指数与指数函数复习教案

合集下载

指数与指数函数的复习教案

指数与指数函数的复习教案

指数与指数幂的运算教学目的:1、理解分数指数幂和根式的概念;2、掌握分数指数幂和根式之间的互化;3、掌握分数指数幂的运算性质;教学重点:(1)分数指数幂和根式概念的理解;(2)掌握并运用分数指数幂的运算性质; 教学难点:分数指数幂及根式概念的理解一、复习什么是平方根?什么是立方根?一个数的平方根有几个,立方根呢?归纳:在初中的时候我们已经知道:若2x a =,则x 叫做a 的平方根.同理,若3x a =,则x 叫做a 的立方根.根据平方根、立方根的定义,正实数的平方根有两个,它们互为相反数,如4的平方根为2±,负数没有平方根,一个数的立方根只有一个,如―8的立方根为―2;零的平方根、立方根均为零. 二、新课讲解类比平方根、立方根的概念,归纳出n 次方根的概念.n 次方根:一般地,若n x a =,则x 叫做a 的n 次方根(nthroot ),其中n >1,且n ∈N*,当n 为偶数时,a 的n用.n 为奇数时,a 的nn 称为根指数,a 为被开方数.类比平方根、立方根,猜想:当n 为偶数时,一个数的n 次方根有多少个?当n 为奇数时呢?n a n a n a n ⎧⎪⎨±⎪⎩为奇数, 的次方根有一个,为正数:为偶数, 的次方根有两个,为n a n a n a n ⎧⎪⎨⎪⎩为奇数, 的次方根只有一个,为负数:为偶数, 的次方根不存在.零的n0=举例:16的4次方根为2±,275-的27-的4次方根不存在.小结:一个数到底有没有n次方根,我们一定先考虑被开方数到底是正数还是负数,还要分清n为奇数和偶数两种情况.根据n次方根的意义,可得:n a=n a=a n的n a=一定成立吗?通过探究得到:n a=n为偶数,,0 ||,0a aaa a≥⎧==⎨-<⎩|8|8==-=-=小结:当n再在绝对值算具体的值,这样就避免出现错误:例题:求下列各式的值(1)(1)(2)(3)(4)分析:当n||a=,然后再去绝对值.n=是否成立,举例说明.课堂练习:1.求出下列各式的值(1)a≤21,a a=-求的取值范围.3三.归纳小结:1.根式的概念:若n >1且*n N ∈,则n x a x 是的次方根,n 为奇数时,n 为偶数时,x =2.掌握两个公式:(0),||(0)n a a n n a a a ≥⎧==⎨-<⎩为奇数时为偶数时分数指数幂的运算1.习初中时的整数指数幂,运算性质?00,1(0),0n a a a a a a a =⋅⋅⋅⋅⋅=≠无意义1(0)n na a a -=≠;()m n m n m n mn a a a a a +⋅==(),()n m mn n n n a a ab a b ==什么叫实数?有理数,无理数统称实数.2.观察以下式子,并总结出规律:a >0① 1025a a === ②842a a ===③1234a a === 1025a a ===小结:当根式的被开方数的指数能被根指数整除时,根式可以写成分数作为指数的形式,(分数指数幂形式).根式的被开方数的指数不能被根指数整除时,根式是否也可以写成分数指数幂的形式.如:23(0)a a ==> 12(0)b b ==>54(0)c c ==>*(0,,1)m na a n N n =>∈>为此,我们规定正数的分数指数幂的意义为:*0,,)m na a m n N =>∈正数的负分数指数幂的意义与负整数幂的意义相同.即:*1(0,,)m nm naa m n N a-=>∈规定:0的正分数指数幂等于0,0的负分数指数幂无意义.说明:规定好分数指数幂后,根式与分数指数幂是可以互换的,分数指数幂只是根式的一种新的写法,而不是111(0)n mmmma a a a a =⋅⋅⋅⋅>由于整数指数幂,分数指数幂都有意义,因此,有理数指数幂是有意义的,整数指数幂的运算性质,可以推广到有理数指数幂,即:(1)(0,,)r s r s a a a a r s Q +⋅=>∈ (2)()(0,,)r S rs a a a r s Q =>∈ (3)()(0,0,)r r r a b a b Q b r Q ⋅=>>∈若a >0,P 是一个无理数,则P 该如何理解?为了解决这个问题,引导学生先阅读课本P 62——P 62.所以,的近似值从小于的方向逼近.向逼近,所以,.一般来说,无理数指数幂(0,)p a a p >是一个无理数是一个确定的实数,有理数指数幂的性质同样适用于无理数指数幂.无理指数幂的意义,是用有理指数幂的不足近似值和过剩近似值无限地逼近以确定大小.思考:由以上分析,可知道,有理数指数幂,无理数指数幂有意义,且它们运算性质相同,实数指数幂有意义,也有相同的运算性质,即:(0,,)r s r s a a a a r R s R +⋅=>∈∈ ()(0,,)r s rs a a a r R s R =>∈∈ ()(0,)r r r a b a b a r R ⋅=>∈3.例题 (1).求值 解:① 2223323338(2)224⨯====② 1112()21222125(5)555--⨯--====③ 5151(5)1()(2)2322----⨯-===④334()344162227()()()81338-⨯--===(2).用分数指数幂的形式表或下列各式(a >0)解:117333222a a a aa +=⋅==228222333a a a a a +⋅==421332()a a ====分析:先把根式化为分数指数幂,再由运算性质来运算. 课堂练习:补充练习:1. 计算:122121(2)()248n n n ++-⋅的结果2. 若13107310333,384,[()]n a a a a a -==⋅求的值小结:1.分数指数是根式的另一种写法. 2.无理数指数幂表示一个确定的实数.3.掌握好分数指数幂的运算性质,其与整数指数幂的运算性质是一致的.例1.计算下列各式(式中字母都是正数)(1)211511336622(2)(6)(3)a b a b a b-÷-(2)31884 () m n-分析:四则运算的顺序是先算乘方,再算乘除,最后算加减,有括号的先算括号的.整数幂的运算性质及运算规律扩充到分数指数幂后,其运算顺序仍符合我们以前的四则运算顺序.我们看到(1)小题是单项式的乘除运算;(2)小题是乘方形式的运算,它们应让如何计算呢?其实,第(1)小题是单项式的乘除法,可以用单项式的运算顺序进行.第(2)小题是乘方运算,可先按积的乘方计算,再按幂的乘方进行计算.解:(1)原式=211115326236 [2(6)(3)]a b+-+-⨯-÷-=0 4ab =4a(2)原式=318884()() m n-=23m n-例2.(P61例5)计算下列各式(1)(22(a>0)分析:在第(1)小题中,只含有根式,且不是同类根式,比较难计算,但把根式先化为分数指数幂再计算,这样就简便多了,同样,第(2)小题也是先把根式转化为分数指数幂后再由运算法则计算.解:(1)原式=111324 (25125)25-÷=231322 (55)5-÷=2131 3222 55---=1655-= 5(2)原式=125222362132a aa a a--===⋅小结:运算的结果不强求统一用哪一种形式表示,但不能同时含有根号和分数指数,也不能既有分母,又含有负指数. 课堂练习:化简:(1)2932)-(2(3)归纳小结:1.熟练掌握有理指数幂的运算法则,化简的基础.2.含有根式的式子化简,一般要先把根式转化为分数指数幂后再计算.指数函数及其性质指数函数的定义一般地,函数x y a =(a >0且a ≠1)叫做指数函数,其中x 是自变量,函数的定义域为R .提问:在下列的关系式中,哪些不是指数函数,为什么?(1)22x y += (2)(2)x y =- (3)2x y =- (4)x y π= (5)2y x = (6)24y x = (7)x y x = (8)(1)x y a =- (a >1,且2a ≠)小结:根据指数函数的定义来判断说明:因为a >0,x 是任意一个实数时,x a 是一个确定的实数,所以函数的定义域为实数集R .000,0xx a a x a ⎧>⎪=⎨≤⎪⎩x当时,等于若当时,无意义若a <0,如1(2),,8x y x x =-=1先时,对于=等等,6在实数范围内的函数值不存在.若a =1, 11,x y == 是一个常量,没有研究的意义,只有满足(0,1)x y a a a =>≠且的形式才能称为指数函数,5,,3,31x x x a y x y y +===+1xx为常数,象y=2-3,y=2等等,不符合(01)x y a a a =>≠且的形式,所以不是指数函数.我们在学习函数的单调性的时候,主要是根据函数的图象,即用数形结合的方法来研究. 下面我们通过先来研究a >1的情况用计算机完成以下表格,并且用计算机画出函数2x y =的图象再研究,0<a <1的情况,用计算机完成以下表格并绘出函数1()2xy =的图象.从图中我们看出12()2xxy y ==与的图象有什么关系?通过图象看出12()2xxy y y ==与的图象关于轴对称,实质是2xy =上的x,y 点(-)x y x,y y 1与=()上点(-)关于轴对称.2讨论:12()2xx y y ==与的图象关于y 轴对称,所以这两个函数是偶函数,对吗?②利用电脑软件画出115,3,(),()35x xx x y y y y ====的函数图象.问题:1:从画出的图象中,你能发现函数的图象与底数间有什么样的规律.从图上看x y a =(a >1)与xy a =(0<a <1)两函数图象的特征.xx问题2:根据函数的图象研究函数的定义域、值域、特殊点、单调性、最大(小)值、奇偶性.问题3:指数函数xy a =(a >0且a ≠1),当底数越大时,函数图象间有什么样的关系. 5.利用函数的单调性,结合图象还可以看出:(1)在[,]xa b f x a 上,()=(a >0且a ≠1)值域是[(),()][(),()];f a f b f b f a 或 (2)若0,x f x f x x ≠≠∈则()1;()取遍所有正数当且仅当R; (3)对于指数函数()x f x a =(a >0且a ≠1),总有(1);f a = (4)当a >1时,若1x <2x ,则1()f x <2()f x ; 例题:例1:已知指数函数()x f x a =(a >0且a ≠1)的图象过点(3,π),求(0),(1),(3)f f f -的值.分析:要求(0),(1),(3),,x f f f a x π-13的值,只需求出得出f()=()再把0,1,3分别代入x ,即可求得(0),(1),(3)f f f -.课堂练习:P 68 练习:第1,2,3题补充练习:1、函数1()()2x f x =的定义域和值域分别是多少?2、当[1,1],()32x x f x ∈-=-时函数的值域是多少?解(1),0x R y ∈>(2)(-53,1)例2:求下列函数的定义域:(1)442x y -= (2)||2()3x y =分析:类为(1,0)x y a a a =≠>的定义域是R ,所以,要使(1),(2)题的定义域,保要使其指数部分有意义就得 .3.归纳小结1、理解指数函数(0),101x y a a a a =>><<注意与两种情况。

高三复习学案指数与指数函数

高三复习学案指数与指数函数

27
二.条件求值证明问题 见数学之友第 21 页例题 1.
三.幂、指数函数单调性的运用 见数学之友第 21 页例题 2.
2
指数与指数函数
1. 3 a 6 a 的值为( )
A. a
B. a
C. a
D. a
2.下列结论中,正确的命题的个数是( ) 3
①当 a<0 时, (a 21) 2 a 3 ;② n a n | a | ; ③函数 y (x 2) 2 (3x 7)0 的定义域为 (0, ) ;④若 (n a ) n 与 n a n 相同。
①当 n 为奇数时, n a n =a.
②当
n 为偶数时, n
an
a =|a|= a
(a 0), (a 0).
(3)分数指数幂的意义
m
①a n = n a m (a>0,m、n 都是正整数,n>1).
m
②a n =
1
=
1
(a>0,m、n 都是正整数,n>1).
m
an
n am
2.指数函数 (1)指数函数的定义 一般地,函数 y=ax(a>0 且 a≠1)叫做指数函数. (2)指数函数的图象 (3)指数函数的性质 ①定义域:R. ②值域:(0,+∞). ③过点(0,1),即 x=0 时,y=1. ④当 a>1 时,在 R 上是增函数;当 0<a<1 时,在 R 上是减函数.
A.0
B.1
C.2
D.3
3.化简 a 4 (1 a) 4 的结果是( )
A.1
B.2a-1
C.1 或 2a-1
D.0
4.如果 a,b 都是实数,则下列实数一定成立的是( )
A. 3 a 3 b 2 a b

(完整word版)高三数学一轮复习指数与指数函数教案

(完整word版)高三数学一轮复习指数与指数函数教案

浙江省衢州市仲尼中学高三数学一轮复习教案:指数与指数函数教材分析:本节在根式的基础上将指数概念扩充到有理指数幂,并给出了有理指数幂的运算性质 在利用根式的运算性质对根式的化简过程,注意发现并归纳其变形特点,进而由特殊情形归纳出一般规律.在学生掌握了有理指数幂的运算性质后,进一步将其推广到实数范围内,但无须进行严格的推证,由此让学生体会发现规律,并由特殊推广到一般的研究方法. 学情分析:学生基础较为薄弱,大部分学生知道运算性质,但是运用却不灵活。

关键是对知识理解的不够透彻。

只有在理解的基础上,通过运算,才能使学生熟练掌握本节知识。

教学目的:1.理解分数指数幂的概念.2.掌握有理指数幂的运算性质.3.会对根式、分数指数幂进行互化. 教学重点:1.分数指数幂的概念.2.分数指数幂的运算性质.教学难点:对分数指数幂概念的理解. 教学过程: 一、知识梳理:1.根式的定义2.根式的运算性质:①当n 为任意正整数时,(n a )n=a.②当n 为奇数时,nna =a ;当n 为偶数时,nna =|a|=⎩⎨⎧<-≥)0()0(a a a a .⑶根式的基本性质:n m npmp a a =,(a ≥0) 用语言叙述上面三个公式:⑴非负实数a 的n 次方根的n 次幂是它本身.⑵n 为奇数时,实数a 的n 次幂的n 次方根是a 本身;n 为偶数时,实数a 的n 次幂的n 次方根是a 的绝对值.⑶若一个根式(算术根)的被开方数是一个非负实数的幂,那么这个根式的根指数和被开方数的指数都乘以或者除以同一个正整数,根式的值不变. 3.引例:当a >0时 ①5102552510)(a a a a===②3124334312)(a a a a === ③32333232)(a a a ==④21221)(a a a ==上述推导过程主要利用了根式的运算性质,整数指数幂运算性质(2).因此,我们可以得出正分数指数幂的意义.4.正数的正分数指数幂的意义n m nm a a= (a >0,m ,n ∈N *,且n >1)要注意两点:一是分数指数幂是根式的另一种表示形式;二是根式与分数指数幂可以进行互化.另外,我们还要对正数的负分数指数幂和0的分数指数幂作如下规定. 规定:(1)nm nm aa1=- (a >0,m ,n ∈N *,且n >1)(2)0的正分数指数幂等于0. (3)0的负分数指数幂无意义.规定了分数指数幂的意义以后,指数的概念就从整数推广到有理数指数.当a >0时,整数指数幂的运算性质,对于有理指数幂也同样适用.即对于任意有理数r,s,均有下面的运算性质.5.有理指数幂的运算性质: a r ·a s =a r +s (a r )s =a rs(a >0,r ,s ∈Q )(a ·b )r =a r ·b r(a >0,b >0,r ∈Q )二、讲解例题:例1求值:4332132)8116(,)41(,100,8---. 解:422)2(8232332332====⨯827)32()32()8116(6422)2()41(1011010)10(1003)43(4436)3()2(3231)21(221221===========--⨯--⨯------⨯--课内练习求下列各式的值: (1)2523(2)2732(3)(4936)23(4)(425)23-(5)432981⨯(6)23×35.1×612解:(1)23223)5(25==53=125 (2)233323323)3(27⨯===32=9(3)34321676)76()76(])76[()4936(33323223223=====⨯(4)125852)52()25()25(])25[()425(333323223223======-⨯--(5)41324432442123244213224432)33(3333])3[(3981⨯=⨯=⨯=⨯=⨯⨯⨯=66141324143333)3()3(=⨯=⨯(6)23×35.1×612=2×321×(23)31×(3×22)61=2×321×331×231×361×231=(2×231-×231)×(321×331×361)=231311+-×3613121++=2×3=6要求:学生板演练习,做完后老师讲评.例2计算下列各式:433225)12525)(2();0()1(÷->a aa a分析:(1)题把根式化成分数指数幂的形式,再计算 (2)题先把根式化成分数指数幂的最简形式,然后计算 解:课内练习:用分数指数幂表示下列各式:65653221223212322)1(a a a a a a a a a ===•=•--.555555555555)55(5)12525)(2(412545125412341324123413241233243-=-=-=÷-÷=÷-=÷---(1)32x (2)43)(b a +(a+b>0) (3)32)(n m - (4)4)(n m -(m>n) (5)56q p ⋅(p>0) (6)mm 3解:(1) 3232x x = (2) 4343)()(b a b a +=+ (3) 3232)()(n m n m -=-(4) 244)()(n m n m -=-=(m-n)2 (5) 2532526215656)()0(q p q p q p p q p ⋅==⋅=⋅φ (6)252133m mm m m =⋅=-要求:学生板演练习,做完后老师讲评.三、小结本节课要求大家理解分数指数幂的意义,掌握分数指数幂与根式的互化,熟练运用有理指数幂的运算性质. 四、课后作业:1.用分数指数幂表示下列分式(其中各式字母均为正数)(C)(1)43a a ⋅(2)a a a (3)322b a ab +(4)4233)(b a +解:(1)43a a ⋅=12741314131a aa a ==⋅+(2) a a a =[a ·(a ·a 21)21]21=a 21·a 41·a 81=a 87814121a =++(3)322b a ab +=(ab 2+a 2b )31(4)4233)(b a +=(a 3+b 3)42=(a 3+b 3)212.求下列各式的值:(C) (1)|2|21(2)(4964)21-(3)1000043-(4)(27125)32-解:(1)12121=(112)21=11212⨯=11(2)(4964)21-=(2278)21-=(78))21(2-⨯·(78)-1=87(3)1000043-=(104)43-=10)43(4-⨯=10-3=0.001(4) (27125)32-=(3335)32-=[(35)3] 32-=(35))32(3-⨯=(35)-2=259._______5则.25,45已知).2(;)12(3256)71(027.0.)1(计算:(B).320143231===-+-+----y x y x4.化简: (A) (1)3327-a a÷31638a a -÷313--a a ;(2).11111333233++-++----a a a a a a a a 解:(1)原式=312327)(-•aa ÷2131638)(a a•-÷323432312)(--÷÷=aa a a =1.(2)原式=)1()1()1(11)(1)(1)31(1)1(313231313131331312313313231+----+=++-++----a a a a a a a a a a a a a 31a ==3a.板书设计指数幂的概念与性质1.正分数指数幂意义 例题一: 例题二:a nm =n ma (a >0,m ,n ∈N*,n >1)2.规定 (1)anm -=nm a1(a >0,m ,n ∈N *,n >1),。

指数函数复习教案

指数函数复习教案

指数函数复习教案
一、教学目标:
1.复习指数函数的定义和性质;
2.掌握指数函数的图像和性质;
3.能够解决与指数函数相关的实际问题。

二、教学过程:
1.复习与导入(10分钟)
通过提问学生复习指数函数的定义和性质,例如:
a.什么是指数函数?指数函数的定义是什么?
b.指数函数的性质有哪些?
c.指数函数的图像特点是什么?
2.指数函数的图像(20分钟)
a.讲述指数函数的图像特点,如何根据函数的性质绘制出图像;
b.通过几个例子带领学生观察和绘制指数函数的图像。

3.指数函数的运算性质(20分钟)
a.讲述指数函数的运算性质,如何进行指数函数的加减乘除运算;
b.通过一些例题让学生巩固运算性质。

4.指数方程与指数不等式(30分钟)
a.讲述如何解决指数方程和指数不等式;
b.通过一些例题辅助讲解,并与学生共同解决一些实际问题。

5.应用题(20分钟)
a.提供一些与指数函数相关的实际问题,让学生尝试解决;
b.学生自主讨论解题思路,然后与全班分享和交流。

6.总结与扩展(10分钟)
a.对本节课的复习进行总结,强调重点内容;
b.提出一些拓展问题,引导学生深入学习和思考。

三、学生评价:
1.能够准确地回答老师的提问,复习指数函数的定义和性质;
2.能够观察并绘制指数函数的图像,掌握其图像特点;
3.能够灵活运用指数函数的运算性质进行相关运算;
4.能够解答和解决与指数函数相关的实际问题;
5.对指数函数有一定的了解和兴趣,能够进一步自主学习和拓展。

指数函数教案教案

指数函数教案教案

指数函数教案教案一、教学目标1. 理解指数函数的概念和特点。

2. 掌握指数函数的基本性质和运算规律。

3. 能够应用指数函数解决实际问题。

二、教学重点和难点1. 指数函数的定义和特点是本节课的重点,学生需要理解指数函数的基本概念。

2. 指数函数的运算规律和应用是本节课的难点,学生需要掌握指数函数的基本性质并能够灵活运用于实际问题的解决中。

三、教学内容1. 指数函数的定义和性质a. 指数函数的概念和表示方法b. 指数函数的特点和图像c. 指数函数的增长和衰减规律2. 指数函数的运算规律a. 指数函数的加法和减法b. 指数函数的乘法和除法c. 指数函数的幂运算3. 指数函数的应用a. 指数函数在自然界和社会生活中的应用b. 利用指数函数解决实际问题四、教学方法1. 案例分析法:通过具体案例引导学生理解指数函数的概念和特点。

2. 活动探究法:设计一些小组活动,让学生通过探究和讨论来掌握指数函数的运算规律。

3. 归纳总结法:引导学生总结指数函数的应用方法,培养学生的综合运用能力。

五、教学过程1. 导入:通过一个生活中的案例引入指数函数的概念和特点。

2. 概念讲解:讲解指数函数的定义、性质和图像特点。

3. 练习:设计一些基础练习,让学生巩固和理解所学知识。

4. 拓展:引导学生探究指数函数的运算规律和应用方法。

5. 实践:设计一些实际问题,让学生运用所学知识解决问题。

6. 总结:对本节课所学内容进行总结,强化学生对指数函数的理解和掌握。

六、教学工具1. 教学PPT2. 板书3. 实物或图片案例4. 练习题和实际问题七、教学评估1. 课堂练习:通过课堂练习考察学生对指数函数的掌握程度。

2. 作业布置:设计一些拓展性的作业,巩固学生对指数函数的理解和运用能力。

八、教学反思通过本节课的教学,学生应该能够初步掌握指数函数的基本概念、性质和运算规律,能够灵活运用指数函数解决实际问题。

同时,教师需要根据学生的学习情况及时调整教学方法,帮助学生更好地理解和掌握指数函数相关知识。

指数与指数函数教案

指数与指数函数教案

指数与指数函数教案教案标题:指数与指数函数教案教案目标:1. 理解指数的概念和基本性质;2. 掌握指数运算的基本法则;3. 理解指数函数的定义和特点;4. 能够应用指数函数解决实际问题。

教学重点:1. 指数的定义和基本性质;2. 指数运算的基本法则;3. 指数函数的定义和特点。

教学难点:1. 指数函数的应用问题解决。

教学准备:1. 教材:包含有关指数和指数函数的相关知识的教材;2. 教具:计算器、白板、彩色粉笔等。

教学过程:一、导入(5分钟)1. 引入指数的概念,通过实例解释指数的含义和作用;2. 提问学生对指数的了解程度,激发学生的学习兴趣。

二、讲解指数的定义和基本性质(15分钟)1. 讲解指数的定义,包括底数、指数和幂的概念;2. 介绍指数的基本性质,如指数为0时的计算规则、指数为正数时的计算规则等;3. 通过例题演示指数运算的基本法则。

三、指数运算练习(15分钟)1. 给学生分发练习题,要求他们完成指数运算的计算和简化;2. 引导学生互相讨论解题思路和方法;3. 随堂检查学生的练习成果,及时纠正错误。

四、讲解指数函数的定义和特点(15分钟)1. 介绍指数函数的定义,包括指数为变量的函数形式;2. 解释指数函数的特点,如增长率、图像特征等;3. 通过图像展示指数函数的变化规律。

五、指数函数应用实例分析(15分钟)1. 给学生提供一些实际问题,要求他们运用指数函数解决;2. 引导学生分析问题,建立数学模型;3. 鼓励学生互相交流和分享解题思路。

六、小结与拓展(10分钟)1. 总结指数与指数函数的重点内容和学习要点;2. 提出一些拓展问题,激发学生进一步思考;3. 鼓励学生自主学习相关知识,拓宽数学视野。

教学反馈:1. 教师及时纠正学生在课堂上的错误,解答学生提出的问题;2. 教师评价学生的参与度和学习成果;3. 学生填写教学反馈表,反馈课堂教学的效果和自身的学习感受。

教学延伸:1. 布置相关练习作业,巩固学生的学习成果;2. 鼓励学生使用计算器和其他工具进行指数函数的实际计算;3. 推荐相关参考书籍和网站,供学生进一步学习。

指数函数教案

指数函数教案

指数函数教案指数函数教案(通用3篇)指数函数教案1教材分析(一)本课时在教材中的地位及作用:指数函数的教学共分两个课时完成。

第一课时为指数函数的定义,图像及性质;第二课时为指数函数的应用。

指数函数第一课时是在学习指数概念的基础上学习指数函数的概念和性质,通过学习指数函数的定义,图像及性质,可以进一步深化学生对函数概念的理解与认识,使学生得到较系统的函数知识和研究函数的方法,并且为学习对数函数作好准备。

(二)教学目标:1、知识目标:掌握指数函数的概念,图像和性质。

2、能力目标:通过数形结合,利用图像来认识,掌握函数的性质,增强学生分析问题,解决问题的能力。

3、德育目标:对学生进行辩证唯物主义思想的教育,使学生学会认识事物的特殊性与一般性之间的关系,培养学生善于探索的思维品质。

(三)教学重点,难点和关键:1、重点:指数函数的定义、性质和图象。

2、难点:指数函数的定义理解,指数函数的图象特征及指数函数的性质。

3、关键:能正确描绘指数函数的图象。

教学基本思路:在讲解指数函数的定义前,复习有关指数知识及简单运算,然后由实例引入指数函数的概念,因为手工绘图复杂且不够精确,并且是本节课的教学关键,教学中,我借助电脑手段,通过描点作图,观察图像,引导学生说出图像特征及变化规律,并从而得出指数函数的性质,提高学生的形数结合的能力。

一、学法指导:1、学情分析:大部分学生数学基础较差,理解能力,运算能力,思维能力等方面参差不齐;同时学生学好数学的自信心不强,学习积极性不高。

2、学法指导:针对这种情况,在教学中,我注意面向全体,发挥学生的主体性,引导学生积极地观察问题,分析问题,激发学生的求知欲和学习积极性,指导学生积极思维、主动获取知识,养成良好的学习方法。

并逐步学会独立提出问题、解决问题。

总之,调动学生的非智力因素来促进智力因素的发展,引导学生积极开动脑筋,思考问题和解决问题,从而发扬钻研精神、勇于探索创新。

指数函数教案2教学目标:1、进一步理解指数函数的性质。

《指数函数的概念》教案

《指数函数的概念》教案

《指数函数的概念》教案一、教学目标1. 理解指数函数的定义和性质。

2. 掌握指数函数的图像和特征。

3. 能够运用指数函数解决实际问题。

二、教学内容1. 指数函数的定义:指数函数是一种形式的函数,形如f(x) = a^x,其中a 是底数,x 是指数。

2. 指数函数的性质:底数a > 1 时,函数随着x 的增大而增大;底数0 < a < 1 时,函数随着x 的增大而减小。

3. 指数函数的图像:指数函数的图像通常是一条曲线,当底数a > 1 时,曲线向上凸起;当底数0 < a < 1 时,曲线向下凸起。

4. 指数函数的应用:解决实际问题中涉及增长、衰减、人口增长等方面的问题。

三、教学重点与难点1. 重点:指数函数的定义和性质。

2. 难点:指数函数的图像和应用。

四、教学方法1. 讲授法:讲解指数函数的定义、性质和图像。

2. 案例分析法:分析实际问题,运用指数函数解决。

3. 互动讨论法:引导学生提问、思考、交流。

五、教学过程1. 引入:通过生活实例,如人口增长、放射性衰变等,引导学生思考指数函数的应用。

2. 讲解:讲解指数函数的定义、性质和图像,结合实例进行分析。

3. 练习:让学生绘制指数函数的图像,观察和分析函数特征。

4. 应用:运用指数函数解决实际问题,如人口增长预测、放射性物质衰减等。

六、教学评价1. 评价指标:学生对指数函数定义、性质和图像的理解程度,以及运用指数函数解决实际问题的能力。

2. 评价方法:课堂提问、练习题、小组讨论、课后作业等。

3. 评价结果:根据学生的表现,给予及时反馈,鼓励优点,指出不足,促进学生的学习进步。

七、教学资源1. 教材:指数函数的相关章节。

2. 课件:用于展示指数函数的定义、性质和图像。

3. 练习题:用于巩固所学知识,提高解题能力。

4. 实际问题案例:用于引导学生运用指数函数解决实际问题。

八、教学进度安排1. 第一课时:介绍指数函数的定义和性质。

高三数学高考考前复习指数与指数函数教案

高三数学高考考前复习指数与指数函数教案

第二章 指数函数与对数函数及函数的应用一、知识网络二、课标要求和最新考纲要求1、指数函数(1)通过具体实例(如细胞的分裂,考古中所用的14C 的衰减,药物在人体内残留量的变化等),了解指数函数模型的实际背景;(2)理解有理指数幂的含义,通过具体实例了解实数指数幂的意义,掌握幂的运算。

(3)理解指数函数的概念和意义,能借助计算器或计算机画出具体指数函数的图象,探索并理解指数函数的单调性与特殊点;(4)在解决简单实际问题的过程中,体会指数函数是一类重要的函数模型。

2、对数函数(1)理解对数的概念及其运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数;通过阅读材料,了解对数的发现历史以及对简化运算的作用;(2)通过具体实例,直观了解对数函数模型所刻画的数量关系,初步理解对数函数的概念,体会对数函数是一类重要的函数模型;能借助计算器或计算机画出具体对数函数的图象,探索并了解对数函数的单调性与特殊点;3、知道指数函数x a y =与对数函数x y a log =互为反函数(a >0,a ≠1)。

4、函数与方程(1)了解函数零点的概念,结合二次函数的图像,了解函数的零点与方程根的联系。

(2)理解并掌握连续函数在某个区间上存在零点的判定方法。

能利用函数的图象和性质判别函数零点的个数.5、函数模型及其应用(1)了解指数函数、对数函数以及幂函数的增长特征。

知道直线上升、指数增长、对数增长等不同函数类型增长的含义。

(2)了解函数模型(如指数函数、对数函数、幂函数、分段函数等在社会生活中普遍使用的函数模型)的广泛应用。

(3)能利用给定的函数模型解决简单的实际问题。

三、命题走向函数是高考数学的重点内容之一,函数的观点和思想方法贯穿整个高中数学的全过程,包括解决几何问题.在近几年的高考试卷中,选择题、填空题、解答题三种题型中每年都有函数试题,而且常考常新.以基本函数为模型的应用题和综合题是高考命题的新趋势.考试热点:①考查函数的表示法、定义域、值域、单调性、奇偶性和函数的图象.②函数与方程、不等式、数列是相互关联的概念,通过对实际问题的抽象分析,建立相应的函数模型并用来解决问题,是考试的热点.③考查运用函数的思想来观察问题、分析问题和解决问题,渗透数形结合和分类讨论的基本数学思想.指数函数、对数函数、幂函数是三类常见的重要函数,在历年的高考题中都占据着重要的地位。

《指数函数》复习课教案

《指数函数》复习课教案

《指数函数》复习课教案指数函数复课教案一、教学目标1. 了解指数函数的定义和性质。

2. 掌握指数函数的图像特点和变化规律。

3. 学会求解指数函数的基本问题,如解方程、求导等。

二、教学内容1. 指数函数的定义和性质介绍。

2. 指数函数的图像绘制和分析。

3. 指数函数的基本问题解决方法。

4. 指数函数与其他函数的关系。

三、教学过程1. 指数函数的定义和性质介绍- 介绍指数函数的定义和表示方法。

- 讲解指数函数的增长与衰减性质。

- 引导学生理解指数函数的图像特点。

2. 指数函数的图像绘制和分析- 指导学生通过给定函数表达式,绘制指数函数的图像。

- 分析指数函数图像的特点,如增长趋势、渐近线等。

- 提醒学生观察指数函数图像的反比关系。

3. 指数函数的基本问题解决方法- 解释如何求解指数方程。

- 带领学生通过例题练,掌握求解指数方程的步骤和技巧。

- 讲解指数函数求导的基本方法。

4. 指数函数与其他函数的关系- 比较指数函数与线性函数、二次函数等其他函数的特点和差异。

- 引导学生分析指数函数与其他函数之间的关系。

- 鼓励学生探索指数函数在实际问题中的应用。

四、教学资源1. PowerPoint幻灯片:包含指数函数的定义、性质介绍、图像绘制和分析的内容。

2. 白板、彩色笔:用于举例和讲解。

3. 课堂练题:用于学生的课堂练和讨论。

五、教学评估1. 课堂练:通过课堂练检验学生对指数函数的理解和应用能力。

2. 课堂讨论:鼓励学生提问、交流,并评估他们的思维能力和分析能力。

3. 作业评估:布置作业并对学生的作业进行批改和评分。

六、教学延伸1. 鼓励学生进一步研究和探索指数函数的应用领域。

2. 推荐相关的参考书和互联网资源,供学生深入研究和拓展知识。

七、教学反思- 教师反思教学过程中的不足和可以改进的地方。

- 学生反馈和评价收集,以便优化教学方案。

以上为《指数函数》复习课教案,希望能够帮助学生更好地理解和掌握指数函数的相关知识和应用能力。

2.5指数与指数函数经典教案【强烈推荐】

2.5指数与指数函数经典教案【强烈推荐】

§2.5 指数与指数函数考试会这样考 1.考查指数函数的求值、指数函数的图像和性质;2.讨论与指数函数有关的复合函数的性质;3.将指数函数与对数函数、抽象函数相结合,综合考查指数函数知识的应用.复习备考要这样做 1.重视指数的运算,熟练的运算能力是高考得分的保证;2.掌握两种情况下指数函数的图像和性质,在解题中要善于分析,灵活使用;3.对有关的复合函数要搞清函数的结构.1.根式的概念如果一个数的n 次方等于a (n >1且,n ∈N *),那么这个数叫做a 的n 次方根.也就是,若x n =a ,则x 叫做a 的n 次方根,其中n >1且n ∈N *.式子n a 叫做根式,这里n 叫做根指数,a 叫做被开方数.2. 根式的性质(1)(na )n =a .(2)当n 为奇数时na n =a .当n 为偶数时n a n =⎩⎪⎨⎪⎧a (a ≥0)-a (a <0)3. 有理数指数幂(1)幂的有关概念①正整数指数幂:a n =a ·a ·…·a n个(n ∈N *). ②零指数幂:a 0=1(a ≠0).③负整数指数幂:a -p =1a p (a ≠0,p ∈N *).④正分数指数幂:nm a =na m (a >0,m 、n ∈N *,且n >1).⑤负分数指数幂:n-m a=n1m a=1na m(a >0,m 、n ∈N *,且n >1).⑥0的正分数指数幂等于0,0的负分数指数幂没有意义. (2)有理数指数幂的性质①a m a n =a m +n (a >0,r 、s ∈Q ); ②(a m )n =a mn (a >0,r 、s ∈Q ); ③(ab )n =a n b n (a >0,b >0,r ∈Q ).4.指数函数的图像与性质y =a xa >1 0<a <1图像定义域(1)R 值域(2)(0,+∞) 性质(3)过定点(0,1)(4)当x >0时,y >1;x <0时,0<y <1 (5)当x >0时,0<y <1;x <0时,y >1(6)在(-∞,+∞)上是增函数(7)在(-∞,+∞)上是减函数[难点正本 疑点清源]1. 根式与分数指数幂的实质是相同的,通常利用分数指数幂的意义把根式的运算转化为幂的运算,从而可以简化计算过程.2. 指数函数的单调性是底数a 的大小决定的,因此解题时通常对底数a 按:0<a <1和a >1进行分类讨论. 3. 比较指数式的大小方法:利用指数函数单调性、利用中间值.1. 化简[]2161--2-)()(的值为________.解析 [(-2)6]12-(-1)0=(26)12-1=7.2. 若函数y =(a 2-1)x在(-∞,+∞)上为减函数,则实数a 的取值范围是__________.答案 (-2,-1)∪(1,2)解析 由y =(a 2-1)x 在(-∞,+∞)上为减函数,得0<a 2-1<1,∴1<a 2<2,即1<a <2或-2<a <-1.3. 若函数f (x )=a x -1 (a >0,且a ≠1)的定义域和值域都是[0,2],则实数a =________.答案 3 解析 当a >1时,x ∈[0,2],y ∈[0,a 2-1]. 因定义域和值域一致,故a 2-1=2,即a = 3. 当0<a <1时,x ∈[0,2],y ∈[a 2-1,0].此时,定义域和值域不一致,故此时无解. 综上,a = 3.4. 函数y =a x -1a(a >0,且a ≠1)的图像可能是 ( )解析 当a >1时,y =a x -1a 为增函数,且在y 轴上的截距为0<1-1a <1,排除A ,B.当0<a <1时,y =a x -1a 为减函数,且在y 轴上的截距为1-1a<0,故选D.5. 设函数f (x )=a -|x |(a >0,且a ≠1),f (2)=4,则 ( )A .f (-2)>f (-1)B .f (-1)>f (-2)C .f (1)>f (2)D .f (-2)>f (2)答案 A 解析 ∵f (x )=a -|x |(a >0,且a ≠1),f (2)=4,∴a -2=4,∴a =12,∴f (x )=⎝⎛⎭⎫12-|x |=2|x |,∴f (-2)>f (-1),故选A.题型一 指数幂的运算例1 (1)计算:4361211627-322124++)((2)已知32121=+-a a,则a +a-1= 、 a 2+a -2=答案 解 (1)(124+223)12-2716+1634=(11+3)2×12-33×16+24×34=11+3-312+23=19(2)解析 由已知条件(a 12+a -12)2=9.整理得:a +a -1=7又(a +a -1)2=49,因此a 2+a -2=47. 计算下列各式的值:(1)01-21-32-3-22-510-002.0827-)()()()(++;(2)15+2-(3-1)0-9-45; (3)ab a ab b a 421413223)(∙ (a >0,b >0).解 (1)原式=()-278-23+()1500-12-105-2+1=()-82723+50012-10(5+2)+1=49+105-105-20+1=-1679. (2)原式=5-2-1-(5-2)2=(5-2)-1-(5-2)=-1.(3)原式=3221b--a .题型二 指数式大小比较例2 已知a =20.2,b =0.40.2,c =0.40.6,则( )A .a >b >cB .a >c >bC .c >a >bD .b >c >a 解析:(1)由0.2<0.6,0.4<1,并结合指数函数的图象可知0.40.2>0.40.6,即b >c ;因为a =20.2>1,b =0.40.2<1,所以a >b .综上,a >b >c .1、同底,看单调性;2、同指,则化为根式或结合幂函数单调性;3、都不同,则与1比较。

指数函数教案:轻松掌握数学难点

指数函数教案:轻松掌握数学难点

指数函数教案:轻松掌握数学难点教学目标:1. 理解指数函数的定义和性质;2. 学会运用指数函数解决实际问题;3. 提高数学思维能力和解决问题的能力。

教学内容:一、指数函数的定义与性质1. 引入指数函数的概念;2. 讲解指数函数的性质;二、指数函数的图像与性质1. 绘制常见指数函数的图像;2. 分析指数函数图像的性质;3. 引导学生通过图像理解指数函数的单调性、奇偶性等性质。

三、指数函数的实际应用1. 引入实际应用问题;2. 讲解如何运用指数函数解决实际问题;3. 引导学生练习运用指数函数解决实际问题。

四、指数函数的求解与变换1. 讲解指数函数的求解方法;2. 讲解指数函数的变换规律;3. 引导学生运用求解和变换方法解决实际问题。

五、巩固练习与拓展提高1. 设计针对性练习题;2. 引导学生进行小组讨论和合作解答;教学资源:1. 教学PPT;2. 指数函数图像资料;3. 练习题和答案。

教学过程:1. 引入新课:通过生活实例或问题引入指数函数的概念;2. 讲解与演示:讲解指数函数的定义与性质,展示指数函数的图像;3. 练习与讨论:设计练习题,引导学生进行自主学习和小组讨论;5. 拓展提高:引导学生运用指数函数解决实际问题,提高解决问题的能力。

教学评价:1. 课堂表现:观察学生在课堂上的参与程度、提问回答等情况;2. 练习题解答:评估学生练习题的完成情况,检查理解程度;3. 实际问题解决:评估学生在解决实际问题时的运用能力;4. 小组讨论:评估学生在小组讨论中的合作意识和解决问题的能力。

六、指数函数的求解与变换(续)1. 进一步讲解指数函数的求解方法,包括指数方程和指数不等式的求解;2. 引导学生掌握指数函数的变换规律,如复合函数的求解和函数图像的平移;3. 通过例题和练习题,巩固学生对指数函数求解与变换的掌握。

七、指数函数与对数函数的关系1. 介绍指数函数与对数函数的互为反函数的关系;2. 讲解指数函数和对数函数在数学和实际应用中的相互转化;3. 引导学生通过举例理解指数函数和对数函数的联系与区别。

高考数学总复习 指数与指数函数知识梳理教案

高考数学总复习 指数与指数函数知识梳理教案

指数与指数函数【考纲要求】1.理解分数指数的概念,掌握有理指数幂的运算性质2.掌握无理指数幂的概念,将指数的取值范围推广到实数集;3.掌握指数函数的概念,了解对底数的限制条件的合理性,明确指数函数的定义域;4.掌握指数函数图象:5.通过对指数函数的概念、图象、性质的学习,培养观察、分析归纳的能力,进一步体会数形结合的思想方法; 【知识网络】【考点梳理】考点一、整数指数幂的概念及运算性质 (1)整数指数幂的概念()()),0(1010*Z*n a aa a a Z n a a a a n n an n ∈≠=≠=∈⋅⋅⋅=-个 (2)运算法则 ①nm nma a a +=⋅;②()mn nma a =;③()0≠>=-a n m a aa nm n m ,; ④()m m mb a ab =.指数与指数函数图象与性质指数运算性质指数函数的图像与指数的概念考点二、根式的概念和运算法则 (1)n 次方根的定义:若x n =y(n ∈N *,n>1,y ∈R),则x 称为y 的n 次方根. 要点诠释:n 为奇数时,正数y 的奇次方根有一个,是正数,记为n y ;负数y 的奇次方根有一个,是负数,记为n y ;零的奇次方根为零,记为00=n ;n 为偶数时,正数y 的偶次方根有两个,记为0=. (2)根式的意义与运算法则y y n n =)(⎩⎨⎧=)(||)(,为偶数为奇数n a n a a nn 考点三、分数指数幂的概念和运算法则 为避免讨论,我们约定a>0,n ,m ∈N *,且mn为既约分数,分数指数幂可如下定义: 1na =m m na ==-1m nm naa=考点四、有理数指数幂的运算性质()Q b a ∈>>βα,00,,(1);a a aαβαβ+⋅=(2)();a a αβαβ= (3)();ab a b ααα=当a>0,p 为无理数时,a p是一个确定的实数,上述有理数指数幂的运算性质仍适用. 要点诠释:(1)根式问题常利用指数幂的意义与运算性质,将根式转化为分数指数幂运算;(2)根式运算中常出现乘方与开方并存,要注意两者的顺序何时可以交换、何时不能交换.如2442)4()4(-≠-;(3)幂指数不能随便约分.如2142)4()4(-≠-.考点五、指数函数 (1)定义:函数y=a x(a>0且a ≠1)叫做指数函数,其中x 是自变量,a 为常数,函数定义域为R. (2)图象及性质:【典型例题】类型一、指数运算、化简、求值 例1.已知c ba==53,且211=+ba ,求c 的值。

指数与指数函数教案

指数与指数函数教案

指数与指数函数教案一、教学目标1.了解指数的概念,掌握指数的运算法则;2.掌握指数函数的概念,了解指数函数的图像特征;3.能够应用指数和指数函数解决实际问题。

二、教学重点1.指数的概念及运算法则;2.指数函数的概念及图像特征。

三、教学难点1.指数函数的图像特征;2.应用指数和指数函数解决实际问题。

四、教学内容及方法1. 指数的概念及运算法则(1)指数的概念指数是数学中的一个概念,表示一个数的幂次。

例如,a n中的n就是指数,表示a的n次幂。

(2)指数的运算法则指数的运算法则包括:•同底数幂的乘法:a m⋅a n=a m+n;=a m−n;•同底数幂的除法:a ma n•幂的乘法:(a m)n=a mn;=a mn−k;•幂的除法:(a m)na k•负指数:a−n=1;a n•零指数:a0=1。

(3)教学方法通过讲解和例题演示,让学生掌握指数的概念和运算法则。

2. 指数函数的概念及图像特征(1)指数函数的概念指数函数是一种以指数为自变量的函数,通常写作y=a x,其中a是底数,x是指数。

(2)指数函数的图像特征指数函数的图像特征包括:•当a>1时,函数图像上升,且y轴是渐近线;•当0<a<1时,函数图像下降,且x轴是渐近线;•当a=1时,函数图像是一条水平直线。

(3)教学方法通过讲解和绘制指数函数的图像,让学生了解指数函数的概念和图像特征。

3. 应用指数和指数函数解决实际问题(1)应用指数解决实际问题指数在实际问题中的应用包括:•复利计算;•指数增长和指数衰减;•指数函数模型。

(2)应用指数函数解决实际问题指数函数在实际问题中的应用包括:•人口增长模型;•经济增长模型;•生物衰减模型。

(3)教学方法通过讲解和例题演示,让学生掌握应用指数和指数函数解决实际问题的方法。

五、教学评价教学评价包括:•学生课堂表现;•学生作业完成情况;•学生考试成绩。

六、教学反思本次教学中,我采用了讲解、例题演示和绘图等多种教学方法,让学生掌握了指数和指数函数的概念、运算法则和应用方法。

指数函数复习课教案

指数函数复习课教案

指数函数复习课教案
教学目标
- 理解指数函数的概念和性质
- 学会利用对数将指数方程、指数不等式转换为对数方程、对数不等式,并解决相关问题
- 学会运用指数函数及其图像的相关知识对实际问题进行分析和解决
教学内容
1. 指数函数的概念及性质
2. 对数函数的概念及性质
3. 指数方程与对数方程的互相转化
4. 指数不等式与对数不等式的互相转化
5. 指数函数的图像及其变换
教学过程
1. 引入
通过一个生活实例(比如:化学反应速率和温度关系)引出指数函数。

2. 概念及性质
讲解指数函数的概念、幂次、指数律等知识点,并通过例题进行巩固。

3. 对数函数的概念及性质
引出对数概念,阐述其定义、性质及基本公式。

4. 指数、对数方程及不等式的互相转化
区分指数方程和指数不等式的概念,详细讲解其解题方法,然后引入对数方程及对数不等式的概念及解题方法。

5. 指数函数的图像及其变换
通过绘制指数函数图像和对数函数图像,引导学生研究图像的基本性质及变换。

6. 练
通过一些例题进行巩固,然后引导学生自主练,及时互相讨论和总结。

教学评估方式
通过课堂练和测试考察学生是否掌握了指数函数的相关知识点,并评估学生的思维能力和综合素质。

教学反思
教学中,应重视在引入实例和概念时切实增强学生的兴趣和吸
引力,同时让学生灵活运用知识点解决实际问题,并在练习和测试
中及时总结和反馈,以提高教学效果。

《§2.8指数与指数函数》复习学案

《§2.8指数与指数函数》复习学案

2.8《指数与指数函数》复习学案命题人:侯学军 班级 姓名 学号一、 考纲导读(一)复习目标:1、了解指数函数模型的实际背景,理解有理指数幂的含义;2、了解实数指数幂的意义,掌握幂的运算;3、理解指数函数的概念,图象和性质。

(二)高考预测:1、指数函数的概念、图象与性质是近几年高考的热点;2、通过具体问题考查指数函数的图象与性质,或利用指数函数的图象与性质解决一些实际问题是重点,也是难点,同时考查分类讨论思想和数形结合思想;3、题型以选择题和填空题为主,与其他知识点交汇则以解答题的形式出现。

二、考点梳理(一)分数指数幂 1.根式如果),1(*∈>=N n n a x n ,那么x 称为a 的 ; 式子n a 叫做根式,其中n 叫做 ,a 叫做方根的性质:当nn 为偶数时,n n a =|a |= 2.分数指数幂(1)分数指数幂的意义:a nm = ,anm -= = (a >0,m 、n 都是正整数,n >1).(2)有理数指数幂的性质:(1) (2) (3) 注:分数指数幂与根式可以互化,通常利用分数指数幂进行根式的运算。

(二)指数函数的图象及性质的应用①指数函数的定义:一般地,函数 叫做指数函数. ②指数函数的图像a > )1(0③底数互为倒数的两个指数函数的图像关于 对称.④指数函数的性质:定义域: ; 值域: ;过点 ;即x =0时,y = .当a >1时,在R 上是 ;当0<a <1时,在R 上是 .三、考点自测 1.不等式224122xx +-≤的解集为 . 2.函数x a a a y ∙+-=)33(2 是指数函数,则有( ) A.21==a a 或 B. 1=a C. 2=a D. 10≠>a a 且3.不论a 为何正实数,函数12x y a +=-的图象一定通过一定点,则该定点的坐标是_____ ____4.满足条件m 2m >(m m )2的正数m 的取值范围是______ ___四、典型突破 自主探究 考点一 指数幂的运算例1计算:100.256371.5()86-⨯-+化简原则:①化负指数为正指数;②化根式为分数指数幂;③化小数为分数;④注意运算的先后顺序。

指数与指数函数复习教案

指数与指数函数复习教案

指数函数要求①了解指数函数模型的实际背景.②理解有理指数幂的含义,了解实数指数幂的意义,掌握幂的运算.③理解指数函数的概念,理解指数函数的单调性,掌握指数函数图像通过的特殊点.④知道指数函数是一类重要的函数模型.1 根式根式的概念:符号表示备注如果xn=a,那么x叫做a的n次方根n>1且n属于N+ 当n为奇数时,正数的n次方根是一个正数()零的n次方根是零负数的n次方根是一个负数当n为偶数时。

正数的n次方根有两个,()负数没有偶次方根他们互为相反数两个重要公式:1()备课笔记2()2 分数指数幂1 正数的正分数指数幂是()2 正数的负分数指数幂是()3 0的正分数指数幂是0,0的复分数指数幂无意义4 有理指数幂的运算性质:ar。

as=ar+s (a>0,r,s属于Q)(ar)s=ars (a>0,r,s属于Q)(ab)r= ar as (a>0,b>0,r属于Q)3 指数函数的定义:y=ax (a>0 且a不等于1)叫指数函数,定义域:实数集R性质1 y>0图像经过(0,1)非奇非偶函数a>1,当x>0时,y>1;当x<0时,0<y<1a>1,y=ax为增函数,0<a<1时,y=ax为减函数画指数函数y=ax图像,应抓住3个关键点:(1,a),(0,a),(-1,1/a)熟记指数函数y=10x,y=2x,y=(1 / 10)x,y=(1 /2)x在同一坐标系中图像的相对位置4 指数函数的类型及解法(在指数里含有未知数的方程叫指数方程)指数方程的可解类型可分为 1 形如af(x)=ag(x)(a>0 且a不等于1)化为f(x)=g(x)求解2形如af(x)=bg(x)(a>0 ,b>0且a,b均不等于1)的方程,两边同时取对数3 形如a2x+b。

ax+c=0的方程,换元法求解5 指数函数的有关复合函数问题1 函数y= af(x)的定义域与f(x)的定义域相同2 求y= af(x)的值域:先确定f(x)的值域,再根据指数函数的值域,单调性求解3 求单调性先分析,再求解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

指数函数
要求
①了解指数函数模型的实际背景.
②理解有理指数幂的含义,了解实数指数幂的意义,掌握幂的运算.
③理解指数函数的概念,理解指数函数的单调性,掌握指数函数图像通过的特殊点.
④知道指数函数是一类重要的函数模型.
1 根式
根式的概念:符号表示备注如果xn=a,那么x叫做a的n次方根n>1且n属于N+ 当n为奇数时,正数的n次方根是一个正数()零的n次方根是零负数的n次方根是一个负数
当n为偶数时。

正数的n次方根有两个,()负数没有偶次方根他们互为相反数
两个重要公式:1()备课笔记
2()
2 分数指数幂
1 正数的正分数指数幂是()
2 正数的负分数指数幂是()
3 0的正分数指数幂是0,0的复分数指数幂无意义
4 有理指数幂的运算性质:ar。

as=ar+s (a>0,r,s属于Q)
(ar)s=ars (a>0,r,s属于Q)
(ab)r= ar as (a>0,b>0,r属于Q)
3 指数函数的定义:y=ax (a>0 且a不等于1)叫指数函数,定义域:实数集R
性质1 y>0
图像经过(0,1)
非奇非偶函数
a>1,当x>0时,y>1;当x<0时,0<y<1
a>1,y=ax为增函数,0<a<1时,y=ax为减函数
画指数函数y=ax图像,应抓住3个关键点:(1,a),(0,a),(-1,1/a)
熟记指数函数y=10x,y=2x,y=(1 / 10)x,y=(1 /2)x在同一坐标系中图像的相对位置
4 指数函数的类型及解法(在指数里含有未知数的方程叫指数方程)
指数方程的可解类型可分为 1 形如af(x)=ag(x)(a>0 且a不等于1)
化为f(x)=g(x)求解
2形如af(x)=bg(x)(a>0 ,b>0且a,b均不等于1)的方程,两边同时取对数
3 形如a2x+b。

ax+c=0的方程,换元法求解
5 指数函数的有关复合函数问题
1 函数y= af(x)的定义域与f(x)的定义域相同
2 求y= af(x)的值域:先确定f(x)的值域,再根据指数函数的值域,单调性求解
3 求单调性先分析,再求解。

注意:同增异减。

相关文档
最新文档