《分式方程》综合测试1
第5章 分式与分式方程 2022-2023学年北师大版数学八年级下册综合测试(含答案)
2022-2023学年北师大版数学八年级下册第五章分式与分式方程综合测试一、单选题(共8题;共32分)1.(4分)下列等式一定成立的是( )A.=﹣B.=C.=D.=2.(4分)下列从左到右的恒等变形中,变形依据与其它三项不同的是( )A.B.2(x﹣y)=2x﹣2yC.D.a(b﹣1)=ab﹣a3.(4分)若式子有意义,则的取值范围为( )A.B.C.且D.且4.(4分)下列运算正确的是( )A.(a﹣2b)2=a2﹣4b2B.(﹣x2y)2÷(2x2y)=x2yC.÷ ×()2=﹣mD.5.(4分)关于x的方程=2+有增根,则k的值是( )A.3B.2C.-2D.﹣36.(4分)已知三个数满足,,,则的值是( )A.B.C.D.7.(4分)如果关于x的分式方程=1+ 有正整数解,且关于y的一元一次不等式组的解集为y≤a,则所有满足条件的整数a的和为( )A.8B.7C.3D.28.(4分)已知实数x、y、z满足,则的值( )A.-1B.0C.1D.2二、填空题(共4题;共16分)9.(4分)函数表达式y= 自变量x取值范围是 .10.(4分)一种商品原来的销售利润率是47%.现在由于进价提高了5%,而售价没变,所以该商品的销售利润率变成了 (注:销售利润率=(售价—进价)÷进价)11.(4分)观察下列等式:,,将以上三个等式两边分别相加得:= + += =猜想并得出:=根据以上推理,求出分式方程的解是 .12.(4分)已知实数a,b,c满足,则 .三、解答题(共8题;共52分)13.(5分)先化简,再求值:,其中.14.(8分)解下列分式方程:(1)(4分);(2)(4分).15.(5分)解分式方程1- 晨晨的解答如下:解:去分母,得2x+2-x-3=6x化简得x= ,经检验x= 是原方程的解。
所以原方程的解是x= 。
晨晨的解答正确吗?如果不正确,写出正确的解答。
人教版八年级数学上册《15.3 分式方程》练习题-附带有答案
人教版八年级数学上册《15.3 分式方程》练习题-附带有答案一、选择题1.下列关于x 的方程:①x−12=5 ,②1x =4x−1 ,③1x (x −1)+x =1 ,④x a =1b−1 中,分式方程有( ) A .4个B .3个C .2个D .1个 2.若分式 x 3x+4 的值为1,则x 的值是( )A .1B .2C .-1D .-2 3.解方程 1+2x−1=x−5x−3 时,去分母得( )A .(x −1)(x −3)+2(x −3)=(x −5)(x −1)B .(x −1)(x −3)+2(x −3)=(x +5)C .1+2(x −3)=(x −5)(x −1)D .(x −3)+2(x −3)=x −5 4.分式方程 3x−2=1 的解是 ( )A .x =5B .x =1C .x =−1D .x =2 5.关于x 的方程 m−1x−1+x 1−x =0 有增根,则m 的值是( )A .2B .1C .0D .-1 6.若关于x 的方程2x+m x−2+x−12−x =3的解是非负数,则m 的取值范围为( ) A .m ≤-7且m ≠-3B .m ≥-7且m ≠-3C .m ≤-7D .m ≥-77.一艘轮船在两个码头之间航行,顺水航行81km 所需的时间与逆水航行69km 所需的时间相同.已知水流速度是速度2km/h ,则轮船在静水中航行的速度是( )A .25km/hB .24km/hC .23km/hD .22km/h 8.若整数a 使关于y 的不等式组{2y−53≤y −13a −y +3≥0至少有3个整数解,且使得关于x 的分式方程3x(x−1)−a 1−x =2x 的解为正数,则所有符合条件的整数a 的和为( )A .-6B .-9C .-11D .-14 二、填空题9.关于x 的方程x−a x−1=12的解是x =3,则a = .10.当x = 时,分式32−x 比x−1x−2大2.11.若关于x 的方程1x−1+2x+m 1−x =1有增根,则m 的值是 . 12.若关于x 的分式方程2x−m x+1 =3的解是负数,则字母m 的取值范围是 .13.某校要建立两个计算机教室,为此要购买相同数量的A型计算机和B型计算机.已知一台A型计算机的售价比一台B型计算机的售价便宜400元,如果购买A型计算机需要224 000元,购买B型计算机需要240 000元.求一台A型计算机和一台B型计算机的售价分别是多少元.设一台B型计算机的售价是x元,依题意列方程为.三、解答题14.解方程:(1)3x =2x−2(2)2x2x−1+51−2x=315.冬季来临,某商场预购进一批毛衣.用9600元先购进一批毛衣,面市后因供不应求,商场决定又用16800元再次购进这批毛衣,所购数量是第一批购进量的2倍,但单价便宜了10元.该商场第一次购进这批毛衣的数量是多少?16.杭州国际动漫节开幕前,某动漫公司预测某种动漫玩具能够畅销,就用32000元购进了一批这种玩具,上市后很快脱销,动漫公司又用68000元购进第二批这种玩具,所购数量是第一批购进数量的2倍,但每套进价多了10元.(1)该动漫公司两次共购进这种玩具多少套?(2)如果这两批玩具每套的售价相同,且全部售完后总利润率不低于20%,那么每套售价至少是多少元?17.某家电销售商城电冰箱的销售价为每台2100元,空调的销售价为每台1750元,每台电冰箱的进价比每台空调的进价多400元,商城用80000元购进电冰箱的数量与用64000元购进空调的数量相等.(1)求每台电冰箱与空调的进价分别是多少?(2)现在商城准备一次性购进这两种家电共100台,要求购进空调数量不超过电冰箱数量的2倍,总利润不低于13000元,一共有多少种合理的购买方案?参考答案1.C2.D3.A4.A5.A6.B7.A8.C9.210.2311.-112.m>-3且m≠-213.240000x =224000x−40014.(1)解:3x =2x−23(x-2)=2x3x-6=2x3x-2x=6x=6经检验,x=6是原方程的解.(2)解:2x2x−1+51−2x=32x-5=3(2x-1)2x-6x=5-3-4x=2x=−12.经检验,x=−12是原方程的解.15.解:设该商场第一次购进这批毛衣的数量是x件,则第二次购进这批毛衣的数量是2x件根据题意,得:9600x −168002x=10解得:x=120经检验,x=120是所列方程的解答:该商场第一次购进这批毛衣的数量是120件.16.(1)解:设动漫公司第一次购x套玩具,由题意得:=10解这个方程,x=200经检验x=200是原方程的根.∴2x+x=2×200+200=600答:动漫公司两次共购进这种玩具600套(2)解:设每套玩具的售价y元,由题意得:≥20%解这个不等式,y≥200答:每套玩具的售价至少是200元17.(1)解:设每台空调的进价为m元,每台电冰箱的进价为元.根据题意得解得经检验符合题意故每台空调进价为1600元,电冰箱进价为2000元;(2)解:设购进电冰箱x台,则进购空调台解得:∵购进空调数量不超过电冰箱数量的2倍解得∵为正整数、35、36、37、38、39、40 共有七种合理的购买方案。
分式方程计算题100道及答案
分式方程计算题100道及答案篇1:分式方程练习题及答案分式方程练习题及答案分式方程练习题及答案一选择1.下面是分式方程的是()a. b.c. d.2.若得值为-1,则x等于( )a. b. c. d.3.一列客车已晚点6分钟,如果将速度每小时加快10千米,那么继续行驶20千米便可正点运行,如果设客车原来行驶的速度是x千米/小时,可列出分式方程为()a. b.c. d.4.分式方程的解为()a.2b.1c.-1d.-25.若分式方程的解为2,则a的值为()a.4b.1c.0d.26.分式方程的解是()a.无解b.x=2c. x=-2d. x=2或x=-27.如果关于x的方程无解,则m等于()a.3b. 4c.-3d.58.解方程时,去分母得( )a.(x-1)(x-3)+2=x+5b. 1+2(x-3)=(x-5)(x-1)c. (x-1)(x-3)+2(x-3)=(x-5)(x-1)d.(x-3)+2(x-3)=x-5二、填空9.已知关于的分式方程的根大于零,那么a的取值范围是 .10.关于的分式方程有增根 =-2,那么k= .11.若关于的方程产生增根,那么m的值是 .12.当m= 时,方程的解与方程的解互为相反数.13.为改善生态环境,防止水土流失,某村拟定在荒坡地上种植960棵树,由于青年团员的支援,每日比原计划多种20课,结果提前4天完成任务,原计划每天种植多少棵树?设原计划每天种植x棵树,根据题意列方程为 .14.如果,则a= ;b= .三、解答题15.解分式方程16.已知关于的方程无解,求a的值?17.已知与的.解相同,求m的值?18.近年来,由于受国际石油市场的影响,汽油价格不断上涨.下面是小明与爸爸的对话:小明:“爸爸,听说今年5月份的汽油价格上涨了不少啊!”爸爸:“是啊,今年5月份每升汽油的价格是去年5月份的倍,用元给汽车加的油量比去年少升.”小明:“今年5月份每升汽油的价格是多少呢?”聪明的你,根据上面的对话帮小明计算一下今年5月份每升汽油的价格?19.武汉一桥维修工程中,拟由甲、乙两各工程队共同完成某项目,从两个工程队的资料可以知道,若两个工程队合作24天恰好完成,若两个工程队合作18天后,甲工程队再单独做10天,也恰好完成,请问:⑴甲、乙两工程队完成此项目各需多少天?⑵又已知甲工程队每天的施工费用是0.6万元,乙工程队每天的施工费用是0.35万元,要使该项目总的施工费用不超过22万元,则乙工程队至少施工多少天?参考答案一、选择1.d2.c3.b4.a5.a6.b7.a8.c二、填空9.a<2 10.1 11.1 12.m=-3 13. 14.3, 2三、解答题15.⑴ 解:方程变形为两边同时乘以(x2-9)得,x-3+2x+6=12,x=3,经检验x=3是原方程的增根,故原方程无解.⑵ 解:两边同时乘以(x2-4)得x(x+2)-(x+14)=2x(x-2)-(x2-4);整理得,5x=18, ,经检验是原方程的解.(3)解:方程两边同时乘以想x(x2-1)得,5x-2=3x,x=1,经检验x=1是原方程的增根,故原方程无解.(4).解:两边同乘以(2x+3)(2x-3)得2x(2x+3)-(2x-3)=(2x-3)(2x+3)整理得4x=-12,x=-3,经检验x=-3是原方程的根.16.解:因为原方程无解,所以最简公分母x(x-2)=0,x=2或x=0;原方程去分母并整理得a(x-2)-4=0;将x=0代入得a(0-2)-4=0,a=-2;将x=2代入得a0-4 =0,a无解,故综上所述a=-2.17. 解:,x=2,经检验x=2是原方程的解,由题意可知两个方程的解相同,所以把x=2代入第二个方程得,故m=10.18. 解:设去年5月份汽油的价格为x元/升,则今年5月份的价格为1.6x元/升,依题意可列方程为,解得x=3,经检验x=3是原方程的解也符合题意,所以1.6x=4.8,故今年5月份汽油的价格是4.8元/升.19.解:⑴设甲工程队单独完成该项目需要天,乙单独完成该项目需要天,依题意可列方程组为解得,经检验是原方程组的解,也符合题意.⑵设甲、乙两工程队分别施工a天、b天,由于总施工费用不超过22万元,可得,解得,b取最小值为40.故⑴甲、乙两工程队单独完成此项目分别需40天、60天.⑵乙工程度至少要施工40天.篇2:分式方程应用题及答案分式方程应用题及答案一、a、b两地相距48千米,一艘轮船从a地顺流航行至b 地,又立即从b地逆流返回a地,共用去9小时,已知水流速度为4千米/时,若设该轮船在静水中的速度为x千米/时,则可列方程求解。
人教版八年级上册数学《分式》单元综合检测附答案
(2)已知甲队每天的施工费用为5000元,乙队每天的施工费用为3000元,为了缩短工期以减少对居民交通的影响,工程指挥部最终决定该工程由甲、乙两队合做来完成,那么该工程施工费用是多少?
25.我市计划对某地块的1000m2区域进行绿化,由甲、乙两个工程队合作完成.已知甲队每天能完成绿化的面积是乙队的2倍;若两队分别各完成300m2的绿化时,甲队比乙队少用3天.
9.化简 的结果是
A.- B. C. D.
10.使分式 的值为整数,则整数x可取的个数为( )
A.2个B.3个C.4个D.5个
11.王老师坚持绿色出行,每天先步行到离家500米的公共自行车点取车,然后骑车4.5千米到校.某天王老师从手机获知,骑车平均每小时比步行多10千米,共用时24分钟.设步行的平均速度为每小时x千米,则可列方程 ( ).
A.a<b<c<dB.b<a<d<cC.a<d<c<bD.c<a<d<b
【答案】B
【解析】
a=﹣0.32=﹣0.09,b=﹣3﹣2=﹣ , , ,
∵﹣ ,
∴b<a<d<c.
故选B.
点睛:(1)此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.
故选A
【点睛】本题考核知识点:分式的定义.解题关键点:理解分式的定义.
2.石墨烯是从石墨材料中剥离出来,由碳原子组成的只有一层原子厚度的二维晶体.石墨烯(Graphene)是人类已知强度最高的物质,据科学家们测算,要施加55牛顿的压力才能使0.000001米长的石墨烯断裂.其中0.000001用科学记数法表示为( )
A.当x=2时, 的值为零
B.无论x为何值, 的值总为正数
最新2019-2020年度人教版八年级数学上册《分式方程应用题》综合测试卷及解析-精品试题
15.3 分式方程一、解答题1.某工厂一台机器的工作效率相当于一个工人工作效率的12倍,用这台机器生产60个零件比8个工人生产这些零件少用2小时,则这台机器每小时生产多少个零件?2.列分式方程解应用题:为绿化环境,某校在3月12日组织七、八年级学生植树.在植树过程中,八年级学生比七年级学生每小时多植10棵树,八年级学生植120棵树与七年级学生植100棵树所用时间相等,七年级学生和八年级学生每小时分别植多少棵树?3.某水果店老板用400元购进一批葡萄,由于葡萄新鲜,很快售完,老板又用500元购进第二批葡萄,所购数量与第一批相同,但每千克比第一批多了2元.(1)求:第一批葡萄进价每千克多少元?(请列方程求解)(2)若水果店老板以每千克11元的价格将两批葡萄全部售出,可以盈利多少元?4.为了进一步落实“节能减排”措施,冬季供暖来临前,某单位决定对7200平方米的“外墙保温”工程进行招标,现有甲、乙两个工程队参与投标,比较这两个工程队的标书发现:乙队每天完成的工程量是甲队的1.5倍,这样乙队单独干比甲队单独干能提前15天完成任务.问甲队每天完成多少平方米?5.某超市用3000元购进某种干果销售,由于销售状况良好,超市又调拨9000元资金购进该种干果,但这次的进价比第一次的进价提高了20%,购进干果数量是第一次的2倍还多300千克,如果超市按每千克9元的价格出售,当大部分干果售出后,余下的600千克按售价的8折售完.(1)该种干果的第一次进价是每千克多少元?(2)超市销售这种干果共盈利多少元?6.某文具厂计划加工3000套画图工具,为了尽快完成任务,实际每天加工画图工具的数量是原计划的1.2倍,结果提前4天完成任务,求该文具厂原计划每天加工这种画图工具的数量.7.济宁市“五城同创”活动中,一项绿化工程由甲、乙两工程队承担.已知甲工程队单独完成这项工作需120天,甲工程队单独工作30天后,乙工程队参与合做,两队又共同工作了36天完成.(1)求乙工程队单独完成这项工作需要多少天?(2)因工期的需要,将此项工程分成两部分,甲做其中一部分用了x天完成,乙做另一部分用了y 天完成,其中x、y均为正整数,且x<46,y<52,求甲、乙两队各做了多少天?8.某校为美化校园,计划对面积为1800m2的区域进行绿化,安排甲、乙两个工程队完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天.(1)求甲、乙两工程队每天能完成绿化的面积分别是多少m2?(2)若学校每天需付给甲队的绿化费用为0.4万元,乙队为0.25万元,要使这次的绿化总费用不超过8万元,至少应安排甲队工作多少天?9.荣庆公司计划从商店购买同一品牌的台灯和手电筒,已知购买一个台灯比购买一个手电筒多用20元,若用400元购买台灯和用160元购买手电筒,则购买台灯的个数是购买手电筒个数的一半.(1)求购买该品牌一个台灯、一个手电筒各需要多少元?(2)经商谈,商店给予荣庆公司购买一个该品牌台灯赠送一个该品牌手电筒的优惠,如果荣庆公司需要手电筒的个数是台灯个数的2倍还多8个,且该公司购买台灯和手电筒的总费用不超过670元,那么荣庆公司最多可购买多少个该品牌台灯?10.某漆器厂接到制作480件漆器的订单,为了尽快完成任务,该厂实际每天制作的件数比原来每天多50%,结果提前10天完成任务.原来每天制作多少件?11.学校计划选购甲、乙两种图书作为“校园读书节”的奖品.已知甲图书的单价是乙图书单价的1.5倍;用600元单独购买甲种图书比单独购买乙种图书要少10本.(1)甲、乙两种图书的单价分别为多少元?(2)若学校计划购买这两种图书共40本,且投入的经费不超过1050元,要使购买的甲种图书数量不少于乙种图书的数量,则共有几种购买方案?12.某汽车销售公司经销某品牌A款汽车,随着汽车的普及,其价格也在不断下降.今年5月份A 款汽车的售价比去年同期每辆降价1万元,如果卖出相同数量的A款汽车,去年销售额为100万元,今年销售额只有90万元.(1)今年5月份A款汽车每辆售价多少万元?(2)为了增加收入,汽车销售公司决定再经销同品牌的B款汽车,已知A款汽车每辆进价为7.5万元,B款汽车每辆进价为6万元,公司预计用不多于105万元且不少于99万元的资金购进这两款汽车共15辆,有几种进货方案?(3)如果B款汽车每辆售价为8万元,为打开B款汽车的销路,公司决定每售出一辆B款汽车,返还顾客现金a万元,要使(2)中所有的方案获利相同,a值应是多少?此时,哪种方案对公司更有利?13.某商场销售的一款空调机每台的标价是1635元,在一次促销活动中,按标价的八折销售,仍可盈利9%.(1)求这款空调每台的进价(利润率==).(2)在这次促销活动中,商场销售了这款空调机100台,问盈利多少元?14.甲、乙两座城市的中心火车站A,B两站相距360km.一列动车与一列特快列车分别从A,B 两站同时出发相向而行,动车的平均速度比特快列车快54km/h,当动车到达B站时,特快列车恰好到达距离A站135km处的C站.求动车和特快列车的平均速度各是多少?15.几个小伙伴打算去音乐厅观看演出,他们准备用360元钱购买门票.下面是两个小伙伴的对话:根据对话的内容,请你求出小伙伴们的人数.16.从广州到某市,可乘坐普通列车或高铁,已知高铁的行驶路程是400千米,普通列车的行驶路程是高铁的行驶路程的1.3倍.(1)求普通列车的行驶路程;(2)若高铁的平均速度(千米/时)是普通列车平均速度(千米/时)的2.5倍,且乘坐高铁所需时间比乘坐普通列车所需时间缩短3小时,求高铁的平均速度.17.马小虎的家距离学校1800米,一天马小虎从家去上学,出发10分钟后,爸爸发现他的数学课本忘记拿了,立即带上课本去追他,在距离学校200米的地方追上了他,已知爸爸的速度是马小虎速度的2倍,求马小虎的速度.18.某服装商预测一种应季衬衫能畅销市场,就用8000元购进一批衬衫,面市后果然供不应求,服装商又用17600元购进了第二批这种衬衫,所购数量是第一批购进数量的2倍,但单价贵了8元.商家销售这种衬衫时每件定价都是100元,最后剩下10件按8折销售,很快售完.在这两笔生意中,商家共盈利多少元?19.端午节期间,某食堂根据职工食用习惯,用700元购进甲、乙两种粽子260个,其中甲粽子比乙种粽子少用100元,已知甲种粽子单价比乙种粽子单价高20%,乙种粽子的单价是多少元?甲、乙两种粽子各购买了多少个?20.某校枇杷基地的枇杷成熟了,准备请专业摘果队帮忙摘果,现有甲、乙两支专业摘果队,若由甲队单独摘果,预计6天才能完成,为了减少枇杷因气候变化等原因带来的损失,现决定由甲、乙两队同时摘果,则2天可以完成,请问:(1)若单独由乙队摘果,需要几天才能完成?(2)若有三种摘果方案,方案1:单独请甲队;方案2:同时请甲、乙两队;方案3:单独请乙队.甲队每摘果一天,需支付给甲队1000元工资,乙队每摘果一天,须支付给乙队1600元工资,你认为用哪种方案完成所有摘果任务需支付给摘果队的总工资最低?最低总工资是多少元?21.某市区一条主要街道的改造工程有甲、乙两个工程队投标.经测算:若由两个工程队合做,12天恰好完成;若两个队合做9天后,剩下的由甲队单独完成,还需5天时间,现需从这两个工程队中选出一个队单独完成,从缩短工期角度考虑,你认为应该选择哪个队?为什么?22.杨梅是漳州的特色时令水果,杨梅一上市,水果店的老板用1200元购进一批杨梅,很快售完;老板又用2500元购进第二批杨梅,所购件数是第一批的2倍,但进价比第一批每件多了5元.(1)第一批杨梅每件进价多少元?(2)老板以每件150元的价格销售第二批杨梅,售出80%后,为了尽快售完,决定打折促销,要使第二批杨梅的销售利润不少于320元,剩余的杨梅每件售价至少打几折?(利润=售价﹣进价)23.某校选派一部分学生参加“六盘水市马拉松比赛”,要为每位参赛学生购买一顶帽子.商场规定:凡一次性购买200顶或200顶以上,可按批发价付款;购买200顶以下只能按零售价付款.如果为每位参赛学生购买1顶,那么只能按零售价付款,需用900元;如果多购买45顶,那么可以按批发价付款,同样需用900元.问:(1)参赛学生人数x在什么范围内?(2)若按批发价购买15顶与按零售价购买12顶的款相同,那么参赛学生人数x是多少?24.某“爱心义卖”活动中,购进甲、乙两种文具,甲每个进货价高于乙进货价10元,90元买乙的数量与150元买甲的数量相同.(1)求甲、乙进货价;(2)甲、乙共100件,将进价提高20%进行销售,进货价少于2080元,销售额要大于2460元,求有几种方案?25.甲、乙两人准备整理一批新到的图书,甲单独整理需要40分钟完工;若甲、乙共同整理20分钟后,乙需再单独整理30分钟才能完工.问乙单独整理这批图书需要多少分钟完工?26.2014年12月26日,西南真正意义上的第一条高铁﹣贵阳至广州高速铁路将开始试运行,从贵阳到广州,乘特快列车的行程约为1800km,高铁开通后,高铁列车的行程约为860km,运行时间比特快列车所用的时间减少了16h.若高铁列车的平均速度是特快列车平均速度的2.5倍,求特快列车的平均速度.27.为弘扬中华民族传统文化,某校举办了“古诗文大赛”,并为获奖同学购买签字笔和笔记本作为奖品.1支签字笔和2个笔记本共8.5元,2支签字笔和3个笔记本共13.5元.(1)求签字笔和笔记本的单价分别是多少元?(2)为了激发学生的学习热情,学校决定给每名获奖同学再购买一本文学类图书,如果给每名获奖同学都买一本图书,需要花费720元;书店出台如下促销方案:购买图书总数超过50本可以享受8折优惠.学校如果多买12本,则可以享受优惠且所花钱数与原来相同.问学校获奖的同学有多少人?28.国家实施高效节能电器的财政补贴政策,某款空调在政策实施后.每购买一台,客户每购买一台可获得补贴500元.若同样用11万元所购买此款空调,补贴后可购买的台数比补贴前前多20%,则该款空调补贴前的售价为每台多少元?29.为了保护环境,某开发区综合治理指挥部决定购买A,B两种型号的污水处理设备共10台.已知用90万元购买A型号的污水处理设备的台数与用75万元购买B型号的污水处理设备的台数相同,每台设备价格及月处理污水量如下表所示:污水处理设备A型B型价格(万元/台)m m﹣3月处理污水量(吨/台)220 180(1)求m的值;(2)由于受资金限制,指挥部用于购买污水处理设备的资金不超过165万元,问有多少种购买方案?并求出每月最多处理污水量的吨数.30.列方程或方程组解应用题:小马自驾私家车从A地到B地,驾驶原来的燃油汽车所需油费108元,驾驶新购买的纯电动车所需电费27元,已知每行驶1千米,原来的燃油汽车所需的油费比新购买的纯电动汽车所需的电费多0.54元,求新购买的纯电动汽车每行驶1千米所需的电费.15.3 分式方程参考答案一、解答题1.某工厂一台机器的工作效率相当于一个工人工作效率的12倍,用这台机器生产60个零件比8个工人生产这些零件少用2小时,则这台机器每小时生产多少个零件?【解答】解:设一个工人每小时生产零件x个,则机器一个小时生产零件12x个,由题意得,﹣=2,解得:x=1.25,经检验:x=1.25是原分式方程的解,且符合题意,则12x=12×1.25=15.即这台机器每小时生产15个零件.故答案为:15.2.列分式方程解应用题:为绿化环境,某校在3月12日组织七、八年级学生植树.在植树过程中,八年级学生比七年级学生每小时多植10棵树,八年级学生植120棵树与七年级学生植100棵树所用时间相等,七年级学生和八年级学生每小时分别植多少棵树?【解答】解:设七年级学生每小时植x棵,则八年级每小时植(x+10)棵,由题意得:=,解得:x=50,经检验:x=50是原分式方程的解,则x+10=50+10=60,答:七年级学生每小时植50棵,则八年级每小时植60棵.3.某水果店老板用400元购进一批葡萄,由于葡萄新鲜,很快售完,老板又用500元购进第二批葡萄,所购数量与第一批相同,但每千克比第一批多了2元.(1)求:第一批葡萄进价每千克多少元?(请列方程求解)(2)若水果店老板以每千克11元的价格将两批葡萄全部售出,可以盈利多少元?【解答】解:(1)设第一批葡萄进价每千克x元,则第二批葡萄的进价为(x+2)元,依题意得,,解得:x=8,经检验,x=8是原方程的解,且符合题意.答:第一批葡萄进价每千克8元.(2)由题意,得第一批的数量为:,50×2×11﹣(400+500)=200答:可盈利200元.4.为了进一步落实“节能减排”措施,冬季供暖来临前,某单位决定对7200平方米的“外墙保温”工程进行招标,现有甲、乙两个工程队参与投标,比较这两个工程队的标书发现:乙队每天完成的工程量是甲队的1.5倍,这样乙队单独干比甲队单独干能提前15天完成任务.问甲队每天完成多少平方米?【解答】解:设甲队每天完成x米2,乙队每天完成1.5 x米2,根据题意得.﹣=15,解得x=160,经检验,x=160,是所列方程的解.答:甲队每天完成160米2.5.某超市用3000元购进某种干果销售,由于销售状况良好,超市又调拨9000元资金购进该种干果,但这次的进价比第一次的进价提高了20%,购进干果数量是第一次的2倍还多300千克,如果超市按每千克9元的价格出售,当大部分干果售出后,余下的600千克按售价的8折售完.(1)该种干果的第一次进价是每千克多少元?(2)超市销售这种干果共盈利多少元?【解答】解:(1)设该种干果的第一次进价是每千克x元,则第二次进价是每千克(1+20%)x元,由题意,得=2×+300,解得x=5,经检验x=5是方程的解.答:该种干果的第一次进价是每千克5元;(2)[+﹣600]×9+600×9×80%﹣(3000+9000)=(600+1500﹣600)×9+4320﹣12000=1500×9+4320﹣12000=13500+4320﹣12000=5820(元).答:超市销售这种干果共盈利5820元.6.某文具厂计划加工3000套画图工具,为了尽快完成任务,实际每天加工画图工具的数量是原计划的1.2倍,结果提前4天完成任务,求该文具厂原计划每天加工这种画图工具的数量.【解答】解:设文具厂原计划每天加工x套这种画图工具.根据题意,得﹣=4.解得x=125.经检验,x=125是原方程的解,且符合题意.答:文具厂原计划每天加工125套这种画图工具.7.济宁市“五城同创”活动中,一项绿化工程由甲、乙两工程队承担.已知甲工程队单独完成这项工作需120天,甲工程队单独工作30天后,乙工程队参与合做,两队又共同工作了36天完成.(1)求乙工程队单独完成这项工作需要多少天?(2)因工期的需要,将此项工程分成两部分,甲做其中一部分用了x天完成,乙做另一部分用了y 天完成,其中x、y均为正整数,且x<46,y<52,求甲、乙两队各做了多少天?【解答】解:(1)设乙工程队单独完成这项工作需要a天,由题意得+36()=1,解之得a=80,经检验a=80是原方程的解.答:乙工程队单独做需要80天完成;(2)∵甲队做其中一部分用了x天,乙队做另一部分用了y天,∴=1即y=80﹣x,又∵x<46,y<52,∴,解得42<x<46,∵x、y均为正整数,∴x=45,y=50,答:甲队做了45天,乙队做了50天.8.某校为美化校园,计划对面积为1800m2的区域进行绿化,安排甲、乙两个工程队完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天.(1)求甲、乙两工程队每天能完成绿化的面积分别是多少m2?(2)若学校每天需付给甲队的绿化费用为0.4万元,乙队为0.25万元,要使这次的绿化总费用不超过8万元,至少应安排甲队工作多少天?【解答】解:(1)设乙工程队每天能完成绿化的面积是x(m2),根据题意得:﹣=4,解得:x=50,经检验x=50是原方程的解,则甲工程队每天能完成绿化的面积是50×2=100(m2),答:甲、乙两工程队每天能完成绿化的面积分别是100m2、50m2;(2)设应安排甲队工作y天,根据题意得:0.4y+×0.25≤8,解得:y≥10,答:至少应安排甲队工作10天.9.荣庆公司计划从商店购买同一品牌的台灯和手电筒,已知购买一个台灯比购买一个手电筒多用20元,若用400元购买台灯和用160元购买手电筒,则购买台灯的个数是购买手电筒个数的一半.(1)求购买该品牌一个台灯、一个手电筒各需要多少元?(2)经商谈,商店给予荣庆公司购买一个该品牌台灯赠送一个该品牌手电筒的优惠,如果荣庆公司需要手电筒的个数是台灯个数的2倍还多8个,且该公司购买台灯和手电筒的总费用不超过670元,那么荣庆公司最多可购买多少个该品牌台灯?【解答】解:(1)设购买该品牌一个手电筒需要x元,则购买一个台灯需要(x+20)元.根据题意得=×解得x=5经检验,x=5是原方程的解.所以x+20=25.答:购买一个台灯需要25元,购买一个手电筒需要5元;(2)设公司购买台灯的个数为a,则还需要购买手电筒的个数是(2a+8﹣a)由题意得25a+5(2a+8﹣a)≤670解得a≤21∴荣庆公司最多可购买21个该品牌的台灯.10.某漆器厂接到制作480件漆器的订单,为了尽快完成任务,该厂实际每天制作的件数比原来每天多50%,结果提前10天完成任务.原来每天制作多少件?【解答】解:设原来每天制作x件,根据题意得:﹣=10,解得:x=16,经检验x=16是原方程的解,答:原来每天制作16件.11.学校计划选购甲、乙两种图书作为“校园读书节”的奖品.已知甲图书的单价是乙图书单价的1.5倍;用600元单独购买甲种图书比单独购买乙种图书要少10本.(1)甲、乙两种图书的单价分别为多少元?(2)若学校计划购买这两种图书共40本,且投入的经费不超过1050元,要使购买的甲种图书数量不少于乙种图书的数量,则共有几种购买方案?【解答】解:(1)设乙种图书的单价为x元,则甲种图书的单价为1.5x元,由题意得﹣=10解得:x=20则1.5x=30,经检验得出:x=20是原方程的根,答:甲种图书的单价为30元,乙种图书的单价为20元;(2)设购进甲种图书a本,则购进乙种图书(40﹣a)本,根据题意得解得:20≤a≤25,所以a=20、21、22、23、24、25,则40﹣a=20、19、18、17、16、15∴共有6种方案.12.某汽车销售公司经销某品牌A款汽车,随着汽车的普及,其价格也在不断下降.今年5月份A 款汽车的售价比去年同期每辆降价1万元,如果卖出相同数量的A款汽车,去年销售额为100万元,今年销售额只有90万元.(1)今年5月份A款汽车每辆售价多少万元?(2)为了增加收入,汽车销售公司决定再经销同品牌的B款汽车,已知A款汽车每辆进价为7.5万元,B款汽车每辆进价为6万元,公司预计用不多于105万元且不少于99万元的资金购进这两款汽车共15辆,有几种进货方案?(3)如果B款汽车每辆售价为8万元,为打开B款汽车的销路,公司决定每售出一辆B款汽车,返还顾客现金a万元,要使(2)中所有的方案获利相同,a值应是多少?此时,哪种方案对公司更有利?【解答】解:(1)设今年5月份A款汽车每辆售价m万元.则:,解得:m=9.经检验,m=9是原方程的根且符合题意.答:今年5月份A款汽车每辆售价9万元;(2)设购进A款汽车x辆.则:99≤7.5x+6(15﹣x)≤105.解得:6≤x≤10.∵x的正整数解为6,7,8,9,10,∴共有5种进货方案;(3)设总获利为W万元,购进A款汽车x辆,则:W=(9﹣7.5)x+(8﹣6﹣a)(15﹣x)=(a﹣0.5)x+30﹣15a.当a=0.5时,(2)中所有方案获利相同.此时,购买A款汽车6辆,B款汽车9辆时对公司更有利.13.某商场销售的一款空调机每台的标价是1635元,在一次促销活动中,按标价的八折销售,仍可盈利9%.(1)求这款空调每台的进价(利润率==).(2)在这次促销活动中,商场销售了这款空调机100台,问盈利多少元?【解答】解:(1)设这款空调每台的进价为x元,根据题意得:=9%,解得:x=1200,经检验:x=1200是原方程的解.答:这款空调每台的进价为1200元;(2)商场销售这款空调机100台的盈利为:100×1200×9%=10800元.14.甲、乙两座城市的中心火车站A,B两站相距360km.一列动车与一列特快列车分别从A,B 两站同时出发相向而行,动车的平均速度比特快列车快54km/h,当动车到达B站时,特快列车恰好到达距离A站135km处的C站.求动车和特快列车的平均速度各是多少?【解答】解:设特快列车的平均速度为xkm/h,则动车的速度为(x+54)km/h,由题意,得:=,解得:x=90,经检验得:x=90是这个分式方程的解.x+54=144.答:特快列车的平均速度为90km/h,动车的速度为144km/h.15.几个小伙伴打算去音乐厅观看演出,他们准备用360元钱购买门票.下面是两个小伙伴的对话:根据对话的内容,请你求出小伙伴们的人数.【解答】解:设票价为x元,由题意得,=+2,解得:x=60,经检验,x=60是原分式方程的解.则小伙伴的人数为:=8.答:小伙伴们的人数为8人.16.从广州到某市,可乘坐普通列车或高铁,已知高铁的行驶路程是400千米,普通列车的行驶路程是高铁的行驶路程的1.3倍.(1)求普通列车的行驶路程;(2)若高铁的平均速度(千米/时)是普通列车平均速度(千米/时)的2.5倍,且乘坐高铁所需时间比乘坐普通列车所需时间缩短3小时,求高铁的平均速度.【解答】解:(1)根据题意得:400×1.3=520(千米),答:普通列车的行驶路程是520千米;(2)设普通列车平均速度是x千米/时,则高铁平均速度是2.5x千米/时,根据题意得:﹣=3,解得:x=120,经检验x=120是原方程的解,则高铁的平均速度是120×2.5=300(千米/时),答:高铁的平均速度是300千米/时.17.马小虎的家距离学校1800米,一天马小虎从家去上学,出发10分钟后,爸爸发现他的数学课本忘记拿了,立即带上课本去追他,在距离学校200米的地方追上了他,已知爸爸的速度是马小虎速度的2倍,求马小虎的速度.【解答】解:设马小虎的速度为x米/分,则爸爸的速度是2x米/分,依题意得=+10,解得x=80.经检验,x=80是原方程的根.答:马小虎的速度是80米/分.18.某服装商预测一种应季衬衫能畅销市场,就用8000元购进一批衬衫,面市后果然供不应求,服装商又用17600元购进了第二批这种衬衫,所购数量是第一批购进数量的2倍,但单价贵了8元.商家销售这种衬衫时每件定价都是100元,最后剩下10件按8折销售,很快售完.在这两笔生意中,商家共盈利多少元?【解答】解:设第一批进货的单价为x元,则第二批进货的单价为(x+8)元,由题意得,×2=,解得:x=80,经检验;x=80是原分式方程的解,且符合题意,则第一次进货100件,第二次进货的单价为88元,第二次进货200件,总盈利为:(100﹣80)×100+(100﹣88)×(200﹣10)+10×(100×0.8﹣88)=4200(元).答:在这两笔生意中,商家共盈利4200元.19.端午节期间,某食堂根据职工食用习惯,用700元购进甲、乙两种粽子260个,其中甲粽子比乙种粽子少用100元,已知甲种粽子单价比乙种粽子单价高20%,乙种粽子的单价是多少元?甲、乙两种粽子各购买了多少个?【解答】解:设乙种粽子的单价是x元,则甲种粽子的单价为(1+20%)x元,由题意得,+=260,解得:x=2.5,经检验:x=2.5是原分式方程的解,(1+20%)x=3,则买甲粽子为:=100个,乙粽子为:=160个.答:乙种粽子的单价是2.5元,甲、乙两种粽子各购买100个、160个.20.(2014•永州)某校枇杷基地的枇杷成熟了,准备请专业摘果队帮忙摘果,现有甲、乙两支专业摘果队,若由甲队单独摘果,预计6天才能完成,为了减少枇杷因气候变化等原因带来的损失,现决定由甲、乙两队同时摘果,则2天可以完成,请问:(1)若单独由乙队摘果,需要几天才能完成?(2)若有三种摘果方案,方案1:单独请甲队;方案2:同时请甲、乙两队;方案3:单独请乙队.甲队每摘果一天,需支付给甲队1000元工资,乙队每摘果一天,须支付给乙队1600元工资,你认为用哪种方案完成所有摘果任务需支付给摘果队的总工资最低?最低总工资是多少元?【解答】解:(1)设单独由乙队摘果,需要x天才能完成,根据题意得:2(+)=1,解得:x=3,经检验x=3是分式方程的解,且符合题意,则单独由乙队完成需要3天才能完成;。
2022年最新强化训练北师大版八年级数学下册第五章分式与分式方程综合测试试卷(含答案详解)
北师大版八年级数学下册第五章分式与分式方程综合测试考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如果把分式2xyx y+中的x和y都扩大3倍,那么分式的值()A.扩大3倍B.缩小3倍C.缩小6倍D.不变2、在代数式32x+,32x+,32x+,32xx+,πx中,分式的个数为().A.2 B.3 C.4 D.53、5G是第五代移动通信技术,应用5G网络下载一个1000KB的文件只需要0.00076秒,下载一部高清电影只需要1秒.将0.00076用科学记数法表示应为()A.57610-⨯B.47.610-⨯C.57.610-⨯D.30.7610-⨯4、八年级学生去距学校10km的博物馆参观,一部分学生骑自行车先走,过了15min后,其余学生乘汽车出发,结果他们同时到达.已知汽车的速度是自行车速度的2倍,设汽车到博物馆所需的时间为x h,则下列方程正确的是()A.101020.25x x=⨯+B.101020.25x x=⨯-C.101020.25x x=⨯+D.101020.25x x=⨯-5、2021年9月15日消息,钟南山等团队首次精确描绘德尔塔病毒传播链,该研究揭示了德尔塔变异毒株具有潜伏期短、传播速度快、病毒载量高、核酸转阴时间长、更易发展为危重症等特点.德尔塔病毒的直径约为0.00000008m ,数字0.00000008用科学记数法表示为( )A .8810-⨯B .80.810-⨯C .70.810-⨯D .7810-⨯ 6、关于x 的方程1011m x x x -+=--有增根,则m 的值是( ) A .2 B .1 C .0 D .-17、科学家借助电子显微镜发现新型冠状病毒的平均直径约为0.000000125米,则数据0.000000125用科学记数法表示正确的是( )A .1.25×108B .1.25×10﹣8C .1.25×107D .1.25×10﹣7 8、若分式2a a b+中的a ,b 的值同时扩大到原来的4倍,则分式的值( ) A .是原来的8倍B .是原来的4倍C .是原来的14D .不变9、若关于x 的分式方程242x m x x x ++--=﹣1无解,则m 的值是( ) A .m =2或m =6B .m =2C .m =6D .m =2或m =﹣6 10、下列代数式中:5x ,1,8y a b x y ++,10m n -,6m m +共有分式( ) A .2个 B .3个 C .4个 D .5个第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、若2x =5y ,则x y x+=_____.2x 的取值范围为_______________.3、方程12131x x=-+的解为___.4、新冠病毒的直径大约是0.00000014米长,0.00000014科学记数法表示为______.5、当2x=时,分式35xx a+-无意义,则=a______.三、解答题(5小题,每小题10分,共计50分)1、计算或因式分解:(1)计算:(a2﹣4)2aa+÷;(2)因式分解:a2(x﹣y)+b2(y﹣x).2、计算:(1)(3+m)(3﹣m)+m(m﹣6)﹣7;(2)2213 (1)369 a a a a a a+--÷--+3、先化简,再代入求值:2442xxx x⎛⎫+-⎪-⎝⎭,其中2220x-x-=4、在《开学第一课》中,东京奥运会的奥运健儿们向新开学的同学们送上了“希望你们能像运动员一样,努力奔跑,刻苦学习,实现你们的梦想”的祝福.为了提高学生的体育锻炼的意识和能力,丰富学生的体育锻炼的内容,学校准备购买一批体育用品.在购买跳绳时,甲种跳绳比乙种跳绳的单价低10元,用1600元购买甲种跳绳与用2100元购买乙种跳绳的数量相同,求甲乙两种跳绳的单价各是多少元?5、先化简221111x x xx x⎛⎫++÷+⎪--⎝⎭,再从12x-<<的范围内选取一个合适的整数代入求值.-参考答案-一、单选题1、A【分析】将x,y用3x,3y代入化简,与原式比较即可.【详解】解:将x,y用3x,3y代入得233y3233x xyx y x y⨯⨯⨯=++,故值扩大到3倍.故选A.【点睛】本题考查分式的基本性质,熟悉掌握是解题关键.2、A【分析】根据分式的定义解答即可.【详解】解:32x+、32xx+的分母中含字母,是分式,32x+、32x+、xπ的分母中不含字母,不是分式,故选:A.【点睛】本题主要考查分式的定义,判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式,注意π不是字母,是常数,所以分母中含π的代数式不是分式,是整式.3、B【分析】根据题意依据绝对值小于1的正数利用科学记数法表示为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定进行分析即可.【详解】解:0.00076=47.610-⨯. 故选:B.【点睛】本题考查用科学记数法表示较小的数,注意掌握一般形式为a ×10-n ,其中1≤|a |<10,n 为由原数左边起第一个不为零的数字前面的0的个数决定.4、C【分析】设汽车到博物馆所需的时间为x h ,根据时间=路程÷速度,汽车的速度是自行车速度的2倍,即可得出关于x 的分式方程,此题得解.【详解】解:设汽车到博物馆所需的时间为x h ,根据题意列方程得,101020.25x x =⨯+; 故选:C【点睛】本题考查了由实际问题抽象出分式方程,找准等量关系,正确列出分式方程是解题的关键.5、A【分析】根据用科学记数法表示较小的数,一般形式为a ×10-n ,其中1≤|a |<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定,求解即可得出答案.【详解】解:0.00000008=8×10-8.故选:A .【点睛】本题主要考查了科学记数法,熟练掌握科学记数法表示的方法进行求解是解决本题的关键.6、A【分析】增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.有增根,最简公分母x ﹣1=0,所以增根是x =1,把增根代入化为整式方程的方程即可求出未知字母的值【详解】解:两边都乘(x ﹣1),得:m ﹣1-x =0,∵方程有增根,∴最简公分母x ﹣1=0,即增根是x =1,把x =1代入整式方程,得m =2.故选A .【点睛】考查了分式方程的增根,解决增根问题的步骤:①确定增根的值;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.7、D【分析】科学记数法的表现形式为10n a ⨯的形式,其中110a ≤<,n 为整数,确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同,当原数绝对值大于等于1时,n 是正数,当原数绝对值小于1时n 是负数;由此进行求解即可得到答案.【详解】解:70.000000125 1.2510-=⨯故选D .本题主要考查了科学记数法,解题的关键在于能够熟练掌握科学记数法的定义.8、D【分析】根据分式的基本性质,把a ,b 的值同时扩大到原来的4倍,代入原式比较即可.【详解】解:a ,b 的值同时扩大到原来的4倍,原式=24422444()a a a a b a b a b⨯⨯==+++;分式的值不变; 故选:D .【点睛】本题考查了分式的基本性质,解题关键是熟练运用分式的基本性质进行化简.9、A【分析】先去分母得到整式方程,解整式方程得x =m -4,利用分式方程无解得到x =±2,所以m -4=±2,然后解关于m 的方程即可.【详解】 解:242x m x x x ++--=﹣1 去分母得x +m -x (x +2)=-x 2+4,解得x =m -4,∵原方程无解,∴x =2或-2,即m -4=2,解得m =6;或m -4=-2,解得m =2;即当m =2或6时,关于x 的分式方程242x m x x x++--=﹣1无解.【点睛】本题考查了分式方程的解:求出使分式方程中令等号左右两边相等且分母不等于0的未知数的值,这个值叫方程的解.在解方程的过程中因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根,增根是令分母等于0的值,不是原分式方程的解.10、B【分析】根据分式的定义,分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式,即可得出正确答案.【详解】 解:在5x ,1a b +,8+y x y ,10m n -,6m m +中,是分式的有1a b +,8+y x y ,6m m+共3个; 故选:B .【点睛】本题主要考查分式的概念,分式与整式的区别主要在于:分母中是否含有未知数熟练掌握运用这个区别是解题关键.二、填空题1、75【分析】先用含y 的代数式表示出x ,然后代入x y x+计算. 【详解】解:∵2x =5y , ∴52x y =,∴x y x +=572552y y y y y +==75. 故答案为:75. 【点睛】本题考查了分式的化简求值,用含y 的代数式表示出x 是解答本题的关键.2、12x ≤且1x ≠- 【分析】根据二次根式和分式有意义的条件:被开方数大于等于0,分母不等于0,列不等式求解.【详解】解:由题意得:120x -≥,且10x +≠ 解得:12x ≤且1x ≠- 故答案为:12x ≤且1x ≠- 【点睛】本题考查了分式有意义的条件和二次根式有意义的条件,掌握:分式有意义,分母不为0;二次根式的被开方数是非负数是解题的关键.3、x =-3【分析】先去分母,然后再求解方程即可.【详解】 解:12131x x =-+去分母得:()3121x x +=-,去括号得:3122x x +=-,移项、合并同类项得:3x =-,经检验:3x =-是原方程的解,故答案为3x =-.【点睛】本题主要考查分式方程的解法,熟练掌握分式方程的解法是解题的关键.4、71.410-⨯【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为10n a -⨯,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数n 由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:70.00000014 1.410-=⨯.故答案是:71.410-⨯.【点睛】此题考查了用科学记数法表示较小的数,解题的关键是:一般形式为10n a -⨯,其中1||10a <,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.5、10【分析】根据分母为零分式无意义,可得答案.【详解】 解:对于分式35x x a +-,当x =2时,分式无意义,得5×2-a =0,解得a =10.故答案是:10.【点睛】本题考查的是分式无意义的条件,熟知分式无意义的条件是分母等于零是解答此题的关键.三、解答题1、(1)22a a +;(2)()()()a b a b x y +--【分析】(1)根据平方差公式和分式的除法计算法则求解即可;(2)利用提取公因式和平方差公式分解因式即可.【详解】解:()224a a a+-÷ ()()222a a a a =+-⋅+ ()2a a =+22a a =+;(2)()()22a x y b y x -+-()()22a x y b x y =---()()22a b x y =--()()()a b a b x y =+--.【点睛】本题主要考查了分解因式,分式与整式的混合运算,熟知相关计算法则是解题的关键.2、(1)2﹣6m(2)4 a【分析】(1)先计算整式乘法,然后合并同类项,即可得到答案;(2)由分式的加减乘除运算进行化简,即可得到最简分式.(1)解:原式=9﹣m2+m2﹣6m﹣7=2﹣6m.(2)解:原式=2 13(3) ()33(3) a a aa a a a+---⨯---=433aa a-⨯-=4a.【点睛】本题考查了整式的乘法,整式的加减运算,分式的加减乘除混合运算,解题的关键是掌握运算法则,正确的进行化简.3、22x x-,2【分析】原式去括号合并得到最简结果,把2220x-x-=变形为222x x=-代入计算即可求出值.【详解】解:2442xxx x⎛⎫+-⎪-⎝⎭,=22442x x xx x x x⎛⎫+-⎪-⎝⎭,=22442x+x xx x⎛⎫-⎪-⎝⎭,=()2222xxx x--,=x(x-2),=22x x-,2220x x-=-,变形为222x x=-,原式=22x x-=2.【点睛】此题考查了分式化简求值,熟练掌握运算法则是解本题的关键.4、乙种跳绳的单价为42元,甲种跳绳的单价为32元【分析】设乙种跳绳的单价为x元,则甲种跳绳的单价为(10)x-元,根据题意列出方程求解即可【详解】设乙种跳绳的单价为x元,则甲种跳绳的单价为(10)x-元,依据题意列出方程为:1600210010x x=-,解得:42x=,经检验:42x=是所列方程的解,并且符合实际意义,∴1032x-=,答:乙种跳绳的单价为42元,则甲种跳绳的单价为32元.【点睛】本题考查分式方程的应用,根据题意列出方程是解题的关键,分式方程注意检验.5、1x +;1【分析】先根据分式运算法则进行化简,再确定符号题意的字母的值代入求即可.【详解】 解:221111x x x x x ⎛⎫++÷+ ⎪--⎝⎭ 222211111x x x x x x x ⎛⎫+-+=÷+ ⎪---⎝⎭ 21111x x x x ++=÷-- 1(1)(1)11x x x x x +-+=⨯-+ 1x =+因为12x -<<且x 是整数且1x ≠和1-,所以0x =,当0x =时,原式011=+=【点睛】本题考查了分式的化简求值,解题关键是熟练运用分式运算法则,按照分式运算顺序化简,正确确定字母的值,代入求解.。
分式及方程综合测试卷(带答案)
初分式及方程综合测试卷(带答案)(满分100分60分钟完成)学生姓名:____________ 分数:____________一.选择题(共8小题,每题3分,共24分)1.(2014•广州)下列运算正确的是()A.5ab﹣ab=4 B.C.a6÷a2=a4D.(a2b)3=a5b3+=2.(2014•贺州)使分式有意义,则x的取值范围是()A.x≠1B.x=1 C.x≤1D.x≥13.(2014•毕节地区)若分式的值为零,则x的值为()A.0B.1C.﹣1 D.±14.(2014•南通)化简的结果是()A.x+1 B.x﹣1 C.﹣x D.x5.(2014•河东区一模)当x=1时,(x﹣2﹣)÷=()A.4B.3C.2D.16.(2014•台州)将分式方程1﹣=去分母,得到正确的整式方程是()A.1﹣2x=3 B.x﹣1﹣2x=3 C.1+2x=3 D.x﹣1+2x=37.(2014•安次区一模)对于非零实数a、b,规定a⊗b=.若2⊗(2x﹣1)=1,则x的值为()A.B.C.D.﹣8.(2014•龙东地区)已知关于x的分式方程+=1的解是非负数,则m的取值范围是()A.m>2 B.m≥2C.m≥2且m≠3D.m>2且m≠3二.填空题(共4小题,每题3分,共12分)9.(2014•白银)化简:=_________.10.(2014•台州)有一个计算程序,每次运算都是把一个数先乘以2,再除以它与1的和,多次重复进行这种运算的过程如下:则第n次运算的结果y n=_________(用含字母x和n的代数式表示).11.(2014•泰州)已知a2+3ab+b2=0(a≠0,b≠0),则代数式+的值等于_________.12.(2014•凉山州)关于x的方程=﹣1的解是正数,则a的取值范围是_________.三.解答题(共9小题,13-14每题4分,15-16每题5分,17-18每题8分,19-21每题10分,共64分)13.(2014•滨州)计算:•.14.(2014•泸州)计算(﹣)÷.15.(2014•仙桃)解方程:.16.(2014•宿迁)解方程:.17.(2014•大庆)已知非零实数a满足a2+1=3a,求的值.18.(2014•安顺)先化简,再求值:(x+1﹣)÷,其中x=2.19.(2014•云南)“母亲节”前夕,某商店根据市场调查,用3000元购进第一批盒装花,上市后很快售完,接着又用5000元购进第二批这种盒装花.已知第二批所购花的盒数是第一批所购花盒数的2倍,且每盒花的进价比第一批的进价少5元.求第一批盒装花每盒的进价是多少元?20.(2014•徐州)几个小伙伴打算去音乐厅观看演出,他们准备用360元钱购买门票.下面是两个小伙伴的对话:根据对话的内容,请你求出小伙伴们的人数.21.甲、乙两名采购员同去一家饲料公司购买两次饲料.两次饲料的价格分别为m元/千克和n元/千克(m、n 都为正数,且m≠n),两名采购员的购货方式不同,其中甲每次购买800千克;乙每次用去800元,而不管购买多少饲料.(1)用含m、n的代数式表示甲、乙两名采购员两次购买饲料的平均单价各是多少?(2)若规定:谁两次购买饲料的平均单价低,谁的购货方式合算,请你判断甲、乙两名采购员购货方式哪个更合算?说明理由.分式方程的章末综合测试卷参考答案与试题解析一.选择题(共8小题)1.(2014•广州)下列运算正确的是()C.a6÷a2=a4D.(a2b)3=a5b3 A.5ab﹣ab=4 B.+=解答:解:A、原式=4ab,故A选项错误;B、原式=,故B选项错误;C、原式=a4,故C选项正确;D、原式=a6b3,故D选项错误.故选:C.2.(2014•贺州)使分式有意义,则x的取值范围是()A.x≠1B.x=1 C.x≤1D.x≥1解答:解:根据题意得:x﹣1≠0,解得:x≠1.故选:A.3.(2014•毕节地区)若分式的值为零,则x的值为()A.0B.1C.﹣1 D.±1解答:解:由x2﹣1=0,得x=±1.①当x=1时,x﹣1=0,∴x=1不合题意;②当x=﹣1时,x﹣1=﹣2≠0,∴x=﹣1时分式的值为0.故选:C.4.(2014•南通)化简的结果是()A.x+1 B.x﹣1 C.﹣x D.x解答:解:=﹣===x,故选:D.5.(2014•河东区一模)当x=1时,(x﹣2﹣)÷=()A.4B.3C.2D.1解答:解:(x﹣2﹣)÷=,当x=1时,原式==2.6.(2014•台州)将分式方程1﹣=去分母,得到正确的整式方程是()A.1﹣2x=3 B.x﹣1﹣2x=3 C.1+2x=3 D.x﹣1+2x=3解答:解:分式方程去分母得:x﹣1﹣2x=3,故选:B.7.(2014•安次区一模)对于非零实数a、b,规定a⊗b=.若2⊗(2x﹣1)=1,则x的值为()A.B.C.D.﹣解答:解:根据题意得:2⊗(2x﹣1)=﹣=1,去分母得:2﹣(2x﹣1)=4x﹣2,去括号得:2﹣2x+1=4x﹣2,移项合并得:6x=5,解得:x=,经检验是分式方程的解.故选A.8.(2014•龙东地区)已知关于x的分式方程+=1的解是非负数,则m的取值范围是()A.m>2 B.m≥2C.m≥2且m≠3D.m>2且m≠3解答:解:分式方程去分母得:m﹣3=x﹣1,解得:x=m﹣2,由方程的解为非负数,得到m﹣2≥0,且m﹣2≠1,解得:m=2且m≠3.故选:C二.填空题(共4小题)9.(2014•白银)化简:=x+2.解答:解:+=﹣==x+2.故答案为:x+2.10.(2014•台州)有一个计算程序,每次运算都是把一个数先乘以2,再除以它与1的和,多次重复进行这种运算的过程如下:则第n次运算的结果y n=(用含字母x和n的代数式表示).解答:解:将y1=代入得:y2==;将y2=代入得:y3==,依此类推,第n次运算的结果y n=.故答案为:.11.(2014•泰州)已知a2+3ab+b2=0(a≠0,b≠0),则代数式+的值等于﹣3.解答:解:∵a2+3ab+b2=0,∴a2+b2=﹣3ab,∴原式===﹣3.故答案为:﹣3.12.(2014•凉山州)关于x的方程=﹣1的解是正数,则a的取值范围是a>﹣1且a≠﹣.解答:解:=﹣1,解得x=,∵=﹣1的解是正数,∴x>0且x≠2,即0且≠2,解得a>﹣1且a≠﹣.故答案为:a>﹣1且a≠﹣.三.解答题(共9小题)13.(2014•滨州)计算:•.解答:解:•=•=x14.(2014•泸州)计算(﹣)÷.解答:解:原式=(﹣)•=(﹣)•(﹣),=﹣•,=﹣.15.(2014•仙桃)解方程:.解答:解:方程两边都乘3(x+1),得:3x﹣2x=3(x+1),解得:x=﹣,经检验x=﹣是方程的解,∴原方程的解为x=﹣.16.(2014•宿迁)解方程:.解答:解:方程两边同乘以x﹣2得:1=x﹣1﹣3(x﹣2)整理得出:2x=4,解得:x=2,检验:当x=2时,x﹣2=0,故x=2不是原方程的根,故此方程无解.17.(2014•大庆)已知非零实数a满足a2+1=3a,求的值.解答:解:∵a2+1=3a,即a+=3,∴两边平方得:(a+)2=a2++2=9,则a2+=7.18.(2014•安顺)先化简,再求值:(x+1﹣)÷,其中x=2.解答:解:原式=[﹣]•=•=•=﹣,当x=2时,原式=﹣=3.19.(2014•云南)“母亲节”前夕,某商店根据市场调查,用3000元购进第一批盒装花,上市后很快售完,接着又用5000元购进第二批这种盒装花.已知第二批所购花的盒数是第一批所购花盒数的2倍,且每盒花的进价比第一批的进价少5元.求第一批盒装花每盒的进价是多少元?解答:解:设第一批盒装花的进价是x元/盒,则2×=,解得x=30经检验,x=30是原方程的根.答:第一批盒装花每盒的进价是30元.20.(2014•徐州)几个小伙伴打算去音乐厅观看演出,他们准备用360元钱购买门票.下面是两个小伙伴的对话:根据对话的内容,请你求出小伙伴们的人数.解答:解:设票价为x元,由题意得,=+2,解得:x=60,则小伙伴的人数为:=8.答:小伙伴们的人数为8人.21.甲、乙两名采购员同去一家饲料公司购买两次饲料.两次饲料的价格分别为m元/千克和n元/千克(m、n都为正数,且m≠n),两名采购员的购货方式不同,其中甲每次购买800千克;乙每次用去800元,而不管购买多少饲料.(1)用含m、n的代数式表示甲、乙两名采购员两次购买饲料的平均单价各是多少?(2)若规定:谁两次购买饲料的平均单价低,谁的购货方式合算,请你判断甲、乙两名采购员购货方式哪个更合算?说明理由.解答:解:(1)根据题意列得:甲采购员两次购买饲料的平均单价为=元/千克;乙采购员两次购买饲料的平均单价为=元/千克;(2)﹣==,∵(m﹣n)2≥0,2(m+n)>0,∴﹣≥0,即≥,则乙的购货方式合算.。
《分式与分式方程》单元测试卷含答案精选全文完整版
可编辑修改精选全文完整版《分式与分式方程》单元测试卷班级:姓名:得分:一.选择题(共10小题)1.(2020•衡阳)要使分式有意义,则x的取值范围是()A.x>1B.x≠1C.x=1D.x≠0 2.(2020•雅安)分式=0,则x的值是()A.1B.﹣1C.±1D.0 3.(2020•河北)若a≠b,则下列分式化简正确的是()A.=B.=C.=D.=4.(2019•攀枝花)一辆货车送货上山,并按原路下山.上山速度为a千米/时,下山速度为b千米/时.则货车上、下山的平均速度为()千米/时.A.(a+b)B.C.D.5.(2016•来宾)当x=6,y=﹣2时,代数式的值为()A.2B.C.1D.6.(2020•随州)÷的计算结果为()A.B.C.D.7.(2020•天津)计算+的结果是()A.B.C.1D.x+1 8.(2020•朝阳)某体育用品商店出售毽球,有批发和零售两种售卖方式,小明打算为班级购买毽球,如果给每个人买一个毽球,就只能按零售价付款,共需80元;如果小明多购买5个毽球,就可以享受批发价,总价是72元.已知按零售价购买40个毽球与按批发价购买50个毽球付款相同,则小明班级共有多少名学生?设班级共有x名学生,依据题意列方程得()A.B.C.D.9.(2020•广元)按照如图所示的流程,若输出的M=﹣6,则输入的m为()A.3B.1C.0D.﹣1 10.(2020•云南)若整数a使关于x的不等式组,有且只有45个整数解,且使关于y的方程+=1的解为非正数,则a的值为()A.﹣61或﹣58B.﹣61或﹣59C.﹣60或﹣59D.﹣61或﹣60或﹣59二.填空题(共10小题)11.(2020•柳州)分式中,x的取值范围是.12.(2019•内江)若+=2,则分式的值为.13.(2020•河池)方程=的解是x=.14.(2020•济南)代数式与代数式的值相等,则x=.15.(2020•潍坊)若关于x的分式方程+1有增根,则m=.16.(2020•绥化)某工厂计划加工一批零件240个,实际每天加工零件的个数是原计划的1.5倍,结果比原计划少用2天.设原计划每天加工零件x个,可列方程.17.(2019•襄阳)定义:a*b=,则方程2*(x+3)=1*(2x)的解为.18.(2017•沈阳)•=.19.(2020•济宁)已知m+n=﹣3,则分式÷(﹣2n)的值是.20.(2019•齐齐哈尔)关于x的分式方程﹣=3的解为非负数,则a的取值范围为.三.解答题(共7小题)21.(2020•宜宾)(1)计算:()﹣1﹣(π﹣3)0﹣|﹣3|+(﹣1)2020;(2)化简:÷(1﹣).22.(2020•西宁)先化简,再求值:,其中.23.(2020•郴州)解方程:=+1.24.(2019•西宁)若m是不等式组的整数解,解关于x的分式方程+1=.25.(2020•永州)某药店在今年3月份,购进了一批口罩,这批口罩包括有一次性医用外科口罩和N95口罩,且两种口罩的只数相同.其中购进一次性医用外科口罩花费1600元,N95口罩花费9600元.已知购进一次性医用外科口罩的单价比N95口罩的单价少10元.(1)求该药店购进的一次性医用外科口罩和N95口罩的单价各是多少元?(2)该药店计划再次购进两种口罩共2000只,预算购进的总费用不超过1万元,问至少购进一次性医用外科口罩多少只?26.(2020•贵港)在今年新冠肺炎防疫工作中,某公司购买了A、B两种不同型号的口罩,已知A型口罩的单价比B型口罩的单价多1.5元,且用8000元购买A型口罩的数量与用5000元购买B型口罩的数量相同.(1)A、B两种型号口罩的单价各是多少元?(2)根据疫情发展情况,该公司还需要增加购买一些口罩,增加购买B型口罩数量是A 型口罩数量的2倍,若总费用不超过3800元,则增加购买A型口罩的数量最多是多少个?27.(2020•山西)下面是小彬同学进行分式化简的过程,请认真阅读并完成相应任务.﹣=﹣…第一步=﹣…第二步=﹣…第三步=…第四步=…第五步=﹣…第六步任务一:填空:①以上化简步骤中,第步是进行分式的通分,通分的依据是.或填为:;②第步开始出现错误,这一步错误的原因是;任务二:请直接写出该分式化简后的正确结果;任务三:除纠正上述错误外,请你根据平时的学习经验,就分式化简时还需要注意的事项给其他同学提一条建议.参考答案一.选择题(共10小题)1.B;2.A;3.D;4.D;5.D;6.B;7.A;8.B;9.C;10.B;二.填空题(共10小题)11.x≠2;12.﹣4;13.﹣3;14.7;15.3;16.﹣=2;17.x=1;18.;19.;20.a≤4且a≠3;三.解答题(共7小题)21.;22.;23.;24.;25.;26.;27.三;分式的基本性质;分式的分子分母都乘(或除以)同一个不为0的整式,分式的值不变;五;括号前面是“﹣”,去掉括号后,括号里面的第二项没有变号;。
分式测试题及答案
分式测试题及答案第三章分式综合测试题一、选择题(每题3分,共30分)1.代数式4-x是( C )。
A。
单项式 B。
多项式 C。
分式 D。
不能确定2.有理式x/3(x+y)。
π-3/(a-x)。
4/2(a+b)。
a+b中分式有( B )个。
A。
1 B。
2 C。
3 D。
43.若分式(x+x-2)/x的值为0,则x的值是( A )。
A。
1或-1 B。
1 C。
-1 D。
-24.下列分式12a/(b-a)。
(y-x)^2/xy。
2(a+b)。
b-a中最简分式的个数是( C )。
A。
1 B。
2 C。
3 D。
45.如果x=a-b,y=a+b,计算-2b/(a-b)的值为(B)。
A。
(a-b)/2b B。
-2/a-b C。
-2a+b/4b^2 D。
|a-b|6.将(a-b)约分,正确的结果是( A )。
A。
1 B。
2 C。
±1 D。
无法确定7.下列运算正确的个数是( B )。
1.m÷n·n=m÷1=m2.x·y÷x·y=xy÷xy=13.(2x+y)/(x+y) ÷ (4x+2y)/(2a) = (2x+y)/(x+y) * (2a)/(4x+2y)4.|2-3x|/2 = (2-3x)/2 或 -(2-3x)/2A。
2 B。
1 C。
3 D。
48.如果x<3,那么3x-2的值是( A )。
A。
-1 B。
0 C。
1 D。
29.若a-b=2ab,则ab的值为( B )。
A。
2 B。
-2 C。
-1/2 D。
1/210.若a+a=4,则(a-a)的值是( C )。
A。
16 B。
9 C。
15 D。
12二、填空题(每题3分,共30分)1.已知代数式:3,x,3+x,x^2+1,1/(x+y),y/(z+x),x+1.2x,x+2x+3.整式有:3,x,3+x,x^2+1,x+1.2x,x+2x+3.分式有:1/(x+y),y/(z+x)。
分式方程单元测试卷
分式方程一 ;填空题 1.当 x______时,1x的值等于1.2.当 x ______时,42x的值与 x5的值相等.5 x24 x x 43.假设 1 与1 互为相反数,那么可得方程 ___________, 解得 x _________. x 1x 14.假设方程2xa1的解是最小的正整数,那么 a 的值为 ________.x 25. 分式方程21 的解是 _________ 6. 假设关于 x 的分式方程 xa33xx 1 x 1x二、选择题7.以下方程中是分式方程的是〔 〕1无解,那么 a.〔 A 〕x( x 0) 〔 B 〕 1x 1 y 1 〔 C 〕 xx x 〔D 〕x 1x 2 3 5 3 238.解分式方程 1 2 x 1〕3xx 3 ,去分母后所得的方程是〔〔A 〕 1 3(2 x 1) 3 〔B 〕 1 3(2 x 1) 3x〔C 〕 13(2 x1) 9x 〔D 〕 16x 3 9x134x 1219. .化分式方程 5x 2 5 x 2 1 0 为整式方程时,方程两边必定同乘〔1 x〔 A 〕 (5 x 2 5)( x 2 1)(1 x) 〔 B 〕 5( x 2 1)(1 x) 〔 C 〕 5( x 2 1)( x1)〔 D 〕 5( x 1)(x 1)10.以下说法中错误的选项是〔 〕( A 〕分式方程的解等于 0,就说明这个分式方程无解 ( B 〕解分式方程的根本思路是把分式方程转变成整式方程 ( C 〕检验是解分式方程必不可以少的步骤( D 〕能使分式方程的最简公分母等于零的未知数的值不是原分式方程的解.11. 解分式方程2 36 ,以下说法中错误的选项是〔 〕x 1x 1x21〔 A 〕方程两边分式的最简公分母是(x1)(x 1)(B) 方程两边乘以 (x1)(x 1) ,得整式方程 2( x 1) 3( x 1)6(C) 解这个整式方程,得x 1(D) 原方程的解为 x 112.以下结论中,不正确的选项是〔〕〔 A 〕方程23 的解是 x 2 〔B 〕方程 21 3 的解是 xx x 1x x 1〔 C 〕方程 x 1 2 的解是 x 4 〔 D 〕方程x2 3的解是xx 3 x 3 x 2 2〕5x 313. 关于x的方程的解是正数,那么 a 的取值范围是A.a>- 1B.a>- 1 且a≠ 0C.a<- 1D.a<- 1 且a≠- 2三、解答题14.解方程:〔 1〕x51〔2〕237 2x 5 5 2x x 3 22x 6〔 3〕236〔 4〕x141x 1 x 1 x2 1x1x2115 假设关于x的方程x2k无解,求 k 的值.16.方程25的解是.x3x3x12x17. 当m取时,方程x32m会产生增根.x x 318.. 关于的方程的解是正数,那么m的取值范围为.19. 在课外活动跳绳时,相同时间内小林跳了90 下,小群跳了 120 下.小群每分钟比小林多跳20 下,设小林每分钟跳下,那么可列关于的方程为.20.甲、乙制作某种零配件,甲每天比乙多做 5 个,甲制作 75 个零件所用的天数与乙制作50 个零件的天数相等,那么甲、乙每天制作的零件数分别为________________.21.轮船顺水航行46 千米和逆水航行34 千米所用的时间恰好相等,水的流速是每小时 3 千米,那么轮船在静水中的速度是 _________千米 / 时.二、选择题1. 一件工程甲单独做 a 小时完成,乙单独做 b 小时完成,甲、乙二人合作完成此项工作需要的小时数是〔〕〔A〕+〔B〕1 1〔C〕1〔 D〕aba b a b a b a b2.工地调来 72 人参加挖土和运土, 3 人挖出的土1 人恰好能全部运走,怎样调动劳动力才能使挖出的土能及时运走,解决此问题,可设派x 人挖土,其他的人运土,列方程①72 x1x3②72-x=x3③ x+3x=72 ④x 3上述所列方程,正确的有〔〕个72 xA1B2 C 3 D 43.甲志愿者方案用假设干个工作日完成社区的某项工作,从第三个工作日起,乙志愿者加盟此项工作,且甲、乙两人工效相同,结果提前 3 天完成任务,那么甲志愿者方案完成此项工作的天数是〔〕A.8C.6D.54. 某衣饰厂准备加工400 套运动装,在加工完 160 套后,采用了新技术,使得工作效率比原方案提高了20%,结果共用了18 天完成任务,问方案每天加工衣饰多少套?在这个问题中,设方案每天加工x 套,那么依照题意可得方程为A. 16040018B.160400 16018x(1 20%) x x(1 20%) xC. 160400 16018D. 400400 16018x20% x x(1 20%) x5.由甲、乙两个工程队承包某校校园绿化工程,甲、乙两队单独完成这项工程所需时间比是 3 ︰2,两队合做 6 天可以完成.〔1〕求两队单独完成此项工程各需多少天 ?〔2〕此项工程由甲、乙两队合做 6 天完成任务后,学校付给他们 20000 元酬金,假设按各自完成的工程量分配这笔钱,问甲、乙两队各获取多少元?6. 面对全球金融危机的挑战,我国政府毅然启动内需,改进民生.国务院决定从2021年 2月1 日起,“家电下乡〞在全国范围内推行,农民购置人选产品,政府按原价购置总数的13%给........予补贴返还.某村委会组织局部农民到商场购置人选的同一型号的冰箱、电视机两种家电,购置冰箱的数量是电视机的 2 倍,且按原价购置冰箱总数为 40000元、电视机总数为 15000元.依照“家电下乡〞优惠政策,每台冰箱补贴返还的金额比每台电视机补贴返还的金额多65 元,求冰箱、电视机各购置多少台?〔1〕设购置电视机x台,依题意填充以下表格:项目购置数量原价购置总政府补贴返补贴返还总每台补贴返〔台〕额〔元〕还比率金额〔元〕还金额〔元〕家电种类冰箱40 00013%电视机x15 00013%〔 2〕列出方程〔组〕并解答.7.铭润商场用 5000 元购进一批新品种的苹果进行试销,由于销售状况优异,商场又调拨11000 元资本购进该品种苹果,但此次的进货价比试销时每千克多了元,购进苹果数量是试销时的 2 倍.〔1〕试销时该品种苹果的进货价是每千克多少元?〔2〕若是商场将该品种苹果按每千克 7 元的定价销售,当全局部苹果售出后,余下的 400千克按定价的七折〔“七折〞即定价的70﹪〕售完,那么商场在这两次苹果销售中共盈利多少元?8.某工程队承接了 3000 米的修路任务,在修睦 600 米后,引进了新设备,工作效率是原来的2倍,一共用 30 天完成了任务,求引进新设备前平均每天修路多少米?9.在我市某一城市美化工程招标时,有甲、乙两个工程队招标.经测算:甲队单独完成这项工程需要 60 天;假设由甲队先做 20 天,剩下的工程由甲、乙合做 24 天可完成.〔1〕乙队单独完成这项工程需要多少天?〔2〕甲队施工一天,需付工程款万元,乙队施工一天需付工程款 2 万元.假设该工程方案在70天内完成,在不高出方案天数的前提下,是由甲队或乙队单独完成该工程省钱?还是由甲乙两队全程合作完成该工程省钱?10.跃壮五金商店准备从宁云机械厂购进甲、乙两种零件进行销售.假设每个甲种零件的进价比每个乙种零件的进价少 2 元,且用 80 元购进甲种零件的数量与用 100 元购进乙种零件的数量相同.〔1〕求每个甲种零件、每个乙种零件的进价分别为多少元?〔2〕假设该五金商店本次购进甲种零件的数量比购进乙种零件的数量的 3 倍还少 5 个,购进两种零件的总数量不高出 95 个,该五金商店每个甲种零件的销售价格为 12 元,每个乙种零件的销售价格为15 元,那么将本次购进的甲、乙两种零件全部售出后,可使销售两种零件的总利润〔利润=售价-进价〕高出 371 元,经过计算求出跃壮五金商店本次从宁云机械厂购进甲、乙两种零件有几种方案?请你设计出来.。
八年级上册数学《分式》单元综合检测题(附答案)
八年级上册数学《分式》单元测试卷考试时间:100分钟;总分:120分一、单选题(每小题3分,共30分)1.11x y+运算结果是( ) A .1x y + B .2x y + C .x y y x + D .y x +2.(2019·湖南初二期中)如果把分式23x y x -中的x 和y 都扩大了3倍,那么分式的值( ) A .扩大3倍 B .不变 C .缩小3倍 D .缩小6倍3.(2019·山东初三)关于x 的方程13x x --=2+3k x -有增根,则k 的值为( ) A .±3 B .3 C .﹣3 D .24.(2019·温州外国语学校初三)某公司承担了制作300个道路交通指引标志的任务,原计划x 天完成,实际平均每天多制作了5个,因此提前10天完成任务.根据题意,下列方程正确的是( ) A .300300105x x-=- B .300300510x x -=- C .300300105x x -=- D .300300510x x +=- 5.(2019·临清市刘垓子中学初三)如果A +B =2,那么a b a b b a+--22的值是 A .2 B .4 C .-2 D .-46.(2019·福建厦门一中初三)若分式11x -有意义,则x 的取值范围是( ) A .1x ≥ B .1x > C .1x = D .1x ≠7.(2019·淄博市临淄区边河乡中学初二期中)下列分式中,最简分式是( ) A .615x B .236x x -- C .121x x ++ D .22a b a b-+ 8.(2019·黑龙江初三)方程1212x x =--的解为( ) A .3 B .2 C .1 D .09.(2017·北京初三)计算:()22111a a aa --÷+,其结果正确的是( ) A .12 B .12a a ++ C .1a a + D .1a a + 10.(2019·广东初三)解分式方程22311x x x ++=--时,去分母后变形正确的是( ) A .2+(x +2)=3(x ﹣1)B .2﹣x +2=3(x ﹣1)C .2﹣(x +2)=3D .2﹣(x +2)=3(x ﹣1)二、填空题(每小题4分,共24分)11.(2019·安徽初三)化简:242x x --=_____. 12.(2019·海南省海口市海南白驹学校初三)方程321x x =-的解是___________. 13.(2019·淄博市临淄区边河乡中学初二期中)化简:2422m m m+--=___________. 14.(2019·黑龙江初三)如果3a b ab -=,那么11a b -=_____. 15.(2019·北京初三)当x =__时,分式2x x-的值为0. 16.(2018·北京初三)如果23a b =,那么22242a b a ab--的结果是______. 三、解答题一(每小题6分,共18分)17.(2019·湟中县第一中学初三)化简:229.33x x x x x x-⎛⎫-⋅ ⎪-+⎝⎭ 18.(2019·云南初三)先化简; 2222x x 2x x x 3x 92x-÷++-- ,再从-3,-2,0,2中选择一个合适的数作为x 的值代入求值.19.(2019·云南初三)先化简,再求值:244++a a a ÷(1﹣2244--a a ),其中A 2. 四、解答题二(每小题7分,共21分)20.(2019·陕西初三)解方程:13222x x x --=--. 21.(2019·江西初三)2019中国北京世界园艺博览会于2019年4月29日至10月7日在北京市延庆区举办,预售期门票价然有“平日票”和“推定日票”两种,其中平日票的单价比指定日票的单价少40元1张:某学校计划组织学生去参观,用9600元购买的平日票的票数与用12800元购买的旅定日票的票数相等.(1)求该学校购买的平日票、指定日票的单价分别是多少元?(2)若两种票共购买了200张,且购买的总费用是28800元,求购买了多少张平日票?22.(2019·河南郑州外国语中学初三)先化简,再求值:222124x x x x x x --+⎛⎫-÷ ⎪--⎝⎭,其中x 的值从不等式组2,318x x -⎧⎨+<⎩的整数解中选取 五、解答题三(每小题9分,共27分)23.(2019·吉林初三)某学生在化简求值:21211x x ++-,其中x =13时出现错误,解答过程如下, 原式=12(1)(1)(1)(1)x x x x ++-+- (第一步) =12(1)(1)x x ++-(第二步) =231x -(第三步) 当x =13是,原式=23278113=-⎛⎫- ⎪⎝⎭ (第四步)(1)该学生解答过程从第 步开始出错的,其错误原因是 .(2)写出此题的正确解答过程.24.(2019·张家界市民族中学初二期中)老师所留的作业中有这样一个分式的计算题:22511x x x +++-,甲、乙两位同学完成的过程分别如下:老师发现这两位同学的解答都有错误.请你从甲、乙两位同学中,选择一位同学的解答过程,帮助他分析错因,并加以改正.(1)我选择 同学的解答过程进行分析.(填“甲”或“乙”)该同学的解答从第 步开始出现错误,错误的原因是 ; (2)请重新写出完成此题的正确解答过程.22511x x x +++-. 25.(2019·湖北初二月考)观察下列式子,探索它们的规律并解决问题11111111=1-,,12223233434=-=-⨯⨯⨯… (1)用正整数表示这个规律:1n(n 1)+=_________, 试着推论:1(2)n n +=______,1(3)n n +=_______ 1()n n k +_________, (2)用(1)中的结论计算:111+...(4)(4)8)(2016)(2020)n n n n n n ++++++( (3)用(1)中的结论解下列方程:1111...(1)(1)(2)(2018)(2019)24038x x x x x x x ++=++++++参考答案一、单选题(每小题3分,共30分)1.11x y +运算结果是( ) A .1x y + B .2x y + C .x y yx + D .y x +[答案]C[解析][分析]利用分式的基本性质通分即可.[详解] 解:11x y + =y xy xxy + =x y yx +故选C .[点睛]此题考查的是分式的加法,利用分式的基本性质通分是解决此题的关键.2.(2019·湖南初二期中)如果把分式23x yx -中的x 和y 都扩大了3倍,那么分式的值()A .扩大3倍B .不变C .缩小3倍D .缩小6倍[答案]C[解析][分析]根据分式的基本性质,将分子与分母中未知数分别乘以3,进而化简即可.[详解]解: ()()2223331933333x y x y x yx x x ---==⋅⋅,故选C .[点睛]本题主要考查分式的基本性质,解决本题的关键是要熟练掌握分式的基本性质.3.(2019·山东初三)关于x的方程13xx--=2+3kx-有增根,则k的值为()A .±3B .3C .﹣3D .2[答案]D[解析][分析]根据增根的定义可求出x的值,把方程去分母后,再把求得的x的值代入计算即可.[详解]解:∵原方程有增根,∴最简公分母x﹣3=0,解得x=3,方程两边都乘(x﹣3),得:x﹣1=2(x﹣3)+k,当x=3时,k=2,符合题意,故选:D .[点睛]本题考查的是分式方程的增根,在分式方程变形的过程中,产生的不适合原方程的根叫做分式方程的增根.增根使最简公分母等于0,不适合原分式方程,但是适合去分母后的整式方程.4.(2019·温州外国语学校初三)某公司承担了制作300个道路交通指引标志的任务,原计划x天完成,实际平均每天多制作了5个,因此提前10天完成任务.根据题意,下列方程正确的是()A .300300105x x-=-B .300300510x x-=-C .300300105x x-=-D .300300510x x+=-[答案]B [解析] [分析]根据实际每天制作的个数-原计划每天制作的个数=5为等量关系得出等式即可.[详解]解:设原计划x 天完成,根据题意得:300300510x x-=- 故选:B .[点睛]此题主要考查了由实际问题抽象出分式方程,正确找出等量关系是解题关键.5.(2019·临清市刘垓子中学初三)如果A +B =2,那么a b a b b a+--22的值是 A .2B .4C .-2D .-4[答案]A[解析][分析]原式变形后,利用同分母分式的减法法则计算,约分得到最简结果,把已知等式代入计算即可求出值.[详解]∵A +B =2,∴原式=()()a b a b a b a b a b +---22-==A +B =2, 故选A[点睛]此题考查分式的化简求值,掌握运算法则是解题关键6.(2019·福建厦门一中初三)若分式11x -有意义,则x 的取值范围是( ) A .1x ≥B .1x >C .1x =D .1x ≠[答案]D[解析][分析]根据分式的分母不为零,即x-1≠0求解即可.[详解]当分母x-1≠0,即x≠1时,分式11x-有意义;故选D .[点睛]从以下三个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.7.(2019·淄博市临淄区边河乡中学初二期中)下列分式中,最简分式是( )A .615xB .236xx--C .121xx++D .22a ba b-+[答案]C[解析][分析]根据最简分式的概念(分式的分子分母没有公因式的分式)进行判断即可.[详解]A 选项:632215355x x x⨯==⨯,故不是最简分式,不符合题意;B 选项:221363(2)3x xx x--==--,故不是最简分式,不符合题意;C 选项:121xx++的分子和分母没有公因式,故是最简分式,符合题意;D 选项:22()()()a b a b a ba ba b a b-+-==-++,故不是最简分式,不符合题意;故选:C[点睛]本题考查了最简分式:分式的分子分母没有公因式的分式是最简分式.8.(2019·黑龙江初三)方程1212x x=--的解为( )A .3B .2C .1D .0 [答案]D[解析]分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.[详解]去分母得:x−2=2x−2,解得:x =0,经检验x =0是分式方程的解,故选:D .[点睛]此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.9.(2017·北京初三)计算:()22111a a aa --÷+,其结果正确的是( ) A .12 B .12a a ++ C .1a a + D .1a a + [答案]D[解析][分析]第一个分式的分子先分解因式,第二个分式利用除法法则将分子、分母颠倒转化为分式的乘法,最后利用分式乘法进行计算即可.[详解]原式()()()21111a a a a a -+=⨯-+ 1a a =+ 故选:D .[点睛]本题考查了分式的除法运算,解题的关键是熟练运用分式乘除法的运算法则.10.(2019·广东初三)解分式方程22311x x x ++=--时,去分母后变形正确的是( ) A .2+(x +2)=3(x ﹣1)B .2﹣x +2=3(x ﹣1)C .2﹣(x +2)=3D .2﹣(x +2)=3(x ﹣1)[解析][分析]把原方程变形后,两边都乘以x-1即可. [详解]解:方程变形得:223 11xx x+-= --去分母得:2﹣(x+2)=3(x﹣1),故选:D .[点睛]本题考查了分式方程的解法,其基本思路是把方程的两边都乘以各分母的最简公分母,化为整式方程求解,求出x的值后不要忘记检验.去分母时不要漏乘不含分母的项.二、填空题(每小题4分,共24分)11.(2019·安徽初三)化简:242xx--=_____.[答案]x+2.[解析][分析]分子利用平方差公式进行因式分解,然后约分即可.[详解]原式(2)(2)22x xxx+-==+-.故答案是:x+2.[点睛]本题考查了分式的约分,分子利用平方差公式进行因式分解,再利用约分进行化简求解即可.12.(2019·海南省海口市海南白驹学校初三)方程321xx=-的解是___________.[答案]2x=-[解析][分析]观察可得最简公分母是(x-1),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.[详解]方程的两边同乘(x-1),得3x=2(x-1)解得x=-2,检验:把x=-2代入(x-1)=-3≠0∴原方程的解为:x=-2故答案为x=-2[点睛]本题考查了解分式方程:(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.13.(2019·淄博市临淄区边河乡中学初二期中)化简:2422m m m+--=___________. [答案]-2-m[解析][分析]先将异分母分式化成同分母分式,再相减,最后化简即可.[详解]2422m m m +--=2244(2)(2)(2)22222m m m m m m m m m m ---+-===-+=------. 故答案是:-2-m.[点睛]本题考查了分式的加减,解题关键是将异分母分式化成同分母分式,再利用分式的基本性质化简.14.(2019·黑龙江初三)如果3a b ab -=,那么11a b-=_____. [答案]-3[解析][分析]原式通分并利用同分母分式的减法法则计算,将已知等式代入计算即可求出值.[详解]∵A -B =3A B ,∴原式=-a b ab-=-3, 故答案为:-3[点睛]此题考查了分式的加减法,分式加减法的关键是通分,通分的关键是找出各分母的最小公倍数.15.(2019·北京初三)当x =__时,分式2x x -的值为0. [答案]2[解析][分析]根据分式的值为0的条件进行解答即可.[详解]解:当x ﹣2=0时,即x =2时,分式x 2x-的值为0, 故答案为:2.[点睛]本题考查的是分式的值为0的条件,即分式值为零的条件是分子等于零且分母不等于零. 16.(2018·北京初三)如果23a b =,那么22242a b a ab--的结果是______. [答案]4[解析][分析] 令23a b ==k ,则A =2k ,B =3k ,代入到原式化简的结果计算即可. [详解] 令23a b ==k ,则A =2k ,B =3k ,∴原式()()()222a b a b a a b +-=-2a b a +=262k k k +=82k k ==4. 故答案为:4.[点睛]本题考查了约分,解题的关键是掌握约分的定义:约去分式的分子与分母的公因式,不改变分式的值,这样的分式变形叫做分式的约分.三、解答题一(每小题6分,共18分)17.(2019·湟中县第一中学初三)化简:229.33x x x x x x-⎛⎫-⋅ ⎪-+⎝⎭ [答案]9x +[解析][分析]先把括号内通分化简,再把分子分母分解因式约分即可.[详解]原式=()()()()()()223393333x x x x x x x x x x ⎡⎤⋅+⋅---⋅⎢⎥-+-+⎣⎦=()()222263933x x x x x x x x +-+-⋅-+ =()()()()()93333x x x x x x x +-+⋅-+ =9x +.[点睛]本题考查了分式的混合运算:分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序;先乘方,再乘除,然后加减,有括号的先算括号里面的;最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.18.(2019·云南初三)先化简; 2222x x 2x x x 3x 92x-÷++-- ,再从-3,-2,0,2中选择一个合适的数作为x 的值代入求值.[答案]化简得32x x --,x =-2代入原式=-32. [解析][分析]根据分式的除法和加法法则化简题目中的式子,然后选一个使原分式有意义的值代入化简后的式子即可解答本题.[详解]解:原式=22(3)(3)•3(2)2x x x x x x x x+-++-- =2(3)22x x x x x ---- =32x x --, ∵要使分式有意义,x≠-3或0或2,∴x =-2,∴原式=-32. [点睛]本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.19.(2019·云南初三)先化简,再求值:244++a a a ÷(1﹣2244--a a ),其中A =2.[答案]2[解析][分析]先算小括号通分,然后进行除法运算,约分化简,最后将A 2代入计算即可.[详解] 解:原式=2(2)(2)(2)(2)a a a a a a +-⨯+- =12a +,当A 2时,原式=12a +=. [点睛] 本题考查了分式的化简求值,解答此题的关键是把分式化到最简,然后代值计算.四、解答题二(每小题7分,共21分)20.(2019·陕西初三)解方程:13222x x x --=--.[答案]x=23.[解析][分析]分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.[详解]去分母得:1-x-2x+4=3,解得:x=2 3 ,经检验x=23是分式方程的解.[点睛]此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.21.(2019·江西初三)2019中国北京世界园艺博览会于2019年4月29日至10月7日在北京市延庆区举办,预售期门票价然有“平日票”和“推定日票”两种,其中平日票的单价比指定日票的单价少40元1张:某学校计划组织学生去参观,用9600元购买的平日票的票数与用12800元购买的旅定日票的票数相等.(1)求该学校购买的平日票、指定日票的单价分别是多少元?(2)若两种票共购买了200张,且购买的总费用是28800元,求购买了多少张平日票?[答案](1)该学校购买的平日票、指定日票的单价分别是120元,160元;(2)购买了80张平日票.[解析][分析](1)设指定日票的单价为x元,表示出平日票的单价,根据题意列出方程,求出方程的解即可得到结果;(2)设购买平日票y张、指定日票(200﹣y)张,根据题意列出方程,求出方程的解即可得到结果.[详解](1)设指定日票的单价为x元,则平日票的单价为(x﹣40)元,根据题意得:960040x=12800x,去分母得:9600x=12800x﹣512000,解得:x=160,经检验x=160是分式方程的解,∴x﹣40=160﹣40=120,则该学校购买的平日票、指定日票的单价分别是120元,160元;(2)设购买平日票y 张、指定日票(200﹣y )张,根据题意得:120y +160(200﹣y )=28800,解得:y =80,则购买了80张平日票.[点睛]本题考查了分式方程及一元一次方程的应用,正确确定题目中的等量关系是解决问题的关键.22.(2019·河南郑州外国语中学初三)先化简,再求值:222124x x x x x x --+⎛⎫-÷ ⎪--⎝⎭,其中x 的值从不等式组2,318x x -⎧⎨+<⎩的整数解中选取 [答案]221x x x ---, 0x =时值为0(1x =-时值为12-). [解析][分析]先根据分式的混合运算顺序和运算法则化简原式,再解不等式组求得x 的范围,据此得出整数的x 值,继而根据分式有意义的条件得出x 的值,代入计算可得.[详解] 原式222(2)(2)22(1)x x x x x x x x ⎛⎫--+-=-⋅ ⎪---⎝⎭22(1)(2)(2)22(1)1x x x x x x x x x --+---=⋅=---. 解不等式2x -得,2x ≥-,解不等式318x +<得,73x <, ∴不等式组的解集为723x -<, 其整数解有2-,1-,0,1,2.∵原分式必须有意义,∴1x ≠,2,2-.将0x =代入得,原式0=.(或将1x =-代入得,原式12=-) [点睛]本题主要考查分式的化简求值和解不等式组的能力,解题的关键是掌握分式的混合运算顺序和运算法则.五、解答题三(每小题9分,共27分)23.(2019·吉林初三)某学生在化简求值:21211x x ++-,其中x =13时出现错误,解答过程如下, 原式=12(1)(1)(1)(1)x x x x ++-+- (第一步) =12(1)(1)x x ++-(第二步) =231x -(第三步) 当x =13是,原式=23278113=-⎛⎫- ⎪⎝⎭ (第四步)(1)该学生解答过程从第 步开始出错的,其错误原因是 .(2)写出此题的正确解答过程.[答案](1)一,分式的基本性质用错;(2)见解析.[解析][分析](1)根据题目中的式子和分式的基本性质可以解答本题;(2)根据分式的加法可以化简题目中的式子,然后将x 的值代入化简后的式子即可解答本题.[详解]解:(1)由题目中的式子可知,该学生解答过程从第一步开始出错,其错误原因是分式的基本性质用错, 故答案为:一,分式的基本性质用错; (2)21211x x ++- =2(1)(1)1(1)(1)x x x x x ++-+-- =(1)(1)1x x x ++- =11x -, 当x =13时,原式=131213=--.[点睛]本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.24.(2019·张家界市民族中学初二期中)老师所留的作业中有这样一个分式的计算题:22511x x x +++-,甲、乙两位同学完成的过程分别如下:老师发现这两位同学的解答都有错误.请你从甲、乙两位同学中,选择一位同学的解答过程,帮助他分析错因,并加以改正.(1)我选择 同学的解答过程进行分析.(填“甲”或“乙”)该同学的解答从第 步开始出现错误,错误的原因是 ;(2)请重新写出完成此题的正确解答过程.22511x x x +++-. [答案](1)甲,一,在通分时,两个分式没有按分式的基本性质运算;(2)31x -. [解析][分析](1)观察解答过程,找出出错步骤,并写出原因即可;(2)先通分,再合并同类项,最后约分化简即可.[详解](1)我选择甲同学的解答过程进行分析.该同学的解答从第一步开始出现错误,错误的原因是在通分时,两个分式没有按分式的基本性质运算;(2)22511x x x +++- ()()()()()2151111x x x x x x -+=++-+- ()()22511x x x x -++=+- 31x =-. 故答案为:甲,一,在通分时,两个分式没有按分式的基本性质运算.[点睛]本题主要考查分式的加减,熟练掌握运算法则是关键.25.(2019·湖北初二月考)观察下列式子,探索它们的规律并解决问题 11111111=1-,,12223233434=-=-⨯⨯⨯… (1)用正整数表示这个规律:1n(n 1)+=_________, 试着推论:1(2)n n +=______,1(3)n n +=_______ 1()n n k +_________, (2)用(1)中的结论计算:111+...(4)(4)8)(2016)(2020)n n n n n n ++++++( (3)用(1)中的结论解下列方程:1111...(1)(1)(2)(2018)(2019)24038x x x x x x x ++=++++++ [答案](1)111n n -+;11122n n ⎛⎫- ⎪+⎝⎭ ;11133n n ⎛⎫- ⎪+⎝⎭;111k n n k ⎛⎫- ⎪+⎝⎭; (2) 505(2020)n n +;(3)4038 [解析][分析](1)由已知等式知连续整数乘积的倒数等于各自倒数的差,据此可得;(2)利用所得规律化简原分式方程,解之可得.[详解]解:(1)1n(n 1)+=111n n -+ 1(2)n n +=11122n n ⎛⎫- ⎪+⎝⎭1(3)n n +=11133n n ⎛⎫- ⎪+⎝⎭ 1()n n k +=111k n n k ⎛⎫- ⎪+⎝⎭(2)111+...(4)(4)8)(2016)(2020)n n n n n n ++++++(===1111111+...444820162020n n n n n n ⎡⎤--++-⎢⎥+++++⎣⎦ =11142020n n ⎡⎤-⎢⎥+⎣⎦=120204(2020)n n n n ⎡⎤+-⎢⎥+⎣⎦=505(2020)n n + (3)1111...(1)(1)(2)(2018)(2019)24038x x x x x x x ++=++++++ 利用(1)的结论,原方程变形为:1111111...1122018201924038x x x x x x x -+-++-=++++++ 111201924038x x x -=++20191(2019)2(2019)x x x =++ 解方程,得:x=4038 检验:当x=4038时,2x(x+2019)≠0 ∴x=4038是原分式方程的解.。
不等式(组)、因式分解、分式综合测试(北师版)(含答案)
学生做题前请先回答以下问题问题1:目前我们学习的因式分解的方法有哪些?问题2:因式分解的口诀是什么?问题3:不等式的基本性质有哪些?问题4:解一元一次不等式组的口诀是什么?问题5:解一元一次不等式和解方程的异同点有哪些?问题6:分式的基本性质是什么?问题7:解分式方程的依据是什么?第一步的操作是什么?解分式方程的结果需要检验,为什么?问题8:增根产生的原因是什么?问题9:列分式方程解应用题,需要进行检验哪几个方面?不等式(组)、因式分解、分式综合测试(北师版)一、单选题(共11道,每道8分)1.把分解因式结果正确的是( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:因式分解2.把分解因式结果正确的是( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:因式分解3.不等式组的解集是( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:解一元一次不等式组4.若不等式组的解集为,那么m的取值范围是( )A. B.C. D.答案:A解题思路:试题难度:三颗星知识点:解一元一次不等式组5.若不等式组有解,则a的取值范围是( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:含参不等式(组)6.若不等式组恰有两个整数解,则实数a的取值范围是( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:含参不等式(组)7.若不等式组的所有整数解的和为5,则实数a的取值范围是( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:含参不等式(组)8.计算的正确结果为( )A.1B.C. D.答案:A解题思路:试题难度:三颗星知识点:分式的混合运算9.当a=2015时,式子的结果是( )A.2017B.2015C. D.答案:B解题思路:试题难度:三颗星知识点:分式化简求值10.当时,式子的结果是( )A.0B.1C. D.答案:D解题思路:试题难度:三颗星知识点:分式化简求值11.若分式方程有增根,则m的值是( )A.-1或1B.-1或2C.1或-2D.1或2答案:C解题思路:试题难度:三颗星知识点:分式方程增根问题二、填空题(共2道,每道6分)12.某商店第一次用6000元购进了练习本若干本,第二次又用了6000元购进该款练习本,但这次每本进货的价格是第一次进货价格的1.2倍,购进数量比第一次少了1000本.(1)第一次每本的进货价格是____元.答案:1解题思路:试题难度:知识点:分式方程应用题13.(上接试题12)(2)若要求这两次购进的练习本按统一价格全部销售完毕后获利不低于4500元,问每本售价至少是____元.答案:1.5解题思路:试题难度:知识点:不等式应用题。
人教版八年级数学上册《15.3 分式方程》练习题-附参考答案
人教版八年级数学上册《15.3 分式方程》练习题-附参考答案一、选择题1.下列关于x的方程是分式方程的是()A.2+x5=3+x6B.x2−3=x3C.x−17+x=3D.35x=12.某园林公司增加了人力进行园林绿化,现在平均每天比原计划多植树50棵,现在植树600棵所需的时间与原计划植树450棵所需的时间相同,如果设原计划平均每天植树x棵,那么下面所列方程中,正确的是()A.600x−50=450xB.600x+50=450xC.600x =450x+50D.600x=450x−503.若关于x的分式方程x−3x−1=mx−1+2产生增根,则m的值为()A.−1B.−2C.1 D.24.解分式方程2x−1+x+21−x=3时,去分母后变形正确的是()A.2+(x+2)=3(x−1)B.2−(x+2)=3(1−x) C.2+(x+2)=3(1−x)D.2−(x+2)=3(x−1)6.关于x的方程2x+ax−1=1的解是正数,则a的取值范围是()A.a>−1B.a>−1且a≠0C.a<−1D.a<−1且a≠−27.若关于x的分式方程6x−1=x+3x(x−1)−kx无解,则k的取值是()A.k=−3B.k=−3或k=−5 C.k=1D.k=1或k=−58.已知x=1是方程m2−x −1x−2=3的解,那么实数m的值为()A.−2B.2 C.−4D.4整数a的值之积是()A.0 B.4 C.5 D.6二、填空题9.若关于x 的方程2x−2+2x−m 2−x=3有增根,则m 的值是 .10.若yx+y =12.则xy = .11.某化肥厂原计划五月份生产化肥120吨,由于采用了新技术,每天多生产化肥3吨,实际生产180吨.设原计划每天生产化肥x 吨.根据题意,列方程为 .12.若关于x 的分式方程3xx−1=m1−x +4的解为正数,则m 的取值范围是 .13.为深入践行“绿水青山就是金山银山”的发展理念,我国绿色发展成就显著,在今年的植树造林活动期间,某苗圃公司第一天卖出一批小叶榄仁树苗共收款8000元,第二天又卖出同样的树苗收款17000元,所卖数量是第一天的2倍,售价比第一天每棵多了5元,第二天每棵树苗售价是 元. 三、解答题 14. 解方程. (1)x2x−1+21−2x =3; (2)4x 2−4−1x−2=0.15.某玩具店用2000元购进一批玩具,面市后,供不应求,于是店主又购进同样的玩具,所购的数量是第一批数量的3倍,但进价贵了4元,结果购进第二批玩具共用了6300元,若两批玩具的售价都是120元,且两批玩具全部售完,求该玩具店销售这两批玩具共盈利多少?16.某快餐店欲购进A 、B 两种型号的餐盘,每个A 种型号的餐盘比每个B 种型号的餐盘费用多10元,且用120元购进的A 种型号的餐盘与用90元购进的乙餐盘的数量相同. (1)A 、B 两型号的餐盘单价为多少元?(2)若该快餐店决定在成本不超过3000元的前提购进A .B 两种型号的餐盘80个,求最多购进A 种型号餐盘多少个?17.为了提高服务质量,某宾馆决定对甲、乙两种套房进行星级提升,已知甲种套房提升费用比乙种套房提升费用少3万元,如果提升相同数量的套房,甲种套房费用为625万元,乙种套房费用为700万元. (1)甲、乙两种套房每套提升费用各多少万元?(2)如果需要甲、乙两种套房共80套,市政府筹资金不少于2090万元,但不超过2096万元,且所筹资金全部用于甲、乙种套房星级提升,市政府对两种套房的提升有哪几种方案?参考答案1.C 2.B 3.B 4.D 6.D 7.B 8.BD9.2 10.111.120x =180x+312.m>−4且m≠−313.8514.(1)解:原方程去分母得:x﹣2=3(2x﹣1)去括号得:x﹣2=7x﹣3移项,合并同类项得:﹣5x=﹣4系数化为1得:x=12经检验,x=15故原方程的解为x=45;(2)解:原方程去分母得:4﹣(x+2)=0去括号得:4﹣x﹣3=0移项,合并同类项得:x=2经检验,x=3是分式方程的增根故原方程无解.15.解:设第一批购进书包的单价是x元.则:.解得:x=80.经检验:x=80是原方程的根.则 ×(120﹣80)+ ×(120﹣84)=3700(元).答:商店共盈利3700元.16.(1)解:设A 型号的餐盘单价为x 元,则B 型号的餐盘单价为元,解得经检验是方程的解且符合实际情况∴B 型号的餐盘单价为(元);答:A 、B 两型号的餐盘单价分别为40元、30元. (2)解:设购进A 种型号餐盘m 个解得;答:最多购进A 种型号餐盘60个17.(1)解:设甲种套房每套提升费用为x 万元,乙种套房每套提升费用为(x +3)万元 依题意,可得625x=700x+3解得:x =25经检验:x =25符合题意 x +3=28;答:甲,乙两种套房每套提升费用分别为25万元,28万元. (2)解:设甲种套房提升m 套,那么乙种套房提升(80−m)套 依题意,得{25m +28×(80−m)≥209025m +28×(80−m)≤2096 解得:48≤m ≤50 因为m 取整数即m =48或49或50,所以有三种方案方案一:甲种套房提升48套,乙种套房提升32套. 方案二:甲种套房提升49套,乙种套房提升31套 方案三:甲种套房提升50套,乙种套房提升30套.。
八年级数学上册第1章分式单元综合测试1含解析湘教版
《第1章分式》一、选择题1.下面各式中,x+y,,,﹣4xy,,分式的个数有()A.1个B.2个C.3个D.4个2.已知x≠y,下列各式与相等的是()A.B.C.D.3.要使分式有意义,则x的取值范围是()A.x=B.x>C.x<D.x≠4.下列说法:①若a≠0,m,n是任意整数,则a m.a n=a m+n;②若a是有理数,m,n是整数,且mn>0,则(a m)n=a mn;③若a≠b且ab≠0,则(a+b)0=1;④若a是自然数,则a﹣3.a2=a ﹣1.其中,正确的是()A.①B.①②C.②③④D.①②③④5.若分式的值为零,则x等于()A.2 B.﹣2 C.±2 D.06.若把分式中的x和y都扩大3倍,且x+y≠0,那么分式的值()A.扩大3倍B.不变C.缩小3倍D.缩小6倍7.如果分式的值为正整数,则整数x的值的个数是()A.2个B.3个C.4个D.5个8.有游客m人,如果每n个人住一个房间,结果还有一个人无房住,这客房的间数为()A.B.C.D.9.若x满足=1,则x应为()A.正数B.非正数C.负数D.非负数10.已知=3,则的值为()A.B.C.D.﹣11.工地调来72人参加挖土和运土,已知3人挖出的土1人恰好能全部运走,怎样调动劳动力才能使挖出的土能及时运走,解决此问题,可设派x人挖土,其它的人运土,列方程:①②72﹣x=③x+3x=72 ④上述所列方程,正确的有()个.A.1 B.2 C.3 D.412.如果()2÷()2=3,那么a8b4等于()A.6 B.9 C.12 D.8113.x克盐溶解在a克水中,取这种盐水m克,其中含盐()克.A.B.C.D.二、填空题:14.分式、、的最简公分母是.15.已知,用x的代数式表示y=.16.若5x﹣3y﹣2=0,则105x÷103y=.17.若ab=2,a+b=﹣1,则的值为.18.计算6x﹣2(2x﹣2y﹣1)﹣3=.19.瑞士中学教师巴尔末成功地从光谱数据,,,中得到巴尔末公式,从而打开了光谱奥妙的大门.请你按这种规律写出第七个数据是.20.使分式方程产生增根,m的值为.21.已知:=+,则A=,B=.22.当x=时,代数式和的值相等.23.用科学记数法表示:0.000000052=.24.计算=.三、解答题25.计算题(1)+(2)﹣(3)(﹣1)2+()﹣4﹣5÷(2005﹣π)0(4)1﹣÷(5)﹣a﹣b.26.解分式方程:(1)(2).27.有一道题:“先化简,再求值:()÷其中,x=﹣3”.小玲做题时把“x=﹣3”错抄成了“x=3",但她的计算结果也是正确的,请你解释这是怎么回事?28.点A、B在数轴上,它们所对应数分别是,且点A、B关于原点对称,求x的值.29.某文化用品商店用2000元购进一批学生书包,面市后发现供不应求,商店又购进第二批同样的书包,所购数量是第一批购进数量的3倍,但单价贵了4元,结果第二批用了6300元.(1)求第一批购进书包的单价是多少元?(2)若商店销售这两批书包时,每个售价都是120元,全部售出后,商店共盈利多少元?30.若,,求的值.湘教新版八年级数学上册《第1章分式》单元测试卷(1)参考答案与试题解析一、选择题1.下面各式中,x+y,,,﹣4xy,,分式的个数有()A.1个B.2个C.3个D.4个【考点】分式的定义.【分析】判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.【解答】解:在,的分母中含有字母,属于分式.在x+y,﹣4xy,的分母中不含有字母,属于整式.故选:B.【点评】此题主要考查了分式定义,关键是掌握分式的分母必须含有字母,而分子可以含字母,也可以不含字母.2.已知x≠y,下列各式与相等的是()A.B.C.D.【考点】分式的基本性质.【分析】根据分式的基本性质可以得到答案.【解答】解:∵x≠y,∴x﹣y≠0,∴在分式中,分子和分母同时乘以x﹣y得到:,∴分式和分式是相等的,∴C选项是正确的,故选:C.【点评】本题主要考查了分式的基本性质,解题的关键是熟练掌握分式的基本性质,此题基础题,比较简单.3.要使分式有意义,则x的取值范围是()A.x=B.x>C.x<D.x≠【考点】分式有意义的条件.【分析】本题主要考查分式有意义的条件:分母不能为0,即3x﹣7≠0,解得x.【解答】解:∵3x﹣7≠0,∴x≠.故选D.【点评】本题考查的是分式有意义的条件:当分母不为0时,分式有意义.4.下列说法:①若a≠0,m,n是任意整数,则a m.a n=a m+n;②若a是有理数,m,n是整数,且mn>0,则(a m)n=a mn;③若a≠b且ab≠0,则(a+b)0=1;④若a是自然数,则a﹣3.a2=a ﹣1.其中,正确的是()A.①B.①②C.②③④D.①②③④【考点】负整数指数幂;零指数幂.【分析】①、④根据同底数幂作答;②由幂的乘方计算法则解答;③由零指数幂的定义作答.【解答】解:①a m.a n=a m+n,同底数幂的乘法:底数不变,指数相加;正确;②若a是有理数,m,n是整数,且mn>0,则(a m)n=a mn,根据幂的乘方计算法则,正确;③若a≠b且ab≠0,当a=﹣b即a+b=0时,(a+b)0=1不成立,任何非零有理数的零次幂都等于1,错误;④∵a是自然数,∴当a=0时,a﹣3.a2=a﹣1不成立,错误.故选B.【点评】本题主要考查的是同底数幂的乘法、幂的乘方、零指数幂等知识.5.若分式的值为零,则x等于()A.2 B.﹣2 C.±2 D.0【考点】分式的值为零的条件.【分析】分式的值是0的条件是:分子为0,分母不为0.【解答】解:∵x2﹣4=0,∴x=±2,当x=2时,2x﹣4=0,∴x=2不满足条件.当x=﹣2时,2x﹣4≠0,∴当x=﹣2时分式的值是0.故选:B.【点评】分式是0的条件中特别需要注意的是分母不能是0,这是经常考查的知识点.6.若把分式中的x和y都扩大3倍,且x+y≠0,那么分式的值()A.扩大3倍B.不变C.缩小3倍D.缩小6倍【考点】分式的基本性质.【分析】把原式中的x、y分别换成3x、3y进行计算,再与原分式比较即可.【解答】解:把原式中的x、y分别换成3x、3y,那么=×,故选C.【点评】本题考查了分式的基本性质,解题关键是用到了整体代入的思想.7.如果分式的值为正整数,则整数x的值的个数是()A.2个B.3个C.4个D.5个【考点】分式的值.【分析】由于x是整数,所以1+x也是整数,要使为正整数,那么1+x只能取6的正整数约数1,2,3,6,这样就可以求得相应x的值.【解答】解:由题意可知1+x为6的正整数约数,故1+x=1,2,3,6由1+x=1,得x=0;由1+x=2,得x=1;由1+x=3,得x=2;由1+x=6,得x=5.∴x为0,1,2,5,共4个,故选C.【点评】认真审题,抓住关键的字眼,是正确解题的出路.如本题“整数x”中的“整数”,“的值为正整数”中的“正整数”.8.有游客m人,如果每n个人住一个房间,结果还有一个人无房住,这客房的间数为()A.B.C.D.【考点】列代数式(分式).【分析】房间数=住进房间人数÷每个房间能住的人数;一人无房住,那么住进房间的人数为:m﹣1.【解答】解:住进房间的人数为:m﹣1,依题意得,客房的间数为,故选A.【点评】解决问题的关键是读懂题意,找到关键描述语,找到所求的量的等量关系.9.若x满足=1,则x应为()A.正数B.非正数C.负数D.非负数【考点】分式的值;绝对值.【分析】根据=1可以得到x=|x|,根据绝对值的定义就可以求解.【解答】解:若x满足=1,则x=|x|,x>0,故选A.【点评】此题是分式方程,在解答时要注意分母不为0.10.已知=3,则的值为()A.B.C.D.﹣【考点】分式的基本性质.【分析】先把分式的分子、分母都除以xy,就可以得到已知条件的形式,再把=3,代入就可以进行计算.【解答】解:根据分式的基本性质,分子分母都除以xy得,==.故选B.【点评】解答本题关键在于利用分式基本性质从所求算式中整理出已知条件的形式,再进行代入计算,此方法中考题中常用,是热点.11.工地调来72人参加挖土和运土,已知3人挖出的土1人恰好能全部运走,怎样调动劳动力才能使挖出的土能及时运走,解决此问题,可设派x人挖土,其它的人运土,列方程:①②72﹣x=③x+3x=72 ④上述所列方程,正确的有()个.A.1 B.2 C.3 D.4【考点】由实际问题抽象出分式方程.【分析】关键描述语是:“3人挖出的土1人恰好能全部运走”.等量关系为:挖土的工作量=运土的工作量,找到一个关系式,看变形有几个即可.【解答】解:设挖土的人的工作量为1.∵3人挖出的土1人恰好能全部运走,∴运土的人工作量为3,∴可列方程为:,即,72﹣x=,故①②④正确,故正确的有3个,故选C.【点评】解决本题的关键是根据工作量得到相应的等量关系,难点是得到挖土的人的工作量和运土的人的工作量之间的关系.12.如果()2÷()2=3,那么a8b4等于()A.6 B.9 C.12 D.81【考点】分式的混合运算.【分析】由于()2÷()2=3,首先利用积的乘方运算法则化简,然后结合所求代数式即可求解.【解答】解:∵()2÷()2=3,∴×=3,∴a4b2=3,∴a8b4=(a4b2)2=9.故选B.【点评】此题主要考查了分式的混合运算,解题时首先把等式利用积的乘方法则化简,然后结合所求代数式的形式即可求解.13.x克盐溶解在a克水中,取这种盐水m克,其中含盐()克.A.B.C.D.【考点】列代数式(分式).【分析】盐=盐水×浓度,而浓度=盐÷(盐+水),根据式子列代数式即可.【解答】解:该盐水的浓度为,故这种盐水m千克,则其中含盐为m×=千克.故选:D.【点评】本题考查了列代数式,解决问题的关键是找到所求的量的等量关系.本题需注意浓度=溶质÷溶液.二、填空题:14.分式、、的最简公分母是6abc.【考点】最简公分母.【分析】根据确定最简公分母的方法:(1)取各分母系数的最小公倍数;(2)凡单独出现的字母连同它的指数作为最简公分母的一个因式确定;(3)同底数幂取次数最高的,得到的因式的积就是最简公分母.【解答】解:因为三分式中的常数项系数的最小公倍数是6,a 的最高次幂是1,b的最高次幂是1,c的最高次幂是1,所以三分式的最简公分母是6abc.故答案为:6abc.【点评】本题主要考查了最简公分母的定义:取各分母系数的最小公倍数与字母因式的最高次幂的积作公分母,这样的公分母叫做最简公分母.15.已知,用x的代数式表示y=.【考点】等式的性质.【分析】根据等式的基本性质可知:先在等式两边同乘(y﹣1),整理后再把x的系数化为1,即可得答案.【解答】解:根据等式性质2,等式两边同乘(y﹣1),得y+1=x (y﹣1)∴y+1=xy﹣x,∴y(x﹣1)=1+x∴y=.【点评】本题主要考查了等式的基本性质.等式性质:1、等式的两边同时加上或减去同一个数或字母,等式仍成立;2、等式的两边同时乘以或除以同一个不为0数或字母,等式仍成立.16.若5x﹣3y﹣2=0,则105x÷103y=100.【考点】同底数幂的除法.【分析】根据同底数幂的除法法则,可将所求代数式化为:105x ﹣3y,而5x﹣3y的值可由已知的方程求出,然后代数求值即可.【解答】解:∵5x﹣3y﹣2=0,∴5x﹣3y=2,∴105x÷103y=105x﹣3y=102=100.【点评】本题主要考查同底数幂的除法运算,整体代入求解是运算更加简便.17.若ab=2,a+b=﹣1,则的值为.【考点】分式的加减法.【分析】先将分式通分,再将ab=2,a+b=﹣1代入其中即可得出结论.【解答】解:原式===﹣.故答案为﹣.【点评】本题考查了分式的加减运算.解决本题首先应通分,然后整体代值.18.计算6x﹣2(2x﹣2y﹣1)﹣3=x4y3.【考点】单项式乘单项式;幂的乘方与积的乘方;负整数指数幂.【分析】结合单项式乘单项式的运算性质:单项式与单项式相乘,把他们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.进行求解即可.【解答】解:原式=6x﹣2x6y3=x4y3.故答案为:x4y3.【点评】本题考查了单项式乘单项式的知识,解答本题的关键在于熟练掌握该知识点的概念和运算性质.19.瑞士中学教师巴尔末成功地从光谱数据,,,中得到巴尔末公式,从而打开了光谱奥妙的大门.请你按这种规律写出第七个数据是.【考点】规律型:数字的变化类.【分析】分子的规律依次是,32,42,52,62,72,82,92…,分母的规律是:1×5,2×6,3×7,4×8,5×9,6×10,7×11…,所以第七个数据是.【解答】解:由数据,,,可得规律:分子是,32,42,52,62,72,82,92分母是:1×5,2×6,3×7,4×8,5×9,6×10,7×11…,∴第七个数据是.故答案为:.【点评】主要考查了学生的分析、总结、归纳能力,规律型的习题一般是从所给的数据和运算方法进行分析,从特殊值的规律上总结出一般性的规律.20.使分式方程产生增根,m的值为±.【考点】分式方程的增根.【分析】增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.有增根,那么最简公分母x﹣3=0,所以增根是x=3,把增根代入化为整式方程的方程即可求出m的值.【解答】解:方程两边都乘(x﹣3),得x﹣2(x﹣3)=m2∵原方程有增根,∴最简公分母x﹣3=0,即增根是x=3,把x=3代入整式方程,得m=±.故答案为:±.【点评】增根问题可按如下步骤进行:①根据最简公分母确定增根的值;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.21.已知:=+,则A=1,B=2.【考点】分式的加减法.【分析】已知等式右边两项通分并利用同分母分式的加法法则计算,利用多项式相等的条件即可求出A与B的值.【解答】解:∵==,∴A+B=3,﹣2A﹣B=﹣4,解得:A=1,B=2,故答案为:1;2【点评】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.22.当x=9时,代数式和的值相等.【考点】解分式方程.【分析】根据题意列出方程,求出方程的解即可得到x的值.【解答】解:根据题意得:=,去分母得:2x+3=3x﹣6,解得:x=9,经检验x=9是分式方程的解,故答案为:9【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.23.用科学记数法表示:0.000000052=5。
分式全章测试题含答案
第十六章 分 式测试1 分 式课堂学习检测一、选择题1.在代数式32,252,43,32,1,32222-++x x x x xy x x 中,分式共有( ). (A)2个 (B)3个(C)4个(D)5个2.下列变形从左到右一定正确的是( ).(A)22--=b a b a(B)bc ac b a =(C)ba bx ax =(D)22ba b a =3.把分式yx x+2中的x 、y 都扩大3倍,则分式的值( ). (A)扩大3倍(B)扩大6倍 (C)缩小为原来的31(D)不变4.下列各式中,正确的是( ). (A)y x yx y x y x +-=--+-(B)y x yx y x y x ---=--+-(C)yx yx y x y x -+=--+-(D)yx yx y x y x ++-=--+-5.若分式222---x x x 的值为零,则x 的值为( ).(A)-1 (B)1(C)2(D)2或-1二、填空题6.当x ______时,分式121-+x x 有意义. 7.当x ______时,分式122+-x 的值为正.8.若分式1||2--x xx 的值为0,则x 的值为______.9.分式22112mm m -+-约分的结果是______. 10.若x 2-12y 2=xy ,且xy >0,则分式yx yx -+23的值为______.11.填上适当的代数式,使等式成立:(1)ba b a b ab a +=--+)(22222;(2)xxx x 2122)(2--=-;(3)a b b a b a-=-+)(11; (4))(22xy xy =.综合、运用、诊断三、解答题12.把下列各组分式通分:(1);65,31,22abca b a - (2)222,b a aab a b --.13.把分子、分母的各项系数化为整数:(1);04.03.05.02.0+-x x(2)b a ba -+32232.14.不改变分式的值,使分式的分子与分式本身不含负号:(1)yx yx ---22;(2)ba b a +-+-2)(.15.有这样一道题,计算))(1()12)((2222x x x x x x x --+-+,其中x =2080.某同学把x =2080错抄成x =2008,但他的计算结果是正确的.你能解释其中的原因吗?拓展、探究、思考16.已知311=-y x ,求分式yxy x y xy x ---+2232的值.17.当x 为何整数时,分式2)1(4-x 的值为正整数.18.已知3x -4y -z =0,2x +y -8z =0,求yz xy z y x +-+222的值.测试2 分式的运算课堂学习检测一、选择题1.下列各式计算结果是分式的是( ).(A)b a m n ÷(B)n m m n 23.(C)xx 53÷(D)3223473y x y x ÷2.下列计算中正确的是( ).(A)(-1)0=-1 (B)(-1)-1=1 (C)33212aa=-(D)4731)()(aa a =-÷- 3.下列各式计算正确的是( ). (A)m ÷n ·m =m(B)m nn m =⋅÷1(C)11=⋅÷m m m(D)n ÷m ·m =n4.计算54)()(ab a a b a -⋅-的结果是( ). (A)-1(B)1(C)a1(D)ba a--5.下列分式中,最简分式是( ).(A)21521y xy(B)y x y x +-22(C)yx y xy x -+-.222(D)y x y x -+226.下列运算中,计算正确的是( ). (A))(212121b a b a +=+ (B)acbc b a b 2=+ (C)aa c a c 11=+-(D)011=-+-ab b α 7.ab a b a -++2的结果是( ).(A)a2-(B)a4(C)ba b --2(D)ab- 8.化简22)11(yx xy y x-⋅-的结果是( ). (A)y x +1(B)yx +-1(C)x -y (D)y -x二、填空题9.2232)()(yx y x -÷=______.10.232])[(x y -=______.11.a 、b 为实数,且ab =1,设1111,11+++=+++=b a Q b b a a P ,则P ______Q (填“>”、“<”或“=”). 12.aa a -+-21422=______. 13.若x <0,则|3|1||31---x x =______.14.若ab =2,a +b =3,则ba 11+=______. 综合、运用、诊断三、解答题15.计算:)()()(432b a ba ba -÷-⋅-.16.计算:⋅-+-++222244242x y yx y x y y x17.计算:⋅-÷+--+11)1211(22x x x x18.已知2222222y x y x N yx xy M -+=-=、,用“+”或“-”连结M 、N ,有三种不同的形式:M +N 、M -N 、N -M ,请你任选其中一种进行计算,并化简求值,其中x ∶y =5∶2.19.先化简,再求值:1112+---x xx x ,其中x =2. 20.已知x 2-2=0,求代数式11)1(222++--x x x x 的值.拓展、探究、思考21.等式⋅-++=-++236982x Bx A x x x 对于任何使分母不为0的x 均成立,求A 、B 的值.22.A 玉米试验田是边长为a m 的正方形减去边长为1m 的蓄水池后余下部分,B 玉米试验田是边长为(a -1)m 的正方形,两块试验田的玉米都收获了500kg . (1)哪种玉米田的单位面积产量高?(2)高的单位面积产量是低的单位面积产量的多少倍?测试3 分式方程课堂学习检测一、选择题 1.方程132+=x x 的解为( ).(A)2 (B)1 (C)-2 (D)-12.解分式方程12112-=-x x ,可得结果( ). (A)x =1 (B)x =-1(C)x =3(D)无解3.要使54--x x 的值和xx--424的值互为倒数,则x 的值为( ). (A)0 (B)-1 (C)21(D)14.已知4321--=+-y y x x ,若用含x 的代数式表示y ,则以下结果正确的是( ). (A)310+=x y (B)y =x +2(C)310xy -=(D)y =-7x -25.若关于x 的方程xkx --=-1113有增根,则k 的值为( ). (A)3(B)1(C)0(D)-16.若关于x 的方程323-=--x mx x 有正数解,则( ). (A)m >0且m ≠3 (B)m <6且m ≠3(C)m <0 (D)m >67.完成某项工作,甲独做需a 小时,乙独做需b 小时,则两人合作完成这项工作的80%,所需要的时间是( ). (A))(54b a +小时 (B))11(54ba +小时 (C))(54b a ab+小时(D)ba ab+小时 8.a 个人b 天可做c 个零件(设每人速度一样),则b 个人用同样速度做a 个零件所需天数是( ).(A)c a 2(B)2ac(C)a c 2(D)2c a 二、填空题9.x =______时,两分式44-x 与13-x 的值相等. 10.关于x 的方程324+=-b xa 的解为______. 11.当a =______时,关于x 的方程4532=-+x a ax 的根是1. 12.若方程114112=---+x x x 有增根,则增根是______. 13.关于x 的方程11=+x a的解是负数,则a 的取值范围为____________. 14.一艘轮船在静水中的最大航速为20千米/时,它在江水中航行时,江水的流速为v 千米/时,则它以最大航速顺流航行s 千米所需的时间是______.综合、运用、诊断三、解方程15..32121=-+--xx x16.⋅+=+--1211422x xx x x 17.⋅-+=+-xx x x x 25316四、列方程解应用题18.甲工人工作效率是乙工人工作效率的212倍,他们同时加工1500个零件,甲比乙提前18个小时完工,问他们每人每小时各加工多少个零件?19.甲、乙两地相距50km ,A 骑自行车,B 乘汽车,同时从甲城出发去乙城.已知汽车的速度是自行车速度的2.5倍,B 中途休息了0.5小时还比A 早到2小时,求自行车和汽车的速度.拓展、探究、思考20.面对全球金融危机的挑战,我国政府毅然启动内需,改善民生.国务院决定从2009年2月1日起,在全国范围内实施“家电下乡”,农民购买入选产品,政府按原价购买总..额的..13..%.给予补贴返还.某村委会组织部分农民到商场购买入选的同一型号的冰箱、电视机两种家电,已知购买冰箱的数量是电视机的2倍,且按原价购买冰箱总额为40000元、电视机总额为15000元.根据“家电下乡”优惠政策,每台冰箱补贴返还的金额比每台电视机补贴返还的金额多65元,求冰箱、电视机各购买多少台?(2)列出方程(组)并解答.参考答案第十六章 分式测试1 分 式1.B . 2.C . 3.D . 4.A . 5.A . 6.21≠. 7.21-<. 8.0. 9.⋅+--11m m 10.1.11.(1)a +2b ; (2)2x 2; (3)b +a ; (4)x 2y 2.12.(1);65,62,632223bca abc a bc bc a c a - (2)⋅-+-++))((,))(()(2b a b a a a b a b a a b a b 13.(1);2152510+-x x (2)⋅-+ba ba 6491214.(1);22x y y x -- (2)⋅-+ba ba 215.化简原式后为1,结果与x 的取值无关. 16.⋅53 17.x =0或2或3或-1. 18.⋅23 测试2 分式的运算1.A . 2.D . 3.D . 4.D . 5.D . 6.D . 7.C . 8.B .9.x 4y . 10.⋅612x y11.=. 12.⋅+21a 13.⋅-922x x 14.⋅2315.⋅6ba 16.⋅+y x x 22提示:分步通分.17.2x .18.选择一:y x y x N M -+=+,当x ∶y =5∶2时,原式37= 选择二:y x x y N M +-=-,当x ∶y =5∶2时,原式⋅-=73选择三:y x yx M N +-=-,当x ∶y =5∶2时,原式73=. 注:只写一种即可. 19.化简得1)1(+--x x ,把x =2代入得31-.20.原式112+-+=x x x∵x 2-2=0,∴x 2=2,∴原式112+-+=x x ,∴原式=121.A =3,B =5.22.(1)A 面积(a 2-1)米2,单位产量15002-a 千克/米;B 玉米田面积(a -1)2米2,单位产量是2)1(500-a 千克/米2,22)1(5001500-<-a a ,B 玉米的单位面积产量高; (2)11-+a a 倍. 测试3 分式方程1.A . 2.D . 3.B . 4.C . 5.A. 6.B . 7.C . 8.A .9.x =-8. 10.⋅--=462b a x 11.⋅-=317a12.x =1. 13.a <1且a ≠0. 14.20+v s小时.15.无解. 16.⋅-=21x 17.无解.18.设乙的工作效率为x 个/时,甲的工作效率为x 25个/时.182515001500+=x x .50=x .经检验,x =50是原方程的根. 答:甲每小时加工125个,乙每小时加工50个.19.设自行车速度为x 千米/时,汽车速度为2.5x 千米/时.xx 502215.250=++.x =12.经检验x =12是原方程的根. 答:自行车的速度为12km/时,汽车的速度为30km/时. 20.(1)2x ,40000×13%,x2%1340000⨯,15000×13%,x %1315000⨯;(2)冰箱、电视机分别购买20台、10台.第十六章 分式全章测试一、填空题1.在代数式222232,3221,12,1,2,3,1,43abx x x b a a y x x b a --+++-中,分式有_________. 2.当x ______时,分式2+x x 没有意义;当x ______时,分式112+x 有意义;当x ______时,分式113-+x x 的值是零.3.不改变分式的值,把分式的分子和分母各项系数都化成整数:b a ba 3.051214.0+-=______.4.计算:--32m m m -3=______.5.若x =-4是方程311+=-x x a 的解,则a =______. 6.若332-+x x 与35+x 的值互为相反数,则满足条件的x 的值是______. 7.当x ______时,等式512)5(2222+-=+-x x x x x x 成立.8.加工一批产品m 件,原计划a 天完成,今需要提前b 天完成,则每天应生产______件产品.9.已知空气的单位体积质量为0.001239g/cm 3,那么100单位体积的空气质量为______g/cm 3.(用科学记数法表示) 10.设a >b >0,a 2+b 2-6ab =0,则ab ba -+的值等于______. 二、选择题11.下列分式为最简分式的是( ).(A)ab 1533(B)a b b a --22(C)xx 32(D)y x y x ++2212.下列分式的约分运算中,正确的是( ).(A)339x xx =(B)bac b c a =++ (C)0=++ba ba (D)1=++ba ba 13.分式11,121,1122-+-+x x x x 的最简公分母是( ). (A)(x 2+1)(x -1) (B)(x 2-1)(x 2+1) (C)(x -1)2(x 2+1)(D)(x -1)214.下列各式中,正确的个数有( ).①2-2=-4; ②(32)3=35; ③2241)2(xx -=--; ④(-1)-1=1. (A)0个 (B)1个(C)2个(D)3个15.使分式x326--的值为负数的条件是( ).(A)32<x (B)x >0 (C)32>x(D)x <016.使分式1||-x x有意义的条件是( ).(A)x ≠1(B)x ≠-1 (C)x ≠1且x ≠-1(D)x ≠017.学完分式运算后,老师出了一道题“化简42232--+++x xx x ”.小明的做法是:原式=424)2)(3(22-----+x x x x x ; 小亮的做法是:原式=(x +3)(x -2)+(2-x )=x 2+x -6+2-x =x 2-4; 小芳的做法是:原式=.12132123)2)(2(223=+-+=+-++=-+---+x x x x x x x x x x 其中正确的是( ). (A)小明 (B)小亮(C)小芳(D)没有正确的 18.如果分式)(3)(b a b a a ++的值是零,那么a ,b 满足的条件是( ). (A)a =-b(B)a ≠-b (C)a =0(D)a =0且a ≠-b 19.若关于x 的分式方程11+=+x m x x 无解,则m 的值为( ). (A)1 (B)0 (C)-1 (D)-220.有一项工程需在规定日期内完成,如果甲队去做,恰能如期完成;如果乙队去做,要超过规定日期3天.现由甲、乙两队合作2天后,余下的工程由乙队单独去做,恰好在规定日期内完成.如果设规定日期为x 天,下列关于x 的方程中错误的是( ). (A)132=++x x x (B)332+=x x (C)1)2(312)311(=-++⨯++x x x x (D)1311=++x x 三、化简下列各题 21.⋅+----112223x x xx x x 22.⋅-÷+--24)22(x x x x x x23.⋅--÷-++--+)64121()622322(222x x x x x x x x四、解方程24.⋅++=+-312132x x x 25.⋅--+=--2163524245m m m m .五、列方程解应用题26.A ,B 两地相距80千米,一辆大汽车从A 地开出2小时后,又从A 地开出另一辆小汽车,已知小汽车的速度是大汽车速度的3倍,结果小汽车比大汽车早40分钟到达B 地,求两辆汽车每小时各走多少千米.参考答案第十六章 分式全章测试1.⋅-++2232,12,1,1ab x x b a x 2.=-2,取任意实数,⋅-=31. 3.⋅+-b a b a 3254 4.⋅-39m 5.5. 6.-4. 7.≠0. 8.⋅-ba m 9.1.239×10-1. 10..2- 11.D . 12.D . 13.C .14.A . 15.A . 16.C . 17.C . 18.D . 19.C . 20.D . 21.2x -1. 22.⋅+21x 23.⋅+-x x 1 24.⋅-=31x 25.m =2是增根,无解.26.小汽车每小时60千米,大汽车每小时20千米.。
《分式》综合测试题1
《分式》综合测试题一一、选择题:(本大题共有8小题,每小题3分,共24分.每小题只有一个正确选项,请把正确选项的字母代号填在下面的表格中.) 1. 下列各组代数式都不是分式的是( )A .3(1)(2)x x x +-,3x π+B .3x π+,13(x+y )C .753ab x y-,2(3)4xy x +D .-26()2x y x y ++,25()3()a b a b ++2.若分式2362x xx--的值为0,则x 的值为() A.0B.2C.2-D.0或23. 如果把分式2xx y+中的x 和y 都扩大2倍,那么分式的值()A.不变 B.扩大2倍 C.扩大4倍 D.缩小2倍 4.若22237y y ++的值为14,则21461y y +-的值为( ) (A )1 (B )-1 (C )-17(D )155.计算2a b a -+a ba b +-的结果是( ) (A )3a b b a +- (B )3a b a b+- (C )1 (D )-16.已知两个分式:244A x =-,1122B x x =++-,其中2x ≠±,则A 与B 的关系是( )A 、相等B 、互为倒数C 、互为相反数D 、A 大于B 7.已知114a b -=,则2227a ab b a b ab---+的值等于( )(A )6 (B )-6 (C )215 (D ) 27-8. A、B两地相距m 千米,某人从A地到B地,以每小时x 千米的速度步行前往,返回时改乘汽车,每小时比步行多行80千米,结果所用的时间是去时的17,则可列方程为( )A.1807m m x x -=+ B.1807m m x x -=+C.780m m x x =+ D.780m m x x =- 二、填空题:本大题共有9小题,每小题3分,共27分.请把答案填在题中的横线上.9.若代数式(x -2)(x -1)|x |-1 的值为零,则x 的取值应为_____________.10.不改变分式的值,使它的分子、分母的最高次项的系数都是正数,则2311a a a a --=+-__________. 11.如果226()(1)x x A y =+,那么A =_________.12.已知:15a a+=,则4221a a a++=_____________.13.已知01a a b x ≠≠=,,是方程2100ax bx +-=的一个解,则2222a b a b--的值是 .14..对于公式12111f f f =+(f 2≠f ),若已知f ,f 2,则f 1=________.15. 观察下列各等式:1111212=-⨯,1112323=-⨯,1113434=-⨯,…根据你发现的规律,计算:2222122334(1)n n ++++=⨯⨯⨯⨯+… (n 为正整数).16. 有一个分式,三位同学分别说出了它的一些特点,甲:分式的值不可能为0;乙:分式有意义时x 的取值范围是x≠±1;丙:当x=-2时,分式的值为1,•请你写出满足上述全部特点的一个分式___________.17. 如果记y=221x x +=f (x ),并且f (1)表示当x=1时y 的值,即f(1)=22111+=12;f (12)表示当x=12时y 的值,即f (12)=221()12151()2=+,那么f (1)+f (2)+f (12)+f (3)+f (13)+……+f (n )+f (1n)=_______(结果用含n 的代数式表示,n 为正整数).三、解答题:本大题共有3小题,每题12分,共36分.解答时要求写出必要的文字说明、计算过程或推理过程. 18.计算:(1) ⎪⎭⎫⎝⎛-÷⎪⎭⎫ ⎝⎛----42318521q p q p(2) 2222221m n mn n mn m mn n m n n ⎡⎤-+-⋅⎢⎥-+--⎣⎦19.解分式方程: (1)3215122=-+-xx x (2)1637222-=-++x x x x x20.先化简,再求值:已知12+=x ,求xx x x xx x 112122÷⎪⎭⎫ ⎝⎛+---+的值。
分式方程练习题精选(含答案)
分式方程练习题精选一、选择题:1.以下是方程211x x x-=-去分母的结果,其中正确的是 A .2(1)1x x --= B .2221x x --= C .2222x x x x --=-D .2222x x x x -+=-2.在下列方程中,关于x的分式方程的个数有 .①0432212=+-x x ②.4=ax③;4=x a④.;1392=+-x x ⑤;621=+x⑥211=-+-a x a x .A.2个B.3个C.4个D.5个 3.分式25m +的值为1时,m 的值是 . A .2 B .-2 C .-3 D .34.不解下列方程,判断下列哪个数是方程21311323x x x x =+++--的解 .A .x=1B .x=-1C .x=3D .x=-3 6.若分式x 2-12(x+1) 的值等于0,则x 的值为 . A 、1 B 、±1 C 、12 D 、-18.关于x 的方程2354ax a x+=-的根为x=2,则a 应取值 . A.1B.3C.-2D.-37.赵强同学借了一本书,共280页,要在两周借期内读完,当他读了一半时,发现平时每天要多读21页才能在借期内读完.他读了前一半时,平均每天读多少页?如果设读前一半时,平均每天读x 页,则下列方程中,正确的是 .A 、1421140140=-+x x B 、1421280280=++x x C 、1211010=++x x D 、1421140140=++x x8.关于x 的方程2354ax a x +=-的根为x =2,则a 应取值 . A.1 B.3 C.-2 D.-39.在正数范围内定义一种运算☆,其规则为a ☆b =ba 11+,根据这个规则x ☆23)1(=+x 的解为 . A .32=x B .1=xC .32-=x 或1D .32=x 或1-10.“五一”江北水城文化旅游节期间,几名同学包租一辆面包车前去旅游,面包车的租价为180元,出发时又增加了两名同学,结果每个同学比原来少摊了3元钱车费,设参加游览的同学共x 人,则所列方程为 .A .32180180=+-x xB .31802180=-+xxC .32180180=--x xD .31802180=--xx11.李老师在黑板上出示了如下题目:“已知方程012=++kx x ,试添加一个条件,使方程的解是x=-1”后,小颖的回答是:“添加k=0的条件”;小亮的回答是:“添加k=2的条件”,则你认为 .A 、只有小颖的回答正确B 、小亮、小颖的回答都正确C 、只有小亮的回答正确D 、小亮、小颖的回答都不正确 12.某工地调来72人挖土和运土,已知3人挖出的土1人恰好能全部运走,怎样调配劳动力才使挖掘出来的土能及时运走,且不窝工,解决此问题,可设派x人挖土,其它人运土,列方程:①723x x -=②723xx -=③372x x +=④372xx =-上述所列方程,正确的有 .A .1个B .2个C .3个D .4个 二、填空题:13.若分式11--x x 的值为0,则x 的值等于14.若分式方程xmx x -=--2524无解,那么m 的值应为 15.某项工程限期完成,甲单独做提前1天完成,乙单独做延期2天完工,现两人合作1天后,余下的工程由乙队单独做,恰好按期完工,求该工程限期 天.16.阅读材料: 方程1111123x x x x -=-+--的解为1x =, 方程1111134x x x x -=----的解为x=2,方程11111245x x x x -=-----的解为3x =,… 请写出能反映上述方程一般规律的方程,并直 接写出这个方程的解是 . 三、 解答题:17.解方程)2)(1(311+-=--x x x x18.先化简代数式1121112-÷⎪⎭⎫ ⎝⎛+-+-+x x x x x x ,然后选取一个使你喜欢的x 的值代入求值.19.若方程122-=-+x ax 的解是正数,求a 的取值范围。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
15.3 分式方程 综合测试
一、选择题:
1、下列式子中,是分式方程的是( )
A.3
5
212=+x B.134131++-x x x C.
112312=+--x x x D.3
4
243-=+-x x 2、满足
21325=--+-x
x
x 的x 的值是( ) A.1 B.3 C.0 D.4 3、解关于x 的方程
1
13-=--x m
x x 产生增根,则常数m 的值等于( ) A.2- B.1- C.1 D.2 4、若关于x 的方程
4
3
x a 32ax =-+的解为x=1,则a 应取( ) A.1 B.3 C.-3 D.-1
5、有两块面积相同的小麦试验田,分别收获小麦9000kg 和15000kg,已知第一块试验田每公顷的产量比第二块少3000kg,若设地一块实验每公顷的产量为x kg,根据题意,可的方程( )
A.
x x 1500030009000=+ B.300015000
9000-=x x
C.3000150009000+=x x
D.x
x 15000
30009000=- 6、甲、乙两人同时从A 地出发,骑自行车到B 地.已知A 、B 两地的距离为30km ,甲每小时比乙多走3km ,并且比乙先到40分钟.设乙每小时走x km ,则可列方程为( )
A.
30x -303x -=23 B.30x -303x +=23 C.303x +-30x =23 D.303x --30x
=23
7、方程2
x 2
x 4x 162x 2x 2-+=--+-的解的情况是( ) A.有正整数解 B.有负整数解 C.有负分数解 D.无解
8、“十一”期间,红旗中学“东升文学社”的全体同学包租一辆面包车前去某景点游览,面包车的租价为180元.出发时又增加了两名同学,结果每个同学比原来少摊了3元车费.若设“东升文学社”有x 人,则所列方程为( )
A.
32x 180x 180=-- B.32x 180
x 180=+- C.
3x 1802x 180=-+ D.3x
180
2-x 180=- 二、填空题:
9、方程
x 704
x 3-=的解是 . 10、方程4
x 4x
2x 12x 12-=+--的解是 . 11、当x= 时,分式1x 4+与1x 3
-的值相等.
12、如果关于x 的方程x
1
x +=a 无解,则a 的值是 .
13、甲队单独做一项工程刚好如期完成,乙队单独完成这项工程要比预期多用3天.若甲、乙两队合作2天,余下的工程由乙队单独做也正好如期完成,则规定的工期是 天.
14、某镇修建一条“村村通”公路,若甲乙两个工程队单独完成,甲工程队比乙工程队少用10天,若甲乙两对合作,12天可以完成,设甲单独完成这项工程需要x 天,则根据题意,可列方程为_________________.
15、若关于x 的分式方程3
232
-=--x m x x 无解,则m 的值为__________. 16、某市今年1月1日起调整居民用水价格,每立方米水费上涨25%,小明家去年12月份的水费是18元,而今年5月份的水费是36元,已知小明家今年5月份的用水量比去年12月份多6立方米,则该市今年居民用水的价格是 三、解答题: 17、解下列方程 (1) 3115+=-x x (2)21
221=-++-+x x x x
18、解方程:(1)2x 7x 5-=; (2)1
x 61x 31x 22-=-++.
19、当x 为何值时,2x 1+比x
2x
1+-的值小2?
20、已知关于x 的方程3
23-=--x m
x x 解为正数.求m 的取值范围.
21、当m 为何值时,关于x 的方程2
1
122---+=--x x x x x x m 的解是正数?
22、列方程解应用题
(1)甲、乙在电脑上合打一份稿件,4小时后,甲另有任务,•余下部分由乙单独完成又要6小时,已知甲打6小时的稿件乙要打7.5小时,问:甲、•乙单独完成此任务各需多少小时?
(2)某人到照相馆洗印照片x 张,付了y 元(x 、y 为整数),他要走时,•营业员告诉他说:“你要再多洗10张的话,我就总共收你2元钱,这样相当于每洗一打(12张)你可以节省8角钱”,求x 、y (只需列出方程即可)
23、一个批发兼零售的文具店规定:凡一次购买铅笔300枝以上,(不包括300枝),可以按批发价付款,购买300枝以下,(包括300枝)只能按零售价付款.小明来该店购买铅笔,如果给八年级学生每人购买1枝,那么只能按零售价付款,需用120元,如果多购买60枝,那么可以按批发价付款,同样需要120元,
①这个八年级的学生总数在什么范围内?
②若按批发价购买6枝与按零售价购买5枝的款相同,那么这个学校八年级学生有多少人?
24、“五一”期间,某商场举行促销活动,活动期间规定:商场内所有商品按标价的80%出售;同时,当顾客在该商场消费满一定金额后,按如下方案获得相应金额的奖券:
根据上述促销方法,顾客在该商场购物可获得双重优惠.例如,购买标价为450元的商品,则消费金额为450×0.8=360(元),获得有惠额为:450×0.2+30=120(元).设购买商品的优惠率=
商品的标价
购买商品获得的优惠率
.试问:
(1)购买一件标价为800元的商品,顾客得到的优惠率是多少?
(2)若一顾客购买了一套西装,得到的优惠率为3
1
,已知该套西装的标价
高于700元,低于850元,该套西装的标价是多少元?
参考答案
1、C ;
2、D ;
3、A ;
4、C ;
5、C ;
6、B ;
7、D ;
8、B
9、x=30; 10、x=1; 11、7; 12、1; 13、6; 14、
12
11011=++x x ; 15、3±; 16、2.25;
17、(1)方程两边都乘以),3)(1(+-x x 得:1)1(5-=+x x ,解这个方程得4-=x 经检验知, 4-=x 是原方程的解 (2)方程两边都乘以)1)(2(--x x 得:
)1)(2(2)2)(2()1)(1(--=-++-+x x x x x x ,解这个方程得1-=x
经检验知, 1-=x 是原方程的解. 18、(1)x=5;(2)无解.
19、x=-3
4.
20、m <6且m ≠3; 21、由
2
1122---+=--x x x x x x m 得)1)(1()2(+---=x x x x m ,所以21m
x -=,因原
方程有增根时1-=x 或2=x ;当1-=x 时, 3=m ;当2=x 时, .3-=m 所以,当
3±≠m 时, 21m x -=
才是原方程的解.又因0>x ,所以, 02
1>-=
m
x ,解得.1<m 所以,当1<m 且3-≠m 时,原方程有正根. 22、(1)12小时,15小时;
(2)根据营业员告诉他的话可知:y 只能是1或2,若y =1,x •张照片每张收1
x
元,而(x +10)张共收2元,即12(1x -210
x +)=0.8,若y =2,类似可得方程12(
2x -2
10
x +)=0.8. 23、①设这个学校八年级学生有x 人.由题意得,x ≤300且x +60>300,所以240<x ≤300;②有两个数量关系:一是批发价购买6枝与按零售价购买5枝的款相同;二是用120元按批发价付款比按零售价付款可以多购买60枝.若设批发价每
支y 元,则零售价每支65y 元.由题意得,y y 1206056120=+.解之得,y =31
,经检验y =3
1
为原方程的解.所以,.3005
6120=y 即①240人<八年级的学生总数≤300人 ②这个学校八年级学生有300人 24、解:(1)优惠率=
40
13
8001002.0800=+⨯=32.5%.
(2)设该件西装的标价x 元,则700<x <850,
∴560<0.8x <680,所以,此时顾客得到的奖卷额为100元.
根据题意,得3
1
x 1002x .0=+, 整理得
15
2
x 100=,解之得x=750.经检验x=750是原方程的解. 答:(1)顾客得到的优惠率为32.5%,(2)西装标价为750元.。