初一数学期末考试试卷 (2)
最新人教版七年级数学下册期末测试题及答案(共五套)
七下期期末姓名: 学号班级一、选择题:(本大题共10个小题,每小题3分,共30分) 1.若m >-1,则下列各式中错误的...是( ) A .6m >-6 B .-5m <-5 C .m+1>0 D .1-m <2 2.下列各式中,正确的是( )±4 B.=-4 3.已知a >b >0,那么下列不等式组中无解..的是( ) A .⎩⎨⎧-><b x a x B .⎩⎨⎧-<->b x a x C .⎩⎨⎧-<>b x a x D .⎩⎨⎧<->b x ax4.一辆汽车在公路上行驶,两次拐弯后,仍在原来的方向上平行行驶,那么两个拐弯的角度可能为 ( )(A) 先右转50°,后右转40° (B) 先右转50°,后左转40° (C) 先右转50°,后左转130° (D) 先右转50°,后左转50°5.解为12x y =⎧⎨=⎩的方程组是( )A.135x y x y -=⎧⎨+=⎩B.135x y x y -=-⎧⎨+=-⎩C.331x y x y -=⎧⎨-=⎩D.2335x y x y -=-⎧⎨+=⎩ 6.如图,在△ABC 中,∠ABC=500,∠ACB=800,BP 平分∠ABC ,CP 平分∠ACB ,则∠BPC 的大小是( )A .1000B .1100C .1150D .120PCBA(1) (2) (3)7.四条线段的长分别为3,4,5,7,则它们首尾相连可以组成不同的三角形的个数是( ) A .4 B .3 C .2 D .1 8.在各个内角都相等的多边形中,一个外角等于一个内角的12,则这个多边形的边数是( ) A .5 B .6 C .7 D .89.如图,△A 1B 1C 1是由△ABC 沿BC 方向平移了BC 长度的一半得到的,若△ABC 的面积为C 1A 120 cm 2,则四边形A 1DCC 1的面积为( )A .10 cm 2B .12 c m 2C .15 cm 2D .17 cm 210.课间操时,小华、小军、小刚的位置如图1,小华对小刚说,如果我的位置用(•0,0)表示,小军的位置用(2,1)表示,那么你的位置可以表示成( )A.(5,4)B.(4,5)C.(3,4)D.(4,3)二、填空题:本大题共8个小题,每小题3分,共24分,把答案直接填在答题卷的横线上. 11.49的平方根是________,算术平方根是______,-8的立方根是_____. 12.不等式5x-9≤3(x+1)的解集是________.13.如果点P(a,2)在第二象限,那么点Q(-3,a)在_______.14.如图3所示,在铁路旁边有一李庄,现要建一火车站,•为了使李庄人乘火车最方便(即距离最近),请你在铁路旁选一点来建火车站(位置已选好),说明理由:____________. 15.从A 沿北偏东60°的方向行驶到B,再从B 沿南偏西20°的方向行驶到C,•则∠ABC=_______度.16.如图,AD ∥BC,∠D=100°,CA 平分∠BCD,则∠DAC=_______.17.给出下列正多边形:① 正三角形;② 正方形;③ 正六边形;④ 正八边形.用上述正多边形中的一种能够辅满地面的是_____________.(将所有答案的序号都填上) 18.若│x 2-25│则x=_______,y=_______.三、解答题:本大题共7个小题,共46分,解答题应写出文字说明、证明过程或演算步骤.19.解不等式组:⎪⎩⎪⎨⎧+<-≥--.21512,4)2(3x x x x ,并把解集在数轴上表示出来.20.解方程组:2313424()3(2)17x y x y x y ⎧-=⎪⎨⎪--+=⎩CB AD21.如图, AD ∥BC , AD 平分∠EAC,你能确定∠B 与∠C 的数量关系吗?请说明理由。
人教版数学七年级第二学期期末考试试卷及答案二
人教版数学七年级第二学期期末考试试卷及答案一.选择题(共16小题)1.下列调查方式中最适合的是()A.要了解一批节能灯的使用寿命,采用普查的方式B.为保证“神舟9号”的成功发射,对其零部件进行检查采用抽样调查方式C.对乘坐某班次客车的乘客进行安检,采用抽查的方式D.调查本班同学的视力,采用普查的方式2.共享单车为人们带来了极大便利,有效缓解了出行“最后一公里”问题,而且经济环保.2019年全国共享单车投放数量达23 000 000辆.将23 000 000用科学记数法表示为()A.23×106B.2.3×107C.2.3×106D.0.23×1083.已知是方程mx﹣y=2的解,则m的值是()A.﹣1B.﹣C.1D.54.今年我市有4万名学生参加中考,为了了解这些考生的数学成绩,从中抽取2000名考生的数学成绩进行统计分析.在这个问题中,下列说法正确的是()A.这4万名考生的全体是总体B.每个考生是个体C.2000名考生是总体的一个样本D.样本容量是20005.下列运算错误的是()A.x2•x3=x5B.(x3)2=x6C.a+2a=3a D.a8÷a2=a46.利用如图中图形面积关系可以解释的公式是()A.(a+b)2=a2+2ab+b2B.(a﹣b)2=a2﹣2ab+b2C.(a+b)(a﹣b)=a2﹣b2D.2(a+b)=2a+2b7.社会主义核心价值观知识竞赛成绩结果统计如下表:成绩在91~100分的为优胜者,则优胜者的频率是()分段数(分)61~7071~8081~9091~100人数(人)1192218A.35%B.30%C.20%D.10%8.二元一次方程x+2y=11的正整数解的个数是()A.3个B.4个C.5个D.6个9.在﹣12,(x﹣3.14)0,2﹣1,0这四个数中,最小的数是()A.﹣12B.(x﹣3.14)0C.2﹣1D.010.下列运算中正确的是()A.(x+2)(x﹣2)=x2﹣2B.(﹣x﹣y)2=x2+2xy+y2C.(a+b)2=a2+b2D.(a﹣2)(a+3)=a2﹣611.若(x+5)(2x﹣3)=2x2+mx﹣15,则()A.m=7B.m=﹣3C.m=﹣7D.m=1012.已知x+y=5,xy=6,则x2+y2的值是()A.1B.13C.17D.2513.某班共有学生49人.一天,该班某男生因事请假,当天的男生人数恰为女生人数的一半.若设该班男生人数为x,女生人数为y,则下列方程组中,能正确计算出x、y的是()A.B.C.D.14.如图,在长a,宽b的一个长方形的场地的两边修一条公路,若公路宽为x,则余下阴影部分的面积是()A.ab﹣ax﹣bx+x2B.ab﹣ax﹣bx﹣x2C.ab﹣ax﹣bx+2x2D.ab﹣ax﹣bx﹣2x215.在“幻方拓展课程”探索中,小明在如图的3×3方格内填入了一些表示数的代数式,若图中各行、各列及对角线上的三个数之和都相等,则x﹣y=()A.2B.4C.6D.816.现有如图所示的卡片若干张,其中A类、B类为正方形卡片,C类为长方形卡片,若用此三类卡片拼成一个长为a+2b,宽为a+b的大长方形,则需要C类卡片张数为()A.1B.2C.3D.4二.填空题(共4小题)17.把方程2x﹣y=1化为用含x的代数式表示y的形式:y=.18.计算:199×201=.19.已知10x=2,10y=5,则10x+y=.20.如图,在长为5,宽为4的矩形中,有形状、大小完全相同的5个小矩形,则图中阴影部分的面积为.三.解答题(共8小题)21.(1);(2);22.(1)a5•a3÷a2;(2)(﹣2m)3﹣(m3)2;(3)(﹣2a2b)•(abc);23.(1)5x(2x+1)﹣(x+3)(5x﹣1);(2)(π﹣2020)0+()﹣2﹣2101×()100;24.(a+2)2+3(a+1)(a﹣1),其中a=﹣1小明的解法如下:解:=a2+2a+4+3a2﹣3=……根据小明的解法解答下列问题:(1)小明的解答过程里在标出①②③的几处中出现错误的在第步;(2)请你借鉴小明的解题方法,写出此题的正确解答过程,并求出当x=﹣1时的值.25.疫情期间,我校“停课不停学”,开展云视讯网上教学,为了解七年级学生课堂发言情况,随机抽取年级部分学生,对他们某天在课堂上发言的次数进行了统计,其结果如表,并绘制了如图所示的两幅不完整的统计图,已知B、E两组发言人数的比为5:2,请结合图中相关数据回答下列问题:发言次数nA0≤n<3B3≤n<6C6≤n<9D9≤n<12E12≤n<15F15≤n<18(1)E组人数为人;(2)被调查的学生人数为人,A组人数为人,并补全频数分布直方图;(3)求出扇形统计图中,“B”所对应的圆心角的度数:(4)七年级共有学生1500人,请估计全年级在这天里发言次数不少于12次的人数.26.我校为做好高三年级复课工作,积极准备防疫物资,计划从新兴药房购买消毒液和酒精共40瓶,在获知北国超市有促销活动后,决定从北国超市购买这些物品.已知消毒液和酒精在这两家店的售价如表所示,且在新兴药房购买这些物品需花费900元.品名商店消毒液(元/瓶)酒精(元/瓶)新兴药房2420北国超市2018(1)求出需要购买的消毒液和酒精的数量分别是多少瓶?(2)求从北国超市购买这些物品可以节省多少元?27.观察下列关于自然数的等式:1×3=22﹣1,①2×4=32﹣1,②3×5=42﹣1,③4×6=52﹣1,④5×7=62﹣1,⑤根据上述规律解决下列问题:(1)用上面的形式填出第⑥式和第⑦式:⑥6×8=2﹣1 ⑦×=2﹣1(2)写出你猜想的第n个等式(用含n的式子表示);(3)请你验证猜想的正确性.28.【探究】如图①,从边长为a的大正方形中剪掉一个边长为b的小正方形,将阴影部分沿虚线剪开,拼成图②的长方形.(1)请你分别表示出这两个图形中阴影部分的面积:图①图②;(2)比较两图的阴影部分面积,可以得到乘法公式:(用字母a、b表示);【应用】请应用这个公式完成下列各题:①已知2m﹣n=3,2m+n=4,则4m2﹣n2的值为;②计算:(x﹣3)(x+3)(x2+9);【拓展】计算(2+1)(22+1)(24+1)(28+1)…(232+1)的结果为.参考答案与试题解析一.选择题(共16小题)1.下列调查方式中最适合的是()A.要了解一批节能灯的使用寿命,采用普查的方式B.为保证“神舟9号”的成功发射,对其零部件进行检查采用抽样调查方式C.对乘坐某班次客车的乘客进行安检,采用抽查的方式D.调查本班同学的视力,采用普查的方式【分析】调查方式的选择需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析,普查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查.【解答】解:A.要了解一批节能灯的使用寿命适合抽样调查,原调查方式不合适;B.为保证“神舟9号”的成功发射,对其零部件进行检查采用全面调查,原调查方式不合适;C.对乘坐某班次客车的乘客进行安检,采用普查的方式,原调查方式不合适;D.调查本班同学的视力,采用普查的方式,原调查方式合适;故选:D.2.共享单车为人们带来了极大便利,有效缓解了出行“最后一公里”问题,而且经济环保.2019年全国共享单车投放数量达23 000 000辆.将23 000 000用科学记数法表示为()A.23×106B.2.3×107C.2.3×106D.0.23×108【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:23 000 000=2.3×107.故选:B.3.已知是方程mx﹣y=2的解,则m的值是()A.﹣1B.﹣C.1D.5【分析】直接利用二元一次方程的解法得出答案.【解答】解:∵是方程mx﹣y=2的解,则3m﹣1=2,解得:m=1.故选:C.4.今年我市有4万名学生参加中考,为了了解这些考生的数学成绩,从中抽取2000名考生的数学成绩进行统计分析.在这个问题中,下列说法正确的是()A.这4万名考生的全体是总体B.每个考生是个体C.2000名考生是总体的一个样本D.样本容量是2000【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象,从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.【解答】解:A.这4万名考生的数学成绩是总体,此选项错误;B.每个考生的数学成绩是个体,此选项错误;C.2000名考生的数学成绩是总体的一个样本,此选项错误;D.样本容量是2000,此选项正确;故选:D.5.下列运算错误的是()A.x2•x3=x5B.(x3)2=x6C.a+2a=3a D.a8÷a2=a4【分析】直接利用同底数幂的乘除运算法则以及幂的乘方运算法则、合并同类项法则分别计算得出答案.【解答】解:A、x2•x3=x5,原题计算正确,不合题意;B、(x3)2=x6,原题计算正确,不合题意;C、a+2a=3a,原题计算正确,不合题意;D、a8÷a2=a6,原题计算错误,符合题意.故选:D.6.利用如图中图形面积关系可以解释的公式是()A.(a+b)2=a2+2ab+b2B.(a﹣b)2=a2﹣2ab+b2C.(a+b)(a﹣b)=a2﹣b2D.2(a+b)=2a+2b【分析】由大正方形面积=两个小正方形面积+2个长方形面积,可得(a+b)2=a2+2ab+b2【解答】解:∵大正方形面积=两个小正方形面积+2个长方形面积∴(a+b)2=a2+2ab+b2故选:A.7.社会主义核心价值观知识竞赛成绩结果统计如下表:成绩在91~100分的为优胜者,则优胜者的频率是()分段数(分)61~7071~8081~9091~100人数(人)1192218A.35%B.30%C.20%D.10%【分析】首先根据表格,计算其总人数;再根据频率=频数÷总数进行计算.【解答】解:优胜者的频率是18÷(1+19+22+18)=0.3=30%,故选:B.8.二元一次方程x+2y=11的正整数解的个数是()A.3个B.4个C.5个D.6个【分析】将x看做已知数求出y,找出正整数解即可.【解答】解:∵x+2y=11,∴y=,则:当x=1时,y=5;当x=3时,y=4;当x=5时,y=3;当x=7时,y=2;当x=9时,y=1;故选:C.9.在﹣12,(x﹣3.14)0,2﹣1,0这四个数中,最小的数是()A.﹣12B.(x﹣3.14)0C.2﹣1D.0【分析】直接利用负整数指数幂的性质以及有理数的乘方运算法则分别化简得出答案.【解答】解:∵﹣12=﹣1,(x﹣3.14)0=1,2﹣1=,0,∴最小的数是:﹣12.故选:A.10.下列运算中正确的是()A.(x+2)(x﹣2)=x2﹣2B.(﹣x﹣y)2=x2+2xy+y2C.(a+b)2=a2+b2D.(a﹣2)(a+3)=a2﹣6【分析】直接利用乘法公式结合整式的混合运算法则分别计算得出答案.【解答】解:A、(x+2)(x﹣2)=x2﹣4,故原题计算错误;B、(﹣x﹣y)2=x2+2xy+y2,故原题计算正确;C、(a+b)2=a2+2ab+b2,故原题计算错误;D、(a﹣2)(a+3)=a2+a﹣6,故原题计算错误;故选:B.11.若(x+5)(2x﹣3)=2x2+mx﹣15,则()A.m=7B.m=﹣3C.m=﹣7D.m=10【分析】先用一个多项式的每一项乘以另一个多项式的每一项,再把所得的积相加即可得出答案.【解答】解:∵(x+5)(2x﹣3)=2x2﹣3x+10x﹣15=2x2+7x﹣15,又∵(x+5)(2x﹣3)=2x2+mx﹣15,∴m=7;故选:A.12.已知x+y=5,xy=6,则x2+y2的值是()A.1B.13C.17D.25【分析】将x+y=5两边平方,利用完全平方公式化简,把xy的值代入计算,即可求出所求式子的值.【解答】解:将x+y=5两边平方得:(x+y)2=x2+2xy+y2=25,将xy=6代入得:x2+12+y2=25,则x2+y2=13.故选:B.13.某班共有学生49人.一天,该班某男生因事请假,当天的男生人数恰为女生人数的一半.若设该班男生人数为x,女生人数为y,则下列方程组中,能正确计算出x、y的是()A.B.C.D.【分析】此题中的等量关系有:①该班一男生请假后,男生人数恰为女生人数的一半;②男生人数+女生人数=49.【解答】解:根据该班一男生请假后,男生人数恰为女生人数的一半,得x﹣1=y,即y=2(x﹣1);根据某班共有学生49人,得x+y=49.列方程组为.故选:D.14.如图,在长a,宽b的一个长方形的场地的两边修一条公路,若公路宽为x,则余下阴影部分的面积是()A.ab﹣ax﹣bx+x2B.ab﹣ax﹣bx﹣x2C.ab﹣ax﹣bx+2x2D.ab﹣ax﹣bx﹣2x2【分析】表示出阴影部分的长与宽,计算即可得到面积.【解答】解:根据题意得:(a﹣x)(b﹣x)=ab﹣ax﹣bx+x2,故选:A.15.在“幻方拓展课程”探索中,小明在如图的3×3方格内填入了一些表示数的代数式,若图中各行、各列及对角线上的三个数之和都相等,则x﹣y=()A.2B.4C.6D.8【分析】由图中各行、各列及对角线上的三个数之和都相等,即可得出关于x,y的二元一次方程组,解之即可得出x,y的值,再将其代入(x﹣y)中即可求出结论.【解答】解:依题意得:,解得:,∴x﹣y=8﹣2=6.故选:C.16.现有如图所示的卡片若干张,其中A类、B类为正方形卡片,C类为长方形卡片,若用此三类卡片拼成一个长为a+2b,宽为a+b的大长方形,则需要C类卡片张数为()A.1B.2C.3D.4【分析】表示出长方形的面积,利用多项式乘以多项式法则计算,即可确定出需要C类卡片的张数.【解答】解:(a+2b)(a+b)=a2+ab+2ab+2b2=a2+3ab+2b2,则需要C类卡片张数为3.故选:C.二.填空题(共4小题)17.把方程2x﹣y=1化为用含x的代数式表示y的形式:y=2x﹣1.【分析】把x看做已知数求出y即可.【解答】解:方程2x﹣y=1,移项得:﹣y=1﹣2x,解得:y=2x﹣1.故答案为:2x﹣1.18.计算:199×201=39999.【分析】先变形为原式=(200﹣1)×(200+1),然后利用平方差公式计算.【解答】解:原式=(200﹣1)×(200+1)=2002﹣12=40000﹣1=39999.故答案为39999.19.已知10x=2,10y=5,则10x+y=10.【分析】根据同底数幂的乘法法则计算即可.【解答】解:∵10x=2,10y=5,∴10x+y=10x•10y=2×5=10.故答案为:1020.如图,在长为5,宽为4的矩形中,有形状、大小完全相同的5个小矩形,则图中阴影部分的面积为5.【分析】设小矩形的长为x,宽为y,根据矩形的对边相等已经大矩形的长为5,即可得出关于x,y的二元一次方程组,解之即可得出x,y的值,再将其代入(5×4﹣5xy)中即可求出结论.【解答】解:设小矩形的长为x,宽为y,依题意,得:,解得:,∴5×4﹣5xy=5×4﹣5×3×1=5.故答案为:5.三.解答题(共8小题)21.(1);(2);【分析】(1)方程组利用代入消元法求出解即可;(2)方程组利用加减消元法求出解即可.【解答】解:(1),把①代入②得:2(2y﹣3)+3y=8,解得:y=2,把y=2代入①得:x=1,则方程组的解为;(2),①×2+②得:5x=15,解得:x=3,把x=3代入①得:y=﹣4,则方程组的解为.22.(1)a5•a3÷a2;(2)(﹣2m)3﹣(m3)2;(3)(﹣2a2b)•(abc);【分析】(1)根据同底数幂的乘法和同底数幂的除法求出即可;(2)先算乘方,再合并即可;(3)根据单项式乘以单项式法则求出即可.【解答】解:(1)a5•a3÷a2=a5+3﹣2=a6;(2)(﹣2m)3﹣(m3)2=﹣8m3﹣m6;(3)(﹣2a2b)•(abc)=﹣a3b2c.23.(1)5x(2x+1)﹣(x+3)(5x﹣1);(2)(π﹣2020)0+()﹣2﹣2101×()100;【分析】(1)直接利用单项式乘以多项式以及多项式乘以多项式运算法则计算得出答案;(2)直接利用负整数指数幂的性质以及零指数幂的性质、积的乘方运算法则分别计算得出答案.【解答】解:(1)5x(2x+1)﹣(x+3)(5x﹣1)=10x2+5x﹣(5x2+14x﹣3)=10x2+5x﹣5x2﹣14x+3=5x2﹣9x+3;(2)(π﹣2020)0+()﹣2﹣2101×()100=1+9﹣(2×)100×2=1+9﹣2=8.24.(a+2)2+3(a+1)(a﹣1),其中a=﹣1小明的解法如下:解:=a2+2a+4+3a2﹣3=……根据小明的解法解答下列问题:(1)小明的解答过程里在标出①②③的几处中出现错误的在第②步;(2)请你借鉴小明的解题方法,写出此题的正确解答过程,并求出当x=﹣1时的值.【分析】(1)根据完全平方公式可知:(a+2)2=a2+2a+1,可作判断;(2)先根据整式的混合运算顺序和法则化简原式,再代入求值可得.【解答】解:(1)小明的解答过程里在标出①②③的几处中出现错误的在第②步;故答案为:②;(2)(a+2)2+3(a+1)(a﹣1)=a2+2a+1+3(a2﹣1)=a2+2a+1+3a2﹣3=4a2+2a﹣2,当x=﹣1时,原式=4×1+2×(﹣1)﹣2=4﹣2﹣2=0.25.疫情期间,我校“停课不停学”,开展云视讯网上教学,为了解七年级学生课堂发言情况,随机抽取年级部分学生,对他们某天在课堂上发言的次数进行了统计,其结果如表,并绘制了如图所示的两幅不完整的统计图,已知B、E两组发言人数的比为5:2,请结合图中相关数据回答下列问题:发言次数nA0≤n<3B3≤n<6C6≤n<9D9≤n<12E12≤n<15F15≤n<18(1)E组人数为4人;(2)被调查的学生人数为50人,A组人数为3人,并补全频数分布直方图;(3)求出扇形统计图中,“B”所对应的圆心角的度数:(4)七年级共有学生1500人,请估计全年级在这天里发言次数不少于12次的人数.【分析】(1)根据B、E两组发言人数的比和E组所占的百分比,求出B组所占的百分比,再根据B组的人数求出样本容量,从而求出E组的人数;(2)用(1)求出的样本容量乘以A组人数所占的百分比,求出A组的人数,用总人数乘以C组人数所占的百分比得出C组的人数,从而补全统计图;(3)用360°乘以“B”所占的百分比即可;(4)用总人数乘以发言次数不少于12次的人数所占的百分比即可.【解答】解:(1)∵B、E两组发言人数的比为5:2,E占8%,∴B组所占的百分比是20%,∵B组的人数是10,∴样本容量为:10÷20%=50,∴E组人数为:50×8%=4(人);故答案为:4;(2)被调查的学生人数为50,A组人数为:50×6%=3(人),C组的人数是50×30%=15(人),补全频数分布直方图如下:故答案为:50,3;(3)“B”所对应的圆心角的度数是:360°×20%=72°;(4)F 组所占的百分比是×100%=10%,则全年级在这天里发言次数不少于12次的人数有:1500×(10%+8%)=270(人).26.我校为做好高三年级复课工作,积极准备防疫物资,计划从新兴药房购买消毒液和酒精共40瓶,在获知北国超市有促销活动后,决定从北国超市购买这些物品.已知消毒液和酒精在这两家店的售价如表所示,且在新兴药房购买这些物品需花费900元.品名商店消毒液(元/瓶)酒精(元/瓶)新兴药房2420北国超市2018(1)求出需要购买的消毒液和酒精的数量分别是多少瓶?(2)求从北国超市购买这些物品可以节省多少元?【分析】(1)设需要购买的消毒液x瓶,酒精y瓶,根据从北国超市购买消毒液和酒精共40瓶需花费900元,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)根据总价=单价×数量求出从北国超市购买这些物品所需费用,用900减去该值即可得出结论.【解答】解:(1)设需要购买的消毒液x瓶,酒精y瓶,根据题意得:,解得:.答:需要购买的消毒液25瓶,酒精15瓶.(2)从北国超市购买这些物品所需费用为25×20+15×18=770(元),节省的钱数为900﹣770=130(元).答:从北国超市购买这些物品可节省130元.27.观察下列关于自然数的等式:1×3=22﹣1,①2×4=32﹣1,②3×5=42﹣1,③4×6=52﹣1,④5×7=62﹣1,⑤根据上述规律解决下列问题:(1)用上面的形式填出第⑥式和第⑦式:⑥6×8=72﹣1 ⑦7×9=82﹣1(2)写出你猜想的第n个等式(用含n的式子表示)n(n+2)=(n+1)2+1;(3)请你验证猜想的正确性.【分析】(1)由规律:两个相差2的两个整数的积等于两个数的平均数的平方与1的差,进行解答;(2)把规律:两个相差2的两个整数的积等于两个数的平均数的平方与1的差,用n的等式表示出来;(3)运用整数的混合运算顺序和运算法则对等式左右两边进行计算便可.【解答】解:(1)由题中前面6个算式可知,两个相差2的两个整数的积等于两个数的平均数的平方与1的差,所以,⑥6×8=72﹣1,⑦7×9=82﹣1,故答案为:7;7;9;8;(2)由规律可知:n(n+2)=(n+1)2﹣1,故答案为:n(n+2)=(n+1)2﹣1;(3)∵左边=n(n+2)=n2+2n,右边=n2+2n+1﹣1=n2+2n,∴左边=右边,∴n(n+2)=(n+1)2﹣1.28.【探究】如图①,从边长为a的大正方形中剪掉一个边长为b的小正方形,将阴影部分沿虚线剪开,拼成图②的长方形.(1)请你分别表示出这两个图形中阴影部分的面积:图①a2﹣b2图②(a+b)(a﹣b);(2)比较两图的阴影部分面积,可以得到乘法公式:(a+b)(a﹣b)=a2﹣b2(用字母a、b表示);【应用】请应用这个公式完成下列各题:①已知2m﹣n=3,2m+n=4,则4m2﹣n2的值为12;②计算:(x﹣3)(x+3)(x2+9);【拓展】计算(2+1)(22+1)(24+1)(28+1)…(232+1)的结果为264﹣1.【分析】(1)图①阴影部分的面积为两个正方形的面积差,即a2﹣b2,而图②的阴影部分为长为(a+b),宽为(a﹣b)的矩形,可表示出面积为(a+b)(a﹣b).(2)由由图①与图②的面积相等,可以得到乘法公式;①利用公式将4m2﹣n2写成(2m﹣n)(2m+n)进而求出答案,②连续两次利用平方差公式进行计算即可,将原式转化为(2﹣1)(2+1)(22+1)(24+1)(28+1)…(232+1),再连续使用平方差公式,得出最后的结果.【解答】解:(1)图①阴影部分的面积为两个正方形的面积差,即a2﹣b2;图②的阴影部分为长为(a+b),宽为(a﹣b)的矩形,其面积为(a+b)(a﹣b).故答案为:a2﹣b2,(a+b)(a﹣b);(2)由图①与图②的面积相等,可以得到乘法公式,(a+b)(a﹣b)=a2﹣b2,故答案为:(a+b)(a﹣b)=a2﹣b2;①4m2﹣n2=(2m﹣n)(2m+n)=3×4=12,故答案为:12;②(x﹣3)(x+3)(x2+9)=(x2﹣9)(x2+9)=x4﹣81;(2+1)(22+1)(24+1)(28+1)…(232+1),=(2﹣1)(2+1)(22+1)(24+1)(28+1)…(232+1),=(22﹣1)(22+1)(24+1)(28+1)…(232+1),=(24﹣1)(24+1)(28+1)…(232+1),=(28﹣1)(28+1)…(232+1),=264﹣1.。
七年级数学上学期期末复习检测试卷(2)
2018-2019学年七年级数学上学期期末复习检测试卷一、选择题(每小题3分,共30分)1.(3分)﹣3的相反数是()A.B.C.3 D.﹣32.(3分)﹣3πxy2z3的系数和次数是()A.﹣3,6 B.﹣3π,5 C.﹣3π,6 D.﹣3,5 3.(3分)如图,把弯曲的河道改直,能够缩短航程.这样做根据的道理是()A.两点之间,直线最短B.两点确定一条直线C.两点之间,线段最短D.两点确定一条线段4.(3分)A看B的方向是北偏东21°,那么B看A的方向()A.南偏东69°B.南偏西69°C.南偏东21°D.南偏西21°5.(3分)如果a,b互为相反数,x,y互为倒数,则(a+b)+xy的值是()A.2 B.3 C.3.5 D.46.(3分)已知方程(m﹣1)x|m|=6是关于x的一元一次方程,则m的值是()A.±1 B.1 C.0或1 D.﹣17.(3分)我国南海海域面积约为3500000km2,用科学记数法表示正确的是()A.3.5×105 km2B.3.5×106 km2C.3.5×107 km2D.3.5×108 km28.(3分)有下列四种说法:①锐角的补角一定是钝角;②一个角的补角一定大于这个角;③如果两个角是同一个角的补角,那么它们相等;④锐角和钝角互补.其中正确的是()A.①②B.①③C.①②③D.①②③④9.(3分)若a,b为有理数,a>0,b<0,且|a|<|b|,那么a,b,﹣a,﹣b的大小关系是()A.b<﹣a<﹣b<a B.b<﹣b<﹣a<aC.b<﹣a<a<﹣b D.﹣a<﹣b<b<a10.(3分)正方体的六个面分别标有1,2,3,4,5,6六个数字,如图是其三种不同的放置方式,与数字“6”相对的面上的数字是()A.1 B.5 C.4 D.3二、填空题(每小题3分,共15分)11.(3分)绝对值大于1而小于4的整数有个.12.(3分)如果x=2是方程mx﹣1=2的解,那么m= .13.(3分)9时45分时,时钟的时针与分针的夹角是.14.(3分)如图已知线段AD=16cm,线段AC=BD=10cm,E,F分别是AB,CD的中点,则EF长为cm.15.(3分)李明组织大学同学一起去看电影《致青春》,票价每张60元,20张以上(不含20张)打八折,他们一共花了1200元,他们共买了张电影票.三、解答题(共75分)16.(8分)计算题(1)﹣22×2+(﹣3)3×(﹣)(2)×(﹣5)+(﹣)×9﹣×8.17.(8分)解方程.(1)=1﹣(2) [(x﹣2)﹣6]=118.(9分)求代数式﹣2x2﹣ [3y2﹣2(x2﹣y2)+6]的值,其中x=﹣1,y=﹣2.19.(9分)如图,已知∠AOB=90°,∠EOF=60°,OE平分∠AOB,OF平分∠BOC,求∠AOC和∠COB 的度数.20.(9分)盛夏,某校组织长江夜游,在流速为2.5千米/时的航段,从A地上船,沿江而下至B 地,然后溯江而上到C地下船,共乘船4小时.已知A,C两地相距10千米,船在静水中的速度为7.5千米/时.求A,B两地间的距离.21.(12分)用火柴棒按下列方式搭建三角形:(1)填表:(2)当三角形的个数为n时,火柴棒的根数多少?(3)求当n=1000时,火柴棒的根数是多少?22.(8分)小明在做家庭作业时发现练习册上一道解方程的题目被墨水污染了:﹣=﹣,“□”是被污染的内容.他很着急,翻开书后面的答案,这道题的解是x=2,你能帮他补上“□”的内容吗?23.(12分)某市上网有两种收费方案,用户可任选其一,A为计时制﹣﹣1元/时;B为包月制﹣﹣80元/月,此外每种上网方式都附加通讯费0.1元/时.(1)某用户每月上网40小时,选哪种方式比较合适?(2)某用户每月有100元钱用于上网,选哪种方式比较合算?(3)请你设计一个方案,使用户能合理地选择上网方式.参考答案一、选择题(每小题3分,共30分)1.(3分)﹣3的相反数是()A.B.C.3 D.﹣3【分析】根据相反数的概念解答即可.【解答】解:∵互为相反数相加等于0,∴﹣3的相反数,3.故选:C.【点评】此题主要考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.2.(3分)﹣3πxy2z3的系数和次数是()A.﹣3,6 B.﹣3π,5 C.﹣3π,6 D.﹣3,5【分析】根据单项式系数的定义来选择,单项式中数字因数叫做单项式的系数.所有字母指数的和是次数.【解答】解:﹣3πxy2z3的系数是:﹣3π,次数是6.故选:C.【点评】确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.3.(3分)如图,把弯曲的河道改直,能够缩短航程.这样做根据的道理是()A.两点之间,直线最短B.两点确定一条直线C.两点之间,线段最短D.两点确定一条线段【分析】此题为数学知识的应用,由题意弯曲的河道改直,肯定为了尽量缩短两地之间的里程,就用到两点间线段最短定理.【解答】解:因为两点之间线段最短,把弯曲的河道改直,能够缩短航程.故选:C.【点评】此题为数学知识的应用,考查知识点两点之间线段最短.4.(3分)A看B的方向是北偏东21°,那么B看A的方向()A.南偏东69°B.南偏西69°C.南偏东21°D.南偏西21°【分析】根据A看B的方向是北偏东21°,是以A为标准,反之B看A的方向是以B为标准,从而得出答案.【解答】解:A看B的方向是北偏东21°,那么B看A的方向南偏西21°;故选:D.【点评】本题主要考查了方向角的定义,在叙述方向角时一定要注意以哪个图形为参照物是本题的关键.5.(3分)如果a,b互为相反数,x,y互为倒数,则(a+b)+xy的值是()A.2 B.3 C.3.5 D.4【分析】根据相反数和倒数求出a+b=0,xy=1,代入求出即可.【解答】解:∵a,b互为相反数,x,y互为倒数,∴a+b=0,xy=1,∴(a+b)+xy=×0+×1==3.5,故选:C.【点评】本题考查了相反数、倒数和求代数式的值,能求出a+b=0和xy=1是解此题的关键.6.(3分)已知方程(m﹣1)x|m|=6是关于x的一元一次方程,则m的值是()A.±1 B.1 C.0或1 D.﹣1【分析】根据一元一次方程的定义即可求出答案.【解答】解:由题意可知:解得:m=﹣1故选:D.【点评】本题考查一元一次方程的定义,解题的关键是正确理解一元一次方程的定义,本题属于基础题型.7.(3分)我国南海海域面积约为3500000km2,用科学记数法表示正确的是()A.3.5×105 km2B.3.5×106 km2C.3.5×107 km2D.3.5×108 km2【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:3500000km2用科学记数法表示为3.5×106 km2,故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.8.(3分)有下列四种说法:①锐角的补角一定是钝角;②一个角的补角一定大于这个角;③如果两个角是同一个角的补角,那么它们相等;④锐角和钝角互补.其中正确的是()A.①②B.①③C.①②③D.①②③④【分析】要判断两角的关系,可根据角的性质,两角互余,和为90°,互补和为180°,据此可解出本题.【解答】解:①锐角的补角一定是钝角;根据补角的定义和钝角的定义可判断其正确性,故此选项正确;②一个角的补角一定大于这个角;当这个角为钝角时,它的补角小于90°,故此选项错误;③如果两个角是同一个角的补角,那么这两个角相等;利用同补角定义得出,此选项正确;④中没有明确指出是什么角,故此选项错误.故正确的有:①③,故选:B.【点评】此题主要考查了补角以及同位角定义与性质,理解补角的定义中数量关系是解题的关键.如果两个角的和是一个平角,那么这两个角叫互为补角.其中一个角叫做另一个角的补角.9.(3分)若a,b为有理数,a>0,b<0,且|a|<|b|,那么a,b,﹣a,﹣b的大小关系是()A.b<﹣a<﹣b<a B.b<﹣b<﹣a<a C.b<﹣a<a<﹣b D.﹣a<﹣b<b<a【分析】根据a>0,b<0,且|a|<|b|,可用取特殊值的方法进行比较.【解答】解:设a=1,b=﹣2,则﹣a=﹣1,﹣b=2,因为﹣2<﹣1<1<2,所以b<﹣a<a<﹣b.故选:C.【点评】此类题目比较简单,由于a,b的范围已知,可用取特殊值的方法进行比较,以简化计算.10.(3分)正方体的六个面分别标有1,2,3,4,5,6六个数字,如图是其三种不同的放置方式,与数字“6”相对的面上的数字是()A.1 B.5 C.4 D.3【分析】正方体的六个面分别标有1,2,3,4,5,6六个数字,这六个数字一一对应,通过三个图形可看出与3相邻的数字有2,4,5,6,所以与3相对的数是1,然后由第二个图和第三个图可看出与6相邻的数有1,2,3,4,所以与6相对的数是5.【解答】解:由三个图形可看出与3相邻的数字有2,4,5,6,所以与3相对的数是1,由第二个图和第三个图可看出与6相邻的数有1,2,3,4,所以与6相对的数是5.故选:B.【点评】本题主要考查了正方体相对两个面上的文字,利用三个数相邻的两个图形进行判断即可.二、填空题(每小题3分,共15分)11.(3分)绝对值大于1而小于4的整数有 4 个.【分析】求绝对值大于1且小于4的整数,即求绝对值等于2或3的整数.根据绝对值是一个正数的数有两个,它们互为相反数,得出结果.【解答】解:绝对值大于1且小于3的整数有±2,±3.故答案为:4.【点评】主要考查了绝对值的性质,绝对值规律总结:绝对值是一个正数的数有两个,它们互为相反数;绝对值是0的数就是0;没有绝对值是负数的数.12.(3分)如果x=2是方程mx﹣1=2的解,那么m= .【分析】把x=2代入方程mx﹣1=2,即可求得m的值.【解答】解:把x=2代入方程mx﹣1=2,得:2m﹣1=2,解得:m=.故答案为:.【点评】本题考查的是一元一次方程解的概念:使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解.13.(3分)9时45分时,时钟的时针与分针的夹角是22.5°.【分析】9点45分时,分针指向9,时针在指向9与10之间,则时针45分钟转过的角度即为9时45分时,时钟的时针与分针的夹角度数,根据时针每分钟转0.5°,计算0.5°×45即可.【解答】解:∵9点45分时,分针指向9,时针在指向9与10之间,∴时针45分钟转过的角度即为9时45分时,时钟的时针与分针的夹角度数,即0.5°×45=22.5°.故答案为22.5°.【点评】本题考查了钟面角:钟面被分成12大格,每格30°;分针每分钟转6°,时针每分钟转0.5°.14.(3分)如图已知线段AD=16cm,线段AC=BD=10cm,E,F分别是AB,CD的中点,则EF长为10cm.【分析】由已知条件可知,AC+BD=AD+BC,又因为E,F分别是AB,CD的中点,则EB+CF=0.5(AB+CD)=0.5(AD﹣BC),故EF=BE+CF+BC可求.【解答】解:由图可知BC=AC+BD﹣AD=10+10﹣16=4cm,∵E,F分别是AB,CD的中点,∴EB+CF=0.5(AB+CD)=0.5(AD﹣BC)=0.5(16﹣4)=6cm,∴EF=BE+CF+BC=6+4=10cm.【点评】利用中点性质转化线段之间的倍分关系是解题的关键,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性.同时,灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.15.(3分)李明组织大学同学一起去看电影《致青春》,票价每张60元,20张以上(不含20张)打八折,他们一共花了1200元,他们共买了20或25 张电影票.【分析】本题分票价每张60元和票价每张60元的八折两种情况讨论,根据数量=总价÷单价,列式计算即可求解.【解答】解:①1200÷60=20(张);②1200÷(60×0.8)1200÷48=25(张).答:他们共买了20或25张电影票.故答案为:20或25.【点评】考查了销售问题,注意分类思想的实际运用,同时熟练掌握数量,总价和单价之间的关系..三、解答题(共75分)16.(8分)计算题(1)﹣22×2+(﹣3)3×(﹣)(2)×(﹣5)+(﹣)×9﹣×8.【分析】(1)根据幂的乘方、有理数的乘法和加法可以解答本题;(2)根据乘法分配律可以解答本题.【解答】解:(1)﹣22×2+(﹣3)3×(﹣)=﹣4×=﹣9+8=﹣1;(2)×(﹣5)+(﹣)×9﹣×8===﹣7.【点评】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.17.(8分)解方程.(1)=1﹣(2) [(x﹣2)﹣6]=1【分析】(1)首先去分母,再去括号移项合并同类项解方程得出答案;(2)直接去括号再移项合并同类项解方程得出答案.【解答】解:(1)=1﹣2(x+3)=12﹣3(3﹣2x),则2x+6=12﹣9+6x,故﹣4x=﹣3解得:x=;(2) [(x﹣2)﹣6]=1x﹣2﹣8=1,则x=11,解得:x=55.【点评】此题主要考查了解一元一次方程,正确掌握解题方法是解题关键.18.(9分)求代数式﹣2x2﹣ [3y2﹣2(x2﹣y2)+6]的值,其中x=﹣1,y=﹣2.【分析】原式去括号合并得到最简结果,将x与y的值代入计算即可求出值.【解答】解:原式=﹣2x2﹣y2+x2﹣y2﹣3=﹣x2﹣y2﹣3,当x=﹣1,y=﹣2时,原式=﹣1﹣10﹣3=﹣14.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.19.(9分)如图,已知∠AOB=90°,∠EOF=60°,OE平分∠AOB,OF平分∠BOC,求∠AOC和∠COB 的度数.【分析】根据角平分线的定义得到∠BOE=∠AOB=45°,∠COF=∠BOF=∠BOC,再计算出∠BOF=∠EOF﹣∠BOE=15°,然后根据∠BOC=2∠BOF,∠AOC=∠BOC+∠AOB进行计算.【解答】解:∵OE平分∠AOB,OF平分∠BOC,∴∠BOE=∠AOB=×90°=45°,∠COF=∠BOF=∠BOC,∵∠BOF=∠EOF﹣∠BOE=60°﹣45°=15°,∴∠BOC=2∠BOF=30°;∠AOC=∠BOC+∠AOB=30°+90°=120°.【点评】本题考查了角平分线的定义:从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线.20.(9分)盛夏,某校组织长江夜游,在流速为2.5千米/时的航段,从A地上船,沿江而下至B 地,然后溯江而上到C地下船,共乘船4小时.已知A,C两地相距10千米,船在静水中的速度为7.5千米/时.求A,B两地间的距离.【分析】由于C的位置不确定,此题要分情况讨论:(1)C地在A、B之间;(2)C地在A地上游.设A、B间的距离是x千米,则根据共用时间可列方程求解.【解答】解:设A、B两地间的距离为x千米,(1)当C地在A、B两地之间时,依题意得:+=4,解得:x=20;(2)当C地在A地上游时,依题意得:+=4,解得:x=.答:A、B两地间的距离为20千米或千米.【点评】考查了一元一次方程的应用,注意此题由于C点的位置不确定,所以一定要考虑两种情况.还要注意顺水速、静水速、水流速三者之间的关系.21.(12分)用火柴棒按下列方式搭建三角形:(1)填表:(2)当三角形的个数为n时,火柴棒的根数多少?(3)求当n=1000时,火柴棒的根数是多少?【分析】(1)按照图中火柴的个数填表即可;(2)当三角形的个数为:1、2、3、4时,火柴棒的个数分别为:3、5、7、9,由此可以看出三角形的个数每增加一个,火柴棒的个数增加2根,所以当三角形的个数为n时,三角形个数增加n ﹣1个,那么此时火柴棒的个数应该为:3+2(n﹣1);(3)当n=1000时,直接代入(2)所求的规律中即可.【解答】解:(1)由图可知:该表中应填的数依次为:3、5、7、9(2)当三角形的个数为1时,火柴棒的根数为3;当三角形的个数为2时,火柴棒的根数为5;当三角形的个数为3时,火柴棒的根数为7;当三角形的个数为4时,火柴棒的根数为9;…由此可以看出:每当三角形的个数增加1个时,火柴棒的个数相应的增加2,所以,当三角形的个数为n时,火柴棒的根数为3+2(n﹣1)=2n+1.(3)由(2)得出的规律:当三角形的个数为n时,火柴棒的根数为3+2(n﹣1)=2n+1,所以,当n=1000时,2n+1=2×1000+1=2001.【点评】考查了规律型:图形的变化类,本题解题关键根据第一问的结果总结规律,得到规律:三角形的个数每增加一个,火柴棒的个数增加2根,然后由此规律解答第三问.22.(8分)小明在做家庭作业时发现练习册上一道解方程的题目被墨水污染了:﹣=﹣,“□”是被污染的内容.他很着急,翻开书后面的答案,这道题的解是x=2,你能帮他补上“□”的内容吗?【分析】先设□=m,再把x=2代入方程即可求出m的值.【解答】解:设□=m,则由原方程,得﹣=﹣.∵所给方程的解是x=2,∴,解得:m=4.【点评】本题考查了一元一次方程的解法,解决此题的关键是把方程的解代入原方程再求被污染的内容.23.(12分)某市上网有两种收费方案,用户可任选其一,A为计时制﹣﹣1元/时;B为包月制﹣﹣80元/月,此外每种上网方式都附加通讯费0.1元/时.(1)某用户每月上网40小时,选哪种方式比较合适?(2)某用户每月有100元钱用于上网,选哪种方式比较合算?(3)请你设计一个方案,使用户能合理地选择上网方式.【分析】(1)根据上网时间分别计算费用,比较后回答问题;(2)根据上网所用费用,分别计算出时间,比较后回答问题;(3)设每月上网x小时,收费y元,根据题意得:y A=x+0.1x=1.1x,y B=80+0.1x,分别计算出当y A=y B 时,当y A>y B时,当y A<y B时的上网时间,合理地选择上网方式.【解答】解:(1)A种上网方式:40×1+0.1×40=44(元),B种上网方式:80+40×0.1=84(元),答:每月上网40小时,选A种方式比较合适;(2)设每月上网x小时,A种上网方式:x+0.1x=100,解得:x=(小时),B种上网方式:80+0.1x=100,解得:x=200(小时);答:每月有100元钱用于上网,选B种方式比较合算;(3)设每月上网x小时,收费y元,根据题意得:y A=x+0.1x=1.1x,y B=80+0.1x,当y A=y B时,即1.1x=80+0.1x,解得:x=80,当y A>y B时,即1.1x>80+0.1x,解得:x>80,当y A<y B时,即1.1x<80+0.1x,解得:x<80,∴当每月上网为80小时时,选择两种上网方式都可以;当每月上网大于80小时时,选择乙种上网方式合算;当每月上网小于80小时时,选择甲种上网方式合算.【点评】此题考查一元一次方程的实际运用,理解两种收费方式,正确利用关系式表示,列出方程解决问题.。
湘教版七年级下数学期末复习试卷(二)整式的乘法
期末复习(二) 整式的乘法考点一幂的运算【例1】若a m+n·a m+1=a6,且m+2n=4,求m,n的值.【分析】已知m+2n=4,只要再找到一个关于m,n的二元一次方程即可组成方程组求解.可根据同底数幂的乘法法则,由等式左右两边a的指数相等得到.【解答】由已知得a2m+n+1=a6,于是有2m+n+1=6,即2m+n=5,又因为m+2n=4,所以m=2,n=1. 【方法归纳】对于乘方结果相等的两个数,如果底数相等,那么指数也相等.变式练习:1.下列计算正确的是( )A.a+2a=3a2B.(a2b)3=a6b3C.(a m)2=a m+2D.a3·a2=a62.若2x=3,4y=2,则2x+2y的值为__________.考点二多项式的乘法【例2】化简:2(x-1)(x+2)-3(3x-2)(2x-3).【分析】先按多项式乘法法则展开,再合并同类项.【解答】原式=2(x2+2x-x-2)-3(6x2-9x-4x+6)=-16x2+41x-22.【方法归纳】在计算多项式乘法时,要注意不漏项,不重项.多项式与多项式相乘,结果仍是多项式,在合并同类项之前,积的项数等于两个多项式项数的积.3.如果(x+m)与(x+1)的积中不含x项,那么m是( )A.-2B.-1C.1D.24.若2x3-ax2-5x+5=(2x2+ax-1)(x-b)+3,其中a、b为整数,则a+b的值为( )A.-4B.-2C.0D.4考点三乘法公式适用的多项式特点【例3】二次三项式x2-kx+9是一个完全平方式,则k的值是__________.【分析】先把x2-kx+9变形为x2-kx+32或x2-kx+(-3)2,根据两平方项确定中间项为±6x,即可确定k的值.【解答】±6【方法归纳】两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式,即“首平方,尾平方,积的2倍在中央”.5.下列各式:①(a+b)(b+a);②(a-b)(a+b);③(-a+b)(a+b);④(-a+b)(-a-b),其中能用乘法公式计算的有( )A.1个B.2个C.3个D.4个考点四利用乘法公式计算【例4】先化简,再求值:(2a-b)(b+2a)-(a-2b)2+5b2.其中a=-1,b=2.【分析】把式子的前两部分分别运用平方差公式和完全平方公式化简.【解答】原式=(4a2-b2)-(a2-4ab+4b2)+5b2=3a2+4ab.当a=-1,b=2时,原式=3×(-1)2+4×(-1)×2=-5.【方法归纳】运用平方差公式时,要看清两个因式中的相同项和相反数项,其结果是相同项的平方减去相反数项的平方.6.下列等式成立的是( )A.(-a-b)2+(a-b)2=-4abB.(-a-b)2+(a-b)2=a2+b2C.(-a-b)(a-b)=(a-b)2D.(-a-b)(a-b)=b2-a27.若(a2+b2+1)(a2+b2-1)=15,那么a2+b2的值是__________.8.计算:(1)(a+b)2-(a-b)2-4ab; (2)[(x+2)(x-2)]2; (3)(a+3)(a-3)(a2-9).考点五乘法公式的几何背景【例5】(1)如图,请用两种不同的方式表示图中的大正方形的面积;(2)你根据上述结果可以得到一个什么公式?(3)利用这个公式计算:1022.【分析】根据图形可以得到:两个图形的面积有两种计算方法,一种是根据正方形的面积等于边长的平方计算;另一种方法是图形中两个长方形面积与两个正方形的面积的和,即可得到公式;然后利用公式计算即可.【解答】(1)方法一:(a+b)2.方法二:a2+2ab+b2.(2)(a+b)2=a2+2ab+b2.(3)1022=(100+2)2=1002+2×100×2+22=10 404.【方法归纳】根据同一个图形的面积的两种表示,所得到的代数式的值相等,由此可得到对应的代数恒等式.9.图1是一个长为2a,宽为2b(a>b)的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图2那样拼成一个正方形,则中间空的部分的面积是( )A.2ab B.(a+b)2 C.(a-b)2D.a2-b2复习测试:一、选择题(每小题3分,共24分)1.计算(-a2)3的结果是( )A.a5B.-a5C.a6D.-a62.下列运算正确的是( )A.x2+x3=x5B.(x-2)2=x2-4C.2x2·x3=2x5D.(x3)4=x73.下列各式中,与(1-a)(-a-1)相等的是( )A.a2-1B.a2-2a+1C.a2-2a-1D.a2+14.如果(x-2)(x+3)=x2+px+q,那么p、q的值为( )A.p=5,q=6 B.p=-1,q=6 C.p=1,q=-6 D.p=5,q=-65.若m的值使得x2+12x+m=(x+6)2-32成立,则m的值为( )A.2B.3C.4D.56.下列计算:①(a3)3=a6;②a2·a3=a6;③2m·3n=6m+n;④-a2·(-a)3=a5;⑤(a-b)3·(b-a)2=(a-b)5.其中错误的个数有( )A.1个B.2个C.3个D.4个7.一个长方体的长、宽、高分别是3a-4、2a、a,它的体积等于( )A.3a3-4a2B.a2C.6a3-8aD.6a3-8a28.请你计算:(1-x)(1+x),(1-x)(1+x+x2),…猜想(1-x)(1+x+x2+…+x n)的结果是( )A.1-x n+1B.1+x n+1C.1-x nD.1+x n二、填空题(每小题4分,共16分)9.计算:2m2·m8=__________.10.已知有理数a,b满足:a+b=2,a-b=5,则(a+b)3·(a-b)3的值是__________.11.卫星绕地球运动的速度是7.9×103米/秒,那么卫星绕地球运行3×106秒走过的路程是__________米.12.多项式4x2+1加上一个单项式后,使它能成为一个整式的完全平方,请写出所有可能的单项式为__________.三、解答题(共60分)13.(12分)计算:(1)(-2a2b)3+8(a2)2·(-a)2·(-b)3;(2)a(a+4b)-(a+2b)(a-2b)-4ab;(3)(2x-3y+1)(2x+3y-1).14.(10分)先化简,再求值:(1)(2019·河池)(x+2)2-(x+1)(x-1),其中x=1;(2)(2a+b)(3a-2b)-(a-2b)2,其中a=-2,b=1.15.(8分)已知a+b=1,ab=-6,求下列各式的值.(1)a2+b2; (2)a2-ab+b2.16.(10分)四个数a、b、c、d排成2行、2列,两边各加一条竖直线记成,定义=ad-bc,这个记号就叫做2阶行列式. 例如:=1×4-2×3=-2 . 若=10,求x的值.17.(10分)如图,某校有一块长为(3a+b)米,宽为(2a+b)米的长方形地块,学校计划将阴影部分进行绿化,中间将修建一座雕像.(1)用含a、b的代数式表示绿化面积并化简;(2)求出当a=5米,b=2米时的绿化面积.18.(10分)如图a是一个长为2m,宽为2n的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后按图b的形状,拼成一个正方形.(1)图b中的阴影部分面积为__________;(2)观察图b,请你写出三个代数式(m+n)2,(m-n)2,mn之间的等量关系是__________; (3)若x+y=-6,xy=2.75,利用(2)提供的等量关系计算x-y的值.参考答案变式练习1.B2.63.B4.D5.D6.D7.48.(1)原式=a2+2ab+b2-a2+2ab-b2-4ab=0.(2)原式=(x2-4)2=x4-8x2+16.(3)原式=(a2-9)(a2-9)=a4-18a2+81.9.C复习测试1.D2.C3.A4.C5.C6.C7.D8.A9.2m10 10.1 000 11.2.37×101012.±4x或4x413.(1)原式=-8a6b3-8a6b3=-16a6b3.(2)原式=a2+4ab-(a2-4b2)-4ab=a2+4ab-a2+4b2-4ab=4b2.(3)原式=[2x-(3y-1)][2x+(3y-1)]=4x2-(3y-1)2=4x2-(9y2-6y+1)=4x2-9y2+6y-1.14.(1)原式=x2+4x+4-(x2-1)=x2+4x+4-x2+1=4x+5.当x=1时,原式=4×1+5=9.(2)原式=6a2-ab-2b2-a2+4ab-4b2=5a2+3ab-6b2.当a=-2,b=1时,原式=5×(-2)2+3×(-2)×1-6×12=8.15.(1)a2+b2=(a+b)2-2ab=1+12=13.(2)a2-ab+b2=(a+b)2-3ab=12-3×(-6)=1+18=19.16.(x+1)2-(x-2)(x+2)=10,解得x=2.5.17.(1)S=(3a+b)(2a+b)-(a+b)2=6a2+3ab+2ab+b2-a2-2ab-b2=5a2+3ab(平方米).阴影(2)当a=5,b=2时,5a2+3ab=5×25+3×5×2=125+30=155(平方米).18.(1)m2-2mn+n2或(m-n)2.(2)(m+n)2=(m-n)2+4mn.(3)(x-y)2=(x+y)2-4xy=36-11=25,所以x-y的值是±5.。
7年级数学期末考试试卷
7年级数学期末考试试卷一、选择题(本题共10小题,每题3分,共30分。
每小题只有一个正确答案,请将正确答案的字母填在题后的括号内。
)1. 下列哪个数是负数?A. 0B. 5C. -3D. 12. 一个数的相反数是-7,这个数是?A. 7B. -7C. 0D. 143. 如果一个角的补角是120°,那么这个角的度数是?A. 60°B. 120°C. 180°D. 240°4. 一个数的绝对值是5,这个数可能是?A. 5B. -5C. 5或-5D. 05. 以下哪个表达式的结果是一个整数?A. 2.5 × 3B. 4 ÷ 0.5C. 0.75 × 4D. 3.2 - 1.96. 一个三角形的两边长分别为3cm和4cm,第三边的长度可能是?A. 1cmB. 2cmC. 5cmD. 7cm7. 以下哪个图形是轴对称图形?A. 平行四边形B. 矩形C. 梯形D. 不规则多边形8. 一个数的平方是36,这个数是?A. 6B. -6C. 6或-6D. 369. 一个数除以-2的结果是-3,这个数是?A. 6B. -6C. 3D. -310. 如果一个数的立方是-8,那么这个数是?A. -2B. 2C. -8D. 8二、填空题(本题共5小题,每题4分,共20分。
请将答案直接写在题后的横线上。
)11. 一个数的绝对值是它本身,这个数是______。
12. 一个角的余角是30°,那么这个角的度数是______。
13. 如果一个数的平方根是2,那么这个数是______。
14. 一个三角形的周长是18cm,其中两边的长度分别是5cm和7cm,那么第三边的长度是______。
15. 一个数的立方根是-2,那么这个数是______。
三、解答题(本题共4小题,共50分。
请在答题纸上写出完整的解答过程。
)16.(10分)解方程:2x - 3 = 7。
初一期末数学试卷题及答案
一、选择题(每题5分,共25分)1. 下列各数中,有理数是()A. √2B. πC. -1/3D. 0.1010010001...2. 下列各式中,正确的是()A. (a + b)² = a² + b²B. (a - b)² = a² - b²C. (a + b)² = a² + 2ab + b²D. (a - b)² = a² - 2ab + b²3. 下列函数中,是反比例函数的是()A. y = 2x + 1B. y = 3/xC. y = x²D. y = x³4. 下列各式中,正确的是()A. 5a + 3b = 5(a + b) + 3B. 5a + 3b = 5(a + b) - 3C. 5a + 3b = 5(a - b) + 3D. 5a + 3b = 5(a - b) - 35. 在直角坐标系中,点A(2,3)关于原点的对称点是()A. (2, -3)B. (-2, -3)C. (-2, 3)D. (2, 3)二、填空题(每题5分,共25分)6. 已知a = -3,b = 4,则a² + b² - 2ab的值为______。
7. 如果一个数的平方是9,那么这个数是______。
8. 下列各式中,正确的是______。
(1)x² - 4 = (x + 2)(x - 2)(2)x² + 4 = (x + 2)(x + 2)(3)x² - 9 = (x - 3)(x + 3)(4)x² + 9 = (x + 3)(x + 3)9. 如果直线y = kx + b经过点(2, 3),那么k和b的值分别是______。
10. 在△ABC中,∠A = 45°,∠B = 60°,那么∠C的度数是______。
七年级数学上册期末考试试题2(含答案)
人教版七年级上数学期末试卷(时间:90分钟,满分100分)一、认真填一填(每题3分,共30分)1.实施西部大开发是党中央面向21世纪的重大战略决策,我国西部地区的面积为6400000平方千米,可用科学记数法将这个数字表示为 平方千米.2.下表是我国几个城市某年一月份的平均气温:把它们的平均气温按从高到低的顺序排列为: .3.绝对值大于1而小于4的整数有 . 4.9时45分时,时钟的时针与分针的夹角是 .5.如下图已知线段AD=16cm,线段AC=BD=10cm,E,F 分别是AB,CD 的中点,则EF 长为 .6.如果x=2是方程mx-1=2的解,那么m= . 7.如下图,从点A 到B 有a ,b ,c 三条通道,最近的一条 通道是 ,这是因为 .8. 某校女生占全体学生会数的52%,比男生多80人。
若设这个学校的学生数为x ,那么可出列方程 .9. 202135,3o αα'''∠=∠=则 . 10. 若=+=++-b a b a 那么,02)1(2 .二、仔细选一选(每题3分,共15分)请将正确答案的代号字母填入题后的括号内.11.F E BC DA B12.有下列四种说法:①锐角的补角一定是钝角;②一个角的补角一定大于这个角;③如果两个角是同一个角的补角,那么它们相等;④锐角和钝角互补.其中正确的是( )A .①② B. ①③ C. ①②③ D. ①②③④ 13. 如果n 是正整数,那么])1(1[n n --的值( )A .一定是零 B.一定是偶数 C.一定是奇数 D.是零或偶数 14.如果a,b 互为相反数,x,y 互为倒数,则()1742a b xy ++的值是( )A .2 B. 3 C. 3.5 D. 415.右下图反映的是地球上七大洲的面积占陆地总面积的百分比,某同学根据右下图得出下列四个结论:①七大洲中面积最大的是亚洲;②南美洲、北美洲、非洲三大州面积的和 约占陆地总面积的50%;③非洲约占陆地总面积的20%; ④南美洲面积是大洋洲面积的2倍. 你认为上述四个结论中正确的为( )A .①② B. ①④ C. ①②④ D. ①②③④ 三、用心做一做16.(6分)22138(3)2()42()423-÷⨯-++÷-17.(6分)解方程2151136x x +--=29.3%20.2%北美洲16.1%南美洲南极洲18.(8分)请你来做主:小明家搬了新居要购买新冰箱,小明和妈妈在商场看中了甲、乙两种冰箱.其中,甲冰箱的价格为2100元,日耗电量为1度;乙冰箱是节能型新产品,价格为2220元,日耗电量为0.5度,并且两种冰箱的效果是相同的.老板说甲冰箱可以打折,但是乙冰箱不能打折,请你就价格方面计算说明,甲冰箱至少打几折时购买甲冰箱比较合算?(每度电0.5元,两种冰箱的使用寿命均为10年,平均每年使用300天)19.(10分)画图说明题 (1) 作∠AOB=90;(2) 在∠AOB 内部任意画一条射线OP ; (3) 画∠AOP 的平分线OM ,∠BOP 的平分线ON ; (4) 用量角器量得∠MON= . 试用几何方法说明你所得结果的正确性.20.( 8分)将连续的奇数1,3,5,7,9…,排成如下的数表: (1)十字框中的五个数的平均数与15有什么关系?(2)若将十字框上下左右平移,可框住另外的五个数,这五个数的和能等于315吗?若能,请求出这五个数;若不能,请说明理由.353121119121.(9分)牛奶加工厂现有鲜奶8吨,若在市场上直接销售鲜奶(每天可销售8吨),每吨可获利润500元;制成酸奶销售,每加工1吨鲜奶可获利润1200元;制成奶片销售,每加工1吨鲜奶可获利润2000元.该厂的生产能力是:若制酸奶,每天可加工3吨鲜奶;若制奶片,每天可加工1吨鲜奶;受人员和设备限制,两种加工方式不可同时进行,受气温条件限制,这批牛奶必须在4天内全部销售或加工完毕.请你帮牛奶加工厂设计一种方案,使这8吨鲜奶既能在4天内全部销售或加工完毕,又能获得你认为最多的利润.22.(8分)观察下图,回答下列问题:(1)在∠AOB 内部画1条射线OC ,则图中有 个不同的角; (2)在∠AOB 内部画2条射线OC ,OD ,则图中有 个不同的角; (3)在∠AOB 内部画3条射线OC ,OD ,OE 则图中有 个不同的角; (4)在∠AOB 内部画10条射线OC ,OD ,OE …则图中有 个不同的角; (5)在∠AOB 内部画n 条射线OC ,OD ,OE …则图中有个不同的角;(1) (2) (3)B B七年级上数学参考答案及评分意见一、认真填一填(每题3分,共30分)1.6.4×1062.13.1>3.8>2.4>-4.6>-19.4 3.±2,±3 4.22.5° 5.10cm 6.327.b ,两点之间线段最短 7.2 8. 80)52.01(52.0=--x x 9. 616'45'' 10.-1 二、仔细选一选(每题3分,共15分)11. A 12. B 13. D 14. C 15. D 三、用心做一做16.解: 22138(3)2()42()423-÷⨯-++÷-4339()44()928=⨯⨯-++⨯- ………………………………………………(3分)3642322=-+-=--72=- …………………………………………………………………………(6分)17.解:2151136x x +--= 去分母,得 2(21)(51)6x x +--=, ………………………………………(2分) 去括号,得 42516x x +-+=, ……………………………………………(4分) 移项及合并,得 3x -=,系数化为1,得 3x =-. ……………………………………………………(6分) 18.解:设甲冰箱至少打x 折时购买甲冰箱比较合算,依题意,得2100×10x+10×300×1×0.5=2220+10×300×0.5×0.5, 解这个方程,得 x=7.答:设甲冰箱至少打7折时购买甲冰箱比较合算.……………………………(8分) 19.画图说明题(1)略.………………………………………………………………………………(1分) (2)略.………………………………………………………………………………(3分)(3)略.………………………………………………………………………………(5分)(4)45°. …………………………………………………………………………(7分)下面用几何方法说明所得结果的正确性:因为∠POB+∠POA=∠AOB=90°,∠POM=12∠POB,∠PON=12∠POA,……………………………………(8分)所以∠POM+∠PON=12(∠POB+∠POA)=12∠AOB=12×90°=45°. ………(10分)20.(1)十字框中的五个数的平均数为15;………………………………………(2分)(2)十字框框住的五个数的和能等于315.……………………………………(3分)观察可知,同一行左右相邻两个数相差为2,同一列上下相邻两个数相差为10,因此,若设十字框中间的数为x,则十字框框住的五个数的和为:(x-2)+x+(x+2)+(x-10)+(x+10)=5x即十字框框住的五个数的和一定能被5整除。
七年级数学上册 期末试卷(2)北师大版
七年级(上)期末数学试卷一、选择题(本题包括10小题。
)1.下列说法正确的是( )A.-5,a 不是单项式B.2abc -的系数是2-C.3y x -22的系数是31-,次数是4 D.y x 2的系数为0,次数为22.下列调查方式合适的是( )A.为了了解某电视机的使用寿命,采用普查的方式B.调查某市初中学生利用网络媒体自主学习的情况,采用普查的方式C.调查某中学七年级一班学生的视力情况,采用抽样调查的方式D.为了了解人们保护水资源的意识,采用抽样调查的方式3.从新华网获悉:商务部5月27日发布的数据显示,一季度,中国与“一带一路”沿线国家在经贸合作领域保持良好发展势头,双边货物贸易总额超过16 553亿元人民币. 16 553亿用科学记数法表示为( ) A.8103 1.655⨯ B. 11103 1.655⨯ C. 12103 1.655⨯ D. 13103 1.655⨯ 4.若有理数a ,b 在数轴上对应点的位置如图,则下列各式正确的是( )A.0<b +aB.0<b -aC.0>b a ⋅D.0>ba5.如图是某几何体从三个不同的方向看到的图形,下列判断正确的是( )A.该几何体是圆柱,高为2B.该几何体是圆锥,高为2C.该几何体是圆柱,半径为2D.该几何体是圆锥,半径为26.一个四棱柱被一刀切去一部分,剩下的部分可能是( )A.四棱柱B.三棱柱C.五棱柱D.以上都有可能7.某校在“创新素质实践行”活动中,组织学生进行社会调查,并对学生的调查报告进行了评比.如图是对某年级60篇学生的调查报告进行整理,分成5组画出的频数直方图.如果从左到右5个小长方形的高度的比为1∶2∶7∶6∶4,那么在这次评比中被评为优秀的调查报告有(分数大于或等于80分为优秀,且分数为整数)( )A.30篇B.24篇C.18篇D.27篇8.如图,⊙O 的半径为1,分别以⊙O 的直径AB 上的两个四等分点21O ,O 为圆心,21为半径作半圆,则图中阴影部分的面积为( )A. πB.21π C. 41π D.2π 9.若方程0=k +x1-2k 是关于x 的一元一次方程,则方程的解为x=( )A.-1B.1C. 21D. 21-10.观察下列算式:5616=3,187 2=3,729=3,243=3,81=3,27=3,9=3,3=387654321,….根据上述算式的规律可知,018 23的末位数字是( )A.3B.9C.7D.1二、填空题(本题包括5小题。
金考卷:冀教版河北省2019-2020学年七年级数学上学期期末原创卷二(含解析版答案)
河北省2019-2020学年上学期期末原创卷(二)七年级数学(考试时间:120分钟 试卷满分:120分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
5.考试范围:冀教版七上全册。
第Ⅰ卷一、选择题(本大题共16小题,共42分,1~10小题各3分,11~16小题各2分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.在-12,0,-2,15,1这五个数中,最小的数为A .0B .-12C .-2D .152.据报道,人类首张黑洞照片于北京时间2019年4月10日子全球六地同步发布,该黑洞位于室女座一个巨椭圆星系M87的中心,距离地球5500万光年.其中5500万用科学记数法表示为 A .55×106B .5.5×106C .0.55×108D .5.5×1073.解方程11322xx x-=---去分母得 A .()1132x x =--- B .()1132x x =--- C .()1132x x =--- D .()1132x x -=---4.下列合并同类项正确的是 A .3x +22x =53x B .22a b -2a b =1 C .-ab -ab =0D .-22xy +22xy =05.下列运算中,“去括号”正确的是 A .a +(b -c )=a -b -c B .a -(b +c )=a -b -c C .m -2(p -q )=m -2p +q D .x 2-(-x +y )=x 2+x +y6.下列判断正确的是 A .23a b 与2ba 不是同类项B .单项式32x y -的系数是–1 C .25m n 不是整式D .2235x y xy -+是二次三项式7.已知3a x a +=是关于x 的一元一次方程,则该方程的解为 A .x =1B .x =2C .x =3D .x =48.如果代数式2y 2-y +5的值为7,那么代数式4y 2-2y +1的值为 A .5B .4C .3D .29.如果单项式1b xy +-与2312a x y +是同类项,那么关于x 的方程0axb +=的解为 A .1x =B .1x =-C .2x =D .2x =-10.某工厂原计划用a 天生产b 件产品,由于技术革新实际比原计划少用x 天完成,则实际每天要比原计划多生产件. A .b b a a x -- B .a a xb b -- C .b b a x a-- D .a x ab b-- 11.下列说法:①经过三点中的两点画直线一定可以画三条直线;②两点之间,线段最短;③若点M 是AB 的中点,则MA =MB ;④同角的余角相等; 其中正确的说法有 A .4个B .3个C .2个D .1个12.如图,点C 在线段AB 上,点D 是AC 的中点,如果CD =4,AB =14,那么BC 长度为A .4B .5C .6D .6.513.一个角的补角比这个角的余角的3倍还多10°,则这个角的度数为A .140°B .130°C .50°D .40° 14.如图,△OAB 绕点O 逆时针旋转85°得到△OCD ,若∠A =110°,∠D =40°,则∠α的度数是A .35°B .45°C .55°D .65°15.一件夹克衫先按成本价提高60%标价,再将标价打7折出售,结果获利36元,设这件夹克衫的成本价是x 元,那么根据题意,所列方程正确的是 A .0.7(1+0.6)x =x -36 B .0.7(1+0.6)x =x +36 C .0.7(1+0.6x )=x -36D .0.7(1+0.6x )=x +3616.观察下列各算式21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…,根据上述算式的规律,你认为22019的末位数字应该是 A .8B . 6C .4D .2第Ⅱ卷二、填空题(本大题共3小题,共12分.17~18小题各3分;19小题有两个空,每空3分) 17.一个长方形的宽为 cm x ,长比宽的2倍多1cm ,这个长方形的周长为__________cm . 18.有理数a 、b 、c 在数轴上的位置如图所示,化简|a +b |–|a –c |+|b –c |的结果是__________.19.如图,约定:上方相邻两数之和等于这两数下方箭头共同指向的数.示例:即4+3=7则(1)用含x 的式子表示m =__________;(2)当y =-2时,n 的值为__________.三、解答题(本大题共7小题,共66分.解答应写出文字说明、证明过程或演算步骤) 20.(本小题满分8分)解方程:(1)3x +7=32-2x ;(2)2157123y y ---=. 21.(本小题满分9分)已知x 、y 互为相反数,a 、b 互为倒数,c 的绝对值等于2,求202020192()()2x y ab c+--+的值.22.(本小题满分9分)化简或求值:(1)若A =–2a 2+ab –b 3,B =a 2–2ab +b3,求A –2B 的值.(2)先化简,再求值:5x 2y –3xy 2–7(x 2y –xy 2),其中x =2,y =–1.23.(本小题满分9分)如图,直线AB ,CD 相交于点O ,OE 平分∠BOC ,∠FOD =90°.(1)若∠AOF =50°,求∠BOE 的度数; (2)若∠BOD ∶∠BOE =1∶4,求∠AOF 的度数.24.(本小题满分10分)已知C 为线段AB 上一点,关于x 的两个方程()112x m +=与()23x m m +=的解分别为线段AC BC ,的长,(1)当2m =时,求线段AB 的长; (2)若C 为线段AB 的三等分点,求m 的值.25.(本小题满分10分)周末,小明和爸爸在400米的环形跑道上骑车锻炼,他们在同一地点沿着同一方向同时出发,骑行结束后两人有如下对话:(1)他们的对话内容,求小明和爸爸的骑行速度;(2)一次追上小明后,在第二次相遇前,再经过多少分钟,小明和爸爸相距50米?26.(本小题满分11分)已知,A 、B 在数轴上对应的数分别用a 、b 表示,且2(5)|15|0a b ++-=.(1)数轴上点A 表示的数是__________,点B 表示的数是__________.(2)若一动点P 从点A 出发,以3个单位长度/秒速度由A 向B 运动;动点Q 从原点O 出发,以1个单位长度/秒速度向B 运动,点P 、Q 同时出发,点Q 运动到B 点时两点同时停止.设点Q 运动时间为t 秒.①若P 从A 到B 运动,则P 点表示的数为,Q 点表示的数为__________.(用含t 的式子表示) ②当t 为何值时,点P 与点Q 之间的距离为2个单位长度.2019-2020学年上学期期末原创卷七年级数学·全解全析1.【答案】C【解析】∵-2<12-<0<15<1,∴最小的数是-2,故选C .2.【答案】D【解析】5500万用科学记数法表示为5.5×107.故选D . 3.【答案】C【解析】方程两边都乘(x –2),得1=x –1–3(x –2).故选C . 4.【答案】D【解析】A 、原式不能合并,故错误;B 、原式=2a b ,故错误; C 、原式=–2ab ,故错误;D 、原式=0,故正确,故选D . 5.【答案】B【解析】A 、a +(b -c )=a +b –c ,错误;B 、a -(b +c )=a –b –c ,正确; C 、m -2(p -q )=m –2p +2q ,错误;D 、x 2-(-x +y )=x 2+x –y ,错误,故选B . 6.【答案】B【解析】A .23a b 与2ba 是同类项,故错误;B .单项式32x y -的系数是–1,故正确;C .25m n 是整式,故错误;D .2235x y xy -+是三次三项式,故错误.故选B .7.【答案】B【解析】∵x a+a =3是关于x 的一元一次方程,∴a =1,即方程为x +1=3, 解得:x =2.故选B . 8.【答案】A【解析】∵2y 2-y +5的值为7,∴2y 2-y =2, 则4y 2-2y +1=2(2y 2-y )+1=4+1=5. 故选A . 9.【答案】C【解析】根据题意得:a +2=1,解得:a =–1,b +1=3,解得:b =2,把a =–1,b =2代入方程ax +b =0得:–x +2=0,解得:x =2,故选C . 10.【答案】C【解析】根据题意知,原计划每天生产b a 件,而实际每天生产b a x-件, 则实际每天要比原计划多生产b ba x a--(件),故选C . 11.【答案】B【解析】①过同一平面上不共线的三点中的任意两点画直线,可以画三条直线,当这三点在同一条直线上时,只能作一条直线,故①错误;②两点之间,线段最短,是线段公理,故②正确; ③若点M 是AB 的中点,则MA =MB ,故③正确; ④同角的余角相等,故④正确.故选B .12.【答案】C【解析】∵点D 是AC 的中点,如果CD =4,∴AC =2CD =8, ∵AB =14,∴BC =AB -AC =6,故选C . 13.【答案】C【解析】设这个角为α,则它的余角为90°–α,补角为180°–α, 根据题意得,180°–α=3(90°–α)+10°, 180°–α=270°–3α+10°,解得α=50°.故选C . 14.【答案】C【解析】由题意可知:∠DOB =85°,∵△DCO ≌△BAO ,∴∠D =∠B =40°,∴∠AOB =180°–40°–110°=30°,∴∠α=85°–30°=55°,故选C . 15.【答案】B【解析】设这件夹克衫的成本价是x 元, 依题意,得:0.7(1+0.6)x =x +36.故选B . 16.【答案】A【解析】∵21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…, ∴这些数字的末尾数字依次以2,4,8,6出现, ∵20194=5043÷……,∴22019的末位数字是8,故选A . 17.【答案】(62)x +【解析】一个长方形的长比宽的2倍多1 cm ,若宽为x cm ,则长为:(2x +1)cm ,周长为:2(21)2(31)(62)(cm)x x x x ++=+=+,故答案为:(62)x +.18.【答案】–2a【解析】∵b <0,a >0,||||b a >,∴a +b <0. ∵c <0,a >0,∴a –c >0. ∵b >c ,∴b –c >0.∴||||||a b a c b c +--+-=–(a +b )–(a –c )+(b –c )=–a –b –a +c +b –c =–2a .故答案为:–2a . 19.【答案】3x ;1【解析】(1)根据上方相邻两数之和等于这两数下方箭头共同指向的数,则m =x +2x =3x .(2)由题知m =3x ,n =2x +3,y =m +n ,则y =3x +2x +3=5x +3,把y =–2代入,–2=5x +3,解得x =–1,则n =2×(–1)+3=1.故答案为:3x ;1.20.【解析】(1)3x +7=32-2x ,移项得:3x +2x =32-7, 合并得:5x =25, 解得:x =5.(4分)(2)2157123y y ---=. 去分母得:3(2y -1)-6=2(5y -7), 去括号得:6y -3-6=10y -14, 移项:6y -10y =-14+6+3, 合并得:-4y =-5, 解得:y =54.(8分) 21.【解析】根据题意得:x +y =0,ab =1,c =2或-2,(4分)∵当c =2或–2时,2=4c , 则原式=0+1+4=5.(9分)22.【解析】(1)∵A =–2a 2+ab –b 3,B =a 2–2ab +b 3,∴A –2B =–2a 2+ab –b 3–2(a 2–2ab +b 3)=–2a 2+ab –b 3–2a 2+4ab –2b 3=–4a 2+5ab –3b 3.(4分) (2)原式=5x 2y -3xy 2-7x 2y +7xy 2=-2x 2y +4xy 2,(7分)当x =2,y =-1时,原式=-2×22×(-1)+4×2×(-1)2=8+8=16.(9分) 23.【解析】(1)∵COF ∠与DOF ∠是邻补角,∴18090COF DOF ∠=︒-∠=︒. ∵AOC ∠与AOF ∠互为余角,∴90905040AOC AOF ∠=︒-∠=︒-︒=︒.(2分) ∵AOC ∠与BOC ∠是邻补角,∴180********COB AOC ∠=︒-∠=︒-︒=︒. ∵OE 平分BOC ,∠ ∴1702BOE BOC ∠=∠=︒.(4分) (2)14BOD BOE ∠∠=∶∶, 设4BOD AOC x BOE COE x ∠=∠=∠=∠=,, ∵AOC ∠与BOC ∠是邻补角, ∴180AOC BOC ∠+∠=︒,(6分) 即44180x x x ++=︒, 解得20x =︒,∵AOC ∠与AOF ∠互为余角,∴90902070AOF AOC ∠=︒-∠=︒-︒=︒.(9分) 24.【解析】(1)当2m =时,有()1122x +=,()2223x +=, 由方程()1122x +=,解得3x =,即3AC =. 由方程()2223x +=,解得1x =,即1BC =.因为C 为线段AB 上一点,所以4AB AC BC =+=.(4分) (2)解方程()112x m +=,得21x m =-, 即21AC m =-.解方程()23x m m +=,得2m x =, 即2mBC =.(6分)①当C 为线段AB 靠近点A 的三等分点时,则2BC AC =,即()2212m m =-,解得47m =. ②当C 为线段AB 靠近点B 的三等分点时, 则2AC BC =,即2122mm -=⋅,解得1m =. 综上可得,47m =或1.(9分) 25.【解析】(1)设小明的骑行速度为x 米/分钟,则爸爸的骑行速度为2x 米/分钟,根据题意得:2(2x –x )=400,(2分) 解得:x =200, ∴2x =400.答:小明的骑行速度为200米/分钟,爸爸的骑行速度为400米/分钟.(5分)(2)设爸爸第一次追上小明后,在第二次相遇前,再经过y 分钟,小明和爸爸跑道上相距50米, ①爸爸第一次追上小明后,在第二次相遇前,爸爸又比小明多骑了50米, 根据题意得:400y –200y =50, 解得:y =14;(7分) ②爸爸第一次追上小明后,在第二次相遇前,爸爸又比小明多骑了350米, 根据题意得:400y –200y =350, 解得:y =74. 答:第二次相遇前,再经过14或74分钟,小明和爸爸跑道上相距50米.(10分) 26.【解析】(1)−5;15.(4分)∵2(5)|15|0a b ++-=, ∴a +5=0,b −15=0, 解得a =−5,b =15,∴A 表示的数是−5,B 表示的数是15. 故答案为:−5;15. (2)①t .(7分)若P 从A 到B 运动,则P 点表示的数为−5+3t ,Q 点表示的数为t . ②若点P 在Q 点左侧,则−5+3t +2=t ,得:32t =,(9分) 若点P 在Q 点右侧,则−5+3t −2=t , 得:72t =, 综上所述,32t =或72.(11分)。
【必考题】初一数学上期末第一次模拟试题(带答案) (2)
【必考题】初一数学上期末第一次模拟试题(带答案) (2)一、选择题1.下列图形中,能用ABC ∠,B Ð,α∠表示同一个角的是( )A .B .C .D .2.下列各式的值一定为正数的是( )A .(a +2)2B .|a ﹣1|C .a +1000D .a 2+1 3.下列计算正确的是( ) A .2a +3b =5abB .2a 2+3a 2=5a 4C .2a 2b +3a 2b =5a 2bD .2a 2﹣3a 2=﹣a 4.在数﹣(﹣3),0,(﹣3)2,|﹣9|,﹣14中,正数的有( )个.A .2B .3C .4D .55.如图所示运算程序中,若开始输入的x 值为48,我们发现第1次输出的结果为24,第2次输出的结果为12,…第2017次输出的结果为( )A .3B .6C .4D .2 6.用四舍五入按要求对0.06019分别取近似值,其中错误的是( ) A .0.1(精确到0.1) B .0.06(精确到千分位)C .0.06(精确到百分位)D .0.0602(精确到0.0001) 7.-4的绝对值是( )A .4B .C .-4D .8.两根同样长的蜡烛,粗烛可燃4小时,细烛可燃3小时,一次停电,同时点燃两根蜡烛,来电后同时熄灭,发现粗烛的长是细烛的2倍,则停电的时间为( ) A .2小时 B .2小时20分 C .2小时24分 D .2小时40分9.A 、B 两地相距450千米,甲、乙两车分别从A 、B 两地同时出发,相向而行.已知甲车速度为120千米/小时,乙车速度为80千米/小时,经过t 小时两车相距50千米.则t 的值是( )A .2B .2或2.25C .2.5D .2或2.510.已知x =y ,则下面变形错误的是( )A .x +a =y +aB .x -a =y -aC .2x =2yD .x y a a= 11.若a =2,|b |=5,则a +b =( )A .-3B .7C .-7D .-3或712.观察下列各式:133=,239=,3327=,4381=,53243=,63729=,732187=,836561=……根据上述算式中的规律,猜想20193的末位数字是( ) A .3 B .9 C .7 D .1二、填空题13.若一件商品按成本价提高40%后标价,又以8折优惠卖出,结果仍可获利15元,则这件商品的实际售价为______元.14.用黑白两种颜色的正六边形地面砖按如图所示的规律,拼成若干图案:(1)第4个图案有白色地面砖______块;(2)第n 个图案有白色地面砖______块.15.已知一个长方形的周长为(86a b +)厘米(0,0a b >>),长为(32a b +)厘米,则它的宽为____________厘米.16.一个角的补角是这个角余角的3倍,则这个角是_____度.17.如图,将1~6这6个整数分别填入如图的圆圈中,使得每边上的三个数之和相等,则符合条件的x 为_____.18.在时刻10:10时,时钟上的时针与分针间的夹角是 .19.小红的妈妈买了4筐白菜,以每筐25千克为标准,超过的千克数记为正数,不足的千克数记为负数,称重后的记录分别为0.25+,1-,0.5+,0.75-,小红快速准确地算出了4筐白菜的总质量为__________千克.20.按照下面的程序计算:如果输入x 的值是正整数,输出结果是166,那么满足条件的x 的值为___________.三、解答题21.已知:点C 在直线AB 上,AC=8cm ,BC=6cm ,点M 、N 分别是AC 、BC 的中点,求线段MN 的长.22.如图,A ,B 分别为数轴上的两点,A 点对应的数为-20,B 点对应的数为100.(1)请写出A B中点M所对应的数;(2)现有一只电子蚂蚊P从B点出发,以6单位秒的速度向左运动,同时另一只电子蚂蚁Q恰好从A点出发,以4单位/秒的速度向右运动,设两只电子蚂蚁在数轴上的C点相遇,求C点对应的数.(3)若当电子蚂蚁P从B点出发时,以6单位/秒的速度向左运动,同时另一只电子蚂蚁Q恰好从A点出发,以4单位/秒的速度也向左运动,设两只电子蚂蚁在数轴上的D点相遇,求D点对应的数.23.某中学库存若干套桌椅,准备修理后支援贫困山区学校.现有甲、乙两木工组,甲每天修理桌椅16套,乙每天修桌椅比甲多8套,甲单独修完这些桌椅比乙单独修完多用20天,学校每天付甲组80元修理费,付乙组120元修理费.(1)该中学库存多少套桌椅?(2)在修理过程中,学校要派一名工人进行质量监督,学校负担他每天10元生活补助费,现有三种修理方案:a、由甲单独修理;b、由乙单独修理;c、甲、乙合作同时修理.你认为哪种方案省时又省钱?为什么?24.如图所示,用棋子摆成的“上”字:第一个“上”字第二个“上”字第三个“上”字如果按照以上规律继续摆下去,那么通过观察,可以发现:(1)第四、第五个“上”字分别需用和枚棋子.(2)第n个“上”字需用枚棋子.(3)如果某一图形共有102枚棋子,你知道它是第几个“上”字吗?25.如图,已知∠AOC=90°,∠COD比∠DOA大28°,OB是∠AOC的平分线,求∠BOD 的度数.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】根据角的表示方法进行逐一分析,即角可以用一个大写字母表示,也可以用三个大写字母表示.其中顶点字母要写在中间,唯有在顶点处只有一个角的情况,才可用顶点处的一个字母来记这个角,否则分不清这个字母究竟表示哪个角.角还可以用一个希腊字母(如∠α,∠β,∠γ、…)表示,或用阿拉伯数字(∠1,∠2…)表示.【详解】A、因为顶点B处有2个角,所以这2个角均不能用∠B表示,故本选项错误;∠表示,故本选项正确;B、因为顶点B处只有1个角,所以这个角能用∠ABC,∠B,αC、因为顶点B处有3个角,所以这3个角均不能用∠B表示,故本选项错误;D、因为顶点B处有4个角,所以这4个角均不能用∠B表示,故本选项错误.故选:B.【点睛】本题考查的是角的表示方法,熟知角的三种表示方法是解答此题的关键.2.D解析:D【解析】【分析】直接利用偶次方以及绝对值的性质分别分析得出答案.【详解】A.(a+2)2≥0,不合题意;B.|a﹣1|≥0,不合题意;C.a+1000,无法确定符号,不合题意;D.a2+1一定为正数,符合题意.故选:D.【点睛】此题主要考查了正数和负数,熟练掌握非负数的性质是解题关键.3.C解析:C【解析】【分析】根据合并同类项法则逐一判断即可.【详解】A.2a与3b不是同类项,所以不能合并,故本选项不合题意;B.2a2+3a2=5a2,故本选项不合题意;C.2a2b+3a2b=5a2b,正确;D.2a2﹣3a2=﹣a2,故本选项不合题意.故选:C.【点睛】本题主要考查了合并同类项,合并同类项时,系数相加减,字母及其指数不变.4.B解析:B【解析】解:﹣(﹣3)=3是正数,0既不是正数也不是负数,(﹣3)2=9是正数,|﹣9|=9是正数,﹣14=﹣1是负数,所以,正数有﹣(﹣3),(﹣3)2,|﹣9|共3个.故选B.5.D解析:D【解析】【分析】根据题意可以写出前几次输出的结果,从而可以发现输出结果的变化规律,进而得到第2019次输出的结果.【详解】解:根据题意得:可发现第1次输出的结果是24;第2次输出的结果是24×12=12;第3次输出的结果是12×12=6;第4次输出的结果为6×12=3;第5次输出的结果为3+5=8;第6次输出的结果为812⨯=4;第7次输出的结果为412⨯=2;第8次输出的结果为212⨯=1;第9次输出的结果为1+5=6;归纳总结得到输出的结果从第3次开始以6,3,8,4,2,1循环,∵(2017-2)÷6=335.....5,则第2017次输出的结果为2.故选:D.【点睛】本题考查数字的变化类、有理数的混合运算,解答本题的关键是明确题意,发现题目中输出结果的变化规律.6.B解析:B【解析】A.0.06019≈0.1(精确到0.1),所以A选项的说法正确;B.0.06019≈0.060(精确到千分位),所以B选项的说法错误;C.0.06019≈0.06(精确到百分),所以C选项的说法正确;D.0.06019≈0.0602(精确到0.0001),所以D选项的说法正确。
七年级下册数学期末试题 二
第1页 (共8页)xx 县20 —20 学年度第二学期期末教学质量检测义务教育七年级数 学 试 卷(本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷1至2页,第Ⅱ卷3至8页,全卷满分120分,考试时间120分钟。
) 题号 Ⅰ Ⅱ总分 总分人一 二三 17 18 19 20 21 22 23 24 25 得分第Ⅰ卷(选择题 共30分)一、选择题(本大题10个小题,每小题3分,共30分。
请在每小题给出的4个选项中,将唯一正确的答案序号填在题后括号里。
)1.方程4x -3=x 的解是( )A .x = 34B .x = 43 C .x =1 D .x =-12.已知a >b ,且c 为有理数,则下列关系一定成立的是( )A .ac >bcB .c -a >c -bC .ac 2>bc 2D .c +a >c +b3.现有边长相同的正三角形、正方形和正六边形纸片若干张,下列拼法中不能铺成一个平面图案的是( ) A .正方形和正六边形 B .正三角形和正方形C .正三角形和正六边形D .正三角形、正方形和正六边形4.下列图案既是中心对称图形又是轴对称图形的是( ).A .B .C .D .5.现有5cm ,6cm ,11cm ,13cm 长的四根木棒,任取其中三根组成一个三角形,那么可以组成不同的三角形的个数是( ) A .1个 B .2个 C .3个 D .4个得 分 评 卷 人///////////密///////封///////线///////内///////不///////要///////答///////题///////////学校 班级 姓名 考号第2页 (共8页)6.若⎩⎨⎧==23y x 是方程3x -ay =0的一个解,则a 的值为( )A .3B .4C .4.5D .67.如图1所示,△ABC 是等腰直角三角形,点D 是斜边BC 的中点,△ABD 绕点A 旋转到△ACE 的位置,恰好与△ACD 组成正方形ADCE ,则△ABD 所经过的旋转是( )A .顺时针旋转225°B .逆时针旋转45°C .顺时针旋转315°D .逆时针旋转90°8.雅西高速公路于2012年4月29日正式通车,西昌到成都全长420千米,一辆小汽车一辆客车同时从西昌、成都两地相向开出,经过2.5小时相遇,相遇时,小汽车比客车多行驶70千米,设小汽车和客车的平均速度分别为x 千米/时和y 千米/时,则下列方程组正确的是( ) A .⎩⎨⎧=-=+705.25.24205.25.2y x y x B .⎩⎨⎧=+=-4205.25.270y x y xC . ⎩⎨⎧=-=+4205.25.270y x y x D .⎩⎨⎧=+=+4205.25.270y x y x 9.下列判断正确的是( )A .方程(x -3)(y +1)=0的解是⎩⎨⎧-==13y xB .方程2x -4y =8的解必是方程组⎩⎨⎧=+=-753842y x y x 的解C .t 可以取任意数时,⎩⎨⎧+=+=2345t y t x 都是方程3x -5y =2的解D . 二元一次方程组一定只有一组解10.若不等式组⎪⎪⎩⎪⎪⎨⎧++≥++≥++a x a x x x )1(343450312恰有三个整数解,则a 的取值范围为( )第3页 (共8页)A .12≤a ≤1B .12<a ≤1C .1≤a <32D .1≤a ≤32第Ⅱ卷(非选择题 共90分)二、填空题(本大题6个小题,每小题3分,共18分。
2022年北师大版七年级下册第二学期数学期末考试试题(含答案)
七年级下学期数学期末考试试题(满分:150分时间:120分钟)一.单选题。
(共10小题,每小题4分,共40分)4.把20本书随意放入两个抽屉(每个抽屉内都放),第一个抽屉放入a本,第二个抽屉放入b 本,则下列判断错误的是()A.20是变量B.a是变量C.b是变量D.20是常量5.如图,长方形ABCD沿线段EF折叠到EB’C’F’的位置,若∠EFC’=100°,则∠DFC’的度数是()A.20°B.30°C.40°D.50°(第5题图)(第6题图)(第8题图)6.如图,在△ABC中,AC=6,中线AD=10,则边AB的长可能是()A.30B.22C.14D.67.等腰三角形的周长是15cm,其中一边长为4cm,则该等腰三角形的底边长为()A.7cmB.4cmC.4cm或7cmD.5.5cm或4cmA.1:3B.2:3C.5:1D.1:5A.20分钟B.24分钟C.26分钟D.28分钟(第9题图)(第10题图)二.填空题。
(共6小题,每小题4分,共24分)11.如果(x2-a)x+x的展开式中只含有x3这一项,则a的值为.12.如图,AB∥EG,CD∥EF,BC∥DE,若x=50°,y=30°,则z的度数为.(第12题图)(第14题图)(第15题图)13.若x2+(m-2)x+16是一个完全平方式,则m的值是.14.把一转盘分成两个半圆,再把其中一个半圆等份三等份,并标上数字如图所示,任意转动转盘,当转盘停止时,指针落在奇数区域的概率是.15.小明从家门口骑车去图书馆,先走平路到达A,再走上坡路到达B,最后走下坡到达图书馆,所用的时间与路程的关系如图所示,回家时,如果他沿原路返回,且走平路,上坡路和下坡路的速度分别保持和去上班时一致,他从图书馆到家需要的时间是分钟. 16.如图,在△ABC中,BD,BE分别是△ABC的高线和角平分线,点F在CA的延长线上,FH⊥BE交BD于点G,交BC于点H,DE=DG,下列结论:①∠DBE=∠F;②∠BEF=1(∠BAF+∠2C);③∠F=1(∠BAC+∠C);④2DE+2BGEF,其中正确的是(只填序号).2三.解答题。
七年级数学期末考试试卷(含答案)
七年级数学期末考试试卷(含答案)第一部分:选择题(每小题2分,共40分)1.在下列各组数中,只有一个数是奇数的是()A. 15 ,10 ,14B. 28 ,65 ,75C. 105 ,77 ,49D.72 ,39 ,172.已知正方形边长为a,它的面积是()A. a*aB. 2aC. a^2/2D. a^23.简化下列代数式:3(x + 2y) - 2(4x - y)的结果是()A. -6x + 7yB. 6x - 7yC. -6x - 7yD. 6x + 7y4.下列哪一个数字是一个质数()A. 6B. 10C. 14D. 195.已知取得了一个300分的精简,这个数在什么范围内()A. (200, 300]B. (100, 300]C. (100, 200]D. (200, 400)...(省略部分)第二部分:填空题(每小题3分,共30分)11.请用约简的形式填写下列小数:= 0.5 × 0.4 × 0.812.已知数a = 12 - 3 × 4,求a的值。
13.求下列方程的解:(2/3)x + 5 = 914.请用算术平方根填写下列空白:121 = ()^215.已知正方形的面积是49平方米,求它的边长。
...(省略部分)第三部分:应用题(共30分)21.运动会比赛开始的第一天,白队赢了4场,数目还是蓝队多。
接下来的每一天都有比赛,白队每天赢蓝队1场,第5天比赛结束时,两队有相同数目的胜利。
求第一天开始的时候,白队和蓝队各自赢了多少场比赛?22.某商店水果销售统计,根据收入金额和销售数量绘制了下图,其中横轴表示销售数量(x),纵轴表示收入金额(y)。
请根据图中的数据回答以下问题:![](chart.png)a) 当销售数量为5时,收入金额是多少?b) 黄线代表苹果的销售情况,当销售数量为2时,收入金额是多少?c) 根据图中的数据,苹果的单价是多少?...(省略部分)答案第一部分:选择题1. C2. D3. C4. D5. B...第二部分:填空题11. 0.1612. 013. x = 614. 1115. 7...第三部分:应用题21. 白队赢了6场,蓝队赢了2场22.a) 150b) 35c) 15请按照上述格式设置试卷内容,试卷答案可以根据实际情况修改或增加。
七年级数学下册期末考试真题卷含答案解析(2)
七年级数学下册期末考试真题卷一.选择题(共10小题,满分30分,每小题3分)1.计算的结果是()A.﹣9B.C.D.92.下列微信表情图标属于轴对称图形的是()A.B.C.D.3.北斗卫星导航系统(BDS)是中国自行研制的全球卫星导航系统,未来在亚太地区定位精度将优于5米,测速精度优于0.1米/秒,授时精度优于10纳秒,10纳秒为0.00000001秒,0.00000001用科学记数法表示为()A.0.1×10﹣7B.1×10﹣8C.1×10﹣7D.0.1×10﹣8 4.一只不透明的袋子里装有4个黑球,2个白球,每个球除颜色外都相同,则事件“从中任意摸出3个球,至少有1个球是黑球”的事件类型是()A.随机事件B.不可能事件C.必然事件D.无法确定5.一个三角形的两边长为2和6,第三边为偶数.则这个三角形的周长为()A.16B.14C.12D.106.连接正六边形不相邻的两个顶点,并将中间的六边形涂成黑色,制成如图所示的镖盘,将一枚飞镖任意投掷到镖盘上,飞镖落在黑色区域的概率为()A.B.C.D.7.下列说法正确的是()A.一个角的补角一定大于这个角B.延长射线ABC.过点A作AB∥CD∥EFD.对顶角相等从盒子里随机摸出一个乒乓球,摸到黄色乒乓球的概率为,那么盒子内白色乒乓球的行通道,(1)请用代数式表示喷泉的面积并化简;(2)喷泉建成后,需给人行通道铺上地砖方便旅客通行,若每块地砖的面积是平方米,则刚好铺满不留缝隙,求需要这样的地砖多少块.22.(7分)小明沿一段笔直的人行道行走,边走边欣赏风景,在由C处走向D处的过程中,通过隔离带PM的缝隙P,刚好浏览完对面人行道宣传墙AB上的一条标语,具体信息如下:如图,AB∥PM∥CD,相邻两平行线间的距离相等,AC,BD相交于点P,PD⊥CD,垂足为D.小明根据自己步行的路程CD长为16m,测出标语AB的长度也为16m,请说明理由.23.(8分)掷一枚质地均匀的骰子,观察向上一面的点数,求下列事件的概率.(1)点数为2.(2)点数为奇数.(3)点数大于1且小于6.24.(10分)如图,在△ABC中,AB=AC,AD⊥BC于点D,BE⊥AC于点E,AD、BE相交于点H,AE=BE.试说明:(1)△AEH≌△BEC.(2)AH=2BD.25.(12分)如图,四边形ABCD中,AB∥CD,CD=AD,∠ADC=60°,对角线BD平分∠ABC交AC于点P.CE是∠ACB的角平分线,交BD于点O.(1)请求出∠BAC的度数;(2)试用等式表示线段BE、BC、CP之间的数量关系,并说明理由.参考答案一.选择题(共10小题,满分30分,每小题3分)1.D.2.C.3.B.4.C.5.B.6.B.7.D.8.B.9.A.10.C.二.填空题(共4小题,满分12分,每小题3分)11.4.12.116.13.4.14.5.三.解答题(共11小题,满分78分)15.解:(1)原式=(a2+2ab+b2)+(a2﹣b2)﹣2ab =a2+2ab+b2+a2﹣b2﹣2ab=2a2;(2)原式=a2﹣2ab﹣b2﹣(a2﹣2ab+b2)=a2﹣2ab﹣b2﹣a2+2ab﹣b2=﹣2b2.16.解:如图,△ABC为所作.17.解:∵点C在AE的垂直平分线上,∴CA=CE,∵AD⊥BE,BD=DC,∴AB=AC,∵△ABC的周长为18,∴AB+BC+AC=18,∴2AC+2DC=18,∴AC+DC=9,∴DE=DC+CE=AC+CD=9(cm).18.解:(1)如图,△A1B1C1为所作;(2)A(4,1),B,(5,4),G(3,3);(3)点P关于直线l的对称点P1的坐标为(2﹣m,n).故答案为4,1;5,4;3,3;﹣m+2,n.19.解:(1)由图可知,A市和B市之间的路程是360km,故答案为:360;(2)根据题意可知快车速度是慢车速度的2倍,设慢车速度为x km/h,则快车速度为2x km/h,2(x+2x)=360,解得,x=602×60=120,则a=120,点M的横坐标、纵坐标的实际意义是两车出发2小时时,在距B市120km处相遇;(3)快车速度为120km/h,到达B市的时间为360÷120=3(h),方法一:当0≤x≤3时,y1=﹣120x+360,当3<x≤6时,y1=120x﹣360,y2=60x,当0≤x≤3时,y2﹣y1=20,即60x﹣(﹣120x+360)=20,解得,x=,﹣2=,当3<x≤6时,y2﹣y1=20,即60x﹣(120x﹣360)=20,解得,x=,﹣2=,所以,快车与慢车迎面相遇以后,再经过或h两车相距20km.方法二:设快车与慢车迎面相遇以后,再经过t h两车相距20km,当0≤t≤3时,60t+120t=20,解得,t=;当3<t≤6时,60(t+2)﹣20=120(t+2)﹣360,解得,t=.所以,快车与慢车迎面相遇以后,再经过或h两车相距20km.20.(1)证明:∵∠D与∠1互余,∴∠D+∠1=90°,∵OC⊥OD,∴∠COD=90°,∴∠D+∠1+∠COD=180°,∴∠D+∠AOD=180°,∴ED∥AB;(2)解:∵ED∥AB,∴∠AOF=∠OFD=70°,∵OF平分∠COD,∴∠COF=∠COD=45°,∴∠1=∠AOF﹣∠COF=25°.21.解:(1)由图可得,喷泉面积为:(3a+b﹣2b)(a+3b﹣2b)=(3a﹣b)(a+b)=3a2+2ab﹣b2;(2)[(3a+b)(a+3b)﹣(3a2+2ab﹣b2)]÷=(3a2+10ab+3b2﹣3a2﹣2ab+b2)×=(8ab+4b2)×=80a+40b,答:需要这样的地砖(80a+40b)块.22.解:CD=AB=16米,理由如下:∵AB∥CD,∴∠ABP=∠CDP,∵PD⊥CD,∴∠CDP=90°,∴∠ABP=90°,即PB⊥AB,∵相邻两平行线间的距离相等,∴PD=PB,在△ABP与△CDP中,,∴△ABP≌△CDP(ASA),∴CD=AB=16米.23.解:(1)P(点数为2)=;(2)点数为奇数的有3种可能,即点数为1,3,5,则P(点数为奇数)==.(3)点数大于1且小于6的有3种可能,即点数为2,3,4,5,则P(点数大于2且小于6)==.24.解:(1)∵AD⊥BC,∴∠DAC+∠C=90°,∵BE⊥AC,∴∠EBC+∠C=90°,∴∠DAC=∠EBC,在△AEH与△BEC中,,∴△AEH≌△BEC(ASA);(2)∵△AEH≌△BEC,∴AH=BC,∵AB=AC,AD⊥BC,∴BC=2BD,∴AH=2BD.25.(1)解:∵CD=AD,∠ADC=60°,∴△ACD为等边三角形,∴∠ACD=60°,∵AB∥CD,∴∠BAC=∠ACD=60°;(2)证明:在BC上截取BF=BE,∵BD平分∠ABC,∴∠EBO=∠OBF,∵OB=OB,∴△BEO≌△BFO(SAS),∴∠BOE=∠BOF,∵∠BAC=60°,CE是∠ACB的角平分线,∴∠OBC+∠OCB=60°,∴∠POC=∠BOE=60°,∴∠COF=60°,∴∠COF=∠POC,又∵OC=OC,∠OCP=∠OCF,∴△CPO≌△CFO(ASA),∴CP=CF,∴BC=BF+CF=BE+CP.。
四川省遂宁市2020年七年级第二学期期末考试数学试题含解析
四川省遂宁市2020年七年级第二学期期末考试数学试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题只有一个答案正确)1.若a<b,下列不等式中错误的是()A.a+z<b+z B.a﹣c>b﹣c C.2a<2b D.﹣4a>﹣4b【答案】B【解析】【分析】根据不等式的性质即可判断.【详解】A. a+z<b+z,正确;B. a﹣c<b﹣c,故错误;C. 2a<2b,正确;D. ﹣4a>﹣4b正确,故选B.【点睛】此题主要考查不等式的性质,熟知其变号规律是解题的关键.2.若一组数据x,3,1,6,3的中位数和平均数相等,则x的值为()A.2 B.3 C.4 D.5【答案】A【解析】【分析】根据平均数与中位数的定义分三种情况x≤1,1<x<3,3≤x<6,x≥6时,分别列出方程,进行计算即可求出答案.【详解】当x⩽1时,中位数与平均数相等,则得到:15(x+3+1+6+3)=3,解得x=2(舍去);当1<x<3时,中位数与平均数相等,则得到:15(x+3+1+6+3)=3, 解得x=2; 当3⩽x<6时,中位数与平均数相等,则得到:15 (x+3+1+6+3)=3, 解得x=2(舍去);当x ⩾6时,中位数与平均数相等,则得到:15(x+3+1+6+3)=3, 解得x=2(舍去).所以x 的值为2.故选:A.【点睛】 此题考查中位数,算术平均数,解题关键在于分三种情况x≤1,1<x<3,3≤x<6,x≥6,进行求解 3.已知三角形三边长分别为2,x ,9,若x 为正整数,则这样的三角形个数为( )A .3B .5C .7D .11 【答案】A【解析】【分析】根据三角形的三边关系:三角形两边之和大于第三边,两边差小于第三边;求得x 的取值范围,再取正整数即可;【详解】由题意可得,2+x >9,x <9+2,解得,7<x <11,所以,x 为8、9、10;故选:A .【点睛】考查了三角形的三边关系:三角形两边之和大于第三边,两边差小于第三边;牢记三角形的三边关系定理是解答的关键.4.下列实数中,无理数是( )A .3.14B .3πC .D .227【答案】B【解析】【分析】根据无理数的定义,逐项判断即可.【详解】解:A 、3.14是有理数,故不合题意;B 、3π是无理数,故符合题意;C 、38-=-2是有理数,不符合题意;D 、227是有理数,故不合题意, 故选:B .【点睛】本题考查了无理数的知识,解题的关键是掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数.5.下列所示的四个图形中,∠1和∠2是同位角的是( )A .②③B .①②③C .①②④D .①④【答案】C【解析】【分析】 此题在于考查同位角的概念,在截线的同侧,并且在被截线的同一方的两个角是同位角,所以①②④符合要求.【详解】图①、②、④中,∠1与∠2在截线的同侧,并且在被截线的同一方,是同位角;图③中,∠1与∠2的两条边都不在同一条直线上,不是同位角.故选C .【点睛】此题考查同位角,内错角,同旁内角的概念,关键是根据同位角,内错角,同旁内角的概念解答.判断是否是同位角,必须符合三线八角中,在截线的同侧,并且在被截线的同一方的两个角是同位角. 6.空气的密度是,将用科学计数法表示为( ) A .B .C .D .【答案】A【解析】【分析】科学计数法是把一个数表示成n 为整数,据此即可表示.【详解】 解:故答案为:A【点睛】本题考查了科学计数法,熟练掌握用科学计数法表示实数是解题的关键.7.若a <b ,则下列结论不一定成立的是( )A .11a b -<-B .22a b <C .33a b ->-D .22a b < 【答案】D【解析】【分析】由不等式的性质进行计算并作出正确的判断.【详解】A. 在不等式a<b 的两边同时减去1,不等式仍成立,即a−1<b−1,故本选项错误;B. 在不等式a<b 的两边同时乘以2,不等式仍成立,即2a<2b ,故本选项错误;C. 在不等式a<b 的两边同时乘以13-,不等号的方向改变,即33a b ->-,故本选项错误; D. 当a=−5,b=1时,不等式a 2<b 2不成立,故本选项正确;故选:D.【点睛】本题考查不等式的性质,在利用不等式的性质时需注意,在给不等式的两边同时乘以或除以某数(或式)时,需判断这个数(或式)的正负,从而判断改不改变不等号的方向.解决本题时还需注意,要判断一个结论错误,只需要举一个反例即可.8.下列四个算式:①43222623a b a b a b ÷=;②()24()4m mn m m n -÷-=-+;③2122a b ab a ÷=;④()34222m n mnm n ÷-=-.其中,错误的个数是( ) A .1B .2C .3D .4【答案】A【解析】【分析】 根据单项式除以单项式,将系数、同底数的幂分别相除对选项①③④用排除法逐个判定,根据多项式除以单项式,将多项式的每一个除以这个单项式,再把结果相加减的法则对选项②进行检验,这样便可得到本题错误的个数.【详解】根据单项式除以单项式,将系数、同底数的幂分别相除得选项①43222623a b a b a b ÷=,正确; 选项③2122a b ab a ÷=,错误,应为21242a b ab a ÷=; 选项④()34222m n mn m n ÷-=-,正解; 根据多项式除以单项式,将多项式的每一项除以单项式,再所结果相加减,得选项②()24()4m mn m m n -÷-=-+,正确.故选:A【点睛】本题考查的知识点是整式的除法,掌握整式除法的各种法则并能熟练计算是关键,解题过程中还要特别注意符号的变化.9小的数是( )A .2B .3C .4D .5 【答案】A【解析】【分析】先平方得6的取值范围,即可解题.【详解】∵26=,469<<,∴23 ,小的数是2,故选:A .【点睛】求二次根式的取值范围可利用平方后找到相近的平方数,再将平方数开方即可.10.若从长度分别为2 cm 、3 cm 、4 cm 、6 cm 的四根木棒中,任意选取三根首尾顺次相连搭成三角形,则搭成的不同三角形共有( )A .1个B .2个C .3个D .4个【答案】B【解析】【分析】根据“在三角形中任意两边之和大于第三边,任意两边之差小于第三边”组合三角形.【详解】三角形三边可以为:①2cm、3cm、4cm;②3cm、4cm、6cm.所以,可以围成的三角形共有2个.故选B.【点睛】本题考查了三角形的三边关系.已知三角形的两边,则第三边的范围是:大于已知的两边的差,而小于两边的和.二、填空题11.在平面直角坐标系中,点A的坐标是(3,﹣8),作点A关于x轴的对称点,得到点A′再作点A′关于y 轴的对称点,得到点A″的坐标为_______.【答案】(﹣3,8).【解析】【分析】直接利用关于x轴和y轴对称点的性质分别得出答案.【详解】∵点A的坐标是(3,﹣8),作点A关于x轴的对称点,得到点A′,∴A′(3,8),∵作点A′关于y轴的对称点,得到点A″,∴A″的坐标为:(﹣3,8).故答案为:(﹣3,8).【点睛】此题主要考查了关于x,y轴对称点的性质,正确掌握横纵坐标的关系是解题关键.12.不等式组的23182xx x>-⎧⎨--⎩解集是_____.【答案】﹣32<x≤1【解析】【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【详解】解不等式2x>-1,得:x>-32,解不等式x-1≤8-2x,得:x≤1,则不等式组的解集为-32<x≤1,故答案为-32<x≤1. 【点睛】 本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.13.一辆轿车离开某城市的距离y(km)与行驶时间t(h)之间的关系式为y =kt +30,其图象如图所示.在1h 到3h 之间,轿车行驶的路程是________km.【答案】120【解析】由图可知,函数y =kt +30的图象过点(1,90),∴k+30=90,解得:k=60,∴该函数的解析式为:y=60t+30,∴当t=1时,y=90;当t=3时,y=210,∴在1h 到3h 之间,轿车行驶的路程为:210-90=120km.故答案为120.14.已知某组数据的频数为56,频率为0.7,则样本容量为_____.【答案】1【解析】【分析】根据频数÷频率=总数解答即可.【详解】解:样本容量为:56÷0.7=1.故答案为1.【点睛】本题考查了频数与频率的关系,解答时抓住:频数÷频率=总数,以此来解答即可.15.已知点()2,1A --,点(),B a b ,直线AB 与坐标轴平行且3AB =,则点B 的坐标是____________.【答案】()2,2-,()2,4--,()5,1--或()1,1-;【解析】【分析】①直线AB ∥y 轴,由AB ∥y 轴和点A 的坐标可得点B 的横坐标与点A 的横坐标相同,根据AB 的距离可得点B 的纵坐标可能的情况.②直线AB ∥x 轴,由AB ∥x 轴和点A 的坐标可得点B 的纵坐标与点A 的纵坐标相同,根据AB 的距离可得点B 的横坐标可能的情况.【详解】解:①当直线AB ∥y 轴时,∵A (−2,−1),∴点B 的横坐标为−2,∵AB =3,∴点B 的纵坐标为−1+3=2或−1−3=−4,∴B 点的坐标为(−2,2)或(−2,−4).②直线AB ∥x 轴时,∵A (−2,−1),∴点B 的纵坐标为−1,∵AB =3,∴点B 的横坐标为−2+3=1或−2−3=−5,∴B 点的坐标为(1,−1)或(−5,−1).综上所述,点B 的坐标是(−2,2)或(−2,−4)或(1,−1)或(−5,−1).故答案为:(−2,2)或(−2,−4)或(1,−1)或(−5,−1).【点睛】此题主要考查了坐标与图形的性质,平行于y (x )轴的直线上的点的横(纵)坐标相等;一条直线上到一个定点为定长的点有2个.16.分解因式:a 3﹣4a =_____.【答案】(2)(2)a a a +-【解析】【分析】先提取公因式x ,然后利用平方差公式进行因式分解.【详解】解:a 3﹣4a=a (a 2﹣4)=(2)(2)a a a +-故答案为:(2)(2)a a a +-.【点睛】本题考查综合提公因式和公式法进行因式分解,掌握平方差公式的结构是本题的解题关键.17.如图,在△ABC中,∠ACB=90°,D,E分别为AB,AC上一点,将△BCD,△ADE分别沿CD,DE折叠,点A、B恰好重合于点A'处.若∠A'CA=18°,则∠A=____°.【答案】1【解析】【分析】由折叠的性质可得AD=A'D=BD,∠DCB=∠DCA,∠BDC=∠A'DC,∠ADE=∠EDA',由直角三角形的性质和折叠的性质可求∠DCB=54°,∠DCA=36°,即可求∠AED的度数.【详解】解:∵将△BCD,△ADE分别沿CD,DE折叠,点A、B恰好重合于点A'处.∴AD=A'D=BD,∠DCB=∠DCA,∠BDC=∠A'DC,∠ADE=∠EDA',∵∠ACB=90°,AD=A'D=BD∴AD=BD=CD,∠ACD+∠DCB=90°∴∠A=∠DCA∵∠ACA'=∠DCA'﹣∠DCA=18°,∠ACD+∠DCB=90°∴∠DCB=54°,∠DCA=36°∵∠BDC=∠A'DC,∠ADE=∠EDA',∴∠EDC=90°∴∠AED=∠EDC+∠DCA=1°故答案为:1.【点睛】本题考查了翻折变换,直角三角形的性质,熟练运用折叠的性质是本题的关键.三、解答题18.已知:如图,在△ABC中,过点A作AD⊥BC,垂足为D,E为AB上一点,过点E作EF⊥BC,垂足为F,过点D作DG∥AB交AC于点G.(1)依题意补全图形;(2)请你判断∠BEF与∠ADG的数量关系,并加以证明.【答案】(1)见解析(2)∠BEF=∠ADG【解析】【分析】(1)根据题意画出图形即可;(2)证出AD∥EF,得出∠BEF=∠BAD,再由平行线的性质得出∠BAD=∠ADG,即可得出结论.【详解】解:(1)如图所示:(2)∠BEF=∠ADG.理由如下:∵AD⊥BC,EF⊥BC,∴∠ADF=∠EFB=90°.∴AD∥EF(同位角相等,两直线平行).∴∠BEF=∠BAD(两直线平行,同位角相等).∵DG∥AB,∴∠BAD=∠ADG(两直线平行,内错角相等).∴∠BEF=∠ADG.【点睛】本题考查了平行线的判定与性质;熟记平行线的判定与性质是关键,注意两者的区别.19.《九章算术》里有一道著名算题:“今有上禾三秉,益实六斗,当下禾十秉.下禾五秉,益实一斗,当上禾二乘、问上、下禾实一乘各几何?”大意是:3捆上等谷子结出的粮食,再加.上六斗,相当于10捆下等谷子结出的粮食.5捆下等谷子结出的粮食,再加上一斗,相当于2捆上等谷子结出的粮食.问:上等谷子和下等谷子每捆能结出多少斗粮食?请解答上述问题.【答案】上等谷子每捆能结出8斗粮食,下等谷子每捆能结出3斗粮食.【解析】【分析】设上等谷子每捆能结出x 斗粮食,下等谷子每捆能结出y 斗粮食,根据“3捆上等谷子结出的粮食,再加上六斗,相当于10捆下等谷子结出的粮食;5捆下等谷子结出的粮食,再加上一斗,相当于2捆上等谷子结出的粮食”,即可得出关于x ,y 的二元一次方程组,解之即可得出结论.【详解】解:设上等谷子每捆能结出x 斗粮食,下等谷子每捆能结出y 斗粮食,依题意,得:3x 610y 5y 12x +=⎧⎨+=⎩, 解得:x 8y 3=⎧⎨=⎩. 答:上等谷子每捆能结出8斗粮食,下等谷子每捆能结出3斗粮食.【点睛】此题考查二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.20.如图,在正方形ABCD 中,E 为DC 边上的点,连接BE ,将BCE 绕点C 顺时针方向旋转90得到DCF ,连结EF ,若30EBC ∠=,求EFD ∠的度数.【答案】15°【解析】【分析】根据旋转性质可得:BEC DFC ∠=∠,90ECF BCE ∠=∠=,CF CE =,由等腰直角三角形三角形性质可得45CFE FEC ∠=∠=,所以EFD DFC EFC ∠=∠-∠.【详解】解:DCF 是BCE 旋转得到的图形,903060BEC DFC ∴∠=∠=-=,90ECF BCE ∠=∠=,CF CE =,45CFE FEC ∴∠=∠=.604515EFD DFC EFC ∴∠=∠-∠=-=.【点睛】本题考核知识点:旋转性质,等腰直角三角形. 解题关键点:熟记旋转性质,等腰直角三角形性质.21.已知关于x 、y 的方程组233741x y m x y m +=+⎧⎨-=+⎩ 的解是一对正数; (1)试用m 表示方程组的解;(2)求m 的取值范围;(3)化简|m ﹣1|+|m+23|. 【答案】(1)321x m y m =+⎧⎨=-⎩ ;(2)213m -;(3)53. 【解析】【分析】(1)由②得③,再把③代入①即可消去x 求得y 的值,然后把求得的y 的值代入③即可求得x 的值,从而可以求得结果;(2)根据方程组的解是一对正数即可得到关于m 的不等式组,再解出即可;(3)先根据绝对值的规律化简,再合并同类项即可得到结果.【详解】解:233741x y m x y m +=+⎧⎨-=+⎩①② (1)由②得x=4 m+1+y ③把③代入①得2(4 m+1+y)+3 y=3 m+7,解得y=-m+1把y=-m+1代入③得411,32x m m x m =+-+=+∴方程组的解为321x m y m =+⎧⎨=-+⎩; (2)∵方程组的解是一对正数 ∴32010m m +>⎧⎨-+>⎩ ,解得213m -<<; (3)∵213m -<< .222|1|11333m m m m ∴-++=-++= 22.如图表示甲骑摩托车和乙驾驶汽车沿相同的路线行驶90千米,由A 地到B 地时,行驶的路程y (千米)与经过的时间x (小时)之间的关系.请根据图象填空:(1)摩托车的速度为_____千米/小时;汽车的速度为_____千米/小时;(2)汽车比摩托车早_____小时到达B 地.(3)在汽车出发后几小时,汽车和摩托车相遇?说明理由.【答案】(1)18 45 (2)1小时 (3)43 【解析】【分析】(1)根据速度=路程÷时间得出答案;(2)根据函数图像中的数据可以求得汽车比摩托车早多长时间达B 地;(3)设在汽车出发后x 小时,汽车和摩托车相遇,根据所行驶的路程相等列出方程,从而得出答案.【详解】(1)摩托车的速度为90÷5=18千米/小时; 汽车的速度为90÷2=45千米/小时;(2)5-4=1即汽车比摩托车早1小时到达B 地故答案为1.(3)解:设在汽车出发后x 小时,汽车和摩托车相遇,∴45x=18(x+2) ,解得:x=43, ∴在汽车出发后43小时,汽车和摩托车相遇. 【点睛】本题考查利用函数的图象解决实际问题,属于中等难度的题型.正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.23.如图,ABC ∆逆时针旋转一定角度后与ADE ∆重合,且点C 在AD 上.(1)指出旋转中心;(2)若21B ︒∠=,26ACB ︒∠=,求出旋转的度数;(3)若5AB =,3CD =,则AE 的长是多少?为什么?【答案】(1)A;(2)133︒;(3)2【解析】【分析】(1)中心为点A(2)根据旋转的性质可知对应点到旋转中心的距离相等以及每一对对应点与旋转中心连线所构成的旋转角相等,所以可求出:∠CAE=BAD=180°-∠B-∠ACB=150°,从而确定旋转中心和旋转角度; (2)利用周角的定义可求出∠BAE=360°-150°×2=60°,全等的性质可知AE=12AB=2cm . 【详解】解:(1)中心为点A(2)∵21B ︒∠=,26ACB ︒∠= 1802126133BAC ︒︒︒︒∠=--=∴旋转的度数为133︒(3)由旋转性质知:AE AC =,AD AB =∴2AE AB CD -==【点睛】本题考查旋转,熟练掌握旋转的性质是解题关键.24.2013年6月,某中学结合广西中小学阅读素养评估活动,以“我最喜爱的书籍”为主题,对学生最喜爱的一种书籍类型进行随机抽样调查,收集整理数据后,绘制出以下两幅未完成的统计图,请根据图1和图2提供的信息,解答下列问题:(1)在这次抽样调查中,一共调查了多少名学生?(2)请把折线统计图(图1)补充完整;(3)求出扇形统计图(图2)中,体育部分所对应的圆心角的度数;(4)如果这所中学共有学生1800名,那么请你估计最喜爱科普类书籍的学生人数.【答案】(1)一共调查了300名学生.(2)(3)体育部分所对应的圆心角的度数为48°.(4)1800名学生中估计最喜爱科普类书籍的学生人数为1.【解析】【分析】(1)用文学的人数除以所占的百分比计算即可得解.(2)根据所占的百分比求出艺术和其它的人数,然后补全折线图即可.(3)用体育所占的百分比乘以360°,计算即可得解.(4)用总人数乘以科普所占的百分比,计算即可得解.【详解】解:(1)∵90÷30%=300(名),∴一共调查了300名学生.(2)艺术的人数:300×20%=60名,其它的人数:300×10%=30名.补全折线图如下:(3)体育部分所对应的圆心角的度数为:40 300×360°=48°.(4)∵1800×80300=1(名),∴1800名学生中估计最喜爱科普类书籍的学生人数为1.25.解不等式组()32421152x xx x⎧--≥⎪⎨++<⎪⎩①②,将其解集表示在数轴上,并写出这个不等式组的整数解.【答案】整数解为-2,-1,0,1【解析】【分析】根据题意可知,本题考查的是一元一次不等式组的解法,将原方程组依次去分母和去括号后,得到解集,然后在数轴上表示出解集范围,进行整数解的判断.【详解】解不等式①,得:1x≤,解不等式②,得:3x>-,将解集表示在数轴上如下:∴不等式组的解集为31-<≤x,整数解为-2,-1,0,1.【点睛】本题解题关键:注意判断数轴上,实心点和空心点的取舍.。
七年级数学上册期末考试卷及答案【精品】
七年级数学上册期末考试卷及答案【精品】班级: 姓名:一、选择题(本大题共10小题, 每题3分, 共30分)1. 计算+ + + + +……+ 的值为()A. B. C. D.2.实数在数轴上的位置如图所示, 则化简结果为()A. 7B. -7C.D. 无法确定3.关于x的方程无解, 则m的值为()A. ﹣5B. ﹣8C. ﹣2D. 54. 一5的绝对值是()A. 5B.C.D. -55.如图, 四边形ABCD内接于⊙O, 点I是△ABC的内心, ∠AIC=124°, 点E 在AD的延长线上, 则∠CDE的度数为()A. 56°B. 62°C. 68°D. 78°6.如果, 那么代数式的值为()A. B. C. D.7.已知a=2012x+2011, b=2012x+2012, c=2012x+2013, 那么a2+b2+c2—ab-bc-ca的值等于( )A. 0B. 1C. 2D. 38.定义: 对于任意数, 符号表示不大于的最大整数, 例如: , , .若, 则的取值范围是().A. B. C. D.9.如图, 将矩形ABCD沿对角线BD折叠, 点C落在点E处, BE交AD于点F, 已知∠BDC=62°, 则∠DFE的度数为()A. 31°B. 28°C. 62°D. 56°10.已知正多边形的一个外角为36°, 则该正多边形的边数为().A. 12B. 10C. 8D. 6二、填空题(本大题共6小题, 每小题3分, 共18分)1. 的算术平方根是________.2.如图, 将周长为8的△ABC沿BC方向向右平移1个单位得到△DEF, 则四边形ABFD的周长为_____________.3. 一般地, 如果, 则称为的四次方根, 一个正数的四次方根有两个. 它们互为相反数, 记为, 若, 则________.4.如图, 圆柱形玻璃杯高为14cm, 底面周长为32cm, 在杯内壁离杯底5cm的点B处有一滴蜂蜜, 此时一只蚂蚁正好在杯外壁, 离杯上沿3cm与蜂蜜相对的点A处, 则蚂蚁从外壁A处到内壁B处的最短距离为_____cm(杯壁厚度不计).5. 分解因式: =____________.6. 一个角是70°39′, 则它的余角的度数是________.三、解答题(本大题共6小题, 共72分)1. 解下列方程组:(1)25234x yy x-=⎧⎨+=⎩(2)34332(1)11x yx y⎧+=⎪⎨⎪--=⎩2. 已知x=3是方程3[(+1)+ ]=2的解, n满足关系式|2n+m|=1, 求m+n的值.3. 如图, 直线y=kx+6分别与x轴、y轴交于点E, F, 已知点E的坐标为(﹣8, 0), 点A的坐标为(﹣6, 0).(1)求k的值;(2)若点P(x, y)是该直线上的一个动点, 且在第二象限内运动, 试写出△OPA的面积S关于x的函数解析式, 并写出自变量x的取值范围.(3)探究:当点P运动到什么位置时, △OPA的面积为, 并说明理由.4. 如图, 四边形ABCD中, 对角线AC.BD交于点O, AB=AC, 点E是BD上一点, 且AE=AD, ∠EAD=∠BAC,(1)求证: ∠ABD=∠ACD;(2)若∠ACB=65°, 求∠BDC的度数.5. 为了了解本校学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况, 课题小组随机选取该校部分学生进行了问卷调查(问卷调查表如图1所示), 并根据调查结果绘制了图2.图3两幅统计图(均不完整), 请根据统计图解答下列问题.(1)本次接受问卷调查的学生有________名.(2)补全条形统计图.(3)扇形统计图中B类节目对应扇形的圆心角的度数为________.(4)该校共有2000名学生, 根据调查结果估计该校最喜爱新闻节目的学生人数.(2)全部售完500箱矿泉水, 该商场共获得利润多少元?参考答案一、选择题(本大题共10小题, 每题3分, 共30分)1、B2、A3、A4、A5、C6、A7、D8、B9、D10、B二、填空题(本大题共6小题, 每小题3分, 共18分)1、22.10.3、10±4、205、2(1)(1)m m +-.6.19°21′.三、解答题(本大题共6小题, 共72分)1、(1) ;(2) .2.0或-13、(1)k= ;(2)△OPA 的面积S= x+18 (﹣8<x <0);(3)点P 坐标为( , )或( , )时, 三角形OPA 的面积为 .4.(1)略;(2) 50°5.(1)100;(2)见解析;(3) ;(4) 人.6、(1)商场购进甲种矿泉水300箱, 购进乙种矿泉水200箱(2)该商场共获得利润6600元。
初一数学期末考试卷
初一数学期末考试卷一、选择题(每题2分,共20分)1. 下列哪个数是最小的正整数?A. 0B. 1C. -1D. 22. 如果一个数的平方等于4,那么这个数是:A. 2B. -2C. 2或-2D. 43. 一个圆的半径是5厘米,那么它的直径是:A. 10厘米B. 15厘米C. 20厘米D. 25厘米4. 以下哪个表达式是正确的?A. \( 3x + 5 = 8x - 10 \)B. \( 2x - 3 = 3x + 2 \)C. \( 4x + 7 = 7x + 4 \)D. \( 5x - 3 = 2x + 5 \)5. 一个班级有30个学生,其中女生占总人数的40%,那么这个班级有多少名女生?A. 10B. 12C. 15D. 206. 如果一个角的度数是90°,那么这个角是:A. 锐角B. 直角C. 钝角D. 平角7. 一个数的绝对值是5,那么这个数是:A. 5B. -5C. 5或-5D. 08. 下列哪个分数是最接近1的?A. \( \frac{1}{2} \)B. \( \frac{3}{4} \)C. \( \frac{4}{5} \)D. \( \frac{5}{6} \)9. 一个长方体的长、宽、高分别是5厘米、4厘米和3厘米,那么它的体积是:A. 60立方厘米B. 120立方厘米C. 180立方厘米D. 240立方厘米10. 一个数的平方根是4,那么这个数是:A. 16B. 8C. 4D. 2二、填空题(每题2分,共20分)11. 一个数的平方是16,这个数是______。
12. 如果\( 2x + 3 = 11 \),那么\( x \)的值是______。
13. 一个直角三角形的两个锐角的度数之和是______。
14. 一个数的倒数是\( \frac{1}{4} \),这个数是______。
15. 如果一个长方体的长、宽、高分别是6厘米、4厘米和3厘米,那么它的表面积是______平方厘米。
七年级数学期末试卷2篇
七年级数学期末试卷第一篇:七年级数学期末试卷一、选择题(共30题,每题2分,共60分)1. 下列数中,最小的是()。
A. 0.45B. 0.5C. 0.55D. 0.62. 将0.25改成百分数是()。
A. 0.25%B. 0.025%C. 2.5%D. 25%3. 6升等于()毫升。
A. 60B. 600C. 6000D. 600004. 小明上学路上每天步行约15分钟,将这个时间改成小时是()。
A. 0.25B. 0.15C. 0.35D. 0.55. 已知三角形的两边长分别为8cm和12cm,那么第三边的可能长度是()。
A. 2cmB. 5cmC. 20cmD. 28cm6. (4 × 10^2) × (2 × 10^3) = ( )A. 8 × 10^6B. 6 × 10^5C. 8 × 10^5D. 6 × 10^67. 16 ÷ 2 × 3 = ( )A. 16B. 9C. 24D. 128. “一年有365天”是一个()。
A. 观察事实B. 定义C. 比较判断D. 推理判断9. 已知两个正整数的和是48,差是18,那么这两个数分别是()。
A. 12和36B. 15和33C. 18和30D. 20和2810. 以下哪个数是无理数()。
A. √9B. 0.5C. πD. 0二、填空题(共10题,每题2分,共20分)11. 已知(5 × 10^6) × (8 × 10^3) =_________ ×(10^3)。
12. 计算1002 ÷ (5 × 10^2)的结果,写成科学记数法。
13. 用科学记数法表示800000。
14. 将3小时40分钟改写成分钟。
15. 40 ÷ (8 × 10^(-2)) = _________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初一数学
期
学
一第
学年度20022001--期末考试试卷
班级 学号 姓名 成绩
一、 选择题 (将答案的题号填写在表格中)(2'
⨯10)
1、下列说法正确的是
(A ) 若a 表示有理数,则-a 表示非正数; (B )和为零,商为-1的两个数必是互为相反数
(C ) 一个数的绝对值必是正数; (D ) 若|a|>|b|,则a <b <0 2、两个单项式是同类项,下列说法正确的是 (A ) 只有它们的系数可以不同 (B ) 只要它们的系数相同 (C ) 只要它们的次数相同 (D ) 只有它们所含字母相同
3、已知等式y =kx +b ,当x =-1时,y =-3;当x =3时,y =-2,则k,b 的值分别为
(A ) 2.5,-0.5 (B ) 0.25,-2.75 (C ) 2.5,0.5 (D ) -0.25,-2.75
4、若m <n ,且|m|>|n|,那么 (A ) m 一定是正数 (B ) m 一定是0
(C ) m 一定是负数 (D ) 这样的m 不存在
5、要使关于x 的方程3(x -2)+ b =a(x -1)是一元一次方程,必须满足
(A ) a ≠0 (B ) b ≠0 (C ) a ≠3 (D ) a ,b 为任意有理数 6、某工厂去年的产值是a 万元,今年产值是b 万元(0<a <b
), 那么今年比去年产值增加的百分数是
(A )
a a
b -×100℅ (B )a
b ×100℅ (C ))1(-b a ×100℅ (D ) a a
b -℅ 7、在下列5个等式中①ab =0 ②b a +=0 ③
b
a =0 ④2a =0 ⑤2
2b a +=0 中,a 一定是零的等式有 (A ) 一个 (B ) 二个 (C ) 三个 (D ) 四个
8、数3.949×105
精确到万位约
(A ) 4.0万 (B ) 39万 (C ) 3.95×105 (D ) 4.0×105
9、多项式2x -3y +4+3kx +2ky -k 中没有含y 的项,则k 应取 (A ) k =
2
3 (B ) k =0 (C ) k =-32
(D ) k =4
10、已知二元一次方程组⎩
⎨
⎧=-=+122
3y x y ax 无解,则a 的值是
(A ) 2-=a (B )6=a (C ) 2-=a (D ) 6-=a 二、填空 (2'⨯14)
11、-
4
3
的倒数与3的相反数的积等于 ; 12、(1-2a )2
与|3b -4|是互为相反数,则ab = ;
13、已知⎩⎨
⎧==3
2y x 是方程组⎩⎨⎧=+=+1
2
2y nx my x 的解,则m = ;n = ;
14、关于x 的方程 2x -4=3m 与方程x +3=m 的解的绝对值相等则m = ;
15、若2
12
1b a
y x --与22-+y x ab 是同类项,则x = y = ; 16、数a ,b 在数轴上的位置如图所示 a 0 1 b
则|a|+|a -b|-|1+b|-|a -1|= ;
17、方程ax +b =0的解是正数,那么a ,b 应具备的条件是 ;
18、已知M 点和N 点在同一条数轴上,又已知点N 表示-2,且M 点距N 点的距离是5个长度单位,则点M 表示数是____________; 19、方程3x +y =10的所有正整数解有 对;
20、已知xyz ≠0,从方程组⎩
⎨⎧=+-=-+00
34z y x z y x 中求出x : y : z =________________;
21、设x 是一位数,y 为三位数,若把y 放在x 的左边组成一个四位数,则这个四位数用代数式可以表示为 ;
22、一列火车通过隧道,从车头进入道口到车尾离开隧道共需45秒,当整列火车在隧道里时需32秒,若车身长为180米,隧道
x 米,可列方程为_________________ _________.
三、计算及解方程(组) (4'
⨯6)
23、-22+(-2)3
×5-(-0.28) ÷(-2)2
24、4
1
31312--=--
x x x
25、)4(61
)256(31)375(21+--=+x x x 26、⎪⎩⎪⎨⎧=+=-4
32225n m n
m
27、⎪⎩⎪⎨⎧=--==3423:7:3:5:z y x z x y x 28、 ⎪⎩
⎪⎨⎧=-+=++=++1232721323z y x z y x z y x
四、解答题 (6'
⨯2)
29、关于y x ,的方程组⎩
⎨
⎧=-=+m y x m
y x 932
(1)若x 的值比y 的值小5,求m 的值;
(2)若方程3x +2y =17与方程组的解相同,求m 的值.
30、在等式c bx ax y ++=2
中,当41
==y x 时,,当101=-=y x 时,,当72==y x 时,.
1.求出c b a ,,的值; 2. 当2-=x 时,y 的值等于多少?
五、先化简,再求值 (6')
31.)3123()31(22122y x y x x +-+-- 其中3
2,2=-=y x
六、应用题 (5'
⨯2)
32、某人承做一批零件,原计划每天做40个,可按期完成任务,由于改进工艺,工作效率提高了20%,结果不但提前了16天完成,而且超额完成了32件,求原来预定几天完成?原计划共做多少零件?
33、修筑高速公路经过某村,需搬迁一批农户。
为了节约土地资源和保护环境,政府统一规划搬迁建房区域,规划要求区域内绿色环境占地面积不得少于区域总面积的20%。
若搬迁农户建房每户占地1502
m ,则绿色环境占地面积占总面积的40%;政府又鼓励其他有积蓄的农户到规划区建房,这样又有20户农户加入建房,若仍以每户占地1502
m 计算,则这时绿色环境面积只占总面积的15%。
为了符合规划要求,又需要退出部分农户。
问:(1)最初需搬迁建房的农户有多少户?政府规划的建房区域总面积是多少2
m ?
(2)为了保证绿色环境占地面积不少于区域总面积的20%,至少需退出农户几户?
初一数学期末答案
一、 选择题
二、11、4
12、
3
2 13、-
3
2
,-1 14、-10或
5
2 15、
3 1 16、-2-a 17、a ,b 异号 18、3或-7 19、3 20、2:7:5 21、10y+x
22、
32
180
45180-=
+x x 三、23、-43.93
24、x=
13
11
25、x=-4
26、⎩⎨⎧-==25n m 27、⎪⎩
⎪
⎨⎧===15
2135
z y x
28、⎪⎩
⎪
⎨⎧===132
z y x
四、29、(1)m=-
9
5
(2)m=1 30、1、⎪⎩
⎪
⎨⎧=-==532c b a
2、19
五、-3x+y 2
)9
46(958 六、32、100天 4000个零件
33、(1)48户 12000m 2
(2)4户。