初一数学期末测试题必考题汇编

合集下载

七年级数学上学期期末考试真题汇编(人教版)一元一次方程章末重难点题型(解析版)

七年级数学上学期期末考试真题汇编(人教版)一元一次方程章末重难点题型(解析版)

专题09 一元一次方程 章末重难点题型(12个题型)一、经典基础题题型1 方程与一元一次方程的辨别题型2 利用一元一次方程的定义和方程的解求值题型3 等式的性质及应用题型4 一元一次方程中的同解问题题型5 方程的特殊解问题(求参数的值)题型6 解方程题型7 含参数的一元一次方程题型8 一元一次方程中的错解和遮挡问题题型9 一元一次方程中的新定义问题题型11 一元一次方程中的整体换元题型12 一元一次方程中的实际应用二、优选提升题题型1 方程与一元一次方程的辨别例1.(2022·吉林·大安市七年级期末)下列各式中,是一元一次方程的是( ) A .x +2y =5B .x 2+x -1=0C .1xD .3x +1= 10【答案】D【分析】根据一元一次方程的定义分析即可得出结论.【详解】解:方程x +2y =5中含有两个未知数,不是一元一次方程,故A 项错误; 方程x 2+x -1=0中未知数的最高次数为2次,不是一元一次方程,故B 项错误;代数式1x 不是等式,更不是一元一次方程,故C 项错误; 方程3x +1= 10含有一个未知数,且未知数的次数为1,是一元一次方程,故D 正确;故选:D .【点睛】本题主要考查了一元一次方程的定义,熟记一元一次方程的定义是解题的关键.变式1.(2022·河南三门峡·七年级期末)在①21x +;②171581+=-+;③1112x x -=-;④23x y +=中,方程共有( )A .1个B .3个C .2个D .4个【答案】C【分析】含有未知数的等式叫方程,根据方程的定义解答. 【详解】解:方程有③1112x x -=-;④23x y +=,故选:C . 【点睛】此题考查了方程的定义,正确理解定义是解题的关键.变式2.(2022·广东湛江·七年级期末)下列各式中,不是方程的是( )A .2a a a +=B .23x +C .215x +=D .()2122x x +=+【答案】B【分析】根据方程的定义(含有未知数的等式称为方程)依次进行判断即可.【详解】解:根据方程的定义可得:A 、C 、D 选项均为方程,选项B 不是等式,所以不是方程,故选:B .【点睛】题目主要考查方程的定义,深刻理解方程的定义是解题关键.题型2 利用一元一次方程的定义和方程的解求值【解题技巧】依据一元一次方程的定义,x 的次数为1,系数不为0方程的解:解方程就是求出使方程中等号左右两边相等的未知数的值,这个值叫方程的解. 例1.(2022·河南郑州·七年级期末)若使方程(2)1m x +=是关于x 的一元一次方程,则m 的值是( )A .2m ≠-B .0m ≠C .2m ≠D .2m >- 【答案】A【分析】根据一元一次方程的定义:只含有一个未知数,未知数的次数都是1,等号两边都是整式的方程叫做一元一次方程进行求解即可.【详解】解:∵方程()21m x +=是关于x 的一元一次方程,∵20m +≠即2m ≠-.故选:A .【点睛】本题主要考查了一元一次方程的定义,解题的关键在于能够熟练掌握一元一次方程的定义.变式1.(2022·福建泉州·七年级期末)若3x =是关于x 的方程5ax b -=的解,则622a b --的值为( ) A .2B .8C .-3D .-8 【答案】B【分析】将x =3代入ax -b =5中得3a -b =5,将该整体代入6a -2b -2中即可得出答案.【详解】解:将x =3代入ax -b =5中得:3a -b =5,所以6a -2b -2=2(3a -b )-2=2×5-2=8.故选:B .【点睛】本题考查了一元一次方程的解,求代数式的值,熟练掌握整体法是解题的关键. 变式2.(2022·河南南阳·七年级期末)若()110m x -+=是关于x 的一元一次方程,则m 的值可以是______(写出一个即可)【答案】2(答案不唯一)【分析】只含有一个未知数,并且未知数的次数是一次的整式方程叫一元一次方程,利用一元一次方程的定义得出10m -≠,即可得出答案.【详解】解:()110m x -+=是关于x 的一元一次方程,10m ∴-≠,解得1m ≠,m ∴的值可以是2.故答案为:2(答案不唯一).【点睛】此题主要考查了一元一次方程的定义,正确掌握一元一次方程定义是解题关键.题型3 等式的性质及应用 【解题技巧】等式的性质1:等式两边加同一个数(或式子)结果仍得等式;等式的性质2:等式两边乘同一个数或除以一个不为零的数,结果仍得等式.例1.(2022·海南·七年级期末)已知a b =,根据等式的性质,可以推导出的是( ) A .21a b +=+B .33a b -=-C .232a b -=D .a b c c= 【答案】B【分析】根据等式的性质依次判断即可.【详解】解:a =b ,A 、a +2≠b +1,选项不符合题意;B 、-3a =-3b ,选项符合题意;C 、2a =2b ,∵2a -3≠2b ,选项不符合题意;D 、当c ≠0时,a b c c =,选项不符合题意;故选:B . 【点睛】题目主要考查等式的性质,熟练掌握等式的性质是解题关键.例1.(2022·四川成都·八年级期末)某小组设计了一组数学实验,给全班同学展示以下三个图,其中(a )(b )中天平保持左右平衡,现要使(c )中的天平也平衡,需要在天平右盘中放入砝码的克数为( )A .25克B .30克C .40克D .50克【答案】C【分析】由图(a )和图(b )可得5个黑三角和5个黑圆共重150克,从而1个黑三角和1个黑圆共重30克,由此可计算出1个黑三角重20克,1个黑圆重10克,可计算出此题结果.【详解】设一个黑三角重a 克,一个黑圆重b 克,由题意,得5(a +b )=150,解得a +b =30,由图(a )得,a +2(a +b )=80,即a +2×30=80,解得a =20,∵b =30-20=10,∵a +2b =20+10×2=20+20=40,故选:C .【点睛】此题考查了利用等式的性质和方程解决实际问题的能力,关键是能根据题意列出关系式,利用等式的性质进行计算.例2.(2022·江苏泰州·七年级期末)已知方程x -2y =5,请用含x 的代数式表示y ,则y =_______.【答案】52x - 【分析】先移项,再把y 的系数化为1即可.【详解】解:移项得,−2y =5−x ,y 的系数化为1得,52x y -=.故答案为:52x -. 【点睛】本题考查的是解二元一次方程,熟知等式的基本性质是解答此题的关键.题型4 一元一次方程中的同解问题解题技巧:通过前一个方程求得x 的值并代入后一个方程,转化为含另一未知数的方程、 例1.(2022·黑龙江大庆·期末)关于x 的方程4231x m x -=-的解是23x x m =-的解的2倍,则m 的值为( ) A .12 B .14 C .14- D .12- 【答案】C【分析】分别表示出两个方程的解,根据解的关系列出方程,求出方程的解即可得到m 的值.【详解】解:方程4x -2m =3x -1,解得:x =2m -1,方程x =2x -3m ,解得:x =3m ,根据题意得:2m -1=6m ,解得:m =-14.故选:C . 【点睛】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.变式1.(2022·辽宁大连·七年级期末)如果方程24=x 与方程的解相同,则k 的值为( )A .2B .C .4D . 【答案】C【分析】解方程2x =4,求出x ,根据同解方程的定义计算即可.【详解】解:∵2x =4,∴x =2,∵方程2x =4与方程3x +k =-2的解相同,∴3×2+k =10解得,k =4,故选:C .【点睛】本题考查的是同解方程,掌握一元一次方程的解法是解题的关键.变式2.(2022·山东烟台·期末)若关于x 的方程()3212x k x -=+的解与关于x 的方程()821k x -=+的解互为相反数,则k =______.【答案】15【分析】分别解两个方程,根据方程的解互为相反数,列出方程,解出k 即可;【详解】解:()3212x k x -=+,632x k x -=+,623x x k -=+,43x k =+,34k x +=, 解方程:()821k x -=+,822k x -=+,26x k =-,62k x -=, 根据题意列出方程36042k k +-+=, 解得:15k =,故答案为:15.【点睛】本题考查解一元一次方程,依据解方程步骤:去分母,去括号,移项,合并同类项,系数化为1进行计算,解题关键正确应用运算法则.题型5 方程的特殊解问题(求参数的值)解题技巧:求含参数一元一次方程的逆过程例1.(2022·河南安阳·七年级期末)关于x 的方程的解是正整数,则整数k 可以取的值是__________.【答案】3310x k +=2-4-21x kx +=【分析】把含x 的项合并,化系数为1求x ,再根据x 为正整数求整数k 的值.【详解】解:移项、合并,得,解得:, ∵x 为正整数,k 为整数,∴解得k=3.故答案为:3.【点睛】本题考查一元一次方程的解.关键是按照字母系数解方程,再根据正整数解的要求求整数k 的值.变式1.(2022·上海金山·八年级期末)如果关于x 的方程ax =b 无解,那么a 、b 满足的条件( )A .a =0,b =0B .a ≠0,b ≠0C .a ≠0,b =0D .a =0,b ≠0 【答案】D【分析】根据方程无解,可知含x 的系数为0,常数不为0,据此求解.【详解】解:∵关于x 的方程ax =b 无解,∵a =0,b ≠0,故选:D .【点睛】本题考查一元一次方程的解,理解方程无解时含x 的系数为0,常数项不为0是解题关键.变式2.(2022·湖南)关于x 的方程(a +1)x =a ﹣1有解,则a 的值为( )A .a ≠0B .a ≠1C .a ≠﹣1D .a ≠±1【答案】C【分析】根据一元一次方程有解,可得一元一次方程的系数不能为零,可得答案.【详解】根据一元一次方程有解,可得一元一次方程的系数不能为零,可得答案. 解:由关于x 的方程(a +1)x =a ﹣1有解,得a +1≠0,解得a ≠﹣1.故选:C .【点睛】本题考查了一元一次方程有解的条件,利用了一元一次方程的系数不能为零. 变式3.(2022·黑龙江大庆·期末)关于x 的方程()()2153a x a x b -=-+有无穷多个解,则a b -=______. 【答案】259【分析】方程整理后,根据有无穷多个解,确定出a 与b 的值,即可求出所求.【详解】解:方程整理得:(3a ﹣5)x =2a +3b ,∵方程有无穷多个解,∵3a ﹣5=0,2a +3b =0,解得:a =53,b =﹣109, 则a ﹣b =53+109 =259.故答案为:259. 【点睛】此题考查一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.题型6 解方程【解题技巧】21x kx -=-12x k=--2=-1k -解含有括号的一元一次方程:一般方法是由内到外逐层去括号,但有时这样做不一定能简化运算。

初中七年级数学上册期末试卷及答案【必考题】

初中七年级数学上册期末试卷及答案【必考题】

初中七年级数学上册期末试卷及答案【必考题】班级: 姓名:一、选择题(本大题共10小题, 每题3分, 共30分)1.若a≠0, b≠0, 则代数式的取值共有()A. 2个B. 3个C. 4个D. 5个2.下列各图中a、b、c为三角形的边长, 则甲、乙、丙三个三角形和左侧△ABC全等的是()A. 甲和乙B. 乙和丙C. 甲和丙D. 只有丙3.如图, 从边长为( )cm的正方形纸片中剪去一个边长为()cm的正方形(), 剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙), 则矩形的面积为()A. B. C. D.4.如图, 数轴上的点A, B, O, C, D分别表示数-2, -1, 0, 1, 2, 则表示数的点P应落在A. 线段AB上B. 线段BO上C. 线段OC上D. 线段CD上5. 已知点P(a+5, a-1)在第四象限, 且到x轴的距离为2, 则点P的坐标为()A.(4, -2) B.(-4, 2) C.(-2, 4) D.(2, -4)6. 的倒数是()A. B. C. D.7.中国华为麒麟985处理器是采用7纳米制程工艺的手机芯片, 在指甲盖大小的尺寸上塞进了120亿个晶体管, 是世界上最先进的具有人工智能的手机处理器, 将120亿个用科学记数法表示为()A. 个B. 个C. 个D. 个8.如图所示, 直线a∥b, ∠1=35°, ∠2=90°, 则∠3的度数为()A. 125°B. 135°C. 145°D. 155°9.一副直角三角板如图放置, 点C在FD的延长线上, AB//CF, ∠F=∠ACB=90°, 则∠DBC的度数为( )A. 10°B. 15°C. 18°D. 30°10. 化简的结果是()A. B. C. D.二、填空题(本大题共6小题, 每小题3分, 共18分)1. 若, , 用的代数式表示,则=__________.2.通过计算几何图形的面积, 可表示一些代数恒等式, 如图所示, 我们可以得到恒等式:________.3. 如图, AB∥CD, 则∠1+∠3—∠2的度数等于 __________.4. 若关于x、y的二元一次方程3x﹣ay=1有一个解是, 则a=_____.5. 因式分解: _____________.6. 如图所示, 想在河堤两岸塔建一座桥, 搭建方式最短的是________, 理由________.三、解答题(本大题共6小题, 共72分)1. 解方程组:2. 甲、乙两名同学在解方程组时, 甲解题时看错了m, 解得;乙解题时看错了n, 解得. 请你以上两种结果, 求出原方程组的正确解.3. 如图, AB∥CD, △EFG的顶点F, G分别落在直线AB, CD上, GE交AB于点H, GE平分∠FGD, 若∠EFG=90°, ∠E=35°, 求∠EFB的度数.4. 如图, 在△ABC中, AB=AC,点D.E分别在AB.AC上, BD=CE, BE、CD相交于点0;求证: (1)(2)OB OC5. 小颖同学学完统计知识后, 随机调查了她所在辖区若干名居民的年龄, 将调查数据绘制成如下扇形和条形统计图:请根据以上不完整的统计图提供的信息, 解答下列问题:(1)小颖同学共调查了多少名居民的年龄, 扇形统计图中a, b各等于多少?(2)补全条形统计图;(3)若该辖区年龄在0~14岁的居民约有1500人, 请估计年龄在15~59岁的居民的人数.6. 某商场用36万元购进A.B两种商品, 销售完A B后共获利6万元,其进价和售价如下表:进价(元/件) 1200 1000售价(元/件) 1380 1200(注: 获利=售价-进价)(1) 该商场购进A.B两种商品各多少件?(2) 商场第二次以原进价购进A、B两种商品.购进B种商品的件数不变, 而购进A种商品的件数是第一次的2倍, A种商品按原价出售, 而B种商品打折销售.若两种商品销售完毕, 要使第二次经营活动获利不少于81600元, B种商品最低售价为每件多少元?参考答案一、选择题(本大题共10小题, 每题3分, 共30分) 1、A2、B3、D4、B5、A6、B7、C8、A9、B10、C二、填空题(本大题共6小题, 每小题3分, 共18分) 1、3(2)8x --2、()()2a b a b ++.3.180°4、45、(2)(2)a a a +-6.PN, 垂线段最短三、解答题(本大题共6小题, 共72分)1、31x y =⎧⎨=⎩2.n = 3 , m = 4,3.20°4.(1)略;(2)略.5.(1)300, a=20%, b=12%;(2)答案见解析;(3)5100.6、(1)该商场购进A 、B 两种商品分别为200件和120件.(2)B 种商品最低售价为每件1080元.。

七年级数学上学期期末考试真题汇编(人教版)探究与表达规律(八个考点) 专题讲练(解析版)

七年级数学上学期期末考试真题汇编(人教版)探究与表达规律(八个考点) 专题讲练(解析版)

专题04 探究与表达规律(八个考点)专题讲练1、知识储备考点1. 数列的规律考点2. 数表的规律考点3..算式的规律考点4. 图形的规律(一次类)考点5 图形的规律(二次类)考点6. 图形的规律(指数类)考点7. 程序框图考点8. 新定义运算2、经典基础题3、优选提升题1. 解题思维过程:从简单、局部或特殊情况入手,经过提炼、归纳和猜想,探索规律,获得结论.有时候还需要通过类比联想才能找到隐含条件.一般有下列几个类型:1)数列的规律:把握常见几类数的排列规律及每个数与排列序号n之间的关系.2)等式的规律:用含有字母的代数式总结规律,注意此代数式与序号n之间的关系.3)图形(图表)规律:观察前几个图形,确定每个图形中图形的个数或图形总数与序号n之间的关系.4)图形变换的规律:找准循环周期内图形变换的特点,然后用图形变换总次数除以一个循环变换周期,进而观察商和余数.5)数形结合的规律:观察前n项(一般前3项)及利用题中的已知条件,归纳猜想一般性结论.2. 常见的数列规律:1)1,3,5,7,9,… ,21n-(n为正整数).2)2,4,6,8,10,…,2n(n为正整数).3)2,4,8,16,32,…,2n(n为正整数).4)2,6,12,20,…,(1)n n+(n为正整数).5)x-,x+,x-,x+,x-,x+,…,(1)n x-(n为正整数).6)特殊数列:①三角形数:1,3,6,10,15,21,…,(1)2n n+.②斐波那契数列:1,1,2,3,5,8,13,…,从第三个数开始每一个数等于与它相邻的前两个数的和.考点1. 数列的规律 【解题技巧】①符号规律:通常是正负间或出现的规律,常表示为(1)n -或1(1)n --或1(1)n +-;②数字规律:数字规律需要视题目而确定;○3字母规律:通常字母规律是呈指数变换,常表示为:n a 等形式。

例1.(2022·黑龙江牡丹江·七年级期末)按顺序观察下列五个数-1,5,-7,17,-31……,找出以上数据依次出现的规律,则第n 个数是_____________. 【答案】(2)1n -+【分析】所给的数可转化为:-1=1-21,5=1+22,-7=1-23,17=1+24,-31=1-25,…据此即可得第n 个数,从而可求解.【详解】解:∵-1=1-21,5=1+22,-7=1-23,17=1+24,-31=1-25,…,∵第奇数个数为:1-2n ;第偶数个数为:1+2n ;∵第n 个数为:()21n-+.故答案为:()21n-+. 【点睛】本题主要考查数字的变化规律,解答的关键是由所给的数字分析出存在的规律. 变式1.(2022·云南红河·八年级期末)一组按规律排列的单项式3a 、5a 2、7a 3、9a 4……,依这个规律用含字母n (n 为正整数,且n ≥1)的式子表示第n 个单项式为_______ 【答案】(21)n n a +【分析】找出前3项的规律,然后通过后面几项验证,找出规律得到答案. 【详解】解:3a =(2×1+1)a 1,5a 2=(2×2+1)a 2,7a 3=(2×3+1)a 3,… 第n 个单项式是:(2n +1)an .故答案为:(2n +1)an .【点睛】本题主要考查数字的变化规律,解题的关键是找出前几项的规律,然后验证,最后得到规律.变式2.(2022·山东烟台·七年级期末)按一定规律排列的单项式:3x ,5x -,7x ,9x -,11x ,……,第n 个单项式是( ) A .()211nn x -- B .()1211n n x -+-C .()1211n n x ---D .()211nn x +-【答案】B【分析】先观察系数与指数的规律,再根据规律定出第n 个单项式即可. 【详解】解:∵3x ,5x -,7x ,9x -,11x ,……,∵系数是奇数项为-1,偶数项为1,即系数的规律是(-1)n -1,指数的规律为2n +1,∵第n 个单项式为()1211n n x -+-,故选:B .【点睛】本题考查数式的变化规律,通过观察单项式的系数和指数,找到它们的规律是解题的关键.考点2. 数表的规律 【解题技巧】例1. (2022•绵阳市七年级期中)将正奇数按下表排成5列:第1列 第2列 第3列 第4列 第5列 第1行 1 3 5 7 第2行 15 13 11 9 第3行 17 19 21 23 ………2725若2021在第m 行第n 列,则m +n =( ) A .256B .257C .510D .511【分析】观察图表,每一行都有四个数,且奇数行排在第2﹣5列,偶数行排在第1﹣4列,根据2021在正奇数中的位置来推算m ,n .【解答】解:首先,从图表观察,每一行都有四个数,且奇数行排在第2﹣5列,偶数行排在第1﹣4列,其次,奇数可以用2x ﹣1表示,当x =1011时,2x ﹣1=2021,即2021是排在第1011个位置.在上表中,因为每行有4个数,且1011÷4=252•••••••3,因此2021应该在第253行,第4列,即m =253,n =4.∴m +n =257,故选:B .变式1.(2022·山东济南·七年级期末)将正整数按如图所示的规律排列,若用有序数对(a ,b )表示第a 行,从左至右第b 个数,例如(4,3)表示的数是9,则(15,10)表示的数是( )A .115B .114C .113D .112【答案】A【分析】观察图形可知,每一行的第一个数字都等于前面数字的个数再加1,即可得出(15,得出a,b的值分别为()A.9,10B.9,91C.10,91D.10,110【解题技巧】算式规律这一类没有固定的套路,主要依靠学生对已知算式的观察、总结、逻辑推理,发现期中的规律。

初一数学期末试题及答案

初一数学期末试题及答案

初一数学期末试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是正数?A. -3B. 0C. 5D. -5答案:C2. 一个数的相反数是-2,那么这个数是:A. 2B. -2C. 0D. 4答案:A3. 一个数的绝对值是5,那么这个数可能是:A. 5B. -5C. 5或-5D. 0答案:C4. 如果a > b,那么下列哪个不等式一定成立?A. a + 3 > b + 3B. 3a > 3bC. a - b > 0D. 2a < 2b答案:C5. 以下哪个是单项式?B. 5x - 3C. 7x^3D. x^2 - 4x + 4答案:C6. 两个数相乘,如果一个因数是负数,另一个因数是正数,那么它们的积是:A. 正数B. 负数C. 零D. 无法确定答案:B7. 一个三角形的两边长分别是3和4,那么第三边的长度x的范围是:B. 1 < x < 10C. 0 < x < 7D. 0 < x < 10答案:A8. 一个数的平方是9,那么这个数是:A. 3B. -3C. 3或-3D. 9答案:C9. 以下哪个是二元一次方程?A. 2x + 3y = 6B. x^2 + y = 5C. 3x - 2 = 0D. x/y = 2答案:A10. 一个数的立方是-8,那么这个数是:A. 2B. -2C. 8D. -8答案:B二、填空题(每题3分,共30分)11. 一个数的绝对值是7,这个数可能是______。

答案:±712. 一个数的相反数是-4,这个数是______。

答案:413. 如果a = 5,b = -3,那么a - b = ______。

答案:814. 如果一个三角形的两边长分别是5和6,那么第三边的长度x的范围是______。

答案:1 < x < 1115. 一个数的平方是16,这个数是______。

答案:±416. 一个数的立方是-27,这个数是______。

初一数学期末考试复习题

初一数学期末考试复习题

初一数学期末考试复习题一、选择题(每题2分,共20分)1. 下列哪个数是正数?A. -3B. 0C. +5D. -72. 如果a和b是两个整数,且a > b,那么a - b的结果是:A. 正数B. 负数C. 零D. 无法确定3. 一个数的绝对值是其距离0的距离,那么|-5|等于:A. 5B. -5C. 0D. 104. 计算下列表达式的结果是:A. (-2) × (-3) = 6B. (-2) × (-3) = -6C. (-2) × 3 = 6D. (-2) × 3 = -65. 一个圆的半径是5厘米,那么它的直径是:A. 10厘米B. 15厘米C. 20厘米D. 25厘米二、填空题(每题2分,共20分)6. 一个数的相反数是它与______的差。

7. 如果一个数的绝对值是2,那么这个数可以是______或______。

8. 一个数的平方是它与自己的乘积,例如3的平方是______。

9. 一个数的立方是它与自己的乘积三次,例如2的立方是______。

10. 一个直角三角形的两条直角边分别是3厘米和4厘米,那么它的斜边长度是______厘米。

三、计算题(每题10分,共30分)11. 计算下列表达式的值:(1) (-4) × 5 + 3 × (-2)(2) √1612. 解下列方程:(1) 2x + 5 = 11(2) 3x - 7 = 2x + 813. 计算下列几何图形的面积和周长:(1) 一个正方形,边长为4厘米。

(2) 一个长方形,长为6厘米,宽为3厘米。

四、解答题(每题15分,共30分)14. 某班有40名学生,其中男生人数是女生人数的2倍,求男生和女生各有多少人?15. 一个商店进了一批商品,每件商品的成本是20元,标价是成本的1.5倍,如果商店以标价的8折出售,那么每件商品的利润是多少?五、附加题(10分)16. 一个圆的半径增加1厘米,它的面积增加了多少平方厘米?(提示:圆的面积公式为A = πr²)答案:一、选择题1. C2. A3. A4. A5. A二、填空题6. 07. 2, -28. 99. 810. 5三、计算题11. (1) -20(2) 412. (1) x = 3(2) x = 513. (1) 面积= 16π,周长 = 16(2) 面积 = 18,周长 = 18四、解答题14. 男生有32人,女生有8人。

2024年最新人教版七年级数学(上册)期末考卷及答案(各版本)

2024年最新人教版七年级数学(上册)期末考卷及答案(各版本)

2024年最新人教版七年级数学(上册)期末考卷一、选择题(每题3分,共30分)1. 下列哪个数是正数?A. 3B. 0C. 1/2D. 1/22. 一个数的绝对值是它本身的数是?A. 正数B. 负数C. 零D. 正数和零3. 下列哪个数是分数?A. 0.5B. 3/4C. 0.25D. 1.54. 下列哪个数是整数?A. 0.3B. 2/3C. 0D. 1/25. 下列哪个数是负数?A. 3B. 0C. 2D. 1/26. 一个数的绝对值是它本身的数是?A. 正数B. 负数C. 零D. 正数和零7. 下列哪个数是分数?A. 0.5B. 3/4C. 0.25D. 1.58. 下列哪个数是整数?A. 0.3B. 2/3C. 0D. 1/29. 下列哪个数是负数?A. 3B. 0C. 2D. 1/210. 一个数的绝对值是它本身的数是?A. 正数B. 负数C. 零D. 正数和零二、填空题(每题3分,共30分)1. 5的绝对值是______。

2. 2的绝对值是______。

3. 3/4的绝对值是______。

4. 0的绝对值是______。

5. 1/2的绝对值是______。

6. 1/2的绝对值是______。

7. 3的绝对值是______。

8. 3的绝对值是______。

9. 2/3的绝对值是______。

10. 0.25的绝对值是______。

三、解答题(每题10分,共50分)1. 计算:| 5 | | 3 | + | 2 | | 1 |2. 计算:| 4 | + | 6 | | 2 | + | 3 |3. 计算:| 7 | | 5 | + | 3 | | 2 |4. 计算:| 8 | + | 7 | | 4 | + | 3 |5. 计算:| 9 | | 6 | + | 5 | | 4 |四、应用题(每题10分,共30分)1. 小明有5个苹果,小红有3个苹果,小刚有2个苹果。

小明比小红多几个苹果?小红比小刚多几个苹果?2. 一辆汽车从A地开往B地,速度是每小时60公里。

七年级数学下册期末考试(必考题)

七年级数学下册期末考试(必考题)

七年级数学下册期末考试(必考题)班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.-2019的相反数是()A.2019 B.-2019 C.12019D.12019-2.如图,将▱ABCD沿对角线BD折叠,使点A落在点E处,交BC于点F,若ABD48∠=,CFD40∠=,则E∠为()A.102B.112C.122D.923.我国古代数学著作《增删算法统宗》记载”绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托“其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x尺,竿长y尺,则符合题意的方程组是()A.5{152x yx y=+=-B.5{1+52x yx y=+=C.5{2-5x yx y=+=D.-5{2+5x yx y==4.如图,已知△ABC,AB<BC,用尺规作图的方法在BC上取一点P,使得PA+PC=BC,则下列选项正确的是()A.B. C. D.5.下列说法中,正确的是()A.从直线外一点到这条直线的垂线叫点到直线的距离B.在同一平面内,过一点有且只有一条直线与已知直线平行C.在同一平面内,过一点有且只有一条直线与已知直线垂直D.不相交的两直线一定互相平行6.若A=(2+1)(22+1)(24+1)(28+1)+1,则A的末位数字是()A.2 B.4 C.6 D.87.如图,两条直线l1∥l2,Rt△ACB中,∠C=90°,AC=BC,顶点A、B分别在l 1和l2上,∠1=20°,则∠2的度数是()A.45°B.55°C.65°D.75°8.估计7+1的值()A.在1和2之间B.在2和3之间C.在3和4之间D.在4和5之间9.若|abc|=-abc,且abc≠0,则||||ba ca b c++=()A.1或-3 B.-1或-3 C.±1或±3 D.无法判断10.等腰三角形的一个角是80°,则它的顶角的度数是()A.80° B.80°或20° C.80°或50° D.20°二、填空题(本大题共6小题,每小题3分,共18分)1.分解因式:x2-2x+1=__________.2.如图,在△ABC中,AC=8,BC=5,AB的垂直平分线DE交AB于点D,交边AC于点E,则△BCE的周长为________.3.如图,将一副三角板和一张对边平行的纸条按下列方式摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是________4.若关于x 、y 的二元一次方程组34355x y m x y -=+⎧⎨+=⎩的解满足0x y +≤,则m 的取值范围是________.5.若x=2是关于x 的方程2x+3m ﹣1=0的解,则m 的值等于_________.6.关于x 的分式方程721511x m x x -+=--有增根,则m 的值为__________. 三、解答题(本大题共6小题,共72分)1.解下列方程: (1)37615=-y (2)21136x x ++-=2 (3)0.430.20.5x x +--=﹣1.62.已知关于x 、y 的二元一次方程组21222x y m x y m +=+⎧⎨+=-⎩的解满足不等式组81x y x y -<⎧⎨+>⎩则m 的取值范围是什么?3.如图,△ABC 中,AB =AC =1,∠BAC =45°,△AEF 是由△ABC 绕点A 按顺时针方向旋转得到的,连接BE ,CF 相交于点D,(1)求证:BE =CF ;(2)当四边形ACDE 为菱形时,求BD 的长.4.尺规作图:校园有两条路OA、OB,在交叉路口附近有两块宣传牌C、D,学校准备在这里安装一盏路灯,要求灯柱的位置P离两块宣传牌一样远,并且到两条路的距离也一样远,请你帮助画出灯柱的位置P.(不写画图过程,保留作图痕迹)5.某软件科技公司20人负责研发与维护游戏、网购、视频和送餐共4款软件.投入市场后,游戏软件的利润占这4款软件总利润的40%.如图是这4款软件研发与维护人数的扇形统计图和利润的条形统计图.根据以上信息,网答下列问题(1)直接写出图中a,m的值;(2)分别求网购与视频软件的人均利润;(3)在总人数和各款软件人均利润都保持不变的情况下,能否只调整网购与视频软件的研发与维护人数,使总利润增加60万元?如果能,写出调整方案;如果不能,请说明理由.6.2017年遂宁市吹响了全国文明城市创建决胜“集结号”.为了加快创建步伐,某运输公司承担了某标段的土方运输任务,公司已派出大小两种型号的渣土运输车运输土方.已知一辆大型渣土运输车和一辆小型渣土运输车每次共运15吨;3辆大型渣土运输车和8辆小型渣土运输车每次共运70吨.(1)一辆大型渣土运输车和一辆小型渣土运输车每次各运土方多少吨?(2)该渣土运输公司决定派出大小两种型号渣土运输车共20辆参与运输土方,若每次运输土方总量不小于148吨,且小型渣土运输车至少派出7辆,问该渣土运输公司有几种派出方案?(3)在(2)的条件下,已知一辆大型渣土运输车运输话费500元/次,一辆小型渣土运输车运输花费300元/次,为了节约开支,该公司应选择哪种方案划算?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、B3、A4、B5、C6、C7、C8、C9、A10、B二、填空题(本大题共6小题,每小题3分,共18分)11、(x-1)2.12、1313、15°14、2m≤-15、﹣116、4.三、解答题(本大题共6小题,共72分)17、(1)y=3;(2)x=113;(3)x=﹣3.2.18、0<m<3.19、(1)证明见解析(2-120、略.21、(1)a=20,m=960;(2)网购软件的人均利润为160元/人,视频软件的人均利润为140元/人;(3)安排9人负责网购、安排1人负责视频可以使总利润增加60万元.22、(1)一辆大型渣土运输车每次运土方10吨,一辆小型渣土运输车每次运土方5吨;(2)4种;(3)选择“派出大型渣土运输车10辆、小型渣土运输车10辆”的方案划算.。

初中七年级数学上册期末考试(必考题)

初中七年级数学上册期末考试(必考题)

初中七年级数学上册期末考试(必考题)班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知a、b、c是△ABC的三条边长,化简|a+b-c|-|c-a-b|的结果为()A.2a+2b-2c B.2a+2b C.2c D.02.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A.B.C.D.3.如图,直线AD,BE被直线BF和AC所截,则∠1的同位角和∠5的内错角分别是()A.∠4,∠2 B.∠2,∠6 C.∠5,∠4 D.∠2,∠4 4.如图,△ABC中,AD是BC边上的高,AE、BF分别是∠BAC、∠ABC的平分线,∠BAC=50°,∠ABC=60°,则∠EAD+∠ACD=()A.75°B.80°C.85°D.90°5.已知a b,,则a b==31323+的值为()A .1B .2C .3D .276.已知关于x 的不等式3x ﹣m+1>0的最小整数解为2,则实数m 的取值范围是( )A .4≤m <7B .4<m <7C .4≤m ≤7D .4<m ≤77.下列各组数中,能作为一个三角形三边边长的是( )A .1,1,2B .1,2,4C .2,3,4D .2,3,58.248162(31)(31)(31)(31)(31)⨯+++++的计算结果的个位数字是( )A .8B .6C .2D .09.如图,a ,b ,c 在数轴上的位置如图所示,化简22()a a c c b -++-的结果是( )A .2c ﹣bB .﹣bC .bD .﹣2a ﹣b10.如图,已知直线a ∥b ,则∠1、∠2、∠3的关系是( )A .∠1+∠2+∠3=360°B .∠1+∠2﹣∠3=180°C .∠1﹣∠2+∠3=180°D .∠1+∠2+∠3=180°二、填空题(本大题共6小题,每小题3分,共18分)1.8-的立方根是__________.2.如图,一条公路修到湖边时,需拐弯绕湖而过,在A ,B ,C 三处经过三次拐弯,此时道路恰好和第一次拐弯之前的道路平行(即AE ∥CD ),若∠A =120°,∠B =150°,则∠C 的度数是________.3.如图,五边形ABCDE 是正五边形,若12l l //,则12∠-∠=__________.5.若不等式组x a 0{12x x 2+≥-->有解,则a 的取值范围是________. 5.若一个多边形的内角和是900º,则这个多边形是________边形.6.若323m x --21n y - =5是二元一次方程,则m =________,n =________.三、解答题(本大题共6小题,共72分)1.解方程组:10216x y x y +=⎧⎨+=⎩2.解不等式组:2(3)47{22x x x x +≤++>并写出它的所有整数解.3.如图①,在三角形ABC 中,点E ,F 分别为线段AB ,AC 上任意两点,EG 交BC 于点G ,交AC 的延长线于点H ,∠1+∠AFE =180°.(1)证明:BC ∥EF ;(2)如图②,若∠2=∠3,∠BEG =∠EDF ,证明:DF 平分∠AFE.4.如图,在△ABC 和△ADE 中,AB=AC ,AD=AE ,且∠BAC=∠DAE ,点E 在BC 上.过点D 作DF ∥BC ,连接DB .求证:(1)△ABD≌△ACE;(2)DF=CE.5.为响应党的“文化自信”号召,某校开展了古诗词诵读大赛活动,现随机抽取部分同学的成绩进行统计,并绘制成如下的两个不完整的统计图,请结合图中提供的信息,解答下列各题:(1)直接写出a的值,a= ,并把频数分布直方图补充完整.(2)求扇形B的圆心角度数.(3)如果全校有2000名学生参加这次活动,90分以上(含90分)为优秀,那么估计获得优秀奖的学生有多少人?6.某天小明骑自行车上学,途中因自行车发生故障,修车耽误了一段时间后继续骑行,按时赶到了学校,如图所示是小明从家到学校这一过程中所走的路程s(米)与时间 t(分)之间的关系.(1)小明从家到学校的路程共米,从家出发到学校,小明共用了分钟;(2)小明修车用了多长时间?(3)小明修车以前和修车后的平均速度分别是多少?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、D2、D3、B4、A5、B6、A7、C8、D9、A10、B二、填空题(本大题共6小题,每小题3分,共18分)1、-22、150°3、724、a>﹣15、七6、2 1三、解答题(本大题共6小题,共72分)1、64 xy=⎧⎨=⎩2、原不等式组的解集为122x-≤<,它的所有整数解为0,1.3、(1)略;(2) 略.4、(1)证明略;(2)证明略.5、(1)30,补图见解析;(2)扇形B的圆心角度数为50.4°;(3)估计获得优秀奖的学生有400人.6、(1)2000米,20分钟;(2)5;(3) 100(m/min),200(m/min)。

初一期末必考题数学试卷

初一期末必考题数学试卷

一、选择题(每题5分,共50分)1. 下列数中,是负数的是()A. -3/4B. 0C. 1/2D. -22. 如果a > b,那么下列不等式中一定成立的是()A. a + 3 > b + 3B. a - 3 > b - 3C. a 3 > b 3D. a / 3 > b / 33. 下列等式中,正确的是()A. 5^2 = 25B. 5^2 = 50C. 5^2 = 100D. 5^2 = 25^24. 一个长方形的长是10cm,宽是6cm,那么它的面积是()A. 50cm²B. 60cm²C. 96cm²D. 120cm²5. 下列分数中,最小的是()A. 1/2B. 1/3C. 1/4D. 1/56. 如果一个数的平方是25,那么这个数可能是()A. 5B. -5C. 10D. -107. 下列数中,是质数的是()A. 16B. 17C. 18D. 198. 下列等式中,正确的是()A. (a + b)² = a² + b²B. (a + b)² = a² + 2ab + b²C. (a - b)² = a² - 2ab + b²D. (a - b)² = a² + 2ab - b²9. 一个正方形的边长是8cm,那么它的周长是()A. 32cmB. 64cmC. 80cmD. 96cm10. 下列数中,是整数的是()A. 3.14B. 3.14159C. 3D. -3二、填空题(每题5分,共50分)11. 如果x = 3,那么2x + 5的值是______。

12. 一个数的相反数是-5,那么这个数是______。

13. 3/4 + 2/5的结果是______。

14. 5的平方根是______。

15. 下列数中,绝对值最小的是______。

2023~2024学年第一学期北京市七年级期末数学试卷分类汇编——选择压轴题(原卷版)

2023~2024学年第一学期北京市七年级期末数学试卷分类汇编——选择压轴题(原卷版)

2023~2024学年第一学期北京市七年级期末数学试卷分类汇编——选择压轴题1.(2023秋•海淀区期末)某玩具厂在生产配件时,需要分别从棱长为2a的正方体木块中,挖去一个棱长为a的小正方体木块,得到甲、乙、丙三种型号的玩具配件(如图所示).将甲、乙、丙这三种配件的表面积分别记为S甲、S乙、S丙,则下列大小关系正确的是()注:几何体的表面积是指几何体所有表面的面积之和.A.S甲>S乙>S丙B.S甲>S丙>S乙C.S丙>S乙>S甲D.S丙>S甲>S乙2.(2023秋•西城区期末)如图,某乡镇的五户居民依次居住在同一条笔直的小道边的A处,B处,C处,D处,E处,且这五户居民的人数依次有1人,2人,3人,3人,2人.乡村扶贫改造期间,该乡镇打算在这条小道上新建一个便民服务点M,使得所有居民到便民服务点的距离之和(每户所有居民均需要计算)最小,则便民服务点M应建在()A.A处B.B处C.C处D.D处3.(2023秋•东城区期末)某商店在甲批发市场以每包m元的价格进了60包茶叶,又在乙批发市场以每包n元(m<n)的价格进了同样的40包茶叶,如果商家以每包元的价格卖出这种茶叶,卖完后,这家商店的盈亏情况为()A.盈利10(n﹣m)元B.亏损10(n﹣m)元C.盈利10(m+n)元D.没盈利也没亏损4.(2023秋•朝阳区期末)对幻方的研究体现了中国古人的智慧,如图1是一个幻方的图案,其中9个格中的点数分别为1,2,3,4,5,6,7,8,9.每一横行、每一竖列、每一斜对角线上的点数的和都是15.如图2是一个没有填完整的幻方,如果它处于同一横行、同一竖列、同一斜对角线上的3个数的和都相等,那么正中间的方格中的数字为()A.5B.1C.0D.﹣15.(2023秋•丰台区期末)幻方是一种中国传统的数字游戏.游戏规则:将数字填入正方形的格子中,使每行、每列和每条斜对角线上的数字和都相等.如图是填写了部分数字的幻方,根据幻方的游戏规则,其中a的值为()4115aA.5B.7C.9D.126.(2023秋•石景山区期末)有理数a,b在数轴上的对应点的位置如图所示,则正确的结论是()A.ab>0B.a<﹣b C.a+2>0D.a﹣2b>07.(2023秋•通州区期末)远古时期,人们通过在绳子上打结来记录数量,即“结绳计数”.如图,一位母亲在从右到左依次排列的绳子上打结,满七进一,用来记录孩子自出生后的天数,由图可知,孩子自出生后的天数是()A.41天B.11天C.167天D.461天8.(2023秋•大兴区期末)如图,点A,O,B在一条直线上,∠AOC=∠DOE=78°,∠AOD=43°,那么∠BOE的度数为()A.35°B.43°C.47°D.59°9.(2023秋•顺义区期末)如图是一个运算程序,当输入x=30时,输出结果是147;当输入x=10时,输出结果是232.如果输入的x是正整数,输出结果是132,那么满足条件的x的值最多有()A.1个B.2个C.3个D.4个10.(2023秋•门头沟区期末)已知m是不为1的有理数,我们把称为m的“友好数”.例如:2的“友好数”是=﹣1,﹣1的“友好数”是.如果m1=﹣1,m2是m1的“友好数”,m3是m2的“友好数”,m4是m3的“友好数”,…,以此类推,那么m200的值为()A.﹣1B.C.2D.﹣211.(2023秋•延庆区期末)下列说法:①单项式ab2的系数是1;②单项式ab2的次数是2;③多项式a+b2的次数是3.正确的是()A.①B.②C.③D.①②③12.(2023秋•昌平区期末)如图1,将正方形纸片ABCD的∠A,∠C分别沿BE,BF折叠,使点A,C 分别落在A',C'处,点C'与点A'重合.如图2,将该纸片展平后,将∠A,∠C分别沿BG,BH再折叠,使点A,C分别落在BE上的点A″处和BF上的点C″处.如图3,纸片展平后,将∠ABG和∠CBH 分别记为α和β,则α和β的数量关系一定成立的是()A.β=2αB.α+β=22.5°C.β﹣α=22.5°D.α+β=45°13.(2023秋•房山区期末)有理数a,b,c,d在数轴上的对应点的位置如图所示.当a+d=0时,下面有五个结论:①b+c<0;②cd<0;③d﹣a=0;④;⑤b2>c2,其中结论正确的是()A.①④⑤B.①②④C.③④⑤D.①⑤。

初中七年级数学下册期末测试卷(必考题)

初中七年级数学下册期末测试卷(必考题)

初中七年级数学下册期末测试卷(必考题) 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.若a ≠0,b ≠0,则代数式||||||a b ab a b ab ++的取值共有( ) A .2个 B .3个 C .4个D .5个 2.如图,直线AB ∥CD ,则下列结论正确的是( )A .∠1=∠2B .∠3=∠4C .∠1+∠3=180° D.∠3+∠4=180° 3.如图,AB CD ⊥,且AB CD =.E 、F 是AD 上两点,CE AD ⊥,BF AD ⊥.若CE a =,BF b =,EF c =,则AD 的长为( )A .a c +B .b c +C .a b c -+D .a b c +- 4.已知5x =3,5y =2,则52x ﹣3y =( )A .34 B .1 C .23D .985.如图所示,点P 到直线l 的距离是( )A .线段PA 的长度B .线段PB 的长度C.线段PC的长度 D.线段PD的长度6.有理数a,b在数轴上的对应点如图所示,则下面式子中正确的是()①b<0<a;②|b|<|a|;③ab>0;④a﹣b>a+b.A.①②B.①④C.②③D.③④7.在数轴上,点A,B在原点O的两侧,分别表示数a,2,将点A向右平移1个单位长度,得到点C.若CO=BO,则a的值为()A.-3 B.-2 C.-1 D.18.估计7+1的值()A.在1和2之间B.在2和3之间C.在3和4之间D.在4和5之间9.如图,在△ABC中,AB=AC,D是BC的中点,AC的垂直平分线交AC,AD,AB于点E,O,F,则图中全等三角形的对数是()A.1对B.2对C.3对D.4对10.已知正多边形的一个外角为36°,则该正多边形的边数为(). A.12 B.10 C.8 D.6二、填空题(本大题共6小题,每小题3分,共18分)1.若|x|=4,|y|=5,则x-y的值为____________.2.如图,DA⊥CE于点A,CD∥AB,∠1=30°,则∠D=________.3.如图,AB∥CD,则∠1+∠3—∠2的度数等于 __________.4.将命题“同角的余角相等”,改写成“如果…,那么…”的形式_____.5.若一个多边形的内角和等于720度,则这个多边形的边数是________. 6.如图,已知AB∥CD,F为CD上一点,∠EFD=60°,∠AEC=2∠CEF,若6°<∠BAE<15°,∠C的度数为整数,则∠C的度数为________.三、解答题(本大题共6小题,共72分)1.解方程组:(1)32137x yx y+=⎧⎨-=-⎩(2)()45113812x y yx y⎧+=+⎪⎨+=⎪⎩2.若关于x、y的二元一次方程组325233x y ax y a-=-⎧⎨+=+⎩的解都为正数.(1)求a的取值范围;(2)化简|a+1|﹣|a﹣1|;(3)若上述二元一次方程组的解是一个等腰三角形的一条腰和一条底边的长,且这个等腰三角形的周长为9,求a的值.3.(1)如图a示,AB∥CD,且点E在射线AB与CD之间,请说明∠AEC=∠A+∠C的理由.(2)现在如图b示,仍有AB∥CD,但点E在AB与CD的上方,①请尝试探索∠1,∠2,∠E三者的数量关系;②请说明理由.4.如图①,在△ABC中,∠ABC与∠ACB的平分线相交于点P.(1)如果∠A=80°,求∠BPC的度数;(2)如图②,作△ABC外角∠MBC,∠NCB的角平分线交于点Q,试探索∠Q、∠A 之间的数量关系.(3)如图③,延长线段BP、QC交于点E,△BQE中,存在一个内角等于另一个内角的2倍,求∠A的度数.5.某初级中学正在展开“文明城市创建人人参与,志愿服务我当先行”的“创文活动”为了了解该校志愿者参与服务情况,现对该校全体志愿者进行随机抽样调查.根据调查数据绘制了如下所示不完整统计图.条形统计图中七年级、八年级、九年级、教师分别指七年级、八年级、九年级、教师志愿者中被抽到的志愿者,扇形统计图中的百分数指的是该年级被抽到的志愿者数与样本容量的比.(1)请补全条形统计图;(2)若该校共有志愿者600人,则该校九年级大约有多少志愿者?6.江海化工厂计划生产甲、乙两种季节性产品,在春季中,甲种产品售价50千元/件,乙种产品售价30千元/件,生产这两种产品需要A、B两种原料,生产甲产品需要A种原料4吨/件,B种原料2吨/件,生产乙产品需要A种原料3吨/件,B种原料1吨/件,每个季节该厂能获得A种原料120吨,B种原料50吨.(1)如何安排生产,才能恰好使两种原料全部用完?此时总产值是多少万元?(2)在夏季中甲种产品售价上涨10%,而乙种产品下降10%,并且要求甲种产品比乙种产品多生产25件,问如何安排甲、乙两种产品,使总产值是1375千元,A,B两种原料还剩下多少吨?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、D3、D4、D5、B6、B7、A8、C9、D10、B二、填空题(本大题共6小题,每小题3分,共18分)11、±1,±912、60°13、180°14、如果两个角是同一个角的余角,那么这两个角相等15、616、36°或37°.三、解答题(本大题共6小题,共72分)17、(1)12xy=-⎧⎨=⎩;(2)14xy⎧=⎪⎨⎪=⎩18、(1)a>1;(2)2;(3)a的值是2.19、(1)略;(2)∠1+∠2-∠E=180°.20、(1)130°.(2)∠Q==90°﹣12∠A;(3)∠A的度数是90°或60°或120°.21、(1)作图见解析;(2)120.22、(1)生产甲种产品15件,生产乙种产品20件才能恰好使两种原料全部用完,此时总产值是135万元;(2)安排生产甲种产品25件,使总产值是1375千元,A种原料还剩下20吨,B种原料正好用完,还剩下0吨.。

初一数学期末测试卷(含答案)

初一数学期末测试卷(含答案)

初一数学期末测试卷(含答案)初一数学期末测试卷(含答案)一、选择题(每题2分,共30分)1. 某数除以4的余数是2,除以5的余数是1,这个数是()。

A. 13B. 27C. 52D. 57【解析】选C。

根据题意,可设某数为4的倍数加2,又是5的倍数加1。

根据答案选项,计算可知C项满足条件。

2. (5x+3)(x-2)=0的解为()。

A. x=2B. x= -2C. x=2/5D. x= -3/5【解析】选A。

对于一个乘积为0的式子,必有因式为0。

由此可知,5x+3=0或x-2=0,解方程可得x= -3/5或x=2,选项A为正确答案。

3. 甲、乙两人同走一条直径长为10米的跑道,乙比甲晚走2秒,乙每秒走3米,20秒后两人相遇在跑道上,甲的速度是()m/s。

A. 4B. 5C. 6D. 7【解析】选C。

设甲的速度为v,则乙的速度为v+3,由速度等式可得20(v+3)=10,解该方程得v=0.5,即甲的速度为0.5m/s,即6m/s。

......(继续编写剩下的选择题)二、填空题(每题2分,共20分)1. 若5x - 2 = 18,则x = ______。

【解析】根据题意可知5x-2=18,解方程可得x=4。

2. 若一个正方形的面积是64平方厘米,则它的周长是______厘米。

【解析】设正方形的边长为a,则根据题意可得a^2=64,解该方程可得a=8,正方形的周长等于4乘以边长,即周长=4×8=32厘米。

......(继续编写剩下的填空题)三、解答题(共50分)1. 一块面积为80平方米的矩形土地,长比宽多4米,求长和宽各是多少米?【解析】设矩形的长为x米,则宽为(x-4)米。

根据题意,长乘以宽等于80,即x(x-4)=80。

解该方程可得x=10,即长为10米,宽为6米。

2. 如果三个数是等差数列,且第一个数是4,最后一个数是19,则这三个数之和是多少?【解析】设等差数列的公差为d,根据题意可得4+2d=19,解该方程可得d=7,即公差为7。

七年级数学上册期末考试题(必考题)

七年级数学上册期末考试题(必考题)

七年级数学上册期末考试题(必考题)班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.﹣2020的倒数是()A.﹣2020 B.﹣12020C.2020 D.120202.如图是甲、乙两车在某时段速度随时间变化的图象,下列结论错误的是()A.乙前4秒行驶的路程为48米B.在0到8秒内甲的速度每秒增加4米/秒C.两车到第3秒时行驶的路程相等D.在4至8秒内甲的速度都大于乙的速度3.8的相反数的立方根是()A.2 B.12C.﹣2 D.124.若x是3的相反数,|y|=4,则x-y的值是()A.-7 B.1 C.-1或7 D.1或-75.如图,四边形ABCD内接于⊙O,点I是△ABC的内心,∠AIC=124°,点E 在AD的延长线上,则∠CDE的度数为()A.56°B.62°C.68°D.78°6.下列图形中,不能通过其中一个四边形平移得到的是()A .B .C .D .7.《增删算法统宗》记载:“有个学生资性好,一部孟子三日了,每日增添一倍多,问若每日读多少?”其大意是:有个学生天资聪慧,三天读完一部《孟子》,每天阅读的字数是前一天的两倍,问他每天各读多少个字?已知《孟子》一书共有34 685个字,设他第一天读x 个字,则下面所列方程正确的是( ).A .x +2x +4x =34 685B .x +2x +3x =34 685C .x +2x +2x =34 685D .x +12x +14x =34 685 8.用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象(如图所示),则所解的二元一次方程组是 ( )A .20{3210x y x y +-=--=, B .210{3210x y x y --=--=, C .210{3250x y x y --=+-=, D .20{210x y x y +-=--=, 9.已知实数a 、b 满足a+b=2,ab=34,则a ﹣b=( ) A .1 B .﹣52 C .±1 D .±5210.2020的相反数是( )A .2020B .2020-C .12020D .12020- 二、填空题(本大题共6小题,每小题3分,共18分)1.一个n 边形的内角和为1080°,则n=________.2.一个大正方形和四个全等的小正方形按图①、②两种方式摆放,则图②的大正方形中未被小正方形覆盖部分的面积是__________(用a 、b 的代数式表示).3.若312m x y +-与432n x y +是同类项,则2017()m n +=________. 4.如图所示,在四边形ABCD 中,AD ⊥AB ,∠C=110°,它的一个外角∠ADE=60°,则∠B 的大小是________.5.已知点A(a ,0)和点B(0,5)两点,且直线AB 与坐标轴围成的三角形的面积等于10,则a 的值是______________.6.已知13a a +=,则221+=a a__________; 三、解答题(本大题共6小题,共72分)1.解二元一次方程组(1)31529x y x y +=⎧⎨-=⎩ (2)3523153232x y x y x +=⎧⎪-+⎨-=-⎪⎩2.已知关于x ,y 的二元一次方程组3426x y m x y +=+⎧⎨-=⎩的解满足3x y +<,求满足条件的m 的所有非负整数值.3.如图①,在三角形ABC 中,点E ,F 分别为线段AB ,AC 上任意两点,EG 交BC于点G,交AC的延长线于点H,∠1+∠AFE=180°.(1)证明:BC∥EF;(2)如图②,若∠2=∠3,∠BEG=∠EDF,证明:DF平分∠AFE.4.已知:如图,∠1=∠2,∠3=∠4,∠5=∠6.求证:ED∥FB.5.为了了解本校学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,课题小组随机选取该校部分学生进行了问卷调查(问卷调查表如图1所示),并根据调查结果绘制了图2、图3两幅统计图(均不完整),请根据统计图解答下列问题.(1)本次接受问卷调查的学生有________名.(2)补全条形统计图.(3)扇形统计图中B类节目对应扇形的圆心角的度数为________.(4)该校共有2000名学生,根据调查结果估计该校最喜爱新闻节目的学生人数.6.某市推出电脑上网包月制,每月收取费用y(元)与上网时间x(小时)的函数关系如图所示,其中BA是线段,且BA∥x轴,AC是射线.(1)当x≥30,求y与x之间的函数关系式;(2)若小李4月份上网20小时,他应付多少元的上网费用?(3)若小李5月份上网费用为75元,则他在该月份的上网时间是多少?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、C4、D5、C6、D7、A8、D9、C10、B二、填空题(本大题共6小题,每小题3分,共18分)1、82、ab3、-1.4、40°5、±46、7三、解答题(本大题共6小题,共72分)1、(1)12xy=⎧⎨=-⎩(2)2345xy⎧=-⎪⎪⎨⎪=⎪⎩2、满足条件的m的所有非负整数值为:0,1,23、(1)略;(2) 略.4、证明略.5、(1)100;(2)见解析;(3)72︒;(4)160人.6、(1)y=3x﹣30;(2)4月份上网20小时,应付上网费60元;(3)5月份上网35个小时.。

七年级数学期末必刷题试卷

七年级数学期末必刷题试卷

一、选择题(每题5分,共50分)1. 下列数中,既是整数又是正数的是()A. -3B. 0C. 5D. -52. 下列各数中,绝对值最小的是()A. -2B. 2C. -1D. 13. 下列各数中,有理数是()A. √9B. √16C. √-9D. √-164. 已知x是正数,则下列等式中正确的是()A. -x < xB. -x > xC. x > -xD. x < -x5. 在下列各式中,正确的是()A. 2x = 3xB. 2x = 3yC. 2x = 3D. 2x = 3x + 16. 下列函数中,自变量x的取值范围是全体实数的是()A. y = 2x + 1B. y = x^2C. y = √xD. y = 1/x7. 下列各数中,属于等差数列的是()A. 1, 3, 5, 7B. 2, 4, 6, 8C. 1, 4, 9, 16D. 1, 3, 6, 108. 下列各数中,属于等比数列的是()A. 1, 2, 4, 8B. 2, 4, 8, 16C. 1, 3, 9, 27D. 1, 3, 6, 99. 已知a、b、c是等差数列,且a+b+c=12,则a+c的值是()A. 6B. 8C. 10D. 1210. 已知a、b、c是等比数列,且a+b+c=12,则abc的值是()A. 12B. 36C. 48D. 60二、填空题(每题5分,共50分)11. 若a+b=7,a-b=3,则a=______,b=______。

12. 若x^2-5x+6=0,则x的值为______。

13. 若√(x+2)=3,则x=______。

14. 若a^2-4a+4=0,则a=______。

15. 若3x^2-6x+2=0,则x=______。

16. 若y=2x+1,当x=3时,y=______。

17. 若y=x^2-2x+1,当x=1时,y=______。

18. 若y=√(x-2),则x的取值范围是______。

(真题汇编)京改版七年级下册数学期末测试卷

(真题汇编)京改版七年级下册数学期末测试卷

京改版七年级下册数学期末测试卷一、单选题(共15题,共计45分)1、用代入法解方程组,使得代入后化简比较容易的变形是()A.由①得B.由①得C.由②得D.由②得y=2x﹣52、若a=,b=,则下列结论正确的是()A.a=bB.a<bC.a>bD.ab=13、已知x= +20,y=4(2b-a),x与y的大小关系是()A.x≥yB.x≤yC.x<yD.x>y4、下列计算正确的是()A.(2a)3÷a=8a 2B.C.(a﹣b)2=a 2﹣b2 D.-45、下列说法,错误的是()A.为了解一种灯泡的使用寿命,宜采用普查的方法B.一组数据8,8,7,10,6,8,9的众数是8C.方差反映了一组数据与其平均数的偏离程度D.对于简单随机样本,可以用样本的方差去估计总体的方差6、某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至少可打()A.6折B.7折C.8折D.9折7、下列判断正确的是()A.北斗系统第五十五颗导航卫星发射前的零件检查,应选择抽样调查B.一组数据6,5,8,7,9的中位数是8C.甲、乙两组学生身高的方差分别为S甲2=2.3,S乙2=1.8.则甲组学生的身高较整齐 D.命题“既是矩形又是菱形的四边形是正方形”是真命题8、下列计算正确的是( )A. B. C. D.9、下列计算正确的是()A.a 2 a 3=a 6B.C.D.10、已知关于的分式方程的解为非正数,则的取值范围是()A. B. C. D.11、如果长方体的长为3a﹣4,宽为2a,高为a,则它的体积是()A. A.3a 2﹣4aB. B.a 2C. C.6a 3﹣8a 2D. D.6a 2﹣8a12、今年,我国部分地区“登革热”流行,党和政府采取果断措施,防治结合,防止病情继续扩散.如图是某同学记载的9月1日至30日每天某地的“登革热”新增确诊病例数据日.将图中记载的数据每5天作为一组,从左至右分为第一组至第六组,下列说法:①第一组的平均数最大,第六组的平均数最小;②第二组的中位数为146;③第四组的众数为28.其中正确的有()A.0个B.1个C.2个D.3个13、一组数据:5,7,4,9,7的中位数和众数分别是()A.4,7B.7,7C.4,4D.4,514、计算的值为()A. B. C. D.15、如果方程组的解与方程组的解相同,则a、b的值是()A. B. C. D.二、填空题(共10题,共计30分)16、若m2-n2=6,且m-n=3,则m+n=________ .17、计算:3a﹣(2a﹣1)=________18、分解因式:ax2﹣9a=________.19、不等式﹣2x<8的负整数解的和是________.20、不等式组的解集是________.21、已知y= + +4,且这个式子有意义,则=________.22、若,则代数式的值为________.23、已知实数a、b满足a-b=3,ab=2,则a²+b²的值为 ________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初一上学期期末典型题(典型题)1.若(2x +y -4)2+|x -2| =0,则xy=________.2、某商人一次卖出两件衣服,一件赚了10%,一件亏了10%,卖价都为198元,在这次生意中商人( )A 、不赚不亏空B 、赚了6元C 、亏了4元D 、以上都不对 3.下列各式中,总是正数的是( )。

A 、aB 、a 2C 、a 2+1D 、(a +1)24、计算72°35′÷2+18°33′×4=_______。

5、如果am=an,那么下列等式不一定成立的是 ( )A 、am-3=an-3B 、5+am=5+anC 、m=nD 、_0.5am=_0.5an6.若a b ,互为相反数,且都不为零,则()11a a b b ⎛⎫+-+ ⎪⎝⎭的值为7.已知2237a b -+=-,则代数式2964b a -+的值是 。

三、简答题8.计算:100211(10.5)3(3)3⎡⎤---⨯⨯--⎣⎦ 9. 解方程413-x - 675-x = 1 10. 一项工程甲单独做要20小时,乙单独做要12小时。

现在先由甲单独做5小时,然后乙加入进来合做。

完成整个工程一共需要多少小时?11、如图,已知直线AB 和CD 相交于点O ,∠COE 是直角,OF 平分∠AOE , (1)写出∠AOC 与∠BOD 的大小关系: , 判断的依据是 。

(2)若∠COF=35°,求∠BOD 的度数12.某地上网有两种收费方式,用户可以任选其一:(A )记时制:3元/小时, (B )包月制:100元/月。

此外,每一种上网方式都加收通讯费1.2元/小时。

(1)某用户一个月上网多少小时,两种付费方式的上网费用一样?(2)某用户为选择合适的付费方式,记录了一个月中连续5天的上网时间如下表:A BD E F C O如果一个月按30天计算,根据上述信息,该用户选择哪种付费方式合算?请说明理由。

13.如图,延长线段AB 到C,使BC=3AB,点D 是线段BC 的中点,如果CD=3㎝,那么线段AC 的长度是多少?14多项式223368x kxy y xy --+-不含xy 项,则k = ; 15 实数a 、b 在数轴上的位置如图所示,则化简a b a +-的结果为( ) A. -b a +2 B. b - C. b D. b a --2oba16、已知线段AB =10cm ,点D 是线段AB 的中点,直线AB 上有一点C ,并且BC =2 cm ,则线段DC = .17、某商品的进价是200元,标价为300元,商店要求以利润不低于5%的售价打折出售,售货员最低可以打___________折出售此商品18、()2431(2)453⎡⎤-+-÷⨯--⎣⎦19、513x +-216x -=1.20、已知一个角的余角是这个角的补角的41,求这个角的补角. 21、七年级学生去春游,如果减少一辆客车,每辆车正好坐60人,如果增加一辆客车,每辆车正好坐45人。

问七年级共有多少学生? 第一天 第二天 第三天 第四天 第五天 上网时间/时1.41.20.91.41.1D B CA22. 已知线段AB ,反向延长AB 到点C ,使12AC AB =.若点D 是BC 中点,3CD cm =,求AB 、AD 的长.(要求:正确画图给2分)23. 甲乙两人承包铺地砖任务,若甲单独做需20小时完成,乙单独做需要12小时完成.甲乙二人合做6小时后,乙有事离开,剩下的由甲单独完成.问甲还要几个小时才可完成任务?24. 某商店需要购进甲、乙两种商品共160件,其进价和售价如下表: (注:获利=售价-进价)甲 乙 进价(元/件) 15 35[来源:售价(元/件)2045若商店计划销售完这批商品后能获利1100元,问甲、乙两种商品应分别购进多少件?25. 某种绿色食品,若直接销售,每吨可获利润0.1万元;若粗加工后销售,每吨可获利润0.4万元;若精加工后销售,每吨可获利润0.7万元.某公司现有这种绿色产品140吨,该公司的生产能力是:如果进行粗加工,每天可加工16吨;如果进行精加工,每天可加工6吨,但两种加工方式不能同时进行.受各种条件限制,公司必须在15天内将这批绿色产品全部销售或加工完毕,为此该公司设计了三种方案: 方案一:全部进行粗加工;方案二:尽可能多地进行精加工,没有来得及进行精加工的直接销售; 方案三:将一部分进行精加工,其余的进行粗加工,并恰好15天完成.你认为选择哪种方案可获利润最多,为什么?最多可获利润多少元?(此类题必须要做三遍,反复检查,反复思考)26.有下列四个命题:①、同位角相等;②、如果两个角的和是180度,那么这两个角是邻补角; ③、在同一平面内,平行于同一条直线的两条直线互相平行; ④、在同一平面内,垂直于同一条直线的两条直线互相垂直。

其中是真命题的个数有( )个 A 、0 B 、1 C 、2 D 、327. 某人以每小时3千米的速度步行由甲地到乙地,然后又以每小时每小时6千米的速度从乙地返回甲地,那么某人往返一次的平均速度是每小时 千米。

28计算化简:(1)5x 2-[12x-(31x-6)+4x](2) 18-[25-(-7)-(-4)]+22-33(3))23(29125)2131(|217|-÷-÷-⨯-29、某商品进价a 元,商店将价格提高30%作零售价销售,在销售旺季过后,商店以8折(即售价的80%)的价格开展促销活动,这时一件商品的售价为( )A.a 元;B.0.8a 元C.1.04a 元;D.0.92a 元 30、下列结论:①若a+b+c=0,且abc ≠0,则方程a+bx+c=0的解是x=1; ②若a(x-1)=b(x-1)有唯一的解,则a ≠b;③若b=2a, 则关于x 的方程ax+b=0(a ≠0)的解为x=-12; ④若a+b+c=1,且a ≠0,则x=1一定是方程ax+b+c=1的解;其中结论正确个数有( )A.4个B. 3个C. 2个;D. 1个 31若多项式2346x x -+的值为9,则多项式2463x x -+的值为______________ . 32.已知y=x-1,则()()12+-+-x y y x 的值为___________.33 某商场推出了一促销活动:一次购物少于100元的不优惠;超过100元(含100元)的按9折付款。

小明买了一件衣服,付款99元,则这件衣服的原价是___________元。

(注意符号)解方程:(2)62x 31635x 2--=+- (2)4x -1.50.5-5x -0.80.2=1.2-x0.1(2)(4分)12263x x x -+-=-(3)(2) (4分)|13|)2(16134--⨯-÷+-20、(本题6分)关于x 的方程234x m x -=-+与2m x -=的解互为相反数. (1)求m 的值;(4分) (2)求这两个方程的解.(2分)21、(本题7分)把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本.⑴这个班有多少学生? (5分) ⑵这批图书共有多少本? (2分)4.已知x y -=2,求344-+y x 的值.(活用特殊值法)5.已知-1<y <3,化简|y +1|+|y -3|=( ) A 、 4 B 、 -4 C 、 2y-2 D 、-26.在数轴上与-3的距离等于4的点表示的数是_________7. 某服装的标价是132元,若以8折售出,仍可获利a 元,则该服装的进价是 元.(整体思想)8. 已知代数式x2+x+3的值是8,那么代数式9-2x2-2x的值是_ .9. 已知下列各数:a,|a|,a2,a2-1,a2+1,其中一定不是负数的有( )A.1个B.2个C.3个D.4个9.在笔直的路边植树100棵,且每相邻的两棵之间的距离都为3米,则这排树首尾之间的距离为米。

10.△ABC中,∠A=13∠B=14∠C,则△ABC是( )A.锐角三角形B.直角三角形;C.钝角三角形D.都有可能11.多边形的每一个内角都是150°,则这个多边形是______边形,从这个多边形的一个顶点出发有______条对角线.(活用未知数)12.(9分)如图,O为直线AB上一点,∠AOC=50°,OD平分∠AOC,∠DOE=90°.(1)请你数一数,图中有多少个小于平角的角;(2)求出∠BOD的度数;(3)(3)试判断OE是否平分∠BOC,并说明理由(活用未知数)13.如图所示,已知OC是∠AOB的平分线,∠BOC=2∠BOD ,∠BOD=27o ,求∠AOD 的度数。

(活用未知数)14.(本题8分)如图,已知线段AB 和CD 的公共部分BD =13AB =14CD ,线段AB 、CD 的中点E 、F 之间距离是10cm ,求AB 、CD 的长.(活用未知数)15.(本题8分)如图,已知∠BOC =2∠AOC ,OD 平分∠AOB ,且∠AOC =40°,求∠COD 的度数.(活用未知数)16. 如图,OM 是∠AOC 的平分线,ON 是∠BOC 的平分线.(1)如图1,当∠AOB 是直角, ∠BOC =60°时,∠MON 的度数是多少? (2)如图2,当∠AOB =α,∠BOC = 60°时,猜想∠MON 与α的数量关系;(3)如图3,当∠AOB =α,∠BOC =β时,猜想∠MON 与α、β有数量关系吗?如果有,AE DBFCAOBDC指出结论并说明理由.ON AB CM M CB A N O图1图2图3O N AB CM(活用未知数)17、如图,在ABC 中,D 是BC 上一点,∠1=∠2,∠3=∠4,∠BAC=63°,求∠DAC 的度数。

18、如图,AB ∥CD ,BN 、DN 分别平分∠ABM 、∠MDC ,试问∠BMD 与∠BND 之 间的数量关系如何?证明你的结论。

19.列方程组解应用题甲、乙两人从相距18公里的两地同时出发,相向而行2小时相遇;如果甲比乙先出发3 小时,那么乙出发后1小时两 人相遇。

求两人的速度各是多少?N MOBA(2)(5分)某中学拟组织九年级师生去韶山举行毕业联欢活动.下面是年级组长李老师和小芳、小明同学有关租车问题的对话:李老师: 小芳:小明:根据以上对话,解答下列问题:(1)平安客运公司60座和45座的客车每辆每天的租金分别是多少元?(2)按小明提出的租车方案,九年级师生到该公司租车一天,共需租金多少元?29、(本题满分9分)如图所示已知90AOB ∠=︒,30BOC ∠=︒,OM 平分AOC ∠,ON 平分BOC ∠;(1)、︒=∠_____MON ;(2分)(2)、如图∠AOB =900,将OC 绕O 点向下旋转,使∠BOC =02x ,仍然分别作∠AOC ,∠BOC 的平分线OM ,ON ,能否求出∠MON 的度数,若能,求出其值,若不能,试说明理由.(4分)平安客运公司有60座和45座两种型号的客车可供租用,60座客车每辆每天的租金比45座的贵200元.我们学校八年级师生昨天在这个客运公司租了4辆60座和2辆45座的客车到韶山参观,一天的租金共计5000元.我们九年级师生租用5辆60座和1辆45座的客车正好坐满.AOM B N C(3)、 AOB α∠=,BOC β∠=,仍然分别作∠AOC ,∠BOC 的平分线OM ,ON ,能否求出∠MON 的度数,若能,求MON ∠的度数;并从你的求解中看出什么什么规律吗?(3分)23.(5分)如图,已知∠BOC = 2∠AOB ,OD 平分∠AOC ,∠BOD = 14°,求∠AOB 的度数.26、(本题6分)两种移动电话计费方式表如下:全球通 神州行 月租费 15元/月 0 本地通话费 0.10元/分 0.20元/分(1) 一个月内某用户在本地通话时间为x 分钟,请你用含有x 的式子分别写出两种计费方式下该用户应该支付的费用;(2) 若某用户一个月内本地通话时间为5个小时,你认为采用哪种方式较为合算? (3) 小王想了解一下一个月内本地通话时间为多少时,两种计费方式的收费一样多.请你帮助他解决一下. 21.(本题满分8分)如图,请按照要求回答问题: (1)数轴上的点C 表示的数是 ______;线段AB 的中点D 表示的数是_____,(2)线段AB 的中点D 与线段BC 的中点E 的距离DE 等于多少?(3)在数轴上方有一点M ,下方有一点N ,且∠ABM=120°,∠CBN=60°,请画出示意图,OD CBAA-2B 0123C-3-1(第21题)判断 BC 能否平分∠MBN ,并说明理由.24.(本题满分12分)某商店在某一时间内以每件60元的价格卖出两件衣服,其中一件盈利%25,另一件亏损%25,问:卖这两件衣服总的是盈利还是亏损,或是不亏不损?(提示:商品售价=商品进价+商品利润)24.(每小题6分,共12分)(1)如图,OA 的方向是北偏东15°,OB 的方向是西偏北50°。

相关文档
最新文档