6,点M为BC的中点,MN⊥AC于点N,则MN等于()A.125B.95C.65D.165【答案】A【分析】连接AM,根据等腰三角形三线合一的性质得到AM⊥BC,根据勾股定理求得AM的长,再根据在直角三角形的面积公式即可求得MN 的长.【详解】解:连接AM ,∵AB=AC ,点M 为BC 中点,∴AM ⊥CM (三线合一),BM=CM ,∵AB=AC=5,BC=6,∴BM=CM=3,在Rt △ABM 中,AB=5,BM=3,∴根据勾股定理得:AM= 22AB BM - = 2253-=4,又S △AMC =12MN•AC=12AM•MC , ∴MN=·AM CM AC= 125 . 故选A .【点睛】综合运用等腰三角形的三线合一,勾股定理.特别注意结论:直角三角形斜边上的高等于两条直角边的乘积除以斜边.4.如图所示,在ABC ∆中,AB AC =,AD 是中线,DE AB ⊥,DF AC ⊥,垂足分别为E F 、,则下列四个结论中:①AB 上任一点与AC 上任一点到D 的距离相等;②DE DF =;③AE BC =;④12∠=∠;⑤1CDF ∠=∠正确的有( )A .2个B .3个C .4个D .5个【答案】B【分析】根据等腰三角形三线合一的性质可以判断①、③错误, ②、④正确,根据ADF ∆与CDF ∆都是直角三角形,以及12∠=∠可以判断⑤正确.【详解】解: AB AC =,AD 是中线,∴12∠=∠,AD BC ⊥(等腰三角形的三线合一),∴D 到AB 和AC 的距离相等, DE DF =,AE AF =∴①、③错误, ②、④正确,ADF ∆与CDF ∆都是直角三角形,∴290ADF ∠+∠=︒,90ADF CDF ∠+∠=︒,∴2CDF ∠=∠.∴1CDF ∠=∠.∴⑤正确.故选: B.【点睛】本题考查了等腰三角形的性质,直角三角形的性质及角平分线的性质,熟记性质并且灵活运用是本题解题关键.5.以下列各组线段为边,能组成三角形的是( )A .2cm ,4cm ,6cmB .8cm ,6cm ,4cmC .14cm ,6cm ,7cmD .2cm ,3cm ,6cm【答案】B【分析】运用三角形三边关系判定三条线段能否构成三角形时,并不一定要列出三个不等式,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.【详解】解:A. 2cm ,4cm ,6cm 可得,2+4=6,故不能组成三角形;B. 8cm ,6cm ,4cm 可得,6+4>8,故能组成三角形;C. 14cm ,6cm ,7cm 可得,6+7<14,故不能组成三角形;D. 2cm ,3cm ,6cm 可得,2+3<6,故不能组成三角形;故选B .【点睛】本题主要考查了三角形的三边关系的运用,三角形的两边差小于第三边,三角形两边之和大于第三边. 6.对于一次函数y =﹣2x+1,下列说法正确的是( )A .图象分布在第一、二、三象限B .y 随x 的增大而增大C .图象经过点(1,﹣2)D .若点A (x 1,y 1),B (x 2,y 2)都在图象上,且x 1<x 2,则y 1>y 2【答案】D【分析】根据一次函数的图象和性质,逐一判断选项,即可得到答案.【详解】A 、∵k =﹣2<0,b =1>0,∴图象经过第一、二、四象限,故不正确;B 、∵k =﹣2,∴y 随x 的增大而减小,故不正确;C 、∵当x =1时,y =﹣1,∴图象不过(1,﹣2),故不正确;D 、∵y 随x 的增大而减小,∴若点A (x 1,y 1),B (x 2,y 2)都在图象上,且x 1<x 2,则y 1>y 2,故正确;故选:D .【点睛】本题主要考查一次函数的图象和性质,掌握一次函数解析式系数的几何意义,增减性,以及一次函数图象上点的坐标特征,是解题的关键.7.如图,在ABC ∆中,90C ∠=︒,2AC =,点D 在BC 上,5AD =,ADC 2B ∠=∠,则BC 的长为( )A 51B 51C 31D 31【答案】B 【分析】根据ADC 2B ∠=∠,可得∠B=∠DAB ,即5BD AD ==Rt △ADC 中根据勾股定理可得DC=1,则51.【详解】解:∵∠ADC 为三角形ABD 外角∴∠ADC=∠B+∠DAB∵ADC 2B ∠=∠∴∠B=∠DAB ∴5BD AD ==在Rt △ADC 中,由勾股定理得:22DC 541AD AC =-=-=∴51故选B【点睛】本题考查勾股定理的应用以及等角对等边,关键抓住ADC 2B ∠=∠这个特殊条件.8.计算()()42210510--⨯⨯⨯,结果用科学记数法表示正确的是( ) A .61010-⨯B .5110-⨯C .6110-⨯D .7110-⨯ 【答案】B【分析】把2与5相乘、10-4与10-2相乘,后者根据同底数幂的乘法法则得到10-4-2,然后写成a×10n (1≤a <10,n 为整数)的形式即可.【详解】()()42210510--⨯⨯⨯ =42251010--⨯⨯⨯=61010-⨯=5110-⨯ .故选:B .【点睛】考查了同底数幂的乘法,解题关键利用了:a m •a n =a m+n (其中a≠0,m 、n 为整数)进行计算. 9.计算211a a a a ---的结果是 A .1a a + B .1a a +- C .1a a - D .1a a-- 【答案】B【分析】首先通分,然后进行同分母分式的减法运算即可. 【详解】2211(1)(1)1=1(1)(1)a a a a a a a a a a a a a-+-+-==-----. 故选:B .【点睛】此题考查了分式的加减法.分式的加减运算中,如果是同分母分式,那么分母不变,把分子直接相加减即可;如果是异分母分式,则必须先通分,把异分母分式化为同分母分式,然后再相加减.10.化简11a b b a ⎛⎫⎛⎫-÷- ⎪ ⎪⎝⎭⎝⎭的结果是( ) A .1B .b aC .a bD .﹣a b 【答案】C【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果. 【详解】解:原式=1ab b -÷1ab a-=11ab a b ab -⋅-=a b ,故选C .【点睛】本题考查了分式的混合运算:分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序;先乘方,再乘除,然后加减,有括号的先算括号里面的;最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.二、填空题11.已知2249x mxy y -+是完全平方式,则m 的值为_________.【答案】12±【分析】根据完全平方公式:()2222a b a ab b ±=±+,即可求出m 的值【详解】解:∵2249x mxy y -+是完全平方式,∴()()()()()22222224923232123x mxy y x mxy y x y x xy y -+-=+±±+==∴12m =±故答案为:12±【点睛】此题考查的是根据完全平方式,求一次项中的参数,掌握两个完全平方公式的特征是解决此题的关键. 12.一种病毒的直径为0.000023m ,这个数用科学记数法表示为_____.【答案】2.3×10﹣1.【分析】根据“科学记数法的定义”进行分析解答即可.【详解】50.000023 2.310-=⨯.故答案为52.310-⨯.【点睛】在把一个绝对值小于1的数用科学记数法表示为10n a ⨯的形式时,我们要注意两点:①a 必须满足:110a ≤<;②n 等于原来的数中从左至右第1个非0数字前面0的个数(包括小数点前面的0)的相反数.13.我们用[m ]表示不大于m 的最大整数,如:[2]=2,[4.1]=4,[1.99]=1.(1)=_____;(2)若[16=,则x 的取值范围是_____.【答案】1 916x ≤<【分析】(1) 1.414,及题中所给信息,可得答案;(2)先解出3+的取值范围后得出x 的取值范围.【详解】解:(1) ≈1.414,由题中所给信息,可得2⎡⎤⎣⎦=1; (2)由题意得:6≤3x +<7, 可得:1≤x <4,可得:9≤x<16.【点睛】本题主要考查新定义及不等式的性质,找出规律是解题的关键14.若a 的3倍与2的差是负数,则可列出不等式______.【答案】320a -<【分析】根据题意即可列出不等式.【详解】根据题意得320a -<故答案为:320a -<.【点睛】此题主要考查列不等式,解题的关键是根据题意找到不等关系.15.直角三角形两直角边长分别为5和12,则它斜边上的高为____________【答案】6013【分析】先用勾股定理求出斜边长,然后再根据直角三角形面积的两种公式求解即可.【详解】∵直角三角形的两直角边长分别为5和12,∴斜边长=2251213+=∵直角三角形面积S =12×5×12=12×13×斜边的高, ∴斜边的高=512601313⨯=. 故答案为:6013. 【点睛】本题考查勾股定理及直角三角形面积,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.16.木工师傅做完房门后,为防止变形,会在门上钉上一条斜拉的木条,这样做的根据是______.【答案】三角形具有稳定性【分析】三角形具有稳定性,其它多边形具有不稳定性,故需在门上钉上一条斜拉的木条.【详解】解:为防止变形,会在门上钉上一条斜拉的木条,这样做的根据是:三角形具有稳定性 故答案为:三角形具有稳定性.【点睛】此题考查的是三角形具有稳定性的应用,掌握三角形具有稳定性,其它多边形具有不稳定性是解决此题的关键.17.点(2,9)P -与点Q 关于x 轴对称,则点Q 的坐标是__________.【答案】(2,9)--【分析】已知点()2,9P -,根据两点关于x 轴的对称,横坐标不变,纵坐标互为相反数,即可得出Q 的坐标.【详解】∵点(2,9P -)与点Q 关于x 轴对称,∴点Q 的坐标是:()2,9--.故答案为()2,9--【点睛】考查关于x 轴对称的点的坐标特征,横坐标不变,纵坐标互为相反数.三、解答题18.阅读理解在平面直角坐标系xoy 中,两条直线l 1:y=k 1x+b 1(k 1≠0),l 2:y=k 2x+b 2(k 2≠0),①当l 1∥l 2时,k 1=k 2,且b 1≠b 2;②当l 1⊥l 2时,k 1·k 2=-1. 类比应用(1)已知直线l :y=2x -1,若直线l 1:y=k 1x+b 1与直线l 平行,且经过点A (-2,1),试求直线l 1的表达式;拓展提升(2)如图,在平面直角坐标系xoy 中,△ABC 的顶点坐标分别为:A (0,2),B (4,0),C (-1,-1),试求出AB 边上的高CD 所在直线的表达式.【答案】(1)y=2x+5;(2)y=2x+1.【分析】(1)利用平行线性质可知k 值相等,进而将P 点坐标代入l 1即可求出直线l 1的表达式;(2)由题意设直线AB 的表达式为:y=kx+b ,求出直线AB 的表达式,再根据题意设AB 边上的高CD 所在直线的表达式为:y=mx+n ,进行分析求出CD 所在直线的表达式.【详解】解:(1)∵l 1∥l ,∴k 1=2,∵直线经过点P (-2,1),∴1=2×(-2)+b 1,b 1=5,∴直线l 1表达式为:y=2x+5.(2)设直线AB 的表达式为:y=kx+b∵直线经过点A (0,2),B (4,0),∴240b k b =⎧⎨+=⎩, 解得:122k b ⎧=-⎪⎨⎪=⎩, ∴直线AB 的表达式为:122y x =-+; 设AB 边上的高CD 所在直线的表达式为:y=mx+n ,∵CD ⊥AB ,∴m·(12-)=-1,m=2, ∵直线CD 经过点C (-1,-1),∴-1=2×(-1)+n ,n=1,∴AB 边上的高CD 所在直线的表达式为:y=2x+1.【点睛】本题考查一次函数图像综合问题,理解题意并利用待定系数法求一次函数解析式是解题的关键. 19.计算及解方程组:(1(222 (2)31)51553x y y x -=+⎧⎪-+⎨=⎪⎩( 【答案】(1)2;(2)1331x y =⎧⎨=⎩【分析】(1)先同时计算除法、乘法及化简绝对值,再合并同类二次根式;(2)先将两个方程化简,再利用代入法解方程组.【详解】(1)2775(2525)3212--+-+-)(,=1123-++-,=23-;(2)31)51553x yy x-=+⎧⎪⎨-+=⎪⎩(①②,由①得:3x-y=8.③,由②得:5x-3y=-28.④,由③得:y=3x-8,将y=3x-8代入④,得5x-3(3x-8)=28,解得x=13,将x=13代入③,得y=31,∴原方程组的解是1331xy=⎧⎨=⎩.【点睛】此题考查计算能力,(1)考查分式的混合运算,将分式正确化简,按照计算顺序计算即可得到答案;(2)考查二元一次方程的解法,复杂的方程应先化简,再根据方程组的特点选用代入法或是加减法求出方程组的解.20.在边长为1的小正方形网格中,△AOB的顶点均在格点上.(1)B点关于y轴的对称点坐标为______ ;(2)将△AOB向左平移3个单位长度,再向上平移2个单位长度得到△A1O1B1,请画出△A1O1B1;(3)在(2)的条件下,△AOB边AB上有一点P的坐标为(a,b),则平移后对应点P1的坐标为______ .【答案】(1)(﹣3,1)(1)见解析(3)(a﹣3,b+1)【解析】试题分析:(1)根据坐标系可得B点坐标,再根据关于y轴对称的对称点的坐标特点:横坐标相反,纵坐标不变可得答案;。
河北省邢台市八年级上学期数学期末考试试卷
河北省邢台市八年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)若0<m<1, 则m、m2、的大小关系是()A . m<m2<B . m2<m<C . <m<m2D . <m2<m2. (2分) (2018七下·桐梓月考) 如图,若两条平行线EF,MN与直线AB,CD相交,则图中共有同旁内角的对数为()A . 16B . 12C . 8D . 43. (2分) (2016八下·罗平期末) 2015年1月1日起,杭州市城区实行全新的阶梯水价,之前为了解某社区居民的用水情况,随机对该社区20户居民进行了调查,下表是这20户居民2014年8月份用水量的调查结果:那么关于这次用水量的调查和数据分析,下列说法错误的是()居民(户)128621月用水量(吨)458121520A . 平均数是10(吨)B . 众数是8(吨)C . 中位数是10(吨)D . 样本容量是204. (2分) 64的立方根是()A . 4B . ±4C . 8D . ±85. (2分)下列函数,y随x增大而减小的是()A . y=10xB . y=x﹣1C . y=﹣3+11xD . y=﹣2x+16. (2分)某6人活动小组为了解本组成员的年龄情况,作了一次调查,统计的年龄如下(单位:岁):12,13,14,15,15,15,这组数据中的众数,平均数分别为()A . 12,14B . 12,15C . 15,14D . 15,137. (2分)如下图,以中心广场为坐标原点,建立如图所示的平面直角坐标系,已知牡丹园的坐标是(30,30),那么游乐园的坐标是()A . (-20,20)B . (20,-20)C . (200,-200)D . (100,-100)8. (2分)(2012·辽阳) 将一直角三角板和直尺如图摆放,则∠1+∠2等于()A . 30°B . 60°C . 90°D . 180°9. (2分)菱形的两条对角线的长分别是6和8,则这个菱形的周长是()A . 24B . 20C . 10D . 510. (2分)如果单项式2xm+2ny与﹣3x4y4m﹣2n是同类项,则m、n的值为()A . m=﹣1,n=2.5B . m=1,n=1.5C . m=2,n=1D . m=﹣2,n=﹣1二、填空题 (共6题;共7分)11. (1分) (2019九下·新田期中) 如图,AB是⊙O的直径,弦CD⊥AB于点E,OC=5cm,CD=8cm,则BE=________.12. (2分)(2019·蒙自模拟) 如图,已知AB∥CD,AB=AC,∠ACD=44°,则∠ABC=________.13. (1分)(2019·南岸模拟) 如图,我校初三某班男生期末体考跳远成绩如下折线统计图,则该班男生跳远成绩的中位数是________米.14. (1分)丹东市教育局为了改善中、小学办学条件,计划集中采购一批电子白板和投影机.已知购买2块电子白板比购买3台投影机多4000元,购买4块电子白板和3台投影机共需44000元.问购买一块电子白板需________元.15. (1分) (2018八上·巍山期中) 点P(1,-1)关于原点对称的点的坐标是________.16. (1分) (2019八下·长兴月考) 如图1,边长为6的菱形OABC的顶点O在坐标原点,点B在y轴的正半轴上,∠BAO=120°;点D是BC边的中点(1)求点D的坐标;(2)如图2,把菱形OABC绕点O顺时针旋转45°,得到菱形OA'B'C',点D的对应点为D′,求△OA'D′的面积;(3)如图3,直线y=2 与(2)中的菱形OA'B'C'的边OC′交于点M,与OA'的延长线交于点N,求△OMN 的面积三、解答题 (共9题;共58分)17. (5分) (2017八下·大庆期末) 综合题。
河北省邢台市八年级上学期期末数学试卷
河北省邢台市八年级上学期期末数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共9题;共18分)1. (2分)(2017·资中模拟) 下列实数中,有理数是()A .B .C .D . 0.1010012. (2分)已知P(x,y)是第四象限内的一点,且x2=4,|y|=3,则P点的坐标为()A . (2,3)B . (-2,3)C . (-2,-3)D . (2,-3)3. (2分)(2017·宁夏) 下列各式计算正确的是()A . 4a﹣a=3B . a6÷a2=a3C . (﹣a3)2=a6D . a3•a2=a64. (2分) (2017八下·罗山期中) 如图,透明的圆柱形容器(容器厚度忽略不计)的高为12cm,底面周长为10cm,在容器内壁离容器底部3cm的点B处有一饭粒,此时一只蚂蚁正好在容器外壁,且离容器上沿3cm的点A 处,则蚂蚁吃到饭粒需爬行的最短路径是()A . 13cmB . 2 cmC . cmD . 2 cm5. (2分)(2018·夷陵模拟) 一个多边形截去一个角后,形成另一个多边形的内角和为2520°,则原多边形的边数是()A . 17B . 16C . 15D . 16或15或176. (2分)在平面直角坐标系xoy中,直线y=-x+2经过()A . 第一、二、三象限;B . 第一、二、四象限;C . 第一、三、四象限;D . 第二、三、四象限.7. (2分)如图,过边长为1的等边△ABC的边AB上一点P,作PE⊥AC于E,Q为BC延长线上一点,当PA=CQ 时,连PQ交AC边于D,则DE的长为()A .B .C .D . 不能确定8. (2分)下列说法正确的是()A . 经验、观察或实验完全可以判断一个数学结论的正确与否B . 推理是科学家的事,与我们没有多大的关系C . 对于自然数n,n2+n+37一定是质数D . 有10个苹果,将它放进9个筐中,则至少有一个筐中的苹果不少于2个9. (2分) (2020八上·淅川期末) 如图,将长方形纸片沿对角线折叠,使点落在处,交AD于E,若,则在不添加任何辅助线的情况下,则图中的角(虚线也视为角的边)的个数是()A . 5个B . 4个C . 3个D . 2二、填空题 (共9题;共10分)10. (1分)若的平方根是,则m=________ .11. (2分) (2019八下·义乌期末) 如图1是一张可折叠的钢丝床的示意图,这是展开后支撑起来放在地面上的情况,如果折叠起来,床头部分被折到了床面之下(这里的A,B,C,D符点都是活动的),活动床头是根据三角形的稳定性和四边形的不稳定性设计而成的,其折叠过程可由图2的变换反映出来.如果已知四边形ABCD中,AB=6,CD=15,那么BC=________ ,AD=________才能实现上述的折叠变化.12. (1分) (2015八上·宝安期末) 如图,已知函数y=ax+b和y=kx的图象交于点P,根据图象可得,二元一次方程组的根是________13. (1分) (2016八下·微山期末) 已知一组数据为2、0、﹣1、3、﹣4,则这组数据的方差为________.14. (1分) (2017八下·杭州开学考) 已知点P1(a,﹣3)和点P2(3,b)关于y轴对称,则a+b的值为________.15. (1分)运动会上,生活班委拿20元钱到超市买来果汁x瓶,酸奶y瓶给运动员,已知果汁每瓶2元,酸奶每瓶3元,钱刚好用完则购买方案共有________种.16. (1分) (2017七下·江阴期中) 如图,在四边形ABCD中,点F,E分别在边AB,BC上,将△BFE沿FE 翻折,得△GFE,若GF∥AD,GE∥DC,则∠B的度数为________.17. (1分)已知(a+2)2+|2b﹣1|=0,则a102•b101=________.18. (1分)如图,直线y=x,点A1坐标为(1,0),过点A1作x轴的垂线交直线于点B1 ,以原点O为圆心,OB1长为半径画弧交x轴于点A2;再过点A2作x轴的垂线交直线于点B2 ,以原点O为圆心,OB2长为半径画弧交x轴于点A3 ,…,按此做法进行下去,点An的坐标为________三、解答题 (共8题;共75分)19. (5分)计算:(+)×20. (5分)已知|x+y﹣17|+(5x+3y﹣75)2=0,求2x+3y的值.21. (10分) (2017七下·朝阳期中) 已知在平面直角坐标系中,已知A(3,4),B(3,﹣1),C(﹣3,﹣2),D(﹣2,3).(1)在图上画出四边形ABCD,并求四边形ABCD的面积;(2)若P为四边形ABCD形内一点,已知P坐标为(﹣1,1),将四边形ABCD通过平移后,P的坐标变为(2,﹣2),根据平移的规则,请直接写出四边形ABCD平移后的四个顶点的坐标.22. (10分) (2017七上·丹江口期末) 解答题(1)如图,已知,∠AEF=∠ACD,∠1=∠2,求证:DE∥BC.(要求:不写根据)(2)∠1=∠C,∠B=∠D,求证:∠3=∠2.(要求:不写根据;不许用三角形的内角和定理)23. (5分) (2017七下·钦北期末) 某超市开业十周年举行了店庆活动,对A、B两种商品实行打折出售.打折前,购买5件A商品和1件B商品需用84元;购买6件A商品和3件B商品需用108元.而店庆期间,购买3件A商品和8件B商品仅需72元,求店庆期间超市的折扣是多少?24. (15分)某调查小组采用简单随机抽样方法,对某市部分中小学生一天中阳光体育运动时间进行了抽样调查,并把所得数据整理后绘制成如图的两幅统计图:(1)该调查小组共抽取了多少名学生;(2)样本学生中阳光体育运动时间为1.5小时的人数,并补全频数分布直方图;(3)请通过计算估计该市中小学生一天中阳光体育运动的平均时间.25. (10分) (2016八下·固始期末) 在△ABC中,∠C=90°,AC=6,BC=8,D、E分别是斜边AB和直角边CB 上的点,把△ABC沿着直线DE折叠,顶点B的对应点是B′.(1)如图(1),如果点B′和顶点A重合,求CE的长;(2)如图(2),如果点B′和落在AC的中点上,求CE的长.26. (15分) (2016七下·威海期末) 如图,动点A,B从原点O同时出发,点A以每秒a个单位长度向x轴的负半轴向左运动,点B以每秒b个单位长度沿y轴的正半轴向上运动.(1)若a,b满足关系|a+b﹣3|+(a﹣ b)2=0,请求出a,b的值;(2)如图①,求当运动时间为2秒时,直线AB的函数表达式;(3)如图②,∠BAO与∠ABO的外角平分线相交于点C,随着点A,点B的运动,∠C的度数是否会发生变化?若度数变化,请说明理由;若度数不变,请求出∠C的度数.参考答案一、选择题 (共9题;共18分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、二、填空题 (共9题;共10分)10-1、11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共8题;共75分)19-1、20-1、21-1、21-2、22-1、22-2、23-1、24-1、24-2、24-3、25-1、25-2、26-1、26-2、26-3、第11 页共11 页。
★试卷3套精选★邢台市2018届八年级上学期数学期末复习能力测试试题
八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.某画室分两次购买了相同的素描本,第一次用120元购买了若干本,第二次在同一家商店又购买了240元,这次商家每本优惠4元,结果比上次多买了20本.设第一次买了x本素描本,列方程正确的是()A.120240420x x-=+B.240120420x x-=+C.120240420x x-=-D.240120420x x-=-【答案】A【分析】根据题意可知第二次买了(x+20)本素描本,然后根据“第二次购买比第一次购买每本优惠4元”列出分式方程即可.【详解】解:由题意可知:120240420x x-=+故选A.【点睛】此题考查的是分式方程的应用,掌握实际问题中的等量关系是解决此题的关键.2.已知直线y=-2x+3和直线y=kx - 5平行,则k的值为()A.2 B.-2 C.3 D.无法确定【答案】B【分析】根据两直线平行,k相等即可得出答案.【详解】∵直线y=-2x+3和直线y=kx - 5平行2k∴=-故选:B.【点睛】本题主要考查两直线平行,掌握两直线平行时,k相等是解题的关键.3.正方形的面积为6,则正方形的边长为()A B C.2 D.4【答案】B【分析】根据正方形面积的求法即可求解.【详解】解:∵正方形的面积为6,.故选:B.【点睛】本题考查了算术平方根,正方形的面积,解此题的关键是求出6的算术平方根.4.在下列各数中,无理数有()33224,3,,8,9,07π A .1个 B .2个 C .3个 D .4个【答案】B【分析】先将能化简的进行化简,再根据无理数的定义进行解答即可.【详解】∵4=2,38=2,∴这一组数中的无理数有:3π,39共2个.故选:B .【点睛】本题考查的是无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数. 5.如图,已知30MON ︒∠=,点1A ,2A ,3A ,...在射线ON 上,点1B ,2B ,3B ,...在射线OM 上,112A B A ∆,223A B A ∆,334A B A ∆,...均为等边三角形,若12OA =,则201920192020A B A ∆的边长是( )A .4038B .4036C .20182D .20192【答案】D 【分析】根据图形的变化发现规律即可得结论.【详解】解:观察图形的变化可知:∵△A 1B 1A 2、△A 2B 2A 3、△A 3B 3A 4……均为等边三角形,∵OA 1=2,∴△A 1B 1A 2、△A 2B 2A 3、△A 3B 3A 4……边长分别为:21、22、23…∴△A 2019B 2019A 2020的边长为1.故选D .【点睛】本题考查了规律型-图形的变化类,解决本题的关键是通过观察图形的变化寻找规律.6.将长方形纸片按如图所示的方式折叠,BC 、BD 为折痕,若∠ABC=35°,则∠DBE 的度数为A.55°B.50°C.45°D.60°【答案】A【分析】根据折叠的性质可知∠ABC=∠A’BC,∠DBE=∠DBE’,然后根据平角等于180°代入计算即可得出答案.【详解】解:由折叠的性质可知∠ABC=∠A’BC=35°,∠DBE=∠DBE’,∴∠EBE’=180°-∠ABC-∠A’BC=180°-35°-35°=110°,∴∠DBE=∠DBE’=12∠EBE’=12×110°=55°.故选A.【点睛】本题考查了折叠的性质和角的计算,熟知折叠后重合的角相等是解决此题的关键.7.如图,将30°的三角尺以直角顶点A为旋转中心顺时针旋转,使点C落在边BC的C'处,则其旋转角的大小为()A.30°B.60°C.90°D.150°【答案】B【分析】旋转的性质可得AC=AC',且∠C=60,可证△ACC'是等边三角形,即可求解.【详解】∵将30°的三角尺以直角顶点A为旋转中心顺时针旋转,∴AC=AC',且∠C=60°∴△ACC'是等边三角形,∴∠CAC'=60°,故选B.【点睛】本题考查了旋转的性质,等边三角形的判定和性质,熟练运用旋转的性质是本题的关键.8.当k取不同的值时,y关于x的函数y=kx+2(k≠0)的图象为总是经过点(0,2)的直线,我们把所有这样的直线合起来,称为经过点(0,2)的“直线束”.那么,下面经过点(﹣1,2)的直线束的函数式是()A .y=kx ﹣2(k≠0)B .y=kx+k+2(k≠0)C .y=kx ﹣k+2(k≠0)D .y=kx+k ﹣2(k≠0)【答案】B 【解析】把已知点(﹣1,2)代入选项所给解析式进行判断即可.【详解】在y=kx ﹣2中,当x=﹣1时,y=﹣k ﹣2≠2,故A 选项不合题意,在y=kx+k+2中,当x=﹣1时,y=﹣k+k+2=2,故B 选项符合题意,在y=kx ﹣k+2中,当x=﹣1时,y=﹣k ﹣k ﹣2=﹣2k ﹣2≠2,故C 选项不合题意,在y=kx+k ﹣2中,当x=﹣1时,y=﹣k+k ﹣2=﹣2≠2,故D 选项不合题意,故选B .【点睛】本题主要考查一次函数图象上点的坐标特征,掌握函数图象上点的坐标满足函数解析式是解题的关键. 9.已知点P (a ,3+a )在第二象限,则a 的取值范围是( )A .a <0B .a >﹣3C .﹣3<a <0D .a <﹣3【答案】C【分析】根据第二象限内点的横坐标是负数,纵坐标是正数列出不等式组求解即可.【详解】解:∵点P (a ,3+a )在第二象限, ∴030a a <⎧⎨+>⎩, 解得﹣3<a <1.故选:C .【点睛】本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-). 10.如图,Rt ABC ∆中,90A ∠=︒,30B ∠=︒,CD CA =,D 在BC 上,45ADE ∠=︒,E 在AB 上,则BED ∠的度数是( )A .60︒B .75︒C .80︒D .85︒【答案】B 【分析】先根据直角三角形两锐角互余求出60C ∠=°,从而可知ADC ∆是等边三角形,再由等边三角形的性质可求出60CAD ∠=︒,从而可得30DAE ∠=︒,最后根据三角形的外角性质即可得.【详解】90,30BAC B ∠=︒∠=︒9006B C ︒-∠∴=∠=︒CD CA =ADC ∴∆是等边三角形,60CAD ∠=︒30BAC DAE CAD =∠∴-=∠∠︒45ADE ∠=︒375450AD BED DAE E ∠=∴∠=︒∠+︒+=︒故选:B .【点睛】本题是一道较为简单的综合题,考查了直角三角形的性质、等边三角形的性质、三角形的外角性质等知识点,熟记并灵活运用各性质是解题关键.二、填空题11.如图,点B 、F 、C 、E 在一条直线上,已知BF=CE ,AC ∥DF ,请你添加一个适当的条件______,使得△ABC ≌△DEF .【答案】∠A=∠D(答案不唯一)【解析】试题解析:添加∠A=∠D .理由如下:∵FB=CE ,∴BC=EF .又∵AC ∥DF ,∴∠ACB=∠DFE .∴在△ABC 与△DEF 中,,∴△ABC ≌△DEF (AAS ).考点:全等三角形的判定.12.Rt ABC 中,90C ∠=︒,12AC cm =,16BC cm =,将它的一个锐角翻折,使该锐角顶点落在其对边的中点D 处,折痕交另一直角边于点E ,交斜边于点F ,则CDE △的周长为__________.【答案】20cm 或22cm【分析】根据轴对称的性质:折叠前后图形的形状和大小不变分折叠∠A 和∠B 两种情况求解即可.【详解】当∠B 翻折时,B 点与D 点重合,DE 与EC 的和就是BC 的长,即DE+EC=16cm ,CD=12AC=6cm ,故△CDE 的周长为16+6=22cm ; 当∠A 翻折时,A 点与D 点重合.同理可得DE+EC=AC=12cm ,CD=12BC=8cm , 故△CDE 的周长为12+8=20cm .故答案为20cm 或22cm .【点睛】本题考查图形的翻折变换.解题时应注意折叠是一种对称变换,它属于轴对称.13.关于x 的一次函数(2)21y k x k =+-+,其中k 为常数且2k ≠-.①当0k =时,此函数为正比例函数.②无论k 取何值,此函数图象必经过(2,5).③若函数图象经过()2,m a ,()23,2m a +-(m ,a 为常数),则83k =-. ④无论k 取何值,此函数图象都不可能同时经过第二、三、四象限.上述结论中正确的序号有________.【答案】②③④【分析】根据一次函数知识依次判断各项即可.【详解】①当k=0时,则21y x =+,为一次函数,故①错误;②整理得:=(2)21-++y x k x ,∴x=2时,y=5,∴此函数图象必经过(2,5),故②正确;③把()2,m a ,()23,2m a +-代入(2)21y k x k =+-+中,得:()22(2)212(2)321①②⎧=+-+⎪⎨-=++-+⎪⎩a k m k a k m k ,②-①得:23(2)-=+k , 解得:83k =-,故③正确;④当k+2<0时,即k <-2,则-2k+1>5,∴此函数图象都不可能同时经过第二、三、四象限,故④正确;故答案为:②③④.【点睛】本题是对一次函数知识的考查,熟练掌握一次函数的性质定理是解决本题的关键.14.当1x =时,分式x b x a -+无意义,则a =_________. 【答案】-1【分析】根据分式无意义的条件是分母为零即可解答.【详解】解:∵当1x =时,分式x b x a-+无意义, ∴当1x =时,分母为零,即10a +=,解得a=-1,故答案为:-1.【点睛】本题考查了分式无意义的条件,解题的关键是熟知分式无意义的条件是分母为零.15.一次函数2y x m =-+的图象经过点()2,3P -,且与x 轴、y 轴分别交于点A 、B ,则AOB 的面积等于___________. 【答案】14【解析】∵一次函数y=−2x+m 的图象经过点P(−2,3),∴3=4+m ,解得m=−1,∴y=−2x−1,∵当x=0时,y=−1,∴与y 轴交点B(0,−1),∵当y=0时,x=−12,∴与x 轴交点A(−12,0), ∴△AOB 的面积:12×1×12=14. 故答案为14. 点睛:首先根据待定系数法求得一次函数的解析式,然后计算出与x 轴交点,与y 轴交点的坐标,再利用三角形的面积公式计算出面积即可.16.点P (2,1)--关于x 轴的对称点坐标为________.【答案】(2,1)-【分析】根据点的坐标关于坐标轴对称的方法“关于谁对称,谁就不变,另一个互为相反数”可直接求解.【详解】解:由点P (2,1)--关于x 轴的对称点坐标为(2,1)-;故答案为(2,1)-.【点睛】本题主要考查点的坐标关于坐标轴对称,熟练掌握点的坐标关于坐标轴对称的方法是解题的关键. 17.点A (2,1)到x 轴的距离是____________.【答案】1【分析】根据点到x 轴的距离等于纵坐标的绝对值解答.【详解】解:点A (2,1)到x 轴的距离是1,故答案为:1.【点睛】本题考查了点的坐标,熟记点到x 轴的距离等于纵坐标的绝对值,到y 轴的距离等于横坐标的绝对值是解题的关键.三、解答题18.解不等式组20312123x x x +≥⎧⎪-+⎨<⎪⎩,并把解集在数轴上表示出来. 【答案】﹣2≤x <1,见解析【分析】先求出不等式的解集,再求出不等式组的解集,最后在数轴上表示出来即可. 【详解】20 3121 23x x x +≥⎧⎪⎨-+<⎪⎩①② 解不等式①得:x≥﹣2,解不等式②得:x <1,∴不等式组的解集是﹣2≤x <1,在数轴上表示为:.【点睛】本题考查了解一元一次不等式(组)和在数轴上表示不等式组的解集,能根据不等式的解集找出不等式组的解集是解此题的关键.19.(1)如图①,在△ABC 中,∠C =90°,请用尺规作图作一条直线,把△ABC 分割成两个等腰三角形,并说明理由(保留作图痕迹,不写作法);(2)已知内角度数的两个三角形如图②、图③所示,能否分别画一条直线把他们分割成两个等腰三角形?若能,请写出分割成的两个等腰三角形顶角的度数.【答案】(1)见解析;(2)图②能,顶角分别是132°和84°,图③不能【分析】(1)本题中,只要找到斜边中点,然后连接直角顶点和斜边中点,那么分成的两个三角形就是等腰三角形.那么只要作AC 的垂直平分线就可以了.AC 的垂直平分线与AB 的交点就是AB 的中点; (2)本题要先根据三角形的内角和求出另一角的度数,然后看看是否能分成等腰三角形,图2可以将∠B 分成24°和48°.图3不能分成等腰三角形.【详解】(1)作线段AC 的垂直平分线MN ,交AB 于点M ,交AC 于点N ;过点C 、M 作直线.直线CM 即为所求.理由:∵MN 为AC 的垂直平分线,∴MA MC =,∴24MCA A ∠=∠=︒.∵90ACB ∠=︒,24A ∠=︒,∴902466B ∠=︒-︒=︒,902466BCM ∠=︒-︒=︒,∴B BCM ∠=∠,∴MB MC =.(2)图②能画一条直线把它分割成两个等腰三角形,分割成的两个等腰三角形的顶角分别是132︒和84︒.图③不能分割成两个等腰三角形..【点睛】本题主要考查了直角三角形的性质和三角形的内角和,等腰三角形的判定等知识点.注意本题作图中的理论依据是直角三角形斜边上的中线等于斜边的一半.20.(1)计算:2234()x y xy --;(2)计算:22223•()a b a b ---;(3)分解因式:22x y xy y ++;(4)解分式方程:1122x x x -=+-. 【答案】(1)3624+x y x y ;(1)88b a;(3)()21+y x ;(4)23x = 【分析】(1)根据积的乘方进行计算即可(1)根据积的乘方和负整指数幂的运算法则计算即可(3)首先提取公因式y ,再利用完全平方公式即可.(4)方程两边乘最简公分母(x+1)(x-1),把分式方程转化为整式方程求解即可.【详解】解:(1)2233624()4x y xy x y x y =--+ (1)2222832266888•()?b a b a b a b a b a b a ------=== (3)()2222(21)1++=++=+x y xy y y x x y x(4)去分母得:x (x-1)-(x+1)(x-1)=x+1.去括号得:x 1-1x-x 1+4=x+1.移项合并同类项得:-3x=-1.系数化为1得:23x =, 检验,当x=23时,(x+1)(x-1)≠2. 所以,原方程的解为23x =. 【点睛】本题考查了用提公因式法和公式法进行因式分解、负整指数幂、积的乘方、解分式方程等知识,熟练掌握相关知识是解题的关键21.在△ABC 中,∠BAC =90°,AB =AC ,点D 为直线BC 上一动点(点D 不与B 、C 重合),以AD 为直角边在AD右侧作等腰直角三角形ADE,且∠DAE=90°,连接CE.(1)如图①,当点D在线段BC上时:①BC与CE的位置关系为;②BC、CD、CE之间的数量关系为.(2)如图②,当点D在线段CB的延长线上时,结论①,②是否仍然成立?若不成立,请你写出正确结论,并给予证明.(3)如图③,当点D在线段BC的延长线上时,BC、CD、CE之间的数量关系为.【答案】(1)①BC⊥CE;②BC=CD+CE;(2)结论①成立,②不成立,结论:CD=BC+CE;(3)CE=BC+CD.【解析】(1)①利用条件求出△ABD≌△ACE,随之即可得出位置关系.②根据BD=CE,可得BC=BD+CD=CE+CD.(2)根据第二问的条件得出△ABD≌△ACE,随之即可证明结论是否成立.(3)分析新的位置关系得出△ABD≌△ACE,即可得出CE=BC+CD.【详解】(1)如图1.∵∠BAC=∠DAE=90°,∴∠BAD=∠CAE.在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴BD=CE,∠B=∠ACE=45°,①∵∠ACE=45°=∠ACB,∴∠BCE=45°+45°=90°,即BD⊥CE;②∵BD=CE,∴BC=BD+CD=CE+CD.故答案为:BC⊥CE,BC=CD+CE;(2)结论①成立,②不成立,结论:CD=BC+CE理由:如图2中,∵∠BAC=∠DAE=90°,∴∠BAC﹣∠BAE=∠DAE﹣∠BAE,即∠BAD=∠EAC.在△ABD 和△ACE中,,∴△ABD≌△ACE(SAS),∴BD=CE,∠ACE=∠ABD=135°,∴CD=BC+BD =BC+CE∵∠ACB=45°∴∠DCE=90°,∴CE⊥BC;(3)如图3中,∵∠BAC=∠DAE=90°,∴∠BAC+∠CAD=∠DAE+∠CAD即∠BAD=∠CAE,∴在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴BD=CE,∠ACE =∠ABC.∵AB =AC ,∴∠ABC =∠ACB =45°,∴BD =BC+CD ,即CE =BC+CD .故答案为:CE =BC+CD .【点睛】本题考查了复杂图形中证明三角形全等的条件,掌握证明条件是解题关键.22.如图所示,在平面直角坐标系中,△ABC 各顶点的坐标分别为A (4,0),B (-1,4),C (-3,1).(1)作出△A′B′C′,使△A′B′C′和△ABC 关于x 轴对称;(2)写出点A′, B′,C′的坐标;(3)求△ABC 的面积.【答案】(1)见解析;(2)(4,0),(﹣1,﹣4),(﹣3,﹣1);(3)11.1.【解析】试题分析:(1)直接利用关于x 轴对称点的性质,进而得出答案;(2)直接利用(1)中所画图形得出各点坐标即可;(3)利用△ABC 所在矩形面积减去周围三角形面积进而得出答案.试题解析:(1)如图所示:△A′B′C′,即为所求;(2)点A′的坐标为(4,0),点B′的坐标为(﹣1,﹣4),点C′的坐标为(﹣3,﹣1);(3)△ABC 的面积为:7×4﹣12×2×3﹣12×4×1﹣12×1×7=11.1. 23.如图,在平面直角坐标系中,ABC ∆的三个顶点都在格点上,点A 的坐标为()2,4,请解答下列问题:(1)画出ABC ∆关于x 轴对称的111A B C ∆,并写出点1A 的坐标.(2)画出111A B C ∆关于y 轴对称的222A B C ∆,并写出点2A 的坐标.【答案】(1)见解析,()12,4A -;(2)见解析,()22,4A -- 【分析】(1)作出各点关于x 轴的对称点,再顺次连接即可;(2)作出各点关于y 轴的对称点,再顺次连接即可.【详解】(1)如图,111A B C ∆即为所求,()12,4A -.(2)如图,222A B C ∆即为所求,点()22,4A --.【点睛】本题考查的是作图-轴对称变换,熟知轴对称的性质是解答此题的关键.24.2019年11月26日,鲁南高铁日曲段正式开通,日照市民的出行更加便捷.从日照市到B 市,高铁的行驶路线全程是600千米,普通列车的行驶路线全程是高铁的1.2倍.若高铁的平均速度是普通列车平均速度的2.5倍,且乘坐高铁所需时间比乘坐普通列车所需时间节省4小时,求高铁的平均速度.【答案】高铁的平均速度是300千米/时.【分析】根据高铁的行驶路程是600千米和普通列车的行驶路程是高铁的行驶路程的1.2倍,两数相乘即可得出普通列车的行驶路程;设普通列车平均速度是x 千米/时,根据高铁所需时间比乘坐普通列车所需时间缩短4小时,列出分式方程,然后求解即可【详解】解:根据题意得:600×1.2=720(千米).所以,普通列车的行驶路程是720千米;设普通列车平均速度是x千米/时,则高铁平均速度是2.5x千米/时,根据题意得:720600-=,4x x2.5解得:x=120,经检验x=120是原方程的解,则高铁的平均速度是120×2.5=300(千米/时).答:高铁的平均速度是300千米/时.【点睛】此题考查了分式方程的应用,关键是分析题意,找到合适的数量关系列出方程,解分式方程时要注意检验.25.如图,已知AB∥CD,∠A=40°.点P是射线AB上一动点(与点A不重合),CE、CF分别平分∠ACP 和∠DCP交射线AB于点E、F.(1)求∠ECF的度数;(2)随着点P的运动,∠APC与∠AFC之间的数量关系是否改变?若不改变,请求出此数量关系;若改变,请说明理由;(3)当∠AEC=∠ACF时,求∠APC的度数.【答案】(1)70°;(2)不变.数量关系为:∠APC=2∠AFC.(3)70°.【分析】(1)先根据平行线的性质,得出∠ACD=120°,再根据CE、CF分别平分∠ACP和∠DCP,即可得出∠ECF的度数;(2)根据平行线的性质得出∠APC=∠PCD,∠AFC=∠FCD,再根据CF平分∠PCD,即可得到∠PCD=2∠FCD 进而得出∠APC=2∠AFC;(3)根据∠AEC=∠ECD,∠AEC=∠ACF,得出∠ECD=∠ACF,进而得到∠ACE=∠FCD,根据∠ECF=70°,∠ACD=140°,可求得∠APC的度数.【详解】(1)∵AB∥CD,∴∠A+∠ACD=180°,∴∠ACD=180°-40°=140°∵CE平分∠ACP,CF平分∠DCP,∴∠ACP=2∠ECP,∠DCP=2∠PCF∠ACD=70°∴∠ECF=12(2)不变.数量关系为:∠APC=2∠AFC.∵AB∥CD,∴∠AFC=∠DCF,∠APC=∠DCP∵CF平分∠DCP,∴∠DCP=2∠DCF,∴∠APC=2∠AFC(3)∵AB∥CD,∴∠AEC=∠ECD当∠AEC=∠ACF时,则有∠ECD=∠ACF,∴∠ACE=∠DCF∴∠PCD=1∠ACD=70°2∴∠APC=∠PCD=70°【点睛】本题主要考查了平行线的性质,角平分线的性质的运用,解决问题的关键是掌握:两直线平行,内错角相等.八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.如图,在△ABC中,∠BAC=90°,AD是高,BE是中线,CF是角平分线,CF交AD于G,交BE于H.下列结论:①S△ABE=S△BCE;②∠AFG=∠AGF;③∠FAG=2∠ACF;④BH=CH.其中所有正确结论的序号是()A.①②③④B.①②③C.②④D.①③【答案】B【分析】根据等底等高的三角形的面积相等即可判断①;根据三角形内角和定理求出∠ABC=∠CAD,根据三角形的外角性质即可推出②;根据三角形内角和定理求出∠FAG=∠ACD,根据角平分线定义即可判断③;根据等腰三角形的判定判断④即可.【详解】解:∵BE是中线,∴AE=CE,∴S△ABE=S△BCE(等底等高的三角形的面积相等),故①正确;∵CF是角平分线,∴∠ACF=∠BCF,∵AD为高,∴∠ADC=90°,∵∠BAC=90°,∴∠ABC+∠ACB=90°,∠ACB+∠CAD=90°,∴∠ABC=∠CAD,∵∠AFG=∠ABC+∠BCF,∠AGF=∠CAD+∠ACF,∴∠AFG=∠AGF,故②正确;∵AD为高,∴∠ADB=90°,∵∠BAC=90°,∴∠ABC+∠ACB=90°,∠ABC+∠BAD=90°,∴∠ACB=∠BAD,∵CF是∠ACB的平分线,∴∠ACB=2∠ACF,∴∠BAD=2∠ACF ,即∠FAG=2∠ACF ,故③正确;根据已知条件不能推出∠HBC=∠HCB ,即不能推出BH=CH ,故④错误;故选B .【点睛】本题考查了三角形内角和定理,三角形的外角性质,三角形的角平分线、中线、高,等腰三角形的判定等知识点,能综合运用定理进行推理是解此题的关键.2.如图,在Rt △ACB 中,∠ACB=90°,∠A=25°,D 是AB 上一点.将Rt △ABC 沿CD 折叠,使B 点落在AC 边上的B′处,则∠ADB′等于( )A .25°B .30°C .35°D .40°【答案】D 【解析】∵在Rt △ACB 中,∠ACB=90°,∠A=25°,∴∠B=90°﹣25°=65°.∵△CDB′由△CDB 反折而成,∴∠CB′D=∠B=65°.∵∠CB′D 是△AB′D 的外角,∴∠ADB′=∠CB′D ﹣∠A=65°﹣25°=40°.故选D .3.已知()1,2x -,()2,3x -,()3,1x 是直线5y x b =-+(b 为常数)上的三个点,则1x ,2x ,3x 的大小关系是( )A .123x x x >>B .213x x x >>C .312x x x >>D .321x x x >>【答案】B【分析】根据k=-5知y 随x 的增大而减小,从而判断大小.【详解】∵一次函数5y x b =-+中,k=-5,∴y 随x 的增大而减小,∵-3<-2<1,∴213x x x >>,故选B.【点睛】本题是对一次函数知识的考查,熟练掌握一次函数k 与函数增减的关系是解决本题的关键.4.如果点(12)P m m -,在第四象限,那么m 的取值范围是( ).A .102m <<B .102m -<<C .0m <D .12m > 【答案】D【分析】横坐标为正,纵坐标为负,在第四象限.【详解】解:∵点p (m ,1-2m )在第四象限,∴m >0,1-2m <0,解得:m >12,故选D . 【点睛】坐标平面被两条坐标轴分成了四个象限,每个象限内的点的坐标符号各有特点,该知识点是中考的常考点,常与不等式、方程结合起来求一些字母的取值范围,比如本题中求m 的取值范围.5.若等腰三角形的周长为26cm ,底边为11cm ,则腰长为( )A .11cmB .11cm 或7.5cmC .7.5cmD .以上都不对 【答案】C【分析】根据等腰三角形的性质和三角形的周长公式即可得到结论.【详解】解:∵11cm 是底边, ∴腰长=12(26﹣11)=7.5cm , 故选:C .【点睛】本题考查了等腰三角形的性质,解题的关键是熟练掌握等腰三角形的性质.6.己知x,y 满足方程组612328x y x y +=⎧⎨-=⎩,则x+y 的值为( ) A .5B .7C .9D .3【答案】A【分析】直接把两式相加即可得出结论. 【详解】612328x y x y +=⎧⎨-=⎩①②, ①+②得,4x+4y=20,解得x+y=1.故选A .【点睛】本题考查的是解二元一次方程组,熟知利用加减法解二元一次方程组是解答此题的关键.7.把分式()22x y x y x y+≠-分子、分母中的x ,y 同时扩大为原来的2倍,那么该分式的值( ) A .扩大为原来的2倍 B .缩小为原来的2倍C .不变D .扩大为原来的4倍【答案】A 【分析】当分式()22x y x y x y +≠-中x 和y 同时扩大2倍,得到22(2)(2)22x y x y+-,根据分式的基本性质得到222222(2)(2)442222()x y x y x y x y x y x y+++==⨯---,则得到分式的值扩大为原来的2倍. 【详解】分式()22x y x y x y+≠-中x 和y 同时扩大2倍, 则原分式变形为222222(2)(2)442222()x y x y x y x y x y x y+++==⨯---, 故分式的值扩大为原来的2倍.故选A .【点睛】本题主要考查分式的基本性质:分式的分子与分母同乘(或除以)一个不等于的整式,分式的值不变.解题的关键是抓住分子,分母变化的倍数,解此类题首先把字母变化后的值代入式子中,然后约分,再与原式比较,最终得出结论.8.如图,在△ABC 中,AB =AC ,AD 、CE 分别是△ABC 的中线和角平分线,当∠ACE =35°时,∠BAD 的度数是( )A .55°B .40°C .35°D .20°【答案】D 【分析】根据角平分线的定义和等腰三角形的性质即可得到结论.【详解】∵CE 是∠ACB 的平分线,∠ACE =35°,∴∠ACB =2∠ACE =70°,∵AB =AC ,∴∠B =∠ACB =70°,∵AD ⊥BC ,∴∠ADB =90°,∴∠BAD =90°﹣∠B =20°,故选D .【点睛】本题考查了等腰三角形的两个底角相等的性质,三角形内角和定理以及角平分线定义,求出∠ACB=70°是解题的关键.9.若关于x的分式方程11mx--=2的解为非负数,则m的取值范围是()A.m>﹣1 B.m≥1 C.m>﹣1且m≠1 D.m≥﹣1且m≠1【答案】D【解析】试题分析:去分母可得:m-1=2(x-1),解得:x=,根据解为非负数可得:且x≠1,即0且x≠1,解得:m≥-1且m≠1.考点:解分式方程10.如图,∠MCN=42°,点P在∠MCN内部,PA⊥CM,PB⊥CN,垂足分别为A、B,PA=PB,则∠MCP 的度数为( ).A.21°B.24°C.42°D.48°【答案】A【分析】根据角平分线的判定可知CP平分∠MCN,然后根据角平分线的定义即可求出结论.【详解】解:∵PA⊥CM,PB⊥CN,PA=PB,∴CP平分∠MCN∵∠MCN=42°,∴∠MCP=12∠MCN=21°故选A.【点睛】此题考查的是角平分线的判定,掌握角平分线的判定定理是解决此题的关键.二、填空题11.如图,在平面直角坐标系中,一动点从原点O出发,沿着箭头所示方向,每次移动一个单位,依次得到点P1(0,1);P2(1,1);P3(1,0);P4(1,﹣1);P5(2,﹣1);P6(2,0)……,则点P2019的坐标是_____.【答案】(673,0)【分析】由P 3、P 6、P 9 可得规律:当下标为3的整数倍时,横坐标为3n ,纵坐标为0,据此可解. 【详解】解:由P 3、P 6、P 9 可得规律:当下标为3的整数倍时,横坐标为3n ,纵坐标为0, ∵2019÷3=673,∴P 2019 (673,0)则点P 2019的坐标是 (673,0).故答案为 (673,0).【点睛】本题属于平面直角坐标系中找点的规律问题,找到某种循环规律之后,可以得解.本题难度中等偏上. 12.一次函数3y x =的图像沿y 轴向上平移3个单位长度,则平移后的图像所对应的函数表达为_____.【答案】33y x =+【分析】根据”上加下减”的平移规律解答即可.【详解】解: 一次函数3y x =的图像沿y 轴向上平移3个单位长度,则平移后的图像所对应的函数表达为: 33y x =+.故答案: 33y x =+【点睛】本题考查了一次函数图像与几何变换,求直线平移后的解析式要注意平移时候k 值不变,解析式变化的规律是:上加下减, 左加右减.13.把长方形AB CD '沿对角线AC 折叠,得到如图所示的图形.若∠BAO =34°,则∠BAC 的大小为_______.【答案】62°【分析】先利用AAS 证明△AOB ≌△COD ,得出∠BAO=∠DCO=34°,∠B′CO=68°,结合折叠的性质得出∠B′CA=∠BCA=34°,则∠BAC=∠B′AC=56°.【详解】由题意,得△B′CA ≌△BCA ,∴AB′=AB ,∠B′CA=∠BCA ,∠B′AC=∠BAC .∵长方形AB′CD 中,AB′=CD ,∴AB=CD .在△AOB 与△COD 中,90B D AOB COD AB CD ∠∠︒⎧⎪∠∠⎨⎪⎩==== , ∴△AOB ≌△COD (AAS ),∴∠BAO=∠DCO=34°,∴∠B′CO=90°-∠DCO=56°,∴∠B′CA=∠BCA=28°,∴∠B′AC=90°-∠B′CA=62°,∴∠BAC=∠B′AC=62°.【点睛】考查了折叠的性质、矩形的性质和全等三角形的判定与性质,解题关键是证明△AOB ≌△COD ,得出∠BAO=∠DCO=34°是解题的关键.14.如果332y x x=-+--,那么y x =_______________________.【答案】19【分析】根据二次根式的有意义的条件可求出x ,进而可得y 的值,然后把x 、y 的值代入所求式子计算即可.【详解】解:∵x -3≥0,3-x ≥0,∴x=3,∴y=﹣2,∴2139y x -==. 故答案为:19. 【点睛】本题考查了二次根式有意义的条件和负整数指数幂的运算,属于常考题型,熟练掌握基本知识是解题的关键.15.如图,在等边ABC ∆中,D 是BC 的中点,E 是AB 的中点,H 是AD 上任意一点.如果10AB AC BC ===,53AD =,那么HE HB +的最小值是 .【答案】53【分析】从题型可知为”将军饮马”的题型,连接CE,CE 即为所求最小值.【详解】∵△ABC 是等边三角形,∴B 点关于AD 的对称点就是C 点,连接CE 交AD 于点H,此时HE+HB 的值最小.∴CH=BH,∴HE+HB=CE,根据等边三角形的性质,可知三条高的长度都相等,∴CE=AD=53.故答案为: 53.【点睛】本题考查三角形中动点最值问题,关键在于寻找对称点即可求出最值.16.如图,在ABC ∆中,90ACB ∠=︒,4AC = ,2BC = ,点D 在AB 上,将ACD ∆ 沿CD 折叠,点A 落在点1A 处,1A C 与AB 相交于点E ,若1//AD BC ,则1A D 的长是__________.【答案】2【分析】利用平行线的性质及折叠的性质得到1190A A DB ∠+∠=,即AB ⊥CE ,再根据勾股定理求出2232AB BC AC +=,再利用面积法求出CE.【详解】∵1//AD BC ,∴1A DB B ∠=∠,由折叠得: 1A A ∠=∠,∵90ACB ∠=︒,∴90A B ∠+∠=,∴1190A A DB ∠+∠=,∴AB ⊥CE ,∵90ACB ∠=︒,4AC = ,2BC = ,∴2232AB BC AC =+=, ∵1122AB CE AC BC ⋅⋅=⋅⋅, ∴11324222CE ⨯=⨯⨯, ∴CE=43, ∴148433A E =-=, ∵1cosA cosA =,∴18332A D=,∴122A D =, 故答案为:22.【点睛】此题考查平行线的性质,折叠的性质,勾股定理,利用面积法求三角形的高线,题中求出AB ⊥CE 是解题的关键.17.如图,在ABE △中,AE 的垂直平分线MN 交BE 于点C ,30E ∠=︒,且AB CE =,则BAE ∠的度数为__________【答案】90°【分析】根据题意利用线段的垂直平分线的性质,推出CE=CA ,进而分析证明△CAB 是等边三角形即可求解.【详解】解:∵MN 垂直平分线段AE ,∴CE=CA ,∴∠E=∠CAE=30°,∴∠ACB=∠E+∠CAE=60°,∵AB=CE=AC ,∴△ACB 是等边三角形,∴∠CAB=60°,∴∠BAE=∠CAB+∠CAE=90°,故答案为:90°.【点睛】本题考查等腰三角形的性质以及线段的垂直平分线的性质等知识,解题的关键是熟练掌握相关基本知识.三、解答题18.已知12x x+=,求221x x +,441x x +的值. 【答案】2,2【分析】将已知的等式左右两边分别平方,再展开求得. 【详解】解:∵12x x +=, ∴221()2x x +=, ∴22124x x ++=, ∴2212x x +=. ∴22221()2x x+=, ∴4412+4x x+=, ∴4412x x+=. 【点睛】本题考查了完全平方公式,关键是把所求代数式整理为与所给等式相关的形式或与得到结果相关的形式. 19.如图,已知在坐标平面内,点A 的坐标是()1,1-,点B 在点A 的正北方向5个单位处,把点A 向上平移2个单位再向左平移3个单位得到点C .()1在下图中画出平面直角坐标系和ABC ∆,写出点B 、点C 的坐标;()2在图中作出ABC ∆关于y 轴的轴对称图形'''A B C ∆;()3求出ABC ∆的面积【答案】(1)图见解析,点B的坐标为(-1,6),点C的坐标为(-4,3);(2)见解析;(3)152.【分析】(1)根据描述可画出B,C表示的点,顺次连接可得到△ABC,再根据点A的坐标可找到原点坐标,并可以画出坐标系,然后写出B,C的坐标即可;(2)根据关于y轴对称的点的坐标横坐标互为相反数,纵坐标相等找出A,B,C的对应点,然后再顺次连接即可得出结果;(3)过点C作CD⊥AB于点D,则根据三角形的面积公式可得出△ABC的面积.【详解】解:(1)平面直角坐标系和ABC如图所示,点B的坐标为(-1,6),点C的坐标为(-4,3);(2)△A′B′C′如图所示;(3)过点C作CD⊥AB于点D,根据题意可知,AB∥y轴,∴AB=5,CD=3,∴△ABC的面积=12×AB×CD=12×5×3=152.【点睛】本题考查了利用平移变换作图以及轴对称变换作图,熟练掌握网格结构准确找出对应点的位置是解题的关键.20.如图,AD平分∠BAC,AD⊥BD,垂足为点D,DE∥AC.求证:△BDE是等腰三角形.【答案】证明见解析.【解析】试题分析:直接利用平行线的性质得出∠1=∠3,进而利用角平分线的定义结合互余的性质得出∠B=∠BDE,即可得出答案.试题解析:∵DE∥AC,∴∠1=∠3,∵AD平分∠BAC,∴∠1=∠2,∴∠2=∠3,∵AD⊥BD,∴∠2+∠B=90°,∠3+∠BDE=90°,∴∠B=∠BDE,∴△BDE是等腰三角形.考点:等腰三角形的判定;平行线的性质.21.某乡镇企业生产部有技术工人15人,生产部为了合理制定产品的每月生产定额,统计了这15人某月的加工零件数如下:每人加工零件数540 450 300 240 210 120人数 1 1 2 6 3 2(1)写出这15人该月加工零件的平均数、中位数和众数;(2)生产部负责人要定出合理的每人每月生产定额,你认为应该定为多少件合适?【答案】(1)平均数是:260件,中位数是:240件,众数是:240件;(2)240件.【分析】(1)利用加权平均数公式即可求得平均数,中位数是小到大的顺序排列时,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个;(2)根据(1)求得的中位数,平均数以及众数进行比较,根据实际情况进行判断.【详解】解:(1)这15人该月加工零件总数=540145013002240621031202⨯+⨯+⨯+⨯+⨯+⨯=3900(件),这15人该月加工零件的平均数:390026015x==(件),中位数是:240件,众数是:240件;(2)240件合适.因为当定额为240件时,有10人达标,4人超额完成,有利于提高大多数工人的积。
【精选3份合集】2017-2018年邢台市八年级上学期数学期末综合测试试题
八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.我们规定:[]m 表示不超过m 的最大整数,例如:[]3.13=,[]00=,[]3.14-=-,则关于x 和y 的二元一次方程组[][][]3.23.2x y x y ⎧+=⎪⎨-=⎪⎩的解为( ) A .30.2x y =⎧⎨=⎩ B .21.2x y =⎧⎨=⎩ C . 3.30.2x y =⎧⎨=⎩ D . 3.40.2x y =⎧⎨=⎩【答案】A【分析】根据[]m 的意义可得[]3.2=3,[]x 和[]y 均为整数,两方程相减可求出0.2y =,[]0y =,将[]0y =代入第二个方程可求出x.【详解】解:[][][]3.23.2x y x y ⎧+=⎪⎨-=⎪⎩①②, ∵[]m 表示不超过m 的最大整数,∴[]3.2=3,[]x 和[]y 均为整数,∴x 为整数,即[]=x x ,∴①-②得:[]0.2y y +=,∴0.2y =,[]0y =,将[]0y =代入②得:3x =, ∴30.2x y =⎧⎨=⎩, 故选:A.【点睛】本题考查了新定义以及解二元一次方程组,正确理解[]m 的意义是解题的关键.2.下列命题中,真命题是( )A .过一点且只有一条直线与已知直线平行B .两个锐角的和是钝角C .一个锐角的补角比它的余角大90°D .同旁内角相等,两直线平行【答案】C【分析】根据平行线的公理及判定、角的定义和补角和余角的定义可逐一判断.【详解】解:A 、过直线外一点有且只有一条直线与已知直线平行,是假命题;B 、两个锐角的和不一定是钝角,如20°+20°=40°,是假命题;C 、一个锐角的补角比它的余角大90°,是真命题;D 、同旁内角互补,两直线平行,是假命题;故选:C .【点睛】本题主要考查平行线的公理及性质,掌握平行线的公理及判定、角的定义和补角和余角的定义是关键. 3.如果代数式21x y -+的值为3,那么代数式的425x y -+值等于( )A .11B .9C .13D .7【答案】B【分析】先由已知可得2x-y=2,然后将425x y -+写成2(2x-y )+5,最后将2x-y=2代入计算即可.【详解】解:∵代数式2x-y+1的值为3∴2x-y=2∴425x y -+=2(2x-y )+5=2×2+5=1.故答案为B .【点睛】本题主要考查了代数式求值,根据已知求出2x-y 的值是解答本题的关键.4.把一副三角板按如图叠放在一起,则α∠的度数是( )A .165B .160C .155D .150【答案】A 【分析】先根据三角形的一个外角等于与它不相邻的两个内角的和求出∠1,同理再求出∠α即可 【详解】解:如图,∠1=∠D+∠C=45°+90°=135°,∠α=∠1+∠B=135°+30°=165°.故选A .【点睛】本题考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质是解题的关键. 5.在平面直角坐标系中,点(5,6)关于x 轴的对称点是( )A .(6,5)B .(-5,6)C .(5,-6)D .(-5,-6)【答案】C【分析】根据关于x 轴对称点的坐标特点:横坐标不变,纵坐标互为相反数即可得答案.【详解】点(5,6)关于x 轴的对称点(5,-6),故选:C.【点睛】本题主要考查了关于x 轴对称点的坐标特点,熟练掌握关于x 轴对称点的坐标特点:横坐标不变,纵坐标互为相反数是解题关键.6.如图,△ABC 中,AB=10,BC=12,AC=213,则△ABC 的面积是( ).A .36B .1013C .60D .1213【答案】A 【分析】作AD BC ⊥于点D ,设BD x =,得222AB BD AD -=,222AC CD AD -=,结合题意,经解方程计算得BD ,再通过勾股定理计算得AD ,即可完成求解.【详解】如图,作AD BC ⊥于点D设BD x =,则12CD BC x x =-=-∴222AB BD AD -=,222AC CD AD -=∴2222AB BD AC CD -=-∵AB=10,AC=213 ∴()()22221021312x x -=-- ∴8x =∴22221086AD AB BD =-=-=∴△ABC 的面积111263622BC AD =⨯=⨯⨯= 故选:A .【点睛】本题考察了直角三角形、勾股定理、一元一次方程的知识,解题的关键是熟练掌握勾股定理的性质,从而完成求解.7.如图,在ABC 中,90,4,3C AC BC ∠=︒==,将ABC 绕点A 逆时针旋转,使点C 恰好落在线段AB 上的点E 处,点B 落在点D 处,则B D ,两点间的距离为( )A .10B .8C .3D .25【答案】A 【分析】连接BD ,利用勾股定理求出AB ,然后根据旋转的性质可得AC=AE=4,∠AED=∠C=90°,BC=DE=3,从而求出∠DEB 和BE ,最后利用勾股定理即可求出结论.【详解】解:连接BD∵90,4,3C AC BC ∠=︒==∴225AC BC +=由旋转的性质可得AC=AE=4,∠AED=∠C=90°,BC=DE=3∴∠DEB=180°-∠AED=90°,BE=AB -AE=1在Rt △DEB 中,=故选A .【点睛】此题考查的是勾股定理和旋转的性质,掌握勾股定理和旋转的性质是解决此题的关键.8.分式21x x -+的值为0,则x 的值是( ) A .1x =B .2x =C .1x =-D .2x =- 【答案】B【分析】分式的值为1的条件是:(1)分子为1;(2)分母不为1.两个条件需同时具备,缺一不可.据此可以解答本题. 【详解】由式21x x -+的值为1,得 20x -=,且10x +≠.解得2x =.故选:B .【点睛】此题考查分式值为1,掌握分式值为1的两个条件是解题的关键.9.A B 、两地相距200千米,甲车和乙车的平均速度之比为5:6,两辆车同时从A 地出发到B 地,乙车比甲车早到30分钟,设甲车平均速度为5x 千米/小时,则根据题意所列方程是( )A .2002003056x x-= B .2002001562x x -= C .2002001652x x -= D .2002003056x x += 【答案】B 【分析】设甲车平均速度为5x 千米/小时,则乙车平均速度为6x 千米/小时,根据两车同时从A 地出发到B 地,乙车比甲车早到30分钟列出方程即可.【详解】解:设甲车平均速度为5x 千米/小时,则乙车平均速度为6x 千米/小时,根据题意得2002001562x x -=. 故选B .【点睛】本题考查了列分式方程解实际问题的运用及分式方程的解法的运用,解答时根据条件建立方程是关键,解答时对求出的根必须检验,这是解分式方程的必要步骤.10.下列运算中,不正确的是( )A .34x x x ⋅=B .53222x x x ÷=C .()23264x y x y =D .()239-x x = 【答案】D【分析】根据同底数幂乘法、单项式除以单项式、积的乘方、幂的乘方进行计算,然后分别进行判断,即可得到答案.【详解】解:A 、34x x x ⋅=,正确;B 、53222x x x ÷=,正确;C 、()23264x y x y =,正确; D 、()236x x -=,故D 错误;故选:D .【点睛】本题考查了同底数幂乘法、单项式除以单项式、积的乘方、幂的乘方,解题的关键是熟练掌握所学的运算法则进行解题.二、填空题11.《九章算术》是中国古代张苍、耿寿昌所撰写的一部数学专著 .是《算经十书》中最重要的一部,成于公元一世纪左右 .全书总结了战国、秦、汉时期的数学成就 .同时,《九章算术》在数学上还有其独到的成就,不仅最早提到分数问题,也首先记录了盈不足等问题,其中有一个数学问题“今有垣厚一丈,两鼠对穿 .大鼠日一尺,小鼠亦一尺 .大鼠日自倍,小鼠日自半 .问:何日相逢?”.译文:“有一堵一丈(旧制长度单位,1丈=10尺=100寸)厚的墙,两只老鼠从两边向中间打洞 .大老鼠第一天打一尺,小老鼠也是一尺 .大老鼠每天的打洞进度是前一天的一倍,小老鼠每天的进度是前一天的一半 .问它们几天可以相逢?”请你用所学数学知识方法给出答案:______________ . 【答案】4113天 【分析】算出前四天累计所打的墙厚,得出相逢时间在第四天,设第四天,大老鼠打x 尺,小老鼠打31084x --尺,得出方程31084188x x --=,解出x ,从而得出第四天内进行的天数,再加上前3天的时间,即可得出结果.【详解】解:根据题意可得:∵墙厚:1丈=10尺,第一天:大老鼠打1尺,小老鼠打1尺,累计共2尺,第二天:大老鼠打2尺,小老鼠打12尺,累计共142尺,第三天:大老鼠打4尺,小老鼠打14尺,累计共384尺, 第四天:大老鼠打8尺,小老鼠打18尺,累计共7168尺, 故在第四天相逢, 设第四天,大老鼠打x 尺,小老鼠打31084x --尺, 则31084188x x --=, 解得:x=1613, 故第四天进行了16281313÷=天, ∴24131313+=天, 答:它们4113天可以相逢. 【点睛】本题考查了一元一次方程的应用,解题时要理解情景中的意思,仔细算出每一步的量,最后不要忘记加上前三天的时间.12.如图,在ABC 中,AB AC =,点D 在ABC 内,AD 平分BAC ∠,连结CD ,把ADC 沿CD 折叠,AC 落在CE 处,交AB 于F ,恰有CE AB ⊥.若10BC =,7AD =,则EF =__________.【答案】4913【解析】如图(见解析),延长AD ,交BC 于点G ,先根据等腰三角形的三线合一性得出AG BC ⊥,再根据折叠的性质、等腰三角形的性质(等边对等角)得出2345∠+∠=︒,从而得出CDG ∆是等腰直角三角形,然后根据勾股定理、面积公式可求出AC 、CE 、CF 的长,最后根据线段的和差即可得.【详解】如图,延长AD ,交BC 于点G AD 平分BAC ∠,,10AB AC BC ==,B ACB AG BC ∴∠=∠⊥,且AG 是BC 边上的中线 1123,52B CG BC ∴∠=∠+∠+∠== 由折叠的性质得12,CE AC ∠=∠=123223B ∠=∠+∠+∠=∠+∠∴CE AB ⊥,即90BFC ∠=︒390B ∴∠+∠=︒230239+∴∠∠=∠+︒,即2345∠+∠=︒CDG ∴∆是等腰直角三角形,且5DG CG ==7512AG AD DG ∴=+=+=在Rt ACG ∆中,222251213AC CG AG =+=+=13CE AB AC ==∴=由三角形的面积公式得1122ABC S BC AG AB CF ∆=⋅=⋅ 即1110121322CF ⨯⨯=⨯⋅,解得12013CF = 12049131313EF CE CF ∴=-=-= 故答案为:4913.【点睛】本题是一道较难的综合题,考查了等腰三角形的判定与性质、勾股定理等知识点,通过作辅助线,构造一个等腰直角三角形是解题关键.13.如图,等边三角形ABC 中,D 为BC 的中点,BE 平分ABC ∠,且交AD 于E .如果用“三角形三条角平分线必交于一点”来证明CE 也一定平分ACB ∠,那么必须先要证明__________.【答案】AD是∠BAC的角平分线【分析】根据等边三角形的三线合一定理,即可得到答案.【详解】解:∵等边三角形ABC中,D为BC的中点,∴AD是∠BAC的角平分线,∵BE平分ABC∠,∴点E是等边三角形的三条角平分线的交点,即点E为三角形的内心,∴CE也一定平分ACB∠;故答案为:AD是∠BAC的角平分线.【点睛】本题考查了等边三角形的性质,以及三线合一定理,解题的关键是熟练掌握三线合一定理进行解题. 14.甲、乙二人同时从A地出发,骑车20千米到B地,已知甲比乙每小时多行3千米,结果甲比乙提前20分钟到达B地,求甲、乙二人的速度。
2017-2018第一学期冀教版期末教学质量监测八年级数学试卷
……○…………○……学校:__________班级:__…………○……………线………绝密★启用前 2017-2018第一学期冀教版期末教学质量监测 八年级数学试卷 温馨提示:亲爱的考生,你好!本次试卷共25题,满分120分,考试试卷100分钟,请你认真审题,仔细答卷,相信你是最棒的。
A. B. C. D. 2.(本题3分)下列根式中,最简二次根式是( ) A .a 25 B .22b a + C .2a D .5.0 3.(本题3分)一木杆在离地面3m 处折断,木杆顶端落在离木杆底端4 m 处,木杆折断之前有多高( ) A. 5 m B. 7 m C. 8 m D. 9 m 4.(本题3分)关于x 的分式方程721511x m x x -+=--有增根,则m 的值为( ) A. 1 B. 3 C. 4 D. 5 5.(本题3分)如果等腰三角形的底角为50°,那么它的顶角为( ) A .50° B .60° C .70° D .80° 6.(本题3分)若1<x <2,则的值为( ) A .2x ﹣4 B .﹣2 C .4﹣2x D .2 7.(本题3分)下列图形:①三角形,②线段,③正方形,④直角.其中是轴对称…………外…………○…………线…………题※※ ……………○……A .4个 B .3个 C .2个 D .1个8.(本题3分)如图,在△ABC 中,AD 是它的角平分线,AB = 8cm , AC = 6cm ,则 S △ABD : S △ACD =( )A. 4 : 3B. 3 : 4C. 16 : 9D. 9 : 169.(本题3分)9.(本题3分)已知,则代数式的值是( )A. B. C. D.10.(本题3分)如下图,已知∠AOB=α,在射线OA 、OB 上分别取点OA 1=OB 1,连结A 1B 1,在B 1A 1、B 1B 上分别取点A 2、B 2,使B 1B 2= B 1A 2,连结A 2 B 2……按此规律下去,记∠A 2B 1 B 2=θ1,∠A 3B 2B 3=θ2,…,∠A n+1B n B n+1=θn ,则θ2016-θ2015的值为( )43B 2A 4A 3A 2O BB 1A 1AA .20151802α+B .20151802α-C .20161802α+D .20161802α-二、填空题(计32分)11.(本题4分)在函数y 中,自变量x 的取值范围是___________12.(本题4分)如图,在△ABC 中,BC=5cm ,BP 、CP 分别是∠ABC 和∠ACB 的角平分线,且PD ∥AB ,PE ∥AC ,则△PDE 的周长是cm .13.(本题4分)如图,点P 到∠AOB 两边的距离相等,若∠POB =30°,则∠AOB14.(本题4分)计算102)1(-+-π=. 15.(本题4分)等腰三角形一个底角为50°,则此等腰三角形顶角为________________________。
2017-2018冀教版八年级第一学期期末复习数学试卷一
○…………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________………内…………○…………装…………○…………订…………○…………线…………○……………………○…………内…………○…………装…………○…………绝密★启用前2017-2018冀教版八年级第一学期期末复习数学试卷一做卷时间100分钟 满分120分 题号 一 二 三 总分 得分温馨提示:亲爱的同学们,考试只是检查我们对所学知识的掌握情况,希望你保持镇静,不要急于下结论;下笔时,把字写得规矩些,让自己和老师都看得舒服些,祝你成功!评卷人 得分一、单选题(计30分)题号 12 3 4 5 6 7 8 9 10 答案1.(本题3分)分式方程21222x x x -=--的解为( )A .-2B .2C .0D .无解 2.(本题3分)下列二次根式中,最简二次根式为( ). A .31 B .9C .6D .183.(本题3分)下列图形中,既是轴对称图形,又是中心对称图形的是( )A .B .C .D .4.(本题3分)实数17在哪两个整数之间( )A .1与2B .2与3C .3与4D .4与5 5.(本题3分)若一直角三角形的两边长分别是6,8,则第三边长为( ) A .10 B . C .10或 D .14 6.(本题3分)如图已知∠BAC=100°,AB=AC ,AB 、AC 的垂直平分线分别交BC 于D 、E ,则∠DAE=( )A.40°B.30°C.20°D.10° 7.(本题3分)下列计算正确的是( )……外………○……………线………装※※订※※线………线○…A.x3+x3=x6 B.m2•m3=m6 C.=8.(本题3分)如图,在△ABC中,∠C=90°,∠B=30°,AD平分∠CAB交BC于点D,E为AB上一点,连接DE,则下列说法错误的是()A. ∠CAD=30°B. AD=BDC. BD=2CDD. CD=ED9.(本题3分)在△ABC中,∠A、∠B、∠C的对边分别是a、b、c,下列判断错误的是( )A. 如果∠C-∠B=∠A,则△ABC是直角三角形B. 如果a2+c2=b2,则△ABC不是直角三角形C. 如果(c-a)(c+a)=b2,则△ABC是直角三角形D. 如果∠A∶∠B∶∠C=5∶2∶3,则△ABC是直角三角形10.(本题3分)温州为了推进“中央绿轴”建设,某园林公司增加了人力进行大型树木移植,现在平均每天比原计划多植树50棵,现在植树600棵所需时间与原计划植树400棵所需时间相同,设原计划平均每天植树x棵,则列出的方程为()A. B. C. D.二、填空题(计32分)11.(本题4分)下列各式πa,11x+,15x y+,22a ba b--,23x-,0•中,是分式的有___________;是整式的有___________;是有理式的有_________.12.(本题4分)比较大小:1+(填“>”、“<”、“=”)13.(本题4分)如图,已知点B、F、C、E在一条直线上,FB=CE,AC=DF,要使△ABC≌△DEF成立,请添加一个条件,这个条件可以是_________________ .14.(本题4分)若xkx-=--3231有增根,则增根是___________,k=___________.○…………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________………内…………○…………装…………○…………订…………○…………线…………○……………………○…………内…………○…………装…………○…………15.(本题4分)计算()273-=____________________。
河北省邢台市八年级上学期数学期末考试试卷
河北省邢台市八年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)(2017·沂源模拟) 下列计算正确的是()A . 2 +3 =5B . ()(1﹣)=1C . (xy)﹣1( xy)2= xyD . ﹣(﹣a)4÷a2=a22. (2分)下列因式分解正确的是()A . a2﹣b2=(a﹣b)2B . x2+4y2=(x+2y)2C . 2﹣8a2=2(1+2a)(1﹣2a)D . x2﹣4y2=(x+4y)(x﹣4y)3. (2分)若分式中的x、y的值都变为原来的3倍,则此分式的值()A . 不变B . 是原来的3倍C . 是原来的D . 是原来的一半4. (2分) (2017七下·苏州期中) 已知一粒米的质量是0.000021千克,这个数字用科学记数法表示()A . 千克B . 千克C . 千克D . 千克5. (2分)下列等式成立的是()A .B .C .D .6. (2分)尺规作图作∠AOB的平分线方法如下:以O为圆心,任意长为半径画弧交OA、OB于C、D,再分别以点C、D为圆心,以大于CD长为半径画弧,两弧交于点P,作射线OP,由作法可得△OCP≌△ODP,判定这两个三角形全等的根据是()A . SASB . ASAC . AASD . SSS7. (2分) (2019八上·嘉荫期末) 下列说法正确的是()A . 圆有无数条对称轴,对称轴是直径所在的直线B . 正方形有两条对称轴C . 两个图形全等,那么这两个图形必成轴对称D . 等腰三角形的对称轴是高所在的直线8. (2分)一张菱形纸片按如图1、图2依次对折后,再按如图3打出一个圆形小孔,则展开铺平后的图案是()A .B .C .D .9. (2分) (2017八上·余杭期中) 下列四组条件中,能够判定和全等的是().A . ,,B . ,,C . ,,D . ,,10. (2分)九年级学生去距学校10km的博物馆参观,一部分学生骑自行车先走,过了20min后,其余学生乘汽车出发,结果他们同时到达.已知汽车的速度是骑车学生速度的2倍,求骑车学生的速度.设骑车学生的速度为xkm/h,则所列方程正确的是()A .B .C .D .二、填空题 (共7题;共8分)11. (1分)计算:(﹣3)0+3﹣1= ________ .12. (2分)分式方程的解法:(1)方程两边都乘________,去分母,化为________方程;(2)解这个________方程;(3) ________.13. (1分) (2019八上·朝阳期中) 如图,在ΔABC中,∠ABC=120°,点D、E分别在AC和AB上,且AE =ED=DB=BC,则∠A的度数为________°.14. (1分) (2019七上·大庆期末) 等腰三角形底边长为6cm,一腰上的中线将其周长分成两部分的差为2cm,则这个等腰三角形的周长为________cm.15. (1分)(2018·新疆) 某商店第一次用600元购进2B铅笔若干支,第二次又用600元购进该款铅笔,但这次每支的进价是第一次进价的倍,购进数量比第一次少了30支.则该商店第一次购进的铅笔,每支的进价是________元.16. (1分)如图:直角△ABC中,AC=3,BC=4,AB=5,则内部五个小直角三角形的周长为________.17. (1分) (2017八下·庆云期末) 如图设四边形ABCD是边长为1的正方形,以对角线AC为边作第二个正方形ACEF,再以对角线AE为边作第三个正方形AEGH,此时正方形AEGH的边长为________,如此下去,则第n个正方形的边长为________.三、解答题 (共5题;共50分)18. (10分)(2018·江苏模拟) 计算:(1);(2).19. (10分) (2017八上·鄂托克旗期末) 解方程:.20. (10分) (2017八下·简阳期中) 化简• ﹣,并求值,其中a与2、3构成△ABC的三边,且a为整数.21. (10分) (2019八上·武汉月考) △ABC是等边三角形,点E、F分别为射线AC、射线CB上两点,CE=BF,直线EB、AF交于点D.(1)当E、F在边AC、BC上时如图,求证:△ABF≌△BCE.(2)当E在AC延长线上时,如图,AC=10,S△ABC=25 ,EG⊥BC于G,EH⊥AB于H,HE=8 ,求EG(3) E、F分别在AC、CB延长线上时,如图,BE上有一点P,CP=BD,∠CPB是锐角,求证:BP=AD.22. (10分)(2014·温州) 一个不透明的袋中装有20个只有颜色不同的球,其中5个黄球,8个黑球,7个红球.(1)求从袋中摸出一个球是黄球的概率;(2)现从袋中取出若干个黑球,搅匀后,使从袋中摸出一个球是黑球的概率是,求从袋中取出黑球的个数.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共7题;共8分)11-1、12-1、12-2、12-3、13-1、14-1、15-1、16-1、17-1、三、解答题 (共5题;共50分)18-1、18-2、19-1、20-1、21-1、21-2、21-3、22-1、22-2、。
邢台市八年级(上)期末数学试卷含答案
B.
1
3������
C.
1
4������
D.
2
3������
13. 如图.在������������ △ ������������������中,∠������ = 30°,DE 垂直平分斜边 AC,交 AB 于 D,E 是垂足,连接 CD,若������������ = 1, 则 AC 的长是( )
通分,得:5(������−2)−7������
������(������−2)
=
0
整理,得:2(������ + 5)
������(������−2)
=
0
分子值取 0,得:������ + 5 = 0 即:������ = −5 经检验:������ = −5是原分式方程的解. (1)小华这种解分式方程的新方法,主要依据是______;
第 3 页,共 16 页
A. 2 3 B. 2 C. 4 3 D. 4
14. 如图, △ ������������������中,������������ = ������������ = 10,������������ = 8,AD 平分
∠������������������交 BC 于点 D,点 E 为 AC 的中点,连接 DE,则
①分别以点 D,E 为圆心,大于12������������的长为半径作弧,
两弧交于 F; ②作射线 BF,交边 AC 于点 H; ③以 B 为圆心,BK 长为半径作弧,交直线 AC 于点 D 和 E; ④取一点 K,使 K 和 B 在 AC 的两侧; 所以,BH 就是所求作的高. 其中顺序正确的作图步骤是( )
△ ������������������的周长为( )
2017-2018第一学期冀教版八年级数学期末试卷
(2)∠E的度数.
25.(本题8分)(2015秋•南京期中)如图,在边长为1的小正方形组成的方格纸中,有一个以格点为顶点的△ABC.
(1)试根据三角形三边关系,判断△ABC的形状;
(2)在方格纸中利用直尺分别画出AB、BC的垂直平分线,交点为O.观察点O的位置,你能得出怎样的结论?
A. 2α+∠A=180° B. α+∠A=90° C. 2α+∠A=90° D. α+∠A=180°
5.(本题3分)实数 、 、 的大小关系是( ).
A. B.
C. D.6.(本题3分)在“”搜索引擎输入“马航飞机失踪”,能搜索到与之相关的结果个数约为 ,这个数用科学记数法表示为( ).
A. B. C. D.
26.(本题8分)阅读下列解题过程:
;
.
请回答下列问题:
(1)观察上面的解题过程,请直接写出式子 ;(2分)
(2)利用上面所提供的解法,请化简:
的值.(3分)
27.(本题9分)数学张老师在课堂上提出一个问题:“通过探究知道: ≈1.414…,它是个无限不循环小数,也叫无理数,它的整数部分是1,那么有谁能说出它的小数部分是多少”,小明举手回答:它的小数部分我们无法全部写出来,但可以用 -1来表示它的小数部分,张老师夸奖小明真聪明,肯定了他的说法.现请你根据小明的说法解答:已知8+ =x+y,其中x是一个整数,0<y<1,求3x+(y- )2015的值.
13.(本题3分)9的平方根是.
14.(本题3分)等腰三角形两内角度数之比为1:2,则它的顶角度数为_____.
15.(本题3分) 的算术平方根是_______.
16.(本题3分)已知一个直角三角形的两边长分别为3和4,则这个三角形的周长是____
河北省邢台市八年级上学期数学期末试卷
河北省邢台市八年级上学期数学期末试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)若0<m<1, 则m、m2、的大小关系是()A . m<m2<B . m2<m<C . <m<m2D . <m2<m2. (2分) (2020·藤县模拟) 下列计算正确的是()A . 7a﹣4a=3B . (2a2)3=8a6C . 3a•(﹣2a)3=24a4D . a3+2a=2a43. (2分) (2019九上·邯郸月考) 下列图形中既是轴对称图形,又是中心对称图形的是()A .B .C .D .4. (2分)(2017·眉山) 已知 m2+ n2=n﹣m﹣2,则﹣的值等于()A . 1B . 0D . ﹣5. (2分) (2020八上·合肥月考) 如图,△ABC中,AB=AC,D、E分别在CA、BA的延长线上,连接BD、CE,且∠D+∠E=180°,若BD=6,则CE的长为()A . 6B . 5C . 3D . 4.56. (2分)(2012·绵阳) 图(1)是一个长为2m,宽为2n(m>n)的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空的部分的面积是()A . 2mnB . (m+n)2C . (m﹣n)2D . m2﹣n27. (2分)当分式方程中的a取下列某个值时,该方程有解,则这个a是()A . 0B . 1C . -1D . -28. (2分)三个连续的奇数,中间的一个是2n+1,则三个数的和为()A . 6n-6B . 3n+6C . 6n+39. (2分)如果x>y>0,那么−的值是()A . 零B . 正数C . 负数D . 整数10. (2分) (2019八上·正定期中) 工人师傅常用角尺平分一个任意角,作法如图所示,在的边,上分别取M,N两点,使,移动角尺,使角尺两边相同的刻度分别与M,N重合.连接点O 与角尺的顶点P,则可得到的平分线.该作法中用到的三角形全等的判定定理是()A .B .C .D .二、填空题 (共6题;共8分)11. (1分)(2019·常熟模拟) 因式分解: ________.12. (1分)()3•()2÷()4=________.13. (2分)(2012·南京) 如图,∠1、∠2、∠3、∠4是五边形ABCDE的4个外角.若∠A=120°,则∠1+∠2+∠3+∠4=________14. (2分)(2018·东莞模拟) 如图,把正方形纸片ABCD沿对边中点所在的直线对折后展开,折痕为MN,再过点B折叠纸片,使点A落在MN上的点F处,折痕为BE.若AB的长为2,则FM的长为________.15. (1分)如图,正方形ABCD的边长为5,连接BD,在线段CD上取一点E,在线段BD上取点F,使得∠BEC=∠DEF,当S△DEF= S△EFB时,在线段BC上有一点G,使FG+EG最短,则CG=________.16. (1分) (2019七上·昌图期中) 填在下面各正方形中四个数之间都有相同的规律,根据这种规律可得到m的值为________.三、解答题 (共7题;共58分)17. (10分) (2018八上·东城期末) 已知,求的值18. (5分) (2019七上·徐汇期中) 解方程:.19. (2分) (2018八上·前郭期中) 在△ABC中,AB=AC,AB边上的中线CD把三角形的周长分成6和15的两部分,求三角形腰和底的长.20. (10分) (2019八上·南浔期中) 如图,在长度为1个单位长度的小正方形组成的正方形中,点A、B、C 在小正方形的顶点上.(2)三角形ABC的面积为________;(3)以AC为边作与△ABC全等的三角形,则可作出________个三角形与△ABC全等;(4)在直线l上找一点P,使PB+PC的长最短.21. (6分) (2020八下·北镇期末) 为迎接中国传统节日“端午节”的到来,某超市准备购进甲、乙两种品牌的粽子,两种品牌粽子的进价和售价如下表:粽子价格甲品牌乙品牌进价(元/盒)m售价(元/盒)2416已知用300元购进甲品牌粽子的数量与用240元购进乙品牌粽子的数量相同.(1)求m的值;(2)要使购进的甲、乙两种品牌的粽子共200盒的总利润(利润=售价-进价)不少于2170元且不超过2200元,问该超市有几种进货方案?22. (10分)(2017·微山模拟) 【阅读新加】①1.按一定顺序排列的一列数称为数列,记作:{an}(n属于正整数),数列中的每一个数都叫做这个数列的项,排在第一位的数称为这个数列的第1项(通常也叫做首项),记作:a1;排在第二位的数称为这个数列的第2项,记作:a2;…;排在第n位的数称为这个数列的第n项,记作:an .②2.等比数列(又名几何数列),是一种特殊数列,如果一个数列从第二项起,每一项与它的前一项的比等于同一常数,这个数列就叫做等比数列.因为第二项与第一项的比和第三项与第二项的比相等.这个常数叫做等比数列的公比,公比通常用字母q表示(q≠0),注:q=1时,an为常数列.例如:数列1,﹣3,9,﹣27,81是等比数列,公比q=3.由定义可知:如果数列a1 , a2 , a3 ,…,an…是等比数列,那么a2÷a1=d,a3÷a2=d,an÷an﹣1=d.即a2=a1d,a3=a1dd=a1d2 ,….【应用新知】(1)等比数列10,10,10,10,10,10的公比是________.(2)如果等比数列{an}的首项为a1 ,公比为q(q≠0).那么这个数列的第n项an等于________.(用含a1 , q的代数式表示)(3)已知实数a1 , a2 , a3 , a4 , a5 , a6 , a7依次成等比数列,已知a1=3,a7=192,求a4 .23. (15分) (2020八上·大余期末) 小敏与同桌小颖在课下学习中遇到这样一道数学题:“如图(1),在等边三角形中,点在上,点在的延长线上,且,试确定线段与的大小关系,并说明理由”.小敏与小颖讨论后,进行了如下解答:(1)取特殊情况,探索讨论:当点为的中点时,如图(2),确定线段与的大小关系,请你写出结论: ________ (填“ ”,“ ”或“ ”),并说明理由.(2)特例启发,解答题目:解:题目中,与的大小关系是: ________ (填“ ”,“ ”或“ ”).理由如下:(3)①如图(3),过点作EF∥BC ,交于点.(请你将剩余的解答过程完成)②拓展结论,设计新题:在等边三角形中,点在直线上,点在直线上,且,若△ 的边长为,,求的长(请你画出图形,并直接写出结果).参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共8分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共7题;共58分)17-1、19-1、20-1、20-2、20-3、20-4、21-1、21-2、22-1、22-2、22-3、23-1、23-2、23-3、。
河北省邢台市八年级上学期期末考试数学试题
河北省邢台市八年级上学期期末考试数学试题姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)(2019·大渡口模拟) 下列图形,是轴对称图形的是()A .B .C .D .2. (2分)下列式子是分式的是()A .B .C .D .3. (2分)(2011·湛江) 四边形的内角和为()A . 180°B . 360°C . 540°D . 720°4. (2分) (2016八上·唐山开学考) 已知等腰三角形两边长为3和7,则周长为()A . 13B . 17C . 13或17D . 115. (2分) (2017八上·曲阜期末) 如图,△ABO关于x轴对称,若点A的坐标为(3,1),则点B的坐标为()A . (1,3)B . (﹣1,3)C . (3,﹣1)D . (﹣1,﹣3)6. (2分)(2016·海南) 下列计算中,正确的是()A . (a3)4=a12B . a3•a5=a15C . a2+a2=a4D . a6÷a2=a37. (2分)下列各题用分组分解法分解因式,分组不正确的是()A . 3a-bx+ax-3b=(3a+ax)-(3b+bx)B . a2-a+b-b2=(a2-a)-(b2-b)C . z2-x2+2xy-y2=z2-(x2-2xy+y2)D . ma-mb-na2+nb2=(ma-mb)-(na2-nb2)8. (2分)计算:22014﹣(﹣2)2015的结果是()A . 24029B . 3×22014C . ﹣22014D . ()20149. (2分) (2018八上·互助期末) 下列说法中,正确的是()A . 两腰对应相等的两个等腰三角形全等B . 两锐角对应相等的两个直角三角形全等C . 两角及其夹边对应相等的两个三角形全等D . 面积相等的两个三角形全等10. (2分)(2017·眉山) 如图,在△ABC中,∠A=66°,点I是内心,则∠BIC的大小为()A . 114°B . 122°C . 123°D . 132°二、填空题 (共7题;共7分)11. (1分)(2019·银川模拟) 在函数中,自变量x的取值范围是________.12. (1分)计算:()﹣2=________.13. (1分)(2010七下·浦东竞赛) 已知,点O在三角形内,且,则的度数是________度.14. (1分)(2017·罗平模拟) 分解因式:x3﹣xy2=________.15. (1分) (2017八上·顺庆期末) 近来雾霾天气严重影响了我们的生活秩序,为此,我县中小学还停止了正常上课来应对,雾霾是对大气中各种悬浮颗粒物含量超标的笼统表述,尤其是PM2.5(空气动力学当量直径小于等于2.5微米的颗粒物)被认为是造成雾霾天气的“元凶”,已知1微米相当于1米的一百万分之一,那么2.5微米用科学记数法可表示为________米.16. (1分) (2017七下·天水期末) 如图所示,则∠α的度数是________.17. (1分)(2018·安顺模拟) 计算=________.三、解答题 (共9题;共60分)18. (10分)(2020·武汉模拟) 化简:19. (5分) (2017八下·万盛开学考) 先化简,再求值:,其中20. (10分) (2019八下·博罗期中) 如图,已知四边形ABCD是平行四边形.(1)作图,作∠A的平分线AE,交CD于点E,(用尺规作图法,保留作图痕迹,不要求写作法);(2)在(1)的条件下,判断AD与DE的大小关系,并说明理由.21. (5分)如图,BD是△ABC的角平分线,DE∥BC,交AB于点E,∠A=45°,∠BDC=60°。
[优质版]邢台市南和县八年级上期末复习数学试卷含解析
2017-2018学年邢台市八年级(上)期末复习测试试卷一、选择题(共10题;共30分)1.下列语句中,不是命题的是 ( )A. 若两角之和为90°,则这两个角互余。
B. 同角的余角相等。
C. 画线段的中垂线。
D. 相等的角是对顶角。
2.已知直角坐标系内有一点M(a,b),且ab=0,则点M的位置一定在()A. 原点上B. x轴上C. y轴上 D. 坐标轴上3.如图所示,把一个正方形三次对折后沿虚线剪下,则所得图形是()A. B.C.D.4.用直尺和圆规作一个角等于已知角,如图,能得出的依据是()A. 边边边B. 边角边C. 角边角 D. 角角边5.若点P的坐标是(1,﹣2),则点P在()A. 第一象限B. 第二象限 C. 第三象限 D. 第四象限6.如图所示,亮亮书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是()A. SSSB. SASC. AASD. ASA7.下列各式成立是 ( )A. B.C.D.8.下面选项对于等边三角形不成立的是()A. 三边相等B. 三角相等 C. 是等腰三角形 D. 有一条对称轴9.在式子、、(a<﹣3)、(y>0)、(x<0)中,是二次根式的有()A. 2个 B.3个 C.4个 D.5个10.已知,Rt△ABC中,∠C=90°,AD平分∠BAC交BC于D,若BC=32,且BD:CD=9:7,则D 到AB的距离为()A. 18B. 16C. 14D. 12二、填空题(共8题;共24分)11.用反证法证明命题:“三角形的三个内角中,至少有一个内角大于或等于60°.先假设所求证的结论不成立,即________.12.化简:=________,=________13.关于x的方程=无解,则m的值是________.14.命题“同旁内角互补,两直线平行”中,题设是________,结论是________此命题是________(填“真命题”或“假命题”)15.如果△ABC和△DEF全等,△DEF和△GHI全等,则△ABC和△GHI________全等,如果△ABC 和△DEF不全等,△DEF和△GHI全等,则△ABC和△GHI________全等.(填“一定”或“不一定”或“一定不”)16.直角三角形的两边长为5和7,则第三边长为________17.在△ABC中,∠A=60°,要使是等边三角形,则需要添加一条件是________18.点D为等边△ABC的边BC的中点,则AB:BD=________.三、解答题(共6题;共36分)19.判断下列命题是真命题还是假命题,若是假命题,请举出一个反例说明.(1)有一个角是60°的等腰三角形是等边三角形.(2)有两个角是锐角的三角形是锐角三角形.20.证明:在△ABC中,∠A,∠B,∠C中至少有一个角大于或等于60°.21.如图,已知点A,B,C,D在同一条直线上,EA⊥AB,FD⊥AD,AB=CD,若用“HL”证明Rt△AEC≌△Rt△DFB,需添加什么条件?并写出你的证明过程.22.如图.AB=AC,MB=MC.求证:直线AM是线段BC的垂直平分线.23.如图所示,△ABC中,AB=AC,∠BAC=120°,AC的垂直平分线EF交AC于点E,交BC于点F.求证:BF=2CF.24.在四边形ABCD中,AB=3,BC=4,AD=5 ,CD=5,∠A BC=90°,求对角线BD的长.四、综合题(共10分)25.如图,将矩形纸片ABCD沿对角线BD折叠,点C落在点E处,BE交AD于点F,连接AE.(1)求证:BF=DF;(2)求证:AE∥BD;(3)若AB=6,AD=8,求BF的长.2017-2018学年河北省邢台市南和县八年级(上)期末复习测试试卷参考答案与试题解析一、选择题1.【答案】C【考点】命题与定理【解析】【分析】命题就是判断一件事情的语句.【解答】根据命题的定义,可知A、B、D都是命题,而C属于作图语言,不是命题.故选C.2.【答案】D【考点】点的坐标【解析】【分析】根据坐标轴上的点的特征:至少一个坐标为0解答.【解答】若ab=0,则a=0,或b=0,或a,b均为0.当a=0,M在y轴上;当b=0,M在x轴上;当a,b均为0,M在原点;即点M在坐标轴上.故选D.【点评】本题主要考查了点在坐标轴上时点的符号特点,注意考虑问题要全面,坐标轴上的点的特点要记清3.【答案】A【考点】剪纸问题【解析】【解答】解:由题意可知:减去的部分为四个等腰直角三角形的斜边构成的正方形,又原图是正方形,所以剩下的图形为大正方形除去一个小正方形.故选A.【分析】找出题中的折叠规律,利用正方形纸片按照此方法沿虚线减下,展开即可得到剩下的图形.4.【答案】A【考点】全等三角形的判定,作图—基本作图【解析】【解答】作图的步骤:①以O为圆心,任意长为半径画弧,分别交OA、OB于点C、D;②作射线O′B′,以O′为圆心,OC长为半径画弧,交O′B′于点C′;③以C′为圆心,CD长为半径画弧,交前弧于点D′;④过点D′作射线O′A′.所以∠A′O′B′就是与∠AOB相等的角.在△O′C′D′与△OCD中,O′C′=OCO′D′=ODC′D′=CD∴△O′C′D′≌△OCD(SSS),∴∠A′O′B′=∠AOB ,显然运用的判定方法是边边边选:A .【分析】通过分析作图的步骤,发现△OCD与△O′C′D′的三条边分别对应相等,于是利用边边边,判定△OCD≌△O′C′D′,根据全等三角形对应角相等得出∠A′O′B′=∠AOB.5.【答案】D【考点】点的坐标【解析】【解答】解:点P(1,﹣2)在第四象限.故选D.【分析】根据各象限内点的坐标特征解答即可.6.【答案】D【考点】全等三角形的应用【解析】【解答】解:根据题意,三角形的两角和它们的夹边是完整的,所以可以利用“角边角”定理作出完全一样的三角形.故选D.【分析】根据图象,三角形有两角和它们的夹边是完整的,所以可以根据“角边角”画出.7.【答案】D【考点】二次根式的性质与化简,最简二次根式【解析】【分析】A中,由题意知,,故A错误;B中,,故错误;C中,,故C错误;D中,,故选D.【点评】本题属于对代数式的基本运算和规律的把握和运用,需要考生对代数式的基本运用方法熟练掌握。
河北省邢台市八年级上学期数学期末考试试卷
河北省邢台市八年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)下列图形中,既是轴对称图形又是中心对称图形的是()A .B .C .D .2. (2分)如图,自行车的车身为三角结构,这是因为三角形具有()A . 对称性B . 稳定性C . 全等性D . 以上都是3. (2分) (2019七下·晋州期末) 三角形两条边的长分别是4和10,下面四个数值中可能是此三角形第三边长的为()A . 5B . 6C . 11D . 164. (2分)(2018七上·黄陂月考) 下列说法:①如果,则为负数;②;③四条直线相交,最多有6个交点;④某种商品每件的进价为100元,按标价的8折销售时,利润率为12%,则该商品每件标价为140元。
这四种说法其中正确的是()A . ①②③B . ②③④C . ②③D . ①②③④5. (2分) (2019八上·临潼月考) 下列图形中,是全等图形的是()A .B .C .D .6. (2分) (2019八上·天台月考) 如图,在△ABC中,∠C=90°,∠B=30°,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于点P,连接AP并延长交BC于点D,则下列说法正确的个数是()①AD是∠BAC的平分线②∠ADC=60°③点D在AB的垂直平分线上④如果CD=2,AB=7,则可得S△ABD=14A . 1B . 2C . 3D . 47. (2分)若(x+3)(2x﹣m)=2x2+x﹣15,则实数m的值()A . -5B . -1C . 5D . 18. (2分) (2018八上·大石桥期末) 下列计算正确的是()A . a2·a3=a6B . (a2)3= a5C .D .9. (2分) [c-(a2)2]2等于()A . c -a2B . c2 -2a4c+a8C . c2 -a2D . c2 -a410. (2分) (2016七上·岑溪期末) 在解方程时,去分母后正确的是()A . 5x=1﹣3(x﹣1)B . x=1﹣(3x﹣1)C . 5x=15﹣3(x﹣1)D . 5x=3﹣3(x﹣1)二、填空题 (共10题;共10分)11. (1分) (2017八下·昆山期末) 如图,中,点E、F为对角线BD上两点,请添加一个条件,使四边形AECF成为平行四边形:________.12. (1分) (2018八下·扬州期中) 已知点P(a , b)(a≠-1)是反比例函数图象上的一个动点=________ ,则.13. (1分)如图,AB与CD相交于点O,且∠A=∠B,AC=BD,那么△ACO≌________,理由是________.14. (1分)(2×102)2×(3×10﹣2)=________(结果用科学记数法表示)15. (1分) (2019八下·吉林期末) 分式与的最简公分母是________.16. (1分)若a﹣b=8,a+b=4,则a2﹣b2=________.17. (1分) (2019七上·黔南期末) 己知m2-m=6.则1+2m2-2m=________18. (1分) (2019八上·龙山期末) 如果关于x的方程无解,则值为________。
冀教版八年级上学期期末考试数学试卷
冀教版八年级上学期期末考试数学试卷一、选择题当 取( )时,分式122+--a a a 的值为- - 或下列图形中,△C B A '''与△ 成轴对称的是 ( )某单位向一所希望小学赠送 件文具,现用 、 两种不同的包装箱进行包装,已知每个 型包装箱比 型包装箱多装 件文具,单独使用 型包装箱比单独使用 型包装箱可少用 个。
设 型包装箱每个可以装 件文具,根据题意列方程为( )121510801080+-=x x121510801080--=x x 121510801080-+=x x 121510801080++=x x如图, , , 表示三个小区,为丰富居民们的文化生活,现在应建在准备建一个文化广场,使它到三个小区的距离相等,则文化广场( )与 两边高线的交点处 与 两边中线的交点处 与 两边垂直平分线的交点处 ∠ 与∠ 两内角平分线的交点处如图,在△ ,△ 中,∠ ∠ °, , ,点 , , 三点在同一条直线上,连接 , 。
以下四个结论:① ;② ⊥ ;③∠ ∠ °;④∠ ∠ ;其中结论正确的个数是( )个 个 个 个 下列计算正确的有( )个 ①()222-=-;②13334=-;③532=+;④2212=;⑤25223=+已知 、 、 为整数,而且满足15135k =,m 15450=,n 6180=,则下列关于 、 、 的大小关系是( );. . . .如图所示,∠ , ,则∠ 的度数为( );° ° ° °如图 ,将长方形纸片先沿虚线 向右..对折,接着将对折后的纸片沿虚线 向下..对折,然后剪下一个小三角形,再将纸片打开,那么打开后的展开图是( ).如图,在△ 中,∠,在同一平面内,将△ 旋转到△ 的位绕点置,使得 ∥ ,则∠( )。
° ° ° °某一实验装置的截面图如图所示,上方装置可看做一长方形,其侧面与水平线的夹角为 °,下方是一个直径为 ㎝,高为 ㎝的圆柱形容器。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017-2018学年河北省邢台市八年级(上)期末数学试卷
一、选择题(本大题共14小题,其中1-6小题每小题2分,7-14题每小题2分,共36分)1.(2分)﹣64的立方根是()
A.﹣4B.4C.±4D.不存在
2.(2分)下列图形中,既是轴对称图形又是中心对称图形的是()
A .
B .
C .
D .
3.(2分)如图,AB=DB,∠1=∠2,请问添加下面哪个条件不能判断△ABC≌△DBE的是()
A.BC=BE B.AC=DE C.∠A=∠D D.∠ACB=∠DEB
4.(2分)用四舍五入法对“145762”取近似数,要求精确到千位,下列表示正确的是()A.1.5×105B.1.46×105C.1.458×105D.15万
5.(2分)用反证法证明“a>b”时,应假设()
A.a<b B.a≤b C.a≥b D.a≠b
6.(2分)一份工作,甲单独做需a天完成,乙单独做需b天完成,则甲乙两人合作一天的工作量是()
A.a+b B .C .D .
7.(3分)如图,在△ABC中,D在BC上,若AD=BD,AB=AC=CD,则∠ABC的度数是()
A.30°B.35°C.36°D.60°
8.(3分)估算的值在()
A.1与2之间B.2与3之间C.3与4之间D.5与6之间
9.(3分)如图,在△ABD中,∠D=90°,CD=6,AD=8,∠ACD=2∠B,则BD的长是()
A.12B.14C.16D.18
10.(3分)下列运算正确的是()
A .+=
B .•=
C .=
D .=3
11.(3分)一个正数的平方根为2x+1和x﹣7,则这个正数为()
A.5B.10C.25D.±25
12.(3分)如图,∠A=80°,点O是AB,AC垂直平分线的交点,则∠BCO的度数是()
A.40°B.30°C.20°D.10°
13.(3分)下列算式中,你认为正确的是()
A .
B .
C .
D .
14.(3分)如图,已知线段BC,分别以B、C 为圆心,大于BC为半径作弧,两弧相交于E、F两点,连接CE,过点E作射线BA,若∠CEA=60°,CE=4,则△BCE的面积为()
A.4B.
4C.8D.8
二、填空题(本大题共4小题,其中15-17题每小题3分,18小题4分,共13分)15.(3分)若在实数范围内有意义,则x的取值范围为.
16.(3分)若,则=.
17.(3分)如图,下列4个三角形中,均有AB=AC,则经过三角形的一个顶点的一条直线不能够将这个三角形分成两个小等腰三角形的是(填序号).
18.(4分)给定一列分式:,﹣,,﹣,……,(其中x≠0)用任意一个分式
做除法,去除它后面一个分式得到的结果是;根据你发现的规律,试写出第9个分式.
三、解答题(共71分)
19.(7分)在计算的值时,小亮的解题过程如下:
解:原式
=
=2……①=2……②
=(2﹣1)……③
=……④
(1)老师认为小亮的解法有错,请你指出:小亮是从第步开始出错的;
(2)请你给出正确的解题过程.
20.(7分)如图,已知AC⊥BC,BD⊥AD,AC与BD交于点O,AC=BD,求证:△OAB是等腰三角形.
21.(8分)如图,在△ABC中,∠ABC>90°.
(1)先过点B画BD⊥BC交AC于点D,然后用尺规作图的方法在BC边上求作一点P,使得点P到AC的距离等于BP的长(保留作图痕迹,不写作法).
(2)在(1)的基础上,如果PD=PC,则PC:BC=.
22.(8分)(1)先化简,再求值:1﹣,其中x=﹣2,y=.
(2)解分式方程:.
23.(10分)如图,在△ABC中,点D在边AC上,DB=BC,E是CD的中点,F是AB的中点.
(1)直接写出AB与EF的数量关系:;
(2)若AD=3,BD=2,∠C=60°,求EF的长.
24.(10分)如图1,射线OB与直线AN垂直于点O,线段OP在∠AOB内,一块三角板的直角顶点与点P重合,两条直角边分别与AN、OB的交于点C、D.
(1)当∠POB=60°,∠OPC=30°,PC=2时,则PD=.
(2)若∠POB=45°,
①当PC与PO重合时,PC和PD之间的数量关系是;
②当PC与PO不重合时,猜想PC与PD之间的数量关系,并证明你的结论.
25.(10分)王伟和张岩今年秋冬以来进行了两次徒步爬山活动.
(1)第一次爬紫金山,他们沿通往主峰的山路爬到某景点A,行程1800米,二人从山脚下同时出发,但是王伟爬的很快,平均速度是张岩的1.2倍,结果比张岩早30分钟到达景点,求王伟的平均爬山速度是每分钟多少米?(2)第二次爬天梯山,王伟爬到顶峰用了n 小时(n>2),张岩爬到顶峰的时间是王伟的1.1倍还多1小时,王伟的平均爬山速度是张岩的2倍吗?请说明理由.26.(11分)在Rt△AOB 中,∠AOB=90°,∠A=45°,点P、D分别在射线AB、OB上,PO=PD.(1)如图1,若∠OPD=30°,S
△OPD
=9,求点D到AB的距离.
(2)①如图2,作DE⊥AB于点E,当∠OPD≤90°时,PE与AB之间的数量关系是;
②当∠OPD为钝角时,PE与AB之间是否存在上述关系?若存在,设AB=11,求出PE的值;若不存在,请说明理由.。